
BEHAVIOR MODELING BY COMBINING MACHINE

LEARNING AND DOMAIN KNOWLEDGE

Violeta Mirchevska

Doctoral Dissertation
Jožef Stefan International Postgraduate School
Ljubljana, Slovenia, September 2013

Evaluation Board:
Prof. Dr. Bogdan Filipič, Chairman, Jožef Stefan Institute, Ljubljana, Slovenia
Prof. Dr. Vladislav Rajkovič, Member, Faculty of Organisational Sciences, University of Maribor, Kranj, Slovenia
Prof. Dr. Jurij Tasič, Member, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

Violeta Mirchevska

BEHAVIOR MODELING BY COMBINING MA-

CHINE LEARNINGAND DOMAIN KNOWLEDGE

Doctoral Dissertation

MODELIRANJE OBNAŠANJA S KOMBINIRA-

NJEM STROJNEGAUČENJA IN DOMENSKEGA

ZNANJA

Doktorska disertacija

Supervisor: Prof. Dr. Matjaž Gams

Co-supervisor: Dr. Mitja Luštrek

Ljubljana, Slovenia, September 2013

v

Contents

Abstract vii

Povzetek ix

1 Introduction 1

1.1 Hypothesis and Purpose . 4

1.2 Scientific Contributions . 5

1.3 Overview of the Dissertation Structure . 5

2 Related Work 7

2.1 Incorporating Expert Domain Knowledge into the Learning Process of
Inductive Machine Learning Algorithms . 7

2.1.1 Using Domain Knowledge to Prepare Training Examples 7

2.1.2 Using Domain Knowledge to Initialize the Hypothesis or Hypothesis
Space . 9

2.1.3 Using Domain Knowledge to Alter the Search Objective 10

2.1.4 Using Domain Knowledge to Augment the Search 11

2.2 Interactive Data Mining . 12

2.3 The Dissertation’s Contribution in the Context of the Related Work 13

3 Machine Learning and Expert Domain Knowledge 15

3.1 Inductive Machine Learning . 15

3.2 Is the Training Data Enough for Successful Learning? 17

3.3 Eliciting Expert Domain Knowledge in Inductive Machine Learning 21

3.3.1 Incorporating Expert Domain Knowledge in the Learning Process of
Inductive Machine Learning Algorithms 22

3.3.2 Interactive Data Mining . 23

3.4 Inductive Machine Learning with Expert Domain Knowledge 24

4 Motivating Domains 25

4.1 Behavioral Cloning . 25

4.2 Posture Recognition . 27

4.3 Fall Detection . 28

5 CDKML – A Method for Combining Domain Knowledge and Machine
Learning for Classifier Generation and Online Adaptation 31

5.1 The Classifier . 32

5.2 Initialization . 34

5.3 Refinement . 36

5.4 Online Adaptation . 40

vi Contents

6 Evaluation 47
6.1 Behavioral Cloning . 47

6.1.1 The Serious Game . 47
6.1.2 Data . 48
6.1.3 Evaluation of CDKML in the Absence of Domain Knowledge 48

6.2 Posture Recognition . 52
6.2.1 The Confidence System . 52
6.2.2 Data . 53
6.2.3 Evaluation of a Classifier Constructed by a Domain Expert Using

Interactive Data Mining . 54
6.2.4 Comparison of CDKML’s Performance to the Performance of Machine

Learning . 59
6.3 Fall Detection . 61

6.3.1 Comparison of CDKML’s Performance to the Performance of Machine
Learning . 62

6.3.2 Evaluation of CDKML’s Online Classifier Adaptation 66
6.4 Discussion . 70

7 Conclusions 73

8 Acknowledgments 75

9 References 77

List of Figures 85

List of Tables 87

List of Algorithms 89

Appendix A: Bibliography 93

Appendix B: Biography 95

vii

Abstract

In the last two decades a range of successful machine-learning applications emerged as large
amounts of archived data become available for many real-world problem domains. Credit-
card fraud detection, optical character recognition and book recommendations are just a few
examples. Machine learning algorithms may automatically extract comprehensive concept
models solely from concept examples, finding even patterns which are too subtle to be
detected by humans. However, their performance greatly depends on the quality and the
completeness of the available concept examples.

The dissertation proposes a novel method, named CDKML (Combining Domain Know-
ledge and Machine Learning), for classifier generation in the case of scarce data. We assume
there are at least two reasons for scarce data: (1) sufficient general-purpose data may be
costly or otherwise difficult to obtain, possibly due to great domain variation, and (2)
general-purpose data may be inappropriate for some deployments, for example, because
they are user-specific. CDKML incorporates domain knowledge in the learning process
for the purpose of overcoming the challenges posed by insufficient general-purpose data.
Domain knowledge may contain information on a domain not captured by the available
concept examples. It thus complements machine learning. For the purpose of overcoming
the challenges posed by lacking deployment-specific data, CDKML utilizes user feedback.
User feedback is given occasionally and contains information about false negatives (i.e., the
system did not detect the class of interest when there was one) or false positives (i.e., the
system detected the class of interest when there was none).

CDKML consists of three phases: initialization, refinement and online adaptation. The
goal of the first two phases (initialization and refinement) is to create a general-purpose
classifier under expert supervision. In the initialization phase, an expert specifies a set
of patterns important for distinguishing the concept of interest. The patterns may be
extracted from domain knowledge or be obtained using interactive data mining. In the
refinement phase, an optimization algorithm is used for finding the most suitable general-
purpose pattern-parameter values by maximizing the classifier’s accuracy on the available
training data. The third CDKML phase (online adaptation) uses user feedback to fine-tune
the pattern-parameter values to the characteristics of a specific deployment. The online
adaptation problem is formulated as a Markov decision process.

The performance of the CDKML method was evaluated on three behavior modeling
tasks: behavioral cloning, posture recognition and fall detection. We describe the built
classifiers in each domain and compare their performance to classifiers induced solely with
machine learning. CDKML achieved higher accuracy than classical machine-learning algo-
rithms when learning from scarce data by leveraging the available domain knowledge and
user feedback.

ix

Povzetek

Strojno učenje je vse bolj prisotno v vsakdanjem življenju, saj so za vedno več področij
na voljo podatki, primerni za ta namen. Odkrivanje prevar s kreditnimi karticami, optično
prepoznavanje znakov in priporočanje knjig so le nekateri primeri uspešnih aplikacij, ki
so danes v širši uporabi. Algoritmi za strojno učenje gradijo modele učnih konceptov na
podlagi primerov teh konceptov. Sposobni so odkriti tudi vzorce, ki so preveč subtilni,
da bi jih opazili ljudje. Vendar je njihova uspešnost v veliki meri odvisna od kakovosti in
popolnosti učnih primerov.

Disertacija predlaga novo metodo, imenovano CDKML (ang. Combining Domain Know-
ledge and Machine Learning), za gradnjo klasifikacijskih modelov za probleme, pri katerih je
na voljo premalo učnih primerov. Obstajata vsaj dva vzroka za nezadostne podatke: (1) pri-
dobitev podatkov je lahko draga ali težavna, morda zaradi velike raznolikosti domene, in (2)
splošni podatki za nekatera področja uporabe niso primerni, ker so, denimo, preveč odvisni
od uporabnika. CDKML nezadostnost učnih podatkov rešuje z vključevanjem domenskega
znanja v učni proces. Domensko znanje lahko vsebuje informacije o domeni, ki niso zajete
z razpoložljivimi učnimi primeri, in s tem dopolnjuje strojno učenje. Poleg tega CDKML
predvideva sprotno prilagajanje modela posamičnemu primeru uporabe z izkorǐsčanjem po-
vratnih informacij od uporabnikov. Povratne informacije izpostavljajo napačno klasificirane
primere − bodisi negativne (ciljni koncept ni bil prepoznan) bodisi pozitivne (ciljni koncept
je bil prepoznan, ko ga v resnici ni bilo).

Metoda CDKML obsega tri faze: začetek, izbolǰsevanje in sprotno prilagajanje. Namen
prvih dveh faz je tvoriti splošen klasifikacijski model pod nadzorom strokovnjaka. Stro-
kovnjak v prvi fazi določi množico vzorcev, ki opredeljujejo učni koncept. Vzorce lahko
oblikuje na podlagi svojega domenskega znanja, lahko pa jih pridobi tudi z interaktivnim
podatkovnim rudarjenjem. Parametri vzorcev se nato izbolǰsajo v drugi fazi metode z
uporabo optimizacijskega algoritma. Cilj te faze je najti nabor vrednosti parametrov, ki
maksimizira točnost modela na učnih podatkih. Tretja faza metode prilagaja parametre
vzorcev posamičnemu primeru uporabe, za kar uporabi povratne informacije od uporab-
nikov. Problem sprotnega prilagajanja je formuliran v obliki markovskega odločitvenega
procesa.

Metodo CDKML smo ovrednotili na treh domenah modeliranja obnašanja: kloniranje
obnašanja, prepoznavanje drže in zaznavanje padcev. Modele, zgrajene s CDKML, smo pri-
merjali z modeli, zgrajenimi z običajnim strojnim učenjem. Z uporabo domenskega znanja
in povratnih informacij od uporabnikov je CDKML dosegel klasifikacijsko točnost vǐsjo kot
klasični algoritmi za strojno učenje pri učenju iz omejenih podatkov.

1

1 Introduction

The field of machine learning (ML) is concerned with development of algorithms that en-
able computer programs to learn and automatically improve with experience (Mitchell,
1997). ML algorithms have been successfully applied to a wide variety of domains rang-
ing from credit-card fraud detection based on classifiers induced from transaction examples
(Chan et al., 1999) to book recommendations based on automatically extracted person’s
preferences from examples of his/her past purchases (Mooney and Roy, 2000) to creating
helicopter control logic based on trial-and-error experience (Ng et al., 2004). The majority
of ML algorithms learn concept models solely from observed examples without considering
existing prior domain knowledge (DK). Archived data for many real world problem domains
is growing exponentially, supported by the low-cost digital storage, providing a boost for
ML. The amount and density of available data is often beyond the human processing ca-
pacity. But learning solely from examples is a disadvantage for ML in domains for which a
limited amount of concept examples (capturing a subset of the possible cases) is available.

Learning with a limited amount of concept examples is illustrated in Figure 1.1. Here,
the task is posture recognition aimed at distinguishing six postures: standing, sitting, lying,
falling, standing up and slowly going down. A posture example is a pair <attributes, class>,
where attributes contain information about the position and velocity of a person’s body parts
and the distance between them when the person is in posture class. Figure 1.1 presents a
decision tree induced by the J48 algorithm in Weka (Hall et al., 2009) with the default
algorithm parameter values and the minimum number of examples per leaf equal to 1000.
The tree is induced from a dataset composed of 34707 posture examples, each of which
describes a posture by 44 attributes. Each path from the tree root to a leaf represents
one learned posture rule. The type of posture the rule corresponds to is presented in the
leaf. Each leaf also contains information about the number of correctly classified exam-
ples by the posture rule (the first number in the brackets) and the number of incorrectly
classified ones (the second number in brackets). The decision tree contains 7 rules. Let’s
examine the rule for standing represented by the leaf in the second row from the top of
the tree. This rule states that a person is standing if the vertical distance between his/her
left ankle and the chest (Distance Z direction AnkleLeftToChest) is greater than 1.08 m.
It is supported by 23110 examples, but it misclassifies 508 examples. This rule complies
with human understanding of the standing posture, as large vertical distance between the
ankles and the chest is a representative feature of standing. Let’s also examine the rule for
sitting represented by the leaf in the second row from the bottom of the tree. This rule
states that a person is sitting if the vertical distance between his/her left ankle and the chest
(Distance Z direction AnkleLeftToChest) is smaller than or equal to 1.08 m, the vertical dis-
tance between his/her right ankle and the chest (Distance Z direction AnkleRightToChest)
is greater than 0.7 m, the total velocity of the right wrist (Velocity total WristRight) is
smaller than or equal to 1.42 m/s, and the total distance between the right wrist and the
chest (Distance total WristRightToChest) is smaller than or equal to 0.44 m. It is supported
by 1205 sitting examples, but it misclassifies 123 examples. As humans we would not com-
pletely agree with this rule, since the total wrist velocity and the total wrist-chest distance

2 Introduction

Distance_Z_direction_AnkleLeftToChest

Distance_Z_direction_AnkleRightToChest

<= 1.08 m

Standing (23110.0/508.0)

> 1.08 m

Lying (3543.0/584.0)

<= 0.25 m

Velocity_total_WristRight

> 0.25 m

Distance_Z_direction_AnkleRightToChest

<= 1.42 m/s

Falling (1064.0/377.0)

> 1.42 m/s

GoingDown (1944.0/622.0)

<= 0.70 m

Distance_total_WristRightToChest

> 0.70 m

Sitting (1205.0/123.0)

<= 0.44 m

Velocity_total_Chest

> 0.44 m

Sitting (2362.0/1055.0)

<= 0.75 m/s

StandingUp (1479.0/745.0)

> 0.75 m/s

?

Figure 1.1: A decision tree for recognizing postures induced from a limited amount of concept
examples.

are not a distinguishing feature of sitting. A person may perform fast hand moves and
strengthen the arms while sitting. The reason why the rule contains this set of conditions
is that in the recorded examples the people performed sitting with the hands near the waist
and without moving the hands. If sitting examples in which a person strengthens the arms
and/or performs fast hand moves were available to the learner, this rule would not have
been present in the decision tree.

The main research problem addressed in the dissertation is: How can a reliable classifier
be created when learning from a limited amount of concept examples? For notation consis-
tency in the dissertation, we define four notions: a classifier, a class pattern, an evidence
and class-pattern parameters.

Definition 1.1: A classifier C is a set of class patterns Pclass defining a categorization,
C = {P i

class}i.

The decision tree presented in Figure 1.1, for example, is a classifier for distinguishing six
posture categories: standing, sitting, lying, falling, standing up and slowly going down.

Definition 1.2: A class pattern Pclass is a set of evidences E supporting an object’s mem-
bership to a category class, Pclass = {Ei}i.

3

Each rule in the decision tree is an example of a class pattern (or a pattern for short). The
posture classifier contains 7 patterns.

Definition 1.3: An evidence E is a boolean function representing an atomic object char-
acteristic, E : {attribute values} → {true, false}.
Each rule condition is an example of an evidence. Evidences typically compare attribute’s
value with a constant, i.e., an evidence’s parameter. The presented standing rule encom-
passes one evidence, Distance Z direction AnkleLeftToChest > 1.08 m, which compares the
attribute Distance Z direction AnkleLeftToChest with the constant 1.08 m. The constant
1.08 m is the evidence’s parameter value.

Definition 1.4: Class-pattern parameters are the union of parameters present in a class-
pattern’s evidences.

The presented standing rule has one class-pattern parameter (or pattern parameter for short)
whose value is 1.08 m.

When learning from a limited amount of concept examples, the learner may create a
classifier from patterns which, although representative of the available examples, are not
characteristic for the learned concept. Such classifier would perform poorly in real life
because it does not capture the essence of the learned concept. This issue may be partially
tackled by introducing DK as an additional information source in the learning process.
Experts are often capable of reliably categorizing examples (e.g., human postures). They
may verify a classifier’s patterns and/or provide characteristic patterns from DK, but often
have difficulties in specifying a complete classifier. Expert DK complements ML. On the one
hand, DK may contain patterns which are not captured by the available concept examples.
On the other hand, ML may extract novel patterns not present in DK solely from concept
examples. Therefore, a combination of DK and ML is expected to produce classifiers with
a characteristic set of concept patterns.

The dissertation proposes a novel approach to combining DK and ML, named CDKML.
It is a three-phase approach to learning consisting of initialization, refinement and online
adaptation.

The aim of the initialization phase is to extract a comprehensive set of concept pat-
terns that form a classifier. It is an interactive process in which an expert examines
human-understandable classifiers induced by ML and selects patterns characteristic for
the learned concept. For example, in the posture-recognition task, the expert may se-
lect the presented standing pattern: IF Distance Z direction AnkleLeftToChest > 1.08 m
THEN standing. The expert may modify the presented sitting pattern excluding and/or
replacing obsolete evidences: IF Distance Z direction AnkleLeftToChest≤ 1.08 m AND Dis-
tance Z direction AnkleLeftToChest > 0.7 m AND Velocity total Chest ≤ 1.42 m/s AND
Distance XY AnkleLeftToChest ≤ 0.75 m THEN sitting. The expert may also add patterns
from DK.

Having the classifier’s patterns, the refinement phase determines the most suitable
general-purpose pattern-parameter values. Each pattern implicitly represents a class-boun-
dary segment whose layout (e.g., position, length) is specified by the pattern’s parameter
values. Figure 1.2 depicts a 2D projection of the class boundaries specified by the two ex-
ample patterns given in the previous paragraph. The optimal layout of the class-boundary
segments greatly depends on their interconnection with the segments represented by the rest
of the classifier’s patterns. This interconnection is not captured in the initialization phase,
where the pattern-parameter values are obtained separately either from a ML classifier or are
estimated using DK. The refinement phase searches for the optimal pattern-parameter val-
ues using an optimization algorithm by maximizing the classifier’s accuracy on the available
concept examples. Here, DK poses constraints of the search space.

4 Introduction

Distance_Z_direction_AnkleLeftToChest

V
el

o
ci

ty
_
to

ta
l_

C
h
es

t

1.080

0
.7

5

0.7

S
I
T
T
I
N
G

IF Distance_Z_direction_AnkleLeftToChest > 1.08 m

THEN Standing

IF Distance_Z_direction_AnkleLeftToChest � 1.08 m AND

Distance_Z_direction_AnkleLeftToChest > 0.7 m AND

Velocity_total_Chest � 1.42 m/s AND

Distance_XY_AnkleLeftToChest � 0.75 m

THEN Sitting

m

m
/s

Figure 1.2: Visualization of patterns’ class boundary – 2D projection.

The online adaptation aims at adjusting the pattern-parameter values to suit a particular
system deployment. What are, for example, the optimal pattern-parameter values in the
posture-recognition classifier for a particular person? In order to pose minimal burden to the
user, the online adaptation is based on user feedback. User feedback is obtained occasionally,
and contains information about false negatives (i.e., the system did not detect the class of
interest when there was one) and false positives (i.e., the system detected the class of interest
when there was none). The online adaptation problem is defined as a sequential decision
making problem using the Markov decision process formalism. DK specifies the mapping
from user feedback to rewards (indicators of the desirability of concrete pattern-parameter
values).

1.1 Hypothesis and Purpose

The hypothesis of the dissertation is that a combination of interactive data mining to ex-
tract a comprehensive set of characteristic concept patterns and optimization algorithms
to determine optimal pattern-parameter values (general-purpose or deployment-specific) is
needed for creation of reliable classifiers in domains for which a limited amount of concept
examples is available. The purpose of the dissertation is to improve concept learning from
a limited amount of concept examples.

The main dissertation goals are the following:

• Survey state-of-the-art methods for classifier creation by combining DK and ML;

• Develop a method for generating reliable general-purpose and deployment-specific clas-
sifiers in domains for which a limited amount of concept examples is available by
leveraging both DK and ML;

• Apply the method to three behavior modeling domains: behavioral cloning, posture
recognition and fall detection.

Scientific Contributions 5

1.2 Scientific Contributions

This dissertation proposes a new, three-phase method, named CDKML, for extraction of
reliable classifiers in domains where the training examples partially represent the domain
properties, but human experts can contribute with their DK. The method and analysis
related to the dissertation were published in journals and conference proceedings (Mirčevska
et al., 2009; Mirchevska et al., 2013a,b). The complete bibliography is presented in Appendix
A.

The main contributions of the dissertation are the following:

• A novel method, named CDKML, for classifier generation and online adaptation which
leverages both DK and ML. The novelty is in the way of integration of three phases:
initialization, refinement and online adaptation;

• A novel classifier adaptation based on user feedback using Markov decision processes.
This, third phase of the CDKML method, is novel on its own.

As additional contributions we consider: (i) an algorithm to estimate the decision-tree
hypothesis space size, (ii) an extension of the agent definition by adding the agent’s role as
an important agent characteristic and by modifying the agent’s action representation, and
(iii) an improvement in classifier accuracy in comparison to standard ML approaches on two
important ambient-assisted-living subtasks: posture recognition and fall detection.

1.3 Overview of the Dissertation Structure

Chapter 2 contains a survey of the current state-of-the-art in combining DK and ML for
classifier generation. Two major approaches are present in the literature. The first incor-
porates DK in the ML algorithm as a pre-learning step. The learning is then performed
without expert engagement. The second emphasizes the importance of human-computer
interaction during the whole knowledge discovery process.

Chapter 3 analyzes why a combination of expert DK and ML offers the possibility to
extract reliable classifiers from a limited amount of task examples. First, we formalize
ML. Second, we present the characteristics of learning tasks that would benefit from the
incorporation of DK. Third, we formalize expert DK and present ways in which it may
influence the learning process to improve generalization. Finally, we formalize learning
using both concept examples and expert DK.

Chapter 4 describes the domains that motivated the development of the CDKMLmethod:
behavioral cloning, posture recognition and fall detection. Three main research questions
arose from the motivating domains: (1) is an expert capable of selecting a comprehensive
set of patterns of the learned concept, thus creating a representative concept classifier, (2)
how can optimal pattern-parameter values be obtained from a training dataset, and (3) how
can we leverage user feedback for online classifier fine-tuning to user needs.

The main contribution of the dissertation – the CDKML method – is described in Chap-
ter 5. First, we present the used classifier form. Then, we formalize each of the three
CDKML phases: initialization, refinement and online adaptation.

Chapter 6 describes and evaluates the classifiers created using CDKML in the three
motivating domains. They are compared to five ML classifiers: decision trees (Quinlan,
1993), a set of rules (Cohen, 1995), support vector machines (Keerthi et al., 2001), random
forest (Breiman, 2001) and Näıve Bayes (John and Langley, 1995).

Finally, Chapter 7 presents our conclusions from the performed study and the ideas for
future work.

7

2 Related Work

Cognitive psychology research shows that human concept-learning considers both prior DK
and concept examples (Wisniewski and Medin, 1994; Heit, 2000; Feldman, 2005). In princi-
ple, one information source offsets information missing from another source. DK influences
interpreting examples. Before obtaining a considerable amount of concept examples, hu-
mans base their judgments mainly on prior DK. Conversely, examples affect DK. As the
number of observed concept examples increases, judgment relies increasingly on the actual
observations and less on prior DK.

ML literature also includes examples of concept learning using both prior DK and concept
examples. This chapter presents related work in this domain.

2.1 Incorporating Expert Domain Knowledge into the Learn-
ing Process of Inductive Machine Learning Algorithms

A comprehensive overview of methods for incorporating prior DK into inductive ML is
presented by Yu (2007). Yu categorizes these methods into four groups, i.e., methods that
use prior DK to:

• prepare training examples,

• initialize the hypothesis or hypothesis space,

• alter the search objective,

• augment the search.

In all cases, incorporating DK aims to improve the generality of the induced ML classifier
and/or the efficiency of the learning process.

2.1.1 Using Domain Knowledge to Prepare Training Examples

This group encompasses approaches to enlarging the number of training examples by DK.
DK serves as a source for identifying data transformation functions T that out of a valid
example (x, f(x)) produce a valid example (Tx, yT (f(x))). The most commonly used are
invariances to transformations in which yT is the identity mapping. Novel training examples,
called virtual examples, are created by applying the transformation functions T on the
training examples.

Kambar (2005) presents an approach to enlarging the number of training examples in the
handwritten numeral recognition domain. Morphing transformations with convex evolution
are used for generating virtual examples, which represent the transition from a source to
a target training numeral. The concept class of a newly generated example is determined
according to its distance from the source and target numerals. Virtual examples closer to
the source are assigned the class value of the source, whereas virtual examples closer to the

8 Related Work

target obtain the class value of the target. The virtual examples are validated by support-
vector-machine classifier created on the original training dataset with no virtual examples.
If the support-vector-machine classifier outputs the same concept class as the class assigned
to the virtual example according to its source and target distance, the example is put to the
enlarged training dataset. Otherwise, it is deleted.

Niyogi et al. (1998) discuss creating virtual examples of objects belonging to a special,
well-behaved class called linear object class. Linear objects are objects which can be rep-
resented as the weighted sum of views of other objects (their components). For example,
a three-dimensional cuboid can be represented by three two-dimensional cuboids. Faces
and speech also belong to the linear object class. Object transformations in this case can
be computed as the weighted sum of transformed views. In order to create virtual exam-
ples, patterns of variability and class-specific deformations are learned from a representative
training set of views of generic or prototypical objects of the class of interest (e.g., different
views of the face of one person). These patterns are applied to novel objects’ views to create
virtual examples.

Niyogi et al. (1998) show that incorporating DK through virtual examples can be equiv-
alent to incorporating DK through regularization. Although the proof was derived only for
functions with radial symmetry, it mathematically confirms the benefit of incorporating DK
through virtual examples.

The major drawback of DK incorporation using virtual examples is the increase in the
computational cost of classifier training. Schölkopf et al. (1996) propose the Virtual SV
method which preserves the advantages of the virtual examples approach without increas-
ing the computational cost. The method bases on the observation that the support vector
set contains the necessary information to solve a classification task. Support vector machine
classifiers trained solely on support vectors had test performance not worse than such classi-
fiers trained on the full dataset (Vapnik, 1995). The Virtual SV method, therefore, proposes
generating virtual examples from the support vectors, termed virtual support vectors. The
training process encompasses three steps: (1) a support vector machine is trained on the
full dataset in order to extract the support vectors, (2) virtual support vectors are created
by applying invariance transformations, and (3) another support vector machine is trained
on the enlarged set of support vectors.

Virtual examples may also be obtained from domains related to the learning problem of
interest. For the purpose of activity recognition, Zheng et al. (2009) propose an approach
to using labeled examples from a source set of activities (e.g., doing laundry) to train a
classifier to recognize a different, but related set of target activities (e.g., indoor cleaning).
First, an activity similarity function is obtained by Web knowledge mining. Web search is
used to find Web pages describing each of the source and target activities. The similarity
between two activities is measured according to the similarity of the text on the Web pages
describing the activities. Second, pseudo training data is generated by relabeling the source
examples. The pseudo examples contain the same feature values as the source examples,
but their class value is an activity in the target domain. Each pseudo example is assigned
a confidence level which equals to the similarity between the source and the target activity
class measured using the text similarity function. Finally, the weighted support vector
machines method (Chang and Lin, 2011) is applied to the pseudo training data to obtain
the classifier for predicting the target activities.

Incorporating Expert Domain Knowledge into the Learning Process of
Inductive Machine Learning Algorithms 9

2.1.2 Using Domain Knowledge to Initialize the Hypothesis or Hypothe-
sis Space

The hypothesis space may be partially or completely selected by DK. The learning process
in this case searches a reduced, more appropriate hypothesis space.

Incorporating DK into the kernel, a non-linear generalization of inner products (Jäkel
et al., 2007), used by kernel methods is a common approach to hypothesis space selection
using DK. Lauer and Bloch (2008) present a review of methods for incorporating DK in the
kernel used by support vector machines. The kernel may capture invariances to transforma-
tions (Decoste and Schölkopf, 2002; Pozdnoukhov and Bengio, 2004; Haasdonk et al., 2005)
as well as invariances to permutations (Kondor and Jebara, 2003). In contrast to these
approaches in which DK is hard-coded in the kernel, the selection of the kernel may also
be formulated as an optimization problem (Wang et al., 2005). The idea is to use DK to
define a quality criterion of the kernels. The best kernel is then obtained by gradient-descent
search optimization in a predefined space of kernel functions. Wang et al. (2005) applied this
approach of kernel selection in the domain of content-based image retrieval with relevance
feedback. In this domain, the learning is performed on a small set of examples labeled by the
user. The positive examples share a common concept in the user’s mind, while the negative
examples capture other heterogeneous concepts. Wang et al. (2005) propose selection of
the kernel which tightly clusters the positive examples in the kernel space and pushes the
negative examples away from the positive, scattering them at the same time. This heuristic
is encoded in a kernel quality criterion and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
Quasi-Newton method is used for finding the best kernel to the available training exam-
ples. Examples of the use of kernels customized by DK is also present in distance-based
classification algorithms (Simard et al., 1993).

Možina (2009) proposes argument-based machine learning (ABML), an extension to clas-
sical ML which uses DK in the form of arguments to constrain the hypothesis space. Argu-
ments are reasons supporting the membership of an example to a particular concept class
(positive arguments) and statements specifying attributes that do not influence the exam-
ple’s class (negative arguments). Consider predicting the weather situation on a particular
day based on the previous day weather situation and a training example “previous weather
= sunny, previous temperature = high, previous pressure = low, previous humidity = nor-
mal, class = rainy”. An expert may explain why the class value is rainy using the argument:
“It was raining because of the low pressure on the previous day”. The ABML output is
selected from a reduced hypothesis space encompassing classifiers in which all proofs of a
classification class mention at least one positive argument and none of the negative argu-
ments.

DK may be used for creating an initial hypothesis (classifier). The motivation for ini-
tializing the hypothesis by DK is that such hypothesis would provide better search starting
point, contributing to a more efficient convergence.

One of the first approaches to hypothesis initialization by DK is the knowledge-based
artificial neural network (Towell and Shavlik, 1994). Domain theory in the form of non-
recursive, propositional Horn clauses is firstly transformed to an artificial neural network
topology. Then, the backpropagation algorithm is applied for tuning the parameter values
of the neural network to the training examples. Burns and Danyluk (2000) propose two
methods, INDIGENT and TNT-INDIGENT, for refinement of knowledge-based artificial
neural networks using genetic algorithms. INDIGENT refines the input features of the neural
network. The features specified by the domain theory and features present in decision trees
induced using C4.5 (Quinlan, 1993) constitute the genotype. Each gene in the genotype
is associated to an input feature; the gene value represents presence or absence of the

10 Related Work

feature in the feature subset. A knowledge-based artificial neural network is created on each
genotype feature subset. TNT-INDIGENT refines the topology of the neural network. It
uses genotypes that represent an entire neural network. Both methods measure the genotype
fitness by the N-fold cross validation accuracy of its corresponding neural network on the
training examples.

Hu et al. (2009) propose coupling artificial neural networks with partially known rela-
tionships extracted from DK, aiming to enhance “black box” neural network learning to a
semi-analytic one. In dynamic system control, for example, the partially known relation-
ships may capture the following two properties of the input and output signals: (1) there
exists a constant time delay τ between the input and the output in the system, and (2) the
amplitude of the output is damped exponentially when the input signal becomes zero. The
authors propose generalized-constraints neural networks which couple the artificial neural
networks with partially known relationships using superposition, multiplication and com-
position. The parameter values of the generalized-constraints neural network model are
obtained by minimizing an error function on a training dataset satisfying at the same time
the partially known relationships to a certain degree of accuracy.

2.1.3 Using Domain Knowledge to Alter the Search Objective

This group encompasses approaches that incorporate the DK into the inductive bias which
guides the search through the hypothesis space. This is achieved by modifying the learner’s
optimization problem and by introducing weights to the training errors (cost-sensitive learn-
ing).

Approaches to objective function adjustment by DK are present in the field of multi-task
learning. In multi-task learning the learning task of interest (the main task) is addressed
simultaneously with several other related learning tasks (extra tasks). Terms which measure
the quality of the learned classifier on the extra tasks are added to the objective function.
This way the learning process leverages not only information present in the training dataset,
but also task-specific information hidden in the extra tasks. Jin and Sun (2008) use multi-
task learning for face recognition. Face recognition is addressed together with the task of
distinguishing face directions as an extra task. The training examples from the both tasks
share the same feature representation. A single artificial neural network is trained to solve
both tasks. The number of output-layer nodes in the artificial neural network equals the
sum of distinct classes in both tasks. The error rate on distinguishing face directions is
added to the objective function. Backpropagation is used to find the classifier with the best
performance on both tasks.

Domain’s invariance to transformations may be incorporated into the support-vector-
machine optimization problem by either modifying the objective function or the constraints
(Lauer and Bloch, 2008). A general framework for incorporation of transformation-invariance
into the support-vector-learning optimization problem is presented by Loosli et al. (2005).
Graepel and Herbrich (2004) present a formulation for support vector machines that finds an
optimal separating hyperplane between trajectories. Shivaswamy and Jebara (2006) incor-
porate permutation invariance in support vector machines that finds an optimal separating
hyperplane between sets of vectors.

Examples of altering the search objective by DK is also present in artificial-neural-
network learning. One of the first such approaches is the Explanation-Based Neural Network
(EBNN) algorithm (Thrun, 1996). Input to the EBNN algorithm are: (1) training examples,
and (2) domain theory consisting of previously trained artificial neural networks. An exam-
ple of domain theory is the knowledge-based neural network presented in Subsection 2.1.2.
EBNN creates a fully connected feed-forward network by minimizing an objective function

Incorporating Expert Domain Knowledge into the Learning Process of
Inductive Machine Learning Algorithms 11

which besides reducing the misclassification errors reduces the errors in training-example’s
derivatives computed using the domain theory.

Sabzekar et al. (2011) introduce a new formulation of support vector machines, Fuzzy
Relaxed Constraints Support Vector Machines (fuzzy RSVM), which enables specification
of training example weights in support vector machines learning. The training example
weights enable introduction of knowledge about the quality of the training data. The more
noisy the data, the lower the weight of the corresponding example. The training example
weights also enable specification of desired class precision. The more class misclassifications
are allowed, the lower the weight of the examples of the class. The example weights are
incorporated using fuzzy logic in the quadratic programming problem solved by support
vector learning.

2.1.4 Using Domain Knowledge to Augment the Search

This group encompasses approaches that use DK to augment the set of legal steps in the
search through the hypothesis space.

One of the first such approaches is the First Order Combined Learner (FOCL) algorithm
(Pazzani and Brunk, 1993), an extension of the First Order Inductive Learner (FOIL) al-
gorithm (Quinlan, 1990). Similarly to FOIL, FOCL learns a set of first-order Horn clauses
using a sequential covering algorithm. Each Horn clause is created by a general-to-specific
search which starts with the most general Horn clause. Several candidate specializations are
generated in each search step and the Horn clause is extended using the specialization with
the highest information gain relative to the training dataset. Unlike FOIL which specializes
the Horn clauses only by addition of one literal at a time, FOCL considers also addition of
clauses present in domain-theory relations. Consider as example learning illegal states on a
chess-board having a white king, white rook and black king using the predicates between(X,
Y, Z), adjacent (X,Y) and equal(X,Y), and a domain theory relation which states that a
state is illegal if a king attacks a king:

illegal(white kingrank;white kingfile;white rookrank;white rookfile;

black kingrank; black kingfile)← king attacks king(white kingrank;white kingfile;

black kingrank; black kingfile).

king attacks king(white kingrank;white kingfile, black kingrank; black kingfile)

← adjacent(white kingrank; black kingrank), adjacent(white kingfile, black kingfile).

Unlike FOIL which chooses a specialization from the predicates between(X, Y, Z), adja-
cent (X,Y) and equal(X,Y), and their negations, FOCL considers also addition of whole
relations present in the domain theory, such as adjacent(white kingrank; black kingrank),
adjacent(white kingfile, black kingfile) in the given example.

FOIL and FOCL belong to the field of inductive logic programming (ILP), a broad
category of algorithms that generates logical theories using both training examples and
background knowledge (Lavrač and Džeroski, 1993). Other examples of inductive logic pro-
gramming algorithms include Aleph (Srinivasan, 2013) and Progol (Muggleton, 1995). ILP
needs a complex corpus of background knowledge for successful classifier learning. Because
articulating the background knowledge can be difficult to non-ILP experts, it can also be
generated automatically from an expert-provided explanations about why specific examples
are positive or negative in a simple relevance language (Walker et al., 2011).

12 Related Work

2.2 Interactive Data Mining

Interactive data mining also explores methods for concept learning using both prior DK
and concept examples. Compared to the previously described methods, interactive data
mining emphasizes the importance of human-computer interaction during classifier genera-
tion. While computers are capable of manipulating large volumes of data and performing
complex operations, humans are crucial for selecting alternatives, planning and coping with
unexpected situations. Zhao (2009) stresses that the learning-process success depends not
only on how intelligent the user is or how efficient the algorithm is, but also on how well
these two parts interact.

Active learning is a group of supervised learning methods where human-computer in-
teraction contributes to iterative training-set improvement (Sun and Hardoon, 2010; Zhang
and Sun, 2010; Dasgupta, 2011). Certain learning domains contain a large number of exam-
ples only few of which are labeled. In image classification one has access to many unlabeled
images, however labeling them (e.g., as city images or landscapes) is costly as a person re-
quires a considerable amount of time to perform this task. Active learning aims at reducing
example-labeling cost by iteratively querying the user to label only examples whose label
is “the most” beneficial for the learning problem. The human-computer interaction starts
with classifier induction from the available labeled training examples. The classifier is then
used for selecting examples to be labeled. The novel labeled examples are added to the
training dataset, the classifier is reinduced and new examples are selected for labeling. The
process is iterated until satisfiable classifier performance is achieved.

Stumpf et al. (2009) present user co-training, an approach to introducing user’s classifier-
content suggestions in the learning process. Similarly to co-training (Blum and Mitchell,
1998), user co-training employs two classifiers in the learning process each of which has its
own, specific “view” on the data. It creates one ML classifier using the available labeled
examples, while the second one is created purely from the provided user feedback. Unla-
beled examples are used for improving the ML classifier in an iterative process consisting
of addition of the most confidently classified unlabeled examples by both the ML and user-
feedback classifiers to the training dataset and reinduction of the ML classifier. Stumpf
et al. (2009) apply user co-training to an e-mail classification problem. The Näıve Bayes
algorithm (Mitchell, 1997) is used for inducing the ML classifier. The user examines e-mail
messages together with the class value assigned by the Näıve Bayes classifier and a list of
keywords that according to the classifier influence the decision the most (keywords assigned
the highest positive and negative weights by the Näıve Bayes algorithm). User feedback
contains agreement with the provided keywords, irrelevant keyword indications and sug-
gestions for keyword weight change. Such user feedback is transformed to a user-feedback
classifier, which for each e-mail class holds a vector of words vclass which are designated as
characteristic for the class in the user feedback. Given an unlabeled e-mail message, the
user-feedback classifier assigns it to the class for which the word intersection between vclass
and the e-mail message is the largest. The classification confidence equals the number of
words in the intersection.

Visual data mining (Simoff et al., 2008) is another paradigm that emphasizes human-
computer interaction in the knowledge discovery process. Humans posses visual pattern
recognition skills able to detect changes in shape, color and motion of objects. Visual data
mining uses data visualization as an communication channel between the human and the
computer leveraging the human visual pattern recognition skills in the knowledge discovery
process. Interactive decision tree construction algorithms (Liu and Salvendy, 2007; Poulet
and Do, 2008) enable users to manually create decision trees. For each tree node, a visual-
ization of the attributes’ split together with numeric quality estimates are presented to the

The Dissertation’s Contribution in the Context of the Related Work 13

user who selects the node split. Caragea et al. (2008) present an approach to coupling data
visualization with the support vector machines algorithm. Tour-based methods are used for
visualizing the separation boundary and the class structure of the support-vector-machines
output. The proposed visualization guides the user in the process of selecting the output
classifier from a set of candidates generated interactively by varying the attribute set and/or
the input parameter values of the algorithm.

Osei-Bryson (2004) proposes usage of multi-criteria decision analysis for examination of
the space of decision tree classifiers. The proposed approach empowers data mining analysts
to perform a thorough experimentation and analysis of the decision-tree hypothesis space
without being overwhelmed by the task of analyzing a significant number of decision trees.
It uses a weighting model to compute an overall quality value of a decision tree evaluated
by multiple performance criteria, such as accuracy, simplicity, stability and discriminatory
power. The data mining analysts provide the intervals in which the weights belong and
linear programming is used to find the weight values for which the decision tree quality is
maximal. Only non-dominated decision trees are listed to the user sorted according to their
quality in decreasing order.

Vidulin and Gams (2011) propose Human-Machine Data Mining (HMDM), an inter-
active method for extracting credible classifiers and relations in complex domains. The
approach introduces a combination of human understanding and raw computing power for
smart examination of parts of the hypothesis space where the most credible classifiers are.
Initially, a set of classifiers are generated by human-understandable data mining algorithms
(e.g., decision trees) by varying the algorithm parameter values. They are examined by the
user who selects one or several interesting classifiers. The patterns in the selected classifiers
are further examined to check their credibility. Two procedures are applied for this pur-
pose: (1) remove attribute procedure which determines high quality attribute combinations,
and (2) add attribute procedure which examines attribute redundancy. The classifiers and
patterns that pass the credibility check are stored.

2.3 The Dissertation’s Contribution in the Context of the
Related Work

CDKML belongs to the group of approaches that uses prior DK to initialize the hypothesis or
hypothesis space. In contrast to the other approaches in this group, it uses interactive data
mining to initialize the classifier (CDKML’s initialization phase) after which optimization
algorithms are applied for determining the optimal general-purpose classifier’s parameter
values in a hypothesis space restricted by DK (CDKML’s refinement phase) as well as for
determining the optimal deployment-specific classifier’s parameter values (CDKML’s online
adaptation phase).

The CDKML’s initialization phase (concept pattern extraction) is primarily based on the
ideas for smart examination of parts of the hypothesis space with the most credible patterns
proposed by Vidulin and Gams (2011). CDKML’s refinement phase (determination of the
most suitable general-purpose pattern-parameter values) is primarily based on the ideas of
the learning classifier systems (Holmes et al., 2002) – an approach to evolving classifiers
according to their expected reward from the environment. To the best of our knowledge,
the combination of the two phases and their application to domains for which a limited
amount of concept examples is available is novel.

The CDKML’s online adaptation phase (determination of the most suitable deployment-
specific pattern-parameter values) is primarily based on the ideas of the Markov decision pro-
cesses (Russell and Norvig, 2010). Markov decision processes are used in sequential decision-

14 Related Work

making domains. The online adaptation phase resembles sequential decision-making tasks
as pattern-parameter adaptation is performed in a step-by-step manner until satisfactory,
deployment-specific pattern-parameter values are reached. We are unaware of any work
which utilizes Markov decision processes for classifier adaptation according to user feed-
back.

15

3 Machine Learning and Expert Domain Knowledge

This chapter analyzes why a combination of expert DK and ML offers the possibility to ex-
tract reliable concept classifiers from a limited amount of task examples. First, we formalize
ML. Second, we present the characteristics of learning tasks that would benefit from the
incorporation of DK. Third, we formalize expert DK and present ways in which it may influ-
ence the learning process to improve generalization. We conclude the chapter by formalizing
learning using both concept examples and expert DK.

3.1 Inductive Machine Learning

The dissertation addresses classification, a subclass of supervised learning (also referred
to as concept learning) (Mitchell, 1997), which concerns learning an object categorization
from labeled examples. A labeled example is a pair <attributes, class>, where attributes
refers to a set of attributes that capture the properties of the observed example and class
specifies the concept the example belongs to. The value of class is discrete. It is assumed
that the class depends on the attributes, i.e., class = f (attributes), where the function
f (the target function) is unknown. The classifier inferred by classification learning (also
referred to as a hypothesis or a model) is an approximation of the target function f. The
labeled examples used for learning are called training examples. Classification learning aims
at finding a general classifier, which: (1) is consistent with the training examples, i.e., it
correctly predicts the class value for all training examples; the training error represents the
fraction of training examples incorrectly classified by the learner, and (2) is a good predictor,
i.e., is able to determine the correct membership of examples whose class is unknown; the true
error represents the fraction of all concept members (even unseen ones) that is incorrectly
classified by the learner.

Since a set of training examples is all information the learner has, most classification-
learning algorithms formulate the learning problem as a search through a hypothesis space,
i.e., the set of all candidate classifiers expressible by the learner’s language, aimed at finding
a classifier with minimum training error (Možina, 2009). This is a broad class of learners
called agnostic learners. The term agnostic, meaning “not known”, emphasizes the fact that
the learning algorithm designer may have no prior knowledge about the target function. The
algorithm J48 used in the introduction is one such example. Agnostic learners assume that
a classifier that approximates a target function well over a sufficiently large set of training
examples will also approximate the target function well over other unobserved examples
(Mitchell, 1997). This is a fundamental assumption of inductive learning in general.

How do we select the classifier that is the best predictor when more than one classifier
in the searched hypothesis space have the same training error? Each classification-learning
algorithm has an inductive bias, a policy by which the learner generalizes beyond the training
examples (Mitchell, 1997). It is a set of assumptions that, if considered, enable deductive
derivation of the class yi a classifier would assign to a new example from the available
training examples and the example description xi. The inductive bias of the algorithm
J48, for example, states that smaller trees are preferred over larger ones and trees that

16 Machine Learning and Expert Domain Knowledge

place attributes with high information gain on the training examples close to the root are
preferred over those that do not (Mitchell, 1997).

The dissertation formally specifies the agnostic learner’s task akin to the formalization
used by Možina (2009). Given:

• E, a set of training examples where each e ∈ E is a labeled example of the form
<attributese, classe>,

• B, an inductive bias

agnostic learners find a classifier H such that:

∀e,H ∧ attributese ⊢ classe

B ∧ E ⊢ H (3.1)

The symbol ⊢ represents logical derivation.
What distinguishes successful learning from unsuccessful ones? The dissertation adopts

the probably approximately correct learning framework (Mitchell, 1997) which formalizes
successful learning. First, in order to be successful, a learner does not have to output a
classifier with zero true error. As stated previously, more than one classifier in the hypoth-
esis space may have the same minimum training error. Because training examples are all
information the learner has, it cannot pick the right classifier with certainty in such case.
Therefore, a successful learner is required to output a classifier with true error bounded by
some constant ϵ, that can be made arbitrarily small. Second, in order to be successful, a
learner does not have to output a classifier with true error smaller than ϵ for every sequence
of randomly drawn training examples. When the training examples are drawn randomly,
there is a nonzero probability that the training dataset contains accidental patterns which
are not characteristic for the learned concept. In the introduction, we presented an example
of such pattern. Therefore, a successful learner is required to fail to learn a good classifier
(classifier with true error smaller than ϵ) with probability bounded by some constant δ, that
can be made arbitrarily small. Finally, the learner must find a classifier in time polynomial
in 1/δ, 1/ϵ and the number of attributes used to describe each example.

How big is the difference between the training error and the true error of agnostic
learners? The following formula provides the true-error bound of agnostic learners (Mitchell,
1997):

Pr[(∃h ∈ H)(errortrue(h) > errortrain(h) + ϵ)] ≤ |H| e−2mϵ2 = δ (3.2)

i.e., with probability 1 – δ

errortrue(h) < errortrain(h) +

√
ln |H|+ ln 1

δ

2m
= errorbound (3.3)

where |H| denotes the hypothesis space size and m is the number of training examples.
The true-error bound grows proportionally with the square root of the natural logarithm of
the hypotheses-space-size |H| and 1/δ, and inversely proportional with the square root of
the number of training examples m. Equation (3.3) is a general estimate of the true-error
bound of agnostic learners, independent of the specific algorithm used for selecting the best
classifier.

How many training examplesm would an agnostic learner need in order to approximately
correctly learn a target concept for a desired ϵ and δ? The minimum number of training
examples needed for probably approximately correctly learning a concept can be derived
from Equation (3.2):

m ≥ 1

2ϵ2
(ln |H|+ ln(1/δ)) (3.4)

Is the Training Data Enough for Successful Learning? 17

Definition 3.1: The training examples are of limited amount if a target concept cannot be
probably approximately correctly learned using them.

3.2 Is the Training Data Enough for Successful Learning?

This section discusses the characteristics of learning from a limited amount of training
examples. First, we describe a set of error rates used for estimating a classifier’s performance.
Second, we present the performance of posture-recognition decision-tree classifiers induced
from a limited amount of training examples. Third, we discuss what error features indicate
that the training data is possibly not enough for successful learning. Finally, we estimate
the number of training examples needed for probably approximately correctly learning to
recognize postures in the used setting.

We estimate a classifier’s performance using the following four error rates:

1. training error (errortrain) – error rate on the training examples:

errortrain =
number of incorrectly classified training examples

number of training examples

2. separate-training-and-test-set error rate (errortest) – error rate on test examples recorded
separately from the training examples:

errortest =
number of incorrectly classified test examples

number of test examples
(3.5)

3. 10-fold-cross-validation error rate – considers dividing the training examples into ten
subsets with equal number of examples. Ten iterations are performed. In each iteration
i ∈ [1, 10] the classifier is induced from the examples in 9 out of the 10 subsets, after
which the classifier’s test error (errortest(i)) is calculated on the examples in the
10th subset which is not seen during learning. The 10-fold-cross-validation error rate
(errorCV) is the average test error of the 10 iterations.

errorCV =
1

10

10∑
i=1

errortest(i)

4. true-error bound (errorbound) – the maximum true error errortrue calculated using
Equation (3.3).

The classifier’s performance is analyzed using a graph which plots the four error rates per
dataset size for training dataset sizes in a range [min set, full set]. The maximum training
dataset size full set is the number of available training examples. In the analysis carried out
in this dissertation, we set min set to 50. Depending on the domain other min set values
may also be used as long as the dataset-size range is large enough to capture the shape of
the error curves. For each training dataset size, N training subsets are randomly drawn
from the available training examples. In the analysis carried out in this dissertation, we
set N to 5. Depending on the domain’s error variation, other values may also be used. A
classifier is created for each of the N training subsets and its four error values are computed.
The average value of each of the four error rates is added to the graph.

Figure 3.1 depicts the four error rates per dataset size for decision-tree classifiers induced
from posture examples with the J48 algorithm in Weka (Hall et al., 2009).

18 Machine Learning and Expert Domain Knowledge

350 1050 1750 2450 3150 3850 4550 5250 5950

number of training examples

0

0.2

0.4

0.6

0.8

1

er
ro

r

training error

separate-training-and-test-set error

10-fold-cross-validation error

true-error bound

Figure 3.1: Classifier’s performance estimation. Comparison of the training error, 10-fold-
cross-validation error, separate-training-and-test-set error and the true-error bound of ML
posture-recognition classifiers.

A posture example was a pair <attributes, class>, where attributes contained informa-
tion about the position and velocity of a person’s chest, left ankle and right ankle as well
as the total, the z direction and xy direction distance between these body parts (18 at-
tributes), while class was the person’s posture (standing, sitting, lying, falling, slowly going
down and standing up). The posture examples were recorded in two phases. The first phase
contains 6435 clear-case posture examples (e.g., normal walking, going to bed, fast forward
falls). The second phase contains 59652 examples which, besides clear-case posture exam-
ples, cover several kinds of falls, and examples of imitation of walking and lying of people
with health problems, such as Parkinson’s disease and hemiplegia.

The decision-trees were induced with the default J48 Weka algorithm parameter values
(Hall et al., 2009) and the minimum number of examples per leaf equal to 2 % of the training-
subset size. We tested the J48 performance with the minimum number of examples per leaf
in the range from 0 % to 10 % of the training-subset size, while keeping the default Weka
values for the rest of the algorithm parameters. The minimum number of examples per leaf
was set to 2 % because it had the lowest 10-fold-cross-validation and separate-training-and-
test-set error.

The training and 10-fold-cross-validation errors were computed using the posture exam-
ples in the training subsets which were extracted from the first phase recordings, while the
separate-training-and-test-set error was computed using the posture examples in the second
phase recordings.

In order to compute the true-error bound, an estimate of the decision-tree hypothesis
space size is needed. Guestrin (2005) and Pichuka et al. (2007) present approaches to
estimating the hypothesis space size of binary trees. Since we address multi-class problems,
we extended their breadth-based approach to estimating the decision-tree hypothesis space
size to multi-class problems. The approach is outlined in Algorithm 3.1:

Is the Training Data Enough for Successful Learning? 19

Algorithm 3.1: Calculating the hypothesis space size of decision-tree classifiers.

DECISION TREE HYPOTHESIS SPACE SIZE(training dataset data training)

1 Transform the continuous attributes and the multi-label discrete attributes
in data training to binary attributes;

2 J48 → Pruning = false;
3 J48 → Min Num Examples Per Leaf = 1;
4 classifier = J48 → buildClassifier(data training);
5 max leaves = classifier → Get Num Leaves();

6 hypothesis space size = 0;
7 num classes = data training → Get Num Classes();
8 num atts = data training → Get Num Attributes();
9 FOR (num leaves=num classes; num leaves ≤ max leaves; num leaves++)

DO
10 hypothesis space size +=

NUM DECISION TREES(num leaves, num atts, num classes);
END DO

11 return hypothesis space size

Step 1: The continuous attributes are discretized and represented by a set of binary at-
tributes contributing to a finite decision-tree hypothesis space size. The decision-tree hy-
pothesis space size is infinite when learning from training examples with at least one contin-
uous attribute because a continuous-attribute node split can be placed at an infinite number
of places. This step is required because Equation (3.3) (the true-error bound estimate) holds
for finite hypothesis spaces. On the presented posture-recognition task, we applied the infor-
mation entropy minimization technique proposed by Fayyad and Irani (1993) to discretize
the continuous attributes. Out of the 18 continuous attributes, 213 binary attributes were
created. Besides the continuous attribute discretization, multi-label discrete attributes need
to be converted to a set of binary attributes due to the requirements posed by the function
NUM DECISION TREES (explained below).
Steps 2–5: Determine an upper bound of the decision-tree leaf number (max leaves) in the
hypothesis space. An unpruned decision tree with minimum number of examples per leaf
set to 1 (tree unpruned) is induced from the training examples. This decision tree has the
lowest training error (zero if there are no conflicts between training examples). Because out
of two decision trees which have the same training error the simpler is preferred, the leaf
number of tree unpruned poses an upper bound on the leaf number in the hypothesis space.
Steps 6–11: The hypothesis space size is computed. First, the number of binary attributes
(num atts) and the number of classes (num classes) present in the training examples is
retrieved. The minimum decision-tree leaf number (min leaves) in the hypothesis space is
set to num classes, because a decision tree having less leaves than the number of classes
cannot have the minimum training error. Then, the number of distinct decision trees with
num leaves ∈ [min leaves, max leaves] leaves, where each leaf represents one of num classes
classes and each node checks one of num atts binary attributes is summed to obtain the
hypothesis space size.

Number of distinct decision-tree classifiers with num leaves leaves, where each leaf rep-
resents one of num classes classes and each node checks one of num atts binary attributes
(Algorithm 3.2) used in Step 10 in Algorithm 3.1 is computed as follows:
Steps 1–2: Checks the validity of the input parameter values.

20 Machine Learning and Expert Domain Knowledge

Algorithm 3.2: Calculating the number of distinct decision-tree classifiers with num leaves
leaves, where each leaf represents one of num classes classes and each node checks one of
num atts binary attributes.

NUM DECISION TREES(number of tree leaves num leaves, number of binary at-
tributes num atts, number of classes num classes)

1 IF ((num leaves == 0) OR (num atts < (num leaves – 1))) %invalid input
2 return 0;

END IF

3 IF (num leaves == 1) %only class value
4 return num classes;
5 ELSE IF (num leaves == 2)
6 return num atts ∗ num classes ∗ (num classes – 1);

ELSE
7 num trees = 0;
8 FOR (l=1; l < num leaves; l++)
9 num trees += num atts

∗ NUM DECISION TREES(l, num atts – 1, num classes)
∗ NUM DECISION TREES(num leaves – l, num atts – 1, num classes);

END FOR
10 return num trees;

END IF

Steps 3–4: If the decision tree has only one leaf (always predicts the same class), the
number of distinct decision trees equals the number of classes (num classes).

Steps 5–6: If the decision tree has two leaves, then the number of possible leaf class as-
signments equals num classes ∗ (num classes – 1) because the leaves must represent two
different classes. The number of possible leaf class assignments is multiplied by the number
of attributes num atts to obtain the number of distinct decision trees.

Steps 7–10: These steps compute the number of distinct decision trees having more than
two leaves, i.e., num leaves > 2. There are (num leaves – 1) ways of distributing num leaves
leaves to the left and the right root-node subtrees, [left leaves, right leaves] = {[1, num leaves
– 1], [2, num leaves – 2], ..., [num leaves – 1, 1]}. The product of the number of root-node
attributes num atts, the number of distinct left subtrees and the number of distinct right
subtrees for each leaf distribution is summed to obtain the number of distinct decision trees
having num leaves leaves.

The decision-tree true-error bound was computed using Equation (3.3), where the decision-
tree hypothesis-space size was estimated using Algorithm 3.1 and Algorithm 3.2. The pa-
rameter δ was set to 0.05. We would like to note that Equation (3.3) may lead to weak
error-bounds for large hypothesis spaces (Mitchell, 1997). Tighter error bounds leverag-
ing the Vapnik-Chervonenkis dimension of the hypothesis space have been derived (Vap-
nik and Chapelle, 2000); however there is no explicit formula for calculating the Vapnik-
Chervonenkis dimension of decision trees (Asian et al., 2009).

An analysis of the four error curves in Figure 3.1 suggests that the posture examples
used for training may not be enough for successful learning. The training error is below
0.11 for the whole set of training dataset sizes – the induced decision-tree classifiers fit
the training dataset relatively well. The 10-fold-cross-validation error is also relatively low
(below 0.13 for training dataset sizes greater than 650 examples), indicating that the induced

Eliciting Expert Domain Knowledge in Inductive Machine Learning 21

classifiers are good predictors of the patterns present in the training dataset. However,
there is a gap of approximately 0.10 points between the 10-fold-cross-validation error and
the separate-training-and-test-set error. The separate-training-and-test-set error slightly
decreases for training dataset sizes from 50 to 350 examples, after which it remains fairly
constant at approximately 0.20. This indicates that the posture-recognition dataset on
which the separate-training-and-test-set error is computed contains patterns that are not
present in the dataset used for training. Thus, the increase in the training dataset size does
not reduce the separate-training-and-test-set error. The true-error bound slowly decreases
with the increase of the training dataset size and is above 0.57 for the whole set of training
dataset sizes indicating that the probability that the best decision-tree classifier in the
hypothesis space has a very misleading training error is high. A large gap between the 10-
fold-cross-validation and the separate-training-and-test-set error as well as high true-error
bound indicate a lack of training examples.

According to Equation (3.4), approximately 860000 training examples are needed for
probably approximately correctly learning to recognize postures with ϵ = 0.05 and δ = 0.05.

3.3 Eliciting Expert Domain Knowledge in Inductive Ma-
chine Learning

Knowledge refers to acquaintance with or understanding of a science, an art or a technique
gained through experience or association used to achieve a goal (http://www.merriam-
webster.com). This definition lays two important features of knowledge: (1) knowledge
is very much context-dependent; the knowledge an engineer uses to build a car is not much
of use to a chemist developing new skin care products, and (2) knowledge is extracted from
experience, i.e., past observations of events, as well as from association, i.e., recognized links
between events.

Definition 3.2: Suppose we have an attribute space A = Rd and a finite set of classes C.
Let a concept be defined by a target function f : A→ C. Complete knowledge of a concept
is a function g : A→ C, such that ∀a ∈ A, f(a) = g(a).

A classifier having complete knowledge of a concept is capable of specifying the correct
class value for all concept examples. In the simplest case, it may be a hash table with |A|
entries, which provides the correct class value for each attribute vector a ∈ A. Learning,
however, aims at extracting a set of patterns capturing a concept’s regularities.

Humans posses two types of knowledge: (1) tacit knowledge – thoughts, feelings and
emotions which are hard to formalize and share with other people, and (2) explicit knowledge
– systematic and easily communicated facts or procedures about a domain (Pyle, 2003). Pan
and Scarbrough (1999) divide explicit knowledge into three groups: (1) recipe knowledge
– knowledge of procedures for accomplishing a goal (e.g., the steps required to create a
classifier using a particular ML algorithm), (2) functional knowledge – an extension of recipe
knowledge that includes knowledge about the settings in which a particular procedure is
appropriate (e.g., knowing that when the numeric output is linearly dependent on a numeric
input, linear regression should be applied), and (3) theoretical knowledge – an extension of
functional knowledge that includes understanding of how each procedure step is performed
and why it is appropriate in a given setting (e.g., knowledge of the learning process of a ML
algorithm).

Definition 3.3: Expert domain knowledge is the understanding of a target concept that
an expert possesses that is gained through experience and/or association, and that can be
used for example categorization.

22 Machine Learning and Expert Domain Knowledge

The dissertation addresses learning in domains for which expert DK is close to complete
knowledge, i.e., the expert is capable of reliably categorizing the concept examples. It aims
at utilizing explicit expert knowledge in classification learning.

There are two main approaches to combining expert DK and ML: (1) extracting explicit
expert DK as a pre-learning step and incorporating it in the learning process of supervised
learning algorithms, and (2) interactive data mining – eliciting expert DK in an interactive
process composed of automatic pattern extraction and human control.

3.3.1 Incorporating Expert Domain Knowledge in the Learning Process
of Inductive Machine Learning Algorithms

Yu (2007) presents a framework for incorporating explicit expert DK in the learning process
of inductive ML algorithms. He adopts the view of learning as a search for optimal hypothesis
in a hypothesis space (Section 3.1) and defines how expert DK may guide the search in
order to enhance learning. DK may enhance learning from three aspects: (1) consistency,
(2) generalization, and (3) convergence.

Consistency with domain knowledge

A classifier is consistent with an available set of training examples if it correctly classifies
each training example. Agnostic learners aim at minimizing the training error, i.e., the
inconsistency between the classifier and the training examples. If expert DK is represented
by a set of relations, the inconsistency between a classifier and expert DK may be specified
in similar terms:

errorknowledge =
number of DK relations not captured by the classifier

number of DK relations

In argument-based ML (Možina, 2009) discussed in Subsection 2.1.2, for example, a classifier
is consistent with expert DK if it captures at least one positive argument for all of the
argumented examples and none of their negative arguments.

For the purpose of incorporating expert DK in classification learning, agnostic learners
should minimize an objective function of the form:

wt ∗ errortrain + wk ∗ errorknowledge (3.6)

where errortrain represents the training error, errorknowledge represents the expert DK error,
and wt and wk are coefficients balancing the effect of the both components in the learning
process.

Expert DK representing a set of relations concerning the learned concept brings ad-
ditional information to the learning process. In many cases, this set of relations may be
transformed to a set of additional training examples. Approaches to virtual-example cre-
ation from expert DK were presented in Subsection 2.1.1. Because an increase in the number
of training examples decreases the true-error bound of the learned classifier as indicated by
Equation (3.3), adding consistency with expert DK as an additional term in the objective
function of agnostic learners contributes to improvement in the learned-classifier quality.

Generalization with domain knowledge

The learning algorithm searches for an optimal classifier in a hypothesis space. The hy-
pothesis space needs to be large enough in order to encompass the target function; however
increase in the size of the hypothesis space increases the true-error bound also (Equation
(3.3)). Expert DK may influence generalization in two ways: (1) parts of the hypothesis

Eliciting Expert Domain Knowledge in Inductive Machine Learning 23

space inconsistent with the expert DK may be removed; reducing the size of the hypothesis
space tightens the true-error bound of the learned classifier, and (2) specifying an initial
classifier which will be refined by the learning algorithm in the process of searching; setting
a meaningful initial classifier reduces the chance of the search to end in a “meaningless”
local optimum.

Convergence with domain knowledge

Yu (2007) addresses three aspects of convergence: feasibility, efficiency and accuracy. Fea-
sibility of the hypothesis space asserts if the hypothesis space encompasses an acceptable
approximation of the target function. If analysis of the hypothesis space by expert DK in-
dicates that it does not reach minimal requirements, learning will fail no matter how much
effort is put to convergence. Efficiency is directly connected to the size of the hypothesis
space and the followed searched path. Using expert DK to remove parts of the hypothesis
space and/or to alter the search objective contributes to reducing the searched hypothesis
space and/or the length of the search path, thus increasing the efficiency of the learning
process. Expert DK may also provide a tradeoff between computational cost and accuracy.
In this case, expert DK may be used for setting a stopping criterion when an acceptable
classifier is reached.

3.3.2 Interactive Data Mining

Zhao (2009) addresses interactive data-mining system design. She points out two general
problems of automatic data mining: (1) these approaches overemphasize the automation
and efficiency of the system, neglecting user’s subjective understanding, interpretation and
evaluation, and (2) they lack explanations and interpretations of the extracted knowledge.
Although computers are capable of manipulating large volumes of data as well as performing
computation-intensive activities, cognitive functions such as evaluation of patterns’ quality
with respect to the learning domain is a user’s task. Zhao (2009) proposes integration of
users’ DK into the knowledge discovery process in the following way:

• interactive data preparation – user’s interaction with a visualization tool, allowing the
user to examine the data distribution and attribute relationships;

• interactive data selection and reduction – the user selects the examples to be used in
the induction phase, possibly restricting the set of attributes;

• interactive data preprocessing and transformation – the user specifies needed attribute
transformations and discretization;

• interactive pattern discovery – pattern extraction by ML algorithms under human
control. It is an iterative process for smart examination of large hypothesis spaces,
such as the approach proposed by Vidulin (2012);

• interactive pattern evaluation – user’s judgment of the quality and usefulness of the
extracted patterns;

• interactive pattern representation – user’s interaction with a visualization tool, allow-
ing the user to examine the patterns extracted in the pattern discovery phase.

The knowledge discovery process is a loop which is iterated until satisfactory results are
obtained.

The research in interactive data mining is primarily focused on providing support to
the human expert in the process of constructing conclusions about a domain of interest,

24 Machine Learning and Expert Domain Knowledge

not on creating good predictors. However, as the expert improves his/her understanding
of a domain of interest, he/she may adjust the learning problem, add credible and remove
obsolete patterns from the learned classifier, contributing to improvement of the quality of
the learned classifier.

3.4 Inductive Machine Learning with Expert Domain Knowl-
edge

The dissertation formally specifies learning with both training examples and expert DK akin
to the formalization used by (Možina, 2009). Given:

• E, a set of training examples where each e ∈ E is a labeled example of the form
<attributese, classe>,

• B, an inductive bias,

• K, expert DK

find a classifier H such that:

∀e,H ∧ attributese ⊢ classe

K ∧B ∧ E ⊢ H (3.7)

The symbol ⊢ represents logical derivation.

25

4 Motivating Domains

The development of CDKML was motivated by the following domains: behavioral cloning,
posture recognition and fall detection. This chapter provides a description of each of them
together with their requirements.

4.1 Behavioral Cloning1

Computer simulations of real-world processes and systems are widely used for the purpose
of analysis, performance optimization and training. Examples include simulations for traffic
analysis (Rossetti et al., 2002), evaluating evacuation scenarios (Sagun et al., 2011) and mil-
itary training (Bohemia Interactive Australia, 2013). For credible results, such simulations
need a realistic model of human behavior.

Human behavior can be modeled by means of behavioral cloning (Bratko and Urbančič,
1997). Behavioral cloning aims at learning human behavior patterns from task demonstra-
tions by means of ML. This concept is also termed “learning from demonstration” (Argall
et al., 2009) and “imitation learning” (Thurau et al., 2004). It has been successfully applied
in a range of applications, such as development of Robosoccer software agents (Aler et al.,
2009), helicopter controllers (Coates et al., 2010) and realistic game characters (Schadd
et al., 2007).

Behavioral cloning is a challenging task. Human actions are influenced by context, by
knowledge or experience of dependencies between actions, and by expectations of how the
situation is going to develop (Hollnagel, 1993). Actions are purposeful. They are taken
for the purpose of achieving a concrete goal, responding at the same time to critical events
in the environment. In the Contextual Control Model, Hollnagel (1993) describes human
action selection by four control modes: strategic (actions directed towards higher-level goal-
achievement based on long-term planning), tactical (known procedures or rules for reaction
to situations), opportunistic (actions triggered by salient features of the current context)
and scrambled (random). Cognitive psychology research proposes that human behavior
models should capture the underlying features of each control mode, situations when each
control mode is dominant as well as the conditions under which control-mode transitions
occur (Hollnagel, 2000).

In artificial intelligence research, human behavior is represented using the agent paradigm.
In general, an agent is an autonomous entity that observes the environment through sensors
and acts upon it using actuators (Russell and Norvig, 2010). Lettmann et al. (2011) present
a basic, formal model of agents as a universal description of their properties, unifying existing
work on the topic (Ferber, 1999; Wooldridge, 2009; Russell and Norvig, 2010). Agents act
in an environment abstracted as a state transition system. Based on sensor input, they de-
termine environment’s state using a vision function that considers sensor noise. The central
concept of the model is the agent’s mental state. The mental state encompasses all concepts
relevant to the agent’s decision making: the agent’s internal state, its sensed environment

1This section is based on the publication Mirchevska et al. (2012) and Mirchevska et al. (2013a).

26 Motivating Domains

state, cognition function (defines the agent’s internal state based on its previous internal
state and the sensed environment state), policy function (defines the action to be executed
according to the agent’s internal state) and internal state transition function (defines the
agent’s successive internal state based on its current internal state and executed action).
Our view of agents is based on the model of Lettmann et al. (2011), with two extensions.
First, the agent role concept is added to the model representing the agent’s responsibilities
in the multi-agent system. In dynamic environments, agents change roles to fulfill their
goal the most effectively given the current environment state (Bežek, 2006). The policy
function depends on the agent’s role. Second, we extend the action definition by associating
the triple (preconditions, parameters, effects) to each action (Bežek, 2006). To execute an
action, its preconditions must be met. The way the actions are performed depends on their
parameters. Effects define the environmental state when the action is terminated. This
provides flexibility for action definition.

Definition 4.1: An agent A is a tuple (S, SA, IA, RA,MA, AA, vA, adaptA) where:

• S is a countable set of environmental states.

• SA is a countable set of internal representations of the environment’s states.

• IA is a countable set of A’s internal states.

• RA is a countable set of A’s roles.

• MA is a countable set of A’s mental states. The mental state of the agent, i.e., its
“mind”, contains all information relevant to the agent’s decision making.

• AA is a countable set of A’s possible low-level actions, where each a ∈ AA is defined
as a = a(preconditions, parameters, effects) containing at least one special action
representing no action a0 = a0(“always”, ∅, “no change”).

• vA : S −→ Π(SA) is a probabilistic vision function that maps the current environmen-
tal state to a probability distribution over all possible internal representations of the
environmental states.

• adaptA : MA −→ MA is an adaptation mechanism that translates the current mental
state into another mental state.

Definition 4.2: A single mental state mA ∈ MA is defined as a tuple mA = (sA, iA, rA,
ϱA, πA, oA, τA) where:

• sA ∈ SA is the internal representation of the environment’s state of agent A.

• iA ∈ IA is the current internal state of agent A.

• rA ∈ RA is the current role of agent A.

• ρA : SA×IA −→ IA is a cognition function that calculates the successive internal state
of the agent based on the internal representation of environmental state sA and the
current internal state iA.

• πA : IA × RA −→ Π(AA) is the agent’s probabilistic policy function. It defines the
probability of executing a low-level action a ∈ AA if the agent is in the internal state
iA ∈ IA and has role rA ∈ RA.

Posture Recognition 27

• oA is an action selector mechanism (e.g., Roulette wheel selector) that selects an action
for the agent based on the probability distribution over the possible actions Π(AA).

• τA : IA × AA −→ IA is a state transition function. It defines the successive internal
state i′A ∈ IA if the agent performs action a ∈ AA in the internal state iA ∈ IA.

The formal agent definition defines the policy function πA as an interface to the agent
behavior model, while the concrete application determines its implementation.

We addressed behavioral cloning (i.e., retrieving an agent’s policy function πA) in a
serious game as a subtask of a larger system aiming at evaluating a person’s rules of con-
ducts. First, examples of the person’s decisions were obtained by letting him/her interact
with the serious game. Second, a behavior clone was created using the captured decision
examples. Finally, the behavior clone was added to the serious game, and a set of situation
developments were recorded for the purpose of identifying advantages and drawbacks in the
person’s rules of conduct.

We aimed at capturing a single-level policy function πA having the form of a rule-based
classifier. Rules of the following form were captured in the classifier:

IF internal state THEN action WITH certainty C

Internal state encompasses a set of features describing a person’s internal state iA causing the
execution of the low-level action action. The internal state iA captures the person’s position,
emotional state, interactions with other people and action history. The role rA of the person
is not part of the rule condition because we cloned the behavior of people having only one
role. The certainty level captures the likelihood with which a person executes a concrete low-
level action action when being in an internal state iA. It captures uncertainty arising from
the missing higher-level reasoning functions (strategic and tactical) which directly influence
the choice of the low-level action. In addition to this, the certainty level enables dealing with
uncertainties caused by incompleteness in the representation of the person’s internal-state
features, primarily uncertainties about the emotional and cognitive aspects of the person’s
internal state.

We divided the policy-extraction problem to two subtasks: (1) extraction of character-
istic rule patterns, and (2) determination of optimal pattern-parameter values. Because
we did not have any other information concerning the person’s policy function beside the
decision examples, we approached the first subtask by extracting patterns which repeat
in ML classifiers. The intuition is that the more frequently a pattern appears, the more
characteristic it is. Having the patterns extracted, a solution to the problem posed by the
second subtask was needed: how can optimal pattern-parameter values be obtained from the
available decision examples?

4.2 Posture Recognition

Posture and activity recognition received researchers’ attention in ambient intelligence (We-
ber et al., 2010), a vision of a technology that will be invisibly embedded in people’s natural
surroundings to support them in the everyday activities providing improved safety and life
quality. It is an inevitable subtask in many applications devoted to healthcare, well-being
and sports (Avci et al., 2010). Since posture and activity recognition directly influences the
performance of the application as a whole, they need to be reliable.

We addressed posture recognition during the development of the Confidence system
(Confidence, 2012), a ubiquitous system for real-time monitoring of the elderly for the
purpose of health-problem detection and prevention. The system contains three modules

28 Motivating Domains

devoted to health-problem detection: (1) short-term, focused on fall detection, (2) mid-term,
focused on detecting mid-term behavior changes such as limping and slow moving, and (3)
long-term, focused on detecting long-term behavior changes such as inactivity. Each of these
modules uses the posture history of the monitored person in its reasoning. We aimed at
distinguishing the following postures: standing, sitting, lying, falling, moving downwards,
moving upwards and on all fours.

In Chapter 1, a decision tree induced from a posture dataset was presented indicating
patterns which seam questionable with respect to DK. The decision tree is to a certain extent
overfitted to the training examples gathered in the laboratory circumstances. The addition
of new posture examples to the training dataset might improve the classifier quality; however,
due to the wide variety of body configurations, it is difficult to record all possible situations
and to obtain representative training dataset for posture classification. Since humans are
good at imagining body postures, they may revise the posture patterns extracted by ML
and additionally specify relevant patterns from DK. The combination of both ML and DK
may provide a more reliable classifier.

We aimed at generating a rule-based classifier for posture recognition under expert su-
pervision. Similarly to the behavioral-cloning domain, the classifier-generation problem was
divided into two subtasks: (1) extraction of characteristic patterns, and (2) determination
of optimal pattern-parameter values. The first subtask was performed by an expert. The
expert examined posture patterns extracted by ML and decided which patterns need to be
included in the posture-recognition classifier, possibly modifying them or adding patterns
from DK only. This approach to pattern extraction should prevent insertion of patterns
which are not characteristic for the learned concept in the classifier. However, is an ex-
pert capable of selecting a comprehensive set of patterns of the learned concept? Having
the patterns extracted, a solution to the second subtask was also needed: how can optimal
pattern-parameter values be obtained from the available decision examples?

4.3 Fall Detection1

Automatic fall detection is gaining in importance in the developed countries due to the rapid
population aging. Predictions made by the Statistical Office of the European Communities
state that the over-65 population in EU27 expressed as a percentage of the working-age
population (aged between 15 and 64) will rise from 26 % in 2010 to 53 % in 2060 (Eurostat,
2012). This demographic change will make medical and care services scarce, increasing the
need to motivate and assist the elderly to stay independent as long as possible. Innovative
technical solutions can help the elderly live independently for longer and counteract reduced
capabilities caused by age. The Confidence system (Confidence, 2012) is one such solution.
Fall detection is one of its main tasks.

Robustness, capability of performing without failure under a wide range of conditions,
is a must in the fall detection domain. Not only there is a wide range of fall types, but
also falls are highly person dependent. Because falls may be caused by health problems,
and may lead to injuries and even death, they have to be detected reliably. However, high
recall should not be achieved at the cost of erroneous classification of non-fall events as
falls. Such errors disturb users reducing the system acceptance rate. In Confidence, fall
detection is addressed by a ML based and DK based approach. Each approach provides its
own viewpoint on falls and it is the combination of the two that contributes to fall-detection
robustness (Luštrek et al., 2011). The proposed method in the dissertation supported the
development of the DK-based fall-detection classifier.

1This section is based on the publication Mirchevska et al. (2013b).

Fall Detection 29

Three main challenges concerned this issue. First, a representative dataset for falls is
difficult to obtain because of the variety of fall types, variations depending on the person, as
well as ethical issues and injury dangers that prevent collecting large amounts of data from
healthy people simulating falls or, even worse, the elderly. Second, generating a classifier that
suits each person in each possible circumstance from the start is difficult. Confidence detects
falls as situations in which a person is lying/sitting on the ground for a prolonged period of
time. However, it is difficult to set a period of time to suit each person. For example, one
person might never voluntarily lie or sit on the ground because of a physical disability that
prevents him/her from getting up again, whereas another might exercise regularly on the
living room carpet. Therefore, an online classifier adaptation is needed. Third, because of
system-related characteristics, such as noise in the sensor data, misclassifications between
similar postures occur. For example, sitting on a low chair may be misclassified as sitting on
the ground. Such posture misclassifications directly influence the output of the fall-detection
classifier.

Similarly to the posture-recognition domain, we aimed at developing a rule-based clas-
sifier for fall detection under expert supervision. The previously stated research questions
are related to this domain, also: (1) is an expert capable of selecting a comprehensive set
of patterns of the learned concept, and (2) how can optimal pattern-parameter values be
obtained from the available decision examples. Additionally, fall detection posed one more
requirement: online classifier adaptation. In the Confidence system user-specific data is
collected online by means of user feedback. User feedback is obtained occasionally, and
contains information about false negatives (i.e., the system did not detect a fall when there
was one) and false positives (i.e., the system detected a fall when there was none). How can
we leverage user feedback for online classifier fine-tuning to user needs?

31

5 CDKML – A Method for Combining Domain Knowledge
and Machine Learning for Classifier Generation and Online
Adaptation1

This chapter presents the main contribution of the dissertation – the CDKML method. It
is a method for classifier generation from a limited amount of training examples (represent-
ing a subset of the possible real-life cases). The basic idea is to incorporate DK into the
learning process, thus making up for information not captured in the training examples.
CDKML (Figure 5.1) consists of three phases: (1) initialization, (2) refinement, and (3)
online adaptation.

Initial classifier Refined classifier Adapted classifierOUTPUT

PHASE

METHOD
Genetic

algorithms

Markov decision

processes

1. INITIALIZATION 2. REFINEMENT
3. ONLINE

ADAPTATION

Domain

knowledge

User

feedback
DatasetINPUT

Learn human-

understandable

classifiers

Extract important

concept patterns

Figure 5.1: Schema of the proposed method for combining DK and ML for classifier gener-
ation and online adaptation (CDKML).

The aim of the initialization phase is to extract a comprehensive set of concept patterns
supported both by the available training examples and by DK. Input to the initialization
phase are human-understandable ML classifiers and patterns present in DK. An expert
creates an initial classifier by selecting patterns present in the ML classifiers, by adding
modifications of those patterns as well as by adding relevant patterns present in DK.

Having the classifier’s patterns, the aim of the refinement phase is to determine the
most suitable general-purpose pattern-parameter values. Each pattern implicitly represents
a class-boundary segment whose layout (e.g., position, length) is specified by the pattern’s
parameter values. The optimal layout of the class-boundary segment greatly depends on its

1This chapter is based on the publication Mirchevska et al. (2013b).

32
CDKML – A Method for Combining Domain Knowledge and Machine

Learning for Classifier Generation and Online Adaptation

interconnection with the segments represented by the rest of the classifier’s patterns. This
interconnection is not captured in the initialization phase, where the pattern-parameter
values are obtained separately either from a ML classifier or are estimated using DK. The
problem of determining the most suitable general-purpose pattern-parameter values is de-
fined as an accuracy maximization search through the parameter-value space. Input to the
refinement phase are the initial classifier, the training examples on which classifier’s accu-
racy is measured and DK which poses constraints on the search space. An optimization
algorithm is used for finding the optimal parameter values. These values are inserted in the
initial classifier to create the refined classifier.

The aim of the online adaptation phase is to find the most suitable pattern-parameter
values for a particular system deployment (e.g., for a particular user). The adaptation
is defined as a Markov decision process which leverages user feedback (considered as a
reward signal). User feedback is obtained occasionally, and contains information about false
negatives (i.e., the system did not detect the class of interest when there was one) and false
positives (i.e., the system detected the class of interest when there was none). DK specifies
how user feedback is to be translated to state rewards. Adaptation is performed online after
each received user feedback outputting an adapted classifier.

The CDKML method is based on the following assumptions:

1. Concepts can be comprehensively described by a relatively low number of rules.

2. A domain expert with the help of interactive data mining is able to specify a classifier
that encompasses a comprehensive set of concept patterns.

3. The most suitable general-purpose pattern-parameter values may be obtained by max-
imizing the classifier’s accuracy on the available training examples. Such parameter
tuning is not prone to overfitting, because the classifier contains only patterns char-
acteristic for the learned concept.

4. Occasional user feedback containing information about false positives (non-members
of the concept class classified as concept members by the classifier) and false negatives
(members of the concept class classified as non-members of the concept class by the
classifier) may be used for online classifier adaptation.

We start this chapter by presenting the format of the classifiers created using CDKML.
Then we provide a detailed presentation of the three CDKML phases: initialization, re-
finement and online adaptation. The presentation is accompanied with examples from the
application of CDKML in the fall-detection domain.

5.1 The Classifier

Due to the requirements posed by the motivating domains, CDKML was applied to classifiers
in the form presented in Figure 5.2. The classifiers consist of a set of rules of the form

IF conditions THEN class (conf rule)

where the rule’s confidence conf rule is an indicator of the rule’s certainty. Each rule is
checked when an input example is presented to the classifier. The rules whose conditions
hold for the given input example vote for their class value. The votes are weighted by
the amount of the rule’s confidence conf rule. A conflict resolver collects the votes and
determines the final class value. We use a maximum confidence conflict resolution strategy,
i.e., the class of the rule whose vote is the highest (the most certain rule) is outputted.

The Classifier 33

IF conditions 1 THEN class 1

IF conditions 2 THEN class 2

IF conditions 3 THEN class 3

IF conditions N THEN class N

...
CONFLICT

RESOLVER

conf 1

conf 2

conf 3

conf N

Input Class

Figure 5.2: CDKML’s classifier format.

Depending on the domain, other conflict resolution strategies may also be used (e.g., a
predefined class priority list or a roulette wheel selector).

The rule’s confidence measure should satisfy the following requirements:

• having all other criteria equal, a rule with a higher precision should have a higher
confidence level. The precision is a measure of a rule’s purity. Let Exrule represent a
set of examples for which the rule’s conditions conditions hold. Let Excorrect represent
a subset of Exrule containing only examples whose class value equals the rule’s class
class. The precision is calculated as follows:

precisionrule =
|Excorrect|
|Exrule|

(5.1)

where |Set| represents the number of examples in the set Set.

• having all other criteria equal, a rule with a higher recall should have a higher confi-
dence level. The recall is a measure of a rule’s sensitivity. Let Exclass represent a set
of examples whose class value equals the rule’s class class. Let Excorrect represent a
subset of Exclass containing only examples for which the rule’s conditions conditions
hold. The recall is calculated as follows:

recallrule =
|Excorrect|
|Exclass|

(5.2)

We selected the F1-score, a weighted average of precision and recall, for measuring the rule’s
confidence:

confidencerule =
2 ∗ precisionrule ∗ recallrule
precisionrule + recallrule

(5.3)

The confidence level is a value in the interval [0, 1] where higher values indicate a higher
confidence level.

Figure 5.3 shows the confidence level of an example rule present in the fall-detection
domain: “IF a person is lying on the ground for Plying % of Tlying seconds THEN Fall”. The
rule’s confidence was computed on a training dataset encompassing 40 fall and 40 non-fall
events. As expected, the rule’s confidence increases with the increase of both the Tlying and
Plying as long periods of lying on the ground are associated with a high probability of a fall.

This classifier form was chosen because it can be constructed manually or with the help
of classification learning and modified by an optimization algorithm or Markov decision
processes. We would like to note that CDKML is not bound to this specific classifier form;
however, it requires a human-understandable form.

34
CDKML – A Method for Combining Domain Knowledge and Machine

Learning for Classifier Generation and Online Adaptation

6040200

Plying (%)

10080

10

T
ly
in

g
(s
ec
on

d
s) 8

6

0.75

0.8
12

14

0.85

0.9

0.95

1

Figure 5.3: Visualization of the confidence level of the fall-detection rule “IF a person is
lying on the ground for Plying % of Tlying seconds THEN Fall”.

5.2 Initialization

The aim of the initialization phase is to extract a set of concept patterns from ML classifiers
and DK under expert supervision. ML is a source of novel, while DK of known concept
patterns, both of which are needed for creating a comprehensive and reliable classifier.
However, both sources may contain certain deficiencies. On the one hand, ML classifiers
may contain patterns which, although representative of the available training examples, are
not characteristic of the learned concept (Chapter 1). DK may spot such obsolete patterns.
On the other hand, certain DK patterns may become questionable as learning progresses
and novel knowledge is extracted. ML patterns may influence DK adjustment. Therefore,
an expert specifies the set of patterns which constitute the initial classifier. The patterns
are selected from the ML classifiers, DK or represent modifications of such patterns.

Algorithm 5.1: CDKML phase 1 – initialization.

INITIALIZATION(training examples Ex)

1 CLinit = empty set; //the initial classifier

2 ALGORITHMS = {decision-tree and rule induction algorithms};
3 FOR EACH alg IN ALGORITHMS
4 create a set of ML classifiers on Ex by varying example attributes and

alg parameter values;
5 explore rule patterns in the induced ML classifiers;
6 add ML patterns verified by DK to CLinit;
7 add ML patterns adjusted by DK to CLinit;

END FOR EACH

8 add DK patterns to CLinit;

return CLinit;

Initialization 35

Algorithm 5.1 outlines the initialization phase:

Step 1: The initial classifier CLinit is initialized to an empty set.

Steps 2–7: The expert examines human-understandable classifiers induced from the avail-
able training data, adding ML patterns verified by DK or ML patterns adjusted by DK to
the initial classifier CLinit. These steps provide an additional insight in the domain and
may contribute to DK modification.

Step 8: The initial classifier CLinit is supplemented with patterns present in DK.

Algorithm 5.2: Decision-tree hypothesis-space examination.

DECISION TREE PATTERN EXAMINATION(training examples Ex)

1 Out of Ex, create K training subsets Exi, i ∈ [1, K];

2 FOR EACH Exi DO
3 Induce a decision tree cls from Exi;
4 Explore the patterns in cls;
5 UNTIL significant drop in accuracy DO
6 Remove the root-node attribute and/or an attribute in the root descendents;
7 Induce a decision tree cls with the reduced attribute set from Exi;
8 Explore the patterns in cls;

END UNTIL
END FOR EACH

The fundamental part of the initialization phase is the examination of human-understan-
dable classifiers. Interactive data mining methods, which provide smart hypothesis-space
examination focused on the most promising parts, may be used for this purpose. The
Human-Machine Data Mining method (Vidulin and Gams, 2011) and the multi-criteria de-
cision analysis approach to evaluating decision trees (Osei-Bryson, 2004) are just two exam-
ples. The initial classifiers in the dissertation were mostly created by examining decision-tree
classifiers as outlined in Algorithm 5.2:

Steps 1–2: Training subsets Exi, i ∈ [1, K] are created from the available training examples
Ex. If the available data is recorded for K people, for example, K training subsets can be
created in each of which the data of one person is left out. Patterns characteristic for
the learned concept should appear in the decision-tree classifiers induced from most of the
training subsets Exi.

Steps 3–4: Explore patterns in the decision tree induced from a training subset Exi.

Steps 4–8: Explore patterns in decision trees induced from Exi using only a subset of the
available example attributes. As presented in Section 3.1, the inductive bias of decision-tree
induction algorithms, such as J48, prefers shorter trees over longer ones and trees that place
attributes with high information gain on the training examples close to the root over those
that do not. The decision-tree induction algorithms perform general-to-specific hill-climbing
search through the space of possible classifiers outputting a single, best decision tree with
respect to the inductive bias. However, other classifiers, even if they are somewhat weaker
with respect to the inductive bias, may be interesting from the expert’s perspective. To
find them, we induce several decision trees with different attribute subsets. We consider
removing the root-node attribute and/or attributes in the root descendents, with the aim
of finding relevant hidden classifiers, until the classification accuracy of the resultant tree
significantly drops.

36
CDKML – A Method for Combining Domain Knowledge and Machine

Learning for Classifier Generation and Online Adaptation

The rule patterns extracted in the fall-detection domain are presented as an example.
They are derived from the fact that if an elderly person is lying or sitting on the ground for
a long period of time, then there is high probability of a fall, as elderly people are unlikely
to lie or sit on the ground. The following rule patterns were included in the initial classifier:

1. IF falling activity within T1fall seconds AND the person is lying/sitting on the ground
P1activity % of T1activity seconds AND the person is not moving P1moving % of T1moving

seconds THEN fall;

2. IF falling activity within T2fall seconds AND the person is lying/sitting on the ground
area afterward P2activity % of T2activity seconds THEN fall;

3. IF a person is lying/sitting on the ground for P3activity % of T3activity seconds AND
the person is not moving P3moving % of T3moving seconds THEN fall;

4. IF a person is lying/sitting on the ground for P4activity % of T4activity seconds THEN
fall.

The focus of the initialization phase is to obtain a comprehensive set of patterns under
expert supervision. The expert also provides initial pattern-parameter values either from a
ML classifier or from DK. Nevertheless, determining the most suitable pattern-parameter
values is addressed separately in the CDKML’s refinement phase.

5.3 Refinement

The aim of the refinement phase is to determine the most suitable general-purpose pattern-
parameter values. Because the initial pattern-parameter values are obtained separately,
they do not capture the interconnections between the patterns. In addition, estimating
the pattern-parameter values using DK may be an issue. System-related features (e.g., the
ability of the fall-detection system to correctly detect the lying/sitting posture) influence
these values and need to be considered when determining them.

The refinement phase determines the pattern-parameter values using the training ex-
amples. It relies on the assumption that pattern-parameter values which contribute to
accurate training-example classification, would provide reliable prediction over other unob-
served examples. Overfitting is hopefully avoided because the patterns are specified by a
domain expert. The refinement is defined as an accuracy maximization search through the
parameter-value space, where accuracy is measured on the training examples. The search
is performed using an optimization algorithm.

DK poses constraints on the pattern-parameter values (the search space) in this phase.
In the presented fall-detection classifier, rule strictness decreases from rule type 1 to rule
type 4. The first rule type requires detecting falling activity and the person to be immovable
and to lie/sit on the ground to detect a fall, whereas the fourth rule type requires only a
person to lie/sit on the ground. The duration of lying/sitting on the ground needed for the
first rule type to detect a fall should be the shortest (the combination with other evidence
more quickly assures that a fall happened) and should increase toward rule type 4. This
relation between the required periods of lying/sitting on the ground in the rules should be
added as a DK parameter-value constraint. Additionally, if the rule requires detecting falling
activity to detect a fall, the falling activity should be detected before the person lied/sat on
the ground. This relation should also be added as a DK parameter-value constraint.

In the dissertation we use genetic algorithms, a stochastic optimization method, for
finding the optimal pattern-parameter values with respect to training accuracy. Below we
outline how they are used in the refinement phase.

Refinement 37

In order to apply genetic algorithms, a fitness function needs to be specified. The fitness
function is an individual’s (solution’s) quality measure. Algorithm 5.3 outlines the fitness
function used in the dissertation. Input to the fitness function are an individual I whose
fitness is to be determined, a classifier CLin encompassing a set of patterns whose parameter
values are provided in the individual I, the DK parameter-value constraints Constraints and
training examples Ex. The values in I are assigned to the CLin’s parameters thus creating
the classifier CL. If CL violates the DK constraints Constraints zero, i.e., minimal fitness,
is returned. Otherwise, the function outputs the accuracy of CL on the training examples
Ex. The fitness value falls within the interval [0, 1], where higher values indicate higher
fitness.

Algorithm 5.3: A classifier’s quality estimator – CDKML’s fitness function.

FITNESS FUNCTION(an individual I, a classifier CLin, DK parameter-value con-
straints Constraints, training examples Ex)

1 CL = CLin;
2 assign the values in I to the CL’s parameters;

3 IF CL violates Constraints
4 return 0;

ELSE
5 return ACCURACY(CL, Ex);

END IF

The refinement phase is outlined in Algorithm 5.4. Input to the refinement phase are the
initial classifier CLinit, a set of DK parameter-value constraints Constraints and training
examples Ex. Additionally, the genetic-algorithm parameter-values are given: a population
size POPULATION SIZE, a crossover rate CROSSOVER RATE, a mutation rate MUTA-
TION RATE, and a target accuracy TARGET ACC and a maximum number of iterations
MAX ITERATIONS as stopping criteria. It is performed as follows:

Steps 1–5: An individual Ibase representing CLinit’s parameter values is created. We use
the Pittsburgh approach, i.e., each individual in the population represents one possible
solution. The individual is a vector containing the parameter values of all patterns in the
classifier. For example, if the classifier contains 8 patterns with 4 parameters each, the
individual is 32 elements long. The elements may be discrete or continuous. Constraints on
their values are specified in Constraints.

Steps 6–11: An initial population P is created. Ibase is added to the initial population. It
is a base for creating the rest of individuals Ii. Ii’s gene-values Ii → Gene(g) are selected
randomly from the interval [(1 – frac) ∗ Ibase → Gene(g), (1 + frac) ∗ Ibase → Gene(g)],
where frac is selected by the expert.

Steps 12–17: The population is evolved using genetic operators with the genetic parameter-
values given as input. Individual’s fitness is computed as presented in Algorithm 5.3. Elitism
is used, i.e., the best individual Ibest is always transferred to the new population.

Steps 18–20: The refined classifier CLref is initialized to CLinit. Its parameters are as-
signed to the values in Ibest.

One of the main difficulties faced in applying genetic algorithms is the determination of
the appropriate algorithm parameter-values, such as the population size, the crossover rate,
the mutation rate and the stopping criteria (in our case, a target accuracy and a maximum
number of iterations). The value of these parameters influences the size of the explored
search space and the search efficiency, determining whether an optimal or near-optimal so-

38
CDKML – A Method for Combining Domain Knowledge and Machine

Learning for Classifier Generation and Online Adaptation

Algorithm 5.4: CDKML phase 2 – refinement

REFINEMENT(initial classifier CLinit, DK parameter-value constraints Constraints,
training examples Ex, genetic-algorithm parameter-values POPULATION SIZE ,
CROSSOVER RATE , MUTATION RATE , TARGET ACC , MAX ITERATIONS)

1 //Create an individual Ibase representing the CLinit parameter values;
2 Ibase = empty vector;
3 FOR EACH pattern IN CLinit

DO
4 put pattern’s parameter values to a single vector V ecr;
5 append V ecr to Ibase;

END FOR

6 //Create an initial population P
7 P = empty set;
8 add Ibase to P ;
9 FOR i = 2 to POPULATION SIZE

DO
10 create an individual Ii by random changes of Ibase;
11 add Ii to P ;

END FOR

12 iter = 0;
13 Ibest = P → GetFittestIndividual();
14 WHILE ((Ibest → Get Fitness() < TARGET ACC) AND

(iter < MAX ITERATIONS))
15 iter = iter + 1;
16 P → Evolve(CROSSOVER RATE , MUTATION RATE , ELITISM = true);
17 Ibest = P → GetFittestIndividual();

END WHILE

18 CLref = CLinit;
19 assign the values in Ibest to the CLref ’s parameters;
20 return CLref ;

lution will be reached, as well as whether the solution will be found efficiently (Eiben and
Smith, 2003). According to Smit and Eiben (2009), there are no algorithms for parameter
tuning that are widely accepted in the field of evolutionary algorithms, a subclass of which
are the genetic algorithms. We use experimental comparison on a limited scale for deter-
mining the population size, crossover rate and mutation rate. In the posture-recognition
and behavioral-cloning experiments, for example, we check the following parameter-value
combinations: population size of 100 and 150 individuals, crossover rate of 50 %, 70 % and
90 %, and mutation rate of 0 %, 10 %, 20 % and 30 %; this set may be adjusted depending
on the domain. The stopping criteria are specified by the expert because these parameter
values depend on what a satisfactory solution is. The approach to tuning the population
size, crossover rate and mutation rate is outlined in Algorithm 5.5:

Steps 1–4: The quality of each parameter-value combination pop size, crossover and mu-
tation is measured on validation examples Exval. In the behavioral-cloning domain, for
example, 9 game recordings were available during training. For the purpose of parameter

Refinement 39

Algorithm 5.5: Tuning the genetic-algorithm parameter values in CDKML’s refinement
phase.

GA PARAMETER TUNING(an initial classifier CLinit, DK parameter-value con-
straints Constraints, training examples Extrain, validation examples Exval, a target ac-
curacy TARGET ACC , a maximum number of iterations MAX ITERATIONS , mini-
mum population size PS MIN , maximum population size PS MAX , population-size step
PS STEP , minimum crossover CO MIN , maximum crossover CO MAX , crossover step
CO STEP , minimum mutation MU MIN , maximum mutation MU MAX , mutation step
MU STEP)

1 IF Exval not specified
THEN

2 Ex = Extrain → GetRandom((1/4) * SIZE(Extrain));
3 Exval = Ex;
4 Extrain = Extrain \ Exval;

END IF

5 best crossover = unknown;
6 best mutation = unknown;
7 best population size = unknown;
8 max acc = 0;

9 FOR (pop size = PS MIN ; pop size ≤ PS MAX ; pop size += PS STEP)
DO

10 FOR (crossover = CO MIN ; crossover ≤ CO MAX ; crossover += CO STEP)
DO

11 FOR (mutation = MU MIN ; mutation ≤ MU MAX ; mutation += MU STEP)
DO

12 acc run = 0;
13 FOR (run = 1; run ≤ 5; run += 1)

DO
14 CLtmp = REFINEMENT(CLinit, Constraints, Extrain,

pop size, crossover, mutation,
TARGET ACC, MAX ITERATIONS);

15 acc = ACCURACY(CLtmp, Exval);
16 acc run += (1/5) * acc;

END FOR
17 IF (acc run > max acc)

THEN
18 best population size = pop size;
19 best crossover = crossover ;
20 best mutation = mutation;
21 max acc = acc run;

END IF
END FOR

END FOR
END FOR

22 return {best population size, best crossover, best mutation};

40
CDKML – A Method for Combining Domain Knowledge and Machine

Learning for Classifier Generation and Online Adaptation

tuning, 7 of them were assigned to Extrain and 2 to Exval. If validation examples are not
given as input, 25 % of the training examples is set aside for validation.

Steps 5–8: Parameter-value initialization. The aim of this parameter tuning procedure is
to find which parameter-value combination pop size, crossover and mutation contributes
to the highest classifier accuracy. The maximum accuracy variable max acc keeps track of
the highest obtained accuracy on the validation examples. It is initialized to zero. The
population size pop size, the crossover rate crossover and the mutation rate mutation are
unknown.

Steps 9–21: Refinement is performed five times for each parameter-value combination
pop size, crossover and mutation using the training examples Extrain. Five classifiers CLtmp

are created. The average classifier accuracy acc run is computed using the validation ex-
amples. The maximum accuracy and the parameter values for which it was obtained are
kept.

Step 22: The function outputs the population size, crossover rate and mutation rate.

The genetic algorithm outputs the final general-purpose classifier.

5.4 Online Adaptation

The aim of the online adaptation phase is to find the most suitable pattern-parameter
values for a particular system deployment. People, for example, may have specific needs
and preferences. In the fall-detection domain, one person might never voluntarily lie or sit
on the ground because of a physical disability that prevents him/her from getting up again,
whereas another might exercise regularly on the living room carpet. System adaptation to
such user characteristics is needed for maximum performance.

Deployment-specific information is obtained through user feedback which is given occa-
sionally, and contains information about false negatives (i.e., the system did not detect the
class of interest when there was one) and false positives (i.e., the system detected the class
of interest when there was none). User feedback reflects an underlying reward function,
in our case a parameter-value desirability indicator. The mapping from user feedback to
parameter-value rewards is specified by DK. Learning from rewards is mainly used in se-
quential decision-making domains, where the reward function is often considered as the most
parsimonious description of a task (Ng and Russell, 2000). The online adaptation phase re-
sembles sequential decision-making tasks as parameter-value adaptation is performed in a
step-by-step manner until satisfactory, deployment-specific parameter values are reached.

The learning task is formulated using Markov decision processes (Russell and Norvig,
2010). A Markov decision process (MDP) is a 4-tuple (S,A, P,R), where S represents a finite
set of states, A represents a finite set of actions, P = P (s, a, s′) is a transition probability
matrix specifying the probability that an action a in state s would lead to state s’ and
R = R(s) is a reward matrix representing state desirability. The MDP’s solution specifies
the most reward-bringing action for each state s ∈ S.

MDP application to parameter-value adaptation is presented in Algorithm 5.6 and Algo-
rithm 5.7. The adaptation process is illustrated using a rule from the fall-detection domain:
“IF a person is lying on the ground for Plying % in Tlying THEN fall”.

The first online-adaptation step is the initialization of the patterns’ MDPs. A pattern’s
MDP initialization, which is performed for each classifier’s pattern, is outlined in Algorithm
5.6:

Step 1: A Markov decision process MDPpattern is created.

Step 2: The number of pattern parameters num parameters is retrieved. This variable is
needed for the initialization of the MDP’s state space S and action space A.

Online Adaptation 41

Algorithm 5.6: CDKML phase 3 – initialization of a pattern’s Markov decision process.

MDP INITIALIZATION(a pattern pattern ∈ CLref)

1 create a Markov decision process MDPpattern;
2 num parameters = pattern → GetNumOfParameters();

3 FOR EACH parameter IN pattern → GetContinuousParameters()
4 Discretize parameter ;

END FOR EACH

5 S =
num parameters∏

p=1
(pattern→ GetValues(p));

6 MDPpattern →SetStateSpace(S);

7 actions per parameter = {INCREASE, NO CHANGE, DECREASE};

8 A =
num parameters∏

p=1
actions per parameter;

9 MDPpattern →SetActionSpace(A);

10 P = S × A × S ;
11 FOR EACH s IN S
12 FOR EACH a IN A
13 correct next state = empty vector;
14 FOR(p = 0; p < num parameters; p++)
15 IF (a → Get(p) == INCREASE)

THEN
16 correct next state → Append(s → Get(p) + S → GetStep(p));
17 ELSE IF (a → Get(p) == NO CHANGE)

THEN
18 correct next state → Append(s → Get(p));
19 ELSE //a → Get(p) == DECREASE
20 correct next state → Append(s → Get(p) – S → GetStep(p));

END IF
END FOR

21 P(s, a, correct next state) = 1;
22 P(s, a, s’) = 0, s’ ̸= correct next state;

END FOR EACH
END FOR EACH

23 MDPpattern →SetTransitionProbabilityMatrix(P);

24 R(s) = 0, ∀ s ∈ S ;
25 MDPpattern →SetRewardMatrix(R);

26 MDPrule →SetCurrentState (pattern →GetParameterValues());

27 return MDPpattern;

42
CDKML – A Method for Combining Domain Knowledge and Machine

Learning for Classifier Generation and Online Adaptation

Steps 3–6: Initialization of the MDPpattern’s state space S. The state space S contains
num parameters dimensions, each of which represents a pattern parameter. The fall-detection
rule’s state space is two-dimensional, with one dimension representing the set of possible
percentage values Plying and the other representing the possible time interval values Tlying.
Visualization of this state space is presented Figure 5.4. Each state s ∈ S is a vector con-
taining num parameters elements representing one possible parameter-value assignment.
Because MDPs are defined for finite state spaces S, the continuous parameters need to be
discretized.

Steps 7–9: Initialization of the MDPpattern’s action space A. We consider three possible
actions per pattern parameter: increase by one unit, do not change or decrease by one unit.
An action a ∈ A is a vector containing num parameters elements, each of which specifies an
action per pattern parameter.

Steps 10–23: Initialization of the MDPpattern’s transition probability matrix P. We con-
sider deterministic parameter-value changes. Therefore, the values in the transition proba-
bility matrix P = P (s, a, s′) equal 1 if s’ represents the pattern-parameter values that are
obtained by applying the changes specified in a to the parameter values in s, otherwise they
equal 0.

Steps 24–25: The MDPpattern’s reward matrix R is initialized to zero for all states (Figure
5.4a). The elements of the reward matrix R reflect the obtained user feedback and may
change.

Step 26: The MDPpattern’s current state is set to the refined classifier’s parameter values.

Step 27: The function outputs MDPpattern.

Having the patterns’ MDPs initialized, parameter-value adaptation may be performed.
Here, we define two notions used in the parameter-value adaptation procedure: a state-
example distance and MDP state dominance. The state-example distance distS(s,Ex)
represents the minimum number of steps needed for a rule having the parameter values
of s to be brought to cover the example Ex 1. An MDP state s dominates an MDP state s’
if a pattern having the parameter values of s’ covers a subset of the examples covered by a
pattern having the parameter values of s.

Algorithm 5.7 outlines the parameter-value adaptation procedure. Input to the algo-
rithm are a set of patterns’ MDPs CLMDP , an obtained user feedback UF, an example
which triggered the user feedback Ex, a penalty amount for false positives PaFp and for
false negatives PaFn. Parameter-value adaptation is performed as follows:

Steps 1–6: Adaptation procedure in case of a false positive. The MDPs of the patterns
that caused a false positive are added to the set MDPfp. For each MDPpattern ∈ MDPfp

three steps are performed: (1) the reward of MDPpattern’s current state and all states that
dominate it is reduced by the penalty amount for false positives PaFp, (2) a set of new state
candidates Cstates is created encompassing the neighboring states of MDPpattern’s current
state which have the highest reward, and (3) the MDPpattern’s current state is set to the
state s ∈ Cstates with maximum distance from the triggering example Ex.

Steps 7–10: Adaptation procedure in case of a false negative. The MDP MDPfn ∈
CLMDP whose current state is at minimum distance from the triggering example Ex is
selected. The reward of MDPfn’s current state and all states that it dominates is reduced
by the penalty amount for false negative PaFn. A set of new state candidates Cstates is cre-
ated encompassing the neighboring states of MDPfn’s current state which have the highest
reward. The MDPfn’s current state is set to the state s ∈ Cstates with minimum distance
from the triggering example Ex.

1A pattern covers an example Ex if its condition part is true for the example Ex (Clark and Niblett,
1989)

Online Adaptation 43

Algorithm 5.7: CDKML phase 3 – classifier adaptation upon user feedback.

ADAPTATION(classifier’s patterns’ MDPs CLMDP , user feedback UF, a triggering ex-
ample Ex, penalty amount for false positives PaFp, penalty amount for false negatives
PaFn)

1 IF (UF == FALSE POSITIVE)
THEN

2 MDPfp = a subset of CLMDP containing the MDPs of the patterns
that caused a false positive;

3 FOR EACH MDPpattern ∈MDPfp

DO
4 in MDPpattern reduce the reward of the current state and all states

that dominate it by PaFp;
5 Cstates = set of the neighboring states of MDPpattern → currentState()

with the highest reward;
6 MDPpattern → SetCurrentState(argmax

s∈Cstates

distS(s,Ex));

END FOR EACH
ELSE //UF == false negative

7 MDPfn = argmin
MDPpattern∈CLMDP

distS(MDPpattern → currentState(), Ex);

8 in MDPfn reduce the reward of the current state and all states
that it dominates by PaFn;

9 Cstates = set of neighboring states of MDPfn → currentState()
with the highest reward;

10 MDPfn → SetCurrentState(argmin
s∈Cstates

distS(s,Ex));

END IF

11 adapted parameters = empty vector;
12 FOR EACH MDPpattern in CLMDP

DO
13 adapted parameters → Add(MDPpattern → currentState());

END FOR EACH

14 return adapted parameters;

Steps 11–14: The adapted parameter values are returned. These are the parameter values
represented by the CLMDP ’s current states.

Figure 5.4 illustrates the parameter-value adaptation process on the example fall-detection
rule. The initial MDPpattern is presented in Figure 5.4a. MDPpattern’s reward matrix is
initialized to zero for all states and its current state is set to the refined classifier’s rule
values (Plying %, Tlying) = (70 %, 9 s). The MDPpattern’s current state is highlighted with
a black rectangle. We assume that, after a certain period of time, a false positive feedback
is obtained due to a classification error of the example rule. In this concrete rule, a false
positive feedback reduces the reward of the current state and of all states that dominate
it (states with less or equally strict parameter values than the current state’s parameter
values) by a penalty amount PaFp, which in our example is −1, because a false positive in-
dicates that the rule’s parameter values must be made stricter (Figure 5.4b). After updating
the state rewards, the set of neighboring states of MDPpattern → currentState() with the
highest reward is determined and the MDPpattern’s current state is set to the state with the

44
CDKML – A Method for Combining Domain Knowledge and Machine

Learning for Classifier Generation and Online Adaptation

FALSE POSITIVE

F
A

L
S

E

N
E

G
A

T
IV

E

FALSE POSITIVE

IF a person is lying on the ground

70 % in 9 seconds THEN fall

8 9 10 11 12

70

60

50

80

90
10

0 0 0 0 0 0

00000

0 0 0 0 0

0 0 0 0

00000

0 0 0 0 0

0

IF a person is lying on the ground

80 % in 9 seconds THEN fall

8 9 10 11 12

70

60

50

80

90
10

0 0 0 -1 -1 -1

-1-1-100

0 0 -1 -1 -1

-1 -1 0 0

000-1-1

-1 -1 0 0 0

0

IF a person is lying on the ground

80 % in 10 seconds THEN fall

8 9 10 11 12

70

60

50

80

90
10

0 0 0 0 0 0

00000

0 0 0 0 0

-1 -1 0 0

000-1-1

-1 -1 0 0 0

0

IF a person is lying on the ground

70 % in 10 seconds THEN fall

-2

-1

8 9 10 11 12

70

60

50

80

90
10

0 0 0 -1 -1 -1

-1-1-100

-1 -1 -1 -1

-2 -2 0 0

000-2-2

-2 0 0 0

0

Tlying (seconds)

P
ly

in
g
 (

%
)

P
ly

in
g
 (

%
)

P
ly

in
g
 (

%
)

P
ly

in
g
 (

%
)

Tlying (seconds)

Tlying (seconds)Tlying (seconds)

b)

d) c)

a)

Figure 5.4: Visualization of CDKML’s online adaptation process: a pattern’s Markov deci-
sion process after a) initialization, b) a false positive user feedback, c) a false positive and
a false negative user feedback, d) two false positive and one false negative user feedback.

maximum distance from the example that triggered the false positive. In the example rule,
the distance from a state s ∈ S to an example Ex that triggered user feedback is calculated
as follows:

distS(s,Ex) = min
t∈T

distS(s,Ex, t)

where T = S → GetValues(dimtime) is the set of values for Tlying. We calculate distS(s,Ex, t)
as follows:

distS(s, Ex, t) =

= max

(⌈
|s→ GetValue(dimtime)− t|

S → GetStep(dimtime)

⌉
,

⌈
|s→ GetValue(dimperc)− perc|

S → GetStep(dimperc)

⌉)
where perc = Ex →GetLyingPerc(t). The new MDPpattern’s current state (Figure 5.4b)
has stricter values for both the time and percentage parameters. We again assume that,
after a certain period of time, a false negative feedback is obtained and that the example-
rule’s current state is at minimum distance from the triggering example. A false negative
feedback reduces the reward of the current state and of all states that it dominates (states

Online Adaptation 45

with stricter or equal parameter values than the current state’s parameter values) by a
penalty amount PaFn, which in our example is −1, because a false negative indicates that
the rule’s parameter values are too strict and need to be relaxed (Figure 5.4c). Again, the set
of neighboring states of MDPpattern’s current state with the highest reward is determined
and the MDPpattern’s current state is set to the state with the minimum parameter-value
distance from the example that caused the false negative. Figure 5.4c presents a case
where the feedback result reduced the strictness of the time parameter, while the percentage
parameter remained unchanged. The initial state was avoided because of the negative reward
received during the first false positive. A possible outcome after an additional false positive
feedback is presented in Figure 5.4d. Pattern-parameters values are adapted in this way
after each obtained user feedback.

47

6 Evaluation

This chapter focuses on evaluating the performance of the CDKML method. We would
like to note that statistical comparison between CDKML and other methods is extremely
difficult. CDKML is not run automatically. It involves a domain expert in the classifier
generation process requiring a considerable amount of effort and time from him/her. The
evaluation, therefore, considers experiments directed towards answering the following ques-
tions:

• How important is expert input in the CDKML method? Can we circumvent expert
input?

• Is an expert capable of selecting a comprehensive set of concept patterns in the
CDKML method?

• Does CDKML’s approach to combining DK and ML contribute to improved classifier’s
performance?

The experiments were conducted using a custom implementation of CDKML in Java
which uses two open-source software packages: (1) Weka (Hall et al., 2009) for ML classifier
generation in the initialization phase, and (2) the Java Genetic Algorithms and Genetic
Programming Package (Meffert et al., 2011) for pattern-parameter tuning in the refinement
phase using genetic algorithms.

6.1 Behavioral Cloning1

CDKML points out the importance of expert input for classifier generation in the case of
scarce data. The expert provides the set of patterns in CDKML’s initialization phase and
poses constraints on the search space in CDKML’s refinement phase. However, can we
circumvent expert input? This section presents a case study in which the set of patterns
is extracted automatically according to their frequency of appearance in ML classifiers and
without search-space constraints.

The case study was performed in the behavioral-cloning domain. We start by describing
the serious game used for capturing behavior-examples as well as for evaluating behavior-
clones’ quality (Subsection 6.1.1). Then, we present the created datasets (Subsection 6.1.2).
Finally, we discuss the results (Subsection 6.1.3).

6.1.1 The Serious Game

This study is based on a serious game which simulates the interaction between participants
of two asymmetric, opposing groups: civilians and soldiers. The interaction takes place at a
camp entrance where the civilians are gathering in order to apply for a job. The soldiers are
guarding the camp. A screenshot of the serious-game environment is shown in Figure 6.1.

1This section supplements the publication Mirchevska et al. (2012).

48 Evaluation

Camp area

Camp entrance

Watchtower

Figure 6.1: The serious-game environment.

The blue dots represent the soldiers, while the yellow dots outside the camp are the civilians.
Civilians’ behavior is predefined and specified in PECS (Physis, Emotion, Cognition, Social
Status) reference models (Schmidt, 2000), while soldiers’ behavior is controlled by a person.

6.1.2 Data

Behavior examples were obtained through the serious game by letting a person control the
soldier agents, while the civilians behaved as specified in the PECS reference models. An
interface was created for this purpose. It reported the serious-game state each time an
action was expected from a soldier agent after which the person selected an action to be
executed. A behavior example was created for each executed soldier action. Behavior data
was recorded in ten serious-game runs which on average lasted 2772 steps. Table 6.1 presents
the number of examples per soldier action in each serious-game run.

The serious-game course was also logged using twelve indicators (measures of effective-
ness – MoEs). Examples of recorded MoEs are the number of injured, the level of civilians’
anger and civilian leader’s readiness for aggression. The MoEs were recorded in each game
step.

6.1.3 Evaluation of CDKML in the Absence of Domain Knowledge

This evaluation presents an attempt to circumvent expert input in CDKML’s initialization
and refinement phases (Figure 6.2).

The Classifier

This subsection presents the created rule-based behavior clone. As presented in Section 4.1,
the goal was to extract a single-level policy function consisting of a set of rules. The set of
rules was selected using the CDKML’s initialization phase as follows. Ten behavior subsets
were created, each of which contained the examples of nine out of the ten serious-game logs.
On each behavior subset, a set of decision trees were induced as proposed in CDKML’s
initialization. If a rule pattern was present in the decision trees of at least five out of the
ten behavior subsets, it was included in the initial classifier. The rule’s parameter values

Behavioral Cloning 49

Table 6.1: Number of action examples.

communicate

calming event

communicate

warning event

gesticulate

show weapon

load gun

perform

warning shot

perform

effective shot

3

1

0

2

2

5

3

0

3

0

2

2

2

3

1

1

0

2

2

3

3

0

4

3

2

2

6

3

2

6

2

2

2

24

3

25

3

0

1

1

0

0

3

6

6

0

4

64

0

13

20

3

2

15

23

0

44

4

0

1

1

0

0

27

11

0

0

0

24

2

11.8

5.9

1.4

1.4

3.1

15.1

1.7

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10 avg.

Initial rule-based

behavior clone
OUTPUT

PHASE

METHOD
Genetic

algorithms

Behavior

dataset
INPUT

Learn human-

understandable

classifiers

Extract important

action patterns

Refined rule-based

behavior clone

1. INITIALIZATION 2. REFINEMENT

Figure 6.2: CDKML’s application to the behavioral-cloning domain – creating a rule-based
behavior clone using CDKML’s initialization and refinement phases.

were tuned using the available training data in the CDKML’s refinement phase without
constraints on the search space.

The behavior clone encompasses the soldiers’ internal states which cause the execution
of seven actions: communication of a calming event, communication of a warning event,
gesticulation, show of weapon, gun loading, performing a warning shot and performing an
effective shot. A soldier’s internal state captures four attribute sets: soldier’s location (e.g.,
at the entrance, on the watchtower), soldier’s interaction with the civilian leaders (e.g., is
a civilian leader near the soldier, the civilian leaders’ anger value, their leading motive,

50 Evaluation

performed provocations by the civilian leaders), the average civilians’ anger and previously
performed soldier actions (e.g., previous gesticulation, previous communication of a calming
event and similar).

The behavior clone contained fifteen rules. Below we give examples of rules present in
the rule engine:

1. IF communicated calm eventsoldier AND NOT(performed warning shotsoldier) AND
avg angercivilians > 58 THEN communicate calm event (confidence: 0.80);

2. IF communicated calm eventsoldier AND NOT(performed warning shotsoldier) AND
avg angercivilians > 5 AND angercivilian leader > 18 AND angercivilian leader < 69
THEN communicate warning event (confidence:0.53);

3. IF communicated calm eventsoldier AND gesticulatedsoldier AND avg angercivilians < 90
THEN gesticulate event (confidence: 0.24);

4. IF communicated calm eventsoldier AND avg angercivilians > 10 AND
avg angercivilians < 60 AND angercivilian leader > 47
THEN perform warning shot (confidence: 0.82).

The number of parameters in the behavior clone (i.e., the chromosome length in CDKML’s
refinement phase) equaled 46.

Results

This section compares the performance of CDKML’s behavior clone to the performance of
ML behavior clones induced in Weka (Hall et al., 2009) with SMO, RandomForest, Naive-
Bayes, JRip and J48. We used the default Weka’s algorithm parameter-values, and the
same instance attributes (soldiers’ internal-state features) as applied in creating CDKML’s
behavior clone.

The behavior clones were evaluated based on two measures: accuracy and game-course
difference. The accuracy (ACC) equals the proportion of correctly predicted examples from
all examples:

ACC =
number of correctly predicted examples

number of examples
(6.1)

The game-course difference (DIFF) shows to what degree the behavior clones are capable
of reproducing the same serious-game outcome as the modeled entity. It therefore gives
a global judgment of the behavior clones’ performance in the analyzed environment. The
game-course difference was computed using dynamic time warping (Müller, 2007). Dynamic
time warping is used for estimating the difference between two time series. It determines
the ideal warp, i.e., optimal alignment, between two time series by comparing the distance
between each possible pair of points of the two time series. In order to compare the MoE
values of two serious-game runs, a distance metric between two multi-dimensional time
points is needed. We calculate this distance as follows:

dist(moe1,moe2) =

D∑
d=1

(moe1(d)−moe2(d)) (6.2)

where moe1 and moe2 are points on two D-dimensional MoE time series, and moei(d)
represents the value of the d -th dimension of the point moei. The sum of the distances of

Behavioral Cloning 51

Table 6.2: Behavior-clone comparison with respect to accuracy.

Predictive

accuracy

J48JRipSMO
Random-

Forest

Naive-

Bayes

0.57 0.51 0.50 0.53 0.47

CDKML

0.51

the pairs of points on the ideal warp represents the difference between the two time series,
i.e., the game-course difference:

DIFF =
∑

d∈ideal wrap

distmoes(d) (6.3)

It is a value in the interval [0, 100] where higher values indicate higher time-series difference.

Separate-training-and-test-set evaluation scenario was used for estimating behavior-clones’
performance. Training was performed using data in nine out of the ten serious-game logs
(CDKML’s refinement used seven out of the nine logs for training and two for validation).
The tenth serious-game log (not seen during training) was used for estimating the behavior
clones’ accuracy. For the purpose of measuring the difference between the serious-game
course produced by the person and a behavior clone, we incorporated the behavior clone
in the serious game and recorded its course ten times for 1500 steps. The game-course
difference between the person and a behavior clone was calculated as the average of the ten
person-clone MoE differences, each of which compared one of the ten clone’s serious-game
courses with the serious-game course in the tenth person’s serious-game log (not seen during
training). This test scenario was performed ten times for each learning approach, each time
leaving out from training a different serious-game log. The performance of each learning
approach is represented as the average behavior-clone accuracy and game-course difference
in the ten test runs.

Table 6.2 compares the performance of CDKML and the ML algorithms with respect
to the behavior clones’ accuracy. CDKML’s accuracy is slightly higher than J48’s and
NaiveBayes’s accuracy, the same as RandomForest’s accuracy, and lower than JRip’s and
SMO’s accuracy. Despite the difference in accuracy, superiority of one rule-based behavior
clone (consisting of rules or behavior clones which can be converted to a ruleset) over the
others was not evident. Although having higher average accuracy, CDKML was better
than J48 on 4 out of the 10 test datasets. It had higher accuracy than RandomForest
on 3 test datasets and the same accuracy on one dataset. Finally, although having lower
average accuracy, CDKML outperformed JRip on 6 test datasets. The SMO behavior clone,
however, showed better performance than CDKML with respect to accuracy. It had higher
accuracy in 8 of the 10 test datasets, while the accuracy was the same on one dataset.

Table 6.3 compares the performance of CDKML and the ML algorithms with respect
to game-course difference. Each cell in the table represents the average difference between
the MoE values of the game type in the row and the column of the cell. The person-
CDKML MoE difference is on average 7, the same as the person-SMO MoE difference, while
the person-J48, the person-JRip and the person-RandomForest average MoE difference is
slightly lower. Despite having different person-clone MoE differences, superiority of one rule-
based behavior clone over the others was not evident. The person-CDKML MoE difference
is in the interval [4, 14], the person-J48 difference is in the interval [1, 13], the person-JRip
difference is in the interval [1, 14], the person-RandomForest difference in the interval [1, 17].

52 Evaluation

Table 6.3: Behavior-clone comparison with respect to game-course difference.

A person CDKML SMO

Random-

Forest

Naive-

Bayes JRip J48

A person 3 7 7 4 2 5 5

CDKML 3 2 7 7 7 5

SMO 2 6 7 6 5

RandomForest 6 4 6 6

NaiveBayes 1 5 5

JRip 6 6

J48 5

The NaiveBayes behavior clone, however, showed better performance than CDKML with
respect to the game-course difference. The person-NaiveBayes MoE difference was in the
interval [1, 4].

The presented approach to circumventing expert input did not show improvement in
comparison to standard ML. Although the analysis in this case study is limited, in the
absence of DK it would be difficult to outperform standard ML by separating the classifier
generation process into two subtasks, extraction of characteristic patterns and pattern-
parameter value optimization, as proposed by CDKML’s initialization and refinement phase.
The analyzes that follow, however, show that if expert DK is available, this approach achieves
higher accuracy than standard ML when the training dataset captures a limited amount of
concept examples.

6.2 Posture Recognition

The analysis in the posture-recognition domain concerns two questions: (1) is an expert
capable of extracting a comprehensive set of concept patterns in the CDKML method, and
(2) does the combination of expert DK and ML as proposed by CDKML contribute to
improved classifier’s performance.

We start this section by describing the reasoning flow in the Confidence system us-
ing which we generated posture examples (Subsection 6.2.1). Then, we present the created
datasets (Subsection 6.2.2). Finally, we discuss the evaluation results. Subsection 6.2.3 eval-
uates a posture-recognition classifier constructed by a domain expert, while Subsection 6.2.4
evaluates a classifier generated using CDKML’s initialization and refinement phases.

6.2.1 The Confidence System

Confidence is a ubiquitous system for real-time health problem detection. It’s target group
are the elderly to whom the system should give the necessary confidence to continue living
in their home, obtaining medical care only when needed. Figure 6.3 presents a simplified
version of the reasoning flow in the Confidence system. Detailed system descriptions can be
found in literature (Kaluža et al., 2010; Mirchevska et al., 2010; Luštrek et al., 2011; Kaluža
et al., 2013).

In the Confidence system, the user is equipped with wearable tags from a real-time lo-
cation system (RTLS). The RTLS system measures the x, y and z coordinates of the user’s
body parts to which the tags are attached. The raw RTLS data is first preprocessed to
estimate missing measurements and reduce noise. The preprocessed RTLS data is then
submitted as input to the attribute computation module. This module computes charac-
teristics of a person’s body, including tag velocity and amount of movement, and relations

Posture Recognition 53

Preprocessing

and filtering

Attribute

computation

Posture

recognition

Health problem detection

Preprocessed RTLS

data

Attributes: distances between

tags, tag velocity and similar

Current user activity; User

level of movement

Raw RTLS data

short-term

Gait characteristics,

location in the house

mid-term long-term

Userfeedback

Report detected and/or

emerging health problems

Figure 6.3: The Confidence system, a ubiquitous system for real-time health problem de-
tection.

between body parts, including the distance between tags. The posture recognition module
uses these characteristics to classify the person’s posture into one of seven classes: standing,
sitting, lying, standing up, going down, falling, or on all fours. Additionally, if the sys-
tem detects lying or sitting, it determines whether these activities are done at appropriate
places, including a bed for lying or chair for sitting, or at inappropriate places, such as
on the ground. The system contains three health problem detection modules, short-term,
mid-term and long-term, each of which takes into consideration the output of the posture
recognition module. The Confidence system communicates with the user through a portable
device using which it reports detected and emerging health problems to the user. The user
uses the portable device to provide feedback – report an erroneous detection of a health
problem or call for help in the case of an emergency not detected by the system. In case of
an emergency, the Confidence system contacts a caregiver for help.

6.2.2 Data

The experiments were performed using human posture examples recorded in two phases.
The first phase, containing 135 sequences of behavior of three people, includes examples of
standing/walking, lying down, sitting down and falling. The second phase, which contains
775 sequences of behavior of five people (three of which are the people present in the first-
phase recordings), includes the basic behaviors recorded in the first phase, examples of
several kinds of falls, and, based on discussions with physicians, examples of walking and
lying of people with different health problems, such as Parkinson’s disease and hemiplegia.
Table 6.4 presents the number of posture examples per recording phase.

The recordings were made with the use of the Smart infrared motion capture system
(eMotion, 2009), because at the time of this experiment the Confidence’s RTLS hardware
was under development. In the recordings, the locations of twelve tags were measured, one
on each shoulder, hip, knee, ankle, elbow and wrist. The location of a virtual tag on the

54 Evaluation

Table 6.4: Number of posture examples.

Posture First phase Second phase

Standing 1544 39070
Sitting 733 5368
Lying 1773 5337
Falling 689 2229
Moving downwards 1696 5044
Moving upwards 0 421
On all fours 0 2183

chest was computed as the middle point between the shoulders due to difficulties in attaching
a tag there and tracking it during forward falls. The coordinates of the tags were sampled
at a frequency of 60 Hz. This data was processed in order to bring it in a form analogous to
the anticipated Confidence’s RTLS hardware – the Ubisense system (Ubisense, 2012). Two
transformations were applied. First, the sampling frequency was reduced to 10 Hz. Then,
Gaussian noise with standard deviation of 4.36 cm horizontally and 5.44 cm vertically was
added to the data. The values of the standard deviation of the noise in the Ubisense system
were obtained experimentally.

6.2.3 Evaluation of a Classifier Constructed by a Domain Expert Using
Interactive Data Mining1

This subsection examines if an expert is capable of selecting a comprehensive set of concept
patterns using DK and interactive data mining, thus creating a representative classifier. A
rule-based posture-recognition classifier was generated using CDKML’s initialization phase
as depicted in Figure 6.4.

The Classifier

This subsection presents the posture-recognition classifier constructed by a domain expert.
It is a rule-based classifier whose reasoning is based on the position of the person’s chest and
the ankles. More precisely, only the z coordinates of the chest and the ankles are considered.
The x and y coordinates are not relevant, because they refer to the place in the room where
the person is. Additionally, the chest-ankle distance in z direction and its projection on
the xy plane are used. These distances are the most important for distinguishing between
lying, sitting and standing. Finally, the velocity of the chest is considered. Being one of the
topmost body parts, the velocity of the chest is the highest during falls, moving downwards
and upwards, making it suitable for distinguishing them.

The classifier (Figure 6.5) contains three rule types: (1) strict posture rules, (2) weak
posture rules, and (3) a default rule.

The strict posture rules contain precise definitions of the body configuration in each
of the postures of interest. The expert examined a set of decision trees as proposed in
CDKML’s initialization phase. A set of rules was extracted from the decision trees, a part
of which were modified by DK. Twelve strict posture rules were specified, a subset of which
is provided below:

1. IF Distance Z AnkleLeftToChest > 1.1 m AND
Distance Z AnkleRightToChest > 1.1 m AND

1This subsection is based on the publication Mirčevska et al. (2009).

Posture Recognition 55

A rule-based

posture-recognition

classifier

OUTPUT

PHASE

METHOD

1. INITIALIZATION

Domain

knowledge

Postures

dataset
INPUT

Learn human-

understandable

classifiers

Extract important

posture patterns

Figure 6.4: CDKML’s application to the posture-recognition domain – creating a rule-based
classifier using CDKML’s initialization phase.

Distance XY AnkleLeftToChest < 1 m AND
Distance XY AnkleRightToChest < 1 m AND
Velocity Z Chest > −0.7 m/s AND Velocity Z Chest < 0.7 m/s THEN Standing;

2. IF Velocity Z Chest < 0.2 m/s AND Velocity Z Chest > −0.2 m/s AND
Distance Z AnkleLeftToChest < 0.2 m AND
Distance Z AnkleRightToChest < 0.2 m THEN Lying;

3. IF Velocity Z Chest < −1.5 m/s THEN Falling;

4. IF Z AnkleRight < 0.13 m AND Z AnkleLeft < 0.13 m AND
Velocity Z Chest < −0.5 m/s AND Velocity Z Chest > −1.3 m/s AND
Distance XY AnkleLeftToChest < 0.8 m AND
Distance XY AnkleRightToChest < 0.8 m THEN Going down;

5. IF Z Chest > Z AnkleRight AND Z Chest > Z AnkleLeft AND
Distance XY AnkleLeftToChest > 0.15 m AND
Distance XY AnkleRightToChest > 0.15 m AND
Distance XY AnkleLeftToChest < 0.7 m AND
Distance XY AnkleRightToChest < 0.7 m AND
Distance Z AnkleLeftToChest > 0.7 m AND
Distance Z AnkleRightToChest > 0.7 m AND
Distance Z AnkleLeftToChest < 1 m AND
Distance Z AnkleRightToChest < 1 m AND
Velocity Z Chest < 0.2 m/s AND Velocity Z Chest > −0.2 m/s AND
Velocity total Chest < 0.7 m/s THEN Sitting;

6. IF Velocity Z Chest > 0.2 m/s AND Velocity total Chest > 0.7 m/s AND
Distance Z AnkleLeftToChest > 0.7 m AND

56 Evaluation

Example

Strict posture rules

Classified?
Resolve

conflicts

no

no

yes

no
yes

yesConflict?

Weak posture rules

Classified?

Default rule

Class

value

Figure 6.5: Architecture of the posture-recognition classifier constructed by a domain expert.

Distance Z AnkleRightToChest > 0.7 m AND
Distance Z AnkleLeftToChest < 1.1 m AND
Distance Z AnkleRightToChest < 1.1 m THEN Standing up.

Each example is first processed by the strict posture rules. If it is covered by strict
posture rules describing equal posture class, that class in assigned to it. Conflicts when a
particular instance is covered by rules describing more than one posture class are resolved
as presented in Table 6.5. Conflicts appear between rules for adjacent classes (e.g., standing
and going down). Since the rules for standing, sitting, lying and falling were constructed in
a way that only pure postures are captured, they are chosen when there is a conflict with a
rule for moving downwards/upwards.

The weak posture rules specify the most probable class according to the person’s chest-
ankle distance and chest velocity. The weak posture rules were created using DK. Five weak
posture rules were specified:

1. IF Distance Z AnkleLeftToChest > 1.2 m AND
Distance Z AnkleRightToChest > 1.2 m THEN Standing;

2. IF Distance Z AnkleLeftToChest < 0.2 m AND
Distance Z AnkleRightToChest < 0.2 m THEN Lying;

3. IF Velocity Z Chest < −0.2 m/s THEN Going down;

Posture Recognition 57

Table 6.5: Resolution of conflicts among the rules in the posture-recognition classifier con-
structed by a domain expert.

Conflict Result

Standing and moving downwards/upwards Standing
Sitting and moving downwards/upwards Sitting
Lying and moving downwards/upwards Lying
Falling and moving downwards/upwards Falling

4. IF Velocity Z Chest > 0.2 m/s THEN Standing up;

5. IF Distance XY AnkleLeftToChest < 0.7 m AND
Distance XY AnkleRightToChest < 0.7 m THEN Sitting.

Each example which is not covered by any of the strict posture rules is processed by the
weak posture rules, which are processed in the given order. The example obtains the class
of the first weak rule which covers it, if such rule exists.

Finally, the default rule is used to assign a class to an example that is not covered by
both the strict and the weak posture rules. Since the current posture of a person is highly
correlated with the posture he/she had in the previous time interval, the default rule assigns
the class of the previous time interval to the example in the current time interval.

Results

This subsection compares the performance of the expert’s posture-recognition classifier to
the performance of ML posture-recognition classifiers induced in Weka (Hall et al., 2009)
with SMO, RandomForest, NaiveBayes, JRip and J48. The ML classifiers were created with
the default Weka’s parameter-values, except for J48, which was applied with the minimal
number of instances per leaf set to 2 % of the training-dataset size. They used the same
example attributes as the expert’s posture-recognition classifier: the z coordinates of the
chest and the ankles, the absolute chest-ankle distance, the chest-ankle distance in z direction
and its projection on the xy plane, the absolute velocity, and the velocities in z direction of
the chest and the ankles.

We used accuracy (Equation (6.1)) to measure the posture-recognition classifiers’ qual-
ity. The ML classifiers were evaluated with 10-fold cross validation on the data from both
phases together and with three separate-training-and-test-set scenarios. In the first and
second separate-training-and-test-set scenario, the classifiers were induced from data in one
recording phase and their quality was tested on the other recording phase. In the third sce-
nario, the classifiers were induced from the first and second phase recordings of two people,
and their quality was tested on the first and second phase recordings of the third person.
The quality of the expert’s classifier is presented using its accuracy on the test dataset in
each separate-training-and-test-set scenario.

Examination of the ML classifiers’ accuracy in the different evaluation scenarios suggests
a certain degree of overfitting. The accuracy of these classifiers is the highest when evaluated
with 10-fold cross validation (Table 6.6). The highest accuracy of 0.96 was achieved by the
RandomForest classifier. The random selection of training and test dataset in 10-fold cross
validation permits data about the behavior of a concrete person in a concrete phase to be
present in both the training and test dataset, resulting in high classifiers’ accuracy in this
evaluation scenario. The classification accuracy decreases in the evaluation scenario in which
the classifiers are induced from data about two people and tested on data of the third person

58 Evaluation

Table 6.6: Accuracy of ML posture-recognition classifiers estimated using 10-fold cross
validation.

SMO
Random-

Forest
J48

10-fold cross

validation
0.960.90 0.88

Naive-

Bayes
JRip

0.81 0.93

Table 6.7: Posture-recognition classifier comparison with respect to accuracy estimated with
separate-training-and-test-set evaluation.

Training

dataset

Test

dataset
CDKML

First

phase

Second

phase

Second

phase

First

phase

Two

people

Third

person

0.85

0.78

0.87

0.74

0.80

0.86

0.80

0.71

0.87

0.91

0.82

0.89

SMO
Random-

Forest
J48

Naive-

Bayes
JRip

0.68

0.68

0.76

0.70

0.77

0.85

Test

dataset

Second

phase

First

phase

Third

person

(Table 6.7). The highest accuracy of 0.87 was achieved by the SMO and the J48 classifiers.
In this case, the training dataset does not contain data about the behavior of the person
on which the classifier is tested. However, since all people were instructed to behave in the
same way in both recording phases, and they were able to observe and copy each other, the
classifiers induced in this evaluation scenario are likely overfitted to this particular behavior
of the people. The most significant drop in accuracy happens in the evaluation scenarios in
which the classifiers are induced from one recording phase and tested on the other (Table
6.7). The SMO classifier had the highest accuracy (0.85) when the first recording phase was
used for training and the second for testing. The RandomForest classifier had the highest
accuracy (0.80) when the second recording phase was used for training and the first for
testing. In this case, the training and test datasets contain different behavior, and there are
people for which recordings were only made in the second phase. The fall in classification
accuracy in this scenario supports the observation that the ML classifiers get overfitted to
the people and the behavior present in the training dataset.

The performance achieved by the expert’s classifier suggests that a comprehensive set
of rules of the learned concept may be created using DK and interactive examination of
decision-tree classifiers. In the scenarios in which one recording phase is used for training
and the other for testing, the accuracy of the J48 classifier is more than 0.10 lower than the
accuracy of the expert’s classifier. We would like to note that part of the rules in the expert’s
classifier were obtained by interactive examination of decision trees induced using J48. The
accuracy of the other three ML classifiers is also smaller in these evaluation scenarios.
The difference is the highest for the RandomForest, JRip and NaiveBayes classifiers whose
accuracy is more than 0.15 lower than the expert’s classifier when the training was done
on the first recording phase and testing on the second. There was no significant difference
in accuracy in the scenario in which the ML classifiers were trained on the recordings of
two people and tested on the third person. Nevertheless, higher classification accuracy of

Posture Recognition 59

the expert’s classifier in this case still suggests that incorporation of DK improves classifier
generality.

We would like to note that the presented evaluation does not prove superiority of the
expert’s classifier over the classifiers induced solely by ML. We rather want to show that
experts may extract a comprehensive set of patterns using DK and interactive data mining.
We see the expert’s classifier and the ML classifiers as two, distinct view points of the learned
concept whose combination brings the highest benefit.

6.2.4 Comparison of CDKML’s Performance to the Performance of Ma-
chine Learning

This subsection aims at examining if the incorporation of DK in classification learning as
proposed by CDKML’s initialization and refinement phase contributes to improved classifier
performance. A rule-based posture-recognition classifier was generated using the CDKML’s
initialization and refinement as depicted in Figure 6.6.

Initial rule-based

posture-recognition

classifier

Refined rule-based

posture-recognition

classifier

OUTPUT

PHASE

METHOD
Genetic

algorithms

1. INITIALIZATION 2. REFINEMENT

Domain

knowledge

Postures

dataset
INPUT

Learn human-

understandable

classifiers

Extract important

posture patterns

Figure 6.6: CDKML’s application to the posture-recognition domain – creating a rule-based
classifier using CDKML’s initialization and refinement phases.

The Classifier

This evaluation is performed using the proposed CDKML’s classifier form (Figure 5.2).
The classifier encompassed 17 rules – the union of the strict and weak posture rules of the
expert’s classifier presented in Subsection 6.2.3. The number of classifier’s parameters (i.e.,
the chromosome length in CDKML’s refinement phase) equaled 47. Rule conflicts were
resolved using the maximum confidence strategy. If an example was not covered by any of
the rules in the classifier, its class value was designated as unknown.

The rule parameters in the initial posture-recognition classifier had the values which were
specified by the expert. CDKML’s refinement was then applied for the purpose of deter-
mining the most suitable general-purpose rule-parameter values based on training posture
examples.

60 Evaluation

Results

This subsection compares the performance of CDKML’s posture-recognition classifier to the
performance of ML posture-recognition classifiers induced in Weka (Hall et al., 2009) with
SMO, RandomForest, NaiveBayes, JRip and J48. The ML classifiers were created with
the default Weka’s parameter-values, except for J48, which was applied with the minimal
number of instances per leaf set to 2 % of the training-dataset size. They used the same
example attributes as CDKML’s posture-recognition classifier: the z coordinates of the chest
and the ankles, the absolute chest-ankle distance, the chest-ankle distance in z direction and
its projection on the xy plane, the absolute velocity, and the velocities in z direction of the
chest and the ankles.

This evaluation uses the separate-training-and-test-set scenario, where posture examples
from the first phase were used for classifier training while classifier evaluation was done on
the posture examples from the second phase. A set of training dataset sizes ranging from
50 to 6435 with a step 1000 was used. For each training dataset size, five training subsets
were randomly drawn from the first-phase posture examples. A classifier was induced from
each of the five training subsets and its average error (Equation (3.5)) was computed on the
second-phase posture examples.

Figure 6.7 plots the error rate per training-dataset size of the CDKML’s refined and the
ML classifiers. We would like to note that the J48 error in Figure 6.7 is the same as the
separate-training-and-test-set error presented in Figure 3.1.

50 1050 2050 3050 4050 5050 6050 6435

number of training examples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

er
ro

r

CDKML

SMO

RandomForest

NaiveBayes

JRip

J48

Figure 6.7: Classifiers’ performance estimation. Comparison of the separate-training-and-
test-set error of the CDKML’s and ML’s posture-recognition classifiers.

CDKML’s separate-training-and-test-set error was approximately 0.19 for training data-
set size of 50 examples. Its error was relatively constant at 0.15 for training dataset sizes
above 1050 examples. CDKML’s error was lower than the error of the rule-based ML
classifiers (classifiers consisting of rules or classifiers which can be converted to a ruleset):
J48, JRip and RandomForest. CDKML’s error was approximately 0.05 lower than the
J48’s error for all training-dataset sizes. We would like to note that part of the rules in

Fall Detection 61

the CDKML’s classifier were obtained by interactive examination of decision trees induced
using J48. CDKML’s error was more than 0.07 lower than the JRip’s error for all training
dataset sizes and more than 0.05 lower than the RandomForest’s error for training-dataset
sizes having more than 1050 examples. CDKML also outperformed the NaiveBayes classifier
whose error was the highest among all classifiers. CDKML’s performance was comparable
to the performance of SMO. SMO’s error was approximately 0.24 for training dataset size
of 50 examples, while being relatively constant at 0.15 for training dataset sizes above
1050 examples. Although not outperforming the SMO classifier in terms of the error rate,
CDKML’s transparency is an advantage compared to SMO (a black-box classifier).

Similarly to the J48’s separate-training-and-test-set error discussed in Section 3.2, the
classifiers’ error in Figure 6.7 is relatively constant for training dataset sizes above 1050
examples. This confirms the observation that the test set contains patterns not present in
the dataset used for training (also noted in the description of the two recording phases).
One exception is the RandomForest’s error which increases with the increase of the training-
dataset size. This observation indicates that the RandomForest classifier overfits to the
training examples.

6.3 Fall Detection1

Fall detection was addressed as a subtask in the broader system for health problem detec-
tion Confidence (Subsection 6.2.1). The fall-detection module in Confidence obtains data
concerning a person’s posture history and movement levels as input from the posture recog-
nition module. It detects falls using the four rule types shown in Section 5.2, which mostly
depend on whether an elderly person is lying or sitting at an inappropriate place (e.g., on
the ground) for a long period of time, resulting in a high probability of a fall. Fall detection
does not rely only on detecting the falling activity (high acceleration toward the ground),
as it always lasts a very short time and is thus difficult to recognize. Compared to detect-
ing falling activity, lying and sitting on the ground are easier to detect, which makes them
convenient for fall detection. However, this approach has certain issues because posture
recognition is not perfect. The posture on all fours may be misclassified as lying on the
ground. Because lying on the ground indicates a fall, such misclassifications may lead to
false positives. However, the posture on all fours which occurs when a person is searching
for something on the ground is shorter than the period of lying/sitting on the ground that
follows a fall and includes more movement. Another common misclassification occurs when
a person is sitting on a low chair. Sitting on a low chair may be misclassified as sitting
on the ground because of the noise in the RTLS system measurements and may cause false
positives. However, the amount of sitting on the ground recognized when a person is sit-
ting on a low chair should be lower than the amount of this activity recognized when a
person is sitting on the ground. Therefore, the main challenge faced when developing the
fall-detection classifier is providing reliable and robust fall detection even in various complex
real life circumstances.

The analysis in the fall-detection domain concerns the question: does the combination of
expert DK and ML as proposed by CDKML contribute to improved classifier’s performance.
It is separated in two subsections, the first of which (Subsection 6.3.1) evaluates classifier
performance after each of the three CDKML phases, while the second (Subsection 6.3.2)
presents a more detailed evaluation of CDKML’s approach to online classifier adaptation.

1This section is based on the publications Mirchevska et al. (2010) and Mirchevska et al. (2013b).

62 Evaluation

6.3.1 Comparison of CDKML’s Performance to the Performance of Ma-
chine Learning

Initial rule-based

fall-detection

classifier

Refined rule-based

fall-detection

classifier

Adapted rule-based

fall-detection

classifier

OUTPUT

PHASE

METHOD
Genetic

algorithms

Markov decision

processes

1. INITIALIZATION 2. REFINEMENT
3. ONLINE

ADAPTATION

Domain

knowledge

User

feedback

Falls

dataset
INPUT

Learn human-

understandable

classifiers

Extract important

fall patterns

Figure 6.8: CDKML’s application to the fall-detection domain – creating a rule-based clas-
sifier using CDKML’s initialization, refinement and online adaptation phases.

This subsection aims at examining if the combination of expert DK and ML as proposed
by CDKML contributes to improved classifier’s performance. A rule-based fall-detection
classifier was generated using CDKML as presented in Figure 6.8. This evaluation was
performed using the fall-detection classifier presented in Section 5.2.

Data

We designed a test scenario to investigate the generality and robustness of the developed
rule-based classifiers using the CDKML’s initialization and refinement phases, as well as
their adaptation capabilities (the CDKML’s online adaptation phase). The scenario (Table
6.8) contains two types of events: straightforward and complex events.

Straightforward (SF) events represent typical fall and non-fall events. Both fall events
(1 and 2) involve high acceleration toward the ground during the falling activity. High ac-
celeration during the falling activity is a characteristic feature of falls and setting thresholds
for it is a common way of detecting falls. The person lands lying (1) or sitting (2) on the
ground after the fall. Non-fall events contain activities commonly done at home, including
walking, sitting on a chair, or lying in bed (3). Additionally, searching for something on the
ground on all fours or lying (4) is added as a non-fall event.

Complex events represent atypical falls and non-fall events that may be particularly
easily misclassified. One type of non-fall event is lying down quickly on a bed or sitting
down quickly on a chair (7). This event includes high acceleration during the lying/sitting
down activity, which is a characteristic feature of falls. However, the lying/sitting that
follows is on the bed/chair, enabling the rule-based classifier to differentiate falls from non-
falls. The other non-fall event is sitting on a low chair (8). Five non-fall events of sitting on

Fall Detection 63

Table 6.8: Evaluation of CDKML’s approach to combining domain knowledge and machine
learning – fall-detection test scenario.

STRAIGHTFORWARD EVENTS COMPLEX EVENTS

Description Fall Description Fall

1
Tripping, landing flat on
the ground

Yes 5
Falling slowly (trying to
hold onto furniture),
landing flat on the ground

Yes

2
Falling when trying to
stand up, landing sitting of
the ground

Yes 6

Falling slowly when trying
to stand up (trying to hold
onto furniture), landing
sitting on the ground

Yes

3
Normal everyday behavior,
such as walking, sitting on
a chair, lying in bed

No 7
Lying down quickly on the
bed / Sitting down quickly
on the chair

No

4
Searching for something on
the ground on all fours and
lying

No 8 Sitting on a low chair No

a low chair are present in the scenario. They differ in the position of the person’s body on
the chair: the person sits straight or leans forward, backward, to the left, or to the right.
In complex fall events (5 and 6), the person slowly descends to the ground, trying to hold
onto nearby furniture. However, after the falling activity, the person lands lying/sitting on
the ground.

We selected the falls in the test scenario from a list of 18 fall types, compiled in con-
sultation with medical personnel. The falls were demonstrated by a physician, who also
provided guidance during initial recordings.

All events present in the test scenario were recorded in single recordings interspersed with
short periods of walking using the real-time localization system (RTLS) Ubisense (Ubisense,
2012). Each recording lasted around 20 minutes. The recordings were made by 5 healthy
volunteers (3 male and 2 female), 5 times by each. Figure 6.9 presents the total number of
fall and non-fall examples in the recorded data. The large number of non-fall events among
the complex events is due to the examples of sitting on a low chair. We recorded many such
examples because the adaptation (CDKML’s third phase) primarily occurred on them.

Fall events

Non‐fall events

Complex eventsStraightforward events

No. of

examples

150

100

50

Figure 6.9: Number of fall and non-fall examples.

64 Evaluation

Results

This subsection compares the performance of CDKML’s fall-detection classifier to the per-
formance of ML fall-detection classifiers induced in Weka (Hall et al., 2009) with SMO,
RandomForest, NaiveBayes, JRip and J48. The default algorithm parameter-values were
used.

We evaluated the CDKML’s initialization and refinement phases as follows. The domain
expert first specified the initial classifier. Genetic algorithms then refined the initial classifier
based only on examples of straightforward events (to perform laboratory testing). Fixed
genetic-algorithm parameter values were used: population size of 40 individuals, crossover
rate of 35 % and mutation rate of 8 %. The chromosome length (i.e., the number of
classifier’s parameters) equaled 28. The evaluation was performed using the leave-one-
person-out scenario, where the refined classifier was generated from examples of four people
and tested on examples of the fifth, which was excluded from the training dataset. This
was repeated five times, using a different person for testing each time. The accuracy of
the refined classifier was tested on both straightforward and complex events of the person
excluded from the training dataset, thus illustrating real-life performance, which includes
both clear and complex cases. The test on the straightforward events shows how well the
classifier performs on events present in the training dataset. The test on the complex events,
conversely, tests the generality and robustness of the generated classifier, as the complex
events are not present in the learning process.

We evaluated online classifier adaptation using Markov decision processes as proposed in
the third CDKML phase as follows. The refined classifier was adapted to a concrete person
using examples of both straightforward and complex concrete person events, because we
wanted to test the ability of the method to learn new cases while preserving its performance
on the cases present in the training dataset used in the CDKML’s refinement phase. Four
of the five concrete person scenario recordings were randomly presented one by one to the
fall-detection classifier. The fall-detection classifier classified each event as fall or non-fall,
then feedback was provided in case of a classification error and the fall-detection classifier
was adapted, as necessary, before the next event. The false-positive penalty amount (PaFp)
and the false-negative penalty amount (PaFn) were set to −1. The final adapted classifier
evaluation was done on the recording, which was not used in the adaptation phase.

The ML approaches were evaluated using leave-one-person-out evaluation. The classifiers
were induced from straightforward-event examples of four people and tested on both the
straightforward and complex events of the fifth person. This was repeated five times, using a
different person for testing each time. The instance attributes were the time since detecting
the last person’s falling activity, the amount of each type of posture in time intervals from
5 to 15 seconds and the amount of movement in this interval range. The attributes are
equivalent to the parameters of the rules in the rule-based fall-detection classifier.

Accuracy was used for evaluating fall-detection classifier performance. Classifier’s accu-
racy on a subset of events ACCevents is computed as:

ACCevents =
correctly detected events of type E ∈ events

all events of type E ∈ events
(6.4)

Table 6.9 presents the performance of the induced fall-detection classifiers on the straight-
forward events only, on the complex events only and on the whole sequence with respect
to the accuracy on fall examples ACCf , accuracy on non-fall examples ACCnf and overall
accuracy ACCall. Table 6.10 presents the accuracy of the induced classifiers on each event in
the test scenario separately ACCe. The accuracy was computed for each person separately,
and the values in Tables 6.9 and 6.10 represent the averages.

Fall Detection 65

Table 6.9: Fall-detection classifier comparison with respect to classifiers’ accuracy on the fall
examples ACCf , classifiers’ accuracy on the non-fall examples ACCnf and overall accuracy
ACCall.

J48 JRip SMO
Random-

Forest

Naive-

Bayes

Initial

classifier

Refined

classifier

Adapted

classifier

SF

events

SF

events

SF

events

SF

events

SF

events

SF

events

SF

events

All

events

1.00 1.00 1.00 1.00 1.00 0.98 0.91 0.71

0.68 0.68 0.68 0.70 0.30 0.82 0.94 0.99

0.84 0.84 0.84 0.85 0.65 0.90 0.92 0.85

1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.72

0.15 0.12 0.17 0.14 0.04 0.34 0.39 0.81

0.37 0.34 0.38 0.36 0.28 0.50 0.53 0.79

1.00 1.00 1.00 1.00 1.00 0.98 0.93 0.71

0.28 0.26 0.30 0.28 0.10 0.46 0.53 0.85

0.52 0.51 0.53 0.52 0.40 0.63 0.66 0.81

ML CDKML

ACCf

ACCnf

ACCall

ACCf

ACCnf

ACCall

ACCf

ACCnf

ACCall

CLASSIFIER

Training dataset

S
tr

ai
g
h

tf
o

rw
ar

d

ev
en

ts
 o

n
ly

C
o
m

p
le

x
 e

v
en

ts

o
n

ly
A

ll
 e

v
en

ts

T
es

t
d
at

as
et

Table 6.9 shows that the best overall accuracy among the ML classifiers was obtained by
SMO with an ACCall of 0.53. The ML classifiers tended to be biased towards fall recognition.
They had maximal ACCf ; however, they raised many false positives, as indicated by the
low ACCnf values. The overall accuracy of CDKML’s initial classifier was 0.10 higher than
SMO’s. It slightly decreased on the ACCf , from 1.00 to 0.98, but increased greatly on the
ACCnf from 0.30 to 0.46. The refinement of the initial classifier based on straightforward-
event examples contributed to a 0.03 increase in accuracy. The ACCnf increased to 0.53
at the cost of a slight decrease in ACCf , which was 0.93. CDKML’s adapted classifier out-
performed the refined classifier in accuracy by 0.15; however, as mentioned above, it had an
advantage over the previous classifiers, because it obtained examples of both straightforward
and complex events during learning, and the examples came from the concrete person on
which the tests were made. The adapted classifier had the highest ACCnf (0.85) whereas
its ACCf had 0.71.

Table 6.10 compares the performance of the induced classifiers on each event separately.
As mentioned above, the ML classifiers detected all fall events; however, they performed
poorly on all non-fall events. Introducing DK to CDKML’s initial classifier significantly
improved ACCe on the normal behavior non-fall event. The refinement improved ACCe on
the non-fall event searching on the ground. This event was included in the training data for
the refinement phase, so increased performance was expected; it was achieved at the cost of
neglecting certain fall events. CDKML’s adapted classifier correctly recognized almost all
falls after which a person lay on the ground, but it had difficulties with falls after which a
person sat on the ground. Sitting on the ground is a rare event in real life. Sitting on a
low chair, an event for which ACCe significantly increased, is a much more common real life
event. The classifier frequently confused these two activities for one another. Not only are
the person’s postures similar, but they can both last a long time, during which the person is

66 Evaluation

Table 6.10: Fall-detection classifier comparison with respect to classifiers’ accuracy on each
test-scenario event ACCe separately.

1.00 1.00 0.68 0.68 1.00 1.00 0.64 0.06

1.00

1.00

1.00

1.00

1.00

0.96

0.96

1.00

1.00

1.00

1.00

0.96

0.86

0.46

0.76

0.76

0.76

0.12

0.96

0.96

1.00

0.60

0.60

0.64

0.44

0.68

0.92

0.98

1.00

1.00

1.00

1.00

0.96

0.96

0.84

1.00

1.00

1.00

1.00

1.00

0.96

0.60

0.60

0.88

0.76

0.20

0.96

1.00

1.00

0.02

0.03

0.02

0.01

0.22

0.27

0.77

Tripping

(1)

Falling

landing

sitting

(2)

Normal

behavi-

or (3)

Searching

on the

ground

(4)

Falling

slowly

(5)

Falling

slowly

landing

sitting

(6)

Lying/

Sitting

down

quickly

(7)

Sitting

on low

chair (8)

� avg.

value

FALLS NON-FALLS FALLS NON-FALLS

STRAIGHTFORWARD TESTS COMPLEX TESTS

J48

JRip

SMO

Random-

Forest

Naive-

Bayes

CDKML's initial

classifier

CDKML's refined

classifier

CDKML's adapted

classifier

M
ac

h
in

e
le

ar
n
in

g

CLASSIFIER/

ACCe

immovable. Some examples of sitting on a low chair are in fact indistinguishable from falls
because of the noise in the measurements of the sensors used. Adapting the fall-detection
classifier establishes a trade-off between these events. As sitting on a low chair is far more
frequent then falls after which a person sits on the ground in a normal sitting position,
misclassifications of this event are more costly. CDKML’s adapted classifier is thus inclined
to reduce the number of misclassifications during sitting on a low chair at the cost of not
detecting certain falls after which a person lands sitting on the ground. In any case, person
immovability after falls for additional or prolonged times should enable the detection of
these false negatives; however, this is not within the scope of this evaluation that deals with
fall detection within a reasonably short time.

6.3.2 Evaluation of CDKML’s Online Classifier Adaptation

This subsection compares the CDKML’s online adaptation phase to online ML classifier
adaptation.

Data

Table 6.11 presents the set of events used for evaluating the CDKML’s and the ML’s online
adaptation. Four fall events were used: (1) a person falls quickly and then lies on the ground
moving for 15 s, (2) a person falls quickly and then lies immovable for 15 s, (3) a person falls
slowly and then lies moving for 15 s, and (4) a person falls slowly and than lies immovable
for 15 s. The cases (1) and (2) represent tripping; (2) results in an injury that prevents

Fall Detection 67

Table 6.11: Evaluation of CDKML’s online adaptation phase – fall-detection test scenario.

FALL EVENTS NON-FALL EVENTS

1

2

3

4

The person falls quickly and then

lies on the ground moving for 15 s

The person falls quickly and then

lies immovable for 15 s

The person falls slowly and then

lies moving for 15 s

The person falls slowly and then

lies immovable for 15 s

5

6

The person is on all fours on

the ground for 10 s

The person is on all fours for 5 s,

then lies on the ground for 5 s

The person lies on the ground

for 10 s
7

movement. The cases (3) and (4) represent falling due to dizziness or fainting. If these fall
events were not detected by a fall-detection classifier, the person provided a false negative
feedback after lying on the ground for 7 seconds. Three non-fall events were also recorded:
(5) a person is on all fours on the ground for 10 s, (6) a person is on all fours for 5 s, then
lies on the ground for 5 s, and (7) a person lies on the ground for 10 s. The person is moving
in all three cases. These events may represent a person searching for things under the table
or bed. They differ from the fall events by the length the person stays on the ground and in
some cases the amount of movement. If a fall was detected during these events, the person
provided a false positive feedback.

The events were recorded using the RTLS system Ubisense (Ubisense, 2012). For the
purpose of training, five separate recordings of each fall and non-fall events were made.
Additionally, for the purpose of testing, five recordings which encompassed all fall and non-
fall events were made. The events in the test recordings were interspersed with short periods
of walking. The recordings were made for one healthy volunteer.

CDKML

CDKML’s fall-detection classifier had the form described in Section 5.2. Online adaptation
was performed as described in Section 5.4.

ML

This evaluation uses the ML fall-detection module of the Confidence system. Falls are
detected using two ML classifiers: (1) a decision tree created using J48 in Weka (Hall et al.,
2009), and (2) a support-vector-machines classifier created using SMO in Weka (Hall et al.,
2009). An example is classified as a fall if both classifiers classify it as such; otherwise it is
considered as a non-fall. The classifiers’ reasoning is based on the percentage of all observed
person’s postures and movement in periods of 5 s, 10 s and 15 s. These intervals are suitable
for our experiments because we considered a reasonable period of lying at an inappropriate
place after which a fall should be detected somewhere between 5 and 15 s. In real life a
longer period might make more sense, in which case the intervals used in attributes should
be lengthened.

Online ML classifier adaptation is performed by re-inducing both the J48 and SMO
classifier each time a new fall or non-fall example is obtained. User feedback provides new
training examples. In the case of a false negative, the example at the feedback point and all
examples that follow it with longer amounts of person’s lying on the ground are added as
fall examples to the training dataset. In the case of a false positive, all the examples that

68 Evaluation

were incorrectly classified as a fall are added as non-fall examples to the training dataset.
In order to escape classifier bias in the case of unbalanced dataset, after each addition, the
weight of the dataset examples is updated in order to bring the ratio of fall to non-fall to
neutral examples (includes standing, sitting and lying on the bed) to 40 to 30 to 30.

Results

We performed the adaptation test runs as follows. We started with classifiers that are not
able to recognize any fall event in the test sequences. One training event was provided to
the learning approaches (CDKML and ML) in each test step. If a provided fall training
event was not detected as a fall event within 7 seconds, a false negative user feedback was
triggered. If a provided non-fall training event was detected as a fall, a false positive user
feedback was triggered. In the case of a false negative or a false positive user feedback, we
adapted the CDKML and the ML classifiers. At the end of each test step, we measured
two characteristics of the adapted classifiers on the five test sequences: accuracy (Equation
(6.4)) and time-to-fall (the length of the interval from an event’s start till a fall is detected
by a fall-detection classifier).

The performance of CDKML’s and ML’s online adaptation procedures was evaluated
with respect to accuracy. In order to test how classifiers’ accuracy changes after each
adaptation step (each new training event), three test runs were executed. In the first,
the approaches were presented all fall events first, followed by all non-fall events. In the
remaining two test runs, the fall and non-fall events were given randomly to CDKML’s and
ML’s adaptation approaches. By adapting the classifiers by various training-event orders,
we gain information not only how their fall-detection accuracy improves, but also how much
it depends on a particular order of training scenarios.

ACCf

ACCnf

ACCall

Figure 6.10: Evaluation of CDKML’s online adaptation phase – fall-detection classifier’s
accuracy per adaptation step.

CDKML’s fall-detection accuracy per adaptation step is presented in Figure 6.10, while
Figure 6.11 plots ML’s fall-detection accuracy per adaptation step. ACCf represents classi-
fier’s accuracy on the fall events, ACCnf is classifier’s accuracy on the non-fall events, while
ACCall the overall classifier’s accuracy. From this graph we can see that both CDKML
and ML online adaptation approaches contribute to reliable fall-detection classifiers whose
overall accuracy reaches 0.90.

Fall Detection 69

ACCf

ACCnf

ACCall

Figure 6.11: Evaluation of online ML classifier adaptation – fall-detection classifier’s accu-
racy per adaptation step.

However, do both classifiers create the same representation of falls? As presented in
Section 5.2, CDKML detects falls according to the period a person is lying or sitting on
the ground. Therefore, we expected that the false negative feedback triggered in the fall
events after 7 s of lying on the ground would cause CDKML’s time-to-fall to be reduced
to 7 s or less. However, if a fall is detected within 7 s of lying on the ground, some
of the non-fall events may incorrectly be classified as falls (e.g., event 7 in Table 6.11 in
which the person lied on the ground 10 s). Because of this, we expected that the non-fall
events would cause CDKML’s time-to-fall to increase to 10 s or more. In this experiment,
CDKML’s fall-detection classifier could achieve the highest accuracy only if its time-to-fall
was in the interval (10 s, 15 s). How does the ML’s classifier separate fall from non-fall
events? Does its time-to-fall resemble CDKML’s time-to-fall? We would like to note that
the purpose of this experiment was not to make the classifiers’ time-to-fall as low as possible,
although this is strongly desired for practical applications. With rather wanted to examine
if CDKML’s online adaptation follows our expectations. We additionally wanted to test if
the ML classifiers create the same representation of falls as CDKML.

We tested how the classifiers’ time-to-fall changes by presenting all fall events to the
classifiers first, followed by all non-fall events. Figure 6.12 presents how the classifiers’ time-
to-fall changes after each adaptation step. FCDKML presents CDKML’s average time-to-fall
for all correctly detected fall events in the test sequences, whereas the NFCDKML presents
its average time-to-fall for the non-fall events incorrectly classified as falls. ML’s average
time-to-fall on the fall and non-fall events are presented with the lines FML and NFML,
respectively. CDKML’s time-to-fall follows our expectations. It decreased to around 4 s
after CDKML was presented with all fall events, then increased to 8 s after the classifier
received all non-fall events. We would like to note that due to errors in the classification of
the lying posture, the posture-recognition module could not detect the entire 10 s period of
lying in event 7 of Table 6.11 (the non-fall event which contained the longest period of lying
on the ground). ML’s time-to-fall, on the other hand, does not follow our expectations. It
stayed fairly constant around 8 s when the fall events were presented to the classifiers, then
started to fall when the non-fall events were presented to it. Time-to-fall fell to 4 s in the
end. This means that the ML classifier learned to separate fall from non-fall events not

70 Evaluation

FCDKML

NFCDKML

FML

NFML

Figure 6.12: Evaluation of classifier’s online adaptation – classifiers’ time-to-fall on the fall
events (FCDKML and FML) and on the non-fall events (NFCDKML and NFML).

according to the length of person lying on the ground, but according to an other feature.
CDKML’s and ML’s fall-detection classifiers represent two separate viewpoints of falls.

6.4 Discussion

This section analyzes the results of the presented experiments with respect to the three
questions stated at the beginning of Chapter 6.

How important is expert input in the CDKML method?

CDKML showed the best performance in the fall-detection domain where it considerably
outperformed all five ML algorithms, the posture-recognition domain followed, while it did
not show improvement in comparison to standard ML in the behavioral-cloning domain.
We attribute the improvement in performance primarily to the contribution of the expert in
CDKML’s initialization phase, where the expert extracted the classifier patterns using DK
and interactive data mining. The improvement was the most evident in the fall-detection
domain where DK provided clear instructions: “If a person is lying or sitting on the ground
for a long period of time then a fall happened”. Formulating the patterns for the posture-
recognition classifier was, however, not simple. In this case, interactive data mining played
an important role, helping the expert to incorporate DK into the classifier. In the behavioral-
cloning domain, we did not include DK.

Is an expert capable of selecting a comprehensive set of concept patterns in the CDKML
method?

It is well documented that experts have problems formulating their knowledge on their
own, a problem often referred to as the Feigenbaums bottleneck (Feigenbaum, 1981). One
approach to overcoming this problem is through the use of ML tools (Michie and Bratko,
1986). In the CDKML method, interactive data mining eases knowledge acquisition from
experts. Interactive data mining provides smart hypothesis-space examination focusing
expert’s attention on the most promising patterns.

Extracting the classifier’s patterns using interactive data mining may, however, be more
time consuming than classical ML. In practical terms these demands were not too severe. A

Discussion 71

few days were needed for formulating the patterns in the posture-recognition domain, while
the patterns in the fall-detection domain were defined within a few hours.

Does CDKML’s approach to combining DK and ML contribute to improved classifier’s per-
formance?

CDKML’s refined classifier achieved higher accuracy than the ML classifiers in the posture-
recognition and the fall-detection domains. The evaluation of CDKML’s online adaptation
phase in the fall-detection domain shows that the proposed approach is capable of adjusting
the refined classifier to correctly recognize events not present in the training dataset, mak-
ing trade-offs between contradictory examples based on the cost of each misclassification.
CDKML’s adapted classifier achieved higher accuracy than CDKML’s refined classifier.

Classifier generation using CDKML may, however, last longer than classifier generation
using ML. The most time-consuming domain was the posture-recognition domain. Both
CDKML’s initialization and refinement phases lasted a few days in this domain. Neverthe-
less, time efficiency is not critical for these two phases because they are performed offline,
before the classifier is deployed in a system. CDKML’s online adaptation approach, on the
other hand, requires a few minutes to complete, enabling real-time classifier adaptation.

73

7 Conclusions

The dissertation addresses the problem of classifier generation from a training dataset that
captures a limited subset of the real-life cases of the learned concept. Despite the exponential
growth of digital data, there are still domains for which only a limited number of examples
is available. We assume there are at least two reasons for this. First, sufficient general-
purpose data may be costly or otherwise difficult to obtain. A typical example is studies in
the medical domain. Obtaining data for falls, for example, is costly because of ethical issues
and injury danger. Second, general-purpose data may be inappropriate if the deployment
needs to be adjusted to the characteristics of a particular person. Such deployments typically
require online data collection and classifier adaptation.

We present a novel method for classifier generation from a training dataset that does not
adequately represent all real life cases of the learned concept. In such cases it is important
to take into consideration all available DK in the learning process. While ML may discover
patterns in interest domains that are too subtle to be detected by humans, DK may contain
information on a domain not present in the available domain dataset. The proposed method,
named CDKML, considers a novel approach to combining DK and ML.

CDKML is founded on the hypothesis that a combination of interactive data mining
to extract a comprehensive set of characteristic concept patterns and optimization algo-
rithms to determine the optimal pattern-parameter values (general-purpose and deployment-
specific) is needed for creation of reliable classifiers in domains for which a limited amount
of concept examples is available. It encompasses three phases: initialization, refinement and
online adaptation.

The initialization phase is devoted to extraction of characteristic concept patterns. We
showed that an expert is capable of selecting a comprehensive set of concept patterns using
DK and interactive data mining in the posture-recognition domain.

The refinement phase is devoted to finding the most suitable general-purpose pattern-
parameter values. An optimization algorithm is used in order to find the parameter values
which maximize the classifier’s accuracy on the available training examples. In the posture-
recognition and fall-detection domains, we showed that the refined classifiers have higher
accuracy then the rule-based classifiers (consisting of rules or classifiers which can be con-
verted to a ruleset) induced using ML: decision trees, a set of rules and random-forest
classifiers. In the fall-detection domain, the refined-classifier’s accuracy was also higher
than the support-vector-machines’s accuracy (overall, the support vector machines had the
highest accuracy among the ML classifiers).

The online adaptation phase is devoted to finding the most suitable deployment-specific
pattern-parameter values. Markov decision processes are used for fine-tuning the parameter
values to user’s needs and preferences obtained through user feedback. In the fall-detection
domain we showed that the proposed approach is capable of adjusting the classifier to
correctly recognize events not present in the training dataset, making trade-offs between
contradictory examples based on the cost of each misclassification.

CDKML was applied to classifiers in the form of a set of rules. We would like to note
that CDKML is not bound to this specific classifier form; however, it requires a human-

74 Conclusions

understandable form. We plan to examine CDKML’s performance using other classifier
forms (e.g., decision trees) as future work.

As future work, we also plan to examine two CDKML improvements. First, exploita-
tion of DK captured in ontologies needs to be considered. The Web offers huge amounts of
unstructured, textual data. Approaches to extracting domain patterns and ontology devel-
opment from that kind of data are emerging (Dalvi et al., 2012). It would be interesting
to research possibilities for automating CDKML’s initialization by utilizing DK available
on the Web. Second, the online classifier adaptation relies of adjustment of the parame-
ter values of the refined classifier as user feedback is obtained. However, as more real-life
cases of the learned concept become available, the better the capability of ML to induce a
reliable concept classifier. Therefore, simultaneous adaptation of the refined classifier may
be accompanied by reinducing the ML classifiers. A combination of the two classifiers in
which the ML classifier’s influence on the final classification increases as more data becomes
available seems reasonable.

75

8 Acknowledgments

The dissertation would not have been possible without the generous help and support of my
colleagues and family.

First of all, I would like to thank my supervisor Prof. Dr. Matjaž Gams and co-supervisor
Dr. Mitja Luštrek, who have provided guidance, support, understanding, and professional
and personal assistance of the most valuable kind.

I am thankful to my colleagues from the Department of Intelligent Systems at the Jožef
Stefan Institute for all extensive discussions and insightful comments. With regards to the
posture-recognition and the fall-detection domain, studied within the FP7 project Confi-
dence, I would especially like to thank the Ambient Intelligence group members, in partic-
ular Dr. Boštjan Kaluža, Erik Dovgan, Rok Piltaver, Božidara Cvetković, Domen Zupančič
and Bogdan Pogorelc. With regards to the behavioral-cloning domain, studied within the
EUSAS project, I would especially like to thank the Agent group members, in particular
Aleš Tavčar, Erik Dovgan and Damjan Kužnar.

I am thankful to my colleagues from Result d.o.o. for a very pleasant cooperation
throughout my doctoral studies, in particular to Franc Škedelj and Igor Korelič.

I would like to thank Dr. Vedrana Vidulin for all the help regarding the study-related
and living-related formalities.

I would like to thank my family for all the support throughout my studies.
Last but not least, I am grateful to the Department of Intelligent Systems at the Jožef

Stefan Institute, Result d.o.o. and the Slovenian Technology Agency for providing me a
funding, which made the dissertation possible. The research leading to the dissertation was
partially financed by the European Union, European Social Fund.

77

9 References

Aler, R.; Valls, J. M.; Camacho, D.; Lopez, A. Programming robosoccer agents by modeling
human behavior. Expert Systems with Applications 36, 1850–1859 (2009).

Argall, B. D.; Chernova, S.; Veloso, M.; Browning, B. A survey of robot learning from
demonstration. Robotics and Autonomous Systems 57, 469–483 (2009).

Asian, O.; Yildiz, O. T.; Alpaydin, E. Calculating the VC-dimension of decision trees. In:
Proceedings of the 24th International Symposium on Computer and Information Sciences.
841–851 (IEEE, 2009).

Avci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity recogni-
tion using inertial sensing for healthcare, wellbeing and sports applications: A survey. In:
Proceedings of the 23th International Conference on Architecture of Computing Systems.
167–176 (VDE Verlag, Berlin, Germany, 2010).

Bežek, A. Avtomatsko modeliranje večagentnih sistemov. Ph.D. thesis (University of Ljub-
ljana, Faculty of Computer and Information Science, Slovenia, 2006).

Blum, A.; Mitchell, T. Combining labeled and unlabeled data with co-training. In: Pro-
ceedings of the 11th Annual Conference on Computational Learning Theory. 92–100 (ACM,
New York, NY, USA, 1998).

Bohemia Interactive Australia. Virtual battlespace 2. http://www.vbs2.com (accessed:
February 2013).

Bratko, I.; Urbančič, T. Transfer of control skill by machine learning. Engineering Appli-
cations of Artificial Intelligence 10, 63–71 (1997).

Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).

Burns, B. D.; Danyluk, A. P. Feature selection vs. theory reformulation: A study of genetic
refinement of knowledge-based neural networks. Machine Learning 38, 89–107 (2000).

Caragea, D.; Cook, D.; Wickham, H.; Honavar, V. Visual methods for examining SVM
classifiers. In: Visual Data Mining. 136–153 (Springer-Verlag, Berlin Heidelberg, Germany,
2008).

Chan, P. K.; Fan, W.; Prodromidis, A. L.; Stolfo, S. J. Distributed data mining in credit
card fraud detection. IEEE Intelligent Systems 14, 67–74 (1999).

Chang, C.-C.; Lin, C.-J. LibSVM: A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology 2, 27:1–27:27 (2011).

Clark, P.; Niblett, T. The CN2 induction algorithm. Machine Learning 3, 261–283 (1989).

78 References

Coates, A.; Abbeel, P.; Ng, A. Y. Autonomous helicopter flight using reinforcement learn-
ing. In: Encyclopedia of Machine Learning. 53–61 (Springer-Verlag New York, Inc., New
York, NY, USA, 2010).

Cohen, W. W. Fast effective rule induction. In: Proceedings of the 12th International
Conference on Machine Learning. 115–123 (Morgan Kaufmann, San Francisco, CA, USA
1995).

European Commission. Eurostat. http://ec.europa.eu/eurostat (accessed: November
2012).

Confidence project. http://www.confidence-eu.org/ (accessed: November 2012).

Dalvi, B.; Cohen, W. W.; Callan, J. Collectively representing semi-structured data from the
web. In: Proceedings of the Joint Workshop on Automatic Knowledge Base Construction
and Web-Scale Knowledge Extraction. 7–12 (Association for Computational Linguistics,
Stroudsburg, PA, USA, 2012).

Dasgupta, S. Two faces of active learning. Theoretical Computer Science 412, 1767–1781
(2011).

Decoste, D.; Schölkopf, B. Training invariant support vector machines. Machine Learning
46, 161–190 (2002).

Eiben, A. E.; Smith, J. E. Introduction to Evolutionary Computing (Springer-Verlag, Berlin
Heidelberg, Germany, 2003).

eMotion. Smart motion capture system. http://www. emotion3d.com/smart/smart.html
(accessed: April 2009).

Fayyad, U. M.; Irani, K. B. Multi-interval discretization of continuous-valued attributes
for classification learning. In: Bajcsy, R. (ed.) Proceedings of the International Joint Con-
ference on Uncertainty in AI. 1022–1027 (Morgan Kaufmann, San Francisco, CA, USA,
1993).

Feigenbaum, E. A. Expert systems in the 1980s. In: Bond, A. (ed.) Infotech State of the
Art Report on Machine Intelligence. 27–52 (Pergamon Infotch Ltd, Maidenhead, England,
1981).

Feldman, R. Understanding Psychology (McGraw-Hill Higher Education, Columbus, OH,
USA, 2005).

Ferber, J. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence
(Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999).

Graepel, T.; Herbrich, R. Invariant pattern recognition by semi-definite programming
machines. In: Thrun, S.; Saul, L.; Schölkopf, B. (eds.) Advances in Neural Information
Processing Systems 16. 33–40 (MIT Press, Cambridge, MA, USA, 2004).

Guestrin, C. Lecture notes, Carnegie Mellon University (ML course No: 10701/15781).
http://www.cs.cmu.edu/ guestrin/Class/15781/slides/learningtheory-bigpicture.pdf (ac-
cessed: February 2013).

Haasdonk, B.; Vossen, A.; Burkhardt, H. Invariance in kernel methods by Haar-integration
kernels. In: Proceedings of the 14th Scandinavian Conference on Image Analysis. 841–851
(Springer-Verlag, Berlin Heidelberg, Germany, 2005).

79

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. H. The Weka
data mining software: An update. SIGKDD Explorations Newsletter 11, 10–18 (2009).

Heit, E. Background knowledge and models of categorization. In: Hahn, U.; Ramscar, M.
(eds.) Similarity and Categorization. 155–178 (Oxford University Press, New York, NY,
USA, 2000).

Hollnagel, E. Human Reliability Analysis: Context and Control (Academic Press,
Waltham, MA, USA, 1993).

Hollnagel, E. Modelling the orderliness of human action. In: Amalberti, R.; Sarter, N.
(eds.) Cognitive Engineering in the Aviation Domain. 65–98 (Lawrence Erlbaum Asso-
ciates, NJ, USA, 2000).

Holmes, J. H.; Lanzi, P. L.; Stolzmann, W.; Wilson, S. W. Learning classifier systems:
New models, successful applications. Information Processing Letters 82, 23–30 (2002).

Hu, B.-G.; Qu, H.-B.; Wang, Y.; Yang, S.-H. A generalized-constraint neural network
model: Associating partially known relationships for nonlinear regressions. Information
Sciences 179, 1929–1943 (2009).

Jäkel, F.; Schölkopf, B.; Wichmann, F. A. A tutorial on kernel methods for cat-
egorization. http://www.is.tuebingen.mpg.de/fileadmin/user upload/files/publications/
Jakel etal 2007Preprint 4784[0].pdf (accessed: December 2007).

Jin, F.; Sun, S. A multitask learning approach to face recognition based on neural networks.
In: Proceedings of the 9th International Conference on Intelligent Data Engineering and
Automated Learning. 24–31 (Springer-Verlag, Berlin Heidelberg, Germany, 2008).

John, G. H.; Langley, P. Estimating continuous distributions in bayesian classifiers. In:
Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. 338–345 (Mor-
gan Kaufmann, San Francisco, CA, USA, 1995).

Kaluža, B.; Mirchevska, V.; Dovgan, E.; Luštrek, M.; Gams, M. An agent-based approach
to care in independent living. In: Proceedings of the 1st International Joint Conference on
Ambient Intelligence. 177–186 (Springer-Verlag, Berlin Heidelberg, Germany, 2010).

Kaluža, B.; Cvetković, B.; Dovgan, E.; Gjoreski, H.; Mirchevska, V.; Gams, M.; Luštrek,
M. A multi-agent care system to support independent living. International Journal of
Artificial Intelligence Tools, in press (2013).

Kambar, S. Generating Synthetic Data by Morphing Transformation for Handwritten Nu-
meral Recognition (With v-SVM). Master’s thesis (Concordia University, Computer Science
Department, Montreal, Canada, 2005).

Keerthi, S. S.; Shevade, S. K.; Bhattacharyya, C.; Murthy, K. R. K. Improvements to
Platt’s SMO algorithm for SVM classifier design. Neural Computation 13, 637–649 (2001).

Kondor, R.; Jebara, T. A kernel between sets of vectors. In: Proceedings of the 20th

International Conference on Machine Learning. 361–368 (AAAI, Menlo Park, CA, USA,
2003).

Lauer, F.; Bloch, G. Incorporating prior knowledge in support vector machines for classi-
fication: A review. Neurocomputing 71, 1578–1594 (2008).

80 References

Lavrač, N.; Džeroski, S. Inductive Logic Programming: Techniques and Applications (Rout-
ledge, New York, NY, USA, 1993).

Lettmann, T.; Baumann, M.; Eberling, M.; Kemmerich, T. Modeling agents and agent
systems. In: Transactions on Computational Collective Intelligence. 157–181 (Springer-
Verlag, Berlin Heidelberg, Germany, 2011).

Liu, Y.; Salvendy, G. Interactive visual decision tree classification. In: Proceedings of
the 12th International Conference on Human-Computer Interaction: Interaction Platforms
and Techniques. 92–105 (Springer-Verlag, Berlin Heidelberg, Germany, 2007).

Loosli, G.; Canu, S.; Vishwanathan, S. V. N.; Smola, A. J. Invariances in classification:
An efficient SVM implementation. In: Proceedings of the 11th International Symposium on
Applied Stochastic Models and Data Analysis. 543–551 (ENST Bretagne, France, 2005).

Luštrek, M.; Gjoreski, H.; Kozina, S.; Cvetković, B.; Mirchevska, V.; Gams, M. Detecting
falls with location sensors and accelerometers. In: Proceedings of the 23rd Innovative
Applications of Artificial Intelligence Conference. 1662–1667 (AAAI, Menlo Park, CA,
USA, 2011).

Meffert, K et al. JGAP – Java Genetic Algorithms and Genetic Programming Package.
http://jgap.sf.net. (accessed: June 2011).

Michie, D.; Bratko, I. Expert Systems: Automating Knowledge Acquisition (Addison-
Wesley, Boston, MA, USA, 1986).

Mirchevska, V.; Bežek, A.; Luštrek, M.; Gams, M. Discovering strategic behaviour of
multi-agent systems in adversary settings. Computing and Informatics, in press (2013a).

Mirchevska, V.; Kaluža, B.; Luštrek, M.; Gams, M. Real-time alarm model adaptation
based on user feedback. In: Workshop on Ubiquitous Data Mining in conjunction with the
19th European Conference on Artificial Intelligence. 39–43 (Lisbon, 2010).

Mirchevska, V.; Luštrek, M.; Gams, M. Combining domain knowledge and machine learn-
ing for robust fall detection. Expert Systems, preprint published online (2013b).

Mirčevska, V.; Luštrek, M.; Vélez, I.; Vega, N. G.; Gams, M. Classifying posture based on
location of radio tags. In: Čech, P.; Bureš, V.; Nerudová, L. (eds.) Ambient Intelligence and
Smart Environments: Ambient Intelligence Perspectives II. 85–92 (IOS Press, Amsterdam,
The Netherlands, 2009).

Mirchevska, V.; Tavčar, A.; Gams, M. Bahavioral cloning of asymmetric conflicts in
urban environment using supervised learning. In: Bohanec, M.; Gams, M.; Mladenić, D.;
Grobelnik, M.; Heričko, M.; Kordeš, U.; Smrdu, M.; Markič, O.; Pirtošek, Z.; Lenarčič,
J.; Žlajpah, L.; Gams, A.; Rajkovič, V.; Urbančič, T.; Bernik, M. (eds.) Proceedings of the
15th International Multiconference Information Society. 134–137 (Jožef Stefan Institute,
Ljubljana, Slovenia, 2012).

Mitchell, T. M. Machine Learning (McGraw-Hill, Inc., New York, NY, USA, 1997).

Mooney, R. J.; Roy, L. Content-based book recommending using learning for text catego-
rization. In: Proceedings of the 5th ACM Conference on Digital Libraries. 195–204 (ACM,
New York, NY, USA, 2000).

Možina, M. Argument-Based Machine Learning. Ph.D. thesis (University of Ljubljana,
Faculty of Computer and Information Science, Slovenia, 2009).

81

Muggleton, S. Inverse entailment and Progol. New Generation Computing: Special issue
on Inductive Logic Programming 13, 245–286 (1995).

Müller, M. Dynamic time warping. In: Information Retrieval for Music and Motion. 69–84
(Springer-Verlag, Berlin Heidelberg, Germany, 2007).

Ng, A. Y.; Kim, H. J.; Jordan, M. I.; Sastry, S. Inverted autonomous helicopter flight
via reinforcement learning. In: International Symposium on Experimental Robotics. 1–10
(MIT Press, Cambridge, MA, USA, 2004).

Ng, A. Y.; Russell, S. J. Algorithms for inverse reinforcement learning. In: Proceedings
of the 17th International Conference on Machine Learning. 663–670 (Morgan Kaufmann,
San Francisco, CA, USA, 2000).

Niyogi, P.; Girosi, F.; Poggio, T. Incorporating prior information in machine learning by
creating virtual examples. Proceedings of the IEEE 86, 2196–2209 (1998).

Osei-Bryson, K.-M. Evaluation of decision trees: A multi-criteria approach. Computers
and Operations Research 31, 1933–1945 (2004).

Pan, S. L.; Scarbrough, H. Knowledge management in practice: An exploratory case study.
Technology Analysis Strategic Management 11, 359–374 (1999).

Pazzani, M.; Brunk, C. Finding accurate frontiers: A knowledge-intensive approach to re-
lational learning. In: Proceedings of the 11th National Conference on Artificial Intelligence.
328–334 (Morgan Kaufmann, San Francisco, CA, USA, 1993).

Pichuka, C.; Bapi, R. S.; Bhagvati, C.; Pujari, A. K.; Deekshatulu, B. L. A tighter
error bound for decision tree learning using PAC learnability. In: Proceedings of the 20th

International Joint Conference on Artificial Intelligence. 1011–1016 (Morgan Kaufmann,
San Francisco, CA, USA, 2007).

Poulet, F.; Do, T.-N. Interactive decision tree construction for interval and taxonomical
data. In: Visual Data Mining. 123–135 (Springer-Verlag, Berlin Heidelberg, Germany,
2008).

Pozdnoukhov, A.; Bengio, S. Tangent vector kernels for invariant image classification
with SVMs. In: Proceedings of the 17th International Conference on Pattern Recognition.
486–489 (IEEE Computer Society, Washington, DC, USA, 2004).

Pyle, D. Business Modeling and Data Mining (Morgan Kaufmann, San Francisco, CA,
USA, 2003).

Quinlan, J. R. Learning logical definitions from relations. Machine Learning 5, 239–266
(1990).

Quinlan, J. R. C4.5: Programs for machine learning (Morgan Kaufmann, San Francisco,
CA, USA, 1993).

Rossetti, R. J. F.; Bordini, R. H.; Bazzan, A. L. C.; Bampi, S.; Liu, R.; Van Vliet, D. Using
BDI agents to improve driver modelling in a commuter scenario. Transportation Research
Part C: Emerging Technologies 10, 47–72 (2002).

Russell, S.; Norvig, S. Artificial Intelligence: A Modern Approach (Prentice Hall, NJ,
USA, 2010).

82 References

Sabzekar, M.; Sadoghi Yazdi, H.; Naghibzadeh, M. Relaxed constraints support vector
machines for noisy data. Neural Computing and Applications 20, 671–685 (2011).

Sagun, A.; Bouchlaghem, D.; Anumba, C. J. Computer simulations vs. building guid-
ance to enhance evacuation performance of buildings during emergency events. Simulation
Modelling Practice and Theory 19, 1007–1019 (2011).

Schadd, F.; Bakkes, S.; Spronck, P. Opponent modeling in real-time strategy games. In:
Roccetti, M. (ed.) AI and Simulation in Games. 61–70 (EUROSIS, Ostend, Belgium, 2007).

Schmidt, B. The Modelling of Human Behaviour: The PECS Reference Models (SCS-
Europe BVBA, Erlangen, Germany, 2000).

Schölkopf, B.; Burges, C.; Vapnik, V. Incorporating invariances in support vector learn-
ing machines. In: Proceedings of the 1996 International Conference on Artificial Neural
Networks. 47–52 (Springer-Verlag, Berlin Heidelberg, Germany, 1996).

Shivaswamy, P. K.; Jebara, T. Permutation invariant SVMs. In: Proceedings of the 23rd

International Conference on Machine Learning. 817–824 (ACM, New York, NY, USA,
2006).

Simard, P.; LeCun, Y.; Denker, J. S. Efficient pattern recognition using a new transforma-
tion distance. In: Advances in Neural Information Processing Systems 5. 50–58 (Morgan
Kaufmann, San Francisco, CA, USA, 1993).

Simoff, S. J.; Böhlen, M. H.; Mazeika, A. Visual Data Mining: An Introduction and
Overview. In: Visual data mining. 1–12 (Springer-Verlag, Berlin Heidelberg, Germany,
2008).

Smit, S. K.; Eiben, A. E. Comparing parameter tuning methods for evolutionary al-
gorithms. In: Proceedings of the 11th Congress on Evolutionary Computation. 399–406
(IEEE Press, Piscataway, NJ, USA, 2009).

Srinivasan, A. A learning engine for proposing hypotheses (Aleph).
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html (accessed: April 2013).

Stone, P. Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer
(MIT Press, Cambridge, MA, USA, 2000).

Stumpf, S.; Rajaram, V.; Li, L.; Wong, W.-K.; Burnett, M.; Dietterich, T.; Sullivan, E.;
Herlocker, J. Interacting meaningfully with machine learning systems: Three experiments.
International Journal of Human-Computer Studies 67, 639–662 (2009).

Sun, S.; Hardoon, D. R. Active learning with extremely sparse labeled examples. Neuro-
computing 73, 2980–2988 (2010).

Thrun, S. Explanation-Based Neural Network Learning: A Lifelong Learning Approach
(Kluwer Academic Publishers, Norwell, MA, USA, 1996).

Thurau, C.; Sagere, G.; Bauckhage, C. Imitation learning at all levels of game AI. In:
Proceedings of the International Conference on Computer Games: Artificial Intelligence,
Design and Education. 402–408 (University of Wolverhampton, School of Computing and
Information Technology, UK, 2004).

Towell, G. G.; Shavlik, J. W. Knowledge-based artificial neural networks. Artificial Intel-
ligence 70, 119–165 (1994).

83

Ubisense. http://www.ubisense.net/ (accessed: November 2012).

Vapnik, V.; Chapelle, O. Bounds on error expectation for SVM. In: Smola, A.; Bartlett,
P.; Schölkopf, B.; Schuurmans, D. (eds.) Advances in Large Margin Classifiers. 261–280
(MIT Press, Cambridge, MA, USA, 2000).

Vapnik, V. N. The Nature of Statistical Learning Theory (Springer-Verlag New York, Inc.,
New York, NY, USA, 1995).

Vidulin, V. Searching for Credible Relations in Machine Learning, Slovenia. Ph.D. thesis
(Jožef Stefan International Postgraduate School, Slovenia, 2012).

Vidulin, V.; Gams, M. Impact of high-level knowledge on economic welfare through inter-
active data mining. Applied Artificial Intelligence 25, 267–291 (2011).

Walker, T.; O’Reilly, C.; Kunapuli, G.; Natarajan, S.; Maclin, R.; Page, D.; Shavlik, J. Au-
tomating the ILP setup task: Converting user advice about specific examples into general
background knowledge. In: Proceedings of the 20th International Conference on Inductive
Logic Programming. 253–268 (Springer-Verlag, Berlin Heidelberg, Germany, 2011).

Wang, L.; Gao, Y.; Chan, K.-L.; Xue, P.; Yau, W.-Y. Retrieval with knowledge-driven
kernel design: An approach to improving SVM-based CBIR with relevance feedback. In:
Proceedings of the 10th IEEE International Conference on Computer Vision. 1355–1362
Vol. 2 (Institute of Electrical and Electronics Engineers Inc., USA, 2005).

Weber, W.; Rabaey, J.; Aarts, E. H. L. Ambient Intelligence (Springer-Verlag, Berlin
Heidelberg, Germany, 2010).

Wisniewski, E. J.; Medin, D. L. On the interaction of theory and data in concept learning.
Cognitive Science 18, 221–281 (1994).

Wooldridge, M. J. An Introduction to Multiagent Systems (John Wiley & Sons, Chichester,
West Sussex, UK, 2009).

Yu, T. Incorporating Prior Domain Knowledge into Inductive Machine Learning: Its
Implementation in Contemporary Capital Markets. Ph.D. thesis (University of Technology,
Faculty of Information Technology, Sydney, Australia, 2007).

Zhang, Q.; Sun, S. Multiple-view multiple-learner active learning. Pattern Recognition 43,
3113–3119 (2010).

Zhao, Y. On interactive data mining. In: Encyclopedia of Data Warehousing and Mining.
1085–1090 (IGI Global, Hershey, PA, USA, 2009).

Zheng, V. W.; Hu, D. H.; Yang, Q. Cross-domain activity recognition. In: Proceedings of
the 11th International Conference on Ubiquitous Computing. 61–70 (ACM, New York, NY,
USA, 2009).

84 References

85

List of Figures

1.1 A decision tree for recognizing postures induced from a limited amount of
concept examples. 2

1.2 Visualization of patterns’ class boundary – 2D projection. 4

3.1 Classifier’s performance estimation. Comparison of the training error, 10-
fold-cross-validation error, separate-training-and-test-set error and the true-
error bound of ML posture-recognition classifiers. 18

5.1 Schema of the proposed method for combining DK and ML for classifier
generation and online adaptation (CDKML). 31

5.2 CDKML’s classifier format. 33
5.3 Visualization of the confidence level of the fall-detection rule “IF a person is

lying on the ground for Plying % of Tlying seconds THEN Fall”. 34
5.4 Visualization of CDKML’s online adaptation process: a pattern’s Markov

decision process after a) initialization, b) a false positive user feedback, c) a
false positive and a false negative user feedback, d) two false positive and one
false negative user feedback. 44

6.1 The serious-game environment. 48
6.2 CDKML’s application to the behavioral-cloning domain – creating a rule-

based behavior clone using CDKML’s initialization and refinement phases. . . 49
6.3 The Confidence system, a ubiquitous system for real-time health problem

detection. 53
6.4 CDKML’s application to the posture-recognition domain – creating a rule-

based classifier using CDKML’s initialization phase. 55
6.5 Architecture of the posture-recognition classifier constructed by a domain

expert. 56
6.6 CDKML’s application to the posture-recognition domain – creating a rule-

based classifier using CDKML’s initialization and refinement phases. 59
6.7 Classifiers’ performance estimation. Comparison of the separate-training-

and-test-set error of the CDKML’s and ML’s posture-recognition classifiers. . 60
6.8 CDKML’s application to the fall-detection domain – creating a rule-based

classifier using CDKML’s initialization, refinement and online adaptation
phases. 62

6.9 Number of fall and non-fall examples. 63
6.10 Evaluation of CDKML’s online adaptation phase – fall-detection classifier’s

accuracy per adaptation step. 68
6.11 Evaluation of online ML classifier adaptation – fall-detection classifier’s ac-

curacy per adaptation step. 69
6.12 Evaluation of classifier’s online adaptation – classifiers’ time-to-fall on the fall

events (FCDKML and FML) and on the non-fall events (NFCDKML and NFML). 70

86 List of Figures

87

List of Tables

6.1 Number of action examples. 49
6.2 Behavior-clone comparison with respect to accuracy. 51
6.3 Behavior-clone comparison with respect to game-course difference. 52
6.4 Number of posture examples. 54
6.5 Resolution of conflicts among the rules in the posture-recognition classifier

constructed by a domain expert. 57
6.6 Accuracy of ML posture-recognition classifiers estimated using 10-fold cross

validation. 58
6.7 Posture-recognition classifier comparison with respect to accuracy estimated

with separate-training-and-test-set evaluation. 58
6.8 Evaluation of CDKML’s approach to combining domain knowledge and ma-

chine learning – fall-detection test scenario. 63
6.9 Fall-detection classifier comparison with respect to classifiers’ accuracy on the

fall examples ACCf , classifiers’ accuracy on the non-fall examples ACCnf and
overall accuracy ACCall. 65

6.10 Fall-detection classifier comparison with respect to classifiers’ accuracy on
each test-scenario event ACCe separately. 66

6.11 Evaluation of CDKML’s online adaptation phase – fall-detection test scenario. 67

88 List of Tables

89

List of Algorithms

3.1 Calculating the hypothesis space size of decision-tree classifiers. 19
3.2 Calculating the number of distinct decision-tree classifiers with num leaves

leaves, where each leaf represents one of num classes classes and each node
checks one of num atts binary attributes. 20

5.1 CDKML phase 1 – initialization. 34
5.2 Decision-tree hypothesis-space examination. 35
5.3 A classifier’s quality estimator – CDKML’s fitness function. 37
5.4 CDKML phase 2 – refinement . 38
5.5 Tuning the genetic-algorithm parameter values in CDKML’s refinement phase. 39
5.6 CDKML phase 3 – initialization of a pattern’s Markov decision process. . . . 41
5.7 CDKML phase 3 – classifier adaptation upon user feedback. 43

90 List of Algorithms

Appendices

93

Appendix A: Bibliography

Publications related to the dissertation

Journal papers (SCI)

• Mirchevska, V.; Bežek, A.; Luštrek, M.; Gams, M. Discovering strategic behaviour
of multi-agent systems in adversary settings. Computing and Informatics, in press
(2013).

• Mirchevska, V.; Luštrek, M.; Gams, M. Combining domain knowledge and machine
learning for robust fall detection. Expert Systems, preprint published online (2013).

• Kaluža, B.; Cvetković, B.; Dovgan, E.; Gjoreski, H.; Mirchevska, V.; Gams, M.;
Luštrek, M. A multi-agent care system to support independent living. International
Journal of Artificial Intelligence Tools, in press (2013).

Conference papers

• Mirchevska, V.; Tavčar, A.; Gams, M. Bahavioral cloning of asymmetric conflicts in
urban environment using supervised learning. In: Bohanec, M.; Gams, M.; Mladenić,
D.; Grobelnik, M.; Heričko, M.; Kordeš, U.; Smrdu, M.; Markič, O.; Pirtošek, Z.;
Lenarčič, J.; Žlajpah, L.; Gams, A.; Rajkovič, V.; Urbančič, T.; Bernik, M. (eds.)
Proceedings of the 15th International Multiconference Information Society. 134–137
(Jožef Stefan Institute, Ljubljana, Slovenia, 2012).

• Luštrek, M.; Gjoreski, H.; Kozina, S.; Cvetković, B.; Mirchevska, V.; Gams, M. De-
tecting falls with location sensors and accelerometers. In: Proceedings of the 23rd In-
novative Applications of Artificial Intelligence Conference. 1662–1667 (AAAI, Menlo
Park, CA, USA, 2011).

• Mirchevska, V.; Luštrek, M.; Gams, M. Towards robust fall detection. In: Bohanec,
M.; Gams, M.; Mladenić, D.; Grobelnik, M.; Heričko, M.; Kordeš, U.; Markič, O.;
Lenarčič, J.; Žlajpah, L.; Gams, A.; Fomichov, V.; Fomichova, O. S.; Brodnik, A.;
Sosič, R.; Rajkovič, V.; Urbančič, T.; Bernik, M. (eds.) Proceedings of the 14th In-
ternational Multiconference Information Society. 75–78 (Jožef Stefan Institute, Ljubl-
jana, Slovenia, 2011).

• Kaluža, B.; Mirchevska, V.; Dovgan, E.; Luštrek, M.; Gams, M. An agent-based
approach to care in independent living. In: Proceedings of the 1st International Joint
Conference on Ambient Intelligence. 177–186 (Springer-Verlag, Berlin Heidelberg,
Germany, 2010).

• Mirchevska, V.; Kaluža, B.; Luštrek, M.; Gams, M. Real-time alarm model adaptation
based on user feedback. In: Workshop on Ubiquitous Data Mining in conjunction with
the 19th European Conference on Artificial Intelligence. 39–43 (Lisbon, 2010).

94 Appendix A: Bibliography

• Mirchevska, V. Alarm detection in the Confidence system. In: Vélez, I.; Gams, M.
(eds.) Odprta delavnica projekta Confidence: Proceedings of the 13th International
Multiconference Information Society. 26–29 (Jožef Stefan Institute, Ljubljana, Slove-
nia, 2010).

• Mirchevska, V.; Kaluža, B. Learning through interaction. In: Kaluža, B.; Eleršič, K.;
Pogorelc, B.; Šetina, B.; Vahčič, M. (eds.) Proceedings of the 2nd Jožef Stefan Inter-
national Postgraduate School Students Conference. 30–31 (Jožef Stefan International
Postgraduate School, Ljubljana, Slovenia, 2010).

• Mirčevska, V.; Luštrek, M.; Vélez, I.; Vega, N. G.; Gams, M. Classifying posture
based on location of radio tags. In: Čech, P.; Bureš, V.; Nerudová, L. (eds.) Ambient
Intelligence and Smart Environments: Ambient Intelligence Perspectives II. 85–92
(IOS Press, Amsterdam, The Netherlands, 2009).

• Mirčevska, V.; Gams, M. Towards robust engine for classifying human posture. In:
Bohanec, M.; Gams, M.; Rajkovič, V.; Urbančič, T.; Bernik, M.; Mladenić, D.; Gro-
belnik, M.; Heričko, M.; Kordeš, U.; Markič, O.; Lenarčič, J.; Žlajpah, L.; Gams,
A.; Fomichova, O. S.; Fomichov, V.; Brodnik, A. (eds.) Proceedings of the 12th

International Multiconference Information Society. 112–115 (Jožef Stefan Institute,
Ljubljana, Slovenia, 2009).

• Mirčevska, V.; Luštrek, M.; Gams, M. Combining machine learning and expert knowl-
edge for classifying human posture. In: Zajc, B.; Trost, A. (eds.) Zbornik 18. med-
narodne elektrotehnǐske in računalnǐske konference. 183–186 (Slovenska sekcija IEEE,
Ljubljana, Slovenija, 2009a).

• Mirčevska, V.; Kaluža, B. Towards intelligent home caregiver. In: Šetina, B.; Junkar,
I.; Kaluža, B.; EleršIč, K. (eds.) Proceedings of the 1st Jožef Stefan International Post-
graduate School Student’s Conference. 32–33 (Jožef Stefan International Postgraduate
School, Ljubljana, Slovenia, 2010b).

95

Appendix B: Biography

Violeta Mirchevska was born in Skopje, Macedonia, on February 1, 1984. She received
a university degree in 2007 from the Faculty of Electrical Engineering and Information
Technologies, Ss. Cyril and Methodius University, Skopje, Macedonia, by defending the
thesis “Searching through multimedial data using the MPEG7 color descriptors”. During
the undergraduate studies, she was awarded several times for outstanding achievements.

In 2008, Violeta enrolled in the “New Media and E-Science” doctoral-degree study pro-
gram at the Jožef Stefan International Postgraduate School, Ljubljana, Slovenia. She was
awarded a scholarship from the Department of Intelligent Systems at the Jožef Stefan Insti-
tute where she started her research work under the supervision of Prof. Dr. Matjaž Gams. In
2009, cooperation with the company Result d.o.o. was established, when the Slovenian Tech-
nology Agency approved funding for a joint research project under the public call “Young
researchers from industry – Generation 2009”. Since June 2013, Violeta is a research assis-
tant at the Department of Intelligent Systems at the Jožef Stefan Institute.

Violeta’s research focuses on behavior modeling that leverages both existing domain
knowledge and machine learning. Three application domains are addressed in her work: (i)
modeling users for the purpose of detecting unusual behavior – learning everyday behavior of
an elderly user in order to detect deviations related to health problems, (ii) understanding
and studying the behavior of agents in a multi-agent system – analyzing interactions of
opposing groups of agents, and (iii) adaptation of software applications to user needs –
adaptation of the reporting level of business intelligence applications to better suit the user
information needs. Violeta’s research achievements were published in scientific journals and
conference proceedings.

	Abstract
	Povzetek
	1 Introduction
	1.1 Hypothesis and Purpose
	1.2 Scientific Contributions
	1.3 Overview of the Dissertation Structure

	2 Related Work
	2.1 Incorporating Expert Domain Knowledge into the Learning Process ofInductive Machine Learning Algorithms
	2.1.1 Using Domain Knowledge to Prepare Training Examples
	2.1.2 Using Domain Knowledge to Initialize the Hypothesis or Hypothesis Space
	2.1.3 Using Domain Knowledge to Alter the Search Objective
	2.1.4 Using Domain Knowledge to Augment the Search

	2.2 Interactive Data Mining
	2.3 The Dissertation's Contribution in the Context of the Related Work

	3 Machine Learning and Expert Domain Knowledge
	3.1 Inductive Machine Learning
	3.2 Is the Training Data Enough for Successful Learning?
	3.3 Eliciting Expert Domain Knowledge in Inductive Machine Learning
	3.3.1 Incorporating Expert Domain Knowledge in the Learning Process of Inductive Machine Learning Algorithms
	3.3.2 Interactive Data Mining

	3.4 Inductive Machine Learning with Expert Domain Knowledge

	4 Motivating Domains
	4.1 Behavioral Cloning
	4.2 Posture Recognition
	4.3 Fall Detection

	5 CDKML – A Method for Combining Domain Knowledge and MachineLearning for Classifier Generation and Online Adaptation
	5.1 The Classifier
	5.2 Initialization
	5.3 Refinement
	5.4 Online Adaptation

	6 Evaluation
	6.1 Behavioral Cloning
	6.1.1 The Serious Game
	6.1.2 Data
	6.1.3 Evaluation of CDKML in the Absence of Domain Knowledge

	6.2 Posture Recognition
	6.2.1 The Confidence System
	6.2.2 Data
	6.2.3 Evaluation of a Classifier Constructed by a Domain Expert Using Interactive Data Mining
	6.2.4 Comparison of CDKML's Performance to the Performance of Machine Learning

	6.3 Fall Detection
	6.3.1 Comparison of CDKML's Performance to the Performance of Machine Learning
	6.3.2 Evaluation of CDKML's Online Classifier Adaptation

	6.4 Discussion

	7 Conclusions
	8 Acknowledgments
	9 References
	List of Figures
	List of Tables
	List of Algorithms
	Appendix A: Bibliography
	Appendix B: Biography

