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Abstract

The domain of data mining (DM) deals with analyzing different types of data. The data
typically used in data mining is in the format of a single table, with primitive datatypes
as attributes. However, structured (complex) data, such as graphs, sequences, networks,
text, image, multimedia and relational data, are receiving an increasing amount of interest
in data mining. A major challenge is to treat and represent the mining of different types
of structured data in a uniform fashion. A theoretical framework that unifies different
data mining tasks, on different types of data can help to formalize the knowledge about
the domain and provide a base for future research, unification and standardization. Next,
automation and overall support of the Knowledge Discovery in Databases (KDD) process is
also an important challenge in the domain of data mining. A formalization of the domain
of data mining is a solution that addresses these challenges. It can directly support the
development of a general framework for data mining, support the representation of the
process of mining structured data, and allow the representation of the complete process of
knowledge discovery.

In this thesis, we propose a reference modular ontology for the domain of data mining
OntoDM, directly motivated by the need for formalization of the data mining domain. The
OntoDM ontology is designed and implemented by following ontology best practices and
design principles. Its distinguishing feature is that it uses Basic Formal Ontology (BFO)
as an upper-level ontology and a template, a set of formally defined relations from Rela-
tional Ontology (RO) and other state-of-the-art ontologies, and reuses classes and relations
from the Ontology of Biomedical Investigations (OBI), the Information Artifact Ontology
(IAO), and the Software Ontology (SWO). This will ensure compatibility and connections
with other ontologies and allow cross-domain reasoning capabilities. The OntoDM ontology
is composed of three modules covering different aspects of data mining: OntoDT, which
supports the representation of knowledge about datatypes and is based on an accepted ISO
standard for datatypes in computer systems; OntoDM-core, which formalizes the key data
mining entities for representing the mining of structured data in the context of a general
framework for data mining; and OntoDM-KDD, which formalizes the knowledge discovery
process based on the Cross Industry Standard Process for Data Mining (CRISP-DM) process
model.

The OntoDT module provides a representation of the datatype entity, defines a taxonomy
of datatype characterizing operations, and a taxonomy of datatype qualities. Furthermore, it
defines a datatype taxonomy comprising classes and instances of primitive datatypes, gener-
ated datatypes (non-aggregate and aggregated datatypes), subtypes, and defined datatypes.
With this structure, the module provides a generic mechanism for representing arbitrarily
complex datatypes.

The OntoDM-core module formalizes the key data mining entities needed for the repre-
sentation of mining structured data in the context of a general framework for data mining.
These include the entities dataset, data mining task, generalization, data mining algorithm,
and others. More specifically, it provides a representation of datasets, and a taxonomy of
datasets based on the type of data. Next, it provides a representation of data mining tasks,
and proposes a taxonomy of data mining tasks, predictive modeling tasks and hierarchi-
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cal classification tasks. Furthermore, it provides a representation for generalizations, and
proposes a taxonomy of generalizations and predictive models based on the types of data
and generalization language. Moreover, it provides a representation of data mining algo-
rithms, proposes a taxonomy of data mining algorithms, predictive modeling algorithms,
and hierarchical classification algorithms, and generalizes the mechanism for representing
data mining algorithms to represent general algorithms in computer science. In addition,
the OntoDM-core module provides a representation of constraints and constraint-based data
mining tasks and proposes a taxonomy thereof. Finally, the module provides a representa-
tion of data mining scenarios that includes data mining scenarios as a specification, data
mining workflows, and the process of executing a data mining workflow.

The OntoDM-KDD module supports the representation of data mining investigations.
It provides a representation of data mining investigation by directly extending classes from
the OBI and IAO ontologies. Furthermore, it models each of the phases in a data mining
investigation (such as application understanding, data understanding, data preparation,
modeling, DM process evaluation, and deployment), and their inputs and outputs.

The OntoDM ontology and its three modules OntoDT, OntoDM-core, and OntoDM-
KDD) were evaluated in order to assess their quality. The evaluation was performed by
assessing the ontology against a set of design principles and best practices, and assessing
whether the competency questions posed in the design phase were implemented in the lan-
guage of the ontology. In addition, we provided a domain coverage assessment by comparing
the OntoDM data mining tasks taxonomy with the data mining topic ontology constructed
in a semi-automatic fashion from abstracts of articles from data mining conferences and
journals.

The developed ontology supports a large variety of applications. We demonstrate the
use and the application of the ontology by describing six use cases. The OntoDM ontology
is used for the annotation of data mining algorithms; for the representation of data mining
scenarios; for the annotation of data mining investigations; in cross domain applications to
support ontology-based representation of QSAR modeling for drug discovery, as a mid-level
ontology by the Expose ontology; and for the annotation of articles containing data mining
terms in combination with text mining tools.

The novelties that the OntoDM ontology introduces and what distinguishes it from other
related ontologies are the facts that it allows representation of mining of structured data
and the general process of data mining in a principled way, it is based on a theoretical
ontological framework and due to this it can be connected to other domain ontologies to
support cross-domain applications. The OntoDM ontology is also the first ontology that
supports the representation of the complete process of knowledge discovery.

In the future developments of the OntoDM ontology, we plan to focus on several as-
pects. First, we would like to align and map of our ontology to other upper-level ontologies.
Second, we plan to extend the established ontological framework to represent entities about
components of data mining algorithms, such as distance functions and kernel functions.
Next, we plan to populate the ontology downward with instances. Furthermore, we plan to
extend the representational framework for representing experiments for mining structured
data in the context of experiment databases. Finally, we plan to include more contributors
from the domain of data mining into the development of OntoDM and apply the OntoDM
design principles to the development of ontologies for other areas of computer science.
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Povzetek

Domena podatkovnega rudarjenja se ukvarja z analizo različnih vrst podatkov. Podatki, ki
se običajno uporabljajo v podatkovnem rudarjenju, so po navadi v obliki ene same tabele,
kjer vsaka vrstica vsebuje vrednost atributa, t.j., spremenljivke ki so primitivnega podatkov-
nega tipa. Obstaja vedno več zanimanjaVendar pa za strukturirane (kompleksne) podatke,
kot so grafi, sekvence, mreže, besedila, slike, multimediski in relacijski podatki. Glavni izziv,
ki se ga v tei disertaciji lotimo, je predstavitev in obravnava rudarjenja različnih vrst struk-
turiranih podatkov v enotni obliki. Teoretični okvir, ki združuje različne naloge podatkov-
nega rudarjenja različnih podatkovnih tipov, bi pomagal formalizirati znanje o domeni in s
tem zagotoviti osnovo za nadaljnje raziskave, poenotenje in standardizacijo. Avtomatizacija
in celotna podpora procesa odkrivanja znanja iz podatkovnih baz prav tako predstavljata
pomemben izziv v domeni podatkovnega rudarjenja. Formalizacija osnovnih pojmov na
področju podatkovnega rudarjenja bi omogocila predstavitev podatkovnega rudarjenja in
reprezentacijo procesa podatkovnega rudarjenja strukturiranih podatkov ter obenem tudi
procesov odkrivanja znanj iz podatkov.

V tej disertaciji predlagamo referenčno modularno ontologijo za domeno podatkovnega
rudarjenja OntoDM, ki je neposredno utemeljena s potrebo po formalizaciji domene podat-
kovnega rudarjenja. Ontologija OntoDM je zasnovana in implementirana z upoštevanjem
najučinkoviteǰsih ontoloških praks in oblikovalskih načel. Uporablja temeljno formalno on-
tologijo (BFO) kot predlogo in kot ontologijo na vǐsji ravni, množico formaliziranih relacij
iz relacijske ontologije (RO) in drugih najrazviteǰsih ontologij; prav tako ponovno uporabi
razrede in relacije iz ontologije biomedicinskih raziskav (OBI), ontologije informacijskih ar-
tefaktov (IAO) in ontologije programske opreme (SWO).

Ontologija OntoDM je sestavljena iz treh modulov, ki zajemajo različne vidike podatkov-
nega rudarjenja. OntoDT podpira reprezentacijo znanja o podatkovnih tipih in temelji na
sprejetem ISO standardu za podatkovne tipe v računalnǐskih sistemih. OntoDM-core forma-
lizira najpomembneǰse entitete podatkovnega rudarjenja za reprezentacijo rudarjenja struk-
turiranih podatkov v kontekstu teoretičnega okvira podatkovnega rudarjenja. OntoDM-
KDD formalizira proces odkrivanja znanja in izhaja iz procesnega modela CRISP-DM (Cross
Industry Standard Process for Data Mining).

Modul OntoDT omogoča predstavitev podatkovnih tipov, opredeljuje taksonomijo po-
datkovnih tipov, ki vključuje razrede in primere iz primitivnih podatkovnih tipov, generira-
nih podatkovnih tipov (nesestavljeni in sestavljeni podatkovni tipi), podtipov ter opredelje-
nih podatkovnih tipov. S takšno strukturo omogoča modul predstavitev poljubno komple-
ksnih podatkovnih tipov.

Modul OntoDM-core formalizira najpomembneǰse entitete (v domeni) podatkovnega ru-
darjenja, ki so potrebne za predstavitev rudarjenja strukturiranih podatkov v kontekstu
teoretičnega okvira podatkovnega rudarjenja: te vključujejo podatkovno množico, nalogo
podatkovnega rudarjenja, modele, algoritm podatkovnega rudarjenja itd. Natančneje, mo-
dul omogoča predstavitev podatkovnih množic in taksonomijo podatkovnih množic, ki izhaja
iz podatkovnega tipa. Prav tako omogoča predstavitev nalog podatkovnega rudarjenja ter
predlaga taksonomijo nalog podatkovnega rudarjenja, taksonomijo nalog napovednega mo-
deliranja, in taksonomijo nalog hierarhičnog razvrščanja. Poleg tega omogoča predstavitev



XIV

modelov ter predlaga taksonomijo splosnih modelov in napovednih modelov, ki temeljijo na
podatkovnih tipih in jeziku modelov. Omogoča tudi reprezentacijo algoritmov podatkov-
nega rudarjenja in predlaga njihovo taksonomijo, ter taksonomijo algoritmov za napovedno
modeliranje in taksonomijo algoritmov za hierarhično razvrščanje, prav tako posplošuje me-
hanizme predstavitev algoritmov podatkovnega rudarjenja v kontekstu predstavitve splošnih
algoritmov v računalnǐstvu. Modul OntoDM-core prav tako omogoča reprezentacijo omeji-
tev in nalog podatkovnega rudarjenja, ki so opredeljene z omejitvami, pri čemer predlaga
njihovo taksonomijo. Nenazadnje omogoča modul tudi predstavitev opisa sekvenc aktivno-
sti podatkovnega rudarjenja, ki vključuje specifikacijo, delotok podatkovnega rudarjenja ter
proces izvedbe delotoka podatkovnega rudarjenja.

Modul OntoDM-KDD omogoca predstavitev procesa odkrivanja znanja s podatkovnim
rudarjenjem. Modul omogoča pre poizvedbe podatkovnega rudarjenja z neposredno razširi-
tvijo razredov iz OBI in IAO ontologij. Poleg tega modelira vsako fazo procesa odkrivanja
znanja (denimo razumevanje uporabe, razumevanja podatkov, priprave podatkov, modeli-
ranje, postopek vrednotenja podatkovnega rudarjenja in postavitev) ter njihovih vhodov in
izhodov.

OntoDM ontologij ter njene pripadajoče tri module OntoDT, OntoDM-core in OntoDM-
KDD smo ovrednotili z namenom opredelitve njihove kakovosti. Vrednotenje je potekalo na
podlagi oblikovnih načel in najbolǰsih praks, pri čemer se je ocenjevalo, ali lahko ontologija
odgovori na kompetenčna vprašanja, ki so bila zastavljena v fazi oblikovanja. Poleg tega smo
ocenili pokritost domene na podlagi primerjave taksonomije nalog podatkovnega rudarjenja
s tematsko ontologijo podatkovnega rudarjenja, ki smo jo zgradili na polavtomatski način
iz povzetkov člankov s konferenc o podatkovnem rudarjenju ter iz znanstvenih revij.

Na tak način razvita ontologija podpira široko paleto aplikacij. Njeno uporabo in mo-
žnosti aplikacije v ilustriramo na šestih opisanih primerih uporabe. OntoDM ontologij smo
uporabili za označevanje algoritmov podatkovnega rudarjenja, za predstavitev scenarij ak-
tivnosti podatkovnega rudarjenja ter za označitev procesa podatkovnega rudarjenja. V med-
domenskih aplikacijah se OntoDM uporablja za podporo (na ontologiji temelječih) reprezen-
tacij QSAR modeliranja za odkrivanje zdravil in kot srednjestopenjska ontologija (Exposé
ontologija). OntoDM lahko uporabimo tudi ter za označevanje člankov, ki vsebujejo termine
iz podatkovnega rudarjenja, v kombinaciji z orodji za rudarjenje besedil.

Novosti, ki jih uvaja ontologija OntoDM in jo obenem razlikujejo od ostalih sorodnih
ontologij, so možnosti reprezentacije podatkovnega rudarjenja strukturiranih (kompleksnih)
podatkov in generalnega procesa podatkovnega rudarjenja na načelni ravni, ki temelji na
teoretičnem okviru, zaradi česar se lahko povezuje z ostalimi domenskimi ontologijami z na-
menom podpore meddomenskih aplikacij. Ontologija OntoDM je prav tako prva ontologija,
ki omogoča reprezentacijo celotnega procesa odkrivanja znanja.

V okviru nadaljnjega razvoja OntoDM ontologije se nameravamo osredotočiti na nekaj
vidikov. Najprej želimo poravnati in preslikati našo ontologijo na druge vǐsjestopenjske on-
tologije. Prav tako načrtujemo razširitev predlaganega ontološkega okvira z namenom repre-
zentacije komponent algoritmov podatkovnega rudarjenja, kot sta funkcija razdalje in kernel
funkcija. Nato nameravamo napolniti/dopolniti ontologijo s primeri. Poleg tega načrtujemo
razširitev reprezentacijskega okvira z namenom reprezentacije poskusov/eksperimentov zno-
traj rudarjenja strukturiranih podatkov v kontekstu eksperimentalnih podatkovnih baz. Na-
posled bomo z namenom razvoja OntoDM vključili več sodelavcev s področja podatkovnega
rudarjenji, pri čemer bomo uporabili načela oblikovanja OntoDM za razvoj ontologij z drugih
področij računalnǐstva.
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1 Introduction

In this chapter, we first present the background of the work presented in this thesis
(Section 1.1). Next, we state the motivation for this work (Section 1.2). In addition, we
present the goals of the work presented this thesis (Section 1.3). Furthermore, we list the
original scientific contributions of this thesis (Section 1.4). We conclude this chapter with
an overview of the thesis structure (Section 1.5).

1.1 Background

1.1.1 Challenges in the domain of data mining

Fayyad et al. (1996) define knowledge discovery in databases (KDD) as a“non-trivial process
of identifying valid, novel, potentially useful, and ultimately understandable patterns in
data”. According to this definition, data mining (DM) is the central step in the KDD process
concerned with the application of computational techniques (i.e., data mining algorithms
implemented as computer programs) to find patterns in the data1.

Data mining is concerned with analyzing different types of data. Besides data in the
format of a single table (with primitive datatypes as attributes), most commonly used
in data mining (Witten and Frank, 2005; Hand et al., 2001; Kaufman and Rousseeuw,
1990; Kononenko and Kukar, 2007; Han, 2005), structured (complex) data are receiving
an increasing amount of interest (Bakir et al., 2007). These include graphs, sequences,
networks, text, image, multimedia and relational data. Also, many data mining algorithms
are designed to solve data mining tasks for specific types of data, most frequently defined for
data represented in a single table. Examples of such tasks are classification, regression, or
clustering. These tasks in essence can be defined on an arbitrary datatype and a theoretical
framework that unifies different data mining tasks, on different types of data would help to
formalize the knowledge about the domain and provide a base for future research, unification
and standardization. A major challenge is to treat and represent the mining of different
types of structured data in a uniform fashion. This was identified by Yang and Wu (2006)
as one of the challenging problems in the domain. In addition, recent surveys of research
challenges for data mining by Kriegel et al. (2007) and Dietterich et al. (2008) list the mining
of complex data, the use of domain knowledge, and the support for complex knowledge
discovery processes among the top-most open issues that have the best chance of providing
the tools for building integrated artificial intelligence (AI) systems.

Džeroski (2007) addresses the ambitious task of formulating a general framework for data
mining. In the paper, the author discusses the requirements that such a framework should
fulfill. These include elegantly handling of different types of data, different data mining
tasks, and different types of patterns and models. Furthermore, Džeroski discusses the
design and implementation of data mining algorithms and their composition into scenarios
for practical applications. In addition, the author develops his framework by laying some
basic concepts, such as structured data, patterns and models, continues with data mining

1The patterns in this definition denote any kind of knowledge that is extracted in the process of data
mining.
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tasks and basic components of data mining algorithms, such as features, distances, kernels
and refinement operators. Finally, these concepts are used to formulate constraint-based
data mining task and the design of generic data mining algorithms.

Much of the research in recent years in the domain of KDD and DM has also focused on
the automation and overall support of the KDD process, identified by Yang and Wu (2006)
as another important challenge. This involves development of standards for performing the
KDD process (such as for example the CRISP-DM methodology (Chapman et al., 1999)) as
well as formal representations of the KDD processes in the form of workflows. In addition,
specific issues addressed include methods that automate the composition of data mining
operations into executable workflows. Finally, providing a mechanism for recording of results
and the experimental settings of the data mining experiments obtained by executing the
workflows on sets of data is becoming necessary for ensuring the repeatability and reuse of
results.

On a Daghstul seminar entitled Data Mining: The Next Generation held in 2005, one
of the discussion topics was the compositionality of data mining operators (Ramakrishnan
et al., 2005). The participants of the seminar proposed to describe data mining operations
in terms of their signatures, that is, in terms of the domain (inputs) and range (outputs) of
the functions that they are computing. In order to structure the large number and variety
of data processing and data mining operations, they proposed to organize the signatures
into taxonomies. The purpose of taxonomies is to order the operators conceptually and also
to get a better understanding of the commonalities and differences between them. At the
higher levels of the taxonomy, the signatures are described by general terms, like patterns or
models, and at the lower levels of hierarchy the signatures are specialized for certain types
of patterns or models, such as for example trees and rules.

1.1.2 Formalization of scientific investigations

The term science, in general, refers both to scientific knowledge and the process of acquiring
such knowledge. It includes any systematic field of study that relates to observed phe-
nomena and involves claims that can be tested empirically. Džeroski et al. (2007) state two
reasons why it is important to study the process of scientific discovery from a computational
perspective. First, this allows us to understand how humans perform scientific discoveries.
Second, this allows us to automate or provide computational support for different facets
of science. The first step in the automation of science is to formally represent the process
of science itself and its participants. For this purpose, one needs to use some knowledge
representation structures.

Formalization of scientific investigations has proved to be a prominent area of research.
This includes providing a formal representation of objects and processes involved in scien-
tific investigations in some knowledge representation framework (Brachman and Levesque,
2004), such as terminologies, taxonomies, and ontologies. In recent years, the use of ontolo-
gies has become prominent in the area of computer science research and the application of
computer science methods in management and representation of scientific and other kinds
of information. In this sense, the term ontology has the meaning of a standardized termi-
nological framework in terms of which the information is organized. Traditionally, ontology
has been defined as the philosophical study of what exists: the study of kinds of entities in
the reality, and the relationships that these entities bear to one another (Smith, 2003b).

Most prominent developments in the context of formal representation of scientific in-
vestigations have been done in biological and biomedical domains. Examples of formal
representations of scientific investigations in the form of ontologies include ontology for The
Robot Scientist project (King et al., 2009), where an ontology was developed to provide sup-
port for recording of experiments performed and designed by an autonomous robot for the
purpose of formalizing the robot’s research. Second example is the Ontology of Biomedical
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Investigations (OBI), where the ontology provides a model for the design of an biological
and clinical investigation, the protocols and instrumentation used, the materials used, the
data generated and the type of analysis performed on it. The third example is the EXACT
ontology (Soldatova et al., 2008), that formalizes biological laboratory protocols, and others.

The State-of-the-Art in formal representations of scientific investigations also includes
initiatives to support and unify the representational mechanisms for representing scientific
investigations under a single framework. Example of such initiative is the Open Biomedi-
cal Ontologies (OBO) Foundry (Smith et al., 2007). The OBO foundry includes involving
developers of science-based ontologies who are establishing a set of principles for ontology
development with the goal of creating a suite of orthogonal inter-operable reference ontolo-
gies in the biomedical domain, such as the Gene Ontology (GO) (Ashburner et al., 2000),
Chemical Entities of Biological Interest (ChEBI) Ontology (de Matos et al., 2010), and
others.

1.1.3 Applied ontology

From the definition of ontology from the previous section, we can see that the problem
that ontologies are addressing in general is focused on adopting a set of basic categories of
objects, determining what (kinds of) entities fall within each of these categories of objects,
and determining what relationships hold within and among different categories in the ontol-
ogy. The ontological problem for computer science is identical to many of the problems in
philosophical ontology and the success of constructing such an ontology is thus achievable
by applying methods, insights and theories of philosophical ontology. The process of con-
structing an ontology means that we design a representational artifact that is intended to
represent the universals and relations among universals that exist, either in a given domain
of reality (e.g., the domain of data mining research) or across such domains. In this context,
Smith et al. (2006) define an ontology as ‘a representational artifact, comprising a taxonomy
as a proper part, whose representational units are intended to designate some combination
of universals, defined classes, and certain relations between them’.

Applied ontology is a branch of ontology science that involves practical applications of
ontological resources to specific domains, such as biology, biomedicine, ecology, computer
science, and others (Munn and Smith, 2008). In this context, a domain is a portion of the
reality that forms the subject-matter of a single science or technology or mode of study
(Smith et al., 2006). In addition, the ontology engineering of is a branch of ontology science
that deals with the set of activities that concern the ontology development process, the
ontology life cycle, the methods and methodologies for building ontologies, and the tools
and languages that support them. Ontology engineering is still a relatively new research
field and some of the steps in ontology design remain manual and more of an art than craft.
Recently, there has been significant progress in automatic ontology learning (Malaia, 2009),
applications of text mining (Buitelaar and Cimiano, 2008), and ontology mapping (Lister
et al., 2009). However, the construction of a high quality ontology with the use of automatic
and even semi-automatic techniques still requires manual definition of the key upper level
entities of the domain of interest.

There is a lack of literature covering the best practices regarding ontology design, its
construction and maintenance. Simperl and Tempich (2006) provide a good reference list of
the best practices observed for a set of ontologies they examine, that are currently relevant in
ontology engineering. Furthermore, various collective ontology development efforts provide
lists of additional principles that can be used for ontology development purposes. For
example, the OBO Foundry effort provides a list of principles to which the member ontologies
should adhere. The most common principle is to re-use of existing ontologies as much as
possible and this is one of the major emphases of the OBO Foundry (Smith et al., 2007).
Furthermore, Courtot et al. (2011) propose a set of guidelines to follow when reusing terms
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and classes from external ontologies based on the same design principles. Finally, the most
important ontology best practices are to use an upper-level ontology as template, to use a
formal set of relations defined with respect to the upper-level ontology, reuse of the already
developed ontologies as much as possible, and not allowing multiple inheritance (Soldatova
and King, 2005).

An upper-level ontology is a high-level, domain independent ontology, providing a frame-
work by which different systems can use a common knowledge base and from which more
domain-specific ontologies can be derived. Examples of upper-level ontologies include SUMO
(Niles and Pease, 2001), CyC (Lenat, 1995), DOLCE (Masolo et al., 2003), BFO (Grenon
and Smith, 2004), GFO (Herre et al., 2006), and YAMATO (Mizoguchi, 2010). A domain
ontology, on the other hand, specifies entities particular to a domain of interest and repre-
sents those entities and their relationships from a domain specific perspective. Reuse of well
established ontologies in domain ontology development allows one to take an advantage of
the semantic richness of relevant entities and logic built in the reused ontology.

Modern ontologies can get quite large and complex, which poses challenges to tools and
users that are processing, editing, analyzing and reusing parts of the ontology. Consequently,
the modularity of ontologies has been an active topic in ontology engineering. Modular-
ization in its most generic meaning denotes the possibility to perceive a large knowledge
repository (e.g., ontology) as a set of modules, that in some way are parts of and compose
the whole (ontology) (Stuckenschmidt et al., 2009). In this context, modules are used to
represent the knowledge of a sub-domain of interest.

Finally, the ultimate goal of every domain is to have a reference ontology representing the
knowledge about the domain. In this sense, a reference ontology is a representational artifact
that is analogous to a scientific theory, where the prime importance is the expressive com-
pleteness and adequacy to the facts of the reality. Additionally, reference ontologies usually
represent heavy-weight ontologies are typically developed with much attention paid to the
precise meaning of each entity, the organizing principles rooted in philosophy, semantically
rigorous relations between entities, etc.

1.2 Motivation

The research presented in this thesis is motivated by the need to formalize the knowledge
about the domain of data mining and knowledge discovery in a form of an ontology. First,
as the area of data mining is developing rapidly, one of the most challenging problems deals
with developing a general framework for mining of structured data and constraint-based
data mining. By formalizing the knowledge about the data mining domain we take one step
toward solving this problem. This would involve identifying the key entities in the domain
and their relations (e.g., a dataset, a data example, a data mining task, a data mining
algorithm etc). After the basic entities are identified and logically defined, we can build
upon them and define more complex entities (e.g., a constraint, a constraint-based data
mining task, a data mining query, a data mining scenario and a data mining experiment).
In addition, including the ontology into some well established knowledge representation
framework, such as the OBO foundry, would enable to link to other domains (application
areas of DM) such as biology, ecology, and biomedicine. Furthermore, this would enable
automated reasoning over the knowledge about the domain. Finally, formalization of the
domain of data mining would directly support the development of a general framework for
data mining and support the representation of the process of mining structured data.

Second, there exist several proposals for ontologies of data mining, but the majority of
them are light-weight application oriented ontologies aimed at covering a particular use-
case in data mining, are of a limited scope, and highly use-case dependent. Initial systems
that include ontologies are used to describe systematically the processes in machine learning
and data mining. These include the CAMLET system (Suyama et al., 1998), the Min-
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ingMart system (Morik and Scholz, 2004), and the IDA system (Bernstein et al., 2005).
Next, there are ontology developments to support workflow composition and planing of
workflows (Bernstein et al., 2005; Žáková et al., 2010; Diamantini and Potena, 2008; Kietz
et al., 2009), support data mining applications on the GRID (Cannataro and Comito, 2003;
Brezany et al., 2007), meta-learning and meta-mining (Hilario et al., 2009), support machine
learning experiments in the context of experiment databases (Vanschoren et al., 2012), sup-
port application domains (e.g., (Hardy et al., 2010)), and learning semantic representations
from text (Peng et al., 2008; Melli, 2010; Vavpetič et al., 2011).

Some of the ontologies are parts of active projects, e.g, the DMOP ontology (Hilario
et al., 2009), the DMWF ontology (Kietz et al., 2009), the KDDONTO ontology (Diaman-
tini and Potena, 2008), and the Exposé ontology (Vanschoren et al., 2012). Regarding the
ontological aspects, almost all of the proposed ontologies for data mining are not explicitly
aligned to any upper-level ontology and do not use a set of formal community agreed (or
any logically defined) relations. This leads to the non-compatibility of ontologies and to
ontologies that can not be easily reused and extended. An exception is the Exposéontology.
Regarding the coverage aspect, the proposed ontologies deal with mining data represented
in a single table with primitive attributes as datatypes and mainly focus on the predictive
data mining tasks, such as classification and regression. An exception is the KD Ontology
(Žáková et al., 2010) which includes some very specific relational mining tasks and algo-
rithms. In addition, the ontologies do not provide a flexible mechanism for extension and
generalization toward representing data mining tasks and algorithms for mining structured
data. Finally, data mining is a domain which needs a heavy-weight ontology with a broader
scope, where much attention is paid to the precise meaning of each entity, semantically rigor-
ous relations between entities and compliance to an upper-level ontology, and compatibility
with ontologies for the domains of application (e.g., biology, environmental sciences).

Finally, an ontology of data mining should define what is the minimum information
required for the description of a data mining investigation. Biology and biomedicine are
leading the way in developing standards for recording and representation of scientific data
and biological investigations (Taylor et al., 2008) (e.g., already more than 50 journals require
compliance of the reporting in papers results of microarray experiments to the Minimum
Information About a Microarray Experiment - MIAME standard (Brazma et al., 2001)).
The researchers in the domain of data mining should follow this good practice and the
ontology of data mining should support the development of standards for performing and
recording of data mining investigations.

1.3 Goals

Our main goal in this thesis is to develop a reference modular heavy-weight domain ontology
of data mining. First, in order to support representation of mining of structured data the
ontology should contain a separate module for representing knowledge about datatypes and
should be based on some commonly accepted standard for datatypes in computer systems
(e.g., (International Organization for Standardization, 2007)). Next, the ontology should
contain a separate module that formalizes the key data mining entities for representation of
mining of structured data, based on the proposal for a general framework for DM (Džeroski,
2007). Finally, the ontology should contain a separate module that formalizes the knowl-
edge discovery process and introduces data mining investigations based some commonly
accepted methodology for performing data mining investigations (e.g. CRISP-DM method-
ology (Chapman et al., 1999)).

The ontology should be designed and implemented by following ontology best practices
and design principles (e.g., (Simperl and Tempich, 2006; Smith et al., 2007; Courtot et al.,
2011; Soldatova and King, 2005)). This includes using a upper-level ontology BFO (Basic
Formal Ontology) (Grenon and Smith, 2004) as a template, using formally defined relations
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from RO (Relational Ontology) (Smith et al., 2005), and reusing classes and relations from
other ontologies for representing scientific investigations, such as OBI (Ontology of Biomed-
ical Investigations) (Brinkman et al., 2010), IAO (Information Artifact Ontology)2, EXACT
(Ontology of Experiment Actions) (Soldatova et al., 2008), SWO (Software Ontology)3 using
them as mid-level ontologies.

Finally, having this as a baseline, the ontology should support a large variety of appli-
cations. These include applications to support annotations and the representation of data
mining algorithms, data mining scenarios, and data mining investigations. Furthermore,
the ontology should support cross domain applications and provide a link to application do-
mains of data mining. For example, the ontology can provide support for the representation
of Quantitative structure-activity relationship (QSAR) modeling process in the context of
Drug Design Investigation. Finally, the ontology should be developed in a general fashion
in order to be used as a mid-level and further extended by other ontologies, focusing on a
specific part of the data mining domain, ontology reuse by others that use the same set of
design principles.

1.4 Scientific contributions

The work presented in this thesis comprises several contributions to the area of data mining,
knowledge discovery in databases, and applied ontology. Furthermore, parts of the work
presented here are published in several publications, such as Panov et al. (2008), Panov
et al. (2009), Panov et al. (2010), and Panov et al. (2012). The complete list of papers
related to this thesis is given in Appendix 1. The main contributions of the work presented
in this thesis summarized as follows:

1. State-of-the-art literature survey on ontologies for representing scientific investigations
and ontologies in the domain of data mining.

2. Design and implementation of a modular reference domain ontology of data mining
(OntoDM) composed of three modules (OntoDT, OntoDM-core, and OntoDM-KDD).
The proposed ontology is designed using a set of ontology best practices and design
principles, including the use of BFO as the upper-level ontology, RO as the ontology for
relations, and heavy reuse of other ontologies for scientific investigations, such as IAO,
OBI, SWO and others. In addition, we propose a three-level description structure for
representing entities form the data mining domain, which includes the specification
level, implementation level, and application level.

(a) Design and implementation of an ontology module for representing knowledge
about datatypes OntoDT, based on the ISO 11404 standard for general purpose
datatypes. This module includes representations of datatype, datatype quali-
ties and datatype characterizing operations. In addition, it establishes a generic
mechanism for representing arbitrarily complex datatypes.

(b) Design and implementation of an ontology module for representing knowledge
about core data mining entities for mining structured data OntoDM-core based
on a proposal for a general framework for data mining. This module includes
representations of dataset, data mining tasks, generalizations, data mining algo-
rithms, constraints, constraint-based data mining task, and data mining scenar-
ios. In addition, it provides a generic structure for representing algorithms in
computer science.

2IAO: http://code.google.com/p/information-artifact-ontology/
3SWO: http://theswo.sourceforge.net/

http://code.google.com/p/information-artifact-ontology/
http://theswo.sourceforge.net/
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(c) Design and implementation of an ontology module for representing knowledge
about data mining investigations OntoDM-KDD, based on the CRISP-DM method-
ology. This module includes representations of data mining investigations, the
phases in a data mining investigations and the inputs and outputs of each phase
of the investigation.

3. Evaluation of the OntoDM ontology and its modules OntoDT, OntoDM-core and OntoDM-
KDD modules. The evaluation is performed in the context of design principles and
competency questions. In addition, we provide a domain coverage evaluation using a
data mining topic ontology.

4. Demonstration of the use of the OntoDM ontology in different use cases. This includes
the use of the ontology for annotation of algorithms, representation of scenarios, anno-
tation of data mining investigations, support for cross-domain applications, mid-level
ontology used by other users, and annotation of data mining articles combined with
text mining.

1.5 Thesis structure

This introductory chapter presented the background and the context of the thesis. It also
provided the motivation for performing the research and the list of the main original scientific
contributions. The rest of the thesis is organized as follows.

In Chapter 2, we present the background information about the work presented in the
remainder of the thesis. We first present different definitions of ontologies in computer
science and the view of ontology as a representational artifact. Next, we present different
ontological architectures such as the upper-level, mid-level, and domain ontology. Further-
more, we present the ontology engineering process, the design of modular ontologies, and
ontology support activities. Finally, we conclude this chapter with an overview of ontology
languages, and ontology engineering tools.

In Chapter 3, we present the related work connected to this thesis. First, we present the
state-of-the-art in ontologies for science such as upper-level ontology initiatives and candi-
dates, ontologies for scientific experiments, and biomedical ontologies. Next, we focus on
the state-of-the-art in formal representations of the domain of data mining and review the
developments in the context of the GRID, data mining workflows, meta-learning (and meta-
mining), machine learning experiments, application domains of data mining, and learning
semantic representations from text. Finally, we conclude this chapter with other related
approaches that include semantic data mining and knowledge discovery for ontology con-
struction.

In Chapter 4, we present task of developing a reference modular heavy-weight ontology
of data mining (OntoDM), its design and implementation. First, we present the background
that led to the development of the OntoDM ontology. Next, we focus on the ontology design
best practices and design principles to be used for the design of the ontology. Furthermore,
we present the basic design of the OntoDM ontology by discussing the upper-level ontology
used (BFO), mid-level ontologies used (IAO, OBI, SWO), and the set of relations. In addi-
tion, we present the OntoDM modular structure and a proposal for a three-level description
structure (specification, implementation, application) for representing entities in the data
mining domain. Finally, we conclude this chapter with the discussion of the implementation
and maintenance issues for the OntoDM ontology.

In Chapter 5, we present the module for representing datatypes (OntoDT). First, we
present the OntoDT module goal, scope and competency questions. Next, we focus on the
implementation of the module in the specification and implementation description level.
Finally, we conclude the chapter with the ontology module description, that includes rep-
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resentation of datatype, characterizing operations, datatype qualities, and the taxonomy of
datatypes (primitive datatypes, generated datatypes, subtypes, and defined datatypes).

In Chapter 6, we present the ontology module for representing core data mining entities
for representing mining of structured data (OntoDM-core). First, we present the OntoDM-
core module goal, scope and competency questions. Next, we focus on the implementation of
the module at the specification, implementation and application description level. Finally,
we conclude the chapter with the ontology module description, that includes the represen-
tation of dataset (data specification, dataset specification, and taxonomy of datasets), data
mining task (definition of task based on data specification, taxonomy of fundamental tasks,
taxonomy of predictive modeling tasks, and taxonomy of hierarchical classification tasks),
generalizations (three-level description of generalizations, taxonomy of generalizations, and
taxonomy of predictive models), data mining algorithm (three-level description of data min-
ing algorithms, taxonomy of data mining algorithms, taxonomy of predictive modeling al-
gorithms, taxonomy of hierarchical classification algorithms, and proposal for a generic
structure for representing algorithms in computer science), constraints and constraint-based
data mining task (taxonomy of constraints, and taxonomy of constraint-based data mining
tasks), and data mining scenario (three-level description of data mining scenarios).

In Chapter 7, we present the ontology module for representing data mining investigations
(OntoDM-KDD). First, we present the OntoDM-KDD module goal, scope and competencies.
Next, we focus on the implementation of the module at the specification and application
description level. Finally, we conclude the chapter with the ontology module description,
that includes representation of data mining investigation, and the phases that compose
an investigation such as application understanding, data understanding, data preparation,
modeling, DM process evaluation, and deployment.

In Chapter 8, we present the ontology evaluation. First, we present the ontology metrics.
Next, we focus on the ontology assessment in terms of the design principles and ontology best
practices. Furthermore, we focus on ontology assessment toward the competency questions.
Finally, we conclude this chapter with evaluation of the OntoDM domain coverage using a
data mining topic ontology.

In Chapter 9, we present and discuss the selected use cases for the OntoDM ontology.
First, we focus on the use of OntoDM for annotation of data mining algorithms with an
example of annotation for the Clus software4. Next, we present how OntoDM can be used
for representing scenarios by showing examples of two scenarios that are modeled with the
ontology (a scenario for evaluating predictive models and a scenario for comparing algo-
rithms). Furthermore, we present how OntoDM (more specifically OntoDM-KDD module)
can be used for the annotation of data mining investigations on an example investigation
presented in a journal article. Next, we present the Robot scientist use case and show how
OntoDM can be used in combination with the DDI ontology to support ontology-based rep-
resentation of QSAR modeling for drug discovery. Finally, we conclude this chapter with
the use case showing how OntoDM can be used as a mid-level ontology and further extended
by other ontologies and the use of OntoDM in combination with text mining techniques for
annotating DM algorithms.

Finally, Chapter 10 provides the conclusions of the work presented, a summary of scien-
tific contributions, and discussion of the future work.

4Clus: http://dtai.cs.kuleuven.be/clus/

http://dtai.cs.kuleuven.be/clus/
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2 Ontology

Aristotle (384 BC-322 BC), a Greek philosopher and a student of Plato, first defined
ontology as the science of being as such in the Metaphysics (Aristotle and Warrington, 1956):

“There is a science which studies ‘Being qua Being’, and the properties inherent
in it in virtue of its own nature.”

The notion of ontology can be considered from two different perspectives: one that
originates from philosophy, and one that originates from computer science. The philosophical
perspective focuses on categorical analysis and answers questions such as: ‘What are the
entities in the world?’ and ‘What are the categories of entities?’. In this context, ontology
is traditionally defined “as the philosophical study of what exists: the study of the kinds
of entities in reality, and the relationships that these entities bear to one another” (Smith,
2003a).

Recently, the term ontology has become popular in the area of computer and information
sciences, and the application of computer science methods for the management of scientific
information. In this context, the terminology has the meaning of a standardized terminolog-
ical framework. The computer science perspective sees ontology as a technology, and focuses
on the same set of questions as the philosophical perspective, but with a different intention.
The idea of the use of ontology in computer science is to create engineering models of reality
that can be used by software, directly interpreted and reasoned over by inference engines.

In this chapter, we first present different views and definitions of ontology in computer
science (Section 2.1). Next, we present an overview of ontology architectures (Section 2.2).
Furthermore, we present the objectives of ontological engineering, as a scientific discipline
that deals with methods for constructing and maintenance of ontologies (Section 2.3). Fi-
nally, we present an overview of ontology languages and tools used to code, design, implement
and manage ontologies (Section 2.4).

2.1 What is an ontology?

In recent years, the term ‘ontology’ has been used widely in the areas of computer and
information sciences and applications of these areas to the management of scientific and
other kinds of information. The ontological problem in computer science is to adopt a set
of basic categories of objects, then to determine what kinds of entities fall into each of the
categories, and finally determine the relationships that are valid within and among different
categories of the ontology. The ontological problem in computer science can be successfully
solved only if one applies the methods, insights and theories of philosophical ontologies.

In this section, we present different definitions of what an ontology is, given by different
authors in the area of computer science (Section 2.1.1). Next, we present the view that an
ontology is a representational artifact (Section 2.1.2). Finally, we briefly discuss the possible
roles of an ontologies in computer science (Section 2.1.3).
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2.1.1 Definitions of ontology in computer science

In computer science, one of the first definitions of ontology was given by Neches et al. (1991),
who defines ontologies as follows:

“An ontology defines the basic terms and relations comprising the vocabulary
of a topic area as well as the rules for combining terms and relations to define
extensions to the vocabulary”.

According to this definition, an ontology along with the explicitly defined terms includes
also knowledge that can be inferred from it. Next, Gruber (1993) defined ontology as follows:

“An ontology is an explicit specification of a conceptualization”.

This definition tries to contrast the definition of ontology in philosophy by emphasizing that
ontology is a product of computational engineering. The notion of ‘conceptualization is
defined by Genesereth and Nilsson (1987) as “objects, concepts, and other entities that are
presumed to exist in some area of reality and the relations that hold among them”.

Guarino and Giaretta (1995) analyze different ways of characterizing ontology by using
seven definitions:

1. Ontology as a philosophical discipline.

2. Ontology as an informal conceptual system.

3. Ontology as a formal semantic account.

4. Ontology as a specification of a conceptualization.

5. Ontology as a representation of a conceptual system via a logical theory

(a) characterized by specific formal properties.

(b) characterized only by its specific purposes.

6. Ontology as the vocabulary used by a logical theory.

7. Ontology as a (meta-level) specification of a logical theory.

This set of definitions leads to the definition of ontology as: “a logical theory which gives an
explicit, partial account of a conceptualization”.

Guarino (1998) refines the definition by Guarino and Giaretta (1995) with the refinement
that ontology also has to be:

“A set of logical axioms designed to account for the intended meaning of a vo-
cabulary”.

Other definitions of ontology are based on the process of building the ontology. These
definitions cover the relationships between ontologies and knowledge bases. For example,
Bernaras et al. (1996) propose the following definition:

“Ontology provides the means for describing explicitly the conceptualization be-
hind the knowledge represented in a knowledge base”.

Another definition is given by Swartout et al. (1997) having in mind a design strategy
to reuse large ontologies to create domain ontologies and knowledge bases:

“An ontology is a hierarchically structured set of terms for describing a domain
that can be used as a skeletal foundation for a knowledge base”.

Mizoguchi et al. (1995) define ontology from a knowledge-based systems’ point of view,
as
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“A theory(system) of concepts/vocabulary used as building blocks of an infor-
mation processing system”.

Furthermore, Mizoguchi (2003) gives a compositional definition of ontology as follows:

“An ontology consists of concepts, hierarchical (is-a) organization of them, re-
lations among them (in addition to is-a and part-of), axioms to formalize the
definitions and relations”.

2.1.2 Ontology as a representational artifact

In this thesis, we use a set of definitions of terms used for and about ontology defined
by Smith et al. (2006). In their article, the authors propose a reference terminology for
ontology research and development in the biomedical domain. These include definitions of
the following terms: entity, representation, representational artifact, universal, particular,
relation, class, domain, and types of representational artifacts. In addition, Smith et al.
(2006) list the basic types of representational artifacts that include terminologies, inventories,
taxonomies, and ontologies. In the remainder of this section, we present an overview of these
terms and definitions.

Entity, representation and representational artifact. Entity is defined as anything
which exists, including objects, processes, qualities and states on all three levels (Smith
et al., 2006). There is a distinction of three levels of entities wherever ontologies are used.
Level 1 entities include the objects, processes, qualities and states in the reality. Level
2 entities include cognitive representations of the reality. Finally, level 3 entities include
concretizations of these cognitive representations in the form of representational artifacts.

A representation is for example an idea, image, record, or description that is about, or
refers to, some entity or entities external to the representation. A composite representation
is a representation built out of constituent sub-representations as their parts. The smallest
constituent sub-representations are called representational units. A cognitive representation
is a level 2 representation, whose representational units are ideas, thoughts, or beliefs in the
mind of some cognitive subject. A formalized representation is a representation interpretable
by a computer and published in a language with formal semantics.

A representational artifact is a level 3 representation, that is fixed in some medium in
such a way that it can serve to make the cognitive representations existing in the minds of
separate subjects publicly available in some enduring fashion. Examples of representational
artifacts include: text, diagrams, maps, legends, controlled vocabularies, and others.

Particulars, universals and domain. The ontology engineer at level 1 is concerned
with the identification of particulars (individuals or instances) in the reality. The particulars
are divided into continuants and occurents: The former covers entities that exists in full
at any time, and persist through time while maintaining their identity, while the latter
covers entities that have temporal parts and that happen, unfold or develop through time.
A universal is something that is shared in common by all these particulars which are its
instances.

Some particulars receive proper names that can be used in representational artifacts.
Particulars can be referred to also by using complex expressions that involve general terms.
These can include:

• terms that join entities in the reality that share common characteristics in the reality
which are exemplified (general terms of this group refer to universals);

• terms that join entities in the reality that share common characteristics and are not
intrinsic to the entities in question; and
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• terms that relate to specific collections of particulars connected to specific regions of
space and time.

The term portion of reality denotes both single universals and particulars and their
complex combinations. A domain is a portion of the reality that forms the subject-matter
of a single science or technology or mode of study. Representational artifacts represent
entities in domains constrained by the level of granularity. Entities bellow a given threshold
value can be excluded from the domain because they are not significant to the specific
scientific goals at hand.

Class and relation. A collection of particulars is a collection that has other particulars
as its members. Usually we can use the same general terms to refer to both universals and
collections of particulars. A class is a collection of all and only the particulars to which a
given general term applies. In the cases where the general term refers to a universal, the
corresponding class, called the extension of the universal, comprehends all and only those
particulars which instantiate the corresponding universal.

Both particulars and universals are related to each other in various relations. Particu-
lars stand in a relation of instantiation with the corresponding universals. This and other
relations (e.g., part-hood, adjacency, derivation) can be divided into three groups: relations
between particulars, relations between universals, and relations between universals and par-
ticulars. Through the use of relations, both classes and universals are organized in a trees,
the former on the basis of the subclass relation and the latter on the basis of the is-a relation.

Types of representational artifacts. Smith et al. (2006) give definitions of several types
of representational artifacts. These include the following:

• a terminology is defined as “a representational artifact consisting of representational
units which are the general terms of some natural language used to refer to entities in
some specific domain”;

• an inventory is defined as “a representational artifact built out of singular referring
terms such as proper names or alphanumeric identifiers”;

• a taxonomy is defined as “a tree-form graphical representational artifact with nodes
representing universals or classes and edges representing is-a or subset relations”; and

• an ontology is defined as “a representational artifact, comprising a taxonomy as a
proper part, whose representational units are intended to designate some combination
of universals, defined classes, and certain relations between them”.

2.1.3 Roles of an ontology

Ontologies can have different roles in real life applications. They can be used as common
vocabularies, as data structures, as tools that provide semantic interoperability, as tools for
the systematization of knowledge, and as a meta-models of reality, and to provide a theory
of content.

One of the fundamental roles of an ontology is to provide a common vocabulary. An
ontology in a database is the conceptual schema. In this sense, an ontology provides the
data structure appropriate for information description and exchange. Meta-data used in the
semantic web are built on the basis of an ontology which constrains and partially defines the
meaning of tags and values. Interpretation and translation of the meta-data can be done via
ontologies. Ontologies thus play the role of glue which guarantees semantic interoperability
among meta-data.



Ontology 13

Knowledge systematization requires a well-established vocabulary of concepts in terms
of which people describe phenomena, theories and target things under consideration. An
ontology thus contributes to providing a backbone of systematization of knowledge. A model
is usually built in the computer as an abstraction of the real-world target and the ontology
provides us with concepts and relations among them which are used as building blocks of the
model. Thus, an ontology specifies the models to build by giving guidelines and constraints
which should be satisfied.

For example, in biology domains ontologies have been used for different purposes (Smith
and Shah, 2007): as controlled vocabularies (Gene Ontology) (Ashburner et al., 2000),
for representing encyclopedic knowledge (Foundation model of anatomy FMA) (Rosse and
Mejino, 2003), as a specification of an information model (MAGE-OM, MAGE-ML, MGED
ontology) (Ball and Brazma, 2006), for specification of a data interchange format (BioPax1),
and representation of semantics of data for information integration (TAMBIS) (Ste et al.,
2000).

2.2 Ontology architecture

Ontology architecture is the architecture used to structure the ontology. It addresses the
levels of ontologies required, such as foundational, upper, middle, domain, sub-domain, ap-
plication and reference ontology; and the mathematical, logical, and engineering constructs
used to modularize and structure the ontological space. In this section, we first review
ontologies at different levels, such as upper-level, mid-level and domain ontologies (Section
2.2.1). Next, we discuss the differences between an application and a reference ontology
(Section 2.2.2). Finally, we discuss the differences between light-weight and heavy-weight
ontologies (Section 2.2.3).

2.2.1 Ontology levels

An ontology architecture encompasses primarily three layers: upper ontologies, mid-level
ontologies, and domain ontologies (see Figure 2.1) (Obrst, 2010). The upper-level and mid-
level ontologies are also called foundational ontologies.

Upper-level ontology. An upper-level ontology is a high-level, domain independent on-
tology, providing a framework by which different systems can use a common knowledge base
and from which more domain-specific ontologies can be derived. The entities in such an
ontology are basic and universal. They provide expressiveness for a wide area of domains
and ensure generality. An upper level ontology is limited to entities that are meta, generic,
abstract and philosophical.

Upper-level ontologies specify the reality along two dimensions. In the first dimension,
they state what are the basic categories of the reality. In the second dimension, they state
what are the basic relations that hold within and among the objects that belong to the
basic categories. The term ontological category in the case of upper-level ontologies can
be interpreted as an universal that applies to every material domain of the reality. The
ontological categories in an upper-level ontology should include all and only very basic and
very general kinds of entities.

Mid-level ontology. A mid-level ontology serves as a bridge between general entities
defined in the upper level ontology and the low-level domain specific entities defined in
the domain ontology. The mid-level and upper level ontologies are intended to provide a
mechanism for mapping of entities across domains easier. Mid-level ontologies may provide
more concrete representation of abstract entities present in the upper-level ontologies.

1BioPax: http://www.biopax.org/

http://www.biopax.org/
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Figure 2.1: Upper, mid-level and domain ontologies.

Domain ontology. A domain ontology specifies entities particular to a domain of interest
and represents these entities and their relationships from a domain specific perspective. Do-
main ontologies may be composed by importing mid-level ontologies. They may additionally
extend the entities from the mid-level or upper level ontologies. Reuse of well established
ontologies in domain ontology development allows one to take an advantage of the semantic
richness of relevant entities and logic built in the reused ontology. Using common mid-level
and upper-level ontologies is intended to ease the process of integrating and mapping of
domain ontologies.

2.2.2 Reference and application ontologies

A reference ontology is a representational artifact that is analogous to a scientific theory,
where the prime importance is the expressive completeness and adequacy to the facts of
reality. Reference ontologies are constructed and structured based on objective relevance.
An application ontology is a representational artifact designed to assist in the achievement
of some specific goal. Application ontologies are constructed and structured in terms of
goal-oriented relevance. They use and reuse portions of reference ontologies to accomplish
their particular needs.

2.2.3 Light-weight and heavy-weight ontologies

Light-weight ontologies are usually taxonomies, where little attention is invested in rigorous
definition of the entities, principles of entity organization, distinction between term and
entity, etc. The main purpose of such a taxonomy can be, for example, to improve the
performance of search engines, hence it is very use case dependent.

Heavy-weight ontologies are typically developed with much attention paid to the precise
meaning of each entity, the organizing principles rooted in philosophy, semantically rigorous
relations between entities, etc. Instance models are usually built based on those ontologies
to model a target world, which requires careful modeling of the world to guarantee the
consistency and realibility of the model. An upper-level ontology is a typical example of a
heavy-weight ontology.
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2.3 Ontology engineering

Ontological engineering refers to a set of activities that concern the ontology development
process, the ontology life cycle, the methods and methodologies for building ontologies,
and the tool suites and languages that support them. The engineering part of developing
ontologies comprises a complex set of activities that are conducted during conceptualiza-
tion, design, implementation and deployment of ontologies. There exist numerous ontology
engineering methodologies, used for this purpose. The most popular ontology engineering
methodologies include the Ushold and Kings’ methodology (Uschold and King, 1995), the
TOVE methodology (Fox and Grüninger, 1994), METHONTOLOGY (López et al., 1999),
the On-To-Knowledge methodology (Sure et al., 2004), and others.

In this section, we first present the ontology design and development process (Section
2.3.1). Next, we present design principles for building modular ontologies (Section 2.3.2).
Finally, we conclude this section with a brief overview of ontology development support
activities (Section 2.3.3).

2.3.1 Ontology design and development

Ontology building is a complex process. It includes activities such as problem specification,
domain knowledge acquisition and analysis, conceptual design and commitment to commu-
nity ontologies, iterative construction and testing, publishing the ontology as a terminology,
and populating a conforming knowledge base with ontology individuals.

In this section, we briefly discuss the main aspects of constructing an ontology. First, we
discuss the determination of the domain and the extent of an ontology. Next, we focus on the
process of information gathering. Further on, we discuss the two major design approaches in
ontology engineering: top-down and bottom-up design. Finally, we discuss how to structure
the domain information and implement the ontology.

Determining the domain and the extent of an ontology. The first step in ontology
construction is to determine the domain of the ontology, by answering the question “what
part of the reality does this ontology cover?”. Providing the answer to this question allows us
to focus the efforts to construct the ontology, from the start, by indicating what information
needs to be included in the ontology and what information should be treated as “not-
important” for the ontology of our domain of interest. An important distinction to have
in mind when constructing an ontology is which entities go into the formal or upper-level
ontology and which go to the domain ontology.

Relevance of upper ontologies. As we already discussed in Section 2.2.1, an upper-
level ontology is a representation of the categories of objects and of the relationships within
and among categories that are to be found in any domain of reality. A domain ontology,
on the other hand, consists of a representation of the material categories, universals and
relationships among universals that are to be found in some specific domain of the reality,
such as genetics, anatomy, computer science, etc. The domain ontology has the feature that
it will contain many categories, universals and relations that are not to be found in the
formal ontology and other domain ontologies.

The formal ontologies (such as the upper-level and mid-level ontologies) are of a high
relevance for the task of constructing domain ontologies. They are important in two aspects.
First, the categories and relations in formal ontologies are well structured and defined. This
allows us to organize the universals and relations in the domain of interest equally well by fol-
lowing and extending the categories in the formal ontology. Second, using formal ontologies
to structure domain ontologies helps to ensure the interoperability between different domain
ontologies. For these reasons it is important to consider what formal ontology categories
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and relations are relevant for the domain at hand and take them into consideration when
designing a domain ontology. Furthermore, it is very important to select a formal ontology
with sufficient categories and relations that will allow it to handle the basic entities from
the domain of interest.

The horizontal and vertical dimension of a domain ontology. There are two general
dimensions along which the appropriate contents of a domain ontology is to be determined.
The dimensions are: the horizontal, or relevance dimension, and the vertical, or granularity
dimension.

The horizontal dimension of the content of the ontology determines what and how much
existing information about a domain of interest should be included in the ontology. The
ontology should include only the information that is relevant to the domain represented by
the ontology. Two considerations should be kept in mind when deciding what is relevant to
a given domain ontology. First, what is relevant to the ontological representation of a given
domain will be determined by the reality itself. Second, what is relevant to an ontology will
be determined by the purpose for which the ontology is being designed.

The vertical dimension of the content of the ontology determines the appropriate gran-
ularity of the ontology. In a way, this is one of the sub-problems of determining what is
relevant to be represented in the ontology we are building. In other words, this means de-
termining how fine-grained the ontology should be. It involves deciding the upper and the
lower limits of entity size and complexity to be represented in the domain ontology being
designed. In the case of reference ontologies, the focus of representation should be on the
nature of the objects, and in the case of application ontologies the focus should be on the
objectives set by the goal of the application.

Information gathering. Once the domain or scope of an ontology has been decided,
what is needed is a systematic survey of the information necessary to represent the domain
of interest. The result of the survey should answer the following (non-extensive) list of
questions:

1. What are the domain universals and relations that need to be represented?

2. What are the best domain specific term or terms that should be used in representing
the universals and relations?

3. What are the explicit upper and lower bounds of the ontology?

4. How much formal ontological apparatus is needed for dealing with the domain to be
modeled?

Domain literature and domain experts. The best candidates for providing the state-
of-the-art information about the domain of interest are the scientists that study the domain.
The activity of developing a domain-specific ontology is usually interdisciplinary, and in the
ideal case includes a number of competent domain experts. The goal of consulting domain
literature and experts is to gain as thorough and systematic knowledge of the domain to be
represented as possible. Furthermore, this allows us to determine what are the universals and
relations between universals in the domain of interest. Finally this allows us to determine
which invariant features and regularities in the domain play a central role in the scientific
explanation of that domain.

Terminology and granularity. In addition to consultations with the domain experts and
literature, and determining the domain universals and relations, one should also construct a
domain terminology. A domain terminology is a set of terms characteristically used to talk
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about the entities in the domain. The terminology should include for each term: a listing
of common synonyms or alternative expressions; a clear natural language definition; and an
initial statement of the most likely ontology category to which the entities referred to by
the term should belong. The initial terminology can be constructed manually by consulting
domain literature, or can be adopted from an existing thesauri or handbook. Finally, after
consulting the domain experts and literature and the construction of a terminology, it will
be possible to provide a rather precise statement of the levels of granularity represented by
the ontology.

Amount of formal ontology apparatus. What formal ontological categories and re-
lations are necessary for structuring a given domain ontology depends on the content of
that domain ontology. The initial assessment of the issue of formal ontology categories and
relations should take place at the phase of determining the scope of the ontology. A final
determination should take place after a relatively thorough survey of domain specific infor-
mation has taken place. This involves as a first step, the choice of an upper level ontology
and a set of formal relations based on the upper level categories.

Top-down and bottom-up design. There exists two major design approaches for the
use of an upper-level ontology: top-down and bottom up. In a top-down approach we use
the upper-level ontology as the foundation to derive the entities in the domain ontology. In
this case, the upper-level ontology provides a theoretical framework on which to build the
domain ontology. In a bottom-up design approach, we perform a mapping of the domain
ontology to the upper-level ontology. This approach is usually more challenging, as we can
encounter inconsistencies between the domain and upper ontology.

The top-down design of ontology begins by determining the domain of the ontology.
Next, one needs to gather the necessary information about what are the universals in the
domain and what are the relations between universals. Furthermore, the gathered informa-
tion is organized in the form of a representational artifact, such as a written document, or
a diagram. Finally, the information in the representational artifact is analyzed in order to
ensure: its logical, philosophical and scientific coherence; coherence and compatibility with
other relevant ontologies; and human intelligibility.

Structuring of domain information and implementation. Once the domain infor-
mation has been assembled; a terminology has been defined capturing the important domain
universals and relations; and the appropriate scope, granularity and formal ontological ap-
paratus have been determined; the next step is to structure the domain information in a
systematic and coherent fashion. The goal of this process is to develop a representational
artifact that is logically coherent, true, and unambiguous representation of the reality. This
process of structuring the domain information should follow the best practices in ontology
engineering. Finally, after structuring the domain information one needs to formalize the
structured representational artifact in a computer tractable language, in order to implement
the representational artifact in some specific computing context.

2.3.2 Design of modular ontologies

Modern ontologies can get quite large and complex, which poses challenges to tools and users
that are processing, editing, analyzing and reusing parts of the ontology. Consequently, the
modularity of ontologies has been an active topic in ontology engineering. Modularization
in its most generic meaning denotes the possibility to perceive a large knowledge repository
(e.g., ontology) as a set of modules, that in some way are parts of and compose the whole
(ontology) (Stuckenschmidt et al., 2009). Modularization materializes the long-established
complexity management technique known as divide and conquer.
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In the case of modular ontologies, the efforts go into developing logically sensible modules,
that is, parts of and ontology which offer strong logical guarantees for intuitive modular
properties, such as coverage. This means that a module captures all the ontology’s knowledge
about a given sub-domain. A module in this sense is a subset of the ontology’s axioms that
provides coverage for a sub-domain, and each sub-domain determines such a module.

The ideas of the followers of the monolithic approach in ontology engineering is to intro-
duce modularity in order to organize and manage domain coverage. An example is given by
the OBO foundry initiative and their policy to relate OBO ontologies, which can be viewed
as modules of the foundational ontology BFO. The subdivision of the overall ontology in
OBO modules is a consequence of setting up the upper-level and the ontology relations, and
the focus is on extending the system to cover the whole domain.

2.3.3 Ontology development support activities

Ontology development support activities include activities that help the development, main-
tenance and the use of ontologies for different purposes. Examples of such activities include:
ontology learning, ontology merging, ontology mapping, ontology versioning, ontology trans-
formation, and ontology evaluation. In this section, we briefly discuss each of them.

Ontology learning and integration. Ontology learning is a broad domain of research
that consists of ontology enrichment, inconsistency resolution and ontology population. On-
tology enrichment is the task of extending an existing ontology with additional concepts and
relations and placing them in the correct position in the ontology. Inconsistency resolution
is the task of resolving inconsistencies that appear in the ontology with the goal of producing
a consistent ontology. Ontology population is the task of adding new instances of concepts
into the ontology.

When one wants to use different ontologies together, the ontologies need to be combined
in some way. This can be done by integrating the ontologies, which means that they are
merged into a new ontology. An alternative method is ontology mapping, where the ontolo-
gies are kept separate. In both cases, the ontologies have to be aligned, which means that
they need to be in mutual agreement.

Ontology merging and mapping. Ontology merging is the creation of an ontology from
two or more source ontologies. The resulting ontology replaces the original source ontologies.
Ontology alignment is the process of discovering similarities between two source ontologies.
The input to the ontology alignment algorithm is a number of source ontologies and the
output is a specification of correspondences between the ontologies.

Ontology mapping is an important step to achieve knowledge sharing and semantic
integration in an environment in which knowledge and information have been represented
with different ontologies. The process of ontology mapping specifies the semantic overlap
between two ontologies.

Ontology versioning, transformation and evaluation. As changes to ontologies are
necessary, it is very important to keep track of changes and establish a relation between
successive revisions of one ontology and the relation between the ontology and its depen-
dencies. The dependencies include: the data that conforms to the ontology, other ontologies
that are built from or import the ontology, and the applications that use the ontology.

Ontology transformation consists of transcribing an ontology from one form to another.
This includes its expression in another ontology language, or a reformulation into a restricted
form of the same language, or with regard to a different vocabulary.

Ontology evaluation is the process of assessing a given ontology from the point of view
of a particular criterion of application, to determine if it would suit a particular purpose.
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2.4 Ontology languages and tools

One of the key decisions to take in the ontology development process is to select the language
(or set of languages) in which the ontology will be implemented. There are a number of such
languages for ontologies, both proprietary and standard-based. Recently, many ontology
implementation languages have been created. Other general Knowledge Representation
(KR) languages and systems have been also used for implementing ontologies, even though
these have not been specifically created with this purpose. These include languages such
as: RDF2, OWL3, OntoLingua (Farquhar et al., 1997), XBRL4, the OBO language5, and
others.

Building ontologies is a complex and time consuming process. It can be even more so if
ontology developers have to implement ontologies directly in an ontology language, without
any kind of tool to support the process. To facilitate this task, the first ontology building
environments (or ontology tools) were created in the mid-1990s. They provided interfaces
that helped users carry out some of the main activities of the ontology development process,
such as conceptualization, implementation, consistency checking, and documentation.

In this section, we give an overview of languages used to formally represent ontologies
(Section 2.4.1), as well as an overview of tools for ontology engineering and management
(Section 2.4.2).

2.4.1 Ontology languages

Ontology languages are formal languages used to construct ontologies. The requirements
for ontology languages are as follows. The language has to have a well-defined syntax:
this is a necessary condition for the machine-processing of ontologies. It needs to have a
formal semantics, giving a precise description of the meaning of the sentences of an ontology:
this allows us to support automated reasoning. Finally, the language has to have sufficient
expressive power to model the domain of interest.

Ontology languages are usually declarative languages. They can be classified by their
structure into: frame-based languages (e.g., F-Logic (Kifer et al., 1995)), description logic-
based languages (e.g., OWL), and first-order logic-based languages (e.g., KIF6).

The Web Ontology Language (OWL) is a language developed by The World Wide Web
Consortium (W3C7). OWL is designed as a common language for ontology representation
and is based on DAML+OIL8. It is an extension of RDF Schema developed as a standard
language for ontology representation that should enable the semantic web: hence, extensi-
bility, modifiability and interoperability have been given the highest priority in the design
of OWL. At the same time, OWL tries to achieve a good trade-off between scalability and
expressive power.

2.4.2 Ontology engineering and management tools

There are numerous ontology engineering and management tools in use today. Most of them
have resulted from efforts of research groups and university labs, so they are currently free
for general use. The ontology tools are split into two large categories: specialized ontol-
ogy engineering tools (Section 2.4.2.1) and integrated ontology engineering environments
(Section 2.4.2.2).

2RDF:http://www.w3.org/RDF/
3OWL:http://www.w3.org/TR/owl-features/
4XBRL: http://www.xbrl.org/
5OBO foundry: http://www.obofoundry.org/
6KIF:http://www-ksl.stanford.edu/knowledge-sharing/kif/
7W3C:http://www.w3.org/
8DAML+OIL:http://www.daml.org/language/

http://www.w3.org/RDF/
http://www.w3.org/TR/owl-features/
http://www.xbrl.org/
http://www.obofoundry.org/
http://www-ksl.stanford.edu/knowledge-sharing/kif/
http://www.w3.org/
http://www.daml.org/language/
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2.4.2.1 Specialized ontology engineering tools

Specialized ontology engineering tools support a restricted set of activities of the entire
ontology life-cycle (design, deployment, maintenance, evolution). They can be divided into
ontology engineering tools, ontology combination tools, and ontology management tools.

An ontology engineering tool is any tool used for creating ontologies or similar semantic
documents. From this perspective, these tools can be classified into ontology building tools
(e.g., OilEd 9) and ontology learning tools (e.g., Ontogen (Fortuna et al., 2007)).

When one wants to (r)euse different ontologies together, the ontologies have to be com-
bined in some way. Tools that perform this task are called ontology combination tools. They
include: ontology merging tools (e.g., OntoMerge10), ontology alignment tools (e.g., OLA11),
ontology mapping tools (e.g., MAFRA 12), ontology versioning tools (e.g., OntoView13), and
ontology translation/transformation tools (e.g., OntoMorph 14).

Software tools are available to support the different phases of ontology development.
While ontology editors are useful during each step of the ontology building process, other
types of ontology engineering tools, such as ontology management tools, are also needed
along the way. These tools include the following: ontology evaluation tools (e.g., OntoGen-
erator), ontology storage and querying tools (e.g., JENA15), ontology-based annotation tools
(e.g., OntoELAN (Chebotko et al., 2004)), and ontology visualization tools (e.g., WSMOViz
(Kerrigan, 2006)).

2.4.2.2 Integrated ontology engineering environments

There exist integrated collections of specialized tools that can support (fully or partially)
more than one activity of the ontology engineering life-cycle. These are called integrated
ontology engineering environments. The need for these tools arises from the fact that the
life cycle of ontology engineering is highly affected if the ontology is to be reused for building
another ontology, or vice-versa. Examples of integrated ontology engineering environments
include: KAON (Bozsak et al., 2002), Protégé (Noy et al., 2000), WebODE (Arṕırez et al.,
2003), OntoEdit (Sure et al., 2002), the NeOn Toolkit16, the TopBraid Composer 17, OBO-
Edit18, and others.

Protégé (Noy et al., 2000) was developed by the Stanford Medical Informatics Depart-
ment at the Stanford University School of Medicine. It was developed originally for use in
the field of clinical medicine and the biomedical sciences, but it is now being used in many
areas where the concepts can be modeled as a class hierarchy. It is a Java-based open-source
tool for editing and managing ontologies. It is the most widely used domain-independent,
freely available, platform-independent technology for developing and managing terminolo-
gies, ontologies, and knowledge bases in a broad range of application domains.

9OilEd:http://oiled.man.ac.uk
10OntoMerge:http://cs-www.cs.yale.edu/homes/dvm/daml/ontology-translation.html
11OLA:http://ola.gforge.inria.fr/
12MAFRA:http://mafra-toolkit.sourceforge.net/
13OntoView:http://trac.biostr.washington.edu/trac/wiki/OntoView
14OntoMorph:http://www.isi.edu/~hans/ontomorph/presentation/ontomorph.html
15JENA:http://incubator.apache.org/jena/
16NeOn Toolkit:http://www.neon-toolkit.org
17TopBraid Composer: http://www.topquadrant.com/topbraidvomposer.html
18OBO-Edit:http://oboedit.org

http://oiled.man.ac.uk
http://cs-www.cs.yale.edu/homes/dvm/daml/ontology-translation.html
http://ola.gforge.inria.fr/
http://mafra-toolkit.sourceforge.net/
http://trac.biostr.washington.edu/trac/wiki/OntoView
http://www.isi.edu/~hans/ontomorph/presentation/ontomorph.html
http://incubator.apache.org/jena/
http://www.neon-toolkit.org
http://www.topquadrant.com/topbraidvomposer.html
http://oboedit.org


21

3 Related Work

In this chapter, we give an overview of existing work related to this dissertation. The
related work falls into three major areas. First, we present the related work concerning with
the development of ontologies to support scientific investigations (Section 3.1). Next, we
present the state-of-the-art in formal representation of data mining entities (Section 3.2).
Finally, we present other related approaches concerned with the use of domain ontologies in
data mining and with learning of topic ontologies by using a knowledge discovery process
(Section 3.3).

3.1 State-of-the-art in ontologies for science

The term science refers both to scientific knowledge and the process of acquiring such knowl-
edge. It includes any systematic field of study that relates to observed phenomena and
involves claims that can be tested empirically. Džeroski et al. (2007) state two reasons why
it is important to study the process of scientific discovery from a computational perspective.
First, this allows us to understand how humans perform scientific discoveries. Second, this
allows us to automate or provide computational support for different facets of science. The
first step in the automation of science is to formally represent the process of science itself and
its participants. For this purpose, one needs to use knowledge structures such as ontologies
and taxonomies.

In this section, we first present upper-level ontology initiatives and candidates used to
represent scientific investigations in different domains (Section 3.1.1). Second, we present the
existing ontologies for representing scientific experiments and automated experimentation
(Section 3.1.2). Finally, we present the most influential ontologies and initiatives from the
domain of biomedicine (Section 3.1.3).

3.1.1 Upper-level ontology initiatives and candidates

In this section, we present the basic characteristics and applications of several upper-level
initiatives and candidates. These include the following: Suggested Upper Merged Ontology
(SUMO), Upper Cyc Ontology (UCO), Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE), Basic Formal Ontology (BFO), General Formal Ontology (GFO) ,
and Yet Another More Advanced Top-level Ontology (YAMATO).

Suggested Upper Merged Ontology (SUMO). The SUMO1 upper-level ontology was
created by merging several public ontologies into a single cohesive structure (Niles and Pease,
2001). These ontologies included the ones available on the Ontolingua server2, Sowa’s upper-
level ontology (Sowa, 2000), and various mereotopological3 theories. The ontology has been

1SUMO: http://www.ontologyportal.org/
2Ontolingua server: http://www.ksl.stanford.edu/software/ontolingua/
3Mereology is a philosophical discipline that deals with parts and the wholes they form. Mereotopology

is a first-order theory that embodies mereological and topological concepts, of the relations among wholes,
parts, parts of parts, and the boundaries between parts.

http://www.ontologyportal.org/
http://www.ksl.stanford.edu/software/ontolingua/
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used for research and applications in search, linguistics and reasoning. SUMO core contains
about 1000 classes and 4000 axioms. It is composed of the SUMO core ontology, the mid-
level ontology (MILO) and a set of domain ontologies such as: communications, economy,
finance, physical elements, and others.

CYC ontology. Cyc4 provides a broad common-sense ontology, a higher-order language
for defining and making assertions using the ontology, and an inference engine for reasoning
over such a knowledge base (Lenat, 1995). The inference engine provides subclass reasoning,
deduction according to rules, and numerous special reasoning modules. Portions of the
Cyc ontology can be extracted and reused in other projects without the inclusion of the
vast majority of the Cyc ontology. The Cyc corporation has placed the core Cyc ontology
(OpenCyc) into the public domain so that it can be freely used. The Cyc ontology has been
used and applied in the domains of natural language processing, word sense disambiguation,
question answering, and others.

Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE). The
DOLCE5 upper level ontology aims at capturing the ontological categories necessary for
the representation of natural language and human commonsense (Masolo et al., 2003). The
upper-level categories it introduces are thought of as cognitive artifacts, which ultimately de-
pend on human perception, cultural imprints and social conventions. The categories include:
abstract quality, abstract region, agentive physical object, amount of matter, physical qual-
ity, physical region, process, and others. The applications of the DOLCE ontology include
multilingual information retrieval, web-based systems and services, and e-learning.

Basic Formal Ontology (BFO). The BFO ontology6 is narrowly focused on the task
of providing a genuine upper ontology which can be used in support of domain ontologies
developed for scientific research, for example in biomedicine (Grenon and Smith, 2004).
BFO recognizes a basic distinction between two kinds of entities: substantial entities (or
continuants) and processual entities (or occurrents). Continuants, represent entities that
endure through time, while maintaining their identity. Occurents represent entities that
happen, unfold and develop in time. The characteristic feature of occurents, or processual
entities, is that they are extended both in space and time. The BFO ontology is included
within the framework of the OBO Foundry. Finally, BFO 2.0 is planned to be released soon
and it also contains general domain independent relations from the Relational Ontology
(RO) and the Ontology of Biomedical Investigations (OBI).

General Formal Ontology (GFO). GFO7 is a foundational ontology integrating objects
and processes (Herre et al., 2006). GFO has a three-layered meta-ontological architecture
consisting of an abstract top-level, an abstract core level, and a basic level. The ontology
includes objects (3D objects) as well as processes (4D entities), both integrated into one
coherent framework. The ontology is designed to support interoperability by following the
principles of ontological mapping and reduction. GFO is designed for applications, primarily
in the medical, biological, and biomedical areas, but also in the fields of economics and
sociology.

Yet Another More Advanced Top-level Ontology (YAMATO). The YAMATO8

ontology (Mizoguchi, 2010) has been developed to address the deficiencies of other upper

4UCO: http://www.cyc.com/cycdoc/vocab/vocab-toc.html
5DOLCE: http://www.loa-cnr.it/DOLCE.html
6BFO: http://www.ifomis.org/bfo/
7GFO: http://www.onto-med.de/ontologies/gfo/
8YAMATO: http://www.ei.sanken.osaka-u.ac.jp/hozo/onto_library/upperOnto.htm

http://www.cyc.com/cycdoc/vocab/vocab-toc.html
http://www.loa-cnr.it/DOLCE.html
http://www.ifomis.org/bfo/
http://www.onto-med.de/ontologies/gfo/
http://www.ei.sanken.osaka-u.ac.jp/hozo/onto_library/upperOnto.htm
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ontologies such as DOLCE, BFO, GFO, SUMO, CYC, etc. These include dealing with
qualities and quantities, dealing with representation and content bearing things, and distin-
guishing processes and events. The current version of YAMATO has been extensively used
in several projects such as the development of a medical ontology, an ontology of learning
and instructional theories, ontology of genomics (GXO), modeling of mobile users’ behavior,
functional ontology, and others.

3.1.2 Scientific experiments

An experiment is a procedure carried out with the goal of verifying, falsifying, or establishing
the validity of a hypothesis. Experiments vary greatly in their goal and scale, but always rely
on repeatable procedure and logical analysis of the results. Therefore, a formal definition
of experiments for analysis, annotation and sharing of results is a fundamental part of
scientific practice. In this section, we review the EXPO ontology that represents a proposal
for formalization of scientific experiments and an extension of this proposal, named the
LABORS ontology, in the context of automatic experimentation.

Ontology of Scientific Experiments (EXPO). The generic ontology of experiments
EXPO tries to define the principal entities necessary for the representation of scientific in-
vestigations (Soldatova and King, 2006). This includes general knowledge about scientific
experimental design, methodology, and representation of results. EXPO defines types of
investigations, such as computational investigation and physical investigation, and their
principal components: investigator, method, result, and conclusion. The ontology uses a
subset of SUMO as top classes, and a minimized set of relations in order to provide com-
pliance with existing formalisms. The EXPO ontology is a valuable resource for describing
experiments from various areas of research. This was demonstrated with the use of this
ontology for the description of high-energy physics and phylogenetics experiments.

Ontology of Automated Experimentation (LABORS). The LABORS ontology is
an extension of EXPO for the description of automated investigations for the Robot Sci-
entist Project9. LABORS defines research units, such as investigation, study, test, trial
and replicate: These are required for the description of complex multi-layered investigations
carried out by a robot. LABORS is applied to produce experimental descriptions of the
robot’s investigations, resulting in a formalization of over 10,000 research units in a tree-like
structure that is 10 levels deep. The formalization describes how the robot contributed to
the discovery of new scientific knowledge (King et al., 2009).

3.1.3 Biomedical ontologies

Biomedical ontologies describe biological research or medical data, and one of the most im-
portant ontology languages, the OBO language, was designed specifically for the needs of
biological research. Bio-ontologies are tools for annotation and data integration that pro-
vide researchers with a common vocabulary to describe and communicate results and give
bio-informaticians tools for the functional analysis of microarray data, network modeling,
semantic similarity for biological analysis and clinical diagnostics, as well as many other
applications. In addition, in the domain of bioinformatics and biomedicine there exist ef-
forts to standardize the methodology for information exchange and enabling construction
of bioinformatics workflows. This involves specifying and representing information about
datatypes.

In this subsection, we first present the OBO Foundry, and then proceed to describe
ontologies from the bio domains that are relevant to this thesis, such as the RO ontology of

9Robot Scientist Project:http://www.aber.ac.uk/compsci/Research/bio/robotsci/

http://www.aber.ac.uk/compsci/Research/bio/robotsci/
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relations in biomedical domains, the OBI ontology, the IAO ontology, the SWO ontology,
the EXACT ontology, the BioMoby project, and the EDAM ontology.

Open Biomedical Ontologies (OBO) The Open Biomedical Ontologies (OBO) project
is an organization which hosts a library of ontologies for the biomedical domain (Smith et al.,
2007). A wide variety of biomedical domains is covered by the OBO including ontologies of
anatomy, development and disease for a number of key organisms; ontologies of biological
sequence, function and process; and ontologies of biochemistry, cell types and behavior. To
be included in OBO, ontologies need to conform to a set of design criteria which ensure
their quality and inter-operability (see Section 4.1.2). The single most successful ontology
of the OBO Foundry is the Gene Ontology (Ashburner et al., 2000), but many of the other
ontologies that are members or aspiring members of the OBO Foundry are also widely used
(Smith et al., 2007).

OBO Relation Ontology (RO). The OBO Relation Ontology (RO) is an ontology of
the relationships that are used between entities in biomedical ontologies (Smith et al., 2005).
The OBO-RO provides a set of basic relations and gives axioms for these. Among the re-
lations provided in the OBO-RO are the is-a relation, various mereotopological relations,
participation, transformation, and derivation relations. For each relation, axioms specify-
ing reflexivity, transitivity, and symmetry are provided. By providing these relations with
consistent and unambiguous definitions, the RO aims to facilitate ontology inter-operability
and to support advanced reasoning across these ontologies. New ontologies in the OBO
foundry are required to comply with the OBO-RO. Recently, the OBO-RO was significantly
modified and contains only relations specific for the biomedical domains, while all domain
independent relations are now moved to BFO 2.0.

Ontology of Biomedical Investigations (OBI). The OBI ontology aims to provide
a standard for the representation of biological and biomedical investigations. OBI is fully
compliant with the existing formalisms in biomedical domains. OBI is an OBO Foundry
candidate (Smith et al., 2007). The ontology supports consistent annotation of biomedical
investigations regardless of the particular field of study (Brinkman et al., 2010). OBI defines
an investigation as a process with several parts, including the planning of an overall study
design, executing the designed study, and documenting the results. The OBI ontology em-
ploys rigid logic and semantics as it uses an upper-level ontology (BFO) and the RO relations
to define the upper-level classes and a set of relations. OBI defines occurrences (processes)
and continuants (materials, instruments, qualities, roles, functions) relevant to biomedical
domains. The Data Transformation Branch is an OBI branch concerned with identifying
and representing entities and relations needed to describe processes which produce output
data given some input data: This branch is directly relevant to the work presented in this
thesis.

Information Artifact Ontology (IAO). Due to the limitations of BFO in dealing with
information, an Information Artifact Ontology (IAO)10 has been recently proposed as a sep-
arate branch of the OBI project. The IAO ontology aims to be a mid-level ontology, dealing
with information content entities (e.g., documents, file formats, specifications), processes
that consume or produce information content entities (e.g., writing, documenting, measur-
ing), material bearers of information (e.g., books, journals) and relations in which one of
the relata is an information content entity (e.g., is-about, denotes, cites).

10http://code.google.com/p/information-artifact-ontology/

http://code.google.com/p/information-artifact-ontology/
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Software Ontology (SWO). The Software Ontology (SWO)11 is a resource for describ-
ing bioinformatics software tools, their types, inputs, outputs, tasks, versions, provenance
and data associated. SWO is part of the SWORD project (Software Ontology for Resource
Description), an inter-disciplinary effort to capture software descriptions used in the preser-
vation of data. The SWO uses a reduced version of the Basic Formal Ontology (BFO) upper
ontology and subclasses and relations from the Experimental Factor Ontology (EFO), the
Ontology of Biomedical Investigations (OBI) and the Information Artifact Ontology (IAO).

Ontology of Experiment Actions (EXACT). The ontology of experiment actions
(EXACT) aims to provide a structured vocabulary of terms for the description of protocols
in biomedical domains (Soldatova et al., 2008). The main contribution of this ontology is
the formalization of biological laboratory protocols in order to enable the repeatability and
reuse of already published experiment protocols. This ontology and the COW (Combining
Ontologies with Workflows) software tool were employed in a use case to formalize laboratory
protocols in the form of workflows (Maccagnan et al., 2010).

The BioMoby project. The BioMoby12 project aimed to standardize the methodology
for information exchange and access to analytical resources in bioinformatics, by developing
the BioMoby Semantic Web Service specification (The BioMoby Consortium, 2008). The
specification extends and modifies the core Web Service specification by defining: an ontol-
ogy of data domains (Namespace Ontology), an ontology-based data representation syntax
(Object Ontology), and an ontology of Web Service operational descriptions (Service On-
tology). The Namespace Ontology is a flat controlled vocabulary and defines all valid data
namespaces, that represent the underlying source of a data record. The purpose of the Ob-
ject Ontology is to create a consistent machine-readable data syntax in order to provide a
mechanism for automatic transformation of data formats and data integration. The Service
Ontology is a simple subclass hierarchy that defines a set of data manipulation operations
and types of data analysis.

EDAM ontology. The EMBRACE Data and Methods (EDAM)13 is an ontology of gen-
eral bioinformatics entities (Pettifer et al., 2010). EDAM only includes entities from the
domain of bioinformatics, while it does not represent general computer science and biologi-
cal entities. The ontology includes five sub-ontologies organized as simple hierarchies: topic,
operation, data, format and identifier. The topic sub-ontology contains general bioinformat-
ics subjects or categories, such as field of study, data, processing, analysis or technology.
The operation sub-ontology contains the functions or processes performed by bioinformatics
software tools. The data sub-ontology contains the types of data used in bioinformatics. The
types of data represented in EDAM do not describe how the data is specified or represented
and the types represented can be overlapping. The format sub-ontology contains the spe-
cific layout for encoding a specific type of data in computer files or memory. The identifier
sub-ontology contains labels that identify data, resources or biological entities. The EDAM
ontology has been used as background knowledge for the composition of bioinformatics
workflows (Lamprecht et al., 2010).

11SWO: http://theswo.sourceforge.net/
12BioMoby: http://biomoby.org/
13EDAM: http://edamontology.sourceforge.net/

http://theswo.sourceforge.net/
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3.2 State-of-the-art in formal representations of data mining
entities

The main developments in formal representation of data mining entities take place in the
areas of data mining workflow construction, data mining services, and describing data min-
ing resources on the GRID. Other research includes the formal representations of machine
learning experiments in the context of experiment databases. Finally, there is an increasing
interest in learning/discovering data mining entities from the data mining literature.

In this section, we first present the early systems that facilitate the semantic repre-
sentations of data mining entities (Section 3.2.1). Next, we present the state-of-the-art in
representations for the GRID (3.2.2). Furthermore, we give an overview of the represen-
tation of data mining entities in the context of data mining workflows (Section 3.2.3) and
meta-mining (Section 3.2.4). Next, we focus of semantic representations of machine learning
experiments (Section 3.2.5). Finally, we conclude with the data mining entities in applica-
tion domains (Section 3.2.6) and learning semantic representations of data mining entities
from text (Section 3.2.7).

3.2.1 Early work

Early work on the semantic representation of data mining entities includes attempts to
describe systematically the processes in machine learning and data mining. These include the
CAMLET system (Suyama et al., 1998), the MiningMart system (Morik and Scholz, 2004),
and the IDA system (Bernstein et al., 2005). In the remainder of this section, we overview
the semantic representations of data mining entities used in these systems. First, we focus
on the CAMLET system that is used for the automatic composition of inductive learning
systems. Next, we discuss the MiningMart system that uses a set of formalized descriptions
of preprocessing methods in data mining to enable the reuse of data pre-processing best
practices and store them in databases. Finally, we focus on the IDA system that provides
users with systematic enumerations of valid sequences of data mining operators.

The CAMLET system. Suyama et al. (1998) proposed the CAMLET system that uses
two primitive light-weight ontologies of machine learning entities to support the automatic
composition of inductive learning systems: the process ontology and the object ontology.
The process ontology represents the inductive learning methods that compose the inductive
learning systems. The object ontology represents the data structures that are manipulated
by the methods in the process ontology. The process ontology uses a limited set of customized
relations in order to connect to the object ontology.

Mining Mart. Morik and Scholz (2004) proposed the MiningMart system for reusing
best practices in data preprocessing. The system uses a light-weight ontology in the form
of meta-data that represents the pre-processing entities (such as data and pre-processing
chains) found in the use cases. The goal of the ontology is to automatically generate SQL
code for the process of data preprocessing.

Intelligent Discovery Assistant. Bernstein et al. (2005) proposed a prototype of an
Intelligent Discovery Assistant (IDA), which provides users with systematic enumerations
of valid sequences of data mining operators (called data mining processes). Effective ranking
of the processes by different criteria is also provided in order to facilitate the choice of data
mining processes to execute in order to solve a specific data mining task. This automated
system takes the advantage of an explicit ontology of data mining operators (algorithms).
A light-weight ontology is used that contains only a hierarchy of data mining operators
divided into three main classes: preprocessing operators, induction algorithms and post
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processing operators. The leaves of the hierarchy are the actual operators. The ontology
does not contain information about the internal structure of the operators: The taxonomy
is produced only according to the role that the operator has in the knowledge discovery
process.

3.2.2 GRID

The advancement of ontology languages and technologies toward the Semantic web enabled
new developments in semantic representations of data mining entities for the purpose of
distributed data mining and knowledge discovery on the GRID. In this section, we present
the state-of-the-art in the context of the GRID. This includes the DAMON ontology and
the GRIDMiner Assistant.

DAMON Ontology. In the context of GRID programming, Cannataro and Comito
(2003) proposed a design and implementation of an ontology of data mining. The motiva-
tion for building the ontology came from the context of the author’s work in the Knowledge
GRID (Cannataro and Talia, 2003). The main goals of the ontology are to allow the seman-
tic search of data mining software and other data mining resources and to assist the user
by suggesting the software to use on the basis of the user’s requirements and needs. The
proposed DAMON (DAta Mining ONtology) ontology is built through a characterization of
available data mining software.

GRIDMiner Assistant. Brezany et al. (2007) introduced an ontology-based framework
for the automated construction of complex interactive data mining workflows as a means
of improving productivity of GRID-enabled data systems. For this purpose they developed
a data mining ontology which is based on concepts from industry standards such as: the
predictive model mark-up language (PMML)14, the cross industry standard process for data
mining (CRISP-DM) (Chapman et al., 1999), WEKA (Witten and Frank, 2005), and the
Java data mining API (Hornick et al., 2006).

3.2.3 Data mining workflows

In line with the research for constructing complex data mining workflows for data mining
applications on the GRID, the problem of semi-automatic design of workflows for complex
knowledge discovery tasks and planning of workflows has also been addressed by other
researches. In this section, we focus on the KD Ontology, the KDDONTO ontology, and
the DMWF ontology.

Knowledge Discovery (KD) Ontology. Žáková et al. (2008) proposed an ontology di-
rectly integrated with a planner in order to to automatically propose workflows for the given
type of inputs and required outputs of the discovery process. The KD ontology formalizes
the notions of a knowledge type and data mining algorithm. The planning algorithm accepts
task descriptions expressed using the vocabulary of the ontology and produces abstract work-
flows as directed acyclic graphs, having in the nodes implemented algorithms. The ontology
contains descriptions of propositional algorithms and algorithms for relational mining. The
methodology was implemented in the Orange4WS Environment for service-oriented data
mining (Žáková et al., 2009; Podpečan et al., 2011).

KDDONTO Ontology. Diamantini and Potena (2008) introduced a semantic based,
service oriented framework for tools sharing and reuse, in order to give support for semantic
enrichment (through semantic annotation of KDD tools) and deployment of tools as web

14http://www.dmg.org/

http://www.dmg.org/
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services. For describing the domain, they propose an ontology named KDDONTO (Diaman-
tini et al., 2009) which is developed having in mind the central role of a KDD algorithm and
its composition into data mining workflows. The ontology provides information required by
the KDD composer to build valid workflows by introducing a similarity matching technique
devised to recognize valid algorithmic sequences on the basis of their input/output pairs
(Diamantini et al., 2010).

Data Mining Workflow (DMWF) Ontology. Kietz et al. (2009, 2010) presented a
data mining ontology for workflow planning. The ontology is designed to contain all the
information necessary to support a 3rd generation KDD Support System. This includes the
objects manipulated by the system, the meta data needed, the operators (i.e., algorithms)
used, and a goal description. The vocabulary of the ontology is used further for Hierarchical
Task Network planning (HTN) to produce workflows. The workflow generator is tightly
coupled with a meta-miner whose role is to rank the workflows and is based on the DMOP
ontology (presented in more detail in Section 3.2.4).

3.2.4 Meta-learning and meta-mining: The DMOP ontology

Building upon the work of Bernstein et al. (2005), Kalousis et al. (2008) proposed an in-
telligent data mining assistant that combines planning and meta-learning for the automatic
design of data mining workflows. Furthermore, Hilario et al. (2009) propose a data mining
ontology designed to support meta-learning for algorithm and model selection in the context
of data mining workflow optimization.

One of the main goals of the Data Mining Optimization (DMOP) Ontology is to support
meta-mining (meta-analysis) of complete data mining experiments in order to extract work-
flow patterns (Hilario et al., 2011). The ontology contains representations of data mining
tasks, algorithms, models, workflows and experiments, limited to the case of propositional
data mining. In addition, the authors have developed a knowledge base by defining instances
of the DMOP ontology. The DMOP ontology is not based on any upper-level ontology and
uses a large set of customized special-purpose relations.

3.2.5 Machine learning experiments: The Exposé Ontology

As data mining and machine learning are experimental sciences, insight into the performance
of a particular algorithm is obtained by implementing it and studying how it behaves on
different datasets. Blockeel (2006) proposes an experimental methodology based on experi-
ment databases in order to facilitate the repeatability of experiments and the generalizability
of experimental results in machine learning. This was successfully implemented by Blockeel
and Vanschoren (2007) in the ExpDB system running at KUL Leuven15. For this purpose,
the authors created the Exposé ontology as a conceptual basis for the database (Vanschoren
and Soldatova, 2010).

Vanschoren et al. (2008) propose an XML based language (named ExpML) for describing
classification and regression experiments. In this process, the authors identified the main
entities for formalizing a representation of machine learning experiments and implemented
it in an ontology (named Exposé) (Vanschoren and Soldatova, 2010). The Exposé ontol-
ogy describes machine learning experiments in a standardized fashion by representing the
experiment context, evaluation metrics, performance estimation techniques, datasets and
algorithms. The Exposé ontology is based on the same design principles and builds upon
the work presented in this thesis as presented in more detail in Section 9.5.

15ExpDB:http://expdb.cs.kuleuven.be/

http://expdb.cs.kuleuven.be/
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3.2.6 Data mining entities in application domains: The OpenTox ontology

In the context of their project OpenTox, Hardy et al. (2010) developed an algorithm ontol-
ogy. The purpose of this ontology is to support the OpenTox Framework for predictive tox-
icology data management, algorithms, modeling, validation and reporting. In the OpenTox
algorithm ontology, the algorithms are grouped in four major classes: descriptor calculation
algorithms (focusing on the calculation of QSAR descriptors), data mining and learning
algorithms, preprocessing algorithms, and utility algorithms.

3.2.7 Learning semantic representations from text

In this section, we present the state-of-the-art in learning semantic representations of data
mining entities from large collections of text. First, we review a proposal for a descriptive
framework for DM and KDD extracted from documents. Next, we focus on the KDDO1
ontology built from text corpus.

A descriptive framework. Peng et al. (2008) survey a large collection of data mining
and knowledge discovery literature in order to identify and classify the data mining entities
into high-level categories using a grounded theory approach and validating the classification
using document clustering. As a result of the study, the authors have identified eight main
areas of data mining and knowledge discovery: data mining tasks, learning methods and
tasks, mining complex data, foundations of data mining, data mining software and systems,
high-performance and distributed data mining, data mining applications, and data min-
ing process/project. The identified areas were validated by fitting new data mining and
knowledge discovery articles to the framework and by document clustering.

KDDO1 ontology. Melli (2010) presented a linguistically-grounded domain specific on-
tology for the KDD domain (named kddo116) based on a semantic Wiki built upon paper
abstracts accepted for the KDD-2009 conference. Each abstract has its concepts mentions
identified and linked to the appropriate concept in the ontology.

3.3 Other related approaches

In this section, we review two related approaches. The first approach, semantic data mining
focuses on the use of ontologies in the process of data mining (Section 3.3.1). The second
approach, deals with the use of knowledge discovery methodology for ontology construction
(Section 3.3.2).

3.3.1 Semantic data mining

The term semantic data mining denotes a new challenge of mining semantically annotated
resources, with ontologies used as background knowledge by data mining approaches (which
have semantic data). One possible scenario in the semantic data mining context is the use of
domain ontologies as background knowledge (or input) for mining experimental data. This
has been demonstrated in the case of semantic subgroup discovery (Lavrač et al., 2009) with
the SEGS (Trajkovski et al., 2008) system in the area of micro-array data analysis by using as
background knowledge three ontologies: Gene Ontology (GO17), KEGG18 and ENTREZ19.
Furthermore, the approach of Trajkovski et al. (2008) was generalized and implemented in

16kddo1: http://www.gabormelli.com/Projects/kdd/data/kddo/kddo1/
17GO:http://www.geneontology.org/
18KEGG:http://www.genome.jp/kegg/
19ENTREZ:http://www.ncbi.nlm.nih.gov/sites/gquery

http://www.gabormelli.com/Projects/kdd/data/kddo/kddo1/
http://www.geneontology.org/
http://www.genome.jp/kegg/
http://www.ncbi.nlm.nih.gov/sites/gquery
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the g-SEGS system that can exploit any OWL ontology as background knowledge (Vavpetič,
2011).

3.3.2 Knowledge discovery for ontology construction

Grobelnik and Mladenić (2006) propose a methodology for semi-automatic topic ontology
construction analogous, to the CRISP-DM methodology (Chapman et al., 2000) defined
for the knowledge discovery process. The proposed methodology consists of the follow-
ing phases: domain understanding, data understanding, task definition, ontology learning,
ontology evaluation and refinement with a human in the loop. The knowledge discovery
techniques applicable in this context are text mining tools that can be applied to the task
of ontology learning from text, such as Ontogen (Fortuna et al., 2007).

Data mining topic ontology. Vavpetič et al. (2011) present the semi-automatically
constructed data mining topic ontology constructed from a large corpus of data mining
papers, using a tool for semi-automatic ontology construction OntoGen (Fortuna et al.,
2007). A topic ontology is a set of topics connected with different types of relations. The
main purpose of the topic ontology is to assess the DMOP ontology developed in the e-
LICO project. Additionally, the topic ontology was compared with the OntoDM ontology
(presented in this thesis) and the KD ontology (Žáková et al., 2010).
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4 OntoDM: Modular Ontology of Data Mining

In Chapter 1 of this thesis, we introduced the problem of formalization of the scientific
domain of data mining. The task of formalizing the knowledge of a domain includes pro-
viding a formal representation of objects and processes involved in scientific investigations
in some knowledge representation framework (Brachman and Levesque, 2004). In recent
years, ontologies have become prominent in the area of computer science research and the
application of computer science methods in the management and representation of scientific
domains. The most substantial developments in terms of the formal representation of sci-
entific investigations were achieved in the biological and biomedical domains (presented in
Chapter 3).

The domain of data mining is developing rapidly. This poses a number challenges for the
researchers working in the domain. One of the most challenging problems, as discussed in
Chapter 1, deals with developing a general framework for data mining, which should treat
the mining of structured data in a uniform fashion. In addition, much of the research in
recent years, in the domain of KDD and DM, has focused on the automation of and overall
support for the KDD process. This has been identified as another important challenge in
the domain to be addressed by the research community.

By formalizing the knowledge about the data mining domain in the form of an ontology,
we take one step forward toward addressing these challenges, as in the process we aim to
identify the key entities in the domain and their relations (e.g., a dataset, a data example,
a data mining task, a data mining algorithm etc). After the basic entities are identified
and logically defined, we can build upon them and define more complex entities (e.g., a
constraint, a constraint-based data mining task, a data mining query, a data mining scenario
and a data mining experiment). Finally, the process of formalization should identify what is
the minimum information required for the description and representation of a data mining
investigation.

In Chapter 3, we presented and discussed several proposals for ontologies of data mining.
The majority of them are light-weight application oriented ontologies aimed at covering a
particular use-case in data mining. They are of a limited scope, and highly use-case depen-
dent. However, the ultimate goal of every domain is to have a reference ontology representing
the general knowledge about the domain. In this thesis, we address the task of developing
a reference modular domain ontology of data mining named OntoDM. The ontology is de-
signed and implemented by following ontology best practices and design principles (Simperl
and Tempich, 2006; Smith et al., 2007; Courtot et al., 2011; Soldatova and King, 2005).
This includes using upper-level ontology BFO (Basic Formal Ontology) (Grenon and Smith,
2004) as a template, using formaly defined relations from RO (Relational Ontology) (Smith
et al., 2005), and reusing classes and relations from other ontologies for representing scien-
tific investigations, such as OBI (Ontology of Biomedical Investigations) (Brinkman et al.,
2010), IAO (Information Artifact Ontology)1, EXACT (Ontology of Experiment Actions)
(Soldatova et al., 2008), SWO (Software Ontology)2, using them as mid-level ontologies.

1IAO: http://code.google.com/p/information-artifact-ontology/
2SWO: http://theswo.sourceforge.net/

http://code.google.com/p/information-artifact-ontology/
http://theswo.sourceforge.net/
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In this chapter, we first present the ontology design best practices and design principles
(Section 4.1). Next, we present the basic design of the OntoDM ontology (Section 4.2).
Next, we focus on the implementation and maintenance issues of the proposed ontology
(Section 4.3). Finally, we conclude this chapter with a proposal for a three-level description
structure for representing entities in the data mining domain based on the design principles
(Section 4.4).

4.1 Ontology design best practices and design principles

There is a relative lack of literature covering the best practices regarding ontologies, their
construction and maintenance. Simperl and Tempich (2006) examine 34 ontologies, their
development process, cost and methodology employed. They provide a good reference list
of best practices observed for these ontologies, currently relevant in ontology engineering.
Various collective ontology development efforts provide lists of additional principles, which
can be used for ontology development purposes. For example, the OBO Foundry effort
provides a list of principles to which the member ontologies should adhere. The most
common principle is to re-use of existing ontologies as much as possible and this is one of
the major emphases of the OBO Foundry (Smith et al., 2007). Furthermore, Courtot et al.
(2011) propose a set of guidelines to follow when reusing terms and classes from external
ontologies based on same design principles. Finally, the NeOn3 methodology also suggests
guidelines for constructing individual ontologies by reusing and re-engineering other domain
ontologies.

In this section, we summarize the design principles and ontology best practices, which
we follow in addressing the task of constructing modular ontology for data mining. First,
we give an overview of ontology best practices from different view points (Section 4.1.1).
Next, we present the OBO Foundry principles that we use in designing of ontology for data
mining (Section 4.1.2). Finally, we describe the MIREOT principle for reusing terms and
classes from external ontologies (Section 4.1.3).

4.1.1 Summary of ontology best practices

Ontology best practices refer to how the ontology is scoped, designed and constructed. In this
subsection, we summarize the general best practices used in the design and implementation
phase of constructing our ontology for data mining. The best practices focus on engineering
approaches, which need to be taken into account when deciding on the scope and content
of the ontology, the ontology design and structure, naming and vocabulary, documentation,
collaboration, and testing of the ontology.

Scope and content. One of the most important best practices in ontology engineering,
in the context of deciding on the ontology scope and content, is to provide a balanced
coverage of the subject domain. This is done by providing uniform breadth and depth of
coverage in the ontology across its scope. The goal should be to embed the domain coverage
into a proper context by providing the ability to inter-operate with other ontologies: This
presents a major strength of an ontology. Next, one should reuse the structure of already
developed state-of-the-art ontologies as much as possible. Furthermore, there should be
clear and precisely defined relations, that will ensure that the relationships between classes
in the ontology are coherent. Finally, one should always rely upon a set of core ontologies for
external re-use purposes and map to external ontologies, in order to increase the likelihood
of sharing and interoperability.

3Neon Project:http://www.neon-project.org/

http://www.neon-project.org/
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Design and structure. In the context of designing a domain ontology, one of the first
steps the ontology engineer needs to take is to start with a light-weight ontology. This is
done in order to identify the entities in the domain and their relationships, and represents
an intermediate step towards constructing a heavy-weight ontology of a domain of interest.
This approach allows incrementally built ontologies. Furthermore, the ontologies should be
built in a modular fashion and the domain and problem space should be split into logical
clusters. Next, the ontology should be implemented in a machine-processable language,
such as the OWL or RDF Schema. Finally, the ontology engineer needs to use annotation
properties, as much as possible, to promote the usefulness and human readability of the
ontology.

In the context of structuring a domain ontology, the ontology engineer should always
try to structurally split domain classes (ABox) from instances (TBox). This enables easier
maintenance, better understandability of the ontology, and scalability. Next, domains and
ranges should be assigned to the used relations, in order to assist in testing and to ensure
the coherence of the domain ontology. Furthermore, relation restrictions should be assigned
with care. Finally, the use of disjoint classes is preferred in order to separate classes from
one another. If not explicitly stated, the child classes from the same parent are assumed to
overlap.

Naming and vocabulary. For entity naming, there are naming conventions, which are
used in the ontology developing communities, such as biomedical ontology communities. The
conventions suggest that all classes in the ontology should be named as single nouns. Next,
all relations should be named as verb sense, e.g., hasProperty. For related relations or classes
one should use common and descriptive prefixes and suffixes. Finally, where applicable, the
inverse relations should be defined.

All classes and relations in an ontology should be defined. Providing clear definitions,
along with the coherency of its structure, gives an ontology its semantics. Next, the ontol-
ogy engineer should provide a preferred label annotation property that is used for human
readable purposes and in user interfaces. Furthermore, one should assign logical and short
names to ontology namespaces, such as name:IDXXX, with a preferred maximum of five
letters. Finally, if needed, multi-lingual capabilities should be enabled in all definitions and
labels.

Documentation, collaboration and testing. The first requirement of documentation
best practice is a properly constructed and commented ontology. The entire ontology vo-
cabulary should be documented via a dedicated system that allows finding, selecting and
editing of ontology terms. Supplementary documentation should be provided for ontology
construction and maintenance, including naming, selection, completeness and other criteria.
If possible one should provide a complete Wiki-like documentation system for use cases, best
practices, evaluation and testing metrics, tools installation and use, and all aspects of the
ontology life-cycle. Finally, a complete graph of the ontology should be made available via
graph visualization tools to aid understanding of the ontology.

Collaboration is an implementation best practice. The first focus of collaboration best
practices is on the re-use of already agreed-up structures and vocabularies. The second focus
is on the use of improved processes for consensus making, including tools support, to enable
work groups to identify and decide upon the terminology, definitions, alternative labels, and
relations between the classes.

Testing best practices are very important in the implementation and deployment phases
of the ontology by invoking reasoners that can detect inconsistencies. Next, we can test
new relations, aided by invoking reasoners, which will identify inconsistencies. Furthermore,
we can use external knowledge bases and ontologies to conduct coherency testing for the
basic structure and relationships in the ontology. Finally, we need to evolve the ontology
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specification to include necessary and sufficient conditions to enable more complete reasoner
testing for consistency and coherence.

4.1.2 OBO Foundry principles

The OBO Foundry4 (Smith et al., 2007) is a collaborative experiment involving developers
of science-based ontologies who are establishing a set of principles for ontology development
with the goal of creating a suite of orthogonal inter-operable reference ontologies in the
biomedical domain. It is an attempt to apply the scientific method to the task of ontology
development, where the scientific method rests on constant criticism and on the assumption
that no resource will ever exist in a form in which it cannot be further improved. By joining
the initiative, the authors of an ontology commit to its maintenance in light of scientific
advances and for working with other members of the community to ensure the improvement
of these principles over time.

The OBO foundry has released a set of accepted OBO principles and a set of OBO
principles that are under discussion, both presented in Table 4.1. Currently, there are 13
accepted and 6 principles that are under discussion. The accepted principles include the
principles such as openness, use of a common formal language, use of unique identifiers
(URIs), use of versioning systems for tracking changes, providing textual definitions, use
of relations from the RO, documentation of the ontology, use of naming conventions, and
others. The principles that are under discussion include principles such as providing all
definitions in genus-differentia form5, extending downward some fragment of BFO upper-
level ontology, contain only classes with single inheritance, and others.

4.1.3 MIREOT guidelines

The Minimum Information to Reference an External Ontology Term (MIREOT) guidelines
were created to help the development of the Ontology of Biomedical Investigations (Courtot
et al., 2011). The guidelines provide a mechanism for reusing existing ontology resources, and
therefore avoiding duplication of efforts and ensuring orthogonality. This set of guidelines
focuses on the task of importing single external classes from other ontologies into an ontology
that is currently under development. The process of importing external classes consists of
first gathering the minimum information for the external class and then using this minimum
information to fetch additional annotation elements from the ontology, such as labels and
definitions.

The minimum information needed to reference an external class is the source ontology
URI (Universal Resource Identifier) and the external term’s URI. These items are usually
stable and can be used unambiguously to reference the external class from the target on-
tology. The minimum information needed to integrate the class in the new ontology is its
position in the hierarchy, more specifically the URI of its direct subclass in the target ontol-
ogy. To summarize, the information needed to consistently reference and reuse an external
class is the source ontology URI, the source class URI and the target direct superclass URI.

After establishing a set of basic guidelines for referencing an external ontology class, a
web based system named OntoFox6 (Xiang et al., 2010) was developed in order to assist the
end users in extracting classes from source ontologies and reuse them in their ontologies.
OntoFox additionally allows easily configurable options for selecting annotation properties

4OBO Foundry: http://www.obofoundry.org/
5A genus-differentia definition is a type of intensional definition which defines a species as a subtype of

a genus satisfying certain conditions (the differentia). Thus, the definiendum in such definitions is always
a species (and not an individual), while the definiens consists of two parts: a genus (or family) which is a
pre-defined term that includes the species defined as a subtype, and the differentia which is the condition
that distinguishes the species from other instances of the same genus.

6OntoFox:http://ontofox.hegroup.org/

http://www.obofoundry.org/
http://ontofox.hegroup.org/


OntoDM: Modular Ontology of Data Mining 35

Table 4.1: OBO Foundry principles.

Accepted OBO Principles
ID Name Description
FP 001 open The ontology must be open and available to be used by all

without any constraint.
FP 002 format The ontology is in, or can be expressed in, a common formal

language with accepted syntax, such as for example OBO
Format or OWL.

FP 003 URIs Each class and relation in the ontology must have a unique
URI identifier.

FP 004 versioning The ontology developers have procedures for identifying dis-
tinct successive versions, by using metadata for tracking the
changes.

FP 005 delineated content The ontology has a clearly specified and clearly delineated
content.

FP 006 textual definitions The ontology includes textual definitions for a substantial
and representative fraction of the terms, plus equivalent for-
mal definitions for a substantial number of terms.

FP 007 relations The ontology uses relations which are unambiguously de-
fined following the pattern of definitions laid down in OBO
Relational Ontology.

FP 008 documented The ontology is well documented (e.g., in a published paper
or in a manual for developers and users).

FP 009 users The ontology has a set of independent users (documented,
e.g., via pointers in external URIs, use in cross-products)

FP 010 collaboration The ontology will be developed collaboratively.
FP 011 locus of authority There should be a single person who is responsible for the on-

tology, ensuring continued maintenance in light of scientific
advance and response to user feedback.

FP 012 naming conventions The ontology should follow a naming convention.
FP 016 maintenance The authors of the ontology commit to its maintenance in

light of scientific advance.
OBO Principles under discussion

ID Name Description
FP 013 genus differentia All ontology definitions are in genus-differentia form.
FP 014 BFO Ontologies should be conceivable as the result of populating

downward some fragment of BFO 2.0.
FP 015 single inheritance The ontology should be conceived as consisting of a core of

asserted single inheritance links, with further is-a relations
inferred.

FP 017 instantability All the types represented by the terms in the ontology should
be instantiable.

FP 018 orthogonality For each domain, there should be convergence upon a single
ontology that is recommended for use by those who want to
become involved with the Foundry initiative.

FP 019 content The ontology must be a faithful representation of the domain
and fit for the stated purpose.
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and inclusion of all or a computed subset of classes between the low and top level classes.
The output of the system is given in OWL format and can be directly imported into a
developer’s ontology. The system currently supports a large selection of ontologies from the
OBO library, such as the OBI ontology, the IAO ontology, the GO ontology and others.

4.2 The basic design of OntoDM

In the design of OntoDM ontology, we take into consideration the best practices in ontology
engineering outlined above. In Figure 4.1 we present the structure of the OntoDM ontology.
We use the upper level ontology BFO (Basic Formal Ontology) version 1.17 as a template to
define the upper level classes (see Section 3.1.1). Furthermore, we use the OBO Relational
Ontology (RO)8 (Smith et al., 2005) and an extended set of RO relations to define the se-
mantics of the relationships between the data mining entities. At the mid-level, we re-use
and extend existing ontological resources where possible, such as OBO Foundry9 candidate
ontologies, the OBI ontology and the IAO ontology, and other ontologies used for represent-
ing of scientific investigations. Finally, the OntoDM ontology is structured as a modular
ontology composing of three modules: OntoDT, OntoDM-core, and OntoDM-KDD.

By establishing these design decisions we achieve is-a completeness and single is-a inher-
itance for all classes. BFO an RO were chosen as they are widely accepted, especially within
OBO ontologies. The use of an upper level ontology and relations based on upper level
classes eases the interoperability of the classes with other external ontologies based on same
foundational principles (such as the DDI ontology (Qi et al., 2010), and the EXPOSE ontol-
ogy (Vanschoren and Soldatova, 2010)). The re-use of classes from other ontologies enables
cross-domain reasoning and avoids duplication of efforts. In addition, the OntoDM ontology
aims to follow the OBO Foundry (Smith et al., 2007) principles in ontology engineering that
are widely accepted in the biomedical domain (see Section 4.1.2). Consequently, the ontol-
ogy is developed to be complementary to and integrated with state-of-the-art ontologies for
representing scientific investigations.

In this section, we first analyze and present the upper-level classes imported from the
BFO upper-level ontology that are in context of the OntoDM ontology (Section 4.2.1). Next,
we present the external classes that are reused and extended by our data mining ontology
(Section 4.2.2). Next, we focus on the set of relations used in our data mining ontology
(Section 4.2.3). Finally, we present the modular structure of the OntoDM ontology (Section
4.2.4).

4.2.1 Upper-level classes: The BFO upper-level ontology

The BFO upper-level ontology is primarily focused on the task of providing a genuine upper
ontology which can be used to support domain ontologies developed for scientific research
(Grenon and Smith, 2004). The most prominent use of the BFO upper ontology is in the area
of biomedicine. BFO recognizes a basic distinction between two kinds of entities: substantial
entities or continuants and processual entities or occurrents.

In Figure 4.2, we present a part of the BFO v1.1 class hierarchy. The violet boxes
represent the classes that are reused and extended further in the OntoDM ontology proposed
in this thesis. In the remainder of this section, we present the basic definitions of the BFO
classes that are reused and extend for the purpose of representing data mining entities: the
continuant classes (Section 4.2.1.1) and the occurent classes (Section 4.2.1.2).

7BFO: http://www.ifomis.org/bfo
8RO: http://purl.org/obo/owl/OBO_REL
9OBO Foundry: http://ontoworld.org/wiki/OBO_foundry

http://www.ifomis.org/bfo
http://purl.org/obo/owl/OBO_REL
http://ontoworld.org/wiki/OBO_foundry
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Figure 4.1: OntoDM modules.

4.2.1.1 Continuants

In the BFO ontology, a continuant is defined as an entity that exists in full at any time
in which it exists at all, persists through time while maintaining its identity, and has no
temporal parts (e.g., dataset, data mining task). The BFO ontology distinguishes between
three types of continuants: spatial regions, independent continuants and dependent contin-
uants (see the left hand side of Figure 4.2). In the remaining of this section, we focus more
on the independent and dependent continuants.

Independent continuant. An independent continuant , in the BFO ontology, is defined
as a continuant that is a bearer of quality and a realizable entity, in which other entities
inhere and which itself cannot inhere in anything. Examples of independent continuants
include: an organism, a person, a chair, etc. This upper-level class is extended with a set
of more specific sub-clases, such as material entity , object boundary , and site. The material
entity class is defined as an independent continuant that is spatially extended and whose
identity is independent of that of other entities and can be maintained through time (e.g.,
computer).

Dependent continuant. A dependent continuant , in the BFO ontology, is defined as a
continuant that is dependent on either one or several other independent continuant bearers
or inheres in or is borne by other entities. Dependent continuants in BFO can be generically
dependent or specifically dependent. A generically dependent continuant is defined in BFO,
as a dependent continuant (A), where every instance of A requires some instance of B, but
which instance of B serves can change from time to time (e.g., a PDF file that exists in
different and in several hard drives). For a specifically dependent continuant , every instance
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Figure 4.2: Part of the BFO ontology class hierarchy. The violet boxes represent classes that are
used and further extended in the OntoDM ontology. The arrows represent is-a relations.

of A requires some specific instance of B which must always be the same (e.g., the role of
being a doctor, the function of the heart in the body and others). The class specifically
dependent continuant has two subclasses: realizable entity and quality .

Realizable entity. A realizable entity (RE), in the BFO ontology, is defined as a
specifically dependent continuant and includes all entities that can be executed (manifested,
actualized, realized) in concrete occurrences (e.g., processes). RE are entities whose in-
stances contain periods of actualization, when they are manifested through processes in
which their bearers participate. Example of realizable entity for the domain of data min-
ing include implementations of data mining algorithms. Subclasses of RE include: role,
function and disposition. A role, in the BFO ontology, is defined as a realizable entity the
manifestation of which brings about some result or end that is not essential to a continuant
in virtue of the kind of thing that it is, but that can be served or participated in by that
kind of continuant in some kinds of natural, social or institutional contexts (e.g., training
set, test set). A function, in the BFO ontology, is defined as a realizable entity, the mani-
festation of which is an essentially end-directed activity of a continuant entity in virtue of
that continuant entity being a specific kind of entity in the kind or kinds of contexts that it
is made for.

Quality. A quality , in the BFO ontology, is defined as a specifically dependent contin-
uant that is exhibited if it inheres in an entity or any entities at all. Examples of qualities
include: datatype qualities, qualities of models and patterns and others.

4.2.1.2 Occurents

In the BFO ontology, an entity that has temporal parts and that happens, unfolds or develops
through time is called an occurent (e.g., execution of a data mining algorithm). The BFO
ontology distinguishes between tree types of occurent entities: processual entities, temporal
regions and spatio-temporal regions (see right hand side of Figure 4.2). In the context of the
OntoDM ontology we extend and use only processual entities and we present them more in
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detail in the remaining of this section.

Processual entity. A processual entity is defined as an occurrent that exists in time by
occurring or happening, has temporal parts, and always involves and depends on some entity.
Examples of processual entities include: the life of an organism, the course of a disease, the
flight of a bird, etc. This class is further extended with the following subclasses: process,
fiat process part , process aggregate, process boundary , and processual context . The most
important processual entity class, for the ontology of data mining that we propose in this
thesis, is the process class. In the BFO ontology, it is defined as a processual entity that
is a maximally connected spatio-temporal whole and has beginnings and endings (e.g., the
process of sleeping).

4.2.2 Mid-level classes: Imported ontologies

In the OntoDM ontology, we reuse some of the ontologies for representing scientific inves-
tigations and outcomes of research as mid-level ontologies (see Section 3.1) . We import
and further extend classes from: the Ontology for Biomedical Investigations (OBI)10, the
Information Artifact Ontology (IAO) 11, and the Software Ontology (SWO)12 (See Figure
4.1). The mid-level ontologies uses for the OntoDM ontology also use BFO as an upper-
level ontology. Classes that are referenced and reused are imported by using the MIREOT
guidelines (Courtot et al., 2011) (see Section 4.1.3). In this section, we focus more in depth
on the classes imported from the IAO ontology (Section 4.2.2.1) and classes from the OBI
ontology (Section 4.2.2.2).

4.2.2.1 IAO classes

In the development of an ontology of data mining, it is very important to have the ability to
represent entities that deal with information, such as data, documents, models, algorithms,
protocols, etc. The IAO ontology is a mid-level ontology that is dealing with information
content entities (e.g., documents, file formats, specifications), processes that consume or pro-
duce information content entities (e.g., writing, documenting, measuring), material bearers
of information (e.g., books, journals), and relations in which one of the relata is an infor-
mation content entity (e.g., is-about, denotes, cites) (see Section 3.1.3). For this purpose, a
design decision was made to incorporate and further extend some stable classes of the IAO
ontology. The most important top level class in the IAO ontology is the information content
entity class (see Fig. 4.3).

The information content entity (ICE), in the IAO ontology, denotes all entities that
are generically dependent on some artifact and stand in relation of aboutness (is-about) to
some entity. Examples of ICE include data, narrative objects, graphs, etc. The introduction
of ICE enables the representation of different ways that information relates to the world,
sufficient for representing scientific investigations (and in case of OBI, specifically biomed-
ical investigations). Subclasses of ICE include: data item, textual entity , label , document ,
document part , and directive information entity .

Data item and label. A data item is defined in the IAO ontology as an information
content entity that is intended to be a truthful statement about something and is con-
structed/acquired by a method which reliably tends to produce truthful statements. A label
is defined is defined in the IAO ontology as a symbol that is part of some other datum and
is used to either partially define the denotation of that datum or to provide a means for
identifying the datum as a member of the set of data with the same label.

10OBI: http://purl.obolibrary.org/obo/obi
11IAO:http://code.google.com/p/information-artifact-ontology/
12SWO: http://theswo.sourceforge.net/

http://purl.obolibrary.org/obo/obi
http://code.google.com/p/information-artifact-ontology/
http://theswo.sourceforge.net/
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Figure 4.3: Part of the IAO class hierarchy reused and extended in the OntoDM ontology.
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Document and document part. A document is defined in the IAO ontology as a col-
lection of information content entities intended to be understood together as a whole, while
a document part is defined in the IAO ontology as an information content entity that is part
of a document. Document part includes the following sub-classes:

• abstract is defined as a summary of the entire document that is substantially smaller
than the document it summarizes (it is about the document it summarizes);

• author list is defined as a part of a document that enumerates the authors of the
document;

• discussion section of a publication about an investigation is defined as a part of a
publication about an investigation that is about the study interpretation of the inves-
tigation;

• institution list is defined as a part of a document that has parts that are institution
identifications associated with the authors of the document;

• introduction section to a publication about an investigation is defined as a part of a
publication about an investigation that is about the objective specification (why the
investigation is being done)

• methods section is defined as a part of a publication about an investigation that is
about the study design of the investigation;

• references section is defined as a part of a document that has citations as parts; and

• results section is defined as a part of a publication about an investigation that is about
a study design execution.

Textual entity. A textual entity is defined in the IAO ontology as a part of a mani-
festation, a generically dependent continuant whose concretizations are patterns of glyphs
intended to be interpreted as words, formulas, etc. More specifically it includes the following
sub-classes:

• conclusion textual entity is defined as a textual entity that expresses the results of
reasoning about a problem, for instance as typically found towards the end of scientific
papers; and

• document title is defined as a textual entity that names a document;

Directive informational entity. A directive informational entity (DIC) is an informa-
tion content entity that concerns a realizable entity. DICs are ICEs whose concretizations
indicate to their bearer how to realize them in a process. A directive information entity,
before the OBI RC1 (release candidate 1) version, was named ‘informational entity about
a realizable’. Subclasses of DICs include: data format specification, action specification,
objective specification,and plan specification. These are defined in the IAO ontology as
follows:

• A data format specification is defined as the information content borne by the published
document defining the specification;

• An action specification is defined as directive information entity that describes an
action the bearer will take;

• An objective specification is defined as an intended process endpoint; and
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• A plan specification is a information content entity that includes parts such as: ob-
jective specification and action specifications. When concretized, it is executed in a
process in which the bearer tries to achieve the objectives, in part by taking the actions
specified. A plan specification includes the following sub-classes:

– algorithm is defined as plan specification which describes inputs, output of math-
ematical functions as well as workflow of execution for achieving an predefined
objective;

– software is defined as a plan specification composed of a series of instructions
that can be interpreted by or directly executed by a processing unit; and

– programming language is defined as a language in which source code is written,
intended to executed/run by a software interpreter;

4.2.2.2 OBI classes

In the development of an ontology of data mining, it is very important to have the ability
to represent some material entities, such as organism, organization, and computer. Another
important representational mechanism is the ability to represent planned processes, such as
documenting, planing, validation, acquisition, and others. The OBI ontology is a domain
ontology for representing biomedical investigations (see Section 3.1.3). For the case of On-
toDM, we use OBI as a mid-level ontology and extend it with data mining specific classes.
The most important top level classes in the OBI ontology that we reuse and further extend
are material entity and planned process (see Fig. 4.4).

Figure 4.4: Part of the OBI class hierarchy reused and extended in the OntoDM ontology.

Material entity. In the OBI ontology, a material entity is an independent continuant that
is spatially extended, and whose identity is independent of that of other entities and can be
maintained through time. Examples of material entities include organisms, organizations,
devices, etc. These are defined in the OBI ontology as follows:

• Organism is defined as a material entity that is an individual living system, such as
animal, plant, bacteria or virus, that is capable of replicating or reproducing, growth
and maintenance in the right environment;

• Organization is defined as a continuant entity which can play roles, has members,
and has a set of organization rules. Members of organizations are either organizations
themselves or individual people;
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• Processed material is defined as a material entity that is created or changed during
material processing;

• Device is defined as a processed material which is designed to perform some function
or functions; and

• A computer is defined as a device which manipulates (stores, retrieves, and processes)
data according to a list of instructions.

OBI Informational entities. The OBI ontology additionally includes some informa-
tional entity specific classes specifically introduced to support representation of investiga-
tions, such as protocol, study design, investigation description, investigation title, inves-
tigation identifier, and publication about an investigation. These are defined in OBI as
follows:

• protocol is defined as a plan specification which has sufficient level of detail and quanti-
tative information to communicate it between domain experts, so that different domain
experts will reliably be able to independently reproduce the process;

• study design is defined as a plan specification comprised of protocols (which may
specify how and what kinds of data will be gathered) that are executed as part of an
investigation and is realized during a study design execution;

• investigation description is defined as a textual entity that describes an investigation;

• investigation title is defined as a textual entity that denotes an investigation;

• investigation identifier is defined as a symbol used to identify an investigation; and

• publication about an investigation is defined as a document about an investigation.

Planned process. A planned process is a processual entity that realizes a plan, which is
the concretization of a plan specification, in order to achieve the objectives specified with an
objective specification. Process entities have as participants continuants: Participants can
be also active, in which that they are called agents. Examples of planned process sub-classes
from OBI that are used and further extended in the case of data mining include: acquisition,
validation, investigation, documenting, prediction, data transformation, data visualization,
interpreting data, and planning. These are defined in the OBI ontology as follows:

• Documenting is a planned process of capturing information in an enduring form with
the intent to communicate this information;

• Study design execution is a planned process that realizes the concretization of a study
design;

• Investigation is a planned process that consists of parts such as planning, study design
execution, and documentation, and which produces conclusion(s);

• Interpreting data is the process of evaluating the data gathered in an investigation,
in the context of literature knowledge, with the objective to generate more general
conclusions or to identify what additional data are necessary to draw conclusions;

• Planning is the process of a scientist thinking about and deciding what to use as part
of a protocol for an experiment;

• Data transformation is a process which produces output data from input data;
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• Data visualization is a planned process that creates images, diagrams or animations
from the input data;

• Prediction is a process by which an event or an entity is described before it actually
happens, is discovered or identified;

• Validation is a planned process with the objective to check that the accuracy or the
quality of a claim or prediction satisfies some criteria, which is assessed by comparing
with independent results; and

• Acquisition is the process of obtaining a continuant from a source.

4.2.3 Relations

Relations are the most essential part of a well designed ontology. It is thus crucial that
the relations we use in the ontology are logically defined. At every point of ontology de-
velopment, from the initial conceptualization, through the construction, to its use, all the
relations introduced should not change their meaning. Consistent use of rigorous defini-
tions of formal relations is a major step toward enabling the achievement of interoperability
among ontologies and supporting automated reasoning across data derived from multiple
domains.

In the design phase of constructing the OntoDM ontology, along the minimal set of
fundamental built-in relations such as is-a and instance-of, we decided to use mainly
already established and formally represented relations widely used in the biomedical domain.
For this purpose, we reuse relations from the BFO 2.0 ontology, the RO ontology, and
relations from other OBO Foundry ontologies, such as OBI and IAO. We additionally use
several relations from the LABORS and EXACT ontologies. The complete list of relations
used is presented in Table 4.2.

Table 4.2: Relations used in the OntoDM ontology.

Origin Relation Inverse relation (if defined)

Fundamental
is-a has-subclass
has-instance instance-of

BFO 2.0 & OBO RO

has-part part-of
has-participant participates-in
has-active-participant is-active-participant-of
preceedes preceeded-by
inheres-in bearer-of
has-quality is-quality-of
has-role is-role-of
is-concretized-as is-concretization-of
realizes is-realized-by

IAO
is-about
denotes
quality-is-specified-as is-quality-specification-of

OBI

achieves-planned-objective objective-achieved-by
has-specified-input is-specified-input-of
has-specified-output is-specified-output-of
is-manufactured-by

EXACT has-information
LABORS has-representation is-representation-of

In the remainder of this section, we present the set of relations used the OntoDM ontology
in more detail. First, we focus on the fundamental relations. Next, we present the relations
from RO and BFO 2.0. Finally, we present the relations from IAO, OBI, LABORS and
EXACT.
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Fundamental (built-in) relations. The fundamental relation is-a and its inverse re-
lation has-subclass are used to express the subsumption relationships between entities.
The relation has-instance and its inverse relation is-instance-of connect a class with
an instance of that class. The fundamental relations are formally defined by Smith et al.
(2005), both at the class and at the instance level. These two relations are usually built-in
relations in ontology development software packages, such as Protege.

OBO RO and BFO 2.0 relations. The OBO (Open Bio-Ontologies) Foundry design
principles (see Section 4.1.2) aim to ensure interoperability between bio-ontologies (Smith
et al., 2007). One of the key OBO Foundry recommendations is the use of formal relations
from the OBO Relational Ontology (RO)13 (Smith et al., 2005). Recently, the OBO RO has
been significantly modified14 and the earlier version of RO (named OBO REL) is now dep-
recated15. The relations are now defined only at the instance level, and many new relations
have been introduced, i.e., capable-of, has-habitat, regulates. The OBO RO now
contains only relations specific for the biomedical domains, while all domain independent
relations from OBO REL, such as has-part and has-participant, are now part of BFO
2.0. Finally, BFO 2.0 now contains also some more general relations from the OBI ontology,
such as realizes and is-concretized-as.

In the OntoDM ontology, we import nine relations from BFO 2.0 and OBO RO. These
are defined as follows:

• has-part is defined a primitive relation between instances and a time at which the
one is part of the other;

• The relations has-participant and participates-in (both defined in RO) express
the relationship between a process and participants in a process, that can be pas-
sive or active (in case of agents). These are primitive relations between a process, a
continuant, and time;

• has-active-participant (has-agent) is a primitive relation between a process, a
continuant, and a time at which the continuant is causally active in the process;

• The relation between a dependent continuant and an entity is expressed via the relation
inheres-in (defined in the OBI ontology and a candidate for inclusion into RO). This
relation links qualities, roles, functions, dispositions and other dependent continuants
to their bearers. Specializations of this relation are the following relations:

– has-role is a relation between a role and an entity;

– has-quality is a relation between a quality and an entity;

• The relation is-concretization-of (introduced by the IAO ontology) expresses the
relationship between a generically dependent continuant (GDC) and a specifically de-
pendent continuant (SCD). In the IAO ontology, this relation is defined in the following
way: “A GDC may inhere in more than one entity. It does so by virtue of the fact
that there is, for each entity that it inheres, a specifically dependent ‘concretization’
of the GDC that is specifically dependent”; and

• The relation realizes is used to express the relation between a process and a realizable
entity, where the unfolding of the process requires execution of the realizable entity.

13OBO REL: http://purl.org/obo/owl/OBO_REL
14OBO RO:http://obo-relations.googlecode.com/svn/trunk/src/ontology/ro.owl
15Differences between OBO REL and OBO ROhttp://code.google.com/p/obo-relations/wiki/

DifferencesWithOldRO

http://purl.org/obo/owl/OBO_REL
http://obo-relations.googlecode.com/svn/trunk/src/ontology/ro.owl
http://code.google.com/p/obo-relations/wiki/DifferencesWithOldRO
http://code.google.com/p/obo-relations/wiki/DifferencesWithOldRO
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IAO relations. In the OntoDM ontology, we import several relations from the IAO on-
tology. These are defined as follows:

• The relation is-about is defined to relate an information content entity to an entity
and it serves as its specification;

• quality-is-specified-as is defined as a relation between a data item and a quality
of a material entity where the material entity is the specified output of a material
transformation which achieves an objective specification that indicates the intended
value of the specified quality.

OBI relations. In the OntoDM ontology, we import four relations from the OBI ontology.
These are defined as follows:

• The relation achieves-planned-objective connects a planned process and a objec-
tive specification when the criteria specified in the objective specification are met at
the end of the planned process;

• has-specified-input is a relation n between a planned process and a continuant
participating in that process that is not created during the process. The presence of
the continuant during the process is explicitly specified in the plan specification which
the process realizes the concretization of;

• has-specified-output is a relation between a planned process and a continuant
participating in that process and it is created during the process. The presence of the
continuant at the end of the process is explicitly specified in the objective specification
which the process realizes the concretization of; and

• is-manufactured-by is a relation that states that there was a process in which a
continuant was built in which a person, or set of people or machines did the work.

EXACT relation. In the OntoDM ontology we reuse the relation has-information
defined in the EXACT ontology (Soldatova et al., 2008) to relate an agent of a process to a
certain portion of information (information entity) that is essential for participating in the
process.

4.2.4 Modular structure of the OntoDM ontology

For the case of the OntoDM ontology, we made a design decision to organize the ontology
as a modular ontology, comprising of three ontology modules (See Figure 4.1). Each module
covers a sub-domain of data mining. The three modules are as follows:

• OntoDT is an ontology module for representing knowledge about datatypes OntoDT,
based on the ISO 11404 standard for general purpose datatypes (International Orga-
nization for Standardization, 2007);

• OntoDM-core is an an ontology module for representing knowledge about core data
mining entities for mining structured data, based on a proposal for a general framework
for data mining (Džeroski, 2007); and

• OntoDM-KDD is an ontology module for representing knowledge about data mining
investigations, based on the CRISP-DM methodology (Chapman et al., 1999).

The goals, competencies, scope, implementation and description of the ontology modules
are presented in detail Chapters 5, 6, and 7 respectively.
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4.3 Implementation and maintenance

The OntoDM ontology and its modules OntoDT, OntoDM-core and OntoDM-KDD are
implemented in OWL-DL16 ontology language (see Section 2.4.1), a de-facto standard for
representing ontologies. The ontology has been developed using the Protégé17 ontology
editor (See Section 2.4.2). We reuse the OBI consortium defined meta-data18 to provide
additional semantic annotation of the classes and relations. This includes annotations of
definitions of classes, definitions sources, source ontology identification for the imported
classes, and others.

By following the guidelines from other state-of-the-art ontologies (such as OBI), we
provide the identifier format and deprecation policies for the OntoDM ontology. This is done
in order to provide all new classes a permanent and unique ID. Additionally, we envision
the necessity of keeping the list of deleted classes in the OntoDM class hierarchy under the
obsolete class. The domain terms that have been collected so far but are still not represented
in the ontology are listed under non-curated class in the OntoDM class hierarchy.

For the OntoDM ontology, we use one base namespace to format the URIs for the classes
and relations defined first time in this ontology (http://kt.ijs.si/panovp/OntoDM#). The
IDs of the ontology terms are diferent for each ontology module and include a combination
of an ontology module ID and a five digit code:

• OntoDT_xxxxx for the OntoDT module

• OntoDM_xxxxx for the OntoDM-core module, and

• OntoDM-KDD_xxxxx for the OntoDM-KDD module,

The imported classes and relations in OntoDM keep the URI’s from their source ontologies.
The verification of the class and relation consistency before the release is done using the

Pellet19 reasoner.
For tracking the changes in the ontology we use industry standard Subversion tool. The

ontology and its modules are available online on several sources. First, the ontology can be
obtained from a dedicated web page http://www.ontodm.com. In addition, the ontology
is available from the BioPortal20, where the BioPortal offers the possibility of obtaining
ontology metrics, and additionally provides visualization capabilities.

4.4 Three-level description structure for representing entities
in the data mining domain

In the previous sections, we presented the ontology best practices and general design princi-
ples, the specific design of the OntoDM ontology, and OntoDM implementation and mainte-
nance. In this section, we describe how the introduced structure constrained by the upper-
level ontology, which is used as a template, and the mid-level ontologies is used for repre-
senting entities in the data mining domain.

For the domain of data mining, we propose a three-level (horizontal) description struc-
ture. This description structure is based on the use of the upper-level ontology BFO and the
extensive reuse of classes from the OBI and the IAO as mid-level ontologies. This includes
three horizontal description levels: the specification level, the implementation level, and the
application level. Each description level represents classes with fundamentally different na-
ture explicitly shown with a sub-class relation to an upper-level category, and consequently

16OWL-DL: http://www.w3.org/TR/owl-guide/
17Protege: http://protege.stanford.edu
18OBI meta-data scheme: http://obi-ontology.org/page/OBI_Minimal_metadata
19Pellet: http://clarkparsia.com/pellet/
20BioPortal: http://bioportal.bioontology.org/

http://kt.ijs.si/panovp/OntoDM#
http://www.ontodm.com
http://www.w3.org/TR/owl-guide/
http://protege.stanford.edu
http://obi-ontology.org/page/OBI_Minimal_metadata
http://clarkparsia.com/pellet/
http://bioportal.bioontology.org/
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covers different aspects of the domain of interest. The proposed three-level (horizontal)
description structure is orthogonal to the vertical ontology architecture structure which
composes of an upper-level, a mid-level, and a domain level (see Figure 4.5). This means
that each vertical level contains all three (horizontal) description levels.

Figure 4.5: Horizontal and vertical description levels.

In Figure 4.6(a), we present the general case of our three horizontal description levels.
The first level, named specification level, is aimed to contain and represent generically
dependent continuants (see Section 4.2.1.1), e.g., information content entities (see Section
4.2.2.1). Examples of such entities in the domain of data mining are data mining tasks,
algorithm specifications, dataset descriptions, generalization specifications etc. The second
description level, named implementation level, is aimed to describe specifically dependent
continuants (see Section 4.2.1.1), e.g., realizable entities. Examples of such entities from the
domain of data mining are implementations of algorithms, implementations of components of
algorithms, such as distance functions and generalizations produced by the mining process.
The third level, named application level, aims at representing planned processes. Example
of planned process entities in the domain of data mining are: the execution of a data mining
algorithm and the application of a generalization on new data, among others.

The entities on each level are connected between each other using general relations, that
are level independent, and level specific relations. Examples of general relations are is-a
and part-of: they can only be used to relate entities from the same description level.
For example, an information entity (member of the specification level) can not have as
parts processual entities (members of the application level). Level specific relations can be
used only with entities from a specific level. For example, the relation precedes is only
used to relate two processual entities. The description levels are connected using cross-
level relations. An entity from the specification level is-concretizied-as an entity from
the implementation level. Next, an implementation entity is-realized-by an application
entity. Finally, an application entity e.g., a planned process achieves-planned-objective
an objective specification, which is a specification entity.

In Figure 4.6(b), we present one of the most frequently used modeling schemas in the
OntoDM ontology. A plan specification (see Section 4.2.2.1) is an information entity that
belongs to the specification level. It has as parts action specification and objective speci-
fication. A plan, belonging to the implementation level, is-a-concretization-of a plan
specification. Furthermore, a planned process, belonging to the application level, realizes a
plan. Finally, a planned process achieves-planned-objective an objective specification,
that is a part of a plan specification.



OntoDM: Modular Ontology of Data Mining 49

(a) general case

(b) special case

Figure 4.6: Three-level horizontal description structure: specification, implementation and applica-
tion. The rectangle objects in the figure represent ontology classes. The ontological relations are
represented with directed labeled arrows. The relations that do not have an attached label are is-a
relations.

In a data mining context, a plan specification would be a data mining algorithm, that
has as parts specification of actions it performs and a data mining task as an objective.
A plan would be a data mining algorithm implementation, which is a concretization of a
data mining algorithm. Finally, a planned process would be an execution of a data mining
algorithm implementation which achieves as planned objective a data mining task.

To summarize, it is necessary to have all three aspects represented separately in the
ontology as they have distinctly different nature. This will facilitate different uses of the
ontology. For example, in the data mining context, the specification aspect can be used to
reason about data mining algorithms and its components; the implementation aspect can
be used for search over implementations of data mining algorithms and to compare vari-
ous implementations; and the application aspect can be used for constructing data mining
scenarios and workflows, definition of participants of a workflow and its parts.
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5 OntoDT: Ontology Module for Datatypes

In this chapter, we present the OntoDT ontology module for describing and representing
general-purpose datatypes. First, we present the OntoDT goal, scope and competencies
(Section 5.1). Next, we discuss the implementation of the OntoDT-core ontology module
(Section 5.2). Finally, we describe in more detail the structure of this ontology module
(Section 5.3).

5.1 Goal, scope and competencies

In the context of the development of the ontology of data mining that needs to be general
enough to allow the representation of mining structured data, we developed a separate
ontology module, named OntoDT, for representing the knowledge about datatypes. In
the preliminary OntoDT development phase, the classes used to represent datatypes were
integrated in OntoDM-core (Panov et al., 2010). For generality and reuse purposes, however,
we later exported datatype specific OntoDM classes in a separate ontology module - OntoDT.
This ontology module can now be reused independently by any other ontology that requires
a representation of and reasoning about general purpose datatypes.

The content of the OntoDT ontology module is based on an ISO standard for the repre-
sentation of datatypes in computer systems and programming languages. The first edition
of the standard, named ‘Language independent datatypes’, was published in 1996 (Inter-
national Organization for Standardization, 1996). The revised version, named ‘General-
Purpose Datatypes’, was published in 2007 (International Organization for Standardiza-
tion, 2007). The standard specifies both primitive datatypes, defined without a reference
to other datatypes, and non-primitive datatypes, defined in terms of other datatypes, that
occur commonly in programming languages. The definitions of datatypes are independent
of any particular programming language or implementation. Furthermore, Meek (1994)
discusses a proposal for a taxonomy of datatypes using as a base the first version of the
ISO standard (International Organization for Standardization, 1996). His taxonomy follows
the practice of starting with a number of primitive datatypes and using these to construct
others. The proposed taxonomy is given only in the form of an overview and a discussion of
how things are done, without any formal representation (in a machine processable language)
that can be reused further.

Based on the main aim of OntoDT and the OntoDM ontology desiderata, we established a
list of competency questions our ontology module is designed to answer. The most important
competency questions are listed in Table 5.1. Judging from the list of questions, the ontology
will include information on datatypes, datatype properties, characterizing operations on
datatypes, and different types of datatypes, such as primitive datatypes and generated
datatypes.



52

Table 5.1: OntoDT competency questions.

Qn Query

1
What is the set of characterizing operations
for a datatype X?

2
What is the set of datatype qualities for a
datatype X?

3 What is the value space for a datatype X?

4
What is the set of datatypes that have a
datatype quality X?

5
What is the set of datatypes that have a char-
acterizing operation X?

6
What is the set of datatypes that have a
datatype quality X and characterizing oper-
ation Y?

7
What are the aggregated datatypes that have
an aggregate generator property X?

8
What is the set of aggregate properties for an
aggregate datatype X?

9
What are the field components for a tuple
datatype X?

10
What is the base datatype for a
set/bag/sequence datatype X?

11 What is the base datatype for a subtype X?

12
What is the subtype generator for a subtype
X?

13
What is the set of subtypes that have datatype
X as their base datatype?

14
What is the set of subtypes that are generated
by a subtype generator X?

5.2 Implementation

In order to represent datatypes, we model the ISO standard (International Organization
for Standardization, 2007) within the OntoDT ontology module by reusing and extending
upper level classes from the IAO ontology. This is compliant with the design principles dis-
cussed in Chapter 4. The OntoDT ontology module contains entities from the specification
and implementation description level. At this phase of development, the ontology module
does not contain entities from the application level. The specification level (see Section
5.2.1) contains information entities needed to describe and represent the datatypes. The
implementation level (see Section 5.2.2) contains quality entities needed to characterize the
datatypes.

5.2.1 Specification level

The specification level of OntoDT (see Figure 5.1) consists of classes that are extensions of
the IAO class information content entity . At the top level, the specification level includes
classes for representing data such as specification entity and directive information entity .
These top level classes are further sub-classed in order to provide representational mechanism
to support a representation of mining structured data.

For example, in OntoDT we extend the IAO directive information entity class with data
representational model from the OBI ontology in order to provide a mechanism for repre-
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Figure 5.1: Part of the class taxonomy of the OntoDT specification level.

senting datatypes. Furthermore, we introduce a specification entity class as an information
entity that represents an explicit description of requirements to be satisfied by a material,
product, or service. In the context of datatypes, we further define sub-classes of specifi-
cation entities that are used to characterise the general intrinsic properties of datatypes,
such as value space specification, characterizing operation specification. In addition, repre-
sent supporting entities for describing specific types of datatypes, such as field component
specification and field-list specification, used for describing a tuple datatype.

5.2.2 Implementation level

The implementation level of OntoDT (see Figure 5.2) consists of classes that are extensions
of the BFO class quality . We extend the quality class with information content quality , as a
specific class that covers qualities of information entities. In the context of datatypes, this
class is further extended with qualities of datatypes (datatype quality class) and qualities of
aggregate generators (aggregate generator quality class).
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Figure 5.2: Part of the class taxonomy of the OntoDT implementation level.

5.3 Ontology module description

In this section, we present an overview of the key classes for representing knowledge about
datatypes, having in mind the two different description levels and the competency ques-
tions the ontology module is designed to answer (see Table 5.1). First, we present the
datatype class, and classes for characterizing datatypes such as value space, datatype quali-
ties, and characterizing operations (Section 5.3.1). Next, we present the OntoDT taxonomy
of datatypes, which includes primitive datatypes (Section 5.3.2), generated datatypes (Sec-
tion 5.3.3), subtypes (Section 5.3.4), and defined datatypes (Section 5.3.5).

5.3.1 Datatype

A datatype is-a data representational model that denotes a type of data, with the set of
distinct values that it can take, the properties of those values, and the operations on those
values. The datatype class (see Figure 5.3) has as parts a value space specification and a
set of characterizing operations specifications . Finally, a datatype has as qualities datatype
qualities.

Value space specification. A value space specification is-a specification entity that spec-
ifies the collection of values for a given datatype. The value space of a given datatype can
be defined in several different ways: by enumerating the values; with axioms using a set of
fundamental notions; as a subset of values defined in another value space with a given set
of properties; or as a combination of arbitrary values from some other defined value space
by specifying the construction procedure.

A value space of a datatype can contain regular or sentinel values. Regular values
are consistent with the datatype properties and characterizing operations, while sentinel
values are elements that belong to the datatype, but are not completely consistent with
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Figure 5.3: The datatype class in OntoDT.

the datatype properties and characterizing operations. Examples of sentinel values include:
not-a-number, not-applicable, infinity, etc.

Characterizing operations. A characterizing operation specification is-a specification
entity that specifies the operations on the datatype which distinguish a datatype from other
datatypes with identical value spaces. The OntoDT ontology module contains operation
specification instances for all defined primitive and generated datatypes. The characterizing
operation specification on a datatype can be: niliadic, monadic, dyadic and n-adic (see
Figure 5.4), depending on the number of input arguments for the operations.

A niliadic operation specifies an operation that yields values of a given datatype. Ex-
amples of niliadic operations instances include operations for testing if a datatype contains
any members, such as Empty:bag, Empty:set, and Empty:sequence. A monadic operation
specifies an operation that maps a value of a given datatype into another value of the given
datatype, or into a value of the boolean datatype. Examples of monadic operations include
Not:boolean, Select:set, Successor:enumerated, FieldSelect:tuple, and others. A
dyadic operation specifies an operation that maps a pair of values of a given datatype into
another value of the given datatype or into a value of the boolean datatype. Examples
of dyadic operations include Equal:tuple, Add:real, InOrder:enumerated, And:boolean,
and others. A n-adic operation specifies an operation that maps an ordered n-tuple of val-
ues, each of which is of a specific datatype, into values of another given datatype. Examples
of n-adic operations include the Replace:array operation.

Figure 5.4: Characterizing operations in OntoDT.

Datatype qualities A datatype quality is-a information content quality that specifies the
intrinsic properties of the data units represented by the datatype, regardless of the properties
of their representations in computer systems. Each datatype has as part a set of datatype
qualities. These include qualities such as: equality , order , bound , cardinality , exactness,
and numeric property (See Figure 5.5). All classes have defined instances. For example, the
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Table 5.2: List of datatype qualities.

Quality Description
equality The notion of equality is valid for every value space, by fulfilling a set of prede-

fined criteria.
ordering A datatype is ordered, if there exists an order relation defined on its value space.
boundary A datatype is bounded above, if it is ordered and there is an upper bound value

U , such that all values s in the value space s≤U . A datatype is bounded below,
if it is ordered and there is a lower bound value L, such that all values s in the
value space L≤ s. A datatype is bounded, if the value space has both an upper
and lower bound.

cardinality A value space has the notion of cardinality. The cardinality can be: finite,
countable and uncountable. A datatype has the cardinality of its value space.

exactness A datatype is exact, if every value in the value space is distinguishable from
every other value in the value space, then the datatype is exact. If the datatype
is not exact, then it is approximate.

numeric
quality

A datatype is numeric if its values are quantities expressed in some mathematical
number system.

boundary quality class has the following instances: bounded, unbounded, bounded below,
bounded above, unbounded below, and unbounded above. The list of datatype qualities
with a short description is presented in Table 5.2.

Figure 5.5: Datatype quality classes and instances in OntoDT. The black arrows denote is-a relations,
while the blue arrows denote is-instance-of relation.

5.3.1.1 The OntoDT datatype taxonomy

In the OntoDT ontology, in line with the ISO/IEC 11404 standard for datatypes, we de-
fine the major classes of datatypes using four different formal methods (See Figure 5.6).
First, we define the primitive datatypes by explicit specification. The primitive datatypes
have well defined abstract notions and are independent of other datatypes. Next, we define
the generated datatypes by implicit specification. The generated datatypes are syntactically
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Figure 5.6: The OntoDT datatype taxonomy.

and semantically dependent on other datatypes, and are specified implicitly with datatype
generators, which embody independent abstract notions. Furthermore, we define the de-
fined datatypes by a specification with a datatype declaration. The defined datatypes allow
defining additional identifiers and refinements to both primitive and generated datatypes.
Finally, for all datatypes defined by any of the foregoing ways, we can define a subtype by
providing an explicit subtype specification.

5.3.2 Primitive datatype

A primitive datatype is-a datatype whose value space is defined either axiomatically or by
enumeration. All primitive datatypes are conceptually atomic and therefore are defined in
terms of well defined abstract notions. The OntoDT ontology defines both instances and
classes of primitive datatypes.

Figure 5.7: Instances and subclasses of primitive datatypes.

Instances of primitive datatypes. Instances of primitive datatypes in OntoDT include:
boolean, integer, ordinal, rational and void (See Figure 5.7a). These are defined as
follows:

• Boolean is the mathematical datatype associated with two-valued logic;
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• Integer is the mathematical datatype composed of the exact integer values;

• Ordinal is the datatype of the ordinal numbers, as distinct from integer, it is the
infinite enumerated datatype;

• Rational is the mathematical datatype comprising the rational numbers; and

• Void is the datatype specifying an object whose presence is required, but carries no
information.

Table 5.3: Operations for predefined instances of primitive datatypes.

boolean ordinal integer rational void

Equal Equal Equal Equal Equal
Not InOrder InOrder NonNegative
And Successor NonNegative InOrder
Or Negate Promote

Add Add
Multiply Negate

Multiply
Reciprocal

According to the definition of a datatype from Section 5.3.1, each instance of a primitive
datatype has a set of datatype properties and a set of characterizing operations. The set of
characterizing operations for the instances is presented in Table 5.3 and the set of datatype
properties in Table 5.4.

Table 5.4: Properties of primitive datatype instances.

Property Boolean. Ordinal Integer Rational Void

equality X X X X X

order
ordered X X X
unordered X

bound

b. above
b.below X
bounded
u. below
u. above X
unbounded X X

exactness
exact X X X X
approximate

numeric
numeric X X
non-numeric X X

For example, the ordinal datatype (See Figure 5.8) has the equality property; it is bounded
below and unbounded above; it is exact ; and it is non-numeric. Furthermore, the ordinal
datatype has the following set of characterizing operations: Equal , InOrder and Successor .

Classes of primitive datatypes. The sub-classes of the primitive datatypes include:
discrete, enumerated , character , date-and-time, scaled , real , and complex . These are defined
as follows:

• Discrete (or State as defined in the ISO standard) defines a class of datatypes, whose
instances comprise a finite number of distinguished but unordered values;

• Enumerated defines a class of datatypes, whose instances comprise a finite number of
distinguished values having an intrinsic order;
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Figure 5.8: The ordinal datatype class in OntoDT.

• Character defines a class of datatypes, whose value spaces are character sets;

• Date-and-time defines a class of datatypes, whose values are points in time to various
common resolutions;

• Scaled defines a class of datatypes, whose value spaces are subsets of the rational value
space, each individual instance having a fixed denominator: Datatypes from this class
posses the concept of approximate value;

• Real defines a class of datatypes, whose instances are computational approximations
of the mathematical datatype comprising the real numbers; and

• Complex defines a class of datatypes, whose instances are computational approxima-
tions to the mathematical datatype comprising the complex numbers.

The classes of primitive datatypes can be further instantiated by specifying additional pa-
rameters that are different for each class of primitive datatypes.

Table 5.5: Operations for sub-classes of primitive datatype.

state enumerated character date&time scaled real complex

Equal Equal Equal Equal Equal Equal Equal
InOrder InOrder InOrder InOrder Promote
Successor Difference Negate Promote Negate

Round Add Negate Add
Extend Round Add Multiply

Multiply Multiply Reciprocal
Divide Reciprocal SquareRoot

According to the definition of a datatype from Section 5.3.1, each primitive datatype
class has a set of datatype properties and a set of characterizing operations. The set of
characterizing operations for the subclasses of primitive datatypes is presented in Table 5.5
and the set of datatype properties in Table 5.6.

In Figure 5.9(a), we present an example representation of a discrete datatype. The
datatype instances of the class discrete have the following datatype properties: unordered,
non-numeric and exact. All instances of a discrete datatype have Equal as a characterizing
operation. They differ in the discrete-value-list specification. The discrete-value-list specifi-
cation is-a specification entity that specifies the discrete-value identifiers for the datatype.
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Table 5.6: Properties of classes of primitive datatypes.

Property State Enum. Char. Date. Scaled Real Compl.
equality X X X X X X X

order
ordered X X X X
unordered X X

bound

b. above
b.below
bounded X X
u. below
u. above
unbounded X X X

exactness
exact X X X X X
approximate X X

numeric
numeric X X X
non-numeric X X X X

For example, in Figure 5.9(b), we present the representation of the Iris datatype instance.
The Iris datatype has a discrete-value-list specification that includes three state identi-
fiers: ‘Iris Setosa’, ‘Iris Versicolor’, and ‘Iris Virginica’.

(a) class view (b) instance view

Figure 5.9: Example representation of a discrete datatype in OntoDT.

5.3.3 Generated datatype

A generated datatype is-a datatype that is defined with a datatype generator specification.
A datatype generator specification is-a specification entity that specifies the conceptual
operation on one or more datatypes which yields a datatype. This entity specifies the
criteria for the number and properties of datatypes to be operated upon. Next, it defines a
construction procedure which creates a new value space from the value space of the element
datatypes. Furthermore, it specifies the set of characterizing operations for the resulting
datatype. Finally, the collection of datatypes to which the datatype generator was applied
to are called its parametric datatypes: A datatype generator can be applied to many different
parametric datatypes.

In general, we distinguish two classes of generators: non-aggregate generators and ag-
gregate generators (see Figure 5.10). Non-aggregate generators generate datatypes whose
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Figure 5.10: The class generator specification in OntoDT.

values are atomic. Examples of non-aggregate generator instances include: choice gen-

erator, pointer generator, and procedure generator. Aggregate generators generate
datatypes whose values can be decomposed. Examples of aggregate generator instances
include: tuple generator, bag generator, set generator, sequence generator, array
generator, and table generator. Finally, having two classes of generators leads to a sim-
ilar classification of generated datatypes (See Figure 5.11): non-aggregate datatypes and
aggregate datatypes.

Figure 5.11: The taxonomy of generated datatypes in OntoDT.

Non-aggregate datatype. A non-aggregate datatype is-a generated datatype that is
specified by a non-aggregate generator . Each generator specifies the procedure of gener-
ating a class of datatypes (see Fig. 5.11). For example:

• A choice generator specifies the procedure for generating the choice datatype, each of
whose values is a single value from any of a set of alternative datatypes;

• A pointer generator specifies the procedure for generating the pointer datatype, each
of whose values constitutes a means of reference to values of another datatype and are
atomic; and

• A procedure generator specifies the procedure for generating the procedure datatype,
each of whose values is an operation on values of other datatypes and it is atomic.

Aggregate datatype. An aggregate datatype (or a structured datatype) is-a generated
datatype, each of whose values is made up of values of other datatypes, called parametric
or component datatypes, joined together by an aggregate generator (See Figure 5.12). An
aggregate generator is-a datatype generator specification that specifies the algorithmic pro-
cedure applied to the value spaces of the component datatypes to yield the value space of
the aggregate datatype, as well as a set of characterizing operations specific to the genera-
tor. Each aggregate generator instance defines a separate class of aggregate datatype (see
Figure 5.11), such as: tuple datatype, class datatype, bag datatype, set datatype, sequence
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datatype, array datatype, and table datatype. The component values of an aggregate value
are accessible through characterizing operations. The sets of characterizing operations for
aggregate datatypes are given in Table 5.7.

Figure 5.12: The aggregated datatype class in OntoDT.

Table 5.7: Characterizing operation instances for the aggregate datatypes.

tuple class set bag sequence array table
Equal Equal IsIn IsEmpty isEmpty Select MapToBag
FieldSel. AttributeSel. Subset Equal Head Equal MaptoTable
FieldRepl. AttributeRepl. Equal Empty Tail Replace Serialize

Difference Serialize Equal IsEmpty
Union Select Empty Equal
Intersection Delete Append Empty
Empty Insert Delete
SetOf Insert
Select Select

Fetch

Aggregate datatypes are distinguished from one another by qualities that describe: the
relationships among the component datatypes; the relation between each component and the
aggregate; and the sets of characterizing operations. The qualities specific to an aggregate
are independent of the qualities of the component datatypes. These include qualities such as:
homogeneity , size, uniqueness, aggregate-imposed identifier uniqueness, aggregate-imposed
ordering , access method , recursiveness, structured property , and mandatory component prop-
erty (See Figure 5.12). The quality of aggregate generators for each generator instance is
given in Table 5.8. In the remainder of this section, we give a brief overview of the major
aggregate datatype classes.

Tuple datatype. The tuple generator (also named record generator in the ISO standard)
specifies the procedure for generating a tuple datatype. The values of the tuple datatype are
heterogeneous aggregations of values of component datatypes. Each aggregation has one
value for each component datatype. The component datatypes are keyed by an identifier.

Figure 5.13 gives the representation of the tuple datatype in OntoDT. A tuple datatype
(see Figure 5.13(a)) is an aggregate datatype that has as parts a tuple generator, a field-list
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Table 5.8: Aggregate generator qualities.

Property Tuple Class Set Bag Sequence Array Table

homogeneity
homogeneous X X X X
heterogeneous X X X

size
fixed X X X
variable X X X X

uniqueness X

size
fixed X X X
variable X X X X

aggregate-imposed iden-
tifier uniqueness

X

aggregate-imposed or-
dering

X

access
method

direct key key index key
indirect value X position

specification and a set of characterizing operations (e.g., Equal, FieldSelect and Field

Replace). In addition, it has as qualities a set of datatype qualities (e.g., non-numeric,
unordered). The tuple generator has a set of aggregate generator properties. These include
instances such as: fixed size, key access, non-unique values, unordered aggregate,
and heterogeneous. The field-list specification is a specification entity that specifies the
list of field components. Each field component specification contains a unique identifier of
the component, and its datatype.

In Figure 5.13(b), we present an instance of the tuple datatype. Iris-tuple is an
instance of the tuple datatype. The Iris-tuple instance inherits all the characterizing op-
erations, the datatype properties and the record generator from the parent class. In addition,
the Iris-tuple datatype has a specification of the component datatypes. For example, the
Iris field-list specification has as parts Iris field-list component instances for
each component datatype. Each component specification includes an identifier (e.g., ‘sepal
length’) and denotes the datatype of the component (e.g., real(f:def,r:def)).

Class datatype. In OntoDT, the class generator specifies the procedure for generating a
class datatype. The values of the class datatype are heterogeneous aggregations of values of
the component datatypes. Unlike the tuple datatype, the components of a class datatype
may include procedure datatypes. Each aggregation has one value for each component
datatype. The component datatypes are keyed by an identifier.

Set datatype. In OntoDT, the set generator specifies the procedure for generating a set
datatype. The set datatype is defined with a base specification, that specifies the component
datatype (in this case named element datatype). The value-space of the set datatype is the
set of all subsets of the value-space of the element datatype. The operations defined on the
set datatype are equal to the operations appropriate to the definition of a mathematical set.

In Figure 5.14, we present the representation of the set datatype in OntoDT. A set
datatype (see Figure 5.14(a)) is an aggregate datatype that has as parts a set generator, a
base specification and a set of characterizing operations (e.g., Difference, Empty, Equal,
Intersection, IsIn, Select, SetOf, Subsect, and Union). Additionally, it has as qualities
a set of datatype qualities (e.g., exact, non-numeric, unordered).
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(a) class view

(b) instance view

Figure 5.13: The tuple datatype class in OntoDT.
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(a) class view

(b) instance view

Figure 5.14: The set datatype and an example instance thereof in OntoDT.

In Figure 5.14(b), we present an instance of the set datatype. Market-basket datatype

is an instance of the set datatype. The market-basket datatype instance inherits all the char-
acterizing operations, the datatype properties and the set generator from the parent class.
In addition, the market-basket datatype has as market-basket base specification.
It denotes the datatype of the components of the set. In this case, it denotes the products

datatype. It is an instance of the discrete datatype and has a value list containing the
values ‘bread’, ‘butter’, and ‘milk’.

Bag datatype. In OntoDT, the bag generator specifies the procedure for generating a bag
datatype. The bag datatype is defined with a base specification that specifies the element
datatype, the same as in the set datatype. The values of the bag datatype are collections
of instances of values from the element datatype. Unlike in the set datatype, where a value
can appear only once, multiple instances of the same value may occur in a given bag.

Sequence datatype. In OntoDT, the sequence generator specifies the procedure for gen-
erating a sequence datatype. The sequence datatype is defined with a base specification, that
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specifies the element datatype. The values of the sequence datatype are ordered sequences of
values from the element datatype. The ordering is imposed on the values, and not intrinsic
in the underlying datatype. In a sequence, the same value may occur more than once.

Array datatype. In OntoDT, the array generator specifies the procedure for generating
an array datatype. The values of the array datatype are associations between the product
space of one or more finite datatypes, designated the index datatypes (specified by the
index-type list specification), and the value space of the element datatype (specified by the
base specification). Every value in the product space of the index datatypes associates to
exactly one value of the element datatype.

Figure 5.15, gives the representation of the array datatype in OntoDT. An array datatype
(see Figure 5.15(a)) is an aggregate datatype that has as parts an array generator , an index-
type list specification, a base specification, and a set of characterizing operations (e.g., Equal,
Select, Replace). In addition, it has as qualities a set of datatype properties (e.g., exact,
non-numeric, unordered). The index-type list specification is used to specify the index
datatype, and the upper/lower bounds of the index.

(a) class view

(b) instance view

Figure 5.15: The representation of the array datatype class and an instance thereof in OntoDT.
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In Figure 5.15(b), we show the representation of an instance of the array datatype. 2-

dim array of boolean is an instance of the array datatype. The 2-dim array of boolean
datatype instance inherits all the characterizing operations, the datatype properties and
the array generator from the parent class. In addition, the 2-dim array of bolean

datatype has as 2-dim array of boolean index-list specification. It denotes the
index datatypes. For example, the index-type specification 1 denotes integer as an
index datatype with 1 as a lower and 255 as an upper index bound. The boolean base
specification denotes boolean as the base datatype.

Table datatype. In OntoDT, the table generator specifies the procedure for generating
a table datatype. The values of the table datatype are collections of values in the product
space of one or more field datatypes, such that each value in the product space represents
an association among the values of its fields.

5.3.4 Subtype

A subtype is-a datatype that is derived from an existing datatype by restricting the value
space to a subset of the base datatype, while maintaining all operations. A subtype is
defined by specifying a subtype generator , a base datatype specification and value expressions
(See Figure 5.16(a)). The subtype generator specification specifies the relationship between
the value spaces of the base type and the subtype. In OntoDT, we define the following
instances of subtype generator: selection generator, exclusion generator, extension
generator, explicit subtype generator, size generator, and range generator (see
Figure 5.16(a)). The base type specification denotes the base datatype which is subtyped.
The value expressions are data items that specify additional parameters for the subtype
specification. Examples of value specifications include: range specification, upper bound
specification, lower bound specification and others.

Each instance of the class subtype generator belongs to a separate class of datatype
subtype from the following list:

• the range subtype is defined in OntoDT as a subtype of any ordered dataype; it is
constructed by placing a new upper and/or lower bounds on the value space;

• the selection subtype is defined in OntoDT as a subtype of any exact datatype; it is
specified by enumerating the values of the new value space;

• the exclusion subtype is defined in OntoDT as a subtype of any exact datatype, by
enumerating the values which are being excluded from the new value space;

• the size subtype is defined in OntoDT as a subtype of any bag , set , sequence, or table
datatype by specifying bounds on the number of elements of the base datatype;

• the extension subtype is defined in OntoDT as a subtype of any datatype, where the
value space of the extended datatype contains the value space of the base datatype as
a proper set; and

• the explicit subtype is defined in OntoDT as a subtype of a base datatype that includes
a definition of a construction procedure for obtaining the subset value space of the new
subtype.

In Figure 5.16(b), we present an example of a range subtype. A range subtype places a
new upper and/or lower bound on the value space of an ordered base datatype. An octet
is an instance of range subtype. It has as parts a range subtype generator , an integer base
datatype specification denoting the base type integer, and range specification, specifying the
range with the upper bound specification and the lower bound specification.



68

(a) class view

(b) instance view

Figure 5.16: The class subtype in OntoDT and example of an instance.
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5.3.5 Defined datatype

A defined datatype is a datatype defined by a type specification. A type specification defines
a new datatype that refers to a datatype or a datatype generator. This specification is used
to rename an existing datatype, to define the syntax of a new datatype and to define the
syntax of a new datatype generator. It includes a type identifier , a type-parameter list and
a type definition. Examples of defined datatypes in OntoDT include the labeled graph class
and its two subclasses tree datatype and DAG datatype1.

1DAG=Directed Acyclic Graph
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6 OntoDM-core: Ontology Module for Core Data

Mining Entities

In this chapter, we present the OntoDM-core ontology module. First, we present the
OntoDM-core goal, scope and competencies (Section 6.1). Next, we discuss the implemen-
tation the OntoDM-core ontology module (Section 6.2). Finally, we describe in more detail
the structure of the ontology module (Section 6.3).

6.1 Goal, scope and competencies

In data mining, the data used for analysis are organized in the form of a dataset. Every
dataset consists of data examples. The task of data mining is to produce some type of a
generalization from a given dataset. Generalization is a broad term that denotes the output
of a data mining algorithm. A data mining algorithm is an algorithm, that is implemented
as computer program and is designed to solve a data mining task. Data mining algorithms
are computer programs and when executed they take as input a dataset and give as output
a generalization.

In this context, we introduce OntoDM-core as an ontology module for representing core
data mining entities. The goal of this ontology module is to represent the core data mining
entities, and be general enough to represent the mining of structured data. Based on the
main aim of OntoDM-core and the ontology desiderata, we established a list of competency
questions our ontology module is designed to answer. The most important competency
questions are listed in Table 6.1. Judging from the list of questions, the ontology module
will include information on datasets, types of datasets, data mining tasks, generalizations,
parameter settings, data mining algorithms, implementation of algorithms, data mining
software, and the processes of execution of algorithms and execution of generalization.

6.2 Implementation

In order to represent core data mining entities for structured data, we model the data
mining process in the OntoDM-core ontology module by reusing and extending upper level
classes from the OBI ontology, IAO ontology, the SWO ontology, and consequently the BFO
ontology. In addition, the OntoDM-core module directly imports the OntoDT module, in
order to allow the representation of datatypes for the purpose of describing the entities for
mining structured data. Finally, the implementation of OntoDM-core is compliant with the
design principles discussed in Chapter 4.

In the OntoDM-core ontology module, we distinguish three levels of description (see
Section 4.4). In the remainder of this section, we present all three levels of description
in context of OntoDM-core. The first level is the specification level (Section 6.2.1) and
contains the information entities needed to describe and specify the entities participating in
the data mining process. The second level is the implementation level (Section 6.2.2) and
contains entities that are concretizations of the specification entities, and are realized in the
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Table 6.1: OntoDM general competency questions.

Qn Query

1 Which datasets have data belonging to a datatype X?

2 Which data mining tasks can be formulated on data of datatype X?

3 Which data mining tasks can be formulated on a dataset X?

4 Which data mining algorithms solve a data mining task X?

5 Which data mining algorithms are applicable to data of datatype X?

6 What is the set of the possible generalization types that are given as
output by solving a data mining task X on data of type Y?

7 What is the set of implementations for a DM algorithm X that have
a parameter Y?

8 What is the set of all generated generalizations on a dataset X?

9 Which DM software toolkit contains an implementation of a DM
algorithm X?

10 On which computer a specific data mining algorithm X has been
executed?

11 What is the parameter setting of a given execution of a data mining
algorithm X on a computer Y, having as input a dataset Z?

12 What is the set of datasets on which a given generalization X has
been executed?

data mining process. The third level is the application level (Section 6.2.3) and contains
processual entities in order to represent processes that occur in a data mining.

6.2.1 Specification level

The specification level of OntoDM-core (see Figure 6.1) consists of classes that are extension
of IAO class information content entity . By importing the OntoDT module, the specification
level of OntoDM-core also contains classes for characterizing datatypes, such as datatype,
datatype generator, and others (see Section 5). At the top level, the specification level
includes classes for representing data such as data item, specification entitiy , representation,
and directive information entity . These top level classes are further sub-classed in order to
provide representational mechanism to support the representation of mining structured data.

For example, in OntoDM-core we define a specification entity as an information entity
that represents an explicit description of requirements to be satisfied by a material, product,
or service. In a data mining context, we further define subclasses of specification entities
such as dataset specification, mapping specification, parameter specification, data specifi-
cation, feature specification, feature set specification, generalization language specification,
and others. Another very important top level class is the directive information entity that
represents specifications of a processes that can be concretized and realized. It includes
subclasses for representing data mining tasks (subclass of information processing objective),
algorithms, software, scenarios (subclass of protocol), and others.
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Figure 6.1: OntoDM-core specification level.
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6.2.2 Implementation level

The implementation level of OntoDM-core (see Figure 6.2) consists of classes that are exten-
sion of the BFO class specifically dependent continuant . By importing the OntoDT module,
the specification level of OntoDM-core also contains classes for characterizing qualities of
datatypes, such as datatype quality, datatype generator quality, and others (see Chapter 5).
At the top level, the implementation level includes classes for representing realizable entities,
such as roles, plans and generalizations, and qualities.

Both top level classes are further sub-classed in order to provide a representational
mechanism to support the representation of mining structured data. For example, we define
parameter and generalization quality as subclasses of quality . Furthermore, we define train
set and test set as dataset roles, being the subclasses of role. Finally, we define an algorithm
implementation as a subclass of plan.

Figure 6.2: OntoDM-core implementation level.

6.2.3 Application level

The application level of OntoDM-core (see Figure 6.3) consists of classes that are extensions
of OBI class planned process. At the top level it includes classes for representing protocol
execution, information processing , and validation. The top level classes are further sub-
classed in order to provide a representational mechanism to support the representation of
processes for mining structured data. For example, we define both algorithm execution and
generalization execution processes as subclasses of the information processing class.

Figure 6.3: OntoDM-core application level.
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6.3 Ontology module description

In this section, we present the representation of each of the core data mining entities for
structured data and discuss the most important representational issues that came up in the
process of modeling in the OntoDM-core ontology module. In Figure 6.4, we present the
structure of the key OntoDM classes with the most important relations.

The entities are grouped into clusters depending on the major entity that they represent.
First, we a have cluster of entities for representing datatypes (see Figure 6.4a), that is directly
imported from the OntoDT module. Next, we have a cluster for representing dataset (see
Figure 6.4b) and dataset specification (see Figure 6.4c). Furthermore, we have the data
mining task and a cluster for representing knowledge about generalizations (see Figure
6.4d). Finally, we have a cluster for representing knowledge about data mining algorithms
(see Figure 6.4e).

In the remainder of this section, we will survey the key classes having in mind the different
description levels and the competency questions designed to answer (see Table 6.1). First,
we present the dataset entity, including dataset specification, and introduce a taxonomy
of datatypes (Section 6.3.1). Next, we focus on the data mining task entity and discuss
the fundamental data mining tasks, and introducing a taxonomy of predictive modeling
tasks (Section 6.3.2). In line with the tasks, we present the generalization entity, and
we introduce a taxonomy of generalizations: More specifically we introduced a taxonomy
of predictive models (Section 6.3.3). Furthermore, we discuss the representation of data
mining algorithms in OntoDM-core, by introducing a three-level view on algorithms and a
taxonomy of data mining algorithms (Section 6.3.4). Finally, we conclude this section by
discussion how we represent constraints, constraint-based data mining tasks (Section 6.3.5),
and data mining scenarios (Section 6.3.6).

6.3.1 Dataset

The main ingredient in the process of data mining is the dataset. In the IAO ontology, a
dataset is defined as ‘a data item that is an aggregate of other data items of the same type
that have something in common’. We extend the IAO dataset class, by further specifying
that a DM dataset has-part data examples (See Figure 6.5). In addition, for the purpose of
characterizing the data in the dataset, we define a dataset specification class that represents
a specification entity that is-about a dataset . In other words, the dataset specification is
used to describe what is inside the dataset, for the purpose of automatic reasoning about
datasets. For example, to characterize the type of data present in the dataset and its
position, the dataset specification includes a data specification, which is an entity that is-
about a datatype.

Figure 6.5: Representation of a dataset in OntoDM.
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In the remainder of this section, we first discuss the data specification and focus on the
datatypes that occur in the domain of data mining and discuss how we represent them using
the language of OntoDT (Section 6.3.1.1). Next, we present the dataset specification and
we propose a taxonomy of datasets based on data specifications (Section 6.3.1.2). Finally,
we present an example of a dataset instance (Section 6.3.1.3).

6.3.1.1 Data specification and datatypes in data mining

As we mentioned, a data specification is-a specification entity that is-about a datatype.
In addition, it specifies on which part of the data example the datatype applies to, by
including the mapping specification entity as its part (see Figure 6.5). For example, we
distinguish between parts of data examples used just for descriptive purposes (e.g., in the
case of clustering) named descriptive part, and output parts used for predictive purposes
(e.g., in the case of predictive modeling) named output part. In this setting, we differentiate
between two data specifications: descriptive data specification and output data specification.
A descriptive data specification specifies the data used for descriptive purposes. Output data
specification, on the other hand, specifies the data used for output purposes.

Since data specifications specify the datatype of the data by including the information
about the datatype, in the OntoDM-core module we import the mechanism for representing
arbitrary complex datatype from OntoDT module (see Chapter 5). This is necessary in oder
to represent data mining specific datatypes, and to allow the characterization the data min-
ing datasets for the purpose of automatic reasoning about datasets and their classification
into a taxonomy of datasets. Examples of datatypes frequently used in data mining include
tuple of primitive datatypes, set of discrete, sequence of reals, sequence of characters, bag
of words, and others. Finally, in the context of mining structured data, the data used for
data mining can have arbitrarily complex structure, and OntoDM ontology is the only one
that can successfully support characterization of data for describing the process of mining
structured data.

In Figure 6.6, we present examples of data specifications and datatypes in data min-
ing. First, in Figure 6.6(a), we present characterization of data examples that have only
descriptive data specification. These include the feature-based data examples, that are char-
acterized by having tuple of primitives as their datatype, and transactional data examples,
that have a set of discrete as the underlying datatype. Next, in Figure 6.6(b), we have
data examples most often used in traditional predictive data mining. These include data
examples that have a tuple of primitives as a descriptive data specification and a primitive
datatype (e.g., boolean, real, discrete) as an output data specification. Furthermore, in
Figure 6.6(c) we present examples of feature-based data examples that have tuple of prim-
itives at the output. Finally, in Figure 6.6(d), we present examples of feature-based data
examples that have structured output. These data examples have structured datatypes as
their output data specification (e.g., set of discrete, sequence of real, tree/DAG with boolean
edges and discrete nodes). All these types of data examples are used in real life data mining
applications and will be elaborated in more details in the remaining of this Chapter.

6.3.1.2 Dataset specification and taxonomy of datasets

Unlike the data specification, that represents an entity for characterizing the datatype in
the data examples, dataset specification specifies the type of the dataset based on the type
of data it contains. It includes data specifications as its part. In addition, depending on
the type of dataset, a dataset specification can include as parts a number of other entities.
For example, the data specification for feature-based labeled dataset contains the feature
specifications (such as name, ID, etc) of the features (attributes) included in the tuple.
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(a) feature-based data
example and transac-
tional data example

(b) feature-based data examples with primi-
tive output

(c) feature-based data examples with tuple of
primitives as output

(d) feature-based data example with struc-
tured output

Figure 6.6: Data specifications and datatypes in data mining.
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For example, in Figure 6.7 we present two different datasets and their dataset specifi-
cations. The dataset in Figure 6.7(a), represents a featured-based labeled dataset that is
characterized by descriptive data specification that specifies that the descriptive part is tuple
of reals, and output data specification that specifies that the output part is real datatype.
The dataset in Figure 6.7(b), represents a molecular dataset that is characterized by descrip-
tive data specification that specifies that the descriptive part is molecular datatype (defined
as an extension of defined datatype class), and output data specification that specifies that
the output part is real datatype (such as the one presented in Figure 6.7(a)).

f5 f4 f6 f3 f2 Activity 

descriptive 
data specification 

output 
data specification 

tuple of reals  
datatype 

real 
datatype 

data example 

f1 
feature 

specification 

0.54 0.43 0.2 0 0.23 0.35 0.43 

is-about is-about 

(a) feature-based labeled dataset

compound activity 

molecule datatype real datatype 

data example 
0.25 

0.28 

0.37 

descriptive  data  
specification 

output data  
specification 

is-about is-about 

(b) structured-based labeled dataset

Figure 6.7: Examples of dataset specifications.
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Using data specifications, and indirectly the taxonomy of datatypes from the OntoDT
module, we propose a taxonomy of datasets (see Figure 6.8). At the first level of the
taxonomy of datasets, we have unlabeled dataset and labeled dataset . An unlabeled dataset
is-a dataset specification for datasets that have only a descriptive data specification. These
datasets are most often used for the task of clustering. A labeled dataset is-a dataset
specification that also has an output data specification. They are usually used for predictive
modeling.

Unlabeled dataset. For the unlabeled dataset, at the second level (see Figure 6.8),
we distinguish between feature-based labeled dataset and structure-based unlabeled datasets.
Feature-based unlabeled dataset is-a unlabeled dataset that has tuple of primitives as the
underlying descriptive datatype. Structure-based unlabeled dataset is-a unlabeled dataset
that has some structured datatype (other than tuple of primitives) as the underlying de-
scriptive datatype.

Labeled dataset. For the labeled dataset, at the second level (see Figure 6.8), we dis-
tinguish between labeled dataset with primitive output and labeled dataset with structured
output . The first type of dataset has as output data specification any primitive datatype,
while the second type of dataset has as output data specification a structured datatype.
Both dataset types can have an arbitrary datatype as a descriptive data specification.

If we focus next only on labeled datasets, the taxonomy can be further extended based on
the descriptive and output specifications. Labeled dataset with primitive output is extended
with feature-based labeled dataset with primitive output and structure-based labeled dataset
with primitive output , where the first sub-class has a tuple of primitives as a descriptive
specifications, while the second sub-class has any structured datatype (other than tuple
of primitives) as a descriptive. Feature-based labeled datasets with primitive output are
further extended based on the type of primitive output. This includes sub-classes such as
regression dataset (having as output datatype real), binary classification dataset (having as
output datatype boolean), and multi-class classification dataset (having as output datatype
discrete).

In analogy, labeled dataset with structured output is extended with feature-based labeled
dataset with structured output and structure-based labeled dataset with structured output ,
where the first sub-class has a tuple of primitives as a descriptive specifications, while the
second sub-class has any structured datatype (other than tuple of primitives) as a descriptive.
Feature-based labeled datasets with structured output are further extended based on the
type of structured output. This includes sub-classes such as multi-target prediction dataset
(having as output datatype a tuple of primitives), multi-label classification dataset (having
as output datatype a set of discrete), feature-based time series prediction dataset (having
as output datatype a sequence of reals), and hierarchical classification dataset (having as
output datatype a labeled graph with boolean edges and discrete nodes). Finally, multi-
target prediction dataset is further extended depending on the primitive datatypes that
compose the tuple. This includes the following sub-classes: multi-target regression dataset ,
multi-target binary dataset , and multi-target multi-class dataset .

6.3.1.3 An example of a dataset instance: The EDM dataset

We present an example representation of a dataset instance by looking in more detail at a
real life EDM dataset (Karalic and Bratko, 1997) from the literature (see Fig. 6.9). Electri-
cal Discharge Machining (EDM) is a machining method primarily used for hard materials
that are electrically conductive. The workpiece surface is machined by electrical discharges
occurring in the gap between two electrodes, the tool and the workpiece. The gap is con-
tinuously flushed by the dielectric fluid.
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The process consists of numerous randomly ignited mono-discharges generating a crater-
textured surface. The stability and quality of the process depend on many parameters such
as the workpiece material, dielectric fluid type, size of the gap between the electrodes, flow
of the dielectric fluid, electric voltage between the electrodes, electric current between the
electrodes, characteristics of discharges, and others. While these parameters have some
predefined values, machining time can often be shortened by their dynamic control. A
human operator is normally employed for this purpose.

The data mining task at hand is to learn automatically to reproduce the operator’s
behavior. The dataset describes 154 actions taken by the operator where he controlled two
variables (output features), the flow and the gap. For each variable, three actions were
possible: he increased the variable (numerical value 1), decreased the variable (value -1), or
took no action (value 0). The reasons for each action are described in terms of 16 numeric
features which define the type and size of electrical pulses and their history (e.g., mean value
and standard deviation of effective pulses within the last 5 seconds).

In OntoDM-core, we represent the EDM dataset as an instance of the dataset class
(see Fig. 6.9). Tha EDM dataset has-part EDM data examples. In order to further
characterize the dataset, we introduce the EDM dataset specification, that is an instance
of the multi-target multi-class dataset type (see the taxonomy of datasets in Fig. 6.8),
because the dataset has a tuple of primitive datatypes on the descriptive side (16 numeric
features) and a tuple of discrete datatype on the output side (2 discrete features).

The EDM dataset specification instance further includes data specifications on the
descriptive and the output parts: EDM descriptive tuple of primitive and EDM output

tuple of discrete. Each of the specifications include the description of the concrete
datatype instance that is applicable to the data at hand and the description of the feature
set. For example, the EDM descriptive tuple od primitives is-about an EDM tuple

of primitives datatype. According to the OntoDT ontology module, this datatype is an
instance of the OntoDT tuple of primitives class, and it has as part a tuple generator

and a field component list containing specifications of all members of the tuple, denoting for
each member its datatype and identifier.

The feature set specification is a specification entity that has as parts feature specifications
of all features in the dataset, such as names, statistical properties and others. For example,
we have EDM descriptive feature set specification that is an instance of the feature
set specification class. It contains as parts 16 EDM des_feat xx that are instances of feature
specification class. Each feature specification instance has assigned name. For example, EDM
des_feat 1 has-name ‘ASM_A_MeanT’. In similar way, we represent also the EDM output
dataset specification.
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6.3.2 Data mining task

The task of data mining is to produce a generalization from a given dataset. In OntoDM,
we define a data mining task as sub-class of IAO objective specification. The data mining
task specifies the objective that a data mining algorithm execution process needs to achieve
when executed on a dataset in order to produce as output a generalization (see Fig. 6.10).

Figure 6.10: Data mining task in OntoDM-core.

A data mining task is an information entity that has as part data specification (see
Figure 6.10). That means that an instance of a data mining task is directly dependend on
the type of data. According to Džeroski (2007), in OntoDM-core we distinguish between four
basic clases of data mining tasks based on the generalizations that are produced as output:
a clustering task , a pattern discovery task , a probability distribution estimation task , and a
predictive modeling task .

The classes of tasks are fundamental and they are defined on an arbitrary type of data
(by using the descriptive data specification), except for the predictive modeling task that is
defined on a pair of datatypes (it has both descriptive and output data specification). For
example, for the task of predictive modeling the objective is to find a mapping from the
description to the output, in the form of a predictive model , given a labeled dataset that
consists of data examples that have a defined descriptive and output data specifications.

In the remainder of this section we first propose a taxonomy of data mining tasks and
focus on on the fundamental data mining tasks (6.3.2.1). Next, we extend the initial tax-
onomy of tasks and propose a more in depth taxonomy of predictive modeling tasks using
data specifications (Section 6.3.2.2). Finally, we present an example of how the taxonomy
can be further extended to cover very specific tasks, as is the case for the task of hierarchical
classification (Section 6.3.2.3).

6.3.2.1 Taxonomy of fundamental data mining tasks

From the definition of data mining task we can see that the definition of a data mining task
is directly dependent on the data specification, and indirectly depends on the datatype on
the data at hand. This allows us to form a taxonomy of data mining tasks having as criteria
the type of data. At the first level of the taxonomy of data mining tasks (see Figure 6.10)
we have the fundamental data mining tasks as defined by Džeroski (2007). Furthermore,
as mentioned in the introduction of this section, all fundamental data mining tasks have as
part descriptive data specification, and only predictive modeling has as part of its definition
output data specification. This means that at the next levels of the taxonomy of data
mining task will exclusively depend on the datatype of the descriptive data, and in the case
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of predictive modeling task it will depend also on the datatype of the output data. In the
remainder of this section we focus on the definition of the fundamental tasks at level one of
the taxonomy.

Clustering task The task of clustering in general is concerned with grouping objects
into classes of similar objects (Kaufman and Rousseeuw, 1990). Given a set of examples
organized in a unlabeled dataset having a data specification that denotes the datatype
T , the task of clustering is to partition these examples into subsets, called clusters. The
final objective of clustering is to achieve high similarity between examples within individual
clusters (intra-cluster similarity) and low similarity between objects that belong to different
clusters (inter-cluster similarity).

Pattern discovery task The task of pattern discovery is to find all local patterns from
a given pattern language that satisfy the required conditions. A prototypical instantiation
of this task is the task of finding frequent itemsets (sets of items, such as {bread,butter}),
which are often found together in a transaction (e.g., a market basket) (Agrawal et al.,
1993). With the increasing amount of interest in mining complex data, mining frequent
patterns is also considered for structured data. This includes tasks such as mining frequent
subgraphs in a sequence of graph data or mining frequent subsequences.

Probability distribution estimation task A dataset having a data specification de-
noted with the type T is assumed to be a sample of some population following a probability
distribution. Every example from the dataset is assigned a non-negative probability (or
density) by the probability distribution function (or density function). The most general
data mining task is the task of estimating the (joint) probability distribution D over type T
from a set of data examples or a sample drawn from that distribution (Hand et al., 2001).

Predictive modeling task In the task of predictive modeling, we are given a dataset
that consists of examples of the form (d,o), where d is descriptive specification denoting
datatype Td and o is an output specification denoting datatype Tc. To learn a predictive
model means to find a mapping from the description to the output, m :: Td → To, that fits
the data closely. This means that the observed target values and the target values predicted
by the model. The task of learning a predictive model can be seen as a special case of
the task of estimating the probability distribution, as it can be formulated from the joint
probability distribution P((d,o)) by deriving the conditional distribution P(o | d).

6.3.2.2 Taxonomy of predictive modeling tasks

In the previous section, we introduced the task of predictive modeling . For this task we are
given a labeled dataset that consists of data examples that have a descriptive and output
part, both defined by the data specifications. The task of predictive modeling is to find
a mapping from the description to the output, in a form of a predictive model. In this
section, we illustrate the OntoDM-core mechanism that supports the representation of data
mining tasks for structured data with a proposal for a taxonomy of predictive modeling
tasks (see Figure 6.11). Using the output data specification as a criterion, at the first
level we distinguish between the primitive output prediction task and the structured output
prediction task (examples of such tasks can be found in Bakir et al. (2007)). In the first
case, the output datatype is primitive, such as discrete, boolean or real; in the second case,
it is some structured datatype, such as tuple, set, sequence or graph.
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Primitive output prediction tasks. The primitive output prediction tasks can be feature-
based or structure-based, depending on the datatype on the descriptive part. Feature-based
primitive output prediction tasks are tasks that operate on data that have a tuple of prim-
itives (set of primitive features) on the description side and a primitive datatype on the
output side. This is the most exploited data mining task in traditional single-table data
mining, described in all major data mining textbooks (e.g., Hand et al. (2001)). If we spec-
ify the output datatype in more detail, we can represent the binary classification task , the
multi-class classification task and regression task ; where the output datatype is boolean,
discrete or real, respectively. Stucture-based primitive output prediction tasks are tasks that
operate on data that have some structured datatype (other than tuple of primitives) on the
description side and a primitive datatype on the output side.

Structured output prediction tasks. In similar way, structured output prediction tasks
can be feature-based or structure-based. Feature-based structured output prediction tasks are
tasks that operate on data that have a tuple of primitives (set of primitive features) on the
description side and a structured datatype on the output side. Structure-based structured
output prediction tasks are tasks that operate on data that have some structured datatype,
other than tuple of primitives, on the description side and a structured datatype on the
output side.

If we focus just on feature-based tasks and further specify a structured output datatype,
we can represent a variety of structured output prediction tasks. For example, we can
represent the following tasks: multi-target prediction task (Caruana, 1997) (which has as
output datatype tuple of primitives), multi-label classification task (Tsoumakas and Katakis,
2007) (which has as output datatype set of discrete), time-series prediction task (Slavkov
et al., 2010) (which has as output datatype sequence of real) and hierarchical classification
task (Silla and Freitas, 2011) (which has as output datatype labeled graph with boolean edges
and discrete nodes). Furthermore, a multi-target prediction task can be further specified into
tasks such as: multi-target binary classification task , multi-target multi-class classification
task (Demšar et al., 2006), and multi-target regression task (Kocev et al., 2009).

6.3.2.3 Further extensions: Taxonomy of hierarchical classification tasks

The taxonomy of predictive modeling tasks, discussed in the previous section, can be further
extended on the basis of other criteria. These criteria are established by the needs of the
sub-domains of data mining and the communities that are addressing the different (sub)tasks
and developing algorithms to solve them. The sub-domains include text mining (Feldman
and Sanger, 2006), mining graphs, trees (Cook and Holder, 2006) and sequences (Dong,
2009)). In this section, we present a proposal how we can further extend the taxonomy of
hierarchical classification tasks by using the criteria presented by Silla and Freitas (2011),
in their review paper on hierarchical classification across different application domains (see
the upper part of Figure 6.11).

Silla and Freitas (2011), in their review paper, present a set of criteria for the classification
of hierarchical classification (HC) tasks. The criteria include: the type of graph representing
the hierarchical classes (tree or directed acyclic graph (DAG)), information whether a data
example is allowed to have class labels associated with a single (SPL) or multiple paths
(MPL) in the class hierarchy, and the information about the label depth of the data examples
that can be full depth (FDL) or partial depth(PDL).

In line with our design principles, we represented their proposal in OntoDM-core module
as a sub-taxonomy of the HC task (see the right hand side of Figure 6.11). At the first
level of the sub-taxonomy, we distinguish between HC tasks that are based on discrete
class labels organized in a tree structure and the ones organized in the form of a DAG,
the first being denoted with the output data specification with tree datatype with boolean
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edges and discrete nodes and the second one being denoted with the output specification
with DAG datatype with boolean edges and discrete nodes. Next, at the second level,
we distinguish between single (SPL) or multiple path labels (MPL). At the last level, we
distinguish between tasks that have full (FDL) or partial labeling (PDL). For example, Vens
et al. (2008) proposes an algorithm for learning decision trees for hierarchical multi-label
classification which is in fact solving the task of hierarchical classification having a DAG
as a output datatype, allowing multiple paths and partial depth labeling, represented in
OntoDM-core as the DAG based HC task for MPL and PDL.

6.3.3 Generalizations

Generalization is a broad term that denotes the outcome of applying a data mining task (for
a given dataset). Many different types of generalizations have been considered in the data
mining literature. The most fundamental types of generalizations are in line with the data
mining tasks outlined in Section 6.3.2. These include probability distributions, patterns,
predictive models and clusterings.

In OntoDM-core, we consider and model three different aspects of generalizations and
each of these aspects is aligned with a different description level (see Figure 6.12). This
includes a specification of the generalization, a generalization as a realizable entity, and the
process of executing a generalization. In the remainder of this subsection, we will focus in
brief on each of the three aspects of generalizations. First, we present the generalization
as a specification and present our proposal for a taxonomy of generalizations based on
the fundamental generalization types, data specification, and the generalization language
(Section 6.3.3.1). Next, we present in more details the taxonomy of predictive models
(Section 6.3.3.2). Finally, we discuss the generalization as an implementation and the process
of executing a generalization (Section 6.3.3.3).

Figure 6.12: Representation of generalization in OntoDM-core.

6.3.3.1 Generalization specification and taxonomy of generalizations

In OntoDM-core, we define generalization specification class as a OBI data representational
model that specifies the type of the generalization (see Figure 6.12). It includes as part data
specification that implicitly takes into account the types of data that can be used to produce
the generalization, and the generalization language specification that specifies the language
in which the generalization is expressed. Examples of language formalisms for the case of a
predictive model include the languages of: trees, rules, Bayesian networks, graphical models,
neural networks, etc.
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Figure 6.13: Taxonomy of generalizations in OntoDM-core.

As in the case of datasets and data mining tasks, we can construct a taxonomy of gen-
eralizations (see Figure 6.13). In OntoDM-core, at the first level, we distinguish between
a single generalization specification and an ensemble specification. A single generalization
specification denotes a generalization type produced by executing a single generalization data
mining algorithm, such as a decision tree algorithm or a SVM algorithm. An ensemble spec-
ification denotes a generalization type produced by executing an ensemble algorithm, such
as bagging, boosting, random subspaces, random forests etc. Ensembles of generalizations
have as parts single generalizations.

At the second level, we distinguish between four core types of generalizations covering
the four data mining tasks (see Section 6.3.3.1). This includes set of patterns specification,
clustering specification, predictive model specification, and probability distribution specifi-
cation, as sub-classes of single generalization specification, and set of patterns ensemble
specification, clustering ensemble specification, predictive model ensemble specification, and
probability distribution ensemble specification, as a sub-class of ensemble specification.

The taxonomy of generalizations can be further extended using the data specifications
and generalization language as criteria. For example, in the OntoDM-core taxonomy, we
can represent a multi-target regression tree, that is a multi-target predictive model : It has a
tuple of primitives datatype at the description and a tuple of reals at the output part, and
is expressed in the language of decision trees.

6.3.3.2 Taxonomy of predictive models

In Figure 6.14, we present how the taxonomy of generalizations can be extended for the case
of predictive models. Because the generalization specification is strongly dependent on the
data specification, the structure of the taxonomy of generalizations follows the structure of
taxonomy of datasets and taxonomy of data mining tasks, presented in Section 6.3.1.2 and
6.3.2.2 respectively.

By using the output data specification as a criterion, at the first level we distinguish
between the predictive models for primitive output specification and the predictive models
for structured output specification (examples of such predictive models can be found in Bakir
et al. (2007)). In the first case, the output datatype is primitive, such as discrete, boolean
or real; in the second case, it is some structured datatype, such as tuple, set, sequence or
graph.
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Predictive models for primitive output. The predictive models for primitive output
specification can be feature-based or structure-based, depending on the datatype on the
descriptive part. Feature-based predictive model for primitive output specification specify a
model that is built on data that have a tuple of primitives (set of primitive features) on the
description side and a primitive datatype on the output side. This is the most exploited
type of models in traditional single-table data mining, described in all major data mining
textbooks (e.g., Hand et al. (2001)). If we specify the output datatype in more detail, we
can represent other classes of models such as the binary classification model specification,
the multi-class classification model specification and regression model specification; where
the output datatype is boolean, discrete or real, respectively. Structure-based predictive
model for primitive output specification specifies class of models that operate on data that
have some structured datatype (other than tuple of primitives) on the description side and
a primitive datatype on the output side.

Predictive models for structured output. In similar way, predictive models for struc-
tured output specification can be feature-based or structure-based. Feature-based predictive
models for structured output specification specify a class of models operate on data that
have a tuple of primitives (set of primitive features) on the description side and a structured
datatype on the output side. Structure-based predictive model for structured output specifi-
cation specify class of models operate on data that have some structured datatype, other
than tuple of primitives, on the description side and a structured datatype on the output
side.

If we focus just on feature-based models and further specify a structured output datatype,
we can represent a variety of structured output predictive models. For example, we can
represent the following classes of types of models: multi-target predictive model specification
(Caruana, 1997) (which has as output datatype tuple of primitives), multi-label classification
model specification (Tsoumakas and Katakis, 2007) (which has as output datatype set of
discrete), time-series predictive model specification (Slavkov et al., 2010) (which has as
output datatype sequence of real) and hierarchical classification model specification (Silla
and Freitas, 2011) (which has as output datatype labeled graph with boolean edges and
discrete nodes). Furthermore, a multi-target predictive model specification can be further
specified into models such as: multi-target binary classification model specification, multi-
target multi-class classification model specification (Demšar et al., 2006), and multi-target
regression model specification (Kocev et al., 2009).

Finally, if we choose for example as a generalization language, the language of decision
trees, we can define instances of all above mentioned predictive model specifications for the
case of decision trees. All instances are presented in Figure 6.14. For example, a multi-

target regression tree specification is an instance of the class multi-target regression
model specification when we specify the language of decision trees as a generalization lan-
guage.

6.3.3.3 Generalization as an implementation and generalization execution

In OntoDM-core, we define a generalization as a realizable entity that is-concretization-
of a generalization specification and is-specified-output-of a data mining algorithm
execution. It is represented by a generalization representation and is-realized-by a gener-
alization execution process. (see Figure 6.12). From the definition, we can see that general-
izations have a dual nature. They can be treated as data structures and as such represented,
stored and manipulated. On the other hand, they act as functions and are executed as they
take input data examples and give as output the result of applying the function on a data
example.
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The dual nature of generalizations in OntoDM-core is represented with two classes that
belong to two different description levels: generalization representation, which is a sub-
class of information content entity and belongs to the specification level, and generalization
execution, which is a subclass of planned process and belongs to the application level.

A generalization representation is-a IAO information content entity that is-about a
generalization. It represents a formalized description of the generalization, for instance in the
form of a formula or text. For example, the output of a decision tree algorithm execution in
any data mining software usually includes a textual representation of the generated decision
tree.

A generalization execution is-a OBI planned process that has-specified-input a dataset
and has-specified-output another dataset . The output dataset is a result of applying
the generalization to the examples from the input dataset. For example, in the case of a
predictive model , the predictive model execution has-specified-input a dataset and gives
as output a predicted dataset .

6.3.3.4 Example: representation of multi-target regression tree

In this section we present how we present an example of representation of a generalization
instance in OntoDM-core. In Figure 6.15, we present the representation for multi-target
regression tree in all aspects, including specification of the entity, implementation and appli-
cation. A multi-target regression tree specification is an instance of a multi-target
regression model specification. The specification is defined by the data specifications of the
descriptive part and the output part of the data with instances denoting tuple of primitives
and tuple of reals respectively. Next, the specification includes the language of decision trees
as an instance of generalization language.

A multi-target regression tree specification is-concretisized-as multi-

target regression tree ID0001, which is an instance of predictive model class in the
implementation description level. This instance is-specified-output-of a multi-target

regression tree algorithm execution ID0001. Furthermore, multi-target regres-

sion tree representation ID0001 is an instance that is about the regression tree and
is used to contain its representation for the purpose of storage. Finally, multi-target

regression tree execution ID0001 is an instance of planned process and is used to rep-
resent the process of execution of a multi-target regression tree on a dataset and obtaining
as product another dataset on which the functional part of the model has been applied to.

6.3.4 Data mining algorithm

A data mining algorithm is an algorithm (implemented in a computer program), designed
to solve a data mining task. It takes as input a dataset of examples of a given datatype and
produces as output a generalization (from a given type) on the given datatype. A specific
data mining algorithm can typically handle examples of a limited set of datatypes: For
example, a rule learning algorithm might handle only tuples of Boolean attributes and a
boolean class.

Just as we have types of data, types of generalizations and data mining tasks, we have
types of data mining algorithms. The latter are directly related to the input and output
of the algorithm, but can depend also on the specifics of the algorithm, such as the basic
components of the algorithm (e.g., heuristic function, search method). For example, for the
decision tree building algorithms, we can have two sub-classes corresponding to top-down
induction and beam-search.

A very desirable property of a data mining framework is to treat the mining of different
types of structured data in a uniform fashion. In this context, data mining algorithms should
be able to handle as broad classes of datatypes at the input as possible. We will refer to al-
gorithms that can handle arbitrary types of structured data at the input as generic. Generic
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Figure 6.15: Example of representation of multi-target regression tree in OntoDM-core.

data mining algorithms would typically have as parameters some of their components, e.g.,
a heuristic function in decision tree induction or a distance in distance-based clustering.

In the context of modeling data mining algorithms in the OntoDM ontological framework,
we define data mining algorithm is an algorithm, designed to solve a data mining task (See
Figure 6.16). We consider three aspects of this entity: a DM algorithm (as a specification),
a DM algorithm implementation, and a DM algorithm execution. Each aspect gives rise to
a separate entity: Due to the different nature of these entities, each has a different parent
class and is modeled in a different module of the ontology.

In the remainder of this subsection, we review all three aspects and show how they are
interconnected. First, we analyze the data mining algorithm as a specification and present a
taxonomy of data mining algorithms (Section 6.3.4.1). Next, we focus on two extensions of
the taxonomy of algorithms in order to represent more specifically algorithms for predictive
modeling (Section 6.3.4.2) and algorithms for hierarchical classification (Section 6.3.4.3).
Furthermore, we look at data mining implementation and the process of data mining algo-
rithm execution (Section 6.3.4.4). Finally, at the end of this section we present a generalized
structure for representing algorithms in computer science (Section 6.3.4.5).

6.3.4.1 Data mining algorithm as a specification and taxonomy of data mining
algorithms

A data mining algorithm (as a specification) is-a IAO plan specification that has-part a
data mining task , an IAO action specification, a generalization specification, and a IAO
document (see Fig. 6.16). The data mining task defines the objective that the realized plan
should fulfill at the end giving as output a generalization, while the action specification (as
defined in IAO) “is a directive information entity that describes the action the bearer will
take”, in other words the actions of the data mining algorithm realized in the process of
execution. The generalization specification denotes the type of generalization produced by
executing the algorithm. Finally, having a document class as a part allows us the opportunity
to connect to the annotations of documents (journal articles, workshop articles, technical
reports) that publish the knowledge about the algorithm.

In analogy with the taxonomy of datasets, data mining tasks and generalizations, in
OntoDM-core we also construct a taxonomy of data mining algorithms (see Figure 6.17).
As criteria, we used the data mining task and the generalization produced as the output of
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Figure 6.16: Representation of a data mining algorithm in OntoDM.

the execution of the algorithm. Since both data mining task and generalization specification
include specifications of the datatypes, this taxonomy of data mining algorithms is general
and can cover (represent) algorithms that operate on arbitrary types of data.

At the first level of OntoDM-core taxonomy of data mining algorithm we distinguish
between single generalization algorithms and ensemble algorithms. A single generalization
algorithm specifies a data mining algorithm that solves a data mining task and as result
produces a single generalization. An ensemble algorithm specifies a data mining algorithm
that solves a data mining task and as a result produces an ensemble of generalizations. In
addition, an ensemble algorithm has as part single generalization algorithms.

At the second level, the algorithm structure is extended to cover specific algorithms
task wise. For example, single generalization algorithm is sub-classed with pattern-discovery
algorithm, clustering algorithm, predictive modeling algorithm, and probability distribution
estimation algorithm (see Figure 6.17). In the language of OntoDM-core, these are defined
as follows:

Figure 6.17: Taxonomy of data mining algorithms in OntoDM-core.
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• A pattern discovery algorithm is defined as a single generalization algorithm that solves
a pattern discovery task and produces as a result a set of patterns;

• A clustering algorithm is defined as a single generalization algorithm that solves a
clustering task and produces as a result a clustering;

• A predictive modeling algorithm is defined as a single generalization algorithm that
solves a predictive modeling task and produces as a result a predictive model; and

• A probability distribution estimation algorithm is defined as a single generalization
algorithm that a solves probability distribution estimation task and produces as a
result a probability distribution.

In analogy, for the case of ensemble algorithms we define four different sub-classes of
ensemble algorithms (see Figure 6.17). In the language of OntoDM-core, these are defined
as follows:

• A pattern discovery ensemble algorithm is defined as an ensemble algorithm that solves
a pattern discovery task and produces as a result an ensemble of set of patterns;

• A clustering ensemble algorithm is defined as an ensemble algorithm that solves a
clustering task and produces as a result a clustering ensemble;

• A predictive modeling ensemble algorithm is defined as an ensemble algorithm that
solves a predictive modeling task and produces as a result an predictive models en-
semble; and

• A probability distribution estimation ensemble algorithm is defined as an ensemble
algorithm that a solves probability distribution estimation task and produces as a
result a probability distribution ensemble.

6.3.4.2 Taxonomy of predictive modeling algorithms

In sections 6.3.2.2 and 6.3.3.2, we presented our taxonomy of predictive modeling and tax-
onomy of predictive models respectively. In line with those two proposals we construct a
taxonomy of predictive modeling algorithms (see Figure 6.18). The taxonomy of predictive
modeling algorithms is an extension of the more general taxonomy of data mining algorithms
and in its structure it follows the structure of taxonomy of PM tasks and PM, and is due
to the structure of the data mining algorithm class having as parts data mining task and
generalization specification.

By using the data mining task as a criterion, at the first level we distinguish between
the predictive modeling algorithm for primitive output prediction and the predictive model-
ing algorithm for structured output prediction. In the first case, the data mining task the
algorithm is solving is primitive output prediction task , and in the second case, it structured
output prediction task .

Predictive modeling algorithm for primitive output prediction. The predictive
modeling algorithm for primitive output specification can be feature-based or structure-
based, depending on the data mining task it is solving. Feature-based predictive modeling
algorithm for primitive output prediction specifies an algorithm that solves the feature-based
primitive output prediction task . This is the most exploited type of algorithms in traditional
single-table data mining, described in all major data mining textbooks (e.g., Hand et al.
(2001)).
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If we specify the data mining task in in more detail, we can represent other classes of
algorithms such as the binary classification algorithm, the multi-class classification algorithm
and regression algorithm; where the data mining task is binary classification, multi-class
classification, and regression task , respectively. Structure-based predictive algorithm for
primitive output prediction specifies a class of algorithms that solve the structure-based
primitive output prediction task .

Predictive modeling algorithm for structured output prediction. In similar way,
predictive modeling for structured output prediction can be feature-based or structure-based.
Feature-based predictive modeling algorithm for structured output prediction specify a class
of algorithms that solve the feature-based structured output prediction task . Structure-based
predictive modeling algorithm for structured output prediction specify class of algorithms
that solve the structure-based structure output prediction task .

If we focus just on feature-based algorithms and further specify the data mining task
at hand, we can represent a variety of structured output predictive modeling algorithms.
For example, we can represent the following classes of algorithms: multi-target predictive
modeling algorithm (Caruana, 1997) (which solves the multi-target prediction task), multi-
label classification algorithm (Tsoumakas and Katakis, 2007) (which solves the multi-label
classification task), time-series predictive modeling algorithm (Slavkov et al., 2010) (which
solves the time-series prediction task) and hierarchical classification algorithm (Silla and
Freitas, 2011) (which solves the hierarchical classification task). Furthermore, a multi-
target predictive modeling algorithm can be further specified into algorithm classes such as:
multi-target binary classification algorithm, multi-target multi-class classification algorithm
(Demšar et al., 2006), and multi-target regression algorithm (Kocev et al., 2009).

On the lower levels, we can extend the taxonomy by taking into account the type of gen-
eralization as a criteria. For example, we can define a multi-target regression tree algorithm
class as a sub-class of multi-target regression algorithm that has a specifics that it produces
as output a multi-target regression tree.

6.3.4.3 Further extensions: Taxonomy of hierarchical classification algorithms

The taxonomy of predictive modeling algorithms, discussed in the previous section, can be
further extended on the basis of other sub-domain criteria. In line with the proposal of a
taxonomy of hierarchical classification tasks presented in Section 6.3.2.3, in this section, we
present a proposal how we can further extend the taxonomy of hierarchical classification
algorithms by following the taxonomy of tasks and using the criteria presented by Silla and
Freitas (2011), in their review paper on hierarchical classification across different application
domains.

In Figure 6.19, we present the taxonomy of hierarchical classification algorithms. At the
first level of the taxonomy, we have a distinction between tree-based hierarchical classification
algorithms and DAG based hierarchical algorithm. The first class of algorithms solve the
tree-based hierarchical classification task , while the second class of algorithms solve the DAG
based hierarchical classification task .

If we just focus on the DAG based algorithms (the structure of taxonomy for tree based
algorithms is analogous), at the second level of the taxonomy we have DAG based HC algo-
rithm for single path prediction and DAG based HC algorithm for multiple path prediction.
Here the criteria for the division is information whether the algorithm solves the task that
allows class labels that are associated with single or multiple paths in the class hierarchy.
Furthermore, we have a division into algorithms that have mandatory and non-mandatory
leaf node prediction.
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For example, DAG based HC algorithm for single path prediction is further extended with
the following classes of algorithms: DAG based HC algorithm for single path and mandatory
leaf node prediction and DAG based HC algorithm for single path and non-mandatory leaf
node prediction. Finally, at the last level of the taxonomy we distinguish between algorithms
that use a global classifier approach and local classifier approach (see (Silla and Freitas,
2011) for more information about each approach). For example, DAG based HC algorithm
for single path and mandatory leaf node prediction can use a global classifier aproach or a
local classifier approach.

For example, in OntoDM-core we can represent the proposal of Vens et al. (2008) for an
algorithm for learning decision trees for hierarchical multi-label classification. This algorithm
is solving a DAG based HC task for multiple paths and partial depth labeling (see Section
6.3.2.3) and produces as output a hierarchical classification decision tree. The algorithm uses
a global classifier approach, that is why it is an instance of the DAG based HC algorithm
for multiple path and non-mandatory leaf node prediction using a global classifier approach
class.

6.3.4.4 Data mining algorithm implementation, operator, software, and execu-
tion

In the previous sections, we discussed the data mining algorithm entity from the perspective
of the specification description level and presented a way of establishing a taxonomy of data
mining algorithms based on different criteria. In this section, we focus on the implementation
and application description level in the context of data mining algorithms.

Data mining algorithm implementation. In OntoDM-core, a data mining algorithm
implementation is defined as a sub-class of BFO realizable entity . Furthermore, a data min-
ing algorithm implementation is-concretization-of a data mining algorithm, in the form
of a runnable computer program. A data mining algorithm implementation has-quality
parameters (see Figure 6.16). The parameters of the algorithm affect the possible behavior
of an algorithm when the algorithm implementation is used as an operator. For exam-
ple, wekaM5P is an instance of a data mining algorithm implementation class, and it is a
concretization of a regression tree algorithm. This instance has as quality parameters
such as wekaM5P-unpruned tree parameter, wekaM5P-unsmoothed predictions param-

eter, wekaM5P-minimum number of instances parameter, and others (see Fig. 6.20).
Finally, parameter specification is a specification entity about a parameter and specifies
things such as name, description and others.

Data mining operator. In OntoDM-core, a data mining operator is defined as sub-
class of the role class . In that context, a data mining operator is-role-of a data mining
algorithm implementation that is-realized-by a data mining algorithm execution. For
example, wekaM5P operator ID001 is an instance of the data mining operator class (see
Figure 6.20). It is a role of the wekaM5P implementation in the context of its execution
(realization) and by the wekaM5P algorithm execution ID001 process instance.

Finally, the data mining operator has-information about the specific parameter setting
of the algorithm, in the context of realization of the operator in the process of execution. The
parameter setting is-a data item which is-quality-specification-of a parameter . For
example, wekaM5P unpruned tree parameter setting ID001 is an instance of parameter
setting, and represents a quality specification of a wekaM5P unpruned tree parameter that
is provided as information to the operator in order for it to be executed in a process (see
Figure 6.20).



100

Figure 6.20: Representation of of wekaM5P instance of a data mining algorithm implementation.

Data mining software. In OntoDM-core, a data mining software is defined as a sub-class
of IAO directive information entity . It represents a specification of a data mining algorithm
implementation (see Figure 6.16). It has as parts all the meta-information entities about the
software implementation such as: source code, software version specification, programming
language, software compiler specification, software manufacturer , the data mining software
toolkit it belongs to, etc. Finally, a data mining software toolkit is an specification entity
that contains as parts data mining software entities. For example, weka toolkit is an
instance of data mining software toolkit class and has as part wekaM5P software package,
which is an instance of data mining software (see Figure 6.20).

Data mining algorithm execution In OntoDM-core, we define a data mining algorithm
execution as a sub-class of OBI planned process class. A data mining algorithm execution re-
alizes a data mining operator , has-specified-input a dataset , has-specified-output
a generalization, has-agent a computer , and finally achieves-planned-objective a
data mining task (see Figure 6.16). For example, weka M5P algorithm execution ID001

realizes a wekaM5P operator ID001, it has-specified-input dataset ID001, it has-
specified-output regresion tree ID001, and achieves-planned-objective regres-

sion task (see Figure 6.20). Finally, having a computer as an agent of the data mining
algorithm execution process, allows us to further extend the information about the execution
of an algorithm with the meta-information about the computer that is active in the execu-
tion process. This includes entities such as: computer name, type of processor, information
about processing time, and other information.
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To conclude, the structure presented in Figure 6.16 is adequate for the representation
of the execution of both simple and complex algorithms (the latter using other algorithms
in their execution), such as ensemble learning algorithms. The major design notion here is
that a data mining algorithm execution process in the case of ensemble learning algorithms
has as parts sub-processes which are executions of the simple (base level) algorithms.

6.3.4.5 Proposal for a generic structure for representing algorithms in com-
puter science

In the previous sections, we presented the OntoDM-core classes that are used to represent
data mining algorithms at the three description levels: specification, implementation and
application. The mechanism for representing data mining algorithms is very general and can
be easily modified to represent arbitrary algorithms in computer science. These represen-
tations can be further reused and extended by other ontologies. In Figure 6.21, we present
the general structure for representing algorithms, which is independent of the nature and
the origin of the algorithms.

Figure 6.21: General structure for representation of algorithms for computer science.

As we can see from Figure 6.21, an algorithm is an IAO plan specification and contains
as parts IAO objective specification, IAO action specification, and IAO document classes.
An algorithm implementation is a OBI plan, which is concretization of an algorithm, and
has quality parameters, that are specified by a parameter specification. Software entity is
a specification of an algorithm implementation and has parts source code, software version
specification, programming language specification, and is-manufactured-by some organi-
zation. On the other hand, operator is-role-of an algorithm implementation which is-
realized-by the process of algorithm execution by providing information about parameter
setting of each parameter defined by the implementation. Finally, algorithm execution is a
SWO information processing process that realizes an operator and depending on the al-
gorithm at hand has defined inputs ans outputs and has agent a computer. In addition, we
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define computer specification as an entity about a computer that characterizes computer’s
specifics, and we define algorithm execution specification that is about a specific algorithm
execution and can contain information such as processing time.

6.3.5 Constraints and constraint-based data mining task

Constraints play a central role in data mining and constraint-based data mining is now
a recognized research topic (Bayardo, 2002). The use of constrains enables more efficient
induction of generalizations and focuses the search for generalizations that are likely to be
of interest to the end user. Mannila and Toivonen (1997) state that a general statement of
the problem of data mining involves the specification of a language of generalization and
a set of constraints that a generalization needs to satisfy. In constraint-based data mining
constraints are propositions or statements about generalizations. In this section, we first
present the OntoDM-core taxonomy of constraints (Section 6.3.5.1). Next, we focus on
constraint-based data mining tasks and a taxonomy of constraint-based data mining tasks
(Section 6.3.5.2).

6.3.5.1 Taxonomy of constraints

In OntoDM-core, we define a constraint specification as a sub-class of OBI data representa-
tional model . Many types of constrains are used in constraint-based data mining and can be
classified along several orthogonal dimensions. First, we distinguish between primitive and
composite constraints. Next, we distinguish between language and evaluation constraints.
Finally, we distinguish among hard (Boolean) constraints, soft constraints and optimization
constraints. In the rest of this section, we briefly overview the different dimensions and
present the OntoDM-core taxonomy of constrains.

Constraints in constraint-based data mining represent propositions on generalizations.
Propositions can be atomic or non-atomic. Atomic propositions are not decomposable into
smaller propositions, while the non-atomic propositions are decomposable. The constrains
that are based on atomic propositions are called primitive constraints. Consequently, the
constraints that are based on non-atomic propositions are called composite constraints.
The primitive constrains can be combined using boolean operations and form composite
constraints.

The constraints in constraint-based data mining refer to either the form (syntax) of a
generalization or the its validity (semantics) with respect to the data. If the constrains refer
to the syntax of the generalization then they are called language constraints, and if they
refer to the semantics they are called evaluation constraints. Language constrains concern
the representation of a generalization and only refer to its form. A commonly used type of
language constraints is the subsumption constraint. Other type of language constrains can
include a cost function on patterns and models. The cost functions, in this case, represent
mappings from the representation of the generalization to a non-negative real. Evaluation
constraints, on the other hand, concern the semantics of a generalization when applied to a
dataset. They usually include evaluation functions, where the evaluation functions measure
the validity of a generalization on a given dataset. The evaluation functions take as input a
generalization and return a real value as output. The above mentioned types of constraints
are definitions of primitive language and evaluation constraints. They can be used to form
composite language constraints, composite evaluation constraints, and composite constraints
that have a mix of primitive language and evaluation constraints.

In addition, we distinguish between hard constraints, soft constrains, and optimization
constraints. Hard constraints represent boolean functions on generalizations. In this case
the constraint can be either satisfied or not satisfied. Soft constraints, on the other hand,
do not dismiss a generalization that violates a constraint but rather the generalization is
penalized for violating a constraint. Optimization constrains allow us to ask for a set of
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generalization (of a fixed size) that have some extreme value (minimum or maximum) for a
given cost or evaluation function.

In Figure 6.22, we present the OntoDM-core taxonomy of constraints. At the first level
we have the primitive constraint and complex constraint . Complex constraints have as parts
primitive constraintsnd a combination function specification that specifies the way how the
primitive constraints are combined to form a complex constraint. At the second level, if
we focus in the primitive constraints, we have primitive language constraints and primitive
evaluation constraints. Furthermore, primitive language constraints class is further extended
with primitive subsumption based language constraint and primitive language cost-function
constraint class. At the last level the primitive language cost-function constraint is extended
with three sub-classes that include: primitive hard language cost-function constraint , primi-
tive soft language cost-function constraint , and primitive optimization language cost-function
constraint . In similar way, we define sub-classes of primitive evaluation constraint class.

Figure 6.22: Taxonomy of constraints.

6.3.5.2 Constraint-based data mining task and taxonomy of constraint-based
data mining tasks

The task of constraint-based data mining (CBDM) is to find a set of generalizations that
satisfy a set of constraints, given a dataset that consists of examples of a specific datatype, a
data mining task, a generalization specification and a specifications of the set of constraints.
In this context, we can see that a constraint-based data mining task covers the whole domain
of data mining, and the traditional formulation of data mining is a special case of this
formulation. The major difference between the traditional and the constraint-based data
mining paradigms is that in the traditional paradigm we usually have one evaluation metrics
and the algorithms give as output only one solution. In the remaining of this section, we
present the representation of CDBM task and algorithm in OntoDM-core.

In the OntoDM-core ontology module, we represent a CBDM task as a sub-class of IAO
objective specification class (see Figure 6.23). It has as parts a data mining task and set
of constraint specifications. We further define a CBDM algorithm as an algorithm that
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Figure 6.23: Constraint-based data mining task and algorithm in OntoDM-core.

solves a CBDM task. Furthermore, we represent a CBDM algorithm implementation which
is a concretization of a CBDM algorithm. Finally, CBDM operator is a role of a CDBM
algorithm implementation and is realized in the CBDM algorithm execution process, that
achieves planned objective a CDBM task .

From Figure 6.23, we can see that the definition of the CBDM task class contains as part
data mining task . This allows us to form a taxonomy of CBDM tasks. In Figure 6.24, we
present part of the taxonomy of CBDM tasks. At the first level of the taxonomy, we have
the basic CBDM task classes that are aligned with the foundational data mining task. These
include constraint-based pattern discovery , constraint-based clustering , constraint-based pre-
dictive modeling , and constraint-based probability distribution estimation. At the second
level, if we focus on constraint-based pattern discovery we can extend the taxonomy with the
following classes depending on the descriptive data specification. This includes constraint-
based itemset mining , constraint-based sequence mining , constraint-based tree mining , and
constraint-based graph mining . Examples of constraint-based itemset mining task includes
tasks such as frequent itemset mining , closed itemset mining , discriminative itemset mining ,
and cost-based itemset mining .

Figure 6.24: Part of the taxonomy of constraint-based data mining tasks.
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6.3.6 Data mining scenario

A scenario is usually defined in the dictionary as “a postulated sequence or development of
events”1. Therefore, a data mining scenario deals with the logical sequence of processes to
infer some type of generalization from data. In the OntoDM-core module, we represent a
data mining scenario with the different aspects, reflected in entities at different description
levels in the ontology: data mining scenario (as a specification), data mining workflow (as
an implementation), and data mining workflow execution.

Figure 6.25: Scenarios and workflows in OntoDM.

In OntoDM-core (see Figure 6.25), a data mining scenario is-an extension of the OBI
protocol class, and represents an information entity. It includes as parts other information
entities such as: title of scenario, scenario description, author of scenario, and IAO docu-
ment . Additionally, from the protocol class it inherits as parts IAO objective specification
and action specification. All these classes are used to describe a scenario. Furthermore, a
data mining workflow , in OntoDM, is-concretization-of of a data mining scenario, and
it is an extension of the OBI plan entity. Finally, a data mining workflow is-realized-by
data mining workflow execution, which extends the SWO class information processing . The
ordering of sub-processes in a workflow execution is determined by using the preceded-by
relation.

1http://oxforddictionaries.com/definition/scenario

http://oxforddictionaries.com/definition/scenario
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7 OntoDM-KDD: Ontology Module for Data Min-

ing Investigations

The term knowledge discovery in databases, or KDD for short, refers to the broad process
of finding knowledge in data. The term data mining refers to the sub-process of the KDD
process that involves the application of algorithms for extraction of knowledge from data
in form of patterns (generalizations). The KDD process is interactive and iterative. It
involves numerous sub-processes, such as for example: developing an understanding of the
application domain, the relevant prior knowledge, and end user’s goals; collecting data and
creating a target dataset; data cleaning and pre-processing; data reduction and projection;
choice of data mining task; choice of data mining algorithm; modeling or data mining;
deployment of mined knowledge; and incorporating and use of the mined knowledge.

In this chapter, we present the OntoDM-KDD ontology module. First, we present the
goal, scope and competencies of OntoDM-KDD (Section 7.1). Next, we discuss the imple-
mentation and availability of the OntoDM-KDD ontology module (Section 7.2). Finally, we
describe in more detail the structure of the ontology module (Section 7.3).

7.1 Goal, scope and competencies

OntoDM-KDD is an ontology module for representing data mining investigations. Its goal
is to allow the representation of knowledge discovery processes and be general enough to
represent the data mining investigations.

All of the sub-processes in the KDD process are essential to ensure that useful knowledge
is derived from the data. In the domain of data mining and knowledge discovery, there are
proposals for standardizing the process of knowledge discovery in the context of represent-
ing and performing data mining investigations. One of the most prominent proposals is the
CRISP-DM methodology (Chapman et al., 1999). CRISP-DM stands for Cross Industry
Standard Process for Data Mining. It is a process model that describes data mining inves-
tigations performed in practical applications. The CRISP-DM process model is based on
commonly used approaches that expert data miners use to tackle and solve the practical
problems in the domain of data mining.

Chapman et al. (1999) describe the CRISP-DM methodology in terms of a hierarchical
process model, consisting of a set of tasks described at four levels of abstraction: phase,
generic task, specialized task, and process instance. At the top level, the process is organized
into phases, where each phase consists of several second-level generic tasks. The third
level, the level of specialized tasks, describes how the generic tasks should be carried out
in specific situations. The fourth level, the level of process instances, is a description of
actions, decisions and results of an actual data mining investigation.

In general, life cycle of a data mining investigation consists of six phases (see Fig. 7.1).
The sequence of phases is not rigid. Iterating back and forth between phases is required and
determined by the outcome of each phase separately. The phases include : the application (or
business) understanding phase, data understanding phase, data preparation phase, modeling
phase, evaluation phase, and deployment phase.
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Figure 7.1: The CRISP-DM process model.

Based on the main goal of the OntoDM-KDD module, we established a list of compe-
tency questions our ontology module is designed to answer. The most important competency
questions are listed in Table 7.1. Judging from the list of questions, the ontology will include
information about the basic information entities for representing data mining investigations,
such as action specifications, objective specifications, plan specifications, reports, and tex-
tual entities. Furthermore, the module will contain processual entities that compose the
knowledge discovery process, such as acquisition, documenting, identification, information
processing, interpreting data, planning, selection, and validation.

Table 7.1: OntoDM-KDD competency questions.

Q Competency Question

1
What is the investigation title/description of
a DM investigation X?

2
What is the set of publications about the in-
vestigation for a DM investigation X?

3
What is the DM investigation that is reported
by a publication X?

4
What is output of a KD phase X for a DM
investigation Y?

5
What is the output of a sub-process X of KD
phase Y for a DM investigation Z?

6
What is the set of actions realized by the KD
phase X for a DM investigation Y?

7
What is the set of DM investigations that re-
alize an action X in a KD phase Y?

8
What is the process that precedes process X
in KD phase Y for a DM investigation Z?

7.2 Implementation

In order to represent data mining investigations, we model the CRISP-DM process in the
OntoDM-KDD ontology module by reusing and extending upper level classes from the OBI,
the IAO and the SWO ontology. This is compliant with the design principles discussed in
Chapter 4. In the OntoDM-KDD ontology module, we distinguish two levels of representa-
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tion (see Figure 7.2 and 7.3). The first level is the specification level (Section 7.2.1), that
deals with information entities needed to describe and represent the data mining investiga-
tions. The second level is the application level (Section 7.2.2) that deals with processual
entities in order to represent processes that occur in a data mining investigation.

7.2.1 Specification level

The specification level (see Figure 7.2) consists of classes that are extensions of IAO class
information content entity . At the top level, it includes classes such as data item, directive
information entity , document , and textual entity . The directive information entity class is
further extended with action specification, data format specification, objective specification,
and plan specification classes (see Section 4.2.2.1). These top level classes are further sub-
classed in order to provide a representational mechanism to support the representation of
data mining investigations.

For example, the action specification class is further extended with a taxonomy of KDD
specific actions realized in the KDD processes. At the first level (see Figure 7.2), we have the
more general action specification classes such as analyze action, assess action, check action,
compare action, describe action, document action, interpret action, plan action, process
information action, revise action, and specify action. At the second level, the general
action specification classes are extended with KDD specific classes of actions. For example,
the assess action specification is extended with the following sub-classes: assess attribute
importance, assess data sources, assess modeling assumptions, and others.

In addition, in order to support representation of data mining investigations, from the
OBI ontology we reuse study design and protocol classes (see Section 4.2.2.2), that are
extension od plan specification. We further extend these classes with KD phase design,
containing design specifications of knowledge discovery phases defined in the CRISP-DM
methodology, and KD protocol containing knowledge design protocols that are defined for
each of the KD phases.

7.2.2 Application level

The application level consists of classes that are extensions of the OBI class planned process.
We extend the planned process class with the KDD phase class and its sub-classes, in order
to represent the different phases in a data mining investigation.

In Figure 7.3, we present the OntoDM-KDD processual taxonomy. At the top level, it in-
cludes classes for representing different types of general processes. These include: validation,
planning , interpreting data, information processing , selection, identification, documenting ,
acquisition, study design execution, and investigation. The study design execution class is
further extended with KD phase, that represents the process of execution of KD phases
defined in the CRISP-DM methodology and includes the following sub-classes: application
understanding , data understanding , data preparation, modeling , DM process evaluation, and
deployment .

In addition, at the second level of the process taxonomy we have the KD specific pro-
cesses, that represent realizations of the KD protocols defined for each KD phase. For
example, the validation process has as sub-classes results evaluation, project review , model
assessment , data quality verification, business situation assessment , and DM process review .
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Figure 7.2: The specification level of OntoDM-KDD module.
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Figure 7.3: Upper level processual classes in OntoDM-KDD ontology.
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7.3 Ontology module description

In this section, we first describe the representation a data mining investigation (Section
7.3.1). Next, we focus on each of the sub-processes in a DM investigation and discuss the
most important representational issues that arise in the process of modeling them within
the OntoDM-KDD ontology module. We first present the application understanding process
(Section 7.3.2). Next, we discuss the representation of the data understanding process
(Section 7.3.3) and data preparation process (Section 7.3.4). Furthermore, we present the
modeling process (Section 7.3.5). Finally, we discuss the evaluation (Section 7.3.6) and
deployment process (Section 7.3.7).

7.3.1 Data mining investigation

In the OntoDM-KDD ontology module, we define a DM investigation class as an extension of
OBI investigation class (see Figure 7.4). An investigation has has as parts planning process,
documenting process, and study design execution process. Furthermore, an investigation is
characterized with an investigation title, investigation description, and investigation identi-
fier . In addition, the investigation produces as output a conclusion textual entity . Finally, a
publication about an investigation is a document about an investigation and it is an output
of the documenting sub-process.

Figure 7.4: The data mining investigation class in OntoDM-KDD.

Furthermore, we extend the OBI investigation class with the DM investigation class (see
Figure 7.4). We define a DM investigation as an investigation that has as its part KD phase
execution, where this class is and extension of OBI study design execution and represents a
realization of KD phase design that specifies each of the KD phases defined in CRISP-DM
methodology. Each of the KD phases execution processes has as its part sub-processes as
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defined in the CRISP-DM specification (see Figure 7.5), and they represent realizations of
the KD protocols defined for each of the phases by a KD phase design specification. In this
version of OntoDM-KDD, we can represent a sequential ordering of the KD phases by using
the is-preceded-by relation (see Figure 7.5).

Figure 7.5: KD process and its sub-processes.

7.3.2 Application understanding process

The initial phase in a DM investigation focuses on identifying the of objectives and require-
ments of the investigation, from an application (or business) perspective. The goal of this
process is to convert the knowledge about the application domain into a data mining problem
definition and to generate a plan for achieving the application objectives. In this subsection,
we describe the representation and the definition of the application understanding process
in the context of the OntoDM-KDD ontology module (see Figure 7.6).

The application understanding class is a sub-class of KD phase and represents a planned
process. In the ontological vocabulary, the application understanding process can be de-
fined as a KD phase that realizes a concretization of an application understanding design,
achieves the planned objective an application understanding objective and has specified out-
put application understanding report . The application understanding process includes as
parts four sub-processes. These include: application objectives identification, application
resources assessment , identification of data mining goals and generation of a project plan.

The process of application objectives identification is a sub-class of the more general
class of identification processes. In this process, a data analyst (active participant or agent)
needs to identify in detail, from the application (or business) perspective, what are the
objectives that need to be achieved by applying data mining to the application domain at
hand. At the end of the process, the analyst needs to produce as output an application
background description, an application objectives description, and an application success
criteria description.
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Figure 7.6: Application understanding process in OntoDM-KDD.

The process of application objective identification is a realization of a concretization of an
application objective identification protocol (See Figure 7.7). The protocol, which is a part
of the application understanding design specification, in its turn contains a specification of
the actions that are realized in the process. For example, this process realizes actions such
as describe data mining problem, specify application success criteria, identify who assesses
the success criteria and others. These action specifications are subclasses of general classes
of actions, such as describe action, specify action and identify action. In the OntoDM-KDD
ontology module, we represent and provide action specifications for all processes in a similar
way.

The process of application resources assessment is a sub-class of the OBI validation pro-
cess. It involves the process of assessing the information about all resources, constraints,
assumptions and other factors that need to be considered in order to determine the data
mining goals and the project plan. The outputs of this process include: an inventory of
resources, a glossary of terminology , costs and benefits description, a requirements, assump-
tions and constraints description, and a risks and contingencies description.

The process of identification of data mining goals is a sub-class of identification process.
The objective of this process is to determine a specification of the data mining goals and
establish a set of data mining success criteria in order to be able to evaluate the success of
the data mining investigation at hand. The output of this process includes a data mining
goals description and a data mining success criteria description.

The process of data mining project planning is a sub-class of the OBI planning process.
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Figure 7.7: The process of objective identification in OntoDM-KDD.

The objective of this process is to produce a specification of a plan in order to achieve the
data mining and application goals. The outputs of the process include a project plan and a
tools and techniques assessment description.

7.3.3 Data understanding process

The data understanding process starts with an initial data collection, then proceeds with
activities in order to get familiar with the data, to identify the data quality, discover first
insights into the data, etc. In this subsection, we describe the representation and the defini-
tion of the data understanding process in the context of the OntoDM-KDD ontology module
(see Figure 7.8).

The data understanding class is a sub-class of KD phase and represents a planned process.
In the ontological vocabulary, the data understanding process can be defined as a KD phase
that realizes a concretization of a data understanding design, achieves the planned objective
data understanding objective, and has as parts four sub-processes: data collection, data
description process, data exploration, and data quality verification.

The process of data collection is a subclass of the OBI acquisition process. The process
includes the actions of acquisition and access to the project data, listed in the specification
of the project resources. The output of the process includes an initial data collection report .
The report lists the identified datasets, their location, methods used to obtain them and
any encountered problems with the data acquisition.

The data description process is a subclass of the OBI interpreting data process. It
includes the actions of examining the basic properties of the data acquired in the process of
data collection. The output of this process includes a data description report . The report
contains information about the format of the data, the quantity of the data, number of data
records, etc.
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Figure 7.8: The data understanding process in OntoDM-KDD.

The data exploration process is also a sub-class of the OBI interpreting data process
and includes actions of querying and visualization of the data in order to answer some of
the data mining questions that can be addressed just by using those methods. Examples
of such actions include: visualization of the data distribution, identifying relations between
data attributes, performing simple statistical analysis, and others. The output of this process
is a data exploration report that describes the initial findings resulting from the data.

The data quality verification is a sub-class of the OBI validation process and includes
actions of examining the data quality. Examples of such actions include the assessment of
data completeness, data correctness, whether the data contains errors and how common are
the errors, whether there are missing values in the data, etc. The output of this process is
a data quality report . The report contains the descriptions of the results of the data quality
verification, a list of quality problems, and suggestions for possible solutions.

7.3.4 Data preparation process

The data preparation process covers the actions needed to construct a final dataset from
the raw data. This dataset is to be used in the data mining (or modeling) phase. In this
subsection, we describe the representation and the definition of the data preparation process
in the context of the OntoDM-KDD ontology (see Figure 7.9).

The data preparation class is a sub-class of KD phase and represents a planned process.
In the ontological vocabulary, the data preparation process can be defined as a KD phase
that realizes a concretization of a data preparation design, achieves the planned the objective
data preparation objective, and has as outputs a dataset and a dataset description report .
This process has as parts five sub-processes: data selection, data cleaning , data construction,
data integration, and data formatting .

The process of data selection is a sub-class of the SWO information processing process.
In this process, the data analyst (the agent in the process) has to decide on the data to be
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Figure 7.9: Data preparation process in OntoDM-KDD. The green arrows represent has-specified-
input relation. The orange arrows represent has-specified-output relation. The violet arrows
represent is-preceeded-by relation.

used for analysis, having in mind data mining goals, data quality, and constraints on the
quantity of available data. The data selection process involves actions such as selection of
attributes and selection of data examples. The input to the process is some data item, i.e.,
raw data, while the output of this process is an inclusion and exclusion description and the
selected data.

The process of data cleaning is a sub-class of the SWO information processing process
and includes actions the data analyst has to perform in order to arise the data quality to
the level required by the data mining algorithms. The actions include: the selection of clean
subsets of data, the estimation of missing data by modeling, the insertion of values in the
dataset, etc. The input to this process is the selected data. The output of this process is a
data cleaning report and the clean data. In the report, the analyst lists the decisions and
actions taken to address data quality problems and transformations of the data for cleaning
purposes.

The process of data construction is a sub-class of the SWO information processing pro-
cess and includes constructive data preparation actions. Examples of such actions include
the generation of derived attributes, the generation of new data examples, and the transfor-
mation of values of attributes. The input to this process is the clean data, while the outputs
include a derived attributes description, a generated records description, and the constructed
data.

The process of data integration is a sub-class of the SWO information processing process.
This process involves actions of applying the methods that combine and compose information
from multiple sources (e.g., multiple databases) in order to create new data examples or
values of attributes. The input for this task is the constructed data, while its outputs are
the merged data and a merged data description.

The process of data formatting is a sub-class of the OBI data encoding class. This process
involves actions for syntactical transformation of the data, while not changing its meaning,
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for the purpose of using such data with a data mining algorithm that requires a specific
format of the data. The input to this task is the merged data, while its outputs are the
formatted data and a formated data description.

7.3.5 Modeling process

In the modeling process, various data mining algorithms are selected and applied to the
dataset and their parameters are calibrated to optimal values. In this subsection, we give
the representation and the definition of the modeling process in the context of the OntoDM-
KDD ontology module (see Figure 7.10). The modeling class is a sub-class of KD phase and
represents a planned process. In the ontological vocabulary, the modeling process can be
defined as a KD phase that realizes a concretization of a modeling design, and achieves the
planned objective modeling objective. This process has as parts four sub-processes: modeling
technique selection, test design generation, model building , and model assessment .

Figure 7.10: The modeling process in OntoDM-KDD.

The process of modeling technique selection is a sub-class of the selection process. This
process involves the action of selecting a set of modeling techniques (or data mining algo-
rithms) to be used for modeling (or data mining). The output of this task is a modeling
technique description, which specifies the chosen modeling techniques to be used, and mod-
eling assumptions description for each modeling technique separately.

The process of generating a test design is also a sub-class of the selection process. The
process includes actions for specifying the procedure of testing the quality and validity of
the models produced by applying the modeling techniques on a set of data. The output of
this task is a specification of the test design with a plan for training, testing and evaluating
the models including the procedure of how to divide a dataset into a training set, test set
and validation set.

The process of model building is a sub-class of The SWO class information processing .
This process involves the actions of application of a data mining algorithm on the prepared
dataset to create a generalization. The input of this process is a dataset , obtained in the
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process of data preparation. The outputs of this process include a parameter settings de-
scription for each algorithm separately, then the generalization produced by the algorithms,
and finally a model description.

The process of model assessment is a sub-class of the OBI validation process. This
process includes activities for interpretation of the generalizations produced in the task of
model building by using domain knowledge, data mining success criteria, the desired test
design, and the evaluation criteria. The outputs of this process include a model assessment
description and a revised parameter settings description for the next iterative task of building
generalizations, until generalization that satisfies the data mining success criteria is obtained.

7.3.6 DM process evaluation

At this stage in the data mining investigation, generalizations have been built that have high
quality from the perspective of data analysis. The next important step is to evaluate and
review the steps executed to construct the generalization in order to guarantee that it satisfies
the application (or business) objectives. In this subsection, we give the representation and
the definition of the data mining process evaluation in context of the OntoDM-KDD ontology
(see Figure 7.11).

The data mining process evaluation class is a sub-class of KD phase and represents a
planned process. A key objective of this process is to determine if all application objectives
have been satisfied and to what extent, with the final goal to decide how to use the data
mining results. In ontological vocabulary, the data mining evaluation process can be defined
as a KD phase that realizes a concretization of a DM process evaluation design, achieves
the planned objective DM process evaluation objective, and has as output a DM process
evaluation report . This process has as parts three sub-processes: results evaluation, DM
process review , and determining further actions.

Figure 7.11: The class data mining process evaluation in OntoDM-KDD.

The process of evaluating results is a sub-class of the OBI validation process. It includes
actions to assess the degree to which the produced generalization meets the application (or
business) objectives: In contrast, unlike the last subprocess from the process of modeling
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deals with the assessment of the produced generalizations from the perspectives of accuracy
and generality of the generalization. Another part of the evaluation is to test the general-
ization on real test applications. The output of this process includes an assessment of data
mining results description (with respect to application success criteria) and the approved
generalizations (models).

The DM process review is a sub-class of the OBI validation process. It includes the
actions to assess if the data mining engagement is performed adequately. This is done in
order to determine if there is any important factor or task (in the data mining investigation)
performed that has been overlooked. The output of this process includes a process review
description. The description contains a summary of the review and highlighted activities
that have been missed and the ones that need to be repeated.

The process of determining further actions is a sub-class of the OBI planning process.
This process is performed in order to decide whether to finish the data mining investiga-
tion and move to the deployment or to perform additional iterations of other processes. It
includes activities such as analysis of remaining resources and budget that influences de-
cisions. The outputs of this process include a list of actions and decision description, the
latter outlining how to proceed with the data mining investigation.

7.3.7 Deployment process

The creation of a generalization is usually not the end of a data mining investigation. De-
pending on the requirements and the application (or business) objectives, the deployment
phase can variate from a simple report generation to a complex deployment, such as imple-
menting the obtained generalization within some complex system. In this subsection, we
describe the representation and the definition of the deployment process in context of the
OntoDM-KDD ontology (see Figure 7.12).

Figure 7.12: The class deployment in OntoDM-KDD.

The deployment class is a sub-class of KD phase and represents a planned process. In
ontological vocabulary, the deployment process can be defined as a KD phase that realizes
a concretization of a deployment design and achieves the planned objective deployment ob-
jective. This process has as parts four sub-processes: deployment planning , plan monitoring
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and maintenance, final report production, and project review .
The process of deployment planning is a sub-class of the OBI planning process. The

process involves actions for deployment of data mining results into the business application
at hand. The output of this process includes a deployment plan, which summarizes the
deployment strategy.

The process of plan monitoring and maintenance is a sub-class of the OBI planning
process. It involves actions for a careful preparation of a maintenance strategy, to be taken
into account to avoid long periods of incorrect usage of data mining results. The output of
this process is a monitoring and maintenance plan, which summarizes the monitoring and
maintenance strategy including the necessary steps and how to perform them.

The process of final report production is a sub-class of the OBI documenting process. It
involves actions for producing a report with the summary of the data mining investigation,
its results and experiences. The output of this process are the final report and the final
presentation. The final report is a written report of the data mining investigation and it
includes summary of all project deliverables and results. The final presentation is intended
to present the project results at a meeting at the conclusion of the project.

The process of project review is a sub-class of the OBI validation process. It involves
actions of assessing the completed data mining project by identifying the problems, summa-
rizing the positive impacts, and giving suggestions on how to improve the problematic parts
of the project. The output of this process is the experience documentation that summarizes
important experiences made during the project.
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8 Ontology evaluation

In the previous four chapters, we presented the design and implementation of the On-
toDM ontology and its three modules OntoDT, OntoDM-core, and OntoDM-KDD. In this
chapter, we address the issue of their evaluation. In general, there is still no commonly
accepted practice for the evaluation of ontologies. Various approaches to the evaluation of
ontologies are considered in the literature, depending on what kind of ontologies are being
evaluated and for what purpose. First, ontologies can be evaluated by themselves or within
some context. Next, ontologies can be evaluated within an application context (application
based ontology evaluation)(Brank et al., 2005). Finally, ontologies can be evaluated in the
context of an application and a given task (task based ontology evaluation) (Porzel and
Malaka, 2004).

Gómez-Pérez (2004) separates the ontology evaluation procedure into two separate tasks:
ontology verification and ontology validation. Ontology validation is the task of evaluating
whether the ontology has been built correctly. Verification checks the encoding of the speci-
fication and detects errors such as circular class hierarchies, redundant axioms, inconsistent
naming schemes, etc. Ontology verification confirms that the ontology has been built ac-
cording to some specified ontology design criteria. Ontology validation, on the other hand,
is the task of evaluating if the correct ontology has been built. Validation refers to whether
the meaning of the definitions matches with the conceptualization the ontology is meant to
specify.

In this thesis, we first present and discuss the set of ontology metrics used for the OntoDM
ontology and its three modules (Section 8.1). Next, we assess how well the ontology meets
a set of predefined design criteria and ontology best practices (discussed in detail in Obrst
et al. (2007)) (Section 8.2). Furthermore, we assess the ontology towards set of competency
questions (discussed in detail in Grüninger and Fox (1995)) (Section 8.3). Finally, we assess
the OntoDM domain coverage by using a data mining topic ontology constructed in a semi-
automatic fashion from a collection of articles from the domain (Section 8.4).

8.1 Statistical ontology metrics

The use of ontology metrics represents an important approach that can help to assess and
qualify an ontology. There is a variety of ontology metrics available for assessing the on-
tologies (Garcia et al., 2010). In this thesis, we present the statistical ontology metrics used
for the three ontology modules OntoDT, OntoDM-core, and OntoDM-KDD, which can be
obtained from the Protégé software and the BioPortal web service. This includes metrics
such as number of classes, number of individuals, maximum depth, average number of sib-
lings, maximum number of siblings, sub-class axioms count, disjoint classes axioms count,
and annotation assertion axioms count. The statistical ontology metrics are presented in
Table 8.1.

From Table 8.1 we can see several interesting aspects about the proposed ontology.
First, according to the number of classes and individuals we can see that the OntoDM-core
is the best developed module from OntoDM, and also the most complex one if we take into
consideration the maximum depth and the sub-class axiom count. Second, the other two
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Table 8.1: Statistical metrics for the OntoDM ontology modules.

Metrics name
OntoDT
module

OntoDM
core
module

OntoDM
KDD
module

Number of classes 144 760 264

Number of individuals 192 221 0

Maximum depth 1 20 1

Average number of siblings 7 9 11

Maximum number of siblings 21 28 25

Sub-class axioms count 375 1446 521

Disjoint classes axioms count 111 354 53

Class assertion axioms count 189 247 0

Annotation assertion axioms count 398 2871 553

modules (OntoDT and OntoDM-KDD) are less developed parts of the OntoDM which can
be seen from the smaller number of classes and individuals. Next, from the annotation
asseration axioms count we can see that all three ontology modules are heavily annotated
with annotation properties such as comments, definitions, etc. Furthermore, we can also see
from the disjoint classes axioms count that all three ontology modules contain large number
of such axioms, in order to separate classes from one another as if not explicitly stated with
an axiom, the child classes from the same parent are assumed to overlap.

8.2 Ontology assessment towards the design principles

In Chapter 4, we introduced and presented a set of predefined ontology best practices and
design criteria that we intended to use for the development of the OntoDM ontology. After
the ontology has been constructed, we can perform an assessment of the ontology towards
these design principles and ontology best practices in order to see how the finalized ontology
fits them. First, we perform scope and structural assessment (Section 8.2.1). Second, we
perform naming and vocabulary assessment (Section 8.2.2). Next, we perform documen-
tation ans collaboration assessment (Section 8.2.3). Finally, we conclude with availability,
maintenance and use assessment (Section 8.2.4).

8.2.1 Scope and structure assessment

The scope and structure assessment involves assessment of the OntoDM ontology towards
a set of design criteria and ontology best practices that constrain the scope of the ontology
and its structure. This includes: coverage, upper-level ontology, relations, reuse of other
ontologies, modularity, use of disjoint classes, use of single inheritance, is-a completeness,
established domains and ranges of the relations, use of inverse relations, orthogonality with
other ontologies, and instantability. Table 8.2 summarizes the OntoDM assessment towards
this set of principles.

From Table 8.2 we can see that first the OntoDM is general enough to represent mining of
structured data and provides coverage of the complete data mining process for the purpose
of representing data mining investigations. The ontology uses a upper-level ontology BFO, a
set of formal relations, reuses other ontological resources, and it is modular. Regarding the
structure of the ontology, OntoDM extensively uses disjoint classes, which is evident from
statistical metrics presented in Table 8.1. Furthermore, by inspecting the ontology we can
see that it is is-a complete and it uses only single inheritance of classes to reduce possible
inconsistencies and errors in the reasoning process. Since all the relations are formally
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Table 8.2: Scope and structure assessment.

# Principle Assessment

1 coverage
OntoDM provides a representation of data mining in-
vestigations, and it is general enough to represent the
mining of structured data.

2 upper-ontology
OntoDM uses the BFO ontology as an upper-level on-
tology.

3 relations
OntoDM uses relations defined in RO, IAO, EXACT
and OBI. The relations defined in IAO and OBI are
candidates for inclusion into RO.

4 ontology reuse
OntoDM reuses classes and relations from OBI, IAO,
SWO and EXACT.

5 modularity
OntoDM is composed of three ontology modules: On-
toDT, OntoDM-core, and OntoDM-KDD.

6 use of disjoint classes In OntoDM, we extensively use disjoint class axioms.

7
use of single
inheritance

In OntoDM, each class has only one superclass. This
reduces the potential inconsistency and errors in rea-
soning processes.

8 is-a completeness
All the OntoDM classes are connected via the is-a re-
lation. There are no orphan classes.

9
domains and ranges
for relations

Imported relations from RO, IAO and OBI have defined
ranges and domains.

10 inverse relations
Most of the imported relations from RO, OBI, and IAO
have defined inverse relations.

11
orthogonality with
other ontologies

OntoDM is orthogonal to other ontologies already
lodged within OBO.

12 instantability
Some classes from OntoDM have defined instances. In
future work, more extensive population of the ontology
with instances is planned.

defined, all of them have defined domains and ranges and most of them have defined inverse
relations. Finally, OntoDM is orthogonal to other ontologies already in OBO.

8.2.2 Naming and vocabulary assessment

The naming and vocabulary assessment involves assessment of the OntoDM ontology to-
wards a set of design criteria and ontology best practices dealing with naming entities in the
ontology. This includes: the ontology language, the use of annotation properties, annotation
of labels of classes and relations, defining the ontology namespace, naming ontology terms,
multi-lingual capabilities, the use of naming conventions, and referencing of external classes.
Tab. 8.3 summarizes the OntoDM assessment towards this set of principles.

From Table 8.3 we can first see that OntoDM is expresses in OWL-DL ontology language,
which represents a standard in ontology representation. Second, the ontology reuses OBI
consortium meta-data in order to provide heavy annotation of classes and relations, which
is evident from the statistical metrics from Table 8.1. Furthermore, for all classes and
relations we provide label annotations to provide human readable names. The ontology
has its defined namespace and it uses a recommended format for ontology terms, which
is composed of the module name and five digit code. Finally, the ontology follows OBO
Foundry naming conventions, uses the MIREOT principle for referring the external classes,
and at this phase of development still does not provide multi-lingual capabilities.
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Table 8.3: Naming and vocabulary assessment.

# Principle Assessment

1 ontology language
OntoDM is expressed in the W3C standard Web On-
tology Language OWL-DL.

2
use of annotation
properties

We reuse the OBI consortium defined meta-data1 to
provide additional semantic annotation of the classes
and relations

3 label annotations
We use label annotations to provide human readable
names of classes and relations in the ontology.

4 ontology namespace

The ontology has its own namespace http://kt.ijs.

si/panovp/OntoDM#. The classes and relations that are
imported from other ontologies have kept their source
ontology namespace and ID.

5 ontology term IDs

The IDs of the ontology terms are diferent for each on-
tology module and include a combination of an ontology
module ID and a five digit code: OntoDT_xxxxx for the
OntoDT module, OntoDM_xxxxx for the OntoDM-core
module, and OntoDM-KDD_xxxxx for the OntoDM-KDD
module.

6
multi-lingual
capabilities

At this moment the OntoDM ontology does not provide
multi-lingual capabilities.

7 naming conventions
The ontology uses set of naming conventions provided
by the OBO Foundry.

8
referencing external
classes

The external classes are referenced by using the
MIREOT principle.

8.2.3 Documentation and collaboration assessment

The documentation and collaboration assessment involves assessment of the OntoDM ontol-
ogy towards a set of design criteria and ontology best practices dealing with documenting
the ontology and its inclusion into collaborative efforts. This includes: providing defini-
tions of classes and relations, documenting the ontology, and collaboration efforts. Tab. 8.4
summarizes the OntoDM assessment towards this set of principles.

Table 8.4: Documentation and collaboration assessment.

# Principle Assessment

1 definitions
Most of the OntoDM classes have textual definitions.
They are regularly updated and revised.

2 documentation
The ontology is documented on its dedicated web page
and in journal, conference and workshop publications.

3 collaboration efforts
OntoDM participates in the Data Mining Ontology
(DMO) Foundry with the aim of developing a core data
mining mid-level ontology.

From Table 8.4 we can see that most of the OntoDM classes have definitions. Second,
the ontology is well documented on a dedicated web page. Regarding collaboration efforts,
it is a participant in the DMO Foundry with the aim of developing a core DM ontology at
the mid-level.

http://kt.ijs.si/panovp/OntoDM#
http://kt.ijs.si/panovp/OntoDM#
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8.2.4 Availability, maintenance and use assessment

The availability, maintenance and use assessment involves assessment of the OntoDM on-
tology towards a set of design criteria and ontology best practices dealing with testing the
ontology, its availability and use. This includes: use of reasoners, openness and availability,
versioning, established users of the ontology, maintenance, and handling of obsolete classes.
Tab. 8.5 summarizes the OntoDM assessment towards this set of principles.

Table 8.5: Availability, maintenance and use assessment.

# Principle Assessment

1 use of reasoners
To test the class and relations consistency we use the
Pellet reasoner.

2
openness and
availability

OntoDM is open and is available in its web page
http://www.ontodm.com and additionally at BioPor-
tal (http://bioportal.bioontology.org/).

3 versioning
For tracking the changes in the ontology we use the
industry standard Subversion tool

4
users of the
ontology

The ontology has established a set of users. The ontol-
ogy is reused by Expose ontology, and some classes are
imported by the SWO ontology.

5 maintenance
The ontology has a dedicated person that cares about
its maintenance.

6
handling of
obsolete classes

Deleted classes in the OntoDM class hierarchy are listed
under the obsolete class, so that applications based on
them can still use the terms. The domain terms that
have been collected so far but are still not represented
in the ontology are listed under the non-curated class
in the OntoDM class hierarchy.

From Table 8.5 we can first see that the OntoDM ontology uses the Pellet reasoner for
testing class and relation consistency. Second, the OntoDM ontology is open-source and
available on a dedicated web page and on community portals. Next, the ontology uses a
versioning tool to track changes and the ontology has an established set of users, which is
evident from the use case presented in Section 9.5. Finally, the OntoDM ontology has a
dedicated person for maintenance and has a mechanism for handling obsolete classes

8.3 Ontology assessment towards competency questions

Grüninger and Fox (1995) proposed a methodology for the design and evaluation of ontolo-
gies. The methodology proposes to first define the ontology’s requirements in the form of
questions that the ontology must be able to answer, named ontology competency questions.
Next, the terminology of the ontology and its classes and relations should be defined. The
competency questions in this phase represent informal competency questions, since they are
still not expressed in the language of the ontology. Once the informal competency questions
have been posed for the new ontology, then the terminology of the ontology (its classes
and relations) are specified using some first order logical language (e.g., description logics
(Baader et al., 2003)). This language must provide the necessary terminology to formally
restate the informal competency questions. For every informal competency question, there
must be classes, instances and relations in the ontology, which are intuitively required to
answer the question. Furthermore, having the language of the ontology, the competency
questions are defined formally as an entailment with respect to the axioms in the ontology.
Every newly developed ontology must be accompanied by a set of formal competency ques-

http://www.ontodm.com
http://bioportal.bioontology.org/
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tions. This represents a way how to evaluate the ontology and claim that it is adequate.
Finally, ontologies can be distinguished by the competency questions which they are capable
of answering.

For the case of the OntoDM ontology, presented in this thesis, we established a list of
informal competency questions, in the design phase, for all three ontology modules OntoDT,
OntoDM-core, and OntoDM-KDD (see Tables 5.1, 6.1, and 7.1 respectively). Having build
all three ontology modules and expressed them in a formal ontology language based on
description logics (OWL-DL), we can formulate the formal competency questions for each
of the modules and show that the ontology module is capable of solving and answering
the questions it is designed to answer. For that purpose, we formulate the questions using
the SPARQL-DL query language2 (Sirin and Parsia, 2007), where the SPARQL-DL is a
query language for querying OWL-DL ontologies. SPARQL-DL is a subset of the SPARQL
language3. In Table 8.6, we show how the competency questions for the OntoDM-core
module can be formulated in the language of the ontology using the SPARQL-DL language.
The same can be shown for the OntoDT and the OntoDM-KDD modules.

Table 8.6: Formalization of the OntoDM-core competency questions using the SPARQL-DL language.

Qn Query SPARQL-DL representation

1

Which datasets
have data belonging
to a datatype X?

Q1(d):-Type(?d,dataset),

PropertyValue(?ds,is-about,?d),

PropertyValue(?ds,has-part,?datas),

PropertyValue(?datas,is-about,x),

Type(x,datatype).

2

Which data mining
tasks can be for-
mulated on data of
datatype X?

Q2(dmt):-Type(?dmt,data_mining_task),

PropertyValue(?dmt,has-part,?datas),

PropertyValue(?datas,is-about,x),

Type(x,datatype).

3

Which data mining
tasks can be formu-
lated on a dataset
X?

Q3(dmt):-Type(?dmt,data_mining_task),

PropertyValue(?dmt,has-part,?datas),

PropertyValue(?ds,has-part,?datas),

PropertyValue(?datas,is-about,x),

Type(x,dataset).

4

Which data mining
algorithms solve a
data mining task X

Q4(dma):-Type(?dma,data_mining_algorithm),

PropertyValue(?dma,has-part,x),

Type(x,data_mining_task).

5

Which data mining
algorithms are ap-
plicable to data of
datatype X?

Q5(dma):-Type(?dma,data_mining_algorithm),

PropertyValue(?dma,has-part,?dmt),

PropertyValue(?dmt,has-part,?datas),

PropertyValue(?datas,is-about,x),

Type(x,datatype).

continued on next page

2SPARQL-DL: www.w3.org/2001/sw/wiki/SPARQL-DL
3SPARQL-DL: http://www.w3.org/TR/rdf-sparql-query/

www.w3.org/2001/sw/wiki/SPARQL-DL


Ontology evaluation 129

6

What is the set of
the possible gener-
alization types that
are given as output
by solving a data
mining task X on
data of type Y?

Q6(gs):-Type(?gs, generalization_specification),

PropertyValue(?gs,has-part,?datas),

PropertyValue(x,has-part,?datas),

Type(x,data_mining_task),

PropertyValue(?datas,is-about,y),

Type(y,datatype).

7

What is the set of
implementations for
a DM algorithm X
that have a param-
eter Y?

Q7(dmi):-Type(?dmi,data_mining_algorithm_implementation),

PropertyValue(?dmi,is-concretization-of,x),

Type(x,data_mining_algorithm),

PropertyValue(?dmi,has-quality,y),

Type(y,parameter).

8

What is the set
of all generated
generalizations on a
dataset X?

Q8(g):-Type(?g,generalization),

PropertyValue(?g,is-specified-output-of,?dmae),

PropertyValue(?dmae,has-specified-input,x),

Type(x,dataset).

9

Which DM software
toolkit contains an
implementation of a
DM algorithm X?

Q9(dmst):-Type(?dmst,data_mining_software_toolkit),

PropertyValue(?dmst,has-part,?dms),

PropertyValue(?dms,is-about,?dmi),

PropertyValue(?dmi,is-concretization-of,x),

Type(x,data_mining_algorithm).

10

On which computer
has a specific data
mining algorithm X
been executed?

Q10(c):-Type(?c,computer),

PropertyValue(?c,is-agent-of,?dmae),

PropertyValue(?dmae,is-realized-by,?dmo),

PropertyValue(?dmo,is-concretization-of,x),

Type(x,data_mining_algorithm).

11

What is the param-
eter setting of a
given execution of
a data mining algo-
rithm X on a com-
puter Y, having as
input a dataset Z?

Q11(ps):-Type(?ps,parameter_setting),

PropertyValue(?dmo,has-information,?ps),

PropertyValue(x,realizes,?dmo),

Type(x,data_mining_algorithm_execution),

PropertyValue(?dmae,has-agent,Y),

Type(y,data_mining_algorithm),

PropertyValue(?dmae,has-specified-input,z),

Type(z,dataset).

continued on next page
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12

What is the set of
datasets on which
a given generaliza-
tion X has been ex-
ecuted?

Q12(dmst):-Type(?d,dataset),

PropertyValue(?ge,has_specified_input,?d),

PropertyValue(?ge,realizes,?g),

Type(g,generalization).

8.4 Evaluation of domain coverage using a data mining topic
ontology

In this section, we present the evaluation of the domain coverage of the OntoDM ontology
by comparing it with the semi-automatically constructed data mining topic ontology (briefly
described in Section 3.3.2) constructed from a large corpus of data mining papers, using a
tool for semi-automatic ontology construction OntoGen (Fortuna et al., 2007) (See Section
3.3.2). The data mining topic ontology was initially constructed in the context of the e-
LICO project4for assessment of the Data Mining Optimization (DMOP) (see Section 3.2.4)
ontology developed in the project, and was published in a report by (Vavpetič et al., 2011).

In the remainder of this section, we first summarize the process of construction of the
topic ontology (Section 8.4.1). Next, we present the constructed data mining topic ontology
(Section 8.4.2). Furthermore, we present the assessment of the OntoDM ontology with
respect to the topic ontology (Section 8.4.3). The main part of the assessment is to identify
the topics which are not covered by the OntoDM-core ontology, and are covered by the topic
ontology. As a result, we list the main topics that are not represented in the OntoDM and
compare the two ontologies.

8.4.1 Construction of the topic ontology

A topic ontology is a set of topics connected with different types of relations. In this
report, the terms topic, concept and cluster will be used interchangeably, denoting a set of
documents on a given topic. For large enough corpora, the construction of a topic ontology
can be very time consuming. Semi-automated construction can be supported by using
specialized tools, such as OntoGen (Fortuna et al., 2007), used in this work. First, the
process of learning a topic ontology involves generation and preprocessing of a corpus of
papers from the domain of interest. The output corpus should be free of duplicates, noise
and in a correct format required by the software. Next, a topic ontology can be constructed
using the semi-automatic ontology editor OntoGen.

The process of corpus generation is initiated by manually collecting and choosing a set of
web sites and other sources that contain a reasonable amount of data mining and machine
learning publications (documents) to be crawled. Since the corpus had to be unbiased,
websites that focus on covering of only specific sub-fields of data mining should be avoided.
In this case the sources include papers from ECML/PKDD conferences, ICML conferences,
JMLR papers, ACM SIGKDD papers, PASCAL NoE collection of papers, and SIAM data
mining conference. The list of used sources and the physical locations is provided by Vavpetič
et al. (2011).

The next step in the corpus generation included web crawling of the documents available
at the source sites by using the ‘HTTrack’ crawling program5. Additional care was taken to
classify the gathered papers by the year of publication. In some cases, the whole conference
paper set was obtained as a single PDF document containing the complete proceedings.
These files had to be manually split into separate article files. Through the process of
crawling 6350 documents were gathered. During the crawling phase it became evident that

4e-LICO project: http://www.e-lico.eu/
5HTTrack: http://www.httrack.com/

http://www.e-lico.eu/
http://www.httrack.com/
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we may have obtained multiple copies of some papers via various sources. Approximately 220
duplicate papers were removed and we ended with 6,134 distinct PDF documents. Vavpetič
et al. (2011) give the distribution of the documents per year and per source. Next, the PDF
documents were converted into text files. For some documents it was not possible to obtain
the textual converted version and they were filtered out. In addition, documents that were
not written in the English language were excluded as well. Finally, manual inspection was
performed and a final 5885 document corpus was produced at the end.

In order to use the tool for topic ontology construction Ontogen, the data needed to be
additionally prepared in the named-line document format. The named-line document format
consists of a list of documents separated by the new line character. Each line represents one
document and the first word of the document is considered as its title. Due to the size of
the corpus, only the abstract of each paper was used, as the amount of data was simply too
large for sensible use of the OntoGen tool.

The two main design goals of the semi-automatic ontology construction tool OntoGen
(Fortuna et al., 2007) are the visualization and exploration of existing entities from the
ontology, and the addition of new entities or modification of existing concepts using simple
and straightforward machine learning and text mining algorithms. The Ontogen system is an
interactive tool that aids the user’s input during the topic ontology construction process. It
suggests concepts, relations between the concepts, and concept names, automatically assigns
instances to the concepts, visualizes instances within a concept and provides a good overview
of the ontology to the user through concept browsing and various kinds of visualizations.
Finally, the assistance that the system provide to the user is based on the input data corpus.
The data corpus affects the structure of the domain for which the user is building the topic
ontology. The data is usually a document corpus, where ontological instances are either
documents or named entities occurring in the documents. The system supports automated
extraction of instances (used for learning concepts) and co-occurrences of instances (used
for learning relations between the concepts) from the data.

All the documents from the input file were imported into OntoGen as a root concept
which had to be divided into several sub-concepts. OntoGen treats each line of the input
file as a document (in this case it is an abstract of the original document). The concepts
can be extracted from the documents by using k-means clustering, visualization or active
learning with Support Vector Machines (SVM):

• The k-means clustering algorithm (MacQueen, 1967) is used on the documents to
induce several candidate concepts for the expansion of the ontology at each level of
the topic hierarchy. Different values of k (the number of desired clusters) had to be
experimented with to achieve satisfiable results, i.e. compact clusters of documents.
By examining the keywords which represent the given concept, one can derive an ap-
propriate compact cluster. Each of the concepts was divided further from the root
concept separately by selecting such a value of the parameter k, that the concept in-
cluded the documents that belong only to that concept and no other concepts included
the keywords that describe this subconcept. When such a value of k is found for the
first selected subconcept, the process is repeated on the remaining documents.

• Visualization is an alternative method to the k-means clustering. For this purpose,
we can use the OntoGen’s visualization tool. This visualization tool plots all the
documents belonging to a concept to help the user identify further sub-concepts.

• Active learning using SVM can be used for devising sub-concepts. This is a supervised
learning method based on the Support Vector Machines (SVM) algorithm (Cortes and
Vapnik, 1995) and using the active learning approach. For this method the user enters a
query and at each step the learning system asks the user to indirectly provide labels for
the documents by answering questions whether a documents belongs to a given concept
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or not. After some initial labeled sample is collected, the system displays additional
information about the concept. The user can at this point continue answering the
questions or end the process of active learning. The more questions the user answers,
the more correct is the assignment of instances to the final concept, as the user provides
more learning instances to the process of active learning.

8.4.2 Data mining topic ontology

Using the prepared document corpus and the Ontogen tool, we address the task of con-
structing a data mining topic ontology in a semi-automatic fashion, by iteratively building
the is-subtopic-of taxonomy, splitting each concept into sub-concepts. In this way the
number of documents per concept gradually decreases to a point where it is hard to extract
further concepts in a sensible fashion. At this point, we have extracted a topic ontology
of concepts which naturally stems from the given document corpus. The resulting topic
ontology is shown in Figure 8.1.

Figure 8.1: Data mining topic ontology obtained directly from the document corpus using only
k-means clustering. The figure shows the output of the Ontogen software.

After analyzing the initial topic ontology, we concluded that the construction process
needs domain expert input in order to obtain a more consistent and compact topic structure.
By inspecting the concepts, different types of topics were identified. Some topics represented
certain data types (e.g., images, graphs), some represented applications (e.g. bioinformat-
ics) and some represented data mining tasks (e.g., classification) at the same level in the
taxonomy. These were then manually moved and grouped under common super-concepts in
order to achieve a better structure of the ontology. The final constructed semi-automatically
is shown in Figure 8.2.

At a root concept we have machine learning and data mining, which is our topic domain
of interest: all documents belong to this domain. At the first level, we distinguish between:
supervised learning, unsupervised learning, reinforcement learning, complex data, inductive
logic programming, data preprocessing, pattern mining and frequent itemsets and other
data mining approaches. This structure is very much in line with the structure of most of
the textbooks on machine learning and data mining. Each of the concepts at the first level
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is additionally refined at the lower levels. For example, complex data is decomposed into
the following sub concepts: graph, image, music modeling, stream mining, time series and
text. This ontology of topics is in line with the defined tasks of mining complex data and
depends strongly on the type of data that is input to the mining process. At this point,
one could further extend the topic ontology by collecting a corpus of papers for a specific
sub-domain, building a topic ontology and extending the appropriate node of the current
DM topic ontology.

8.4.3 OntoDM domain coverage assessment

Since the data mining topic ontology contains only an is-subtopic-of taxonomy (using only
is-subtopic-of relation) it is very difficult to perform direct comparison with the OntoDM
ontology which does not include such a relation in its relation set. This is why we decided
to perform the comparison at the level of data mining tasks, by examining the data mining
task is-a taxonomy of the OntoDM ontology and comparing it to the list of covered tasks
within the topics identified in the topic ontology. We believe that this mapping of topics
from the topic ontology to tasks in the manually constructed ones is well justified since the
construction of the topic ontology was done by using abstracts and usually the data mining
task addressed in the paper should be clearly stated in the abstract.

The OntoDM ontology contains an explicit taxonomy of data mining tasks, with the
focus on predictive modeling tasks only (see Figure 6.11 in Chapter 6). The OntoDM task
taxonomy has four basic data mining tasks at the top level. These includes tasks as: pattern
discovery task, predictive modeling, clustering, and probability distribution estimation task.
Further on the task taxonomy is developed based on the datatypes of the input data. This is
extensively developed for the task of predictive modeling and more specifically tasks where
the input data has a structured (complex) data type on the target side. The taxonomy
allows the representation of tasks that work on data with arbitrary complex data types
both on the descriptive side and the target side. This is very much in line with the topic
ontology having a separate branch for complex data.

To summarize, this showed to be a positive line of reasoning and most of the identified
topics from the topic ontology can be mapped to some of the OntoDM classes from the task
taxonomy. However, there are some topics that are not represented as tasks in OntoDM.
These include Inductive Logic Programming (ILP), reinforcement learning and the more
extensive representation of mining of complex data. Some of the topics such as ILP, semi-
supervised learning, data stream mining need to be more in detailed studied, to be directly
represented in the OntoDM task taxonomy. Another topics, such as reinforcement learning
is clearly out of scope for the OntoDM ontology. Regarding complex data, the OntoDT
module, which provides representations of the datatypes, is still not developed deep enough
to cover specific data from the application domains such as images, videos, and audio, so
direct mapping from the images topic to the OntoDM tasks, for example, is not possible.
The next step in the future work is to examine the articles present in the topic ontology,
especially those not covered by the OntoDM and try to extract the most important data
mining entities, and represent them adequately in the OntoDM ontology.
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9 Use cases

In previous chapters, we first presented the design and implementation of the OntoDM
ontology (see Chapter 4), then we focused the analysis and discussion of all three OntoDM
modules separately (see Chapter 5, 6, and 7), and finally presented the OntoDM evaluation
(see Chapter 8). In this chapter, we present several use cases for the OntoDM ontology.

The OntoDM ontology can be used to facilitate different applications. These include
applications in the context of automatization of the scientific method (representing and
reasoning about data mining scenarios, workflows and experiments), semantic annotation of
data mining algorithms and software, semantic annotation of articles describing data mining
investigations, use of text mining with the ontology to harvest information about the used
data mining methods from articles, etc. One of the unique features of OntoDM is that due
to its design principles, it can be used in cross-domain applications, such as representing
investigations within the automated drug discovery pipeline, .

In this section we present six use cases of the OntoDM ontology and its modules On-
toDT, OntoDM-core, and OntoDM-KDD. First, we present how OntoDM can be used in
the annotation of algorithms for the purpose of automatic reasoning (Section 9.1). Next,
we present how OntoDM can be used for representing data mining scenarios (Section 9.2).
Furthermore, we describe how OntoDM can be used for annotation of data mining investiga-
tions in application domains (Section 9.3). Next, we focus on demonstrating how OntoDM
can be used to support cross-domain applications, as is the case for the Robot Scientist use
case (Section 9.4). Finally, we conclude this chapter by first focusing on the use of OntoDM
ontology as a mid-level ontology by other ontologies (Section 9.5) and the use of OntoDM
together with text mining for annotation of data mining articles (Section 9.6).

9.1 Annotation of data mining algorithms: The Clus software

In this section, we present the use of the OntoDM ontology for annotation of algorithms for
mining structured data. For that purpose, we discuss the example of annotating an algo-
rithm from the Clus software system1. Clus is a decision tree and rule learning system that
works in the predictive clustering framework (Blockeel et al., 1998). Along with the tradi-
tional data mining tasks, such as classification and regression task, the Clus system contains
implementations of algorithms for mining structured data. This includes tasks such as sin-
gle target and multi-target classification and regression (Blockeel et al., 1998; Zenko, 2007;
Zenko and Dzeroski, 2008; Kocev et al., 2007; Aho et al., 2009), hierarchical classification
(Vens et al., 2008; Schietgat et al., 2010), and time series prediction (Slavkov et al., 2010)
(see Section 6.3.2 for definitions of these tasks). In addition, the Clus system includes an
implementation of algorithm for constraint based induction of multi target regression trees
(Struyf and Dzeroski, 2005), beam search induction of decision trees (Kocev et al., 2006),
and an algorithm for the induction of decision trees with instance level constraints (Struyf
and Dzeroski, 2007).

1Clus: http://dtai.cs.kuleuven.be/clus/

http://dtai.cs.kuleuven.be/clus/
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In Table 9.1, we present a partial list of data mining algorithms implemented in the
system. We present the descriptive and output data specification of the data the algorithm
can be applied on, the data mining task that the algorithm solves and the generalization
type it produces when executed on a dataset. For example, in the context of the OntoDM
ontology, the Clus-ensemble-MTDT algorithm: (1) can be applied on data having tuple of
primitives on the descriptive side, a tuple of booleans or discrete on the output side; (2)
solves a multi-target classification task and (3) when executed on a dataset it produces as
output an ensemble of multi-target classification trees.

In Section 6.3.4 of this thesis, we presented the OntoDM mechanism for representing
knowledge about data mining algorithms for structured data. We can apply this methodol-
ogy for the case of annotating data mining algorithms from the Clus software: (1) for the
purpose of automatic reasoning over the knowledge about algorithms implemented in the
software, and (2) to provide a schema for recording of data mining experiments performed
by the execution of these algorithms in the context of experiment databases for mining
structured data. In this use case, we present an example of how an algorithm from the Clus
software can be annotated the terms from OntoDM.

In Figure 9.1, we present an example anotation of Clus-DAG-HMC algorithm from
the Clus software, using terms from the OntoDM ontology. The CLUS-DAG-HMC algo-

rithm is an instance of DAG-based HC algorithm for multiple path and non-mandatory
leaf node prediction using a global classifier approach class (see Section 6.3.4.3). The
algorithm solves the DAG-based HC task for multiple path prediction and partial

depth labeling (see Section 6.3.2.3). In addition, the algorithm specification states the
type of the generalization produced as output, in this case a hierarchical classification

tree specification instance. It also it specifies the list of actions the algorithm performs
when executed, represented by a CLUS-DAG-HMC action specification instance. Finally,
it specifies the document where the algorithm has been published, represented by the Vens

et al.(2008) journal publication instance.
The data mining task is the objective specification of the data mining algorithm at hand.

The task is defined on data, characterized by a descriptive tuple of primitives as a de-
scriptive data specification, and output DAG with boolean edges and discrete nodes

as output data specification. For example, if we look at a specific dataset instance, e.g.,
dataset ID0001, it is characterized by a dataset specification instance denoting the type of
the dataset e.g., DAG-based HC dataset specification ID001 (see Section 6.3.1.2). This
dataset specification is defined on data having the same data specifications as mentioned
before.

CLUS-DAG-HMC algorithm implementation is an instance of data mining algorithm im-
plementation class and is a concretization of the CLUS-DAG-HMC algorithm. An implemen-
tation has quality parameters (see Section 6.3.4.4). For example, CLUS-DAG-HMC algorithm

implementation has as quality the Wtype parameter instance. This parameter defines how
parents’s class weights are aggregated in DAG shaped hierarchies of classes (see Vens et al.
(2008) for more information).

The CLUS-DAG-HMC module is an instance of the software module class. It is an instance
that is about the CLUS-DAG-HMC algorithm implementation and it has part CLUS-DAG-

HMC module description. The CLUS software is an instance of the software class. It
includes as its parts all of the CLUS modules, for example it includes the CLUS-DAG-HMC

module. In addition, it includes, JAVA programming language instance as a specification
of the programming language in which the software has been implemented, version 2.12

instance as an information about software version, and CLUS source code instance as an
information about the software source code location. Finally, CLUS software instance con-
tains two relations with the organizations that produced the software (the KULeuven and
IJS instances).
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Along with the annotations of the algorithm specifications and implementation, we can
use the OntoDM ontology to annotate the process of execution of an algorithm. This
feature can be taken into account when designing experiment databases that contain also
algorithms for mining structured data. For example, CLUS-DAG-HMC algorithm execution

ID001 is one instance denoting the process of execution of the CLUS-DAG-HMC algorithm.
This instance has as specified input the dataset ID001 instance and produces as output
a the hierarchical classification tree ID001 instance. In addition, the execution
realizes a CLUS-DAG-HMC operator ID001 that is a role of an algorithm implementation in
the context of the execution process. The operator has information about the parameter
setting of each parameter defined by the implementation for the specific execution process
at hand. For example, Wtype parameter setting ID0001 instance is an entity that is a
quality specification of the Wtype parameter instance for the case of this specific algorithm
execution process. In this way, we can use the OntoDM ontology to annotate all three levels
of data mining algorithms: specifications, implementations and applications.

9.2 Representing data mining scenarios

In Section 6.3.6, we presented the OntoDM mechanism for representing data mining sce-
narios, data mining workflows and the process of executing data mining workflows. In this
section, we present examples of use cases in the context of the use of the OntoDM ontology
for representation and annotation of data mining scenarios used in data mining investi-
gations. First, we present a representation of a simple and frequently used scenario for
evaluation of predictive model (Section 9.2.1). Next, we present a representation of a more
complex scenario for comparison of data mining algorithms (Section 9.2.2).

9.2.1 Scenario for evaluation of predictive models

In this section, we will focus on a representation of a data mining scenario for evaluating
predictive models (see Figure 9.2). The predictive model evaluation, in general, includes the
execution of a predictive modeling algorithm on a train set and obtaining a predictive model,
executing a predictive model on a test set and obtaining a predicted set (which includes the
predictions) and process of calculation of the evaluation using the predicted set and the test
set. In the remainder of this subsection we present how this can be formally represented
using the language of the OntoDM ontology.

A predictive model evaluation scenario is a sub-class of data mining scenario. The
scenario is further concretized in a predictive model evaluation workflow . The workflow is
realized in a predictive model evaluation workflow execution, which is a sub-class of planned
process. A predictive model evaluation workflow is a complex entity and contains as parts
three operators that are realized in the process of execution. As we already discussed in
Section 6.3.4.4, an operator represents a role of an implementation of an algorithm in the
context of executing it in a planned process. In this case, the workflow contains the following
operators and/or realizable entities: predictive modeling operator , predictive model , and
OntoDMpredictive model evaluation calculation operatorOntoDM.

Predictive modeling workflow execution is a complex process and consists of three sub-
processes predictive modeling algorithm execution, predictive model execution, and predictive
model evaluation calculation. The sub-processes are connected with a relation preceded-
by, showing the ordering of the processes. The process achieves planned objective an evalua-
tion objective. First, the predictive modeling algorithm execution process realizes a predic-
tive modeling operator . It has-specified-input dataset D1 and has-specified-output a
predictive model (see Section 6.3.4.4). In this case, the dataset D1 has-role of a training
set. Second, the predictive model execution process realizes a predictive model that is the
output of the preceding process. In addition, this process has-specified-input dataset D2
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Figure 9.2: Predictive modeling evaluation scenario.

and it has-specified-output a predicted dataset D2P (see Section 6.3.3.3). In this case,
the dataset D2 has-role of a test set.

Finally, a predictive model evaluation calculation is a planned process, that realizes
a concretization of a predictive modeling evaluation function specification. The evaluation
functions are dependent of the data mining task at hand. Examples of such functions are
root mean squared error (for regression tasks) and accuracy (for classification tasks). The
process has as inputs the test set and the predicted set and gives as output an evaluation
datum. An evaluation datum is-a data item that is-specified-output-of a predictive
modeling evaluation calculation process and represents a value of the evaluation function.

9.2.2 Scenario for comparison of algorithms

OntoDM enables the formal representation of complex data mining investigations and sce-
narios. We will demonstrate this feature of OntoDM on an example DM scenario reported
by Stojanova et al. (2010) in the paper “Estimating vegetation height and canopy cover from
remotely sensed data with machine learning”.
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Stojanova et al. (2010) use a set of data mining algorithms to model forest parameters.
They compare the performance of different data mining algorithms for modeling forest pa-
rameters and discuss the use of the best model to generate forest vegetation maps. Such
vegetation maps are of vital importance for forest management systems. In this work, the
authors use a data mining scenario of the comparison of algorithms performance on the
dataset at hand in order to decide which algorithm performs best on the dataset (see Sec-
tion 3 from (Stojanova et al., 2010)). The OntoDM ontology allows the representation of
such a scenario at different levels of granularity and flexibility (see Figure 9.3).

First, an algorithm performance comparison scenario is modeled in OntoDM as the
subclass of the class information entity that contains basic information about the scenario,
such as its title, author, description, objective, list of actions and the document where
the scenario is published. The scenario is further concretisized as algorithm performance
comparison workflow . A workflow contains operators and other embedded workflows as
parts, and is further realized in the process of workflow execution.

The algorithm performance comparison workflow execution process has two sub-processes:
10-fold cross validation workflow execution and statistical tests calculation. The 10-fold
cross-validation workflow execution is a realization of the 10-fold cross-validation workflow,
while the statistical tests calculation is a realization of the statistical test operator .

The 10-fold cross-validation workflow execution is a complex process and consists of
three sub-processes (see Figure 9.3a): 10-fold sampling process, per-fold validation workflow
execution, and 10-fold cross-validation evaluation calculation. The 10-fold sampling process
has as input the dataset and has as output a set of folds that is further used in the process of
evaluation. The per-fold validation workflow execution performs predictive model evaluation
per fold. The cross validation calculation process takes the output (evaluation datum)
of each per-fold validation and calculates the evaluation datum for the complete cross-
validation process. Finally, the cross-validation workflow is instantiated for each algorithm
separately.

The per-fold validation workflow execution is one of the core processes in this scenario,
and is instantiated for each of the folds (see Figure 9.3b). It is a complex process that
involves the train-test dataset construction, using the set of folds, and the predictive model
evaluation workflow execution (see Section 9.2.1). The latter (see Fig ure 9.3c) includes
the processes of predictive modeling algorithm execution, where a predictive model is built
by executing a DM algorithm on a training set, the process of predictive model execution,
where the predictive model is executed on a test set, and evaluation calculation, where an
evaluation datum is calculated for the desired evaluation function using as input the test
set and the predicted dataset.

To summarize, the description of complex DM scenarios in natural language may be
ambiguous. OntoDM allows unambiguous, semantically defined, and machine-processable
representation of DM scenarios and workflows reported in literature.

9.3 Annotation of data mining investigations

In Chapter 7, we presented the OntoDM-KDD ontology module, which is a part of the
OntoDM ontology that is dealing with the representation of data mining investigations
modeled under the framework of the CRISP-DM methodology. In this section, we present
an example of how the representation mechanism of OntoDM-KDD can be used to annotate
data mining investigations in application domains of data mining. For this purpose, we
focus on a data mining investigation titled “Estimating forest properties from remotely
sensed data using data mining” summarized in a journal article by Stojanova et al. (2010),
that was partially discussed in Section 9.2.2, where the focus was only on modeling the data
mining scenario, which is just a small part of the complete investigation.

The data mining investigation described in the article by Stojanova et al. (2010) aims
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at modeling forest properties, such as vegetation height and canopy cover, from remotely
sensed data, by using data mining algorithms. The final goal of this investigation is to use the
models of the properties to generate forest maps that can be deployed in forest management
and forest decision support systems. The data mining investigation includes: the study of
the application domain; a collection and generation of data for the process of modeling;
preparation of the data for the process of modeling; modeling of the forest properties;
evaluation of the modeling process and deciding on the best model; generation of the forest
property maps; and finally deployment of the generated maps in forest management systems.

In Figure 9.4, we present a part of an annotation of a the data mining investigation
summarized in Stojanova et al. (2010) journal article, using the OntoDM-KDD ontology
module. First, we define DM Investigation ID0001 as an instance of the DM investigation
class. As we discussed in Section 7.3.1, a data mining investigation has as parts a planning
process, a documenting process, and a KD phase execution process (or its child classes). For
the case of our investigation, we define instances of these classes such as planning ID001,
documenting ID001, and instances of the subclasses of KD phase execution. These in-
clude application understanding ID001, data understanding ID001, data prepara-

tion ID001, modeling ID001, DM process evaluation ID001, and deployment ID001.
In addition, ‘Estimating forest properties from remotely sensed data’ denotes
the investigation and represents its title. Finally, we define the investigation descrip-

tion ID001 instance that is-about the investigation and represents its description.
The documentation process has-specified-output a publication about an investiga-

tion, which represents an entity that is-about an investigation. Publication about an

investigation ID001 is an instance od this class and is used to represent the Stojanova
et al. (2010) journal article. In addition, this instance has as parts document part in-
stances (see Section 4.2.2.1), such as abstract ID001, author list ID001, institution
list ID001, introduction to a publication about an investigation ID001, meth-

ods section ID001, results section ID001, discussion section of a publication

about an investigation ID001, conclusion to a publication about an investiga-

tion ID001, and references section ID001. Finally, ‘Estimating vegetation height

and canopy cover from remotely sensed data with machine learning’ denotes the
publication and represents its title.

The introduction part of the article, represented by the introduction to a publi-

cation about an investigation ID001 instance, is-about the application understand-
ing process. It has as parts descriptions that are outputs of processes that compose the
application understanding process. For example, the introduction includes description in-
stances such as application background description ID001, application objectives

description ID001, and application success criteria description ID001. These
descriptions are instances of the textual entity class and are outputs of the application

objective identification ID0001 process instance. The same holds also for the other
process instances that compose the application understanding process.

The methods section, represented by the methods section ID001 instance, contains
parts that are about the data understanding process, the data preparation process and
modeling technique selection (as a sub-process of modeling). More specifically, it contains
description of the study area (the Kras region), data sources (LiDAR and Landsat), data
descriptions (descriptive and output variables), and description od the data mining tech-
niques to be used. These descriptions are outputs of the the sub-processes of data under-
standing and data preparation, and the modeling technique selection process (for simplic-
ity/readability reasons Figure 9.4 contains only the upper level processes).
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Figure 9.4: Part of an annotation of a data mining investigation summarized in a journal article with
terms from the OntoDM ontology.
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The results the section, represented by the results section ID001 instance, contains
parts that are about test design generation process, the model building process, and the
model assessment process. These are all sub-processes of modeling. More specifically, it
contains description of the experimental design, data mining algorithms applied, evalua-
tion procedure and results (best models in terms of predictive performance and maps of
vegetation height and canopy cover for the best model). These descriptions are outputs
of the sub-processes of test design generation, model building and model assessment (for
simplicity/readability reasons Fig. 9.4 contains only the upper level processes).

The discussion section, represented by the discussion section of a publication

about an investigation ID001 instance, contains parts that are about a results evalu-
ation process, a sub-process of a DM process evaluation. More specifically, it contains
descriptions of a comparison of the performances of all applied data mining techniques, a
comparison to previous work, and a discussion of the produced maps of vegetation param-
eters.

The conclusion section, represented by the conclusion to a publication about an

investigation ID001 instance, contains parts that are about the deployment process and
determining further actions process, a sub-process of DM process evaluation. More specifi-
cally, it contains a summary of contributions, a description of the deployment of the produced
maps, and a description of envisioned future work.

9.4 The Robot Scientist use case: An ontology-based repre-
sentation of QSAR modeling for drug discovery

Quantitative Structure Activity Relationship (QSAR) modeling is one of the key components
of the drug discovery pipeline. A QSAR modeling algorithm is usually a DM algorithm. It
receives as input a description of compounds with associated pharmacological activities and
outputs a predictive model of activity. The modeling process provides a mapping from the
structure of compounds to their activity.

The current representation of modeling and evaluation of industrial QSARs (such as
OpenQSAR2) does not allow the recording of all necessary information for the evaluation of
predictive models. Industrial QSARs are also limited to feature-based labeled datasets with
primitive output. Typically, compound descriptors are used as features on the descriptive
side and the activity of the compound on the selected biological target on the output side.

The OntoDM ontology was designed to support, among others, the representation of
the QSAR modeling process for the Robot Scientist project3. A Robot Scientist ”Eve” is
an automated laboratory designed to carry out autonomous drug discovery investigations.
Eve offers an intelligent and economical approach for lead compound discovery. It is able to
switch from mass screening to QSAR automatically controlled by active machine learning
techniques. Eve avoids the use of a large compound library and the screening of all available,
often costly, chemical compounds.

Eve can detect the pattern in compound structures during mass screening, compare it
with background knowledge, determine what compounds are most likely to have high activ-
ity, and experiment further with such compounds. Eve works not only with the conventional
representation of chemical compounds as a table of features, but also with an innovative
relational representation of chemical structure (King et al., 1996). One of the goals of the
Robot Scientist project is to compare the effectiveness of various data mining algorithms,
including inductive and active learning, on different representations of datasets.

The DDI ontology (for Drug Discovery Investigations) has been developed to support
the recording of data and metadata generated by Eve in a formally defined semantic form

2OpenQSAR: www.openqsar.com/
3Robot Scientist Project: www.aber.ac.uk/en/cs/research/cb/projects/robotscientist/

www.openqsar.com/
www.aber.ac.uk/en/cs/research/cb/projects/robotscientist/
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Figure 9.5: QSAR modeling for drug discovery investigations with OntoDM and DDI.

(Qi et al., 2010). OntoDM and DDI were built upon the same design principles, share
the same set of relations, and are based on the same upper level classes, and therefore
are fully interoperable. These ontologies can be downloaded together, i.e., into Protege,
and used to represent the principal entities for the recording of QSAR modeling. The
OntoDM ontology enables accurate recording of all key aspects of the use of data mining for
QSAR modeling. It provides logically defined semantic representations of datasets, complex
datatypes (propositional and graph-like), QSAR algorithms, predictive modeling tasks, and
QSAR model evaluations within the context of a drug discovery investigation.

In Figure 9.5, we present an upper-level overview of the representation of the QSAR
process using both OntoDM (unmarked boxes) and DDI (boxes with the mark DDI:). The
class QSAR process is modeled in DDI as a part of the class investigation process, and
has-agent a robot . The QSAR process has two sub-processes: QSAR dataset construction
and QSAR evaluation workflow execution process.

The QSAR dataset construction process is performed by an autonomous agent - the
robot scientist Eve. The robot collects input data about compounds from a compound
structure database and compound activity information from the mass screening assays. The
output of this process is a QSAR dataset . A QSAR dataset is-a dataset and it inherits all
the properties of the OntoDM dataset class. The power of the OntoDM representation of
structured data allows accurate recording of molecular structures by structured datatypes.

The process of QSAR evaluation workflow execution is a complex process that involves
building of a QSAR model on training data, executing the model on test data and calculation
of evaluation functions. OntoDM allows the precise recording of the evaluation process and
its specifications (e.g., parameter settings of operators). Finally, OntoDM can be further
used for automated selection of QSAR algorithms based on selected tasks and types of
generalizations (linear models, decision rules, regression trees, neural networks) and available
datasets.
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9.5 OntoDM-core as a mid-level ontology: the Expose ontol-
ogy

There is a pressing need for storing machine learning experiments and their results in pub-
lic databases. Currently, thousands of machine learning research papers contain extensive
experimental results, but details of those experiments are often lost after publication. This
makes it impossible to reproduce, reuse, or compare such experiments. Vanschoren et al.
(2012) have addressed this need by the implementation of a machine learning experiment
database that at present holds over 650,000 experiments: “Experiments are automatically
transcribed in a common language” and “are uploaded to pre-designed databases where they
are stored in an organized fashion: the results of every experiment are linked to the exact
underlying components (such as algorithm, parameter settings and dataset used)”. This
common language (ExpML), the database design and an overall framework are based on the
ontology Exposé (Vanschoren et al., 2012). Exposé, in turn, uses OntoDM as a mid-level
ontology (see Figure 9.6).

Figure 9.6: The reuse of OntoDM classes by Expose.

Exposé and OntoDM follow the same design principles and therefore are fully interopera-
ble. Exposé reuses the OntoDM three representational levels (specification, implementation,
and application). Moreover, it reuses and further extends the classes related to algorithms:
algorithm specification, algorithm implementation and algorithm execution (or application)
for the tasks of supervised classification and regression. In addition, it reuses the OntoDM
classes representing primitive datatypes, constraints, predictive models, mathematical func-
tions, and evaluation measures.

The machine learning experiments database not only collects all the details on the ex-
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periments, performed and shared by many researchers, but also enables a wide range of
new interesting research queries for future extensive studies. In the future, we envision the
extension of Exposé (and experiment databases) to cover the description of experiments for
mining structured data: This will involve reusing the OntoDM mechanism and taxonomies
for representing structured datasets, DM tasks, generalizations, and DM algorithms.

9.6 The text mining use case: annotation of DM articles

Ontologies are widely used in text mining for a number of tasks, e.g., named entity recogni-
tion (NER), disambiguation of terms, event extraction, and others. OntoDM, as a generic
ontology for the scientific domain of data mining, can assist in text mining of DM articles.
It can do so by providing the terminology to describe DM investigations.

We will demonstrate the usability of OntoDM for text mining on an example paper by
Ford et al. (2004) from the ART Corpus of Biochemistry papers4. The CheTA (Chemistry
using Text Annotations) project by the UK National Centre for Text Mining5 used the Open-
Source Chemistry Analysis Routines (OSCAR) toolkit for NER in chemistry publications
to annotate papers from the ART Corpus. OSCAR employs domain ontologies to support
annotation and three OBO ontologies, ChEBI, FIX, and REX, were used in the CheTA
project. However, depending on the goals of annotation, i.e., identification of most popular
methods for prediction of biological activity of compounds and extraction of information
about such methods, or reasoning about molecular descriptors and chemical diversity, it
may be desirable to use other domain specific ontologies (such as OntoDM).

The considered paper by Ford et al. reports on QSAR studies with a new molecular de-
scriptor EVA. OntoDM could assist in NER of QSAR modeling terms, such as training/test
set , regression model , cross-validation, while the OBO ontologies would fail to do so. The
paper has three instances of the class cross-validation: Leave-One-Out Cross-Validation,
Leave-n-Out Cross-Validation, and Leave-Group-Out Cross-Validation. It also has two in-
stances of the class regression model : PLS regression model and QSAR regression model;

The paper further concernes three instances of the class dataset : the Calcium Channel
Agonist data set, 36 compound data set, and proprietary data sets (Shell Research Ltd., the
former Sittingbourne Research Centre). It also has several statements about training/test
set : ”test set of 76 compounds” and ”the training set is comprised of the same number of
well-defined components”. OntoDM could also assist in the recognition of other DM relevant
terms, i.e., ”robustness of the model” is a generalization quality and ”model validity” is
a generalization evaluation. OntoDM may be used for reasoning over recognized entities
through the defined relations between those entities.

Furthermore, OntoDM may assist in the disambiguation of terms. For example, the term
EVA was classified by OSCAR as a chemical compound with a likelihood 0.22. OntoDM,
on the other hand, recognizes ”biological activity EVA” as an instance of the class feature
via the synonym ”molecular descriptor”.

4Art corpus: www.aber.ac.uk/en/cs/research/cb/projects/art/art-corpus/
5NACTEM centre: www.nactem.ac.uk/cheta/

www.aber.ac.uk/en/cs/research/cb/projects/art/art-corpus/
www.nactem.ac.uk/cheta/
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10 Conclusions

In this thesis, we propose a reference modular ontology for the domain of data mining
OntoDM. The ontology is composed of three modules covering different aspects of data
mining - OntoDT, OntoDM-core, and OntoDM-KDD. The OntoDT module supports the
representation of knowledge about datatypes and is based on an accepted ISO standard for
datatypes in computer systems. The OntoDM-core module formalizes the key data mining
entities needs for representing the mining of structured data in the context of a general
framework for data mining. The OntoDM-KDD module formalizes the knowledge discovery
process, supports the representation of data mining investigations: It is based on the CRISP-
DM process model, where CRISP-DM stands for Cross Industry Standard Process for Data
Mining.

The OntoDM ontology is designed and implemented by following ontology best prac-
tices and design principles. It includes an upper-level ontology BFO as a template, uses
formally defined relations from RO and other state-of-the-art ontologies, and reuses classes
and relations from other ontologies for representing scientific investigations, such as OBI,
IAO, EXACT, and SWO, having them as mid-level ontologies. In addition, we proposed a
three-level description structure (specification, implementation, application) for represent-
ing entities from the domain of data mining, where each description level represents classes
with fundamentally different nature. Finally, the ontology is developed in a general fashion
in order to be used as a mid-level ontology and can be easily extended further by other
ontologies that focus on a specific part of the data mining domain.

The OntoDM ontology supports a large variety of applications, as demonstrated by the
use cases presented. OntoDM supports the annotation and representation of data mining
algorithms, data mining scenarios, and data mining investigations. Furthermore, it provides
support for representing the Quantitative structure-activity relationship (QSAR) modeling
process in the context of Drug Design Investigations. Finally, the OntoDM ontology can be
used as a mid-level ontology and combined with text mining to support the annotation of
articles containing data mining terms.

10.1 Contributions: The OntoDM ontology of data mining

The major contribution of this thesis is the OntoDM ontology. The work presented in this
thesis comprises several contributions to the area of data mining, knowledge discovery in
databases, and applied ontology. After performing a State-of-the-Art literature survey on
ontologies for representing scientific investigations and ontologies in the domain of data
mining, we made the following contributions:

1. We designed and implemented a modular reference domain ontology of data mining On-
toDM, composed of three modules OntoDT, OntoDM-core, and OntoDM-KDD. Due
to the use of the upper-level ontology BFO and the extensive reuse of classes from the
OBI and the IAO mid-level ontologies, we proposed a three-level description structure
for representing scientific investigations that includes the specification level (represent-
ing information entities), the implementation level (representing realizable entities),
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and the application level (representing processual entities). Each description level rep-
resents classes with fundamentally different nature explicitly shown with a sub-class
relation to an upper-level category, and consequently covers different aspects of the
domain of interest. The ontology is implemented in the OWL-DL language, developed
with the Protege tool, and available online at http://www.ontodm.com.

(a) We designed and implemented an ontology module for representing knowledge
about datatypes OntoDT, based on the ISO 11404 standard for general purpose
datatypes. The ontology module contains:

• Representation of datatypes, datatype qualities, and datatype characterizing
operations.

• Taxonomy of datatypes, datatype qualities and characterising operations.

• Generic mechanism for representing arbitrarily complex datatypes.

(b) We designed and implemented an ontology module for representing knowledge
about the core data mining entities for representing mining structured data OntoDM-
core, in a context of a general framework for data mining. This module contains:

• Representation of datasets, dataset specifications, and a taxonomy of datasets.

• Representation of data mining tasks, a taxonomy of fundamental data mining
tasks, a taxonomy of predictive modeling tasks, and a taxonomy of hierar-
chical classification tasks.

• Representation of generalizations in a three-level description structure, a tax-
onomy of generalizations, and a taxonomy of predictive models.

• Representation of data mining algorithms in a three-level description struc-
ture, a taxonomy of data mining algorithms, a taxonomy of predictive mod-
eling algorithms, and a taxonomy of hierarchical classification algorithms.

• Generic structure for representing algorithms in computer science.

• Representation of constraints, constraint-based data mining tasks, a taxon-
omy of constraints, and a taxonomy of constraint based data mining tasks.

• Representation of data mining scenarios in a three-level description structure.

(c) We designed and implemented an ontology module for representing knowledge
about data mining investigations OntoDM-KDD, based on the CRISP-DM method-
ology. This module contains:

• Representation of data mining investigations in a three-level representation
structure.

• Representation of the phases in a data mining investigation (such as appli-
cation understanding, data understanding, data preparation, modeling, DM
process evaluation, and deployment) in a three-level representation structure.

• Representation of the inputs and outputs of the different phases of a data
mining investigation, such as descriptions and reports.

We preformed evaluation of the OntoDM ontology and its modules OntoDT, OntoDM-
core and OntoDM-KDD. First, we assessed the ontology by discussing the values of
the ontology metrics calculated for the ontology and its modules. Next, the evalua-
tion was performed by assessing the ontology towards a set of design principles and
best practices, and assessing whether the competency questions be formalized in the
language of the ontology. In addition, we provided a domain coverage assessment by
comparing with a data mining topic ontology.

http://www.ontodm.com
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2. We demonstrated the use of the OntoDM ontology on six different use cases. These
include the:

(a) Use of OntoDM for annotating of data mining algorithms.

(b) Use of OntoDM for representing of data mining scenarios.

(c) Use of OntoDM for annotating of data mining investigations.

(d) Use of OntoDM along with the DDI (Drug Design Investigation) ontology for
supporting ontology-based representation of QSAR modeling in drug discovery
within the context of The Robot Scientist project.

(e) Use of OntoDM by other users as a mid-level ontology for representing experi-
ments in machine learning.

(f) Use of OntoDM to support the annotation of data mining articles using text
mining.

The novelties that the OntoDM ontology introduces and what distinguishes it from other
related ontologies are the facts that it allows representation of mining of structured data
and the general process of data mining in a principled way, it is based on a theoretical
ontological framework and due to this it can be connected to other domain ontologies to
support cross-domain applications. The OntoDM ontology is also the first ontology that
supports the representation of the complete process of knowledge discovery.

10.2 Advantages of OntoDM over existing data mining on-
tologies

In this section, we present a critical comparison of the OntoDM ontology, proposed in
this thesis, over other developed ontologies (Bernstein et al., 2005; Žáková et al., 2010;
Diamantini and Potena, 2008; Kietz et al., 2009; Cannataro and Comito, 2003; Brezany
et al., 2007; Hilario et al., 2009; Vanschoren et al., 2012), described in more detail in Section
3.2.

If we first analyze the ontological aspects of these ontologies, almost all existing ontologies
of data mining are not explicitly aligned to any upper-level ontology and do not use a set of
formal community agreed (or logically defined) relations. This leads to the non-compatibility
of ontologies and to ontologies that can not be easily reused and extended. An exception is
the Expose ontology (Vanschoren et al., 2012), which is based on the same design principles
as OntoDM and even uses it as a mid-level ontology. In addition, no assessment has been
performed for any of the existing ontologies of DM.

The strength and the advantages of the OntoDM ontology in this sense is that it is based
on a theoretical ontological framework (that includes upper-level ontology, formal relations,
and extensive reuse of already developed resources) that allows easy extensions and reuse
as demonstrated in Section 9.5, This allows an easy connection to other domain ontologies
to support cross domain applications as demonstrated in Section 9.4. Finally, OntoDM has
been thoroughly evaluated using principles from ontology engineering.

Regarding the domain coverage aspect, other proposed ontologies deal mostly with rep-
resentation of mining propositional, single table, data with primitive attributes as datatypes
and focusing on predictive data mining tasks, such as classification and regression. An ex-
ception is the KD Ontology (Žáková et al., 2010) that includes some very specific relational
mining tasks and algorithms. None of existing ontologies of DM provide a flexible mecha-
nism for extension and generalization toward representing data mining tasks and algorithms
for mining structured data.

The strength and advantage of the OntoDM ontology in this sense is that it is devel-
oped in a general fashion to provide the representation of mining of structured data (e.g.,
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structured output prediction) and constraint based data mining. It is easily extendable to
cover new data mining tasks and algorithms that operate on data from arbitrarily complex
datatypes (provided by the OntoDT module). The weakness of the OntoDM ontology in
this phase of development is that it does not contain large number of instances. For this
purpose other developed ontologies can be reused (such as DMOP and Expose), especially
for the single table data mining tasks and algorithms.

In the context of representation of the complete knowledge discovery process, most of
the ontologies focus only on representing the modeling phase. Some of the ontologies, such
as DMOP (Hilario et al., 2009) and Expose (Vanschoren et al., 2012), also provide enities
that cover the data preparation phase of a KDD process, but do not provide ontological
support for the complete KDD process. The strength of the OntoDM ontology in this
context is that it provides support for representation of the complete knowledge discovery
process (i.e., data mining investigations) from the application understanding phase to the
final deployment phase; through the OntoDM-KDD module.

10.3 Public availability of OntoDM

The OntoDM ontology, presented in this thesis, was developed as an open source ontology.
We have created a dedicated web page http://www.ontodm.com where we provide up to date
versions of the ontology and support information about the ontology, such as publications.
In addition, to promote the ontology within the application domains (mostly biological and
biomedical) of data mining, the ontology is also available from the BioPortal1. The BioPor-
tal offers the possibility of obtaining ontology metrics and provides excellent visualization
capabilities.

10.4 Future work

In future developments of the OntoDM ontology, outlined in this thesis, we plan to focus on
several aspects. First, we plan to align and map our ontology to other upper-level ontologies
such as YAMATO (Mizoguchi, 2010) and GFO (Herre et al., 2006). For example, a mapping
to YAMATO would additionally provide OntoDM with the possibility of representing change
(e.g., in the case of dynamic datasets), more expressiveness for representing events, and a
well developed framework for dealing with representations. Second, the design of an ontology
of data mining, that focuses on information, and not physical entities (as is the case in the
biomedical domains) reveals the need of organizing and establishing a separate ontology of
relations between information entities. Such an ontology would import relations from the
current State-of-the-Art ontologies such as OBI, IAO, SWO, and RO relational ontology,
and would modify their definitions to directly support information entities (e.g., modify
and extend the has-part relation with has-information-part). We have already started
developments along these lines (Soldatova et al., 2012). Next, the relation ontology for
informational entities would be extended with specific relations required by the domain of
application. For example, the OntoDM ontology would require the has-member relation,
which is the relation between a set and its members, to specifically denote that a dataset
has-member data examples. Finally, we will provide an alignment of OntoDM to the newly
proposed ontology of relations for information entities.

In the context of data mining entities, we plan to extend the established ontological
framework for representing entities about components of data mining algorithms, such as
distance functions and kernel functions. This would enable the formulation of a taxonomy
of distance and kernel functions based on the information about the type of data. Next, we
want to populate the ontology downward with instances. In that context, having in mind the

1BioPortal: http://bioportal.bioontology.org/

http://www.ontodm.com
http://bioportal.bioontology.org/
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generality of the OntoDM ontology with respect to different datatypes, and treating single-
table data mining as a special case, we can import terms from other ontologies representing
data mining entities: Several such ontologies are being actively developed and treat in detail
different aspects of single-table data mining, e.g., DMOP (Hilario et al., 2009) and Exposé
(Vanschoren and Soldatova, 2010). Importing terms from the DMOP ontology directly is
more difficult, since the ontology has a larger set of incompatible relations that are not
based on upper-level classes, so ontology mapping would need to be performed to establish
a relationship between the two ontologies. Importing classes from the Exposé ontology
is more straightforward as this ontology is built on the same principles as OntoDM and
even uses some of the OntoDM classes. Finally, we want to use the OntoDM framework
to support the representations of dynamical systems, their behavior and predictive models
such as systems of ordinary differential equations.

In the context of applications, we plan to employ OntoDM ontology to further support
cross-domain applications, as is the case with The Robot Scientist application. We also want
to develop in more detail the application for annotating data mining investigations, with the
ultimate goal of providing a tool for this purpose having as a backbone the OntoDM ontology.
We further want to extend the experiments database framework proposed by Blockeel (2006)
and implemented by Blockeel and Vanschoren (2007) (for the case of classification and
regression), for the general case of representing experiments for mining structured data,
again having as backbone the OntoDM ontology. Finally, having built the ontology in a
modular fashion every ontology module can be used independently as a separate ontology.
In particular, we expect OntoDT to have a variety of applications in different application
areas: Extensions of OntoDT towards better descriptions of datatypes used in bioinformatics
would thus be derived.

We would like to include more contributors from the domain of data mining into the
development of OntoDM and the discussion about how to represent data mining entities.
Hopefully, this would lead to the development of standards for the domain, as is the case in
biomedical domains. In November 2010, the OntoDM, DMOP and Exposé ontology projects
have formed the DMO (Data Mining Ontologies) Foundry with the aim of developing the
DMO Core ontology which will standardize the formal definitions of principal data mining
entities such as algorithm, implementation, application, task, dataset, datatype, etc. Finally,
applying the OntoDM design principles to the development of ontologies for other areas of
computer science, is one of the most important long term objectives of our research.
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• Džeroski, S.; Panov, P.; Ženko, B. Ensemble methods in Machine Learning. In: Mey-
ers, R. (ed.) Encyclopedia of complexity and systems science 6, 5317–5325 (Springer,
2009)



175

Appendix 2: Biography
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