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Abstract

While the majority of methods in statistics, machine learning and data mining deal
with data that is represented as tuples of scalar values, in this thesis, we focus on
distance based learning algorithms for structured data. Besides tuples of discrete or
real values, structured data include sets and sequences thereof, as well as, recursively
defined, tuples, sets and sequences of structured data. Specifically, we consider
distances on structured data and develop methods for learning from such data. We
address both the tasks of predictive modeling and clustering in this context.

We explore two paradigms for using distances when learning from structured
data, namely model-free and model-based learning. As representatives of the first,
we consider instance-based nearest-neighbor algorithms for prediction and algo-
rithms for distance-based clustering, for which no models are built. As representative
of the second, we consider predictive clustering, where tree-based models are built.
We propose several approaches for predictive modeling and clustering within each
of the two paradigms.

Within the model-free learning paradigm, we propose and develop generic ver-
sions of the k -medoids and hierarchical agglomerative clustering algorithms for clus-
tering structured data, and of the k -nearest neighbour algorithm for predictive mod-
eling for structured data. In the latter case, the algorithm is able to handle struc-
tured input and structured output. Within the predictive clustering paradigm, we
extend the framework for predictive clustering trees to be able to handle arbitrarily
structured data on the target or output side.

We explore several distances for each of the type constructors, i.e., set, tuple
and sequence. In addition to the implementation of known distances for sets, we
propose and implement a new distance called Greedy Matching. The framework
enables users to use these distances out of the box and supports various possibilities
for combining distances at various levels in the structure of the data types.

The predictive clustering tree approaches for different types of structured outputs
were evaluated and their utility demonstrated on a number of practically relevant
problems. For the basic case of tuples of real values, the application consisted of
predicting the state of the forests in Slovenia (and in particular forest stand height
and canopy cover) from remotely sensed data, i.e., satellite images. For the case of
predicting time series, the application considered was finding explained groups of
genes with similar time course profiles of gene expression under different stressful
conditions. Finally, for the case of tuples of time series, the application of clustering
profiles of forest growth stock in Slovenian forests was considered.

We outline several possible directions for extending this work. One is the further
evaluation of the instance-based algorithms on new real-life datasets. Another is the
use of the framework for metric learning (i.e., learning distances) either by selecting
the most appropriate distance from a space of possible distances, or by combining
various distances using modifications of well known metric learning algorithms.
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Povzetek

Večina metod za analizo podatkov v statistiki, strojnem učenju in rudarjenju po-
datkov obravnava podatke v obliki n-teric skalarnih vrednosti (številskih ali nom-
inalnih), medtem ko se v tej disertaciji osredotočimo na obravnavo strukturiranih
podatkov. Strukturirani podatki lahko poleg n-teric številskih ali nominalnih vred-
nosti vključujejo tudi njihove množice in zaporedja, kot tudi rekurzivno definirane
n-terice, množice ali zaporedja strukturiranih podatkov. V disertaciji obravnavamo
razdalje med strukturiranimi podatki in razvijamo metode za strojno učenje iz takih
podatkov. Ukvarjamo se tako s problemom napovednega modeliranja kot tudi s
problemom razvrščanja v skupine, tj. z nadzorovanim in nenadzorovanim strojnim
učenjem.

Raziščemo dve paradigmi za uporabo razdalj pri učenju iz strukturiranih po-
datkov. To sta učenje na osnovi primerkov (angl. instance-based learning), ki shran-
juje in razvršča primerke ter ne uporablja modelov (angl. model-free), in napovedno
razvrščanje (angl. predictive clustering), ki gradi modele v obliki dreves (angl. model-
based). Predlagamo več pristopov k napovedovanju in razvrščanju znotraj obeh
paradigm.

Znotraj paradigme učenja na osnovi primerkov predlagamo in razvijemo razšir-
itve dveh pristopov k razvrščanju za delo s poljubno strukturiranimi podatki. Gre
za metodi k-medoid in hierarhično razvrščanje z združevanjem (angl. hierarchical
agglomerative clustering). Podobno razširitev predlagamo tudi za algoritem k-NN
za napovedno modeliranje, ki lahko v razširjeni različici obravnava poljubno struk-
turirane podatke, tako na vhodu kot na izhodu. Znotraj paradigme napovednega
razvrščanja razširimo pristop k učenju dreves za napovedno razvrščanje v smeri
obravnave poljubno strukturiranih podatkov na izhodu.

Raziščemo več različnih razdalj za vsako vrsto strukturiranih podatkov, tj. za
n-terice, množice in zaporedja. Poleg implementacij že znanih razdalj vpeljemo in
implementiramo novo razdaljo med množicami, ki jo imenujemo razdalja požrešnega
ujemanja. Naša metoda omogoča uporabnikom, da uporabljajo vnaprej definirane
razdalje kot tudi da te razdalje kombinirajo na različne načine in na različnih nivojih
v podatkovnih strukturah.

Ovrednotili smo razširjene algoritme za gradnjo dreves za napovedno razvrščanje
za napovedovanje različnih vrst izhodov in pokazali njihovo uporabnost na več prak-
tično pomembnih problemih. Drevesa za napovedovanje več zveznih izhodnih spre-
menljivk (n-teric realnih števil) smo uporabili za ocenjevanje stanja (višine in gos-
tote) slovenskih gozdov iz daljinsko zaznanih podatkov oz. satelitskih posnetkov.
Drevesa za napovedovanje časovnih vrst (zaporedij realnih števil) smo uporabili pri
iskanju skupin genov glive kvasovke s podobnim časovnim odzivom izraženosti ter
konsistentnimi funkcionalnimi lastnostmi. Drevesa za hkratno napovedovanje več
časovnih vrst smo uporabili za razvrščanje profilov rasti lesne zaloge različnih razre-
dov dreves v slovenskih gozdovih.
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Podamo tudi več možnih smernic za razširitev in nadgradnjo pričujočega dela. Te
vključujejo nadaljnjo evalvacijo predlaganih algoritmov za učenje na osnovi primerkov
na novih množicah podatkov. Vljučujejo tudi uporabo naše metode za učenje us-
treznih razdalj za podane podatke, pri čemer lahko razdaljo izberemo iz množice
predefiniranih razdalj ali pa jo iz znanih razdalj sestavimo z uporabo obstoječih
algoritmov za učenje razdalj (angl. metric learning).
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Chapter 1

Introduction

In the area of data mining, machine learning and more generally data analytics we
are increasingly often faced with increasingly complex data (Bakir et al., 2007). One
major source of complexity of data is its internal structure. The classical composition
of a data item is a record or a tuple of scalar values of certain variables, attributes
or properties of the object described. However, we can also encounter sequences of
scalar values or sets of scalar values or even tuples, sequences or sets of structured
data values. When defining the space of data to be analyzed it is necessary on the
one hand to specify the possible types of values that data points can take. On the
other hand, a crucial part of the definition of the data space is the definition of a
distance between the points in that space (Džeroski, 2006). Distances play a crucial
role in both statistical and machine learning methods for data analysis.

Distances are important in both predictive modeling, where tasks such as classi-
fication and regression are addressed, and also in unsupervised learning or clustering
(Langley, 1996). In fact, a very large portion of the research on clustering is con-
cerned with distance-based clustering, where we try to group objects that are similar
according to a given distance, while objects from different groups are as dissimilar as
possible (Kaufman & Rousseeuw, 1990). Distances also play a key role in statistical
methods such as nearest neighbor classification (Cover & Hart, 1967).

The majority of methods in statistics, machine learning and data mining deal
with data that has the form of tuples of scalar values of variables. Therefore they
consider distances in Euclidean spaces or spaces which are Cartesian products of sets
of scalar values, be it continuous or discrete. In this thesis, we consider distances
on structured data and develop methods for learning from such data. We address
both the tasks of prediction and clustering in this context.

1.1 Learning from structured data

1.1.1 Structured data

When we say structured data we mean data that are composed of subparts orga-
nized or bound together by certain organizational structures or type constructors
(Džeroski, 2006). The classical data structure considered in machine learning is the
vector of attribute values or tuple or record which contains scalar values of either
discrete or continuous variables. In the area of computer science, however, many
different data structures have been considered which are composed from primitive
datatypes and type constructors (Bakir et al., 2007).
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The primitive datatypes considered are numerical continuous real values, which
is the datatype primarily used in statistics, and also discrete, nominal, or categorical
variables. Type constructors, which are used to put primitive values in more complex
structures, include the tuple, the most commonly used one, but also sequences and
sets. While other type constructors may be considered in practice, we will primarily
focus here on the use of three type constructors: tuple, sequence and set.

1.1.2 Data mining tasks

Within the area of machine learning and data mining, many different tasks of data
analysis have been considered. These can be roughly grouped into two major cat-
egories (Langley, 1996). The first category and the most commonly addressed one
is the task of predictive modeling, where we want to predict the value of a certain
property of an object from other properties of that object or in general a descrip-
tion of that object. The second category is the task of clustering, where we want
to group objects that are similar to each other, however, no specific property is
designed as the target that we want to predict. The first task is known under the
name of supervised learning, where the values of the target property that we want to
predict come from a human supervisor. The second category of problems is known
under the name of unsupervised learning, because no such supervision is provided.
More recently, a new paradigm has emerged in machine learning which combines
properties of the predictive modeling and clustering paradigms and is known under
the name predictive clustering (Blockeel, 1998; Kocev, 2011; Ženko, 2007; Kocev
et al., 2013; Struyf & Džeroski, 2006).

1.1.3 Structured input data (relational learning)

Most commonly, an individual data item within a set of data is a tuple or a vector of
scalar attribute values. However, to deal with structured data, we need to consider
data which are composed from substructures and sub-parts. In the area of predictive
modeling, significant attention has been devoted over the last two decades to the
task of learning from structured input data (Bakir et al., 2007). An example task
might concern predicting mutagenicity of chemical compounds, where the structure
of the compounds is described by graphs of bonds that connect atoms within the
compound (Debnath et al., 1991).

In the context of relational learning, the task of relational classification and re-
lational regression have been considered (Džeroski & Lavrač, 2001). The task of
relational clustering has received much less attention. An approach worth mention-
ing in this context is inductive logic programming, where structured descriptions in
the form of logic programs are considered (Lavrač & Džeroski, 1994).

1.1.4 Structured output prediction

More recently, there has been an increased interest in the task of predictive modeling
where the target that we want to predict is a structured value composed of a type
constructor and its sub-components. Tasks like multi-target classification, multi-
target regression, multi-label classification and hierarchical multi-label classification
fall in this context (Kocev et al., 2013). A variety of approaches have been developed
for these tasks, where the input is still a vector of attribute values, but the outputs
are structured values as described above.
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1.2 Distance-based learning

A large number of methods from statistics and machine learning take the notion of
a distance as a central notion. These methods are called distance-based learning
methods (Wettschereck, 1994). Methods for distance-based learning exist both for
predictive modeling or supervised learning, on the one hand, and for unsupervised
learning or clustering, on the other hand.

There are two paradigms for distance-based learning, namely model-free and
model-based learning. As representatives of the first, we consider instance-based
nearest-neighbor algorithms for prediction and algorithms for distance-based clus-
tering, for which no models are built. As representative of the second, we consider
predictive clustering, where tree-based models are built.

Purely distance-based methods for prediction are known under the name of
instance-based learning, lazy learning, memmory-based learning or nearest neighbor
methods. In essence, to make a prediction for a new data item, the data item is
compared to previously seen data items: Distances to them are first calculated and
then the most similar object or objects are taken to produce a prediction for the
new example at hand. It is therefore clear that the notion of a distance plays a
critical role in this context. Besides the basic nearest neighbor method, the natu-
ral extension, namely the k-nearest neighbors method, is often used. In addition,
methods that filter the instances and do not store all of the instances can be used.
Instance-based learning methods have recently also been considered in the online
learning or streaming context (Shaker & Hüllermeier, 2012).

In unsupervised learning or clustering, while many different approaches exist,
distance-based clustering is very common. In distance-based clustering, we are given
a set of data points that need to be clustered or partitioned into subsets or clusters
of objects that are similar to each other. Objects from different clusters should be
as dissimilar from each other as possible. Clearly the notion of a distance plays a
critical role in this context as well.

Nearest neighbor methods and distance-based clustering methods share a com-
mon approach. They do not build models, i.e., are model-free. They primarily
store and partition instances. We will thus refer to both of them as instance-based
approaches.

Predictive clustering is a recent model-based paradigm that combines the paradigms
of predictive modeling on the one hand and clustering on the other hand. Predic-
tive clustering methods produce clusters just like clustering and are able to make
predictions just like predictive modeling methods. In addition, predictive clustering
methods produce a symbolic description for each partition that they produce, us-
ing rules to describe individual clusters or trees to describe a hierarchical clustering
(Blockeel, 1998).

1.3 Motivation, hypothesis and goals

In current machine learning methods that deal with structured data, we can iden-
tify two large groups of methods. The first one deals with structured input data
as input to the task of predictive modeling. This is the case in relational learn-
ing where we consider the task of relational classification, for example, predicting
whether a certain molecule is mutagenic or not, or relational regression where, for
example, we could predict the biodegradability time of certain compound in water.
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Different types of methods have been developed in this context that follow meth-
ods developed for learning from a single table of data. This includes methods for
learning rules, methods for learning trees, but also distance-based methods. Rela-
tional distance-based methods typically define one specific distance measure on a
relational data representation mostly taken from relational databases. One of the
first approaches developed in this context was by Emde and Wettschereck (1996),
a more recent approach is the one of Woznica (2008). While clustering has been
mentioned in this context there has been very little work on clustering of structured
data represented relationally. Work on clustering structured data is mostly per-
formed by first calculating a distance matrix using a specific distance measure for
the data structure considered and then using methods that do not explicitly refer
to the distance measure used. For example, this includes methods like hierarchical
agglomerative clustering or k-medoids clustering, which take as input a matrix of
distances between pairs of objects in a given dataset. There has also been little
work on considering explicitly different distance measures. As mentioned above,
approaches such as those by Woznica (2008) and Emde and Wettschereck (1996)
consider fixed distance measures and do not exploit a variety of distance measures.

A second class of methods are methods for predicting structured outputs. Here,
the input is a vector of attribute values of continuous or discrete variables, therefore
primitive datatypes, but the output can be a data structure consisting of type con-
structor and sub-components. The task of structured output prediction has been
recently receiving increased attention: A reference for this subject is the book by
Bakir et al. (2007). Depending on the data structure of the target, we distinguish
different tasks of structured output prediction. For example, when we have a vector
of discrete or continuous variables, we are dealing with the task of multi-target clas-
sification or multi-target regression. If we are dealing with sets of discrete values, we
are dealing with the task of multi-label classification. If we are dealing with sets of
discrete values organized in a hierarchy, we are dealing with the task of hierarchical
multi-label classification.

One of the recently developed approaches for structured output prediction is
situated within the predictive clustering paradigm. Methods for learning predic-
tive clustering trees and ensembles of such trees have been developed which can
handle many of the different structured output tasks. These include multi-target
classification and regression, multi-label classification and hierarchical multi-label
classification (Kocev et al., 2013; Struyf & Džeroski, 2006).

The main hypothesis of the thesis is that it is possible to develop distance-
based learning methods for arbitrarily structured data. This can be achieved by
extending existing or developing new methods from the areas of instance-based
learning, clustering and predictive clustering. More specifically, we hypothesize that
it is possible to develop methods for distance-based learning which can handle:

• arbitrary structures on the input side as well as the output side of instance-
based learning

• clustering methods for arbitrarily structured types of data in the context of
distance-based learning

• methods for handling arbitrarily structured target datatypes in the context of
predictive clustering.
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The goals of the thesis are closely related to the hypothesis of the thesis. More
specifically, we aim to extend the methods for distance-based learning both in the
instance-based learning and the clustering paradigm to deal with arbitrarily struc-
tured datatypes. This also includes the possibility to use different distances on
structured data. The goals will be thus to:

a. Develop a framework for distance-based learning including instance-based learn-
ing and clustering for arbitrarily structured datatypes; and

b. Extend predictive clustering methods to deal with arbitrarily structured datatypes
as targets.

Besides, we will also aim to demonstrate the utility of the developed methods on
practically relevant problems from the areas of environmental and life sciences.

1.4 Scientific contributions of the thesis

In this thesis, we explore the two paradigms of instance-based learning and predictive
clustering and propose several approaches within each of the two paradigms. We
implement these approaches in appropriate software environments and illustrate
their use on practically relevant problems. The scientific contributions of the thesis
can be summarized as follows:

• A generic framework and a software environment for instance-based learning
from structured data. The framework implements generic algorithms for both
instance-based prediction and clustering, with arbitrarily structured datatypes
on the input and the output side and arbitrary distances on such datatypes.
The generalized k-NN and k-medoids algorithm implemented here work for
arbitrary types of structured data.

• Predictive clustering trees for arbitrary types of structured targets. We have
implemented an extension of the predictive clustering framework which gen-
eralizes the basic predictive clustering approach to use different distances and
different structured datatypes as outputs. These include types with type
constructors other than tuple (i.e., set and sequence) applied to primitive
datatypes, e.g., sets of discrete/nominal values or sequences/time series of real
values. They also include multi-layer datatypes, where type constructors are
recursively applied to structured datatypes (e.g., sets of tuples, tuples of time
series).

• Applications of predictive clustering trees to practically relevant problems. The
predictive clustering tree approaches for different types of structured outputs
are applied to a number of practically relevant problems. Two of these concern
environmental sciences and in particular Slovenian forests, i.e., estimating the
state of the forests from remotely sensed data and clustering profiles of forest
growth stock. One comes from the life sciences and deals with finding explained
groups of genes in yeast with similar time course profiles of gene expression
under different stressful conditions.
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1.5 Organization of the thesis

This chapter gives an introduction to distance-based learning and the context of the
thesis. It outlines the motivation and the working hypothesis, and briefly explains
the scientific contributions of the thesis. The remainder of the thesis is organized as
follows.

Chapter 2 describes structured data and distances on structured data. Structured
datatypes are composed of primitive datatypes, such as numeric and discrete, by the
recursive applications of type constructors such as tuple, set and sequence. Distances
on structured data are composed by aggregating the distances on the component
datatypes. The sub-components of the two data items need to be matched in an
appropriate manner which depends on the type constructor used.

Chapter 3 describes the first contribution of this thesis, namely, a framework
and a software environment for instance-based learning for structured data. The
approaches proposed and implemented here rely exclusively on the use of distances:
They fall into the category of lazy learning approaches and do not create an explicit
understandable model. Rather, they store the training instances or partition them
into clusters.

A distinguishing feature of the proposed approaches is that they can deal with
arbitrary structured datatypes. These can be defined as discussed in the previous
chapter. For both nearest neighbor prediction and clustering using hierarchical ag-
glomerative clustering or k-means/k-medoids, distances on the structured datatypes,
as described in the previous chapter, can be used.

Chapter 4 describes the evaluation of the framework and distances introduced in
Chapter 3 and Chapter 2 respectively. First, we evaluate the proposed framework on
several benchmark datasets for the task of classification of structured data. We then
present applications to several prediction tasks, starting with classification problems
and continuing with problems that have structured data on the output side. At the
end, we illustrate the use of our framework for clustering multi-layer structured data.

Chapter 5 describes the second main contribution of this thesis, namely, ap-
proaches for structured output prediction via predictive clustering. Predictive clus-
tering, by design, is capable of predicting structured outputs. However, up to the
point where our work started, predictive clustering had dealt mostly with tuples
of discrete and continuous variables as targets. We extend predictive clustering
approach to deal with targets composed by the use of the other type constructor
such as sequence and set. First, we consider sets of discrete values and sequences
of real values (i.e., time series) as targets. Next, we consider so-called multi-layer
datatypes, where a type constructor is applied to structured datatypes, e.g., a tuple
of time series.

Chapters 6 to 9 contain five papers, four already published and one in the process
of publication, where predictive clustering methods for different types of structured
outputs and their applications to practically relevant problems are described.

Chapter 6 describes the use of predictive clustering trees and ensembles thereof
to the problem of estimating the state of the forest in Slovenia from remotely sensed
data, i.e., satellite images. In particular, we addressed the problem of estimating
vegetation height and canopy cover from satellite images. The structured output
prediction task at hand is predicting a tuple of real valued variables.

Chapter 7 treats the task of predicting a set of discrete values also known as
multi-label classification. It performs a comparison of the use of different distance
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measures on the target space. The distance measures on sets considered in this work
include: the Euclidean distance, the Hamming distance, the Jaccard distance and
the Matching distance.

Chapter 8 addresses the tasks of predicting time series with predictive clustering
trees. The datatype of the target is composed by applying the type constructor
sequence to real values. The chapter contains two papers. The first paper describes
the implementation of the algorithm for prediction of time series within the CLUS
system and the modifications of CLUS required for this. In particular, the use of
sum of squared pairwise distances to calculate variance is described here for the first
time. The proposed approach is evaluated on the task on analyzing gene expression
time series and is compared with other approaches such as hierarchical agglomerative
clustering.

The second paper in Chapter 8 focuses on the use of predictive clustering trees
for predicting short time series to the problem of finding explained groups of time
course gene expression profiles. The case study used is finding groups of genes that
have a coherent response to different stress conditions as observed in yeast. The
predictive clustering trees learned from the data are examined in more detail and
their biological plausibility is discussed.

Chapter 9 describes the extension of predictive clustering to multi-layered datatypes
as targets. The particular type of structured data treated here is multi-dimensional
time series, which can be viewed as a tuple of time series. The proposed approach
is applied to the task of modelling forest growing stock in Slovenian publicly owned
forests.

Finally, Chapter 10 concludes this thesis. It first summarizes the scientific con-
tributions of the thesis. It then outlines a number of directions for further work.
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Chapter 2

Distances for Structured Data

In the previous chapter, we established that distances are a crucial part of distance-
based methods. Furthermore, the variety of possible applications of distance-based
methods requires different definitions of distance functions, so they can perform
optimally. To this end, the distances need to be tailored specifically for each appli-
cation separately. Moreover, the distance-based methods should be flexible enough
to facilitate inclusion of background knowledge in the definition of the distance, as
provided by domain experts.

The definition of a specific distance for a given application strongly requires a
proper data representation and datatype definition. Adjusting the data representa-
tion for a given application can lead to learning a better and more accurate model.
Considering this, in this chapter, we first discuss different datatypes and then pro-
vide definitions of different distances.

In general, we can distinguish between two datatypes: primitive and structured
datatypes. A primitive datatype has value space defined either axiomatically or by
enumeration (Panov, 2012), e.g., numeric or discrete datatype. Structured datatypes
are composed of primitive datatypes by recursive application of type constructors
such as tuple, set and sequence.

Consequently, we consider distances on primitive datatypes and distances on
structured datatypes. Distances on primitive datatypes can be calculated relatively
easy, since there exists a plethora of different distances (e.g., Euclidean distance for
numeric datatypes). Distances on a structured datatype are composed by aggregat-
ing the distances on the component datatypes. The sub-components of the two data
items compared need to be matched in an appropriate manner, which depends on
the type constructor used.

2.1 Datatypes

In this section, we present the data representation and datatypes, which are the
main ingredients for the definition of a distance. First, we discuss the primitive
datatypes. Next, we introduce the type constructors that can be used together
with the primitive datatypes to construct structured datatypes. Finally, we present
representations of real-life examples with structured data.

A datatype is a data representational model denoting a type of data (Panov,
2012). The type of data is defined with its set of distinct values that it can take,
the properties of those values, and the operations that can be performed on those
values. In other words, a datatype (in computing terms) is a set of data values
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having predefined characteristics. When it comes to statistics and data mining, the
selection of algorithms to be applied on specific data is constrained by the type of
data. A basic understanding about the datatypes is helpful for selecting the optimal
algorithms.

As stated earlier, in this dissertation, we distinguish between two different kinds
of datatypes:

• Primitive datatypes and

• Structured datatypes

2.1.1 Primitive datatypes

Primitive datatypes are the basic building blocks of any data representation frame-
work. In this sense, a data representation framework can be a part of a programming
language, or it can be a specific standalone framework. Each framework and each
programming language define what the primitive datatypes are within the given
context. The definitions of the primitive datatypes depend on how they are used,
which operations are defined on them and so on.

From a machine learning and data mining point of view, there are, generally
speaking, two major types of data:

• Qualitative (i.e., nominal) data, and

• Quantitative (i.e., numeric) data.

The term qualitative data is often used interchangeably with the terms categor-
ical and nominal data. Qualitative data is a categorical measurement that is not
expressed with numbers, but instead with a natural language description: It takes
a value from a predifined set of discrete values. While qualitative values like low,
medium, and high can be ordered, we will treat such cases as quantitative/ordinal
(see below), and use the term qualitative data in the sense of nominal data. For
such data, there is no natural sense of ordering, thus qualitative data can be referred
to as non-ordinal data.

Examples of qualitative data are the color of a ball, or the gender of a person.
The qualitative data could be represented with numbers, and will appear numeric,
but in this case the numbers are meaningless and comparison or mathematical oper-
ations are meaningless as well. For example, gender could be coded as male=1 and
female=2 and performing any kind of mathematical operation on the value 1 and 2
is meaningless.

Quantitative data is often used interchangeably with numeric data in the liter-
ature. Quantitive data are data that are represented (i.e., ordered) on a numeric
scale. Quantitative datatypes could be continuous or discrete. There are three dif-
ferent scales used for this datatype: ordinal, interval and ratio scale (Stevens, 1946).
For the interval and ratio scale, mathematical operations are defined, while for the
ordinal scale only the ordering (greater/less than) is defined. Because of this, or-
dinal data are sometimes referred to as quantitative data and sometimes as a mix
between qualitative and quantitative data, having properties of both types.

All in all, in this dissertation, we define primitive datatypes as datatypes that
have no structure and cannot contain another datatype within themselves (i.e., a
primitive datatype is conceptually atomic). The treatment of the nominal and the
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numeric depends on the specific distance measure that is selected for the correspond-
ing datatype.

2.1.2 Structured datatypes

Structured datatypes are composed of primitive datatypes (also called component
datatypes in this context) by the recursive application of type constructors. Struc-
tured datatypes differ from one another by the relationships among the component
datatypes, the relation between each component and the structured datatype; and
the sets of characterizing operations. The properties specific to a structured datatype
are related to the properties of the type constructor and the properties of the com-
ponent datatypes. In this dissertation, we define three type constructors used to
construct structured datatypes:

• Tuple,

• Set, and

• Sequence.

The type constructors listed above are widely known and well defined in math-
ematics and computer science. Nonetheless, we briefly describe each of these and
emphasize their characteristics that are relevant for the framework proposed in this
dissertation.

Tuple is an ordered list of elements. Its main properties include:

• Elements are ordered (like sequences, but unlike sets),

• It can contain elements of different types (unlike sequences and sets).

Set is a collection of distinct, i.e., unique elements. In this dissertation, we will
use the term set also for multi-sets: sets that can contain same elements multiple
times.

Sequence is an ordered list of elements, where the elements are from the same
type. Unlike the tuple datatype, in sequence all elements must be of the same type.
When observing the sequence only as a data representation (the syntactic part of it),
it could be treated as a special case of a Tuple. However, when using the sequences
in machine learning and data mining, the focus is not on the data representation
only, but also on many other aspects of the sequence, such as the dynamics of the
sequence and the order of the elements in the sequence. Especially important in this
context is the latter: the ordering of the elements in sequences can not be changed,
while the ordering of the elements in tuples can be changed (i.e., in sequences there
can be causal relationships between the elements, while in tuples there are no such
relationships). Consequently, different distances for tuples and sequences should be
used.

We also discuss the datatype Timeseries, since data of this type are more and
more abundant. Timeseries is not defined as a separate type constructor in our
framework, but it is rather defined as a special case of the sequence datatype. It
represents data that are typically measured at successive time points. The time
points can be spaced at uniform time intervals or at varying (arbitrary) time in-
tervals. Time series data have a natural temporal ordering, and this makes time
series analysis distinct from other data analysis problems. While the Timeseries
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datatype can be treated as a sequence of reals, because of its wide-spread usage,
we implemented it as a special datatype and it can be seen as a built-in structured
datatype.

We would like to point out that the component datatypes (the ‘inner’ datatypes
of a structured datatype) can be also structured. In this way, we are able to construct
even more complex structured datatypes called multi-layered structured datatypes.
For example, the elements of a tuple can be of the datatype sequence.

Since we have defined primitive datatypes and type constructors, we can now
define structured datatypes. To illustrate the structured datatype construction, we
give the following example. Consider the data from the yeast genes stress response
experiments presented by Gasch et al. (2000). They contain time series of expression
levels of yeast (Saccharomyces cerevisiae) genes under 12 diverse environmental
stresses. The gene expression levels of around 5000 genes are measured at different
time points using microarrays. Each gene can then be described with 12 time series
– one time series per environmental stress, and the functions the gene has. The
functions of a gene are chosen from the hierarchically organized Gene Ontology
(GO) catalogue (Ashburner et al., 2000) and are thus sub-hierarchies of the GO.

Let us translate the data representation of the domain outlined above using the
formalism outlined here. First, the different time series form the (multi-layered)
structured type Tuple[TimeSeries1, T imeSeries2, ..., T imeSeries12]. Second, the
gene functions are organized hierarchically and can be represented as a directed
acyclic graph (i.e., a gene function can have more than one parent function). The
Gene Ontology catalogue of functions consists of three hierarchies: biological pro-
cess, molecular function and cellular component.

Each of the hierarchies can be represented as a tuple of binary variables, which
correspond to individual gene functions (i.e., either a gene has a given function or it
does not), if we traverse the hierarchy and visit each function in a depth-first manner.
These variables have some additional properties (e.g., child-parent relationships due
to the hierarchy) that can be considered when designing distances. Consequently,
the gene function annotation part can be represented as a structured (multi-layerd)
datatype Tuple[Tuple[binary], Tuple[binary], Tuple[binary]]. Finally, each data ex-
ample (i.e., each gene) can be represented as the following multi-layered structured
datatype:

Tuple[Tuple[binary], Tuple[binary], Tuple[binary], TSeries1, TSeries2, ...TSeries12] (2.1)

Figure 2.1: Graphical representation of an example of the structured datatype (tuple of
hierarchies, timeseries).

Using the multi-layered structured datatype constructors, we have the ability to
define very complex data structures, and thus more accurately represent many real-
life problems from biology, medicine, enterprise data, and so on. More examples of
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structured datatypes, adequate distances for them and corresponding data mining
method extensions will be presented in details in the following chapters.

2.2 Distances

In this section, we first review the basic distances on primitive datatypes. Next, we
present distances for the structured datatype constructors (set, tuple and sequence).
Finally, we give an algorithm for calculating the distance between two structured
objects.

2.2.1 Distances on primitive datatypes

In this section, we present the distances for the primitive datatypes. More specifi-
cally, we first define the basic distance for the numeric datatype and then for the
nominal datatype.

Let x, y be objects of numeric datatype. The distance between objects of numeric
datatype we used in this dissertation is defined as follows.

Definition 2.1 (Distance between numerical values). The distance measure
between two numerical values x, y is defined as the absolute value of their difference

d(x, y) = |x− y| (2.2)

The distance can be standardized by dividing it with |b−a|, where (a, b) is the range
of possible values for x and y.

Next, we give the distance for the nominal datatype. Let x, y be now objects
of nominal datatype. The distance between objects of nominal datatype we used in
this dissertation is defined as follows.

Definition 2.2 (Distance between nominal values). The distance measure
between two nominal values x, y is defined as

d(x, y) = δ(x, y) =

{
0, if x = y

1, otherwise
(2.3)

2.2.2 Distances on structured datatypes

In the previous section, we defined the distances for the primitive datatypes: nu-
meric and nominal. In this section, we first define distances for the various type
constructors: tuples, sets and sequences. For the sequences type constructors, in
addition to the general definitions for the type constructor, we also define specific
distances for time series. We then discuss the construction of distances for multi-
layered datatypes.

2.2.2.1 Distances on tuples

Tuple of objects is the most widely used type constructor, hence, distances over a tu-
ple of objects are well studied. The most famous distance on tuples is the Euclidean
distance, which is a special case of the Minkowski distance. We therefore first define
the Minkowski distance, and we then discuss several well studied instantiations of
the main parameter in this distance. These instantiations yield different behaviours
of the Minkowski distance and are known under different names.
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Definition 2.3 (Minkowski distance between tuples). Let X and Y be tuples
represented as X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn], respectively. We denote
then the distances defined for each of the components of the tuples as d1, d2, . . . , dn.
The Minkowski distance measure between two tuples X and Y is defined as

d(X, Y ) =

(
n∑

i=1

di(xi, yi)
p

) 1
p

(2.4)

We next discuss the instantiations of the Minkowski distance for various values
of the parameter p. If the value of p is set to 1, then the Minkowski distance is
known as Manhattan distance, or sometimes also called city or taxi distance. It is
calculated as the sum of distances between the tuples’ components:

d(X, Y ) =
n∑

i=1

di(xi, yi) (2.5)

If the value of p is set to 2, then the Minkowski distance becomes the well-known
Euclidean distance. The Euclidean distance is calculated as follows:

d(X, Y ) =

√√√√
n∑

i=1

di(xi, yi)2 (2.6)

In the limiting case of p going towards positive infinity, we obtain the Chebyshev
distance. The Chebyshev distance is calculated as follows:

d(X, Y ) = lim
p→∞

(
n∑

i=1

di(xi, yi)
p

) 1
p

=
n

max
i=1

di(xi, yi) (2.7)

Similarly to Chebyshev distance, we can also instantiate the distance with the
value of the parameter p going towards negative infinity. The distance in that case
is calculated as follows:

d(X, Y ) = lim
p→−∞

(
n∑

i=1

di(xi, yi)
p

) 1
p

=
n

min
i=1

di(xi, yi) (2.8)

2.2.2.2 Distances on sets

Distances on sets have been extensively studied in the past (Hastie et al., 2001).
Consequently, a number of different measures have been proposed in the literature
for defining distances between sets of objects. In this dissertation, we focus on
the following distances: single linkage, complete linkage, average linkage, Hausdorff
distance, Jaccard distance, matching distance and greedy matching.

LetX and Y be sets represented asX = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}.
We then define the variuos distances between the two sets d(X, Y ) as follows. The
elements of X and Y are of type T on which a distance dT is defined.

Definition 2.4 (Single Linkage). The Single Linkage distance is defined as the
minimum of all pairwise distances (Hastie et al., 2001) between pairs of elements
from the two sets. It can be calculated using the following equation:
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d(X, Y ) = min(x,y)∈X×Y {dT (x, y)} (2.9)

Definition 2.5 (Complete Linkage). The Complete Linkage distance is defined
as the maximum distance of all pairwise distances (Hastie et al., 2001) between pairs
of elements from the two sets. It can be calculated using the following equation:

d(X, Y ) = max(x,y)∈X×Y {dT (x, y)} (2.10)

Definition 2.6 (Average Linkage). The Average Linkage distance is defined as
the sum of all pairwise distances (Hastie et al., 2001) between pairs of elements from
the two sets. It can be calculated using the following equation:

d(X, Y ) =
∑

(x,y)∈X×Y

dT (x, y) (2.11)

The average linkage can be standardized by dividing the distance with the prod-
uct |X| · |Y |, where |X| is the number of elements in X and |Y | is the number of
elements in Y .

Definition 2.7 (Hausdorff distance). The Hausdorff distance is defined as fol-
lows:

d(X, Y ) = max{ sup
x∈X

inf
y∈Y

dT (x, y), sup
y∈Y

inf
x∈X

dT (x, y)} (2.12)

When working with finite sets, as in this dissertation, supremum (sup) is equal
to the maximum (max) and infimum (inf) is equal to the minimum (min).

The meaning and the calculation of the Hausdorff distance can be explained in
plain words as follows. The two sets are close according to the Hausdorff distance
as much as each point of either of the two sets is close to a point of the other set.
In algorithmic terminology, the Hausdorff distance is calculated as follows: For each
object from the first set, find the closest object from the second. Next, store the
object that has the largest distance to its closest neighbor (i.e., the object that
has ‘the most distant nearest neighbor’). The same procedure is then repeated for
the other set. Finally, the larger distance of these two distances is the Hausdorff
distance.

In the following definition, we define the Jaccard distance which is based on the
Jaccard index (Jaccard, 1901). In literature, it is sometimes also called the Tanimoto
distance. It is defined on sets of discrete values.

Definition 2.8 (Jaccard distance).

d(X, Y ) = 1− J(X, Y ) =
|X ∪ Y | − |X ∩ Y |

|X ∪ Y | (2.13)

where the Jaccard index, also known as the Jaccard similarity coefficient, is defined
as:

J(X, Y ) =
|X ∩ Y |
|X ∪ Y | (2.14)

To be able to define the Matching distance, first we need to define the notion of
matching between two sets.
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Definition 2.9 (Matching). A relation r ⊆ X × Y between two finite sets X and
Y is a matching if and only if:

∀(a, b), (c, d) ∈ r : (a = c⇔ b = d) (2.15)

In other words, in matching each element of X is associated with at most one
element of Y and vice versa. A matching m between X and Y is maximal, if there
is no matching m′ between X and Y such that m * m′. A perfect matching is a
maximal matching between two sets of equal cardinality (Ramon & Bruynooghe,
2001).

Next, for each possible matching m(X, Y ), we define the following distance:

d(m,X, Y ) =
∑

(x,y)∈m

dT (x, y) +
||X| − |Y ||

2
·M, (2.16)

where |X| and |Y | are the cardinalities (number of elements) ofX and Y respectively,
and M is a constant, defined as M ≥ max(x,y)∈X×Y d(x, y).

Definition 2.10 (Matching distance). Finally, the Matching distance is defined
as follows:

d(X, Y ) = min(r∈m(X,Y )d(r,X, Y ). (2.17)

An algorithm for computing the matching distance is given by Ramon and
Bruynooghe (2001) and is based on flow networks and the minimum weight maxi-
mum flow problem. In this dissertation, we have implemented the Matching distance
following the instructions by Ramon and Bruynooghe (2001).

Finally, for sets, we propose a new distance which is a greedy approximation
of the Matching distance described above. We call it Greedy sum of Minimums or
Greedy Matching.

Definition 2.11 (GM distance). We define the Greedy Matching distance as
follows:

d(X, Y ) = min(x,y)∈X×Y dT (x, y) + d(X \ {x′}, Y \ {y′}) +
||X| − |Y ||

2
·M, (2.18)

where
(x′, y′) = argmin(x,y)∈X×Y dT (x, y), (2.19)

and M is a constant, defined as M ≥ max(x,y)∈X×Y d(x, y)

The computational complexity of the GM distance is O(N2 · logN), where N
is the number of elements of each set, which is lower than the computational com-
plexity of the Matching distance, calculated by solving a minimum cost problem
(Ramon & Bruynooghe, 2001). There are several known algorithms to solve this
problem with complexities O(N4

√
N), O(N4 logN), O(N3 logN) and the state of

the art algorithm called double-scaling has the lowest complexity of O(N3) (Ahuja
et al., 1992). The Greedy Matching distance can be considered as a very good and
inexpensive, easy to implement, approximation of the Matching distance.
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2.2.2.3 Distances on sequences and time series

In this section, we review several distances on sequences. We start by describing
the Levenshtein distance for sequences (Levenshtein, 1966) and then present several
distances defined for the special type of sequences – time series. Originally this dis-
tance was defined as the edit distance between strings, i.e., sequences of characters,
measuring the minimum number of operations (such as insert/remove a character
or replace a character with another) needed to transform one string into the other.

LetX and Y be sequences defined as: X = [x1, x2, . . . , xm] and Y = [y1, y2, . . . , yn],
where xi and yi are all from the same datatype T . The Levenshtein distance between
these two sequences is then calculated as follows:

Definition 2.12 (Levenshtein distance).

d(X, Y ) = levX,Y (|X|, |Y |) (2.20)

where levX,Y is defined as follows:

levx,y(i, j) =





max(i, j) if min(i, j) = 0,

min





levx,y(i− 1, j) + 1

levx,y(i, j − 1) + 1

levx,y(i− 1, j − 1) + dT (xi, yj)

otherwise.
(2.21)

The implementation of the Levenshtein distance in this dissertation uses dynamic
programming (Bellman, 1954). It can be applied to sequences of any type of objects,
whether primitive or not. For example, one could calculate the Levenstein distance
between sequences of nominal values, sequences of real values, as well as sequences
of hierarchies or sequences of sets.

In this dissertation, we also consider distances on time series. A time series is a
sequence of real numbers, representing the measurements of a real variable at given
time intervals. Time series are a specific type of sequences and various distances
have been specially developed for solving problems that involve time series. We
discuss the following distances for time series: Dynamic Time Warping (DTW)
(Sakoe & Chiba, 1978), Qualitative distance (QD) (Todorovski et al., 2002) and
Pearson distance (based on the Pearson correlation coefficient).

In addition to these, we have implemented the following distances: Spearman
distance (based on the Spearman’s rank correlation coefficient) and HSim distance,
based on the HSim coefficient (mutual information). Combinations of Spearman
and Pearson distances with HSim distance, called SpearmanHsim and PearsonHsim
are also implemented. These distances measures are presented in details and eval-
uated for gene expression data in the work by Li and Z.-Z. Wang (2009). For a
detailed explanation of these distances please refer to Chapter 8.

The Dynamic Time Warping (DTW) distance (Sakoe & Chiba, 1978) can capture
a non-linear distortion along the time axis. It accomplishes this by assigning multiple
values of one of the time series to a single value of the other. As a result, DTW
is suitable if the time series are not properly synchronized, e.g., if one is delayed,
or if the two time series are not of the same length (for details and illustration see
Chapter 8).

The DTW distance between two time series X and Y , X = [α1, α2, . . . , αI ],
Y = [β1, β2, . . . , βJ ] is based on the notion of warping path between X and Y . A
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warping path is a sequence of grid points F = f1, f2, . . . , fK on the I×J plane. The
DTW distance can be calculated as follows.

Definition 2.13 (Dynamic Time Warping distance). Let the distance between
two values αik and βjk be

d(fk) = |αik − βjk | (2.22)

then an evaluation function ∆(F ) is given by

∆(F ) = 1/(I + J)
K∑

k=1

d(fk)wk (2.23)

The weights wk are as follows

wk = (ik − ik−1) + (jk − jk−1), i0 = j0 = 0 (2.24)

The smaller the value of ∆(F ), the more similar X and Y are. In order to prevent
excessive distortion, we assume an adjustment window (|ik − jk| ≤ r). dDTW(X, Y )
is the minimum of ∆(F ). dDTW can be computed with dynamic programming in
time O(IJ).

The qualitative distance (QD) (Todorovski et al., 2002) is based on a qualitative
comparison of the shape of the time series. Consider two time series X and Y ,
X = [α1, α2, . . . , αI ], Y = [β1, β2, . . . , βJ ]. Then choose a pair of time points i and j
and observe the qualitative change of the value of X and Y at these points. There
are three possibilities, for X i.e., increase (αi > αj), no-change (αi ≈ αj), and
decrease (αi < αj), as well as three possibilities for Y . dqual is obtained by summing
the difference in qualitative change observed for X and Y for all pairs of time points.

Definition 2.14 (Qualitative distance).

QD(X, Y ) =
n−1∑

i=1

n∑

j=i+1

2 · Diff (q(Xi, Xj), q(Yi, Yj))

N · (N − 1)
(2.25)

where Diff (q1, q2) is a function that defines the difference between different qualita-
tive changes (see Table 2.1). Roughly speaking, QD counts the number of disagree-
ments in change of X and Y .

Table 2.1: The definition of Diff (q1, q2) for the Qualitative Distance (QD).

Diff (q1, q2) increase no-change decrease
increase 0 0.5 1
no-change 0.5 0 0.5
decrease 1 0.5 0

The Pearson correlation coefficient r(X, Y ) between two time series X and Y is
calculated as follows:

Definition 2.15 (Pearson correlation coefficient).

r(X, Y ) =
E[(X − E[X]) · (Y − E[Y ])]

E[(X − E[X])2] · E[(Y − E[Y ])2]
(2.26)

where E[V ] denotes the expectation (i.e., mean value) of V .
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r(X, Y ) measures the degree of linear dependence between X and Y . It has
the following intuitive meaning in terms of the shapes of X and Y : r close to 1
means that the shapes are similar. If there is a linear relation between X and Y
then the time series are identical, but might have a different scale or baseline. r
close to -1 means that X and Y have “mirrored” shapes, and r close to 0 means
that the shapes are unrelated (and consequently dissimilar). Based on this intuitive
interpretation, we can define the distance between two time series as dr(X, Y ) =√

0.5 · (1− r(X, Y )). Note that QD(X, Y ) and r(X, Y ) require that the two time
series X and Y are of equal length. DTW allows for sequences of different length
to be compared.

2.2.3 Distances for multi-layered datatypes

Let us first summarize the discussion on structured datatypes from this chapter.
We distinguish between two kinds of datatypes: primitive and structured datatypes.
Primitive datatypes have no structure and do not contain another datatype within.
Examples of primitive datatypes include nominal and real. Structured datatypes, on
the other hand, are built from primitive datatypes. To build structured datatypes,
we first need to define type constructors. Here, we consider the following type con-
structors: tuple (Tuple (T1, T2, ...Tn)), set (Set {T}), and sequence (Sequence [T ]).

Tuple is a type constructor that can contain any pre-defined number of objects,
each from an arbitrary, but fixed datatype (the objects at different positions in the
tuple may be of different datatypes). Set is a type constructor that can contain any
number (not fixed) of objects, all of the same (fixed) type. The type of objects in
the set can be either primitive or structured. Sequence is a type constructor that is
similar to the Set type constructor as it can contain an arbitrary number of objects of
the same type. However, while the elements of a set are unordered, in a sequence the
ordering of the elements is important. TimeSeries is a datatype constructed by using
the sequence constructor from elements of the underlying type real (TimeSeries =
Sequence[real]), where the ordering of the elements in the sequence is along the
time dimension.

Using the notions on primitive and structured datatypes, we can define multi-
layered datatypes, i.e., structured datatypes than can consist of other structured
datatypes. For example, we can define multi-layered objects (or datatypes) as com-
plex as Tuple [TimeSeries, Sequence [Nominal] , Set {TimeSeries}]. This object is
then a tuple consisting of three elements: TimeSeries, Sequence and Set. Further-
more, the sequence is defined as a sequence of nominal and the set is defined as a
set of TimeSeries.

Defining distances has been studied extensively and is reasonably well under-
stood for primitive datatypes (Džeroski, 2006). The basic idea of a unified approach
to distance-based learning from structured data is to derive the key components of
data mining algorithms for a complex datatype (built through using type construc-
tors) from information on the structure of that type (what constructors on what
simpler datatypes) and the key components for the simpler datatypes. For example,
a distance function d on tuples of type Tuple(T1, . . . , Tn) can be composed from dis-
tance functions di on types Ti by adding up the distances for each tuple component,

i.e., d(x, y) = d((x1, ..., xn), (y1, ..., yn)) =
n∑

i=1

di(xi, yi).

In general, a distance over a structured datatype can be defined as follows. Recall



20 Chapter 2. Distances for Structured Data

that an object of a structured datatype is obtained by applying a type constructor
(tuple, set, sequence) to some components (arguments of the tuple, elements of the
set, ...). Given a pair of such structured objects, we first decompose them into their
components. We then construct pairs of components, matching components of the
first object with components of the second object. How the components are matched
depends on the type constructor: For tuples (as illustrated above) the arguments at
the same position are paired, while for sets and sequences, the matching can be more
complicated and alternative matching procedures are possible. For the matched
component pairs, the distances on the components are calculated (recursively, if the
component objects are structured). These distances are finally aggregated into a
single value of the overall distance between the two structured objects.

The pseudo-code given in the Algorithm 2.1 illustrates the recursive calculation
of the distance. The calculateDistance function takes as input two data objects (O1

and O2), the definition of the datatype of the data objects (DT ), and the distance
definition (DI). The distance definition in the case of primitive datatypes is the
name distanceID of the distance, e.g., δ for the nominal datatype. For structured
datatypes, it contains the definitions of the distances on the underlying component
datatypes and the definition of the aggregation function (DI = (Agg,DIs)).

The distance function calculation starts by checking whether the input objects
are from a primitive datatype. If that holds, then the distance between O1 and
O2 can be calculated instantly using the appropriate formula. For example, if the
objects are from the datatype nominal, then the distance between them can be
calculated by using the δ distance. If the objects O1 and O2 are from a structured or
multi-layered datatype, then they are decomposed (using the Decompose function)
into sets/lists of components C1 and C2 using the datatype definition DT . After the
decomposition of the two objects, theMatching procedure matches the components
from the objects and produces pairs of objects (c1, c2) of the same type dt, associated
with a distance di on dt. In the next step, the calculateDistance function is called
recursively for each of the component pairs (c1, c2), given also as arguments the
datatype dt and the associated distance di. Finally, the distances of the underlying
components of the data objects are aggregated bottom-up by using the aggregation
functions specified by Agg.

The above definition covers all structured data types, i.e., both single-layer and
multi-layer structured datatypes. For sets, the three commonly used distances
in clustering (single, complete and average linkage) easily fit the given template.
Matching returns the Cartesian product of the two sets and the aggregate function
is minimum, maximum and average, respectively.

To illustrate the work of the distance calculation algorithm on a multi-layered
structured datatype, we present an example concerning the definition and calculation
of the distance between two multi-dimensional time series. First, we define the
structured datatype as Tuple (T1, T2, ...Tn), where T1, T2, ...Tn are time series. Then,
we define the distances that will be used for the components. For example, for the
Tuple we can use the aggregation function employed within the Euclidean distance
(SQRT (SumSQDist)), and for the component TimeSeries we can use Euclidean
and QD distance measures. We would like to note that our framework allows the
use of a different distance for each component time series in the tuple. We will,
however, use the same distance for all of the time series in the tuple.

Distances on structured objects define both the matching of the component ob-
jects and the aggregation function. For example, the matching function for the
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Algorithm 2.1: The generic recursive algorithm for calculating the distance between
two structured objects

Data: O1, O2 - data objects; DT - datatype definition; DI - distance definition
Result: d - distance value

1 if DT is a primitive datatype then
2 if DT = realand DI = abs then
3 return |O1 −O2|;
4 end
5 if DT = nominaland DI = δ then
6 return δ(O1, O2);
7 end
8 end
9 DTs ← Decompose(DT ), (Agg,DIs)← DI;

10 C1 ← Decompose(O1, DT );
11 C2 ← Decompose(O2, DT );
12 M ← Matching(C1, C2, DTs, DIs),

M = {(c1, c2, dt, di)|c1 ∈ C1, c2 ∈ C2, dt ∈ DTs, di ∈ DIs};
13 for each (c1, c2, dt, di) ∈M do
14 dk ← calculateDistance(c1, c2, dt, di);
15 end
16 d← Agg(d1, d2, ..., d|M |);
17 return d;

Euclidean distance on time series defines that the respective elements of the equal-
length time series are matched. The aggregation function for the Euclidean distance
is defined as the squared root of the sum of squared distances between the matched
pairs of elements. For the QD, the matching function and the aggregation function
are explained in detail in Section 2.2.2.3.

Using the pseudo-code from Algorithm 2.1, we illustrate the calculation of dis-
tances over tuples of three time series (i.e., three-dimensional time series). We illus-
trate this on two examples. We first outline the calculation of the Euclidean distance
for the multi-dimensional time series datatype. We then illustrate the calculation of
the distance between multi-dimensional time series that uses the qualitative distance
for the individual time series.

For both cases, the underlying datatype is DT =
Tuple(TimeSeries, T imeSeries, T imeSeries) and the distance between two
objects (three dimensional tuple of time series) is calculated by calling
d = calculateDistance(O1, O2, DT,DI). For the first case, the distance is
defined as follows: DI = (SQRT (SumSQDist), [EUC,EUC,EUC]). For the sec-
ond case, the distance is defined as DI = (SQRT (SumSQDist), [QD,QD,QD]).
A step-by-step explanation of the distance calculation is given bellow.

We consider two specific data examples with the datatype definition as given
above:

O1 = ([73, 66, 54, 41, 54], [225, 231, 193, 159, 147], [65, 122, 120, 185, 223]), and
O2 = ([76, 97, 81, 73, 66], [165, 208, 143, 158, 162], [53, 102, 87, 117, 181])

In the first step, the algorithm will decompose the structured tuples into their
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underlying components: time series. The algorithm will then match the correspond-
ing time series from the two tuples: the first time series from O1 to the first time
series from O2, etc. Next, it continues by calculating the distance between the
corresponding time series as follows:

d1 = QD([73, 66, 54, 41, 54], [76, 97, 81, 73, 66]) = 0.35,

d2 = QD([225, 231, 193, 159, 147], [65, 122, 120, 185, 223]) = 0.85,

d3 = QD([65, 122, 120, 185, 223], [53, 102, 87, 117, 181]) = 0.05.

In the final step, the algorithm reads the aggregation function from the distance
definition (DI): in this case, it is the sqare root of the sum of the squared distances
(SQRT (SumSQDist)). The aggregation function is then applied to the distances
on the underlying time series as follows:

d =
√
d21 + d22 + d23 =

√
0.352 + 0.852 + 0.052 = 0.9206

At the end, the calculateDistance will return the value 0.9206 as the distance be-
tween the two data examples O1 and O2 given above.

This example of distance calculation emphasizes the flexibility and modularity
of our framework. More specifically, it shows that the user can design the distance
function based on the problem at hand. In other words, the user can decide to use
different distances for the different parts/components of the data objects. Further-
more, the user can add specific distances and then use them to design more complex
distance definitions.

To summarize, the calculation of the distance between two structured data ob-
jects consists of three major parts: matching function, aggregation function and
distances on primitive and structured component datatypes. In the most general
case, the matching function can be a simple Cartesian product between the set of
components from the first data object and the set of the components from the sec-
ond data object. However, depending on the specific datatype, one can define an
appropriate matching function. For example, if the datatype considered is a tuple
then the matching pairs the elements at the same position within the tuples: the i-th
element of the first tuple is paired with the i-th element of the second tuple. Next,
there are various possibilities for defining the aggregate function. These variants
include simple functions such as min, max, avg, sum, as well as complex aggre-
gation function such as constructing a graph or network from the distance matrix
between the components and then calculating the network flow. Finally, the recur-
sive definition of the distance, as we define it here, depends on the calculation of
the distances (and type of distance applied) between the components of the data
objects. For example, consider the data object presented in Fig. 2.1. It consists of
tuples of binary variables and time series. The distance functions on these different
structured datatypes would return values on different scales, thus performing simple
average would prefer a given part of the data object over the other parts. To alle-
viate this issue, we propose to use standardization of the values when calculating
the distances on component datatypes. This sets all of the values to the same range
and thus makes the aggregation more meaningful. All in all, the calculation of the
distance as proposed in this dissertation is very flexible, modular and enables the
users to design and apply distances tailored for the specific domain.
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Chapter 3

Instance-Based Learning for
Structured Data

In this chapter, we discuss the use of the distance functions from the previous chap-
ter in distance-based algorithms for structured data. We begin by outlining the
general concepts behind distance-based algorithms in data mining. We then present
the basic distance-based predictive algorithms: the nearest and k-nearest neighbors
algorithms. Next, we give the basic distance-based clustering algorithms: hierar-
chical clustering and k-means/medoids clustering. Furthermore, we discuss some
examples of applications of the distance-based predictive and clustering methods
for structured data. Finally, we outline the main concepts and principles used in
the implementation of these methods within a unifying framework.

3.1 General distance-based learning algorithms for structured
data

Mining various structured types of data is one of the most challenging tasks in data
mining (Dietterich et al., 2008; Kocev, 2011; Kocev et al., 2013). Moreover, solving
the task in a unified way is a significant step towards the creation of a general data
mining framework (Džeroski, 2006). In the previous two chapters, we described the
representation of various structured datatypes and we defined various distances for
structured datatypes. Having defined that, we next explain the unifying environment
for distance-based learning on structured data.

The main component of distance-based algorithms, as suggested by their naming,
are the distances. Distance-based algorithms are typically divided into two groups
of methods: supervised and unsupervised (Langley, 1996; Hastie et al., 2001). First,
we focus on the former group of methods.

Supervised distance-based algorithms in general can be defined as follows: Given
is a data-set of examples D = {(xi, yi)|1 ≤ i ≤ N}, where xi are the inputs of
datatype TI , and the yi are the outputs of the datatype TO. TI and TO can be
primitive or structured datatypes. For a given unseen example u, we calculate the
distances d(u, xi) from the unseen example u to all of the known examples xi.

Now, the output y for u can be calculated as a function of the distances be-
tween u and all the known examples xi and their output values yi: output(u) =
F (d(u, x1), d(u, x2), . . . , d(u, xn), y1, y2, . . . , yn), where F is defined by the learning
algorithm. For the nearest neighbor (NN) algorithm, the smallest d(u, xi) is found
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and the corresponding yi is the output. Other algorithms, like the kNN algorithm,
take more than one xi into account, as well as the distances d(u, xi) when calculating
the value of y, as described in more detail below.

Given that we defined different distances for different types of data in the previous
chapter, we have thus defined all of the inputs needed for the learning algorithm.
We address the handling of the specific distances and structured datatypes in the
next sections.

Next, we focus on the unsupervised distance-based algorithms. A clustering is
a set of clusters, while each cluster is a set of elements/units. In the most general
case, clusters are not necessarily pairwise disjoint (i.e., non-overlapping): However,
it is a common practice to assume that they are. In other words, given a dataset,
i.e., a set of elements/examples/units, each partitioning of this dataset is called a
clustering. In clustering, the goal is to minimize some criterion function that leads
to more compact clusters, i.e., puts the objects that are more similar according
to the criterion function in the same cluster. Hence, a clustering algorithm is an
algorithm that optimizes/minimizes the value of such a criterion function. The
criterion function, in a very simple way, can be defined as some aggregate (e.g.,
sum, max, or weighted sum) of the per-cluster errors. The per-cluster error is very
often some measure of cluster impurity (e.g., average of pairwise distances, diameter
of the cluster, etc), and it is calculated from the distances between the elements
of the cluster, or between the elements and the representative of the cluster. The
representative of a cluster can be either an element which is closest to the center, or
the center of gravity of the cluster. From this, it follows that once we have distances
on structured data defined, the distance-based algorithms can be easily adapted.

Finally, we enumerate the distances implemented within the proposed framework.

• Tuples: Minkowski distance (includes Euclidean, Manahattan) and Chebyshev
distance

• Sets: Single linkage, Complete linkage, Average linkage, Hausdorff distance,
Jaccard distance, Matching distance, and greedy mathcing (GM) distance

• Sequences: Levenshtein distance (edit distance)

• Time series: Dynamic time warping distance, Qualitative distance, Pearson
distance, Spearman distance, SpearmanHsim distance, HSim distance and
PearsonHsim distance

3.2 Nearest neighbor prediction with NN and k-NN

The nearest neighbor algorithm (Altman, 1992) is one of the simplest, best known,
and most widely used machine learning algorithms. The nearest neighbor algorithm
is also known as memory-based reasoning algorithm, or instance-based learning al-
gorithm, or lazy learning algorithm. All of these names come from the inner mech-
anisms of the algorithm. When using the nearest neighbor algorithm, no model is
built, but the entire training set is stored in the memory. Both for classification and
regression, to predict the correct value of the target, the distances are computed
between the example and each element of the training set. The target of the new
example is then set to be equal to the target value of the closest example (i.e., the
most similar example) from the training set.
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More generally, the k-nearest neighbors can be computed, and then the target
value of the new, unseen, query example is calculated from the target values of
the neighbors by averaging in case of regression, or by majority voting in the case
of classification. Moreover, instead of simple majority voting for classification and
averaging for regression, weighed voting/averaging can be used. The votes of the
k-nearest neighbors are typically weighted inversely proportionally to their distances
to the query/unseen example.

In this section, we discuss the extension of the nearest neighbor and the k-nearest
neighbor algorithms for handling structured data. The k-nearest neighbor (k-NN)
algorithm is outlined in Algorithm 3.1. The nearest neighbor (NN) algorithm is
obtained as a special case when k = 1. The dataset can be represented as a set
of instances, where each instance has two structured objects: input and output.
We denote the datatype of the input object as TI and the datatype of the output
object as TO. Having defined distances on the input space (type TI , discussed in
the previous chapter), the algorithm is able to calculate the distance between two
samples from the dataset. Given an unseen sample, it will thus be able to find its
k-nearest neighbors in the training set.

The next step is to make a prediction for the value of the target variable for
the unseen example. To this end, the prototype of the output values of the k
nearest neighbors is calculated. In case we have a primitive datatype as output, for
classification majority voting can be used, and for regression, averaging can be used,
as discussed earlier in this section. Otherwise, when the output is of a structured
datatype, majority voting can be used as well, by representing each different value
of the output datatype as a separate class. However, in many cases this would be
impossible since each of the objects from the output space can be different from the
other output objects. Consequently, this will lead to very unstable and incorrect
predictions, since it is trying to match the complete output structure and all of
the objects will have a vote of 1, therefore, tie-breaking will need to be used very
often. To alleviate this problem, in the case of structured data, we calculate the
prototype from the k nearest neighbors as follows. We consider the target values of
the k nearest neighbors as a set of k data objects of type TO. The prototype can
be thus defined as an element from the set with a minimal sum of distances to the
other elements. Note that the majority voting in classification is a special case of
calculating the prototype of the set as described here, i.e., the prototype of the set
of elements where the distance is the δ or 0/1 distance (defined by Equation 2.3).

The prototype is equal to the average, or the center of the set of the k nearest
neighbor targets in the special case of using the k-nearest neighbor algorithm for
multi-target regression problems. We can define the predicted value of an unseen
example as the average of the neighbors, in the case, where arithmetical and mathe-
matical operations of sum and multiplying by scalar are defined for the type TO (i.e.,
TO is a vector space). Given these definitions, if the TO is a primitive datatype – a
real number, then this corresponds to the special case of regression. Furthermore, in
both scenarios, i.e., when using a prototype or using a centroid of the set (average of
the elements), we can apply the weighing schemes discussed earlier in this section.

3.3 Distance-based clustering

Clustering is concerned with grouping objects into groups of similar objects (Kauf-
man & Rousseeuw, 1990). It has strong roots in the statistical community, but is
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Algorithm 3.1: Pseudo-code for the k-NN algorithm

Data: D - data set, e - sample (instance), DT - datatype and distance definition,
Agg - aggregation function definition, k - number of nearest neighbors

Result: knn - (array/list of) the k nearest neighbors of E from D

1 for each instance I ∈ D do
2 di ← calculateDistance(I, e,DT,Agg);
3 knn← insertIntoSorted(knn, k, (I, di));
4 end
5 target← prototype(knn);
6 return target;

also commonly encountered in data mining. It is used in many fields including image
analysis, information retrieval, and bioinformatics. The two most widely used types
of clustering are distance-based and density-based clustering. In this dissertation,
we focus only on the former type of clustering – distance-based clustering.

In distance-based clustering, the algorithms use the distances between the ob-
jects that have to be clustered and optimize usually two criteria: they minimize
the distance between objects within a cluster (also called intra-cluster distance or
intra-cluster similarity), and, maximize the distance between objects from different
clusters (also called inter-cluster distance or inter-cluster similarity). In other words,
the goal is to minimize the intra-cluster distance and maximize the inter-cluster dis-
tance. Hence, the most important component is the distance measure between two
objects. Using the definition of a distance between arbitrarily structured objects
from the previous chapter (Algorithm 2.1), we can adapt any distance-based clus-
tering algorithm for the task of mining/clustering structured data. In the following
sections, we will show the adaptation for the task of mining structured data for the
two most widely used distance-based clustering algorithms: hierarchical agglomera-
tive clustering and k-means/medoids clustering.

3.3.1 Hierarchical agglomerative clustering

Hierarchical agglomerative clustering (HAC) is based on joining together the most
similar objects or, in a more general case, sets of objects (clusters). Given a dataset
with N objects, it starts by constructing the distance matrix (N × N) between
the objects. It then assigns each object to its own cluster. Next, it merges the
two closest clusters into one cluster. The process continues until some constraint
is reached (like the desired number of clusters, or the maximum distances at which
two clusters are allowed to be merged) or it continues until all of the clusters are
merged, and then the user explores the hierarchy of clusters and manually selects
the appropriate number of clusters. Algorithm 3.2 presents the pseudo-code for the
HAC algorithm.

Recall that the algorithm searches for the two closest clusters. When clusters
are sets with one object (as it is at the start of the algorithm), it is very clear
that the distance between two clusters is actually the distance between the objects
comprising the respective clusters. However, once the clusters become sets of several
objects, there is a possibility of defining various distances between two clusters:
single linkage, complete linkage and average linkage. These three definitions of
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distances between clusters use the pair-wise distances between objects in the two
clusters (the first object of the pair is an object from the first cluster, while the
second object in the pair is an object from the second cluster). Single linkage
considers the minimal pair-wise distance as the distance between two clusters, while
complete linkage considers the maximal pair-wise distance as the distance between
two clusters. Average linkage (also known as Unweighted Pair Group Method with
Arithmetic Mean) considers the average pair-wise distance as the distance between
two clusters. These definitions for distances between clusters are well-known and
widely used in hierarchical clustering (Székely & Rizzo, 2005).

Algorithm 3.2: Pseudo-code for the HAC algorithm

Data: D - data set, DT - datatype and distance definition, Agg - aggregation
function definition, k - number of clusters

Result: clusters - (array/list of) the clusters

1 for each instance Ii ∈ D do
2 assign Ii to the cluster clusters[i]
3 end
4 for each cluster ci ∈ clusters do
5 for each cluster cj ∈ clusters and cj 6= ci do
6 dj ←calculateDistance(ci, cj , DT,Agg);
7 if dj < mind then
8 mind← dj ;
9 bestMerge← createBestMerge(ci, cj , dj);

10 end
11 end
12 push(bestMerges, bestMerge);
13 end
14 numberOfClusters← size(D);
15 while numberOfClusters > k do
16 (c1, c2)← pop(bestMerges);
17 c← mergeClusters(c1, c2);
18 remove(clusters, c1);
19 remove(clusters, c2);
20 add(clusters, c);
21 updateBestMerges(bestMerges, c, c1, c2, DT,Agg);
22 numberOfClusters = numberOfClusters− 1;
23 end
24 return clusters;

Hierarchical clustering relies only on the distances between the objects and the
distances between sets of such objects. Therefore, it is quite easy to extend hier-
archical clustering for structured data: we need to calculate the distance matrix
between the structured objects. Moreover, in the proposed framework for distance-
based learning, we consider the three types of linkages between the clusters as a
special case of distances between sets of objects. The distance between the clusters
can be any of the distances that are defined for set of objects (see Section 2.2.2.2).
Consequently, we define and implement a generic hierarchical clustering algorithm
that needs to be parametrized with both the distance between the objects and the
distance between the clusters.
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3.3.2 k-means and k-medoids clustering

The k-means algorithm (Steinhaus, 1956; MacQueen, 1967) is one of the most widely
used unsupervised clustering algorithms in machine learning. It is also known as a
centroid-based clustering algorithm. The algorithm finds centers of a user-defined
number of clusters. Each cluster center (‘mean’) is initialized to one random input
example. The algorithm iteratively finds the nearest cluster center for each example,
assigns each example to the nearest cluster and then computes the new center for
each cluster as the average of all of the objects belonging to the cluster. The iterative
process continues until no object changes its cluster assignment. Algorithm 3.3
outlines the pseudo-code for k-means clustering.

Algorithm 3.3: Pseudo-code for the k-means/medoids algorithm

Data: D - data set, DT - datatype and distance definition, Agg - aggregation
functions definition, k - number of clusters

Result: clusters - (array/list of) the clusters

1 centroids← getRandomCentroids(k);
2 clusters← initializeEmptyClusters(k);
3 converged← false;
4 while not converged do
5 oldcentroids← centroids;
6 for each instance Ii ∈ D do
7 min← +∞;
8 for each centroid cj ∈ centroids do
9 d← calculateDistance(Ii, cj , DT,Agg);

10 if d < min then
11 min← d;
12 min_index← j;
13 end
14 end
15 assign Ii to clustermin_index;
16 end
17 for each clusteri ∈ clusters do
18 centroidsi ← calculateCentroid(clusteri, DT,Agg);
19 end
20 if oldcentroids==centroids then
21 converged ← true;
22 end
23 end
24 return clusters;

To be able to extend k-means clustering for structured objects, it is clear that
we need two things: a definition of a distance between the center and each of the
objects, and a cluster center calculation function for the case of structured objects.
The first part was discussed in the previous chapter and can be readily applied
here, so we focus on the second part. When we use the Euclidean distance, the
centroid is defined as the average of the vectors that form the cluster. However,
in the task of mining/clustering structured data, other distances are typically used,
hence, calculating the average is not always possible. To overcome this issue, instead
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of the k-means algorithm, we propose to use the k-medoids algorithm for clustering
arbitrarly structured data.

The k-medoids algorithm was introduced by Kaufman and Rousseeuw (1987)
for clustering when using the L1 norm instead of L2. It is strongly related to
the k-means algorithm, and its pseudo-code is the same as given in Algorithm 3.3.
Just as k-means, it calculates the centroid/prototype/representative of the cluster,
and then attempts to minimize the distance between the points assigned to the
cluster and the centroid of the cluster. However, k-medoids clustering differs from
k-means clustering in the calculation of the center of the cluster. While in k-means
clustering, the center is the average of all of the vectors, in k-medoids the center
of the cluster is an element from the cluster that minimizes the sum of distances
between that element and all of the other elements of the cluster. Minimizing the
sum of pairwise distances (dissimilarities) makes this algorithm usable for clustering
arbitrarily structured data, as long as a distance/dissimilarity function is defined.

3.3.3 Quality of clusters and clustering

When using clustering analysis, besides the expert evaluation of the clusters, it is
important to have an internal evaluation of the quality of the obtained clusters. As
we discuss at the beginning of this section, the two most important measures for
evaluation are the intra-cluster variance, denoted with V ar(C), and the inter-cluster
variance.

First, we discuss the evaluation of the quality of a single cluster. The variance of a
cluster C can be defined based on a given distance d as V ar(C) = 1

|C|
∑

x∈C d(X,P )2,
with P the prototype of C, and d the distance defined on the elements of C. This
requires a definition of the prototype of the cluster. As discussed earlier, the pro-
totype of the cluster C can be defined as an element from the set with a minimal
sum of distances to the other elements: P = argminQ

∑
X∈C d(X,Q)2. In this case

the prototype can be computed with |C|2 distance computations by trying for Q all
elements in the cluster.

An alternative way to define intra-cluster variance is based on the sum of the
squared pairwise distances (SSPD) between the cluster elements, i.e., V ar(C) =
1
|C|2
∑

X∈C
∑

Y ∈C d(X, Y )2. The advantage of this approach is that no prototype is
required. It also requires |C|2 distance computations.

Next, we define evaluation measure for estimating the quality of a clustering. The
intra-cluster variation (ICV ) can be calculated as a weighted sum of intra-cluster
variances for each cluster, according to the following formula:

ICV (C) =
∑

Ci∈C

|Ci|
|C| V ar(Ci), (3.1)

where C is the set of clusters (clustering), |C| is the dataset size, and V ar(Ci) is the
variance of cluster Ci.

The evaluation measures defined above measures only the minimization of the
intra-cluster variance. To also consider the inter-cluster variance, the Dunn index
(Dunn, 1973) can be used. It is defined with the following formula:

D = min
1≤i≤n

{
min

1≤j≤n,i 6=j

{
d(Ci, Cj)

max1≤k≤n V ar(Ck)

}}
. (3.2)
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3.4 Implementation

In this section, we briefly describe the implementation of the framework for distance-
based learning for structured data. We outline the algorithms and the data repre-
sentation and distances described earlier. First of all, the framework is implemented
in the Java programming language. The architecture of the framework follows the
principles of object oriented programming. It uses encapsulation in order to create
self-contained modules, and to increase the modularity of the framework, as well
as its re-usability value. In addition, inheritance and polymorphism are two prin-
ciples that are heavily used within the framework. We focused on implementing a
framework that will be as generic as possible, and therefore easily extensible. The
framework is implemented in several packages which are described in more detail in
the following subsections.

3.4.1 Datatypes: the types package

The types package is one of the basic building blocks of the framework. It contains
classes that define types and type constructors that are supported within the frame-
work. The main class in this package is the Type class. Type is an abstract class
that defines the basic properties of a datatype. All of the classes for the specific
datatypes need to extend this class.

In addition, we define the AMType subclass, representing datatypes on which
arithmetical and mathematical operations, such as sum, and multiplying with a real
number, are defined. This class is an abstract class, and every datatype that exhibits
these properties (for example, vectors/tuples of reals), should extend this class and
implement the methods for addition and multiplication. Having defined the roots of
the hierarchy, other classes in this package implement all of the datatypes and type
constructors discussed and explained in Chapter 2.

Primitive datatypes are implemented through the classes Real and Nominal,
while the structured type constructors are implemented with the classes Set, Tuple,
Sequence, and TimeSeries. Furthermore, some special datatypes are placed within
this package, including Instance, InstanceItem, Dataset, Cluster, all of them be-
ing classes that facilitate working with the structured data. We present the package
with its classes and their hierarchy in Figure 3.1.

Figure 3.1: The types package and the hierarchical organization of classes / datatypes
defined within the framework. The white letter C in a green circle denotes a class, while
the superscript A denotes an abstract class.
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3.4.2 Distances: the distances package

Within the framework, each distance is implemented in its own class, and all of the
classes are stored in the distances package. They all extend one basic abstract class,
and they need to implement the method calculateDistance. calculateDistance is a
generic method that accepts two generic objects. Each distance will calculate the
distance between the objects using its specific distance definition and formula.

If the objects are from a structured datatype then the method will calculate the
distance recursively as outlined in Algorithm 2.1. The information about the specific
datatypes and the distance information are provided by the DistanceManager class
and the DistanceStructure class. The DistanceManager keeps a record of all the
distances that are available within the framework, while the DistanceStructure
class analyzes the structure of the objects, and according to the user preferences,
constructs a structure of distances. Hence, these apply the mapping and matching
between the various datatypes and distances.

3.4.3 Algorithms: the dmalgo package

In Sections 3.2 and 3.3, we discussed the algorithms for learning from structured
data and their implementation. The package dmalgo contains four classes divided
into two packages: dmalgo.classify and dmalgo.clust. The k-NN classifier is im-
plemented with the class kNNClassifier (in the dmalgo.classify package), while the
hierarchical agglomerative clustering algorithm, k-means and k-medoids algorithms
are implemented with the HierarchicalClustering, KMeansClustering and KMedoid-
sClustering classes (in the dmalgo.clust package), respectively.

3.4.4 Utilities packages

The utility functions that are necessary to enable smoother execution of the code
are coded in two packages: io and util. The io package contains classes responsible
for handling the input (e.g., reading datasets, reading algorithm-specific settings
etc) and the output of the framework (e.g., results from the application of the algo-
rithms, clusters resulting from k-means etc.). The util package consists of various
classes that handle various mathematical operations, such as working with graphs
(constructing and calculating flows) and calculating evaluation measures (e.g., pre-
cision and recall curves, confusion matrices etc). The launch package contains useful
classes for designing and organizing experiments, with the most important class be-
ing Experimenter, which enables the user to easily set up and experiment using
various datatype representation or various combinations of distances for a given
dataset/problem.

3.4.5 Getting started

In this section, we present a real-life example of usage of the framework for learning
from structured data. Let us consider a data set of time series of gene responses
to different stress conditions from micro array data (i.e., the yeast dataset from
Section 4.2). A data instance can be represented as a tuple of time series and
binary datatypes with hierarchical constraints (the datatype specification is given
in Figure 2.1).
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After defining the data representation, we can define the distances specific for
the datatype and the domain considered in this example. To this end, we provide a
distance for each part of the structured object in the distance register as shown in
Table 3.1. It is possible for the same datatype at various positions in the structure
to use different distances. This cannot be handled from the distance register, instead
it requires several lines of Java code. For example, for the first time series in the
tuple we can use the DTW, for the second time series we can use the QD and for the
third we can use the Euclidean distance. The framework creates a list of all possible
combinations of distances that can be generated for a given structured datatype and
using the distances defined in the distance register. The user can then select the
desired distance combination to be used, or alternatively to use all of the distance
combinations, iterating one by one.

Table 3.1: Part of the distance register file.

#primitive data types
IQReal, RealsDistanceMeasure
IQNominal, NominalDistanceMeasure

#tuples
IQTuple, ManhattanDistance
IQTuple, EuclideanDistance
IQTuple, ChebyshevDistance
IQTuple, MinkowskiDistanceMeasure

#sets
IQSet, GreedySumOfMinsDistance
#IQSet, MatchingDistance
IQSet, MaximalSetDissimilarity
IQSet, MinimalSetDissimilarity
IQSet, AverageSetDissimilarty
#IQSet, TanimotoDistanceMeasure
IQSet, HausdorffDistance

#time series
TimeSeries, DTWDistanceMeasure
#TimeSeries, QDMDistanceMeasure

#sequences
#IQSequence, EditDistance

We illustrate a simple user scenario of the framework with the code snippet
given in Table 3.2. This scenario concerns the selection of the best distance struc-
ture and/or optimizing the k-parameter in the k-NN algorithm. In the first line of
the code snippet, we read the dataset given in the file dataFile, or open a stream
for reading a dataset. Next, we initialize the distance register from the input file
drFileName. This file enumerates the distances that should be explored for the
datatypes present in the given dataset. After the distance register is initialized, we
use it to generate possible distance structures (combinations of distances) for the con-
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Table 3.2: A code snippet from the instance-based learning framework for two user sce-
narios concerning the selection of the best distance structure and/or optimizing the k-
parameter in the k-NN algorithm for a given dataset.

dataset = mdr.readDataset(dataFile);
dr = new DistanceRegister(drFileName);
distanceStructure = dr.generateDistanceStructure(dataset.getStructure());
e = new Experimenter(dataset);
e.doExperimentBestDistance(distanceStructure);
e.doExperimentOptimizeK(distanceStructure);
e.showResults();

sidered datatype. Next, we initialize the experimenter environment for distance/k
selection. It uses internal cross-validation to obtain the optimal parameters. The
execution of these two scenarios is made with the last two lines of simple commands
in the code snippet. Finally, with the last command, the results of the scenarios are
displayed.
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Chapter 4

Evaluation of Instance-Based
Learning from Structured Data

In this chapter, we present the experimental evaluation of the instance-based class
of distance-based methods for mining structured data, presented in the previous
chapter. We first evaluate our nearest-neighbor approach on benchmark datasets
of classification of structured data. We then consider practical applications of two
types: predictive modelling applications and clustering applications. For each of
these groups of applications, we briefly describe the underlying datasets and we give
the results of the proposed methods’ application.

4.1 Evaluation on benchmark classification datasets

In this section, we consider several benchmark datasets for the task of classification
of structured data, which are composed by using the set type constructor. To these,
we apply the nearest neighbor (and kNN) approach described in Chapter 2. In the
first section, we compare the performance of our approach to the closest related work
by Woznica (2008). In the second, we compare the performance of the matching
distance for sets, found to perform very well, to a greedy approximation of this
distance that we proposed in the previous chapter.

4.1.1 Comparing instance-based approaches to classification of struc-
tured data

The work of Woznica (2008) is the closest in spirit to our nearest neighbor (and
kNN) approach for predictive modeling of structured data. It uses a relational rep-
resentation of the structured data, which for a single layer of structure is equivalent
to a set-based representation. It implements many of the distances on sets discussed
in Chapter 2.

The approach of Woznica has been evaluated on a number of benchmark datasets.
The basic strategy taken is to first select and then use an appropriate distance (on
sets of tuples) from the arsenal at hand. The selection of the distance (as well as the
number of neighbors k within the kNN algorithm is done by internal cross-validation.

We take exactly the same approach as Woznica within our framework and com-
pare the performance of the two approaches. We evaluate them on four datasets
used by Woznica: All of these concern the classification of chemical compounds.
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Table 4.1: Comparison of our approach to other approaches in terms of accuracy using
10-fold cross-validation

Dataset Our approach Woznica’s approach
Musk 1 84.78% 80.43%
Musk 2 73.53% 70.59%
Diterpenes 89.79% 97.41%
Mutagenesis188 85.64% 87.23%
Mutagenesis42 88.10% N/A

Two datasets concern musk compounds (Musk 1 and Musk 2 datasets), one concerns
diterpenes and one concern potentially mutagenic compounds (Mutagenesis188).

The results in terms of estimated classification accuracy on unseen cases are
given in Table 4.1. The accuracy was estimated by 10-fold cross-validation for both
approaches. However, we could not use the same folds for both approaches (since
we take the results of Woznica from his PhD thesis).

We can notice that our approach performs better on two datasets and worse
on the other two datasets. The largest difference in performance is observed for
the diterpene dataset, where Woznica’s approach outperforms ours by 7 percentage
points.

Finally, let us outline the major difference between the two approaches. The
approach of Woznica is limited to classification of structured data, which it consid-
ers only on the input side. However, our approach allows for structured data on
the output side as well. It can be used for predicting structured outputs (such as
hierarchies), as illustrated in the next section with the task(s) of predicting gene
functions.

4.1.2 Comparing complete and greedy matching for set distances

The matching distance for sets, proposed by Ramon and Bruynooghe (2001) has
been shown to perform very well in the context of instance-based learning from
structured data. Its calculation is based on solving the minimum-weight maximum-
flow problem in flow networks. This unfortunately means that it is computationally
expensive.

In Chapter 2, we proposed a greedy approximation of the matching distance,
called greedy matching (GM) distance. This approximation has a much lower com-
putational complexity that state-of-the-art algorithms for the complete matching
distance. Computational complexity of both distances is discussed in more details
in Chapter 2. In this section, we compare the performance of the two distances used
within our approach in terms of their predictive performance.

The two distances are used on sets of tuples. We use the Euclidean distance be-
tween tuples. The selection of the number of neighbors k within the kNN algorithm
is done by internal cross-validation.

We compare the performance of the two distances on five datasets, including
the four datasets used by Woznica. Again, all of these concern the classification of
chemical compounds. Two datasets concern musk compounds (Musk 1 and Musk
2 datasets), one concerns diterpenes and two concern potentially mutagenic com-
pounds (Mutagenesis188 and Mutagenesis42).

The results in terms of estimated classification accuracy on unseen cases are
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Table 4.2: Comparison of GM and Matching distances for sets using 10-fold cross-
validation

Dataset GM Matching
Musk 1 86.96% 88.04%
Musk 2 67.65% 67.65%
Diterpenes 88.29% 89.16%
Mutagenesis188 74.57% 84.57%
Mutagenesis42 76.19% 76.19%

given in Table 4.2. The accuracy was estimated by 10-fold cross-validation for both
approaches. This time, we could use the same folds for both approaches.

We can see that the matching distance performs slightly better than its greedy
approximation for all datasets. However, the differences in performance are very
small. On the other hand, calculating the greedy approximation is much faster,
strongly motivating its use. For example, on the Mutagenesis188 dataset, the algo-
rithm takes 3616 seconds when using Matching distance, and it takes 520 seconds
when using GM distance to classify all of the examples with cross validation. In
this case GM is about 7 times faster than Matching distance, and as discussed in
Chapter 2 this difference will be even more notable for larger datasets.

4.2 Predictive modelling applications

Let us first focus on the predictive modelling applications. In predictive modelling,
based on the input and output space we differentiate datasets (or tasks) that have
structured input, and datasets that have structured output. When the datatype on
the learning side of the data is structured, then we are dealing with a structured
input dataset. Such datasets can be analyzed using the proposed framework, given
that the distance for the structured datatype is either predefined, or distances on
the type constructors are defined and combined as described earlier. Moreover, the
framework allows for the users to define domain specific distances. In the following,
we present four datasets that contain structured datatypes. We first present two
structured input datasets (musk and diterpenes) and the results of the analysis. We
then present two datasets that have both structured input and structured output
Yeast dataset and E. coli dataset. In the latter two datasets, our goal is to use
the gene expression levels under some stress conditions as a predictor of the gene
functions.

4.2.1 Musk dataset

The musk dataset (Dietterich et al., 1993) is a well studied dataset that concerns the
classification of molecules as musks or non-musks. Each molecule is described with
its low-energy conformations. The various molecules have different conformations
and different number of conformations, i.e., there is a one-to-many relationship
between the molecules and the feature vectors describing the conformations. Each
feature vector consists of 166 integer values. A molecule is classified as a musk if
at least one of its conformations is a musk. This dataset is well studied in the data
mining area of multiple instance learning (Dietterich et al., 1997; Amores, 2013).
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The dataset has two versions. In this work, we used Version 2, which contains
102 molecules where 39 are labeled as musks and 63 are labeled as non-musks. The
total number of conformations is 6598 (on average 64.69 confirmations per molecule
and the median is 12).

The goal is then to predict whether a given molecule is a musk or not, i.e., the
class of the dataset (which is a binary attribute). The one-to-many relationship
between a molecule and its conformations (vectors) makes the molecules suitable to
be represented as a set of tuples. Hence, we can describe the data instances, i.e.,
structured datatypes, for the musk dataset using the notation from the framework
proposed here, as follows:

Molecule = Tuple[Set[Tuple[Integer1, Integer2, ..., Integer166]], Binary] (4.1)

We performed experiments using the k-NN algorithm for structured data pro-
posed in this thesis. Within the experiments, we have tested various distances on
sets and distance on tuples thereof. We have also used various values for k (the
neighborhood size), but the best results are obtained by using the values 1 or 3
for neighborhood size. By using internal cross-validation, we have concluded that
the best results are obtained when single linkage distance for sets and Chebyshev
distance for tuples are applied. Using these distances, on the musk dataset ver-
sion 2, with 10-fold cross-validation we have obtained accuracy of 73.53%, while the
best accuracy reported in the literature is 89.2% (Uwents & Blockeel, 2008) (see
Table 4.3). The best reported results uses an algorithm for multi-instance learning
that is based on iterated discrimination using axis-parallel rectangles (APR) (Diet-
terich et al., 1997). Best result using distance-based learning algorithms reported in
the literature achieves an accuracy of 88% (Ramon & Bruynooghe, 2001) by using
Matching distance for sets and Euclidean distance for tuples.

4.2.2 Diterpenes dataset

In the diterpene dataset (Džeroski et al., 1996), the task is to identify the skeleton
type of diterpenoid compounds, given their 13C-NMR-Spectrum. Diterpenes are one
of a few fundamental classes of natural products, with about 5000 known members.
A diterpenes’ skeleton is a unique connection of carbon atoms each with a specific
atom number and, normalized to a pure skeleton molecule without residues, a certain
multiplicity (s, d, t or q). The skeleton of every diterpene contains 20 carbon atoms.
Sometimes there are additional groups linked to the diterpene skeleton by an oxygen
atom with the possible effect of increasing the carbon atom count to more than 20
per diterpene. About 200 different diterpene skeletons are known so far, but some
of them are only represented by one member compound. Most of the diterpenes
belong to one of 20 common skeleton types. More precisely, the task is to identify
the skeleton (type) of diterpenoid compounds, given their 13C-NMR-Spectra that
include the multiplicities and the frequencies of the skeleton atoms. This task is
usually done manually by human experts with specialized background knowledge on
peak patterns and chemical structures. In the process, each of the 20 skeletal atoms
is assigned an atom number that corresponds to its proper place in the skeleton and
the diterpene is classified into one of the possible skeleton types.

The collected data contain information on 1503 diterpenes with known struc-
ture, stored in three relations atom, bond, and nmr. The first relation specifies to
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Table 4.3: Summary of the results on the datasets with structured input compared with
the best results reported in the literature.

Dataset name k-NN for structured data Best (distance based) Best reported
Musk 2 73.53% 88.0% 89.2%
Diterpenes 89.79% 97.41% 97.41%

which element an atom in a given compound belongs. The second relation specifies
which atoms are bound and in what way in a given compound. The nmr relation
stores the measured 13C-NMR-Spectra. For each of the 20 carbon atoms in the
diterpene skeleton, it contains the atom number, its multiplicity and frequency. Ad-
ditional unary predicates describe the classes to which each compound belongs (23
classes). Considering that each 13C-NMR-spectrum can be represented as a tuple
of multiplicity and frequency, where the frequency is real attribute and multiplicity
is nominal, we can represent each diterpene as a set of tuples. Using the notation
from the framework proposed in this dissertation, a diterpene can be represented as
follows:

Diterpene = Tuple[Set[Tuple[Real,Nominal]], Nominal] (4.2)

Same as for the musk dataset, we performed experiments using the k-NN al-
gorithm for structured data proposed in this thesis. Within the experiments, we
have tested various distances on sets and distances on tuples by using internal cross-
validation. We have also used various values for k (the neighborhood size), but the
best results are obtained by using the values 1 or 3 for neighborhood size. The
results have revealed that the best results are obtained when Matching distance for
sets and Chebyshev distance for tuples are applied on a neighborhood with size 1
(i.e., nearest neighbor scenario). Using cross-validation we obtained accuracy of
89.79%, while best reported result in the literature using distance-based learning is
97.41% (Woznica, 2008).

4.2.3 Yeast dataset

The yeast datasets were constructed from time series gene expression data from
the study conducted by Gasch et al. (2000), which are publicly available. They
contain time series of expression levels of yeast (Saccharomyces cerevisiae) genes
under several diverse environmental stresses, and include also the data introduced
by DeRisi et al. (1997). More specifically, the expression levels were measured as
cells responded to temperature shocks (25℃ to 37℃ and 35℃ to 25℃), hydrogen
peroxide, the superoxide-generating drug menadione, the sulfhydryl-oxidizing agent
diamide, the disulfide-reducing agent dithiothreitol (2 different setups), hyper- and
hypo-osmotic shock, amino acid starvation, nitrogen source depletion, and switch
from anaerobic growth to aerobic respiration upon depletion of glucose, referred to as
the diauxic shift. The gene expression levels of around 5000 genes were measured at
different time points using microarrays. The data is log-transformed and normalized
based on the time-zero measurement of yeast cells under normal environmental
conditions. In addition, for each gene we have its gene functions represented as
a structured object that is a hierarchy or a tuple of 3 GO hierarchies: biological
processes, molecular functions and cellular components. The task is to predict the
gene function using the recorded responses for each gene.
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Let us explain how this task will be represented and handled within this frame-
work. On the learning side, we use the response to various stress conditions described
above to predict the gene function. We can use either the response to a single envi-
ronmental stress or several responses at once representing them as a tuple of time
series. Also, if available, we can use additional attributes and add them to the tuple,
regardless of their structure. We have a total of 13 datasets. Each of the 12 datasets
is for a different stress condition described, while the 13th dataset is a combina-
tion/tuple of the responses for all 12 stress conditions (it contains 12 time series).
In the output space (target space) we have gene function represented as a structured
object that is a hierarchy or a tuple of 3 hierarchies. Schietgat et al. (2010) were us-
ing various attributes to build a model to predict gene function. With the proposed
framework, we can handle the same problem using k-NN classification, and using
structured data on the left (learning) side as well, which is clearly an advantage of
this framework.

In this dissertation, we present an experimental comparison of 8 distances for
time series on the Yeast dataset. The evaluated distances include all of the time series
distances discussed in Section 2.2.2.3: Dynamic Time Warping, Qualitative distance,
Pearson distance (based on the Pearson correlation coefficient), Spearman distance,
HSim distance (based on the HSim coefficient), PearsonHsim, SpearmanHsim and
Euclidean distance. We use the 1NN algorithm for predicting, since with it we can
more accurately measure the influence of the distance function used on the predictive
performance (Wang et al., 2013). Using kNN, with k > 1, is not suitable for such a
comparison: it is not clear whether the predictive performance is due to the distance
measure used or the aggregation of the k nearest neighbors.

The predictive performance of the 1NN algorithm is estimated using 10-fold cross
validation. The performance is assessed by using three error measures based on the
precision-recall curve. We use the area under the average PR curve (AU(PRC)),
average area under the PR Curves (AUPRC) and weighted average area under
the PR Curves (AUPRCw). Each of these measures captures different aspect of
the predictions made by the algorithm: AU(PRC) performs micro-averaging of the
performance of the classes, AUPRC performs macro-averaging of the classes and
AUPRCw performs frequency-weighted averaging of the classes. These measures
are typically used in tasks from functional genomics (Vens et al., 2008; Schietgat
et al., 2010).

For the statistical evaluation of the results, we employed the corrected Friedman
test and the post hoc Nemenyi test as recommended by Demšar (2006). We present
the result from the Nemenyi post hoc test with an average ranks diagram). The
ranks are depicted on the axis, in such a manner that the best ranking algorithms are
at the right-most side of the diagram. The algorithms that do not differ significantly
(in performance) for a significance level of 0.05 are connected with a line.

The results of the statistical evaluation of the performance of the distances are
depicted in Figure 4.1. We can note that across the three evaluation measures the
three best distances are Euclidean, PearsonHsim and Hsim. Additionally, these
three distances are statistically significantly better than Sprearman, Pearson and
the Qualitative distance. We would also like to note the mediocre performance of
the dynamic time warping (DTW) distance – the most widely used distance for time
series. This is perhaps due to the fact that the time series under consideration are
rather short (the various stress conditions consider less than 10 time points) thus
DTW could not obtain optimal results. Next, the inclusion of the Hsim coefficient in
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Figure 4.1: A comparison of distances for time series on the task of yeast gene function
prediction using the Gene Ontology catalog of gene functions.
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the Pearson and Spearman distances improves its predictive performance by a sta-
tistically significant margin, i.e., PearsonHsim and SpearmanHsim are statistically
significantly better than Pearson and Spearman, respectively. All in all, considering
both the computational cost and the predictive performance of the distances, this
evaluation reveals that Euclidean distance could be the best choice.

4.2.4 E. coli dataset

Partridge et al. (2007) introduced a dataset of time series gene expression data from
the bacterium Escherichia coli. The bacteria were treated in a controlled environ-
ment by lowering the oxygen, and the gene expression levels were recorded under
these oxygen-starved conditions, after 5, 10, 15 and 60 minutes. These expression
levels were compared to aerobic steady state, and relative changes were calculated.
The dataset has 4229 genes and a time series with length 4 for each of the genes.

Similar as above, we can use our framework to exploit the expression data to
predict the gene annotations of the unannotated genes, i.e., perform gene function
prediction. In the input space of this supervised learning problem, we have a struc-
tured object that is a time series and in the output space we have a structured
object that is a hierarchy or a tuple of 3 hierarchies, subsets of the GO: biological
processes, molecular functions and cellular components. Given the fact that the
proposed framework uses the generic k-NN algorithm, it can handle time series on
the input side, and structured objects such as a tuple of hierarchies on the output
side. We are thus able to use it on the E. coli dataset to predict gene functions.

We follow the same experimental procedure as for the Yeast dataset. Namely, we
evaluate the performance of 8 distance measures for time series data by using the
1NN algorithm for predicting. The predictive performance is estimated using 10-fold
cross-validation. The performance is assessed using the three evaluation measures:
AU(PRC), AUPRC and AUPRCw.

We present the results of the evaluation using the E. coli dataset in Table 4.4.
The results reveal that the two best performing distances are Hsim and Euclidean.
Recall that these two distances were among the best performing also for the Yeast
dataset. Next, the inclusion of the Hsim coefficient in the Pearson and Spearman
distances improves its predictive performance, i.e., PearsonHsim and SpearmanHsim
are better than Pearson and Spearman, respectively.

Table 4.4: A comparison of distances for time series on the task of E. coli gene function
prediction using the Gene Ontology catalog of gene functions. The emphasized values in
the table are the best values obtained for each of the error measures.

Distance AU(PRC) AUPRC AUPRCw

DTW 0.234 0.031 0.235
QD 0.237 0.018 0.227
Euclidean 0.236 0.033 0.237
Pearson 0.230 0.020 0.229
PearsonHsim 0.234 0.029 0.236
Hsim 0.239 0.032 0.239
Spearman 0.214 0.015 0.222
SpearmanHsim 0.234 0.029 0.235
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4.3 Clustering applications

We next present possible applications of the framework in a clustering context. In
this case, we do not have an output space (target space). We are dealing only with
structured inputs and the task is to find groups (clusters) of these structured objects.
These datasets can be analyzed in the proposed framework, given that the distance
is either predefined, or already constructed by the use of aggregation functions that
correspond to the type constructors are defined and combining distances on com-
ponent datatypes, as described earlier. Let us describe how the structured data
described above can be handled directly with the clustering methods implemented
in our framework, without further transformations.

4.3.1 Yeast dataset

Let us recall from the previous section that the yeast dataset has both structured
input and structured output. For clustering purposes, we focus on the structured
input, i.e., the time series response of gene expression to different types of stress.
We thus consider a total of 12 datasets: Each of the 12 datasets is for a different
stress condition described. The goal is to analyze the time series to find groups of
genes that react similarly. To reach the goal we use the techniques for clustering
described earlier in this chapter, in particular hierarchical agglomerative clustering.
More specifically, we perform hierarchical agglomerative clustering for each of the 12
types of stress response separately by using four different distance measures on time
series. We then report the ICV reduction with respect to the number of clusters in
the clustering.

In Figure 4.2, we present the reduction of the intra-cluster variance when the
number of clusters chosen from a hierarchical agglomerative clustering increases; for
hierarchical agglomerative clusterings obtained using 4 different distance measures.
Using and comparing various distance measures is also one of the benefits from the
proposed framework. The curves of ICV reduction indicate that an appropriate
number of clusters would be close to 70.

We then select from all of the clusterings obtained for each stress condition and
for each different distance measure the ones with 70 clusters. Each of the clusterings
can be visualized as follows. On the horizontal axis, we put the size of the clusters
from the given clustering, while on the vertical axis, we put the ICV . Next, we
visually inspect the obtained graphs and select clusters that are reasonably sized (i.e.,
that have more than 50 genes) and have relatively low ICV . The selected clusters
can then be analyzed using tools, such as the STRING database visualization tool
(Franceschini et al., 2013). We perform this analysis for all of the clusterings, and
in the remainder we illustrate one of the findings of the analysis.

In Figure 4.3, we compare a cluster obtained within the framework (on the right)
and a set of randomly selected genes of the same size (on the left). The visualized
cluster contains 73 genes and it was obtained using DTW as distance measure and
nitrogen source depletion (NDepletion) as stress condition. The two groups of genes
(the one from our framework and the randomly selected one) are then visualized
using STRING showing the known interactions between the genes (proteins) in each
group. The genes in the cluster have similar responses as identified by the clustering
algorithm using the proposed framework. Moreover, they are connected by a dense
network of interactions. In contrast, the genes from the randomly chosen group
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Figure 4.2: ICV decreases with the number of clusters in hierarchical clusterings obtained
by using four different distance measures on the yeast datasets.
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have only sporadic connections. This clearly demonstrates that the genes from the
cluster form a meaningful, functionally connected group.

Figure 4.3: A visual representation of two groups of genes and their interactions (taken
from the STRING database). On the left, 73 randomly selected yeast genes. On the right,
a cluster with 73 yeast genes obtained by clustering their responses (time courses of gene
expression levels) to stress.

4.3.2 E. coli dataset

The E. coli dataset, described above, has structured input and structured output.
Here, for clustering purposes, similar as in the yeast case, we will focus only on the
structured input part, the recorded responses in the form of time series. The goal
is to analyze the time series to find groups of genes with a similar response to an
anoxic shock. We follow the same experimental procedure from the analysis of the
yeast dataset.

In Figure 4.4, we present the reduction of the intra-cluster variance when the
number of clusters chosen from a hierarchical agglomerative clustering increases; for
hierarchical agglomerative clusterings obtained using 4 different distance measures.
A smaller number of clusters seems more appropriate than for the yeast datasets.
The curves of ICV reduction indicate that an appropriate number of clusters would
be close to 30. We then select from all of the clusterings obtained for each different
distance measure the ones with 30 clusters.

Next, we visually inspect the reduction of ICV with respect to cluster sizes.
From this inspection, one can select several clusters of genes that have a similar
response to the stress and relatively low ICV . We select an illustrative example
for visualization using the STRING tool. This example is presented in Figure 4.5.
Similarly, we compare the selected cluster with 144 E. coli genes (on the right) with
a set of randomly selected 144 E. coli genes (on the left). Note that the network
is much less dense here than in Figure 4.3. Overall, the gene interactions in yeast
are much more studies than in E. coli. Hence the difference in density. The genes



46 Chapter 4. Evaluation of Instance-Based Learning from Structured Data

0.00

0.20

0.40

0.60

0.80

1.00
R
el
a
ti
ve

IC
V

0 50 100 150 200 250 300 350 400 450 500

Number of clusters

Ecoli

QDM COR DTW EUC

Figure 4.4: ICV decreases with the number of clusters in hierarchical clusterings obtained
by using four different distance measures on the E. coli dataset.

Figure 4.5: A visual representation of two groups of genes and their interactions (taken
from the STRING database). On the left, 144 randomly selected E. coli genes. On the
right, a cluster with 144 E. coli genes obtained by clustering their responses (time courses
of gene expression levels) to stress.

in the cluster have similar responses as identified by the clustering algorithm using
the proposed framework. Moreover, they are connected by a denser network of
interactions than the random set of genes. This shows that the genes from the
cluster form a meaningful group.

4.4 Summary

In this chapter we have evaluated the performance and utility of the instance-based
class of distance-based methods for mining structured data, presented in the previ-
ous chapter. Where possible, we have compared it to existing approaches, examining
the performance of our nearest-neighbor approach on benchmark datasets of classifi-
cation of structured data. We find it performs comparably to the existing approach
of Woznica (2008). The greedy approximation of the matching distance on sets gives
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comparable performance results to its non-greedy original at a lower computational
cost.

The major advantage of our approach, however, is that it is applicable to a much
larger class of problems than the existing approaches. In the context of predictive
modeling, the approach of Woznica is limited to structured data only on the input
side. Our approach allows for structured data both on the input and the output side.
It can be used for predicting structured outputs (such as hierarchies), as illustrated
on the two applications of predicting gene functions.

The clustering part of our proposed framework is also applicable to arbitrarily
structured data. We have also considered practical applications illustrating this
aspect. We have successfully applied our approach to finding clusters of genes with
similar time-course expression profiles: We have showed that the found clusters of
genes are much more densely interconnected than randomly selected groups of genes
and thus make biological sense.
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Chapter 5

Predictive Clustering for Structured
Data

Predictive clustering is a general framework that unifies clustering and prediction.
The alrogithm for learning predictive clustering trees, in its basic form, handles only
tuples of primitive datatypes as targets (Blockeel et al., 1998; Struyf & Džeroski,
2006). In this chapter, we first describe how predictive clustering works in its basic
form. We then outline the changes necessary to handle arbitrary structured types of
data as targets. Next, we describe its extension for predicting time series data, and
continue with the extensions for predicting multi-layered datatypes such as: tuples
of time series, tuples of hierarchies, and tuples/sets of arbitrarily structured objects.

5.1 Predictive clustering algorithm

Predictive clustering is a general framework that combines clustering and prediction
(Blockeel et al., 1998). Predictive clustering partitions the data set into a set of
clusters such that the instances in a given cluster are similar to each other and
dissimilar to the instances in the other clusters. In this sense, predictive clustering
is identical to regular clustering (Kaufman & Rousseeuw, 1990). The difference is
that predictive clustering associates a predictive model to each cluster. This model
assigns instances to clusters and provides predictions for new instances.

Algorithm 5.1 presents the generic induction algorithm for PCTs (Blockeel et
al., 1998). It is a variant of the standard greedy recursive top-down decision tree
induction algorithm used in many decision tree induction systems, such as C4.5
(Quinlan, 1993). It takes as input a set of instances I. The procedure BestTest
(Algorithm 5.2) searches for the best acceptable test that can be put in a node. If
such a test t∗ can be found, then the algorithm creates a new internal node labeled
t∗ and calls itself recursively to construct a sub-tree for each cluster in the partition
P∗ induced by t∗ on the instances. If no acceptable test can be found, then the
algorithm creates a leaf and the recursion terminates. The procedure Acceptable
defines the stopping criterion of the algorithm, e.g., specifying maximum tree depth
or a minimum number of instances in each leaf.

The description of the induction algorithm, up to this point, is not different from
that of a standard decision tree learner. The main difference is the heuristic that
is used for selecting the tests and the prototype/centroid calculation function. For
PCTs, this heuristic minimizes the average variance in the created clusters (weighted
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Algorithm 5.1: PCT(I)

Data: I - Instances
Result: Predictive clustering tree

1 (t∗, h∗,P∗)← BestTest(I);
2 if t∗ 6= none then
3 for each Ik ∈ P∗ do
4 treek ← PCT(Ik);
5 end
6 return node(t∗,

⋃
k{treek});

7 else
8 return leaf(centroid(I));
9 end

Algorithm 5.2: BestTest(I)

Data: I - Instances
Result: BestTest: (t∗, h∗,P∗)

1 (t∗, h∗,P∗)← (none, 0, ∅);
2 for each possible test t do
3 P ← partition induced by t on I;
4 h← Var(I)−∑Ik∈P

|Ik|
|I| Var(Ik);

5 if (h > h∗) ∧Acceptable(t,P) then
6 (t∗, h∗,P∗)← (t, h,P);
7 end
8 end
9 return (t∗, h∗,P∗);

by cluster size, see line 4 of Algorithm 5.2). Minimizing the variance maximizes clus-
ter homogeneity. The next sections discuss how the prototype should be calculated
and how the cluster variance can be instantiated for various structured datatypes.

5.2 PCTs for arbitrarily structured data

While the original PCT algorithm is very popular and often used to solve various
problems, it is limited to handling only data represented as tuples of primitive
datatypes, e.g., sets of points in a multi-dimensional Euclidean space. In particular,
the targets that can be handled as implemented in CLUS (Struyf & Džeroski, 2006)
are tuples of continuous or tuples of discrete variables. In this dissertation, we
describe and implement an extension of the algorithm that can handle arbitrary
structures in the target/output space.

To be able to do so, we use the principles discussed earlier in Section 2.2. We
use these to introduce several changes into the PCT induction algorithm, which we
describe in this section. In the following subsections, we describe the changes of the
PCT algorithm needed to handle arbitrarily structured data in the target/output
space: These involve the calculation of prototypes/centroids and the values of the
search heuristic/variance.
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5.2.1 Calculating the prototype

When the elements of the cluster (or their target parts) are vectors from a vector
space, the prototype is well defined and is calculated as the mean of all the vectors
in the cluster. It is calculated by summing up all the vectors and multiplying the
sum by the scalar 1

|C| , with |C| being the size of the cluster. The calculation of the
prototype is of linear complexity in terms of |C|, i.e., has complexity O(|C|) .

For arbitrarily structured data, as in the k -medoids and k -means algorithm, we
suggest using the medoid of the cluster as its prototype. The medoid is computed
as P = argminQ

∑
X∈C d(X,Q)2. In this case, the prototype can be computed with

|C|2 distance computations by trying for Q all objects in the cluster.

5.2.2 Calculating the heuristic

To be able to handle arbitrary datatypes as targets, we need to define the heuristic
function that is used for selecting the tests (step 4 in the Algorithm 5.2). In this
step, the PCT algorithm requires a measure of cluster variance. In the most general
case, the variance of a cluster C can be defined based on a given distance d as

Var(C) =
1

|C|
∑

X∈C

d(X,P )2, (5.1)

where P is the prototype of C. To be able to cluster data of an arbitrarily structured
datatype t, d should be a distance defined for the structured datatype t, as discussed
in Chapter 2.

If the prototype P can be calculated in closed form, the variance can be calculated
efficiently. This is the case for vector spaces, where P can be calculated in O(|C|)
complexity. V ar(C) can be calculated with additional |C| computations and the
complexity is O(2|C|) = O(|C|).

When the prototype of the cluster is its medoid the complexity of calculating
the variance is O(2|C|2) = O(|C|2), |C|2 for calculating P and |C|2 for calculating
V ar(C). In this case, an alternative way to define cluster variance is based on the
sum of the squared pairwise distances (SSPD) between the cluster elements, i.e.,

Var(C) =
1

|C|2
∑

X∈C

∑

Y ∈C

d(X, Y )2 (5.2)

The advantage of this approach is that the prototype is not required in advance:
In fact, P can be calculated in the same pass as V ar(C) with |C|2 distance compu-
tations. This has the same time complexity as just calculating the prototype as the
medoid. Hence, using the V ar(C) definition based on a prototype is only more effi-
cient if the prototype can be computed in time less than quadratic in the cluster size.
For example, this is the case for distances, such as the Euclidean distance, where
the prototype can be calculated in closed form as the average of the vectors. For
the other distances, with no closed form prototypes, we choose to estimate cluster
variance using the SSPD method.

As discussed previously, the algorithm for calculating SSPD has computational
cost of O(N2), where N is the number of elements in the cluster. In some applica-
tions, this could be very inefficient (e.g., datasets with tens or hundreds of thousands
of examples). We note that in the standard approach (when the elements are ele-
ments from the vector space) where the prototype can be calculated in linear time,
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the algorithm given by Equation 5.1 has linear, O(N) complexity. Therefore, we
propose an estimate of the SSPD that could be calculated with sampling, defined
with the formula below:

Var(C) =
1

|C|m
∑

X∈ C


 ∑

Y ∈ sample(C,m)

d(X, Y )2


 , (5.3)

with sample(C,m) a random sample without replacement of m elements from C,
and m ≤ |C|. The computational cost of (5.3) grows only linearly with the clus-
ter size. In the implementation, it is left to the user to choose to use sampling to
approximate SSPD or to calculate the exact SSPD. In (Džeroski, Gjorgjioski, et
al., 2006), we show that using sampling for estimating the SSPD can be efficiently
approximated. In the next sections, we describe the instantiations of V ar(C) for
specific datatypes. More specifically, we outline their implementations in the frame-
work, describe the supported distances, and outline some real-life applications of
the developed methods.

5.3 Tuples of reals

Struyf and Džeroski (2006) proposed a modification of the PCT algorithm that is
able to cluster and predict several numeric target variables at once (i.e., addresses
the task of multi-target prediction). PCTs that are able to predict multiple tar-
gets simultaneously are called multi-target predictive clustering trees (MTPCTs).
MTPCTs that predict a tuple of continuous variables (regression tasks) are called
multi-target regression trees (MTRTs), while MTPCTs that predict a tuple of dis-
crete variables are called multi-target classification trees (MTCTs). The instantia-
tion of the CLUS system that learns multi-target trees is called CLUS-MT (Kocev
et al., 2013).

The heuristic used in this algorithm for selecting the attribute tests in the internal
nodes is the reduction of variance as defined in step 4 in the Algorithm 5.2. The
variance for MTPCTs is defined as V ar(c) = N ·∑T

t=1 V ar [yt], with N the number of
examples in the cluster, T the number of target variables, and V ar [yt] the variance
of target variable t in the cluster. For each of the continuous targets yt, the variance
V ar(yt) is as defined in its normal sense.

The variances of the target variables are standardized, so that each target variable
contributes equally to the overall variance. This is due to the fact that the target
variables can have completely different ranges. In addition, CLUS-MT supports
weighting of the target variables so that the variance function gives more weight
to some variables and less to others. The prototype function (calculated at each
leaf) returns as a prediction the tuple with the mean values of the target variables,
calculated using the training instances that belong to the given leaf (Kocev et al.,
2013). We applied the proposed method on the real-life problem of estimating
vegetation height and canopy cover from remotely sensed data (Stojanova et al.,
2010). We give the complete study in Chapter 6.

5.4 Sets of discrete

In the previous section, we discussed how PCTs are implemented for multi-target
regression. PCTs can also handle multi-target classification, and are able to cluster
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and predict a tuple of discrete variables. In this case, V ar(c) =
∑T

t=1Gini [yt].
Within this task, PCTs can also be used to predict a tuple of binary variables

(i.e., discrete variables with two values that are typically represented as 0 or 1). Each
of the binary variables represents the presence or absence of a label and the tuple
of binary variables represents a set of labels. The task is also known as multi-label
classification.

The main component in the PCTs, as discussed previously, is the variance of
the clusters that is used in the heuristic of the algorithm. In the general case,
for structured data, the variance is calculated as the sum of the squared distances
between each instance and the prototype. To be able to calculate the variance, we
need to define the distance between the instances.

When dealing with tuples of discrete/binary values, the tuples can be represented
as 0/1 vectors. The variables in this case are typically called ‘labels’. The length
of the target tuple is the number of all labels in the dataset. In this case, the
Euclidean distance between two tuples of labels Ci and Cj can be defined as the
Euclidean distance between their vector representations. This measure is directly
proportional to the simple count of mismatches between the classes, which is also
called the simple matching coefficient. We would like to note that calculating the
Manhattan distance on the vectors of categorical data, with a 1/0 distance defined
between the classes, leads to the same result.

We next focus on defining PCTs for predicting sets of categorical values, i.e.,
PCTs for addressing the task of multi-label classification. In this instantiation of
the PCTs, we consider the output space to consist of sets of discrete values (or a
tuple of binary variables). In a similar manner as described above, we define the
variance as the sum of the squared pairwise distances between the examples (in this
case, sets).

We consider two definitions of the datatype set of discrete. The first one is to
represent each set as a vector of zeros and ones, as described earlier, and then to
apply the Euclidean distance (this is equal to treating the sets as tuples). The second
scenario is to use distance measures specifically designed for sets. The benefits
from the second scenario are that the representation is more natural (we do not
need to transform the output space from a set to a vector) and it facilitates the
use of distances defined for sets. The following distances for the datatype set are
implemented and can be used in the PCT algorithm: Hamming distance, Jaccard
distance and Matching distance. In an empirical study, we performed an evaluation
of PCTs for multi-label classification approach and compared the different distances
for sets (Gjorgjioski et al., 2011). We present the complete study in Chapter 7.

5.5 Sequences of reals: Time series

This section shows how predictive clustering can be applied to predict and cluster
time series (Liao, 2005). To cluster time series, as discussed above, we need to be
able to calculate the variance of a cluster as defined by Equation 5.1. To this end, we
need to define the following: the distance between two time series and the prototype
calculation of a cluster.

To begin with, we can use as distance measure here any of the distances de-
scribed in Chapter 2. More specifically, within the CLUS system, we implemented
the following distances on time series datatype: Dynamic time warping distance,
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Qualitative distance, and Pearson correlation distance. Following a similar discus-
sion as in Section 5.2, we propose to estimate the cluster variance with using SSPD
for time series. Since most of the distances on time series do not have closed form
prototypes, we propose to use the medoid, where the prototype is one of the time
series from the cluster.

We applied the proposed extension of the PCTs on a real-life problem from
biology: predicting gene response to stress based on gene functions in S. cerevisae.
We present the complete study in Chapter 8 with two publications. In (Džeroski,
Gjorgjioski, et al., 2006), we presented the methodological part of the algorithm and
discussed its implementation. We gave a comparison to other standard data mining
methods for clustering time series. This was the first publication that presented the
PCTs for predicting time series. In (Slavkov et al., 2010), the focus was more on
the application domain and the main discussion was on the biological implications
of the results that were produced by applying our method on the given data.

5.6 Multi-layered datatypes

In the previous three sections, we discussed the instantiation of PCTs for structured
data such as a tuple of reals, a set of categorical data and a time series. A tuple
of reals is a datatype that has one type constructor (Tuple) applied to primitive
datatypes (real). A set of discrete datatype is very similar, having Set as a type
constructor applied to primitive datatype (discrete). A time series datatype also has
type constructor sequence and primitive datatype (real). All in all, these datatypes
are examples of structured datatypes containing only a single type constructor.

In this section, we focus on the instantiation of the PCT algorithm for predicting
more complex datatypes, i.e., multi-layered datatypes. Multi-layered datatypes have
multiple type constructors and are discussed in details in Section 2.1.2. Recall that
the variance of a cluster is the basic component of the PCT algorithm. Hence,
with a proper definition of a distance for a multi-layered/composite datatype, we
can instantiate the variance function of the PCTs for multi-layered datatypes. We
define the variance function as a sum of the squared pairwise distances between the
elements. In the following, we present two multi-layered/composite datatypes that
are of practical relevance: tuple of time series and tuple of hierarchies.

5.6.1 Tuples of time series

The datatype class tuple of time series can be represented using the notation used
in this dissertation as Tuple[TimeSeries1, T imeSeries2, ..., T imeSeriesT ]. In Sec-
tion 2.2.3, we discuss in detail the calculation of the distance for such a datatype and
provide examples. We present and evaluate the instantiation of PCTs for predicting
a tuple of time series, i.e., multi-dimensional time series on data from ecological
modelling. More specifically, we use PCTs for multi-dimensional time series for
modelling the forest growing stock in Slovenian forests (Gjorgjioski et al., 2015).
We give the complete study in Chapter 9.
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5.6.2 Tuples of hierarchies

The datatype class tuple of hierarchies can be represented using the notation used
in this dissertation as

Tuple[Tuple1[v1, v2, ..., vM ], Tuple2[v1, v2, ..., vL], ..., TupleH [v1, v2, ..., vK ]]

where the variables vi are binary and there are parent-child relationships defined
between the variables (i.e., hierarchy constraints). Note that the inner tuples can
have variable length. For this multi-layered datatype, the distance can be calculated
using the algorithm presented in Section 2.2.3.

Schietgat et al. (2010) perform gene function prediction using hierarchical multi-
label decision tree ensembles. They build different ensembles for each hierarchy of
the Gene Ontology data: Biological Process hierarchy, Molecular Function hierarchy
and Cellular Component hierarchy. With the approach described earlier, we can put
the three hierarchies together into one tuple of hierarchies and then we can build a
three that will predict this structured datatype. The benefits of such representation
of the target would be two-fold: (1) it generates smaller trees, and (2) it groups the
genes with similar functions according to all of the three hierarchies.

5.6.3 Arbitrarily structured objects

The PCT algorithm with the extensions proposed in this dissertation can be applied
to predict arbitrary structured objects. In the previous two subsections, tuples of
structured objects were considered. In general, type constructors can be nested
arbitrarily to obtain more and more complex structured datatatypes.

To instantiate PCTs to predict arbitrarily complex datatypes, we need to define
distances on the target space. These can be composed from distances on simpler
(and eventually primitive) datatypes. Once we have a distance on the target space,
we can use the approaches from this chapter to build PCTs to predict such targets.

5.7 Implementation

In short, the approaches for learning PCTs for predicting structured values presented
in this chapter are implemented within the CLUS system. In particular, those that
involve type constructors other than tuple, i.e., sequences of real values and sets
of discrete values, as well as those concerning multi-layer datatypes were developed
within this dissertation. PCTs for short time series are now part of the standard
CLUS (http://dtai.cs.kuleuven.be/clus/; http://sourceforge.net/projects/clus/) re-
lease, while the other extensions are part of an unreleased branch of CLUS.

In CLUS, distances on the target space play a crucial role. Distances on the struc-
tured datatypes of interest (sequences of real values and sets of discrete values, as
well as multi-layer datatypes) have been developed and implemented in the context
of the instance-based framework from Chapter 3 and its implementation. When im-
plementing the extensions of CLUS, we have re-used code from the implementation
of the instance-based framework.

The implementation of the extensions of the predictive clustering trees, i.e., PCTs
for arbitrarily structured data, is following the established implementation principles
of the CLUS system. It also follows the basic principles described in this chapter,
as well as, the principles described in Section 3.4. In both the instance-learning
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framework and PCTs, the distances are defined similarly, only with the needed
adaptations to the CLUS specific data structures. Both systems are implemented
in Java, following the object-oriented principles of programming. Therefore, the
distance from one system can be easily reused into the other.

Next, we give some implementation details. We added several classes and modi-
fied existing classes to extend CLUS for predicting arbitrarily structured data. To
begin with, in the package data.type, we implement classes for the type construc-
tors explained in this thesis that extend the main generic class ClusAttrType,e.g.,
define attributes from the time series datatype. We extend the data.io.ClusReader
class to be able to handle reading of structured datatypes from arff files. In the ext
package, we add several new packages, including sets, sets.distances, tuples,
tuples.distances, etc. In each of the packages, we implement three classes: (1)
a class for the type constructor, (2) a class for calculating various statistics that
extends SumPairwiseDistancesStat class, and (3) a general class that defines dis-
tance over the type constructor that extends the ClusStructuredDistance class. In
each sub-package distances, we implement the corresponding distances for each
datatype. For example, the instantiation for the data type Set contains a class Set
for type constructor, SetStatistic for calculating statistics and SetDistance for calcu-
lating the distance. It could also include distance definitions, such as GSMDistance
extends SetDistance. Finally, in the error package, we implement error measures
used to assess the predictive performance of the models.

All in all, the extension of the PCTs within the CLUS system was performed
in a modular and extensible way. In other words, it is relatively easy to add new
datatypes and new distances. New distances can be added in a plug-and-play man-
ner. A distance can be plugged into the system by extending the main class that
defines the general principles of distance calculation for that datatype. This enables
the users of the system to easily implement/develop new distances and to compare
them to the existing ones.
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Chapter 6

Estimating Vegetation Height and
Canopy Cover from Remotely Sensed
Data with Machine Learning

In Chapter 5, we discussed the instantiation of the predictive clustering paradigm
for predicting structured data. The first instantiation concerned predicting multiple
continuous variables, i.e., a tuple of reals (Tuple[Real1, Real2, ..., RealT ]). This task
is also known as multi-target regression.

In this chapter, we include a paper concerned with the application of predictive
clustering trees for predicting tuples of reals. We address the problem of estimating
vegetation height and canopy cover from remotely sensed data. The results of the
study can be used to reduce the cost of using expensive remote sensing technologies,
such as LiDAR (Light Detection And Ranging), by exploiting cheap and easily
accessible remotely sensed data, such as satellite data.

The definition of the problem is as follows. Given are (expensive) LiDAR data
and (cheap) satellite data for the same (small) region. We need to learn a model to
estimate vegetation height and canopy cover for broader(larger) region from (cheap)
satellite data only. From the LiDAR data, we can calculate accurately the values of
the target variables, i.e., vegetation height and canopy cover, for the smaller region.
For the small region, we can then learn a mapping from the (cheap) satellite data
to the forest properties. The obtained model is then used to predict the values of
the vegetation height and canopy cover for a broader region from satellite data only,
without the need for (expensive) LiDAR data.

We address this problem for the Kras area in Slovenia. More specifically, we
consider a small portion of the area for learning the predictive models, and the
complete Kras region for predicting the values for vegetation height and canopy
cover. We have both LiDAR and satellite data for the small portion of Kras, while
we have only satelite data for the complete Kras region. The goal is then to produce
maps of vegetation height and canopy cover for the whole Kras region.

We applied several machine learning methods to the data at hand. From this
study, we concluded that ensembles of single and multi-target regression trees per-
form significantly better than individual trees. Hence, they are further used to
generate forestry maps of vegetation height and canopy cover. These can then be
used for land-cover and land-use classification, as well as for monitoring and manag-
ing ongoing forest processes that affect the stability of forest ecosystems (including
spontaneous afforestation, forest reduction and forest fires).
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High quality information on forest resources is important to forest ecosystem management. Traditional
ground measurements are labor and resource intensive and at the same time expensive and time consuming.
For most of the Slovenian forests, there is extensive ground-based information on forest properties of
selected sample locations. However there is no continuous information of objectively measured vegetation
height and canopy cover at appropriate resolution.
Currently, Light Detection And Ranging (LiDAR) technology provides detailed measurements of different
forest properties because of its immediate generation of 3D data, its accuracy and acquisition flexibility.
However, existing LiDAR sensors have limited spatial coverage and relatively high cost of acquisition.
Satellite data, on the other hand, are low-cost and offer broader spatial coverage of generalized forest
structure, but are not expected to provide accurate information about vegetation height.
Integration of LiDAR and satellite data promises to improve the measurement, mapping, and monitoring of
forest properties. The primary objective of this study is to model the vegetation height and canopy cover in
Slovenia by integrating LiDAR data, Landsat satellite data, and the use of machine learning techniques. This
kind of integration uses the accuracy and precision of LiDAR data and the wide coverage of satellite data in
order to generate cost-effective realistic estimates of the vegetation height and canopy cover, and
consequently generate continuous forest vegetation map products to be used in forest management and
monitoring.
Several machine learning techniques are applied to this task: they are evaluated and their performance is
compared by using statistical significance tests. Ensemble methods perform significantly better than single-
and multi-target regression trees and are further used for the generation of forest maps. Such maps are used
for land-cover and land-use classification, as well as for monitoring and managing ongoing forest processes
(like spontaneous afforestation, forest reduction and forest fires) that affect the stability of forest ecosystems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In forest management and forestry decision-making there is a
continuous need for high quality information on forest resources. The
state of forest resources can be monitored by using visualizations of
forest properties for a specific spatial region in the form of a map.
Forest maps are an effective tool for detecting the state of forest
resources and monitoring ongoing spatial processes in forested
landscapes. Examples of such processes include the enlargement of
forest area by spontaneous afforestation of abandoned agricultural

land, and the vertical growth of trees and transitions between
developmental stages of existing forest stands. These processes affect
the stability of forest ecosystems, an ever more important property
due to extreme weather conditions, hydrological stress and the
appearance of new diseases and pests.

One of the most important forest properties are: vegetation height
and canopy cover. Vegetation height is the height of the vegetation in a
stand, relative to the ground. It is a function of the species composition,
climate and site quality, and can be used for land-cover classification or
in conjunction with vegetation indices. If coupled with species
composition and site quality information, vegetation height serves as
an estimate of the stand age or the successional stages. Vegetation
height is also a useful indicator of forest age and habitat quality. It is an
important input variable for ecosystem and forest fire models, and is
highly correlated with vegetation biomass and productivity. Biomass is
the key component of the carbon circle (Skole and Tucker, 1993) and a
surrogate for fuel loading estimation (Finney, 2004).
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Forest canopy cover is defined as the percent cover of the tree
canopy in a stand. It includes the cover from both trees and shrubs, but
not herbal vegetation. Canopy cover describes the vertical projection
of the tree canopy onto an imaginary horizontal surface representing
the ground surface. Forest canopy cover is an ecologically very
important forest property because it determines the occurrence and
speed of forest regeneration. It is useful for distinguishing different
plant and animal habitats, assessing forest floor microclimate,
light conditions and estimating other forest variables (e.g., Leaf Area
Index). Measurements of canopy cover are essential for silvicultural
activities (Jennings et al., 1999).

Traditional ground-based field measurements of forest properties
are made by using hand-held equipment. These measurements are
expensive, subjective, time consuming and labor intensive, as well as
difficult to perform, especially in dense forests (Buckley et al., 1999).
Due to these reasons, other methods of estimating forest properties
for larger areas are often used, such as remote sensing.

Over the course of the past few decades, remote sensing1 (RS) has
been a valuable source of information in mapping and monitoring
forest activities. Remote sensing involves collecting of spatially
organized data and information about an area of interest by detecting
and measuring signals composed of radiation, particles and fields
emanating from objects located beyond the immediate neighborhood
of the sensor devices (Franklin, 2001). In this way, it offers a potential
for more efficient resource assessment.

Multi-spectral RS is often used to map structural metrics at
moderate resolution and broader scale. Multi-spectral satellite
imagery is well suited for capturing horizontally distributed (2D)
conditions, strictures and changes (Wulder et al., 2008). However, it
cannot capture the 3D forest structure directly and is easily influenced
by topographical covers and weather conditions.

Light Detection And Ranging (LiDAR) technology, on the other
hand, provides horizontal and vertical information (3D) at high
spatial resolution and vertical accuracies. It is good for characterizing
the vertical structure of vegetation, but has limited spatial coverage
mostly due to pricing. By combining remotely sensed data, that
describe the horizontal distribution of target phenomena, with LiDAR
data, we can improve the measurement, mapping and monitoring of
forest properties and provide means of characterizing forest canopy
parameters and dynamics.

In this context, many papers have been recently published on the
joint use of LiDAR and other active and passive sensors in forest
properties estimation problems (Lefsky et al., 1999; Hyde et al., 2006;
Maltamo et al., 2006). These studies perform estimation of the forest
structure directly from LiDAR measurements and extend them, over
limited areas, to spatially homogeneous spectral segments derived from
theoptical data sets.MediumresolutionRSdata, suchas Landsat images,
are relatively inexpensive to acquire over large areas (Franklin and
Wulder, 2002),whereas LiDAR covers small areas, at a high cost per unit
area (Lim et al., 2003). As a result, these two data types may be
combined to generate estimates of vegetation heights and canopy cover
over large areas at a reasonable cost (Hudak et al., 2002).

Latest studies (Wulder et al., 2008) of the integration of LiDAR and
satellite data point out possible high correlations between different
satellite images and forest properties (vegetation height and canopy
cover). Hyde et al. (2006) compared the performance of step-wise
linear regression models using waveform LiDAR, RaDAR, Landsat,
Quickbird and InSAR in a statistical combination of structural
information in an attempt to estimate the mean canopy height and
biomass. The addition of Landsat ETM+ metrics significantly
improved LiDAR estimates of large tree structure — the combination
of all sensors is more accurate than using LiDAR alone, but only
marginally better than the combination of LiDAR and Landsat ETM+.

Machine learning techniques, such as regression trees, artificial
neural networks and support vector machines have been widely used
in many remote sensing forestry applications (Lefsky et al., 1999;
Moghaddam et al., 2002; Wulder and Seeman, 2003). The typical
machine learning task in all these studies is to learn a predictive
model that uses a set of remote sensing observations with the aim of
predicting the value of forest conditions or properties for unseen
cases. The data input to the machine learning system consists of
information extracted from different RS data sources, while the
output of the system is a predictive model (or a set of predictive
models called an ensemble) that describe the forest property.

Themain objective of this study is to estimate the vegetation height
and canopy cover from an integration of LiDAR and Landsat data in a
diverse and unevenly distributed forest. This kind of integration uses
the accuracy and precision of LiDAR data and the wide coverage of
satellite data in order to generate cost-effective realistic estimation of
the forest properties over a geographically large area. The study area is
located in the Kras region in western Slovenia, near the border with
Italy. The input to the machine learning system are the independent
explanatory variables generated from multi-temporal Landsat data
and the target variables (representing forest properties that we want
to model): The latter are estimated from the 3D LiDAR data and serve
as a very good substitute forfield-base sample plotmeasurements. The
machine learning system outputs a predictive model of the forest
property at hand, which is then used to generate forest vegetation
maps that can be used in a variety of forest management applications.

Although forest vegetation maps can be generated with high
precision and accuracy purely from LiDAR data, this seems impractical
for the nearest future due to the very high cost of high resolution
LiDAR data (in our case 4 EUR/ha). On the other hand, the price of
Landsat ETM+data for amulti-temporal coverage is significantly lower
(in our case it is free of charge). Using Landsat data as the main data
source therefore ensures a very acceptable cost benefit ratio. On the
other hand, LiDAR as used here for model calibration seems a very good
substitute for field-based sample plot measurements of vegetation
height and canopy cover, due to the even higher costs of field
measurements which can in some cases also be very difficult and
imprecise.

In our preliminary work (Džeroski et al., 2006a,b; Taškova et al.,
2006), we introduce the problem of prediction of forest parameters
from Landsat and LiDAR data, and present preliminary results using a
limited set of machine learning algorithms. The predictive models for
estimating the vegetation height and canopy cover from LiDAR and
Landsat data, using model and regression trees, pointed out a possible
high correlation between satellite data and vegetation properties
(Džeroski et al., 2006b). These results were enhanced by using
additional machine learning techniques (bagging of model trees) in
Taškova et al. (2006).

In this study, we significantly extend and upgrade the work
presented in the preliminary work. Here we investigate the
performance of a broader set of state-of-the-art machine learning
techniques. We confirm the results from our preliminary work by
systematically repeating the experiments using the same machine
learning techniques. In addition, we apply other state-of-the-art
machine learning techniques, i.e., ensemble methods that aim at
improving the predictive performance of a given machine learning
technique, using single (learning an ensemble for each target
variable separately) as well as multi-target setting (learning an
ensemble for all target variables together). We use a more carefully
chosen experimental methodology that allows extensive comparisons
of the predictive performances of all algorithms and perform
statistical significance testing. Finally, we use the model with the
best predictive power for generation of vegetation height and canopy
cover maps of the Kras region of Slovenia and provide a more
comprehensive discussion of the experimental results and the use of
the map products.1 Remote sensing. See also:http://rst.gsfc.nasa.gov (accessed February 11, 2010).
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The remainder of the paper is organized as follows. In Section 2, we
first describe the data and the methodology used in this study. In
Section 3, we then present the results of the modeling process. Next,
in Section 4 we present a comparison of the models, discussion on the
significance of the results and the map products. Finally, in Section 5
we outline our conclusions and discuss possible directions for further
work.

2. Materials and methods

2.1. Study area

The study area measures 72,226 ha of the Kras region in western
Slovenia, in the vicinity of the Adriatic Sea, 5 km from theGulf of Trieste.
The local Gauss–Krueger coordinates of the study area are: Min.Easting
(X)=389,000, Max.Easting(X)=433,000, Min.Northing(Y)=37,000
and Max.Northing(Y)=86,000.

The relief of the study area is roughwith slopes rangingup to60°, the
average slope being 22°. The investigated area covers very diverse and
not evenly distributedvegetation. TheKras regionhas about 40different
types of trees, which includes species such as: Ostrya carpinifolia (Hop-
hornbeam), Pinus nigra (Black pine), Quercus pubescens (Downy Oak),
Fraxinus orneus (South Europea Flowering Ash) and Fagus syllvatica
(European Beech). In Fig. 1we present themap of Slovenia onwhichwe
mark the area recorded by LiDAR and the Kras region. The study area is
encompassed with a black contour line, whereas the study area
recorded with LiDAR is covered with black color. The white dots within
the LiDAR area present parts not covered with vegetation i.e. denote
settlements and were not included in the study.

2.2. Data description

2.2.1. Data sources
Passive optical systems such as aerial photography and Landsat, as

well as active systems like Radar and LiDAR, provide cost-effective
methods of spatial data collection and measurements of forest
properties. The suitability of a sensor type for a particular study
depends on the scale of study and the nature of the observed objects
or processes. In this study, we used the Landsat and LiDAR remote
sensing techniques for estimating of the vegetation height and canopy
cover.

2.2.1.1. Landsat. Landsat 7 Thematic Mapper Plus ETM+2 is the latest
satellite of the Landsat Program designed to collect radiance data in 7
bands (channels) of reflected energy and one band of emitted energy.
A well calibrated ETM+ enables one to convert the raw solar energy
collected by the sensor to absolute units of radiance. The eight bands
of ETM+ data are used to discriminate between Earth surface
materials through the development of spectral signatures. Thus, a
multi-spectral data set having both high (30 m) andmedium to coarse
(250 m–1000 m) spatial resolution is acquired on a global basis
repetitively and under nearly identical atmospheric and plant
physiological conditions. The panchromatic band has spatial resolu-
tion of 15 m, while the thermal infrared (TIR) channel has a resolution
of 60 m.

2.2.1.2. LiDAR. Airborne laser scanning (ALS), also termed airborne
LiDAR (Light Detection And Ranging) is an optical remote sensing
technology that measures properties of scattered light to find range
and/or other information of a distant target. The laser emits a light
pulse which is scattered (reflected) from the object back to the sensor.
By measuring the round trip time of an emitted laser pulse from the

sensor to a reflecting surface and back again, the distance from the
sensor to the surface is determined.

LiDAR is one of the most promising remote sensing techniques for
detailed measurements of forest properties because of its immediate
generation of 3D data, self-georeferencing, high spatial resolution
(typically 0.5–5 points/m, positional error 10–20 mphcm), accuracy
(raging from 15 to 20 cm Root Mean Square Error (RMSE) vertically
and 20–30 cm horizontally) and acquisition flexibility.3 It enables
detailed measurements and making of maps with quality comparable
to the most passive or active systems. It penetrates through the
vegetation layer to the bare ground, enabling structural rendering of
vegetation and providing 3D data about objects.

With LiDAR, we can directly define the third dimension of forest
layers and the relief under the forest. It is a good source for generation
of digital relief models (DEM) and topographical analysis, especially
for forested areas, where classical aerophotogrametrical techniques
do not give satisfactory accuracy. LiDAR can be used for mapping
forest stands, individual tree canopy detection, etc.

2.2.2. Data description and generation of the dataset
The data used in this study consists ofmulti-spectralmulti-temporal

Landsat satellite imagesand3DLiDAR recordings of the studyarea. From
the Landsat data, we extracted the explanatory variables, while the
LiDAR data was used to extract the target variables (forest properties)
used in the process of learning the predictive model. The spatial unit of
analysis was a 25 m×25m square.

2.2.2.1. Landsat data description. Multi-spectral Landsat ETM+ data
were acquired on August 3rd, 2001, May 18th, 2002, November 10th,
2002, and March 18th, 2003, thus capturing the main phenological
stages of forest vegetation in the area. In Fig. 2 we show a part of a
Landsat ETM+ band 3′ image, that covers the area recorded with
LiDAR, obtained on November 10th, 2002. The Landsat imagery was
first geometrically corrected by orthorectification. Image segmenta-
tion was then applied. The commercially available eCognition image
analysis software, version 2.1 (Definiens Imaging, Munich, Germany)
was used for the image segmentation. The software uses a patented
procedure for multi-resolution segmentation to extract image objects,
exploiting both spatial and spectral information to create objects from
image data. The segmentations are typically visually appealing,
although the users need to interactively select a useful segmentation
level through trial and error (Hay et al., 2003).

Fig. 1. A contour map of Slovenia. The study area is encompassed with a black line
whereas the area recorded with LiDAR is presented with black color. The white dots in
the LiDAR area present the area not covered with vegetation (e.g., settlements) and
these parts were not included in the study.

2 Landsat. See also: http://www.trfic.msu.edu/data_portal/Landsat7doc/landsatch5.
html (accessed February 11, 2010).

3 Instrument technical details. See also: http://arsf.nerc.ac.uk/instruments/altm.asp
(accessed August 18, 2008).
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The typical result of image segmentation is extraction of large
homogeneous image objects (e.g., meadow), small homogeneity
image objects (e.g., forest stand) and small homogeneity objects
embedded in a high contrast, especially for data such as Landsat
imagery. Each of the four Landsat images was segmented at two levels
of spatial detail in order to get realistic object based information that
correspond to the real world objects and later serve as information
carrier and building block for further analysis. The average image
segment sizes were 4 ha for the fine segmentation and 20 ha for the
coarse segmentation. Image segmentation is illustrated in Fig. 3 and it
represents a segmentation of the Landsat image presented in Fig. 2. It
has been derived as a result of fine image segmentation of the third
Landsat channel. The objects are givenwith different colors in order to
be distinguishable among each other (the number of objects is around
45,500).

2.2.2.2. Explanatory variables. In order to represent and display remote
sensed data, we employ basic statistic measures like bandmean value,
standard deviation and others (Jensen, 2004). The statistic measures
can be used further in the analysis of the data directly or indirectly.
The link between remote sensing and statistics is strong; clearly,
remote sensing can be considered a multivariate problem (Kershaw,
1987) and probabilistic methods constitute one of the most powerful
approaches to the analysis of multivariate problems.

Therefore, we generate our explanatory variables from Landsat
imagery data based on statistical information for each band. Based on
the data within each image segment, four statistic measures
(minimum reflectance, maximum reflectance, average reflectance,
and standard deviation of reflectance) were computed for each date,
for each segmentation level, and for each of the Landsat image
channels (2, 3, 4, 5, and 7). Using different segmentation levels, for
each example, we take into account two different kinds of neighbor-
hood (narrow and broader). The information about the narrow
neighborhood is included with the fine image segmentation level and
the broader one is included with the coarse image segmentation level.
In this way, we obtain 160 explanatory variables to be used in the
predictive modeling. As the borders of individual segments were not
identical between dates and segmentation levels, values of the 160
variables were attributed back to individual image pixels, each with
dimension 25 m×25 m.

2.2.2.3. LiDAR data description. An east–west transect measuring
2 km×20 km (highlighted in black in Fig. 1) across a representative
part of the Kras region was flown over by LiDAR, in the spring of 2005.
The equipment included Optech ALTM 3100 LiDAR flown on a
Eurocopter EC-120 B “Colibri” helicopter. The device collects 33,000
laser observations per second in standard operating mode, measuring
height, first, intermediate, only and last returns, angle, radian and

intensity data. From an operating altitude of 1000 m, the resulting
height data has an absolute root mean squared error better than ±
15 cm. The average point cloud density of the LiDAR dataset was
7.5 points/m2, thus 4687.5 discrete 3D LiDAR returns were contained
on average in each 25 m×25 m square.

2.2.2.4. Target variables. The target variables were computed from the
LiDAR data, at the level of 25 m×25 m squares corresponding to
Landsat pixels. The vegetation height (H) for each square (or Landsat
pixel) was computed by averaging the heights of the LiDAR-based
normalized digital surface model (nDSM) within the 25 m×25 m
square. A nDSM is a high resolution raster map showing the relative
height of vegetation above the bare ground. Our nDSM had a
horizontal resolution of 1 m2 and was computed using the REIN
(REpetitive INterpolation) algorithm for calculation of a Digital
Terrain Model (DTM) (Kobler et al., 2007). The REIN algorithm was
developed for generating DTMs under forest cover in steep terrain
using dense LiDAR data (≥5 points/m2): In such conditions, other
filtering algorithms typically have problems distinguishing between
ground returns and off-ground points reflected in the vegetation. A
field validation of the nDSM on a sample of 120 trees confirmed a
vertical RMS error of 0.36 m and a vertical bias of −0.71 m.

The canopy cover (CC)within this study is defined as the percentage
of bare ground within 25 m×25m (or a Landsat pixel), covered by the
vertical projection of the overlying vegetation, higher than 1 m. The
canopy cover for each Landsat pixel was computed as the ratio of the
heights of the LiDAR-based normalized digital surface model (nDSM)
that exceeded1 mrelative height differencebetween the bare groundof
thedigital terrainmodel and the surfaceof the Landsat pixel. The canopy
cover for each 25 m square was computed as the percentage of
vegetation within a pixel. The values of the canopy cover are in the
interval 0–100%.

2.3. Machine learning methodology

Predictive modeling is a machine learning task concerned with
predicting the value of one or more dependent variables (classes,
targets) from the values of independent variables (explanatory
variables). If the target variable is continuous, the task at hand is called
regression. If the target is discrete (it has a finite set of nominal values),
the task at hand is called classification. The tasks of classification and
regression are the two most commonly addressed predictive modeling
tasks in machine learning.

In predictive modeling, a set of data records is taken as input to a
predictive modeling algorithm, and a predictive model (or set of
predictive models called an ensemble) is generated as an output. This
model can then be used to predict values of the target variable for new
data. If we are predicting a value of a single-target variable, then we

Fig. 2. A part of Landsat ETM+ band 3′ image that covers the area recorded with LiDAR acquired on 10.11.2002.

Fig. 3. Fine image segmentation of the Landsat ETM+ band 3′ image acquired on 10.11.2002 (presented in Fig. 2).
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have a single-target prediction task. In the case when we predict the
values of several target variables simultaneously with one model, we
have a multi-target prediction task.

In this study, the machine learning task is to learn a predictive
model (or a set of models) for predicting vegetation height and
canopy cover from an integration of LiDAR and Landsat data. This is a
multi-target prediction task. The target variables are derived from the
LiDAR data and the explanatory variables are extracted from the
Landsat images.

2.3.1. Single-target prediction: decision, regression and model trees
Decision tree learning (Quinlan, 1986) is one of the most widely

used methods for inductive learning. A decision tree is a hierarchical
structure, where the internal nodes contain tests on the descriptive
variables. Each branch of an internal test corresponds to an outcome
of the test, and the prediction for the value of the target variable is
stored in a leaf. To obtain a prediction for a new data record, the
record is sorted down the tree, starting from the root (the top-most
node of the tree). For each internal node that is encountered on the
path, the test is stored in the applied node. Depending on the outcome
of the test, the path continues along the corresponding branch. The
resulting prediction of the tree is taken from the leaf at the end of the
path.

A decision tree is usually constructed with a recursive partitioning
algorithm from a training set of records. The algorithm is known as
Top-Down Induction of Decision Trees (TDIDT). The records include
measured values of the descriptive and the target attributes. The tests
in the internal nodes of the tree refer to the descriptive,while the
predicted values in the leaves refer to the target attributes.

The TDIDT algorithm starts by selecting a test for the root node.
Based on this test, the training set is partitioned into subsets according
to the test outcome. In the case of binary trees, the training set is split
into two subsets: one containing the records for which the test
succeeds (typically the left subtree) and the other containing the
records for which the test fails (typically the right subtree). This
procedure is recursively repeated to construct the subtrees.

The partitioning process stops when a stopping criterion is
satisfied (e.g., the number of records in the induced subsets is smaller
than some predefined value; the length of the path from the root to
the current subset exceeds some predefined value, etc.). In that case,
the predicted value is calculated and stored in a leaf. The predicted
value is the mean value of the target variable calculated over the
records that are sorted into the leaf.

One of the most important steps in the tree induction algorithm is
the test selection procedure. For each node a test is selected by using a
heuristic function computed on the training data. The goal of the
heuristic is to guide the algorithm toward smaller trees with good
predictive performance.

Regression trees are decision trees that predict the value of a
numeric target attribute (Breiman et al., 1984). Each leaf of a
regression tree contains a constant value as a prediction for the target
variable, as regression trees represent piece-wise constant functions.
If the leaf contains a linear regression model that predicts the target
value of examples that reach the leaf, the decision tree in question is
called a model tree (Quinlan, 1992). Model trees have advantages
over regression trees in both compactness and prediction accuracy,
and the ability to exploit local linearity in the data. Another advantage
over regression trees is that model trees can extrapolate the predicted
value outside the range observed in the training cases. In this paper,
we use M5′ regression and model tree algorithm implementation
from the WEKA environment (Witten and Frank, 2005).

2.3.2. Multi-target prediction: multi-target regression trees
Multi-target regression trees (Blockeel, 1998; Struyf and Džeroski,

2006) are a generalization of regression trees for the prediction of
several numeric target variables simultaneously. The leaves of amulti-

target regression tree store a vector of numeric values, instead of
storing a single numeric value. Each component of this vector is a
prediction for one of the target attributes. The components of the
prediction vector are the means of the target variables calculated over
the records that are stored in the leaf. The main advantages of multi-
target regression trees (over building a separate model for each
target) are: (1) a multi-objective model is smaller than the total size
of the individual models for all target variables, and (2) such a multi-
objective model explicates dependencies between the different target
variables.

In this paper, we use the CLUS (Blockeel and Struyf, 2002; Struyf
and Džeroski, 2006) system for constructing (multi-target) regression
trees. The heuristic used for selecting the attribute tests (that define
the internal nodes) in this algorithm is the intra-cluster variance
summed over the subsets induced by the test. The variance function is
standardized so that the relative contribution of the different targets
to the heuristic score is equal. Lower intra-subset variance results in
predictions that are more accurate.

2.3.3. Ensembles
An ensemble method constructs a set of predictive models called

an ensemble (Dietterich, 2000). An ensemble gives a prediction for a
new data record by combining the predictions of the individual
models for that data record. For regression tasks, the final prediction
can be obtained by averaging the output predictions of the models in
the ensemble. The learning of ensembles consists of two steps. In the
first step, we have to learn the base models that make up the
ensemble. In the second step, we have to figure out how to combine
these models (or their predictions) into a single coherent model (or
prediction).

When learning base models it makes sense to learn models that
are accurate and diverse (Hansen and Salamon, 1990). Accurate
models perform better than random guessing on new examples, and
diverse models make different prediction errors on new examples.
The diversity in an ensemble can be introduced in different ways: by
manipulating the training set (e.g., bootstrap sampling, change of
weights of the data instances) or by manipulating the learning
algorithm used to obtain the base models (e.g., introducing random
elements in the algorithm).

Ensemble methods aim at improving the predictive performance
of a given machine learning technique. They aim to improve the
predictive performance of their base classifier when used in a single-
target setting (learn an ensemble for each target attribute separately)
(Breiman, 1996, 2001). In Kocev et al. (2007), it is shown that this
applies also for the multi-target setting (learn one ensemble for all
target attributes). In addition, the ensembles for multi-target
prediction should be preferred because they are faster to learn. In
this work, we use bagging and random forests, the two most widely
used ensemble methods to produce ensembles of regression trees and
multi-target regression trees.

2.3.3.1. Bagging. Bagging (Breiman, 1996) is an ensemble method that
constructs the different basemodels bymaking bootstrap replicates of
the training set and using them to build the individual models. Each
bootstrap sample is obtained by randomly sampling training
instances, with replacement, from the original training set. The
bootstrap sample and the training set have an equal number of
instances. Bagging can give substantial gains in predictive perfor-
mance, when applied to an unstable learner (i.e., a learner for which
small changes in the training set result in large changes in the
predictions), such as classification and regression tree learners.

2.3.3.2. Random forest. A random forest (Breiman, 2001) is an
ensemble of trees, where the diversity among the individual trees is
obtained from two sources: (1) by using bootstrap sampling and
(2) randomization of the selection step of the TDIDT algorithm. At
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each node in the decision tree, a random subset of the input attributes
is taken and the best split is selected from this subset. The size of the
random subset is given by a function of the number of descriptive
attributes. Prediction is made by aggregation (majority vote for
classification or averaging for regression) of the predictions of the
individual models in the ensemble.

3. Results

3.1. Experimental design

3.1.1. Dataset
The dataset consists of 160 explanatory variables and 2 target

variables. The explanatory variables are derived from Landsat data for
two levels of image segmentation, as explained in Section 2. The target
variables are: vegetation height (H) and canopy cover (CC), derived from
LiDAR data. There are 64,000 examples of which 60,607 describe the
vegetation outside a settlement and are used in the process of learning.

3.1.2. The learning algorithms
In this study, one of the objectives is to study the predictive

performance of state-of-the art machine learning algorithm, for the
task of prediction of vegetation height and canopy cover. The problem
of prediction of forest properties inherently represents a multi-target
learning problem: it can be solved by using algorithms that build a
single-target model for each forest property separately or by using
algorithms that build a multi-target model for both forest properties
at the same time. Another dimension of comparison of the predictive
performance is using single models or ensemble of models. In this
study, we investigate this dimension by performing experiments for
single-model prediction and state-of-the-art ensemble prediction
(e.g., bagging and random forests) both in the single-target andmulti-
target setting.

Weuse implementations of the state-of-the-art algorithms from two
open source machine learning systems: WEKA (Witten and Frank,
2005) and CLUS4 (Blockeel and Struyf, 2002; Struyf andDžeroski, 2006).
In total, we performed experiments using 9 different algorithms. First,
weperformed experiments using algorithms that have a singlemodel as
an output. We used the implementations of regression tree (wRT) and
model tree (wMT) algorithm in the WEKA system and single-target
(STRT) and multi-target regression trees (MTRT) implemented in the
CLUS system.Next,we performedexperiments using ensemble learning
algorithms that produce a set of models. In this case, we used the
implementations of the baggingmethod fromWEKA usingmodel trees
as base-level learners (wBagMT), and bagging and random forests of
CLUS regression trees (as base learners) in the CLUS system both in the
single-target (BagSTRT and RFSTRT) andmulti-target setting (BagMTRT
and RFMTRT).

The experiments were performed by using the default parameter
settings for all the algorithms. Single-target regression trees and
multi-target regression trees from the CLUS system are built with the
default heuristic (intra-cluster variance) and default pruning method
(M5 pruning). The minimal number of examples for the method to
form a leaf was 4 examples. The settings for ensembles include the
default pruning method, the number of variables in variable selection
for random forest was set to 5 variables (calculated using the
suggestion by Breiman, 2001), the default ensemble size of 10 and
the default voting type for regression (the mean value).

3.1.3. Evaluation and comparison
Evaluation of themodels was performed using the standard 10 fold

cross-validation evaluation method. All the algorithms were evaluat-

ed on the same folds, in order to allow comparison of the results and
statistical significance testing. We use two regression evaluation
measures to estimate and discuss the predictive performance of the
models: correlation and root mean squared error. Correlation (Corr)
indicates the strength and direction of a linear relationship between
two random variables and is usually expressed through the Pearson
correlation coefficient. Root mean squared error (RMSE) is a
frequently-used measure of the differences between values predicted
by a model of an estimator and the target values actually observed.

To compare the performance of the different algorithms, we use
the corrected Friedman test (Friedman, 1940; Iman and Davenport,
1980). The evaluation measure for each fold of the cross-validation
represents a data point for the statistical test. The test is performed on
each target variable (H and CC) separate for each evaluation measure
(Corr and RMSE).

The Friedman nonparametric test first ranks the algorithms for each
dataset (fold), the best performing algorithm getting the rank of 1. It
then compares the average ranks of the algorithms across datasets
(folds). The null-hypothesis, which states that all the algorithms are
equivalent and so their ranks should be equal.

If the null-hypothesis is rejected, we can proceed with a post-hoc
test. The Nemenyi (1963) test is used when in our case, since all
classifiers are compared to each other. The performance of two
classifiers is significantly different if the corresponding average ranks
differ by at least the critical difference CD. The results of this test are
visualized by using the average rank diagrams on which the critical
distance is also depicted (Demšar, 2006). We consider the differences
in performance significant if the standard p-value is below the
threshold of 0.05.

3.2. Results — predictive performance

Here, we present the predictive performance of the obtained
models in terms of two evaluationmeasures (Corr and RMSE) for both
target variables. The results, presented in Tables 1 and 2, are
represented with the corresponding confidence intervals, to show
the stability of the used algorithms. We can note that the confidence
intervals in both tables are small, due to the size of the dataset (60,607
examples). In Tables 1a and 2a we list the performance for algorithms
that produce single models as output, and in Tables 1b and 2b we list
the performance of ensemble algorithms.

To check whether the differences in performances are statistically
significant, we used the corrected Friedman test for multiple
hypothesis testing. To detect which algorithms perform significantly
better or worse than others, we used the Nemenyi post hoc test. The
results of this procedure are presented in the form of average rank
diagrams in Fig. 4, for each target variable and each evaluation
measure. The ranks are depicted on the axis in such a manner that the
best ranking algorithms are at the right-most side of the diagram. The
critical difference (CD) interval, for a significance level of 0.05, is
computed by the Nemenyi test and is plotted in the upper left corner;
algorithms whose average rank difference is larger than this critical
difference can be considered significantly different with 95% proba-
bility. The algorithms that do not differ significantly are connected
with a line.

The Nemenyi test shows (Fig. 4a and b) that the best performing
algorithms are ensemble methods and in particular random forests of
multi-target regression trees (RFMTRT), while the worst performing
algorithms are single-model algorithms. The test shows that the
performance of the ensemble methods, in terms of correlation
coefficient, is significantly better than the one of single-model
methods. If we compare the multi-target methods, we can see that
random forests of multi-target regression trees perform statistically
better than individual multi-target regression trees: in the case of
bagging, the difference is not statistically significant. Similar conclu-
sions can be drawn if instead of the results for correlation we

4 The system is available at http://www.cs.kuleuven.be/dtai/clus/ (accessed August
18, 2008).
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consider the results for RMSE (see Fig. 4c and d). In general, RFMTRT
constructed from the CLUS system perform significantly better than
any of the individual trees. The only exception to this is the RMSE for
canopy cover, where multi-target regression trees (MTRT) have the
same rank as RFMTRT.

3.3. Results — maps of vegetation height and canopy cover

The second objective of our work is to produce maps of vegetation
height and canopy cover using the predictive models obtained in the
study. For that purpose, we used RFMTRT, which is the best
performing method according to predictive performance, to generate
maps. This model was built using the entire dataset of 60,607
examples, from the representative part of the Kras region (containing
variety of different vegetations) for which we have both Landsat and
LiDAR data available. Next, we translated the RFMTRT model into
functions in the PYTHON5 programming language, that were later on
used in the GIS (Geographical Information System) system to
visualize the predictions in the form of a map. Finally, we generated
maps of vegetation height (see Fig. 5) and canopy cover (see Fig. 6) by
applying the PYTHON functions to the whole Kras region, thus
extrapolating the predictions of the model built on the smaller
representative part of the region using Landsat data available for the
whole region.

4. Discussion

In this study, we compare several machine learning methods on
the task of estimating vegetation height and canopy cover by using
LiDAR and Landsat data. To this end, we redesigned the experiments
from the first two preliminary studies (Džeroski et al., 2006b; Taškova
et al., 2006). We tested additional machine learning methods in order
to improve the accuracy of the predictive models. Beside single- and
multi-target regression trees used in the previous studies, we also use
single- and multi-target ensemble methods.

The best results are obtained using the RFMTRT algorithm, random
forests of multi-target regression trees. Ensemble methods improve
the accuracy of the predictive models. Moreover, the ensembles for
multi-target prediction should be preferred because theyare faster to
learn and predict more than one variable at the same time.

All ensemble methods perform better than the single model
algorithms (wMT, wRT, STRT and MTRT) used. An exception is the
performance in terms of the RMSE for canopy cover whereMTRT have
the same performance as RFMTRT. The average rank diagram shows
that random forests created by CLUS system perform best in all four
cases (see Fig. 4). The difference of the performance between
ensembles of different types of trees is insignificant.

The results from this study are better than results presented in
our preliminary work. Džeroski et al. (2006b) reported a correla-
tion of 0.885 and RMSE=2.25 m for vegetation height and a
correlation of 0.861 and RMSE=0.17 for canopy cover: These were
achieved by using model trees. Taškova et al. (2006) reported a

Table 2
Comparison of RMSE of the predictive models for both target variables: a) Single model algorithms (wRT — WEKA Regression Tree; wMT — WEKA Model Tree; STRT — CLUS Single
Target Regression Tree; MTRT— CLUS Multi-target Regression Tree); b) Ensemble algorithms (wBagMT—WEKA Bag of Model Trees; BagSTRT— CLUS Bag of STRTs; RFSTRT— CLUS
Random Forest of STRTs; RFMTRT — CLUS Random Forest of MTRTs).

a) Single model algorithms

Single-target Multi-target

Target wRT wMT STRT MTRT

H [m] 2.336±0.035 2.271±0.038 2.361±0.025 2.373±0.038
CC [%] 16.068±0.051 15.758±0.129 16.481±0.151 14.708±0.108

b) Ensemble algorithms

Single-target Multi-target

Target wBagMT BagSTRT RFSTRT BagMTRT RFMTRT

H [m] 2.091±0.038 2.071±0.029 2.056±0.030 2.070±0.028 2.054±0.029
CC [%] 14.723±0.079 14.868±0.125 14.713±0.105 14.891±0.109 14.708±0.108

5 http://www.python.org/ (accessed on August 18, 2008).

Table 1
Comparison of correlation coefficients of the predictive models for both target variables: a) Single model algorithms (wRT—WEKA Regression Tree; wMT—WEKAModel Tree; STRT—

CLUS Single Target Regression Tree;MTRT— CLUSMulti-target Regression Tree); b) Ensemble algorithms (wBagMT—WEKABag ofModel Trees; BagSTRT— CLUS Bag of STRTs; RFSTRT—
CLUS Random Forest of STRTs; RFMTRT — CLUS Random Forest of MTRTs).

a) Single model algorithms

Single-target Multi-target

Target wRT wMT STRT MTRT

H 0.876±0.004 0.884±0.004 0.874±0.003 0.880±0.015
CC 0.858±0.002 0.863±0.004 0.851±0.003 0.852±0.013

b) Ensemble algorithms

Single-target Multi-target

Target wBagMT BagSTRT RFSTRT BagMTRT RFMTRT

H 0.902±0.004 0.904±0.003 0.906±0.002 0.904±0.002 0.906±0.002
CC 0.883±0.002 0.880±0.003 0.883±0.002 0.880±0.002 0.883±0.002
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correlation of 0.902 and RMSE=2.19 m for vegetation height and a
correlation of 0.882 and RMSE=0.238 for canopy cover: These
were achieved by using bagging of model trees. The accuracy of the
predictive models is improved by using ensemble methods. In this
more general study, we obtained higher correlation coefficients and
lower error rates. The average error rate (RMSE) of the best models is
2.05 m for the vegetation height and 14% for the canopy cover, whereas
the corresponding correlation coefficients are 0.91 and 0.88.

The investigated study area covers very diverse and not evenly
distributed vegetation. It was selected by taking into account the
diversity and the distribution of the many different vegetation types
present in the Kras region. The Kras region has about 40 different types
of trees,which includes species suchas:O. carpinifolia (Hop-hornbeam),
P. nigra (Black pine), Q. pubescens (Downy Oak), F. orneus (South
Europea Flowering Ash) and F. syllvatica (European Beech). The models
build using the methodology described in this paper can also serve for
estimation of the vegetation height and canopy cover in other study
areas with similar vegetation species. The different vegetation types
have different influences on the structure and the accuracy of themodel.
The different combinations of vegetation species will decrease (in most
of the cases) the accuracy of the predictions of the model. In case of
regions with very diverse vegetation it is preferable to divide the region
into smaller subregions and perform modeling in each subregion
separately. In addition, special attention when modeling the vegetation
properties needs to be focused on the relief of the area.

The generated maps represent a rough, but continuous estimates
of the vegetation height and canopy cover over a large spatial area.
The precision of the derived maps is lower than the precision of the
field measurements done on smaller plots or individual trees within
the study area (see field validation of the nDSM in Section 2.2.2).
Therefore, these maps cannot be used for determination of the
growing stock or other individual tree estimates, but can be useful
when coverage of a grater spatial area is required.

Suchmaps canbeusedas an input for advanced systems suchasGIS to
improve their planning, managing and monitoring capabilities, in
performing a variety of tasks such as land-cover mapping, land-cover
classification, land-usemapping, land-use classification, change detection
and many other forestry, ecological, geological and military applications.
Moreover, themaps canbeused formonitoring andmanaging avariety of
ongoing processes in the forest ecosystems that involve enlargement of
forest areas by spontaneous afforestation of abandoned agricultural land,
forest area reduction, urban rapprochement, as well as vertical growth
and gradual closing of canopy cover of existing forest stands. These maps
can be used in the process ofmonitoring the forest biomass accumulation
and CO2 sink in the Kyoto framework.6 Furthermore they can be used in
estimating the risk of forest fire outbreaks.

In addition, these maps can also serve for temporal comparisons.
Finally, due to their spatial continuity (unlike the discrete sampling
layout of current forest monitoring schemes) potential applications
also include the study of forest habitats and transitional agricultural-
forest habitats, visual landscape assessments, land-use suitability
analysis, visibility analysis for cell phone networks etc. The method-
ology used in this study integrates remote sensing, forestry and
machine learning techniques and can be a powerful tool for diverse
mapping and modeling applications in the future.

5. Conclusions

In this study, we focus on the estimation of forest properties (forest
vegetation height and canopy cover) from remotely sensed data over a
large geographical area (the study area measures 72,226 ha of the Kras

Fig. 4. Average ranks diagrams: a) target variable— H and eval. measure— Corr; b) target variable— CC and eval. measure— Corr; c) target variable— H and eval. measure— RMSE and
d) target variable—CCandeval.measure—RMSE. Algorithmswith lower ranks (far right) performbetter. Algorithmswhoseaverage rankdifference is larger than the critical difference can
be considered significantly differentwith 95% probability. The algorithms that donot differ significantly are connectedwith a line. Algorithm labels are as follows:wRT—WEKARegression
Tree; wMT—WEKAModel Tree; STRT— CLUS Single-target Regression Tree; MTRT— CLUSMulti-target Regression Tree; wBagMT—WEKA Bag of Model Trees; BagSTRT— CLUS Bag of
STRTs; RFSTRT — CLUS Random Forest of STRTs; RFMTRT — CLUS Random forest of MTRTs.

6 Kyoto protocol: http://unfccc.int/resource/docs/convkp/kpeng.html, (accessed
August 18, 2008).
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region in western Slovenia in the vicinity of the Adriatic Sea), by
integrating LiDAR and Landsat satellite data and generating predictive
models of forest properties. We use machine learning methods
for predictive modeling and apply a set of state-of-the-art machine
learning techniques. To model the forest properties we focused on two
dimensions: modeling the parameters with individual models or
ensembles (single model prediction and ensemble prediction) and
modeling the target properties separately or simultaneously (single-
target and multi-target prediction). The results show the advantages of
multi-target over single-target regression, asmulti-targetmodels have a
smaller size and are faster to learn and apply, and the advantage of
ensemble prediction over singlemodel prediction in terms of predictive
performance.

Several contributions are presented in this study. First, we use
state-of-the-art machine learning methodology to model forest
properties, in contrast to the simple statistical methods and linear
regression used in similar studies (Hyde et al., 2006). Second, we
achieved better results in terms of higher correlation coefficients and
lower RMSE errors compared to the results obtained in our
preliminary work (Džeroski et al., 2006b; Taškova et al., 2006). Also,
we perform modeling of the forest properties in diverse forests, as
opposed to modeling of homogeneous forests. Next, we use multi-
temporal multi-spectral Landsat data, obtained in different vegetation
seasons, instead of mono-temporal data used in similar studies.
Finally, we use the accurate and precise LiDAR data to learnmodels for
the representative part of a region and then we extrapolate the
predictions on a larger area using less expensive remote sensing
Landsat data.

The derived models represent a key piece of infrastructure
required in support of sustainable forest management. They serve to

generate forest vegetation map products for a large geographical
area. Although such maps could be generated with exceeding
precision and accuracy purely from LiDAR data, this seems
impractical for the foreseeable future due to the very high cost of
high resolution LiDAR data. Using Landsat data as the main data
source therefore ensures a very acceptable cost benefit ratio.
Moreover, using LiDAR for model calibration seems a very good
replacement for sample plot field measurements of vegetation
height and canopy cover, due to the even higher costs and difficulty
or imprecision of the field measurements.

In future work, we first plan to investigate different image
segmentation algorithms and to see what is the influence of
segmentation on the overall predictive performance. Moreover, we
would like to use other preprocessing methods and techniques and
combine them with domain-based knowledge (e.g., image clustering,
geo-ontologies). Second, we want to incorporate the spatial correlation
and the spatial autocorrelation in the predictivemodels. Finally,we plan
to expand the forest maps to broader areas (i.e., country level). We will
evaluate the predictions of the machine learning models on different
study areas and explore the influence of diverse vegetation and land-
cover types on the accuracy of the results.
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Fig. 5. Map of vegetation height for the Kras region generated by using a random forest of multi-target regression trees model. The legend shows the vegetation height in meters.
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Chapter 7

Comparison of Distances for
Multi-Label Classification with PCTs

In Section 5.4, we discussed the instantiation of the predictive clustering trees
paradigm for predicting sets of discrete values. Using the notation in this disserta-
tion this datatype can be represented as Set[Dicrete].

This datatype appears within the task of multi-label classification. Namely, each
instance in multi-label classification is associated with a value of this type, i.e., with
a set of labels. The task of multi-label classification has received significant attention
in the research community over the past few years and a plethora of various methods
have been proposed.

There is a variety of distances that could be applied on the Sets datatype (given
in Section 2.2.2.2). We need to select distances that are most relevant for sets
of discrete values, i.e., for the task of multi-label classification. In this study, we
selected four distances applicable to this task: Euclidean, Jaccard, Hamming and
Matching distance. We use these distances to instantiate the variance function of
predictive clustering trees.

We evaluate the four distances on 6 benchmark datasets for multi-label classifica-
tion. The selected datasets have various properties in terms of number of instances,
number of labels, number of labels per instance, etc. We used 6 different evalua-
tion measures to assess the predictive performance of the trees with the different
distances.

The results reveal that there is no overall best distance measure. Furthermore,
the best choice for a distance measure is the one that optimizes a selected evaluation
measure. All in all, the Euclidean distance and Hamming loss perform the best when
the performance is averaged across all evaluation measures.

Paper:

Gjorgjioski, V., Kocev, D., & Džeroski, S. (2011). Comparison of distances for multi-label
classification with PCTs. In Proceedings of the 14th International Multi-conference
Information Society (pp. 121–124). Institut Jožef Stefan, Ljubljana.

Author’s contribution: Valentin Gjorgjioski implemented the extension of CLUS
to deal with multi-label classification as a problem of predicting sets of discrete class
values. He also performed all of the experiments on the six datasets. Finally, he
wrote the first draft of the paper and took the comments from the co-authors into
account. This study was designed and supervised by Sašo Džeroski.
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ABSTRACT 
 

Multi-label classification has received significant 
attention in the research community over the past few 
years: this has resulted in the development of a variety of 
multi-label classification methods. These methods either 
transform the multi-label dataset to several simpler datasets 
or adapt the learning algorithm so it can handle the multiple 
labels. In this paper, we consider the latter approach. 
Namely, we use predictive clustering trees to perform 
multi-label classification. Furthermore, we perform an 
experimental comparison of four distance measures used to 
select the splits in the nodes of the trees. The experimental 
evaluation was conducted on 6 benchmark datasets using 6 
different evaluation measures. The results show that, 
averaged overall, the Euclidean distance and the Hamming 
loss yield the best predictive performance. 

 
1 INTRODUCTION 
 
Traditionally, binary classification is concerned with 
deciding whether a given example has (or doesn’t have) a 
single given target property/class. Multi-class classification 
involves the labeling of a given example with a single 
label/class λi from a finite set of disjoint labels L = { λ1, 
λ2,…, λQ}, Q>2. In contrast, multi-label classification learns 
a mapping from an example in the input space (xX) to a 
set of labels (Y L) from the output space L. Note that, 
unlike in multi-class classification, in multi-label 
classification the labels are not mutually exclusive, i.e., a 
single example can be labeled with multiple labels. The 
labels that belong to the output Y are called relevant labels, 
while those from L\Y are called irrelevant for a given 
example. 

The machine learning task of multi-label 
classification data has lately received significant attention 
from the research community [1], which has resulted in 
development of many methods that tackle this task. The 
developed methods can be generally divided into two 
categories: problem transformation and algorithm 
adaptation. Problem transformation methods transform 
problem into one or more single-label classification 
problems. These problems are then solved using a 
commonly used method for single-label classification and, 
afterwards, the output is transformed back into a multi-label 
representation. Algorithm adaptation methods adapt the 

learning algorithms to handle the multi-label data directly. 
In this work, we focus on algorithm adaptation methods. 
Specifically, we use predictive clustering trees (PCTs) [2] 
as classifiers and extend the distance function used when 
learning the tree. PCTs are a generalization of decision 
trees that are capable of predicting structured outputs. 
Namely, PCTs can handle multiple continuous targets, 
multiple discrete targets, time-series [3] and hierarchies of 
classes [4]. In the context of multi-label classification, we 
employ the PCTs for multiple discrete targets where a 
weighted Euclidean distance is used to generate the tests in 
the internal nodes of the tree. Here, we extend the PCTs 
with three distance measures: Hamming distance, Jaccard 
distance and a matching distance. These distances will 
provide additional flexibility for the users when they apply 
PCTs to different domains. 

We compare the predictive performances of the 
PCTs obtained using different distance measures. The 
predictive performance was assessed on several benchmark 
datasets from multi-label classification. The predictive 
performance was measured with six evaluation measures: 
Hamming loss, accuracy, precision, recall, F1 score and 
subset accuracy.  

The remainder of this paper is organized as 
follows. In Section 2, we present the predictive clustering 
trees for multiple discrete targets. We define the distances 
that we use in Section 3. We give the experimental design 
and in Section 4 and the results in Section 5. Section 6 
concludes. 
 
2 PREDICTIVE CLUSTERING TREES 
 
The Predictive Clustering Trees (PCTs) framework sees a 
decision tree as a hierarchy of clusters: the top-node 
corresponds to one cluster containing all data, which is 
recursively partitioned into smaller clusters while moving 
down the tree. The PCT framework is implemented in the 
CLUS system, which is available for download at 
http://www.cs.kuleuven.be/~dtai/clus. 

PCTs can be induced with a standard top-down 
induction of decision trees (TDIDT) algorithm. The 
algorithm takes as input a set of examples and outputs a tree. 
The heuristic that is used for selecting the tests is the 
reduction in variance caused by partitioning the instances. 
By maximizing the variance reduction the cluster 
homogeneity is maximized and it improves the predictive 



 

performance. If no acceptable test can be found, that is, if 
the test does not significantly reduces the variance, then the 
algorithm creates a leaf and computes the prototype of the 
instances belonging to that leaf. The main difference 
between the algorithm for learning PCTs and a standard 
decision tree learner is that the former considers the variance 
function and the prototype function, that computes a label 
for each leaf, as parameters that can be instantiated for a 
given learning task. So far, the PCTs have been instantiated 
for the following tasks: multiple targets prediction [5], 
hierarchical-multi label classification [4] and prediction of 
time-series [3].  

In this paper, we focus on the first task. PCTs that 
are able to predict a tuple of discrete variables are called 
multi-target classification trees (MTCTs). An example of a 
MTCT is shown in Figure 1. This MTCT presents a habitat 
model for 14 bioindicator species [6]. The internal nodes of 
the tree contain tests on the descriptive variables (in this 
case, chemical parameters of the water samples) and the 
leaves store the predictions (in this case, which species are 
encountered and which not in a given water sample). 

The variance is calculated as the sum of the squared 
pairwise distances between the instances, i.e.,  
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The function used to calculate the prototype is then 
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is an instance from the dataset and is called medoid. 
Different distances can be used depending on the application 
domain. By default, PCTs use the Euclidean distance. 

Figure 1: An example of a predictive clustering tree for 
predicting multiple discrete targets. The leaves predict the 
presence or absence for each bioindicator species. 
 
3 DISTANCES FOR MULTI-LABEL LEARNING 
 
In a multi-label learning setup, the target variable is a set of 
labels. Therefore, we can readily use distances over sets. 
Another approach to the problem is to see the multi-label 
classification problem as a predicting tuples of discrete 
targets and use distances over tuples. PCTs (and decision 
trees) have been previously used in the later context [2]. 
The focus of this study is the former approach to multi-
label classification. In the remainder of this section, we 

present the distances over sets that can be used for 
extension of PCTs for multi-label classification. 
 
3.1 Euclidean distance 
The target in multi-label classification can be represented as 
a tuple of 0/1 values. The length of the target tuple is the 
number of all labels in the dataset. In this case, the 
Euclidean distance between two sets of labels Ci and Cj is 
defined as the Euclidean distance between their vector 
representations. 
 
3.2 Hamming distance 
The Hamming distance between two strings (i.e., bit-
vectors) of equal length is the number of positions at which 
the corresponding symbols are different. In other words, it 
measures the minimum number of substitutions required to 
change the first string into the second. In terms of sets, the 
Hamming distance between two sets Ci and Cj is defined as:  

jijiji CCCCCCh ),(  

3.3 Jaccard distance 
The Jaccard distance measures the dissimilarity between 
two sets by dividing the difference of the sizes of the union 
and the intersection of the two sets with the size of the 
union. The Jaccard distance can be calculated as follows.  
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3.4 Matching distance (MD) 
 
Motivated by a recently introduced distance on sets of 
structured objects, this distance is based on the matching 
between object from the sets. The matched objects do not 
contribute to the distance, which has the value of the 
unmatched part of the larger dataset, as defined below 

  jijiji CCCCCCmd  ,max),(  

 
4 EXPERIMENTAL DESIGN 
 

We begin by describing the benchmark datasets used in this 
study. Next, we present the most typically used evaluation 
measures for multi-label classification. We then give the 
experimental setup for the data analysis. 
 

4.1 Datasets 
We use 6 multi-label classification benchmark problems. 

Parts of the selected problems were used in various studies 
and evaluations of methods for multi-label learning. In the 
process of selection of problems, we opted to include 
benchmark datasets with different scale and from various 
application domains. Table 1 presents the basic statistics of 
the datasets. The datasets vary in size: from 391 up to 5318 
training examples, from 202 up to 2635 testing examples, 
from 16 up to 1449 features, from 5 to 53 labels, and from 
1.20 to 6.34 average number of labels per example. 

 



 

 domain N/T D Q lc

water quality ecology 721/339 16 14 5.07 
emotions music 391/202 72 6 1.87 
mediana text 5318/2635 79 5 1.20 
soil quality ecology 1308/636 54 39 6.34 
medical text 645/333 1449 45 1.25 
enron text 1123/579 1001 53 3.38 

Table 1. Description of the datasets in terms of application 
domain, number of training (N) and test (T) examples, the 
number of features (D), the total number of labels (Q) and 
label cardinality (lc). The problems are ordered by their 
overall complexity roughly calculated as N x D x Q. 

 
4.2 Evaluation measures  

The evaluation of the predictive performance for 
multi-label learning systems differs from that of classical 
single-label learning systems. In any multi-label experiment, 
it is essential to include multiple and contrasting measures 
because of the additional degrees of freedom that the multi-
label setting introduces. In our experiments, we used various 
evaluation measures that have been suggested by 
Tsoumakas et al [1]. In particular, we used six example-
based evaluation measures: Hamming loss, accuracy, 
precision, recall, F1 score and subset accuracy.  

In the definitions below, Yi denotes the set of true 
labels of example xi and h(xi) denotes the set of predicted 
labels for the same examples. All definitions refer to the 
multi-label setting. 

Hamming loss evaluates how many times an example-
label pair is misclassified, i.e., label not belonging to the 
example is predicted or a label belonging to the example is 
not predicted. The smaller the value of hamming_loss(h), 
the better the performance. The performance is perfect when 
hamming_loss(h) = 0. This metric is defined as: 
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where Δ stands for the symmetric difference between the 
two sets, N is the number of examples and Q is the total 
number of possible class labels. 

Accuracy for a single example xi is defined by the 
Jaccard similarity coefficients between the label sets h(xi) 
and yi. Accuracy is micro-averaged across all examples. 
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Precision is defined as: 
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Recall is defined as: 
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F1 score is the harmonic mean between precision and 
recall and is defined as: 
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F1 score is an example based metric and its value is an 
average over all examples in the dataset. F1 score reaches its 
best value at 1 and worst at 0. 

 
Subset Accuracy is defined as follows: 
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where I(true) = 1 and I(false) = 0. This is a very strict 
evaluation measure as it requires the predicted set of labels 
to be an exact match of the true set of labels. 
 
4.3 Experimental setup 
We used the predictive clustering framework implemented 
in the CLUS system to investigate the performance of the 
different distance measures. To this end, we constructed 
single PCTs.  

The PCTs were pruned with the F-test pruning method. 
This method checks whether a given test statistically 
significantly reduces the intra-cluster variance at a given 
significance level. An optimal significance level was 
selected by using internal 3-fold cross validation, from the 
following values: 0.01, 0.02, 0.03, 0.04 and 0.05.  
 
5 RESULTS 
Tables 2, 3, 4, 5, 6 and 7 show the results from the 
experimental evaluation of the distance measures.  In the 
following, we briefly discuss the results for each evaluation 
measure. The Hamming distance has best predictive 
performance according to the Hamming loss measure. This 
is expected, since the trees with this distance are set to 
optimize that measure. Furthermore, since the Euclidean and 
Hamming distance are quite similar for vectors with 1/0 
values, the Euclidean distance also has good predictive 
performance. On average, the Jaccard distance has the 
lowest predictive performance. 
 
 Euc. Ham. Jac. MD 
water quality 0.314 0.309 0.528 0.312 
emotions 0.249 0.272 0.274 0.253 
mediana 0.157 0.165 0.355 0.203 

soil quality 0.106 0.099 0.169 0.100 

medical 0.013 0.013 0.014 0.013

enron 0.058 0.055 0.062 0.057 

Table 2. The Hamming loss measure for different distances 

In terms of accuracy, the Euclidean, Hamming and MD 
distance have similar predictive performance on average, 
while the Euclidean distance has the best performance on 
three datasets. The Jaccard distance, on the other hand, has 
the worst performance on average. 
 
 



 

 Euc. Ham. Jac. MD 
water quality 0.298 0.315 0.370 0.317 
emotions 0.496 0.469 0.488 0.493 
mediana 0.589 0.588 0.302 0.505 

soil quality 0.481 0.502 0.347 0.504 

medical 0.733 0.731 0.718 0.727 

enron 0.413 0.435 0.427 0.425 

Table 3. The accuracy for the different distances 

The precision and recall have inverted values. In the case of 
precision, Jaccard distance is the best performing, while for 
recall it is the worst performing. The distance to the other 
methods is large in the both cases. This means that the labels 
produced with Jaccard distance are reliable (low false 
positive rate); however, they do not cover all relevant labels 
for a given example (high false negative rate). The other 
three distances have similar performances to each other. 
 
 Euc. Ham. Jac. MD 
water quality 0.352 0.382 0.860 0.390 
emotions 0.583 0.561 0.635 0.580 
mediana 0.605 0.641 0.465 0.602 

soil quality 0.595 0.606 0.556 0.618 

medical 0.755 0.761 0.746 0.755 

enron 0.502 0.524 0.558 0.523 

Table 4. The precision for the different distances  

 
 Euc. Ham. Jac. MD 
water quality 0.625 0.623 0.397 0.614 
emotions 0.613 0.592 0.571 0.600 
mediana 0.722 0.704 0.359 0.595 

soil quality 0.719 0.730 0.492 0.712 

medical 0.779 0.787 0.771 0.776 

enron 0.568 0.600 0.552 0.572 

Table 5. The recall for the different distances  

The F1 score balances the performance measured by the 
precision and the recall. On average, the Jaccard distance 
has the lowest performance (because of the weak results for 
recall). The Hamming distance is slightly better than the 
remaining two distances. 
 
 Euc. Ham. Jac. MD 
water quality 0.423 0.441 0.523 0.444 
emotions 0.574 0.551 0.575 0.568 
mediana 0.634 0.642 0.385 0.567 

soil quality 0.617 0.634 0.491 0.635 

medical 0.757 0.760 0.746 0.753 

enron 0.515 0.543 0.535 0.530 

Table 6. The F1 scores for the different distances 

The subset accuracy measures the fraction of the complete 
and accurate predictions. In this regard, the Euclidean 
distance has the best average performance, while MD is the 
best performing distance on four datasets. The worst 
performing distance is the Jaccard distance. 
 
 Euc. Ham. Jac. MD 
water quality 0.009 0.012 0.000 0.018 
emotions 0.262 0.233 0.223 0.272 
mediana 0.468 0.440 0.063 0.327 

soil quality 0.036 0.041 0.003 0.044 

medical 0.661 0.640 0.631 0.646 

enron 0.145 0.149 0.149 0.150

Table 7. The subset accuracy for the different distances  

6  CONCLUSIONS 
In this paper, we have presented an experimental evaluation 
of four distance measures for multi-label classification. The 
evaluation was performed on 6 benchmark datasets using 6 
evaluation measures.  
The results show that there is no overall best distance 
measure. The best choice for a distance measure is the one 
that optimizes a selected evaluation measure. For example, 
the Hamming distance works the best when optimizing the 
Hamming loss, while the best according to precision is the 
Jaccard distance (since there is a strong connection between 
precision and the Jaccard coefficient). All in all, the 
Euclidean distance and Hamming loss perform the best 
averaged across all evaluation measures. 
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Chapter 8

Analysis of Time Series Data with
Predictive Clustering Trees

In this chapter, we present the instantiation of predictive clustering trees (PCTs)
for the task of predicting time series, i.e., for tasks where the output datatype is
TimeSeries or Sequence[Real]. Time series prediction is a highly relevant task that
can be encountered in many areas, including biology (e.g., predicting gene responses
to stress) and environmental sciences (e.g., predicting forests response to forestry
management, soil response to agricultural practices, etc.). Thus far, this task has
been addressed by first performing some clustering over the time series and then, post
facto, trying to associate some predictive model to the obtained clusters. Moreover,
some authors have considered this task outside of the time series modelling domain,
by completely ignoring the temporal/sequential nature of the data and treating the
problem within the task of regression (Soon & Lee, 2007; Ralanamahatana et al.,
2005; Keogh, 2006).

We include here two publications that present the instantiation of PCTs for time
series prediction. The first publication appeared at a workshop and mainly focused
on the computational aspects of the extension of the PCT framework for time series
prediction. It proposed a method that constructs PCTs by partitioning a given set
of time series into homogeneous clusters. In addition, PCTs provide a symbolic
description of the clusters.

We evaluate the PCTs for time series prediction on several time series datasets
from microarray experiments. Each dataset records the change over time in the ex-
pression level of yeast genes as a response to a change in environmental conditions.
We consider 12 different changes/stresses in the environmental conditions. Further-
more, we describe each of the genes by its functional annotation (i.e., its functions
as taken from the Gene Ontology catalogue of gene functions). The evaluation re-
veals that PCTs for time series prediction are able to successfully cluster genes with
similar responses, and to predict the time series based on the description of a gene.

The second publication focuses more on the application of predictive clustering
trees for predicting time series data to the analysis of microarray data. In biol-
ogy, analyzing time course data is usually a two-step process that clusters similar
temporal profiles and then derives descriptions of the clusters (e.g., gene ontology
terms that are enriched in the clusters) by using expert knowledge. In this work,
we propose to use predictive clustering trees for the task at hand. Their advantage
over typical clustering approaches is that they partition the time course data into
homogeneous clusters, while at the same time providing symbolic descriptions of
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the clusters. We use the same 12 yeast micro-array time series datasets as above.
We demonstrate that PCTs are able to cluster genes with similar temporal profiles,
yield a predictive model of the temporal profiles of genes based on a cluster proto-
type, and provide cluster descriptions, all in a single step. Finally, we discuss the
knowledge that is produced by the different models we constructed.

Papers:

Džeroski, S., Gjorgjioski, V., Slavkov, I., & Struyf, J. (2006). Analysis of time series data
with predictive clustering trees. In Proceedings of the Fifth International Workshop on
Knowledge Discovery in Inductive Databases (Vol. 4747, pp. 63–80). LNCS. Springer,
Berlin.

Slavkov, I., Gjorgjioski, V., Struyf, J., & Džeroski, S. (2010). Finding explained groups
of time-course gene expression profiles with predictive clustering trees. Molecular
BioSystems, 6 (4), 729–740. IF=3.825.

Author’s contribution: For both papers, Valentin Gjorgjioski designed and im-
plemented the algorithms for predictive clustering of time series and performed the
experiments with the software on the yeast data. He wrote some parts of the papers
(describing the details of the implemented algorithms). The studies were designed
and supervised by Sašo Džeroski.
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Abstract. Predictive clustering is a general framework that unifies
clustering and prediction. This paper investigates how to apply this
framework to cluster time series data. The resulting system, Clus-TS,
constructs predictive clustering trees (PCTs) that partition a given set
of time series into homogeneous clusters. In addition, PCTs provide a
symbolic description of the clusters. We evaluate Clus-TS on time series
data from microarray experiments. Each data set records the change over
time in the expression level of yeast genes as a response to a change in
environmental conditions. Our evaluation shows that Clus-TS is able to
cluster genes with similar responses, and to predict the time series based
on the description of a gene. Clus-TS is part of a larger project where the
goal is to investigate how global models can be combined with inductive
databases.

1 Introduction

Predictive clustering is a general framework that combines clustering and pre-
diction [1]. Predictive clustering partitions a given data set into a set of clusters
such that the instances in a given cluster are similar to each other and dissimilar
to the instances in other clusters. In this sense, predictive clustering is identical
to regular clustering [11]. The difference is that predictive clustering associates
a predictive model to each cluster. This model assigns instances to clusters and
provides predictions for new instances. So far, decision trees [1,22] and rule sets
[25] have been used in the context of predictive clustering.

This paper investigates how predictive clustering can be applied to cluster
time series [13]. A time series is an ordered sequence of measurements of a
continuous variable that changes over time. Fig. 1.a presents an example of
eight time series partitioned into three clusters: cluster C1 contains time series
that increase and subsequently decrease, C2 has mainly decreasing time series
and C3 mainly increasing ones. Fig. 1.b shows a so-called predictive clustering
tree (PCT) for this set of clusters. This is the predictive model associated with
the clustering.

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 63–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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GO0043232
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GO0000313
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c1 = c2 =

c3 =

Fig. 1. (a) A set of time series clustered into three clusters. (b) A predictive clustering
tree associated with this clustering. Each leaf of the tree corresponds to one cluster.

We propose a new algorithm called Clus-TS (Clustering-Time Series) that
constructs trees such as the one shown in Fig. 1.b. Clus-TS instantiates the
general PCT induction algorithm proposed by Blockeel et al. [1] to the task of
time series clustering. This is non-trivial because the general algorithm requires
computing a centroid for each cluster and for most distance measures suitable
for time series clustering, no closed algebraic form centroid is known.

We evaluate Clus-TS on time series data from microarray experiments [9].
Each data set records the change over time in the expression level of yeast genes
in response to a change in environmental conditions. A lot of work has been done
on clustering this type of short time series gene expression data [4]. Our main
motivation is to use alternative distance measures (that mainly take the shape
of the time series into account) and to construct clusters that can be explained
by a given set of features. Besides the time series, various other data about each
gene are available. Here, we consider motifs and terms from the Gene Ontology
(GO) [5]. The motifs are subsequences that occur in the amino acid sequence
of many genes. The motivation for using motifs as features is due to Curk et
al. [2], who use motifs in a similar analysis. The motifs or GO terms appear in
the internal nodes of the PCT (Fig. 1.b) and provide a symbolic description of
the clusters. C1 includes, for example, all genes that have terms “GO:0043232”
and “GO:0000313” in their description. This is related to itemset constrained
clustering [20], which clusters vectors of numeric values and constrains each
cluster by means of an itemset.

So far, most research on inductive databases (IDBs) [10,3] has focused on
local models (i.e., models that apply to only a subset of the examples), such
as frequent item sets and association rules. Clus-TS is part of a larger project
[7,22,25] were the goal is to investigate how IDBs can be extended to global
models, such as decision trees (for prediction) and mixture models (for clus-
tering). Predictive clustering has been argued to provide a general framework
unifying clustering and prediction, two of the most basic data mining tasks, and
is therefore an excellent starting point for extending IDBs to global models [25].
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In particular, we are interested in developing a system that is applicable to
clustering and prediction in many application domains, including bioinformatics.
Extending PCTs to time series clustering is a step in this direction.

2 Predictive Clustering Trees

2.1 Prediction, Clustering, and Predictive Clustering Trees

Predictivemodeling aims at constructingmodels that canpredict a target property
of an object from a description of the object. Predictive models are learned from
sets of examples, where each example has the form (D, T ), with D being an ob-
ject description and T a target property value. While a variety of representations
ranging from propositional to first order logic have been used for D, T is almost
always considered to consist of a single target attribute called the class, which is
either discrete (classification problem) or continuous (regression problem).

Clustering [11], on the other hand, is concerned with grouping objects into sub-
sets of objects (called clusters) that are similar w.r.t. their description D. There is
no target property defined in clustering tasks. In conventional clustering, the no-
tion of a distance (or conversely, similarity) is crucial: examples are considered to
be points in a metric space and clusters are constructed such that examples in the
same cluster are close according to a particular distance metric. A centroid (or pro-
totypical example) may be used as a representative for a cluster. The centroid is
the point with the lowest average (squared) distance to all the examples in the clus-
ter, i.e., the mean or medoid of the examples. Hierarchical clustering and k-means
clustering are the most commonly used algorithms for this type of clustering (see
Section 4.4).

Predictive clustering [1] combines elements fromboth prediction and clustering.
As in clustering, we seek clusters of examples that are similar to each other, but in
general taking both the descriptive part and the target property into account (the
distance measure is defined on D ∪ T ). In addition, a predictive model must be
associated to each cluster. The predictive model assigns new instances to clusters
based on their description D and provides a prediction for the target property T .
A well-known type of model that can be used to this end is a decision tree [17]. A
decision tree that is used for predictive clustering is called a predictive clustering
tree (PCT, Fig. 1.b). Each node of a PCT represents a cluster. The conjunction of
conditions on the path from the root to that node gives a description of the clus-
ter. Essentially, each cluster has a symbolic description in the form of a rule (IF
conjunction of conditions THEN cluster)1, while a tree structure represents the
hierarchy of clusters. Clusters that are not on the same branch of a tree do not
overlap.

In Fig. 1, the description D of a gene consists of GO terms with which the gene
is annotated, and the target property T is the time series recorded for the gene. In
general, we could include both D and T in the distance measure. We are, however,
most interested in the time series part. Therefore, we define the distance measure

1 This idea was first used in conceptual clustering [15].



66 S. Džeroski et al.

only on T . We consider various distance measures in Section 3.1. The resulting
PCT (Fig. 1.b) represents a clustering that is homogeneous w.r.t. T and the nodes
of the tree provide a symbolic description of the clusters. Note that a PCT can also
be used for prediction: use the tree to assign a new instance to a leaf and take the
centroid (denoted with ci in Fig. 1.b) of the corresponding cluster as prediction.

2.2 Building Predictive Clustering Trees

Table 1 presents the generic induction algorithm for PCTs [1]. It is a variant of
the standard greedy recursive top-down decision tree induction algorithm used,
e.g., in C4.5 [17]. It takes as input a set of instances I (in our case genes described
by motifs or GO terms and their associated time series). The procedure BestTest
(Table 1, right) searches for the best acceptable test (motif or GO term) that can
be put in a node. If such a test t∗ can be found then the algorithm creates a new
internal node labeled t∗ and calls itself recursively to construct a subtree for each
cluster in the partition P∗ induced by t∗ on the instances. If no acceptable test can
be found, then the algorithm creates a leaf, and the recursion terminates. (The pro-
cedure Acceptable defines the stopping criterion of the algorithm, e.g., specifying
maximum tree depth or a minimum number of instances in each leaf).

Table 1. The generic PCT induction algorithm Clus

procedure PCT(I) returns tree

1: (t∗, h∗, P∗) = BestTest(I)
2: if t∗ �= none then
3: for each Ik ∈ P∗ do
4: treek = PCT(Ik)

5: return node(t∗,
�

k{treek})
6: else
7: return leaf(centroid(I))

procedure BestTest(I)

1: (t∗, h∗, P∗) = (none, 0, ∅)
2: for each possible test t do
3: P = partition induced by t on I
4: h = Var(I) −�Ik∈P

|Ik|
|I| Var(Ik)

5: if (h > h∗) ∧ Acceptable(t, P) then
6: (t∗, h∗, P∗) = (t, h, P)

7: return (t∗, h∗, P∗)

Up till here, the algorithm is identical to a standard decision tree learner. The
main difference is in the heuristic that is used for selecting the tests. For PCTs,
this heuristic is the reduction in variance (weighted by cluster size, see line 4 of
BestTest). Maximizing variance reduction maximizes cluster homogeneity. The
next section discusses how cluster variance can be defined for time series.

An implementation of the PCT induction algorithm is available in the Clus
system, which can be obtained at http://www.cs.kuleuven.be/∼dtai/clus.

3 PCTs for Time Series Clustering

3.1 Distance Measures

In this section, we discuss a number of distance measures for time series, which
will be used in the definition of cluster variance later on. Some measures require
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that all time series in the data set have the same length. This property holds
true for the data that we consider in the experimental evaluation (Section 4).

If all time series have the same length then one can represent them as real
valued vectors and use standard vector distance measures such as the Euclidean
or Manhattan distance. These measures are, however, not always appropriate
for time series because they assume that the time series are synchronized, and
mainly capture the difference in scale and baseline. Below, we discuss three dis-
tance measures that have been proposed to alleviate these shortcomings.

Dynamic Time Warping. (DTW) [19] can capture a non-linear distortion
along the time axis. It accomplishes this by assigning multiple values of one of
the time series to a single value of the other. As a result, DTW is suitable if the
time series are not properly synchronized, e.g., if one is delayed, or if the two
time series are not of the same length. Fig. 2.a illustrates DTW and compares
it to the Euclidean distance.

dDTW(X, Y ) with X = α1, α2, . . . , αI , Y = β1, β2, . . . , βJ is defined based on
the notion of a warping path between X and Y . A warping path is a sequence
of grid points F = f1, f2, . . . , fK on the I × J plane (Fig. 2.b). Let the distance
between two values αik

and βjk
be d(fk) = |αik

− βjk
|, then an evaluation

function Δ(F ) is given by Δ(F ) = 1/(I + J)
∑K

k=1 d(fk)wk. The weights wk are
as follows: wk = (ik − ik−1) + (jk − jk−1), i0 = j0 = 0. The smaller the value of
Δ(F ), the more similar X and Y are. In order to prevent excessive distortion,
we assume an adjustment window (|ik − jk| ≤ r). dDTW(X, Y ) is the minimum
of Δ(F ). dDTW can be computed with dynamic programming in time O(IJ).

Both the Euclidean distance and DTW take into account differences in scale
and baseline. If a given time series is identical to a second time series, but scaled
by a certain factor or offset by some constant, then the two time series will be
distant. For many applications, these differences are, however, not important;
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Fig. 2. (a) Euclidean distance (top) compared to DTW (bottom). (b) A warping path.
(Artwork courtesy of Eamonn Keogh).
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only the shape of the time series matters. The next two measures are more ap-
propriate for such applications.

Correlation. The correlation coefficient r(X, Y ) between two time series X and
Y is calculated as

r(X, Y ) =
E[(X − E[X ]) · (Y − E[Y ])]

E[(X − E[X ])2] · E[(Y − E[Y ])2]
, (1)

where E[V ] denotes expectation (i.e., mean value) of V . r(X, Y ) measures the
degree of linear dependence between X and Y . It has the following intuitive
meaning in terms of the shapes of X and Y : r close to 1 means that the shapes
are similar. If there is a linear relation between X and Y then the time series are
identical but might have a different scale or baseline. r close to -1 means that X
and Y have “mirrored” shapes, and r close to 0 means that the shapes are unre-
lated (and consequently dissimilar). Based on this intuitive interpretation, we can
define the distance between two time series as dr(X, Y ) =

√
0.5 · (1 − r(X, Y )).

dr has, however, two drawbacks. First, it is difficult to properly estimate corre-
lation if the number of observations is small (i.e., a short time series). Second,
dr can only capture the linear dependencies between the time series. Two time
series that are non-linearly related will be distant. Fig. 3 illustrates this effect.

A Qualitative Distance. A third distance measure is the qualitative distance
proposed by Todorovski et al. [23]. It is based on a qualitative comparison of the
shape of the time series. Consider two time series X and Y (Fig. 3). Then choose
a pair of time points i and j and observe the qualitative change of the value of
X and Y at these points. There are three possibilities: increase (Xi > Xj), no-
change (Xi ≈ Xj), and decrease (Xi < Xj). dqual is obtained by summing the
difference in qualitative change observed for X and Y for all pairs of time points,
i.e.,

dqual(X, Y ) =

n−1∑

i=1

n∑

j=i+1

2 · Diff (q(Xi, Xj), q(Yi, Yj))

N · (N − 1)
, (2)

with Diff (q1, q2) a function that defines the difference between different quali-
tative changes (Fig. 2). Roughly speaking, dqual counts the number of disagree-
ments in change of X and Y .

dqual does not have the drawbacks of the correlation based measure. First, it
can be computed for very short time series, without decreasing the quality of the
estimate. Second, it captures the similarity in shape of the time series, regardless

Table 2. The definition of Diff (q1, q2)

Diff (q1, q2) increase no-change decrease

increase 0 0.5 1
no-change 0.5 0 0.5
decrease 1 0.5 0
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dEuclid(X, Y ) = 2.45

dDTW(X, Y ) = 0.63

dr(X, Y ) = 0
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(b)
dEuclid(X, Y ) = 2.65
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dr(X, Y ) = 0.12

dqual(X, Y ) = 0

Fig. 3. Comparison of four distance measures for time series. Time series (a) are linearly
related resulting in dr(X, Y ) = 0. Time series (b) are non-linearly related, but still have
a similar shape, resulting in dqual(X, Y ) = 0.

of whether their dependence is linear or non-linear (Fig. 3). In the experimental
evaluation, we will use dqual (Section 4).

3.2 Computing Cluster Variance

Recall from Section 2.2 that the PCT induction algorithm requires a measure
of cluster variance in its heuristics. The variance of a cluster C can be defined
based on a distance measure as

Var(C) =
1

|C|
∑

X∈C

d2(X, c) , (3)

with c the cluster centroid of C. To cluster time series, d should be a distance
measure defined on time series, such as the ones discussed in the previous section.

The centroid c can be computed as argminq

∑
X∈C d2(X, q). We consider two

possible representations for c: (a) the centroid is an arbitrary time series, and
(b) the centroid is one of the time series from the cluster (the cluster prototype).
In representation (b), the centroid can be computed with |C|2 distance compu-
tations by substituting q with each time series in the cluster. In representation
(a), the space of candidate centroids is infinite. This means that either a closed
algebraic form for the centroid is required or that one should resort to approx-
imative algorithms to compute the centroid. No closed form for the centroid is
known in representation (a) for the distance measure dqual. To the best of our
knowledge, the same holds for dDTW and dr.

An alternative way to define cluster variance is based on the sum of the
squared pairwise distances (SSPD) between the cluster elements, i.e.,

Var(C) =
1

2|C|2
∑

X∈C

∑

Y ∈C

d2(X, Y ) . (4)

(The factor 2 in the denominator of (4) ensures that (4) is identical to (3) for
the Euclidean distance.) The advantage of this approach is that no centroid is
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required. It also requires |C|2 distance computations. This is the same time com-
plexity as the approach with the centroid in representation (b). Hence, using the
definition based on a centroid is only more efficient if the centroid can be com-
puted in time linear in the cluster size. This is the case for the Euclidean distance
in combination with using the pointwise average of the time series as centroid.
For the other distance measures, no such centroids are known. Therefore, we
choose to estimate cluster variance using the SSPD.

A second advantage is that (4) can be easily approximated by means of sam-
pling, e.g., by using,

Var(C) =
1

2|C|m
∑

X∈ C

⎛
⎝ ∑

Y ∈ sample(C,m)

d2(X, Y )

⎞
⎠ , (5)

with sample(C, m) a random sample without replacement of m elements from
C, instead of (4) if |C| ≥ m. The computational cost of (5) grows only linearly
with the cluster size. In the experimental evaluation, we compare (4) to (5).

3.3 Cluster Centroids for the Tree Leaves

The PCT induction algorithm places cluster centroids in its leaves, which can
be inspected by the domain expert and used as a prediction. For these centroids,
we use representation (b) as discussed above.

4 Analyzing Gene Expression Time Series with PCTs

4.1 The Problem

DNA microarray analysis is an interesting application area for short time series
clustering. Clustering genes by their time expression pattern makes sense because
genes which are co-regulated or have a similar function, under certain conditions,
will have a similar temporal profile. Instead of simply clustering the expression
time series with, e.g., HAC, and later on elucidating the characteristics of the
obtained clusters (as done in e.g., [4]), we perform constrained clustering with
PCTs. This yields the clusters and symbolic descriptions of the clusters in one
step.

We use the data from a study conducted by Gasch et al. [9]. The purpose of
the study is to explore the changes in expression levels of yeast (Saccharomyces
cerevisiae) genes under diverse environmental stresses. Various sudden changes
in the environmental conditions are tested, ranging from heat shock to amino
acid starvation for a prolonged period of time. The gene expression levels of
around 5000 genes are measured at different time points using microarrays. The
data is log-transformed and normalized based on the time-zero measurement of
yeast cells under normal environmental conditions. We use three sets of exper-
iments from Gasch et al. [9]: amino acid starvation (AAS), diauxic shift (DS),
and diamide treatment (DT).
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4.2 The Mining Scenario

Our mining scenario consists of two steps. In a first step, we use a local pattern
mining algorithm to construct patterns based on the description of the yeast
genes. In a second step, we use these local patterns as features to construct
PCTs. We use two types of features: motifs and GO terms [5].

For the first set of features, we mine frequent subsequences (motifs) occurring
in the DNA sequences of the yeast genes, which we obtain from the Stanford
database. We use the constraint based mining algorithm FAVST [12,16]. FAVST
supports three types of constraints: minimum frequency, and minimum and max-
imum motif length. We query FAVST for sequences that appear in 25% of the
genes and consist of at least 8 nucleotides. In this way, we obtain approximately
300 motifs ranging from 8 to 10 nucleotides. These motifs are passed to Clus-TS
to build PCTs with the motifs in the internal nodes.

In the second set of features, each feature is a GO term. We obtain the GO
term annotations for each yeast gene from the Gene Ontology [5] (version April,
2006). Note that the GO terms are structured in a hierarchy. We use both the
part of and is a relations to include for each gene all relevant GO terms. To
limit the number of features, we set a minimum frequency threshold: each GO
term must appear for at least 50 of the genes.

4.3 Predicting Time Series with PCTs

Recall that PCTs can be used both for prediction and clustering. PCTs predict
values just like regular decision trees. They sort each test instance into a leaf
and assign as prediction the label of that leaf. PCTs label their leaves with the
training set centroids of the corresponding clusters. In this section, we evalu-
ate PCTs in a predictive setting and in Section 4.5 we assess their clustering
performance.

To evaluate predictive performance, we need an error metric. An obvious
candidate is the root mean squared error (RMSE), which is defined as

RMSE(I, T ) =

√
1

|I|
∑

X∈ I

d2(T (X), series(X)) , (6)

with I the set of test instances, T the PCT that is being tested, T (X) the time
series predicted by T for instance X , and series(X) the actual series of X .

We compare the PCT built by Clus-TS to a default predictor DEF that always
predicts the overall training set centroid. We measure predictive RMSE using 10
fold cross-validation. We set the minimum number of time series in each cluster
to 10 and all other parameters of Clus-TS to their default values. Clus supports
size constraints by means of the post pruning method proposed by Garofalakis et
al. [8], which employs dynamic programming to find the most accurate subtree
no larger than a given number of leaves. Here, accuracy is estimated as training
set RMSE (see also [22]). Fig. 4 presents the results for different values of the size
constraint.
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The PCTs with motifs as features do not perform well (RMSE close to that of
DEF) and quickly overfit for larger size trees. The optimal tree size for the PCTs
with GO terms seems to be around 30 nodes. The PCTs with GO terms perform



Analysis of Time Series Data with Predictive Clustering Trees 75

better, but still have a relatively high RMSE. Fig. 4 also compares Clus-TS with
the SSPD variance estimate with quadratic time complexity (PCT N2) to the
linear approximation with sample size m = 10 (PCT lin.). Both estimates yield
a comparable predictive performance. PCT N2 performs slightly better for small
trees, but becomes worse for larger trees. PCT N2 is a factor 6.8 to 12.6 slower
than PCT lin.

From a biological viewpoint, the PCTs cluster genes that have a similar func-
tion (GO terms) and a similar response in expression level to a certain change
in environmental conditions. One problem is that, as noted by Gasch et al. [9],
only a subset of the genes (about 900) have a stereotypical response to the envi-
ronmental stress. That is, only a subset of the genes can be accurately clustered,
whereas the other genes have an uncorrelated response. As a result, we hypothe-
size that the PCTs are able to more accurately predict the time series of a subset
of the genes. We therefore perform the following experiment. Besides recording
the predicted time series for each test set gene, we also record a confidence value
for each prediction. We then sort the genes by confidence value and compute
the RMSE of the top n percent most confident predictions. We use the training
set RMSE of the leaf that made the prediction as confidence estimate. This is
similar to the approach used for generating a ROC curve for a decision tree [6].
Fig. 5 presents the results2. It shows that more accurate predictions are obtained
if we restrict the test set based on the confidence of the predictions. For example,
if time series are predicted for the top 5%, then the RMSE decreases to about
50% of that of DEF.

Fig. 6, 7, and 8 show as an illustration the PCT for each data set obtained
with the maximum size set to 5 leaves. They also show the cluster centroids for
each of the leaves.

4.4 Hierarchical Agglomerative Clustering

In this section, we briefly discuss Hierarchical Agglomerative Clustering (HAC)
(see, e.g., [14]). We use HAC as a baseline to compare Clus-TS to. HAC is one
of the most widely used clustering approaches. It produces a nested hierarchy of
groups of similar objects, based on a matrix containing the pairwise distances
between all objects. HAC repeats the following three steps until all objects are
in the same cluster:

1. Search the distance matrix for the two closest objects or clusters.
2. Join the two objects (clusters) to produce a new cluster.
3. Update the distance matrix to include the distances between the new cluster

and all other clusters (objects).

2 PCTs are obtained with the same parameters as before, except that we use validation
set based pruning instead of specifying a size constraint. Clus-TS uses here 1000
genes of the original training set for pruning and the rest for the tree construction
(suggested by [24]). Simply selecting a PCT from Fig. 4 is unfair; it corresponds to
optimizing the size parameter on the test set.
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There are four well known HAC algorithms: single-link, complete-link, group-
average, and centroid clustering, which differ in the cluster similarity measure
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they employ. We decided to use single-link HAC because it is usually considered
to be the simplest approach and it has the lowest time complexity. Furthermore,
it yields a better intra cluster variation than the PCTs. Therefore, we did not
consider more elaborate approaches. Single-link HAC computes the distance be-
tween two clusters as the distance between the closest pair of objects. The HAC
implementation that we use has a computational cost of O(N2), with N the
number of time series, and for efficiency it uses a next-best-merge array [14].

An important drawback of single-link HAC is that it suffers from the chaining
effect [14], which in some cases may result in undesirable elongated clusters.
Because the merge criterion is strictly local (it only takes the two closest objects
into account), a chain of points can be extended over a long distance without
regard to the overall shape of the emerging cluster.

4.5 Clustering Time Series with PCTs

In this section, we compare PCTs to HAC (Section 4.4). The evaluation metric
that we use is intra cluster variation (ICV) defined as

ICV(C) =
∑

Ci∈ C

|Ci|
|C| Var(Ci) , (7)

with C the set of clusters (PCT or HAC leaves), |C| the data set size, and Var(Ci)
the variance of cluster Ci (Equation 4).

We measure ICV for different values of the size constraint (Section 4.3). The
minimum cluster size is set to 5. For HAC, we cut the hierarchy of clusters at
different levels to obtain measurements for a varying number of clusters. Fig. 9
presents the results. For the data sets AAC and DS, HAC is able to decrease
ICV much faster than PCTs. The reason is that PCTs constrain the clusters
based on the given features. If the ICV-wise best split at a given point in the
cluster hierarchy can not be described in terms of the features, then Clus-TS
will select a suboptimal split. It is therefore important to have good descriptive
features when performing predictive clustering.

To test the impact of the features, we constructed artificial data sets with the
same time series, but with as features the characteristic vector of the clustering
produced by HAC, that is, one Boolean feature for each cluster (internal nodes
and leaves) indicating for each example if it belongs to that particular cluster or
not. Fig. 9 shows that, given these features, Clus-TS even outperforms HAC.

On the DT data set, HAC performs worse compared to Clus-TS. Note that
this may happen because HAC is also heuristic (e.g., because of the chaining
effect, cf. Section 4.4).

5 Future Work

We plan to extend the experimental evaluation. This includes testing more data
sets (e.g., all changes in environmental conditions studied in [9], or other types
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of short time series data), working with domain experts to interpret the cluster-
ings, and using more types of descriptive features. Our experiments show that
having appropriate features is very important for predictive clustering. It would
be interesting to try experiments with more features, possibly automatically
constructed using feature construction methods.

In Section 3.2, we considered two representations for the cluster centroid that
are both time series. The centroid, however, does not need to be in the same do-
main as the objects that are being clustered. It would be interesting to investi-
gate more expressive representations of the cluster centroid, such as a parametric
representation of the distribution of the time series. The advantage of such an ap-
proach, while it can be computationally more expensive, is that it captures more
information about the cluster. This is akin to classification with the Gini index or
information gain heuristics [18], which summarize a set of examples by means of
its class distribution instead of the majority class.

We plan to incorporate different types of constraints in our models. This is im-
portant in the context of inductive databases because the inductive queries might
include various types of constraints on the resulting PCTs. Our current system
already includes accuracy and size constraints [22]. In further work, we wish to
investigate constraints more specific to clustering [26] and in particular clustering
of time series.

Another direction of research is investigating how PCTs, and in particular
PCTs for clustering time series, can be integrated tightly with inductive data-
bases. Fromont and Blockeel [7] and Slavkov et al. [21] present ongoing work in
this direction.

6 Conclusion

This paper proposes predictive clustering trees (PCTs) to cluster time series
data. The main advantage of using PCTs over other clustering algorithms, such
as hierarchical agglomerative clustering and k-means, is that PCTs cluster the
time series and provide a description of the clusters at the same time. This allows
one to relate various heterogeneous data types and to draw conclusions about
their relations.

Using PCTs for time series data is non-trivial because for many appropriate
distance measures (correlation based, dynamic time warping, and a qualitative
distance), no closed algebraic form for the centroid is known. Therefore, we pro-
pose to compute cluster variance based on the sum of squared pairwise distances
(SSPD) between the cluster elements. This method has not been used previously
in predictive clustering and is one of the contributions of the paper. Our experi-
ments show that the SSPD can be efficiently approximated by means of sampling.

Our approach combines local models (motifs of DNA) with global models
(PCTs). The local models are used to describe clusters and can be used to
predict cluster membership. Such a combination of models is a typical feature
required from an inductive database: a first query is used to mine the local
models and a second query returns global models based on these local models.
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The experimental evaluation shows that PCTs can be used for predicting
the expression response of yeast genes to different changes in environmental
conditions. This, however, proved to be a hard task and more research is required,
e.g., to find more predictive features.
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In biology, analyzing time course data is usually a two-step process, beginning with clustering of

similar temporal profiles. After the initial clustering, depending on the expert’s knowledge,

descriptions of the clusters are elucidated (e.g., Gene Ontology terms that are enriched in the

clusters). In this paper, we investigate the application of so-called predictive clustering trees

(PCTs) for the analysis of time series data. PCTs are a part of a more general framework of

predictive clustering, which unifies clustering and prediction. Their advantage over usual

clustering approaches is that they partition the time course data into homogeneous clusters while

at the same time providing symbolic descriptions of the clusters. We evaluate our approach on

multiple yeast microarray time series datasets. Each dataset records the change over time in the

expression level of yeast genes as a response to a specific change in environmental conditions. We

demonstrate that PCTs are able to cluster genes with similar temporal profiles, yield a predictive

model of the temporal profiles of genes based on a cluster prototype, and provide cluster

descriptions, all in a single step.

1. Introduction

Gene expression is a temporal process that is highly regulated.

Much work in bioinformatics studies this process in order to

better understand the function of individual genes and to gain

insight into complete biological systems. The task most

commonly addressed in this context is the task of clustering

time series of gene expression data, where the aim is to

discover groups of genes with similar temporal profiles of

expression and to find common characteristics of the genes in

each group. Clustering genes by their time expression pattern

is important, because genes that are co-regulated or have a

similar function will have similar temporal profiles under

certain conditions.

The purpose of our research is to develop a clustering

approach that is well suited for analyzing short time series,

and to demonstrate its usefulness on time series expression

data. Besides finding clusters, e.g., groups of genes, we also

aim to find descriptions/explanations for the clusters. Instead

of first clustering the expression time series and elucidating the

characteristics of the obtained clusters later on (as done in,

e.g., ref. 1), we perform so-called constrained clustering, which

yields both the clusters and their symbolic descriptions all in

one step.

The constrained clustering is performed by using predictive

clustering trees (PCTs), which are a part of a more general

framework, namely predictive clustering. This general framework

of predictive clustering combines clustering and prediction.2

Predictive clustering partitions a given dataset into a set of

clusters such that the instances in a given cluster are similar to

each other and dissimilar to the instances in other clusters.

In this sense, predictive clustering is identical to regular

clustering.3 The difference is that predictive clustering associates

a predictive model to each cluster. This model assigns instances

to clusters and provides predictions for new instances. So far,

decision trees2,4 and rule sets5 have been used in the context of

predictive clustering.

This paper investigates how predictive clustering can be

applied to cluster time series,6 i.e., sequences of measurements

of a continuous variable that changes over time. For example,

Fig. 1a shows eight time series partitioned into three clusters:

cluster C1 contains time series that increase and subsequently

decrease, C2 has mainly decreasing time series and C3 mainly

increasing ones. Fig. 1b shows a so-called predictive clustering

tree (PCT) for this set of clusters. The tree represents a

hierarchical clustering of the time series, where each leaf

corresponds to one of the three clusters. At each leaf, a

prototype is given for the cluster. This is the predictive model

associated with the cluster. Finally, each cluster is described by

a set of conditions. For example, cluster C1 includes all genes

that are annotated with the Gene Ontology terms

‘‘GO:0043232’’ and ‘‘GO:0000313’’.

We first propose an extension of the general PCT induction

algorithm2 to the task of time series clustering. We use the

name ‘‘Clus-TS’’ (Clustering-Time Series) for this extension.

From a computational viewpoint, applying the PCT induction

algorithm to time series clustering is non-trivial because the

general algorithm requires computing a centroid for each

cluster and for most distance measures suitable for time series

clustering, no closed algebraic form centroid is known.
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We also demonstrate the usefulness of Clus-TS on several

time series datasets generated by microarray expression

profiling.7 Each dataset records the change over time in the

expression level of yeast genes in response to a different type of

change in environmental conditions. There has been significant

research related to clustering this type of short time series gene

expression data,1,8–13 using several different distance measures.

Our approach uses an alternative distance measure (that

mainly takes the shape of the time series into account) and

constructs clusters together with their explanations in terms of

a given set of descriptive features. Here, as descriptive features,

we consider terms from the Gene Ontology (GO),14 but this

can be extended to any other type of gene descriptions (e.g.,

KEGG pathways,15 regulatory motifs). The GO terms appear

in the internal nodes of the PCT (Fig. 1b) and provide a

symbolic description of the clusters.

In the remainder of the paper, we first give an overview of

related work. We next present our methodology in more detail:

this includes a description of the predictive clustering framework,

the PCT induction algorithm, the distance measure used for

clustering, and the methodology for evaluating predictive error.

We then present the results of our analysis of the yeast gene

expression time profiles, where we evaluate our approach in

terms of predictive error and the usefulness of the descriptions

derived from the PCTs. We conclude the paper with a discussion

in light of the presented results and methodology.

2. Related work

A large body of work has been devoted to the task of

analyzing expression time series data. Bar-Joseph16 presents

an overview of the most important aspects that are relevant

when analyzing expression time series data. This includes

experimental design, data preprocessing (dealing with differences

in sampling rates, missing values, and noise), finding significant

genes, modeling gene interaction, and clustering expression

time series.

Many different clustering algorithms3 have been used to

cluster expression time series data. The most well-known

algorithm is probably UPGMA, which was proposed by Eisen

et al. in 199817 and performs hierarchical clustering based on

correlation. More recently, several advanced time series

clustering methods have been presented. These model the time

series, for example, using spline curves,8,10 an autoregressive

model,11,13 or a mixture of hidden Markov models.12

Datta and Datta9 compare six clustering algorithms for

expression time series data experimentally. Their comparison

includes two hierarchical clustering algorithms (among which

UPGMA), divisive clustering (Diana), fuzzy clustering (Fanny),

a model based clustering method, and k-means. They found

Diana to be a solid and robust performer across different

evaluation measures. A review of the most common evaluation

measures for clustering is provided by Handl et al.18

Often, the clustering methods are not applied to all genes,

but only to genes that do respond to the change in environ-

mental conditions or treatment. A gene responds to the

treatment if the null hypothesis stating that its expression over

time is constant can be rejected.19 Several methods have been

proposed to identify such genes and a comparison can be

found in Mutarelli et al.20 An advantage of our method is that

it detects such genes during the clustering process itself by

assigning confidence values to genes.

Due to the cost of microarray analysis and of obtaining

samples, most expression time series are relatively short

(r8 points). Ernst et al.1 propose a clustering method designed

for such short time series. Their method creates all possible

expression profiles under the constraint that the maximal

expression change between subsequent time points is bounded

by a fixed number of units. It then assigns time series to the

closest profile (in terms of correlation) thereby forming clusters.

Our method is also tailored to short time series, but instead of

using correlation, we opt for a qualitative distance measure that

can be reliably estimated from short time series.

After clustering, Ernst et al.1 label the clusters by finding

GO categories that are significantly enriched in the clusters.

Our method also provides a description for each cluster in

terms of GO categories, but finds these during the constrained

clustering process itself. As a result, all genes in a cluster

are guaranteed to belong to the GO categories from the

description. This is closely related to the constrained clustering

method by Sese et al.21 The main difference is that their

method deals with static gene expression data and not with

time series, and that their cluster descriptions are restricted to

item-sets.

3. Methodology

3.1 Prediction, clustering, and predictive clustering trees

Predictive modeling aims at constructing models that can

predict a target property of an object from a description of

Fig. 1 (a) A set of time series clustered into three clusters. (b) A predictive clustering tree associated with this clustering. Each leaf of the tree

corresponds to one cluster and stores the cluster’s prototype which is used for prediction.

730 | Mol. BioSyst., 2010, 6, 729–740 This journal is �c The Royal Society of Chemistry 2010



the object. Predictive models are learned from sets of exam-

ples, where each example has the form (D,T), with D being an

object description and T a target property value. For example,

D can be the measured gene expression levels of a certain

sample, and T whether the corresponding tissue is cancerous

or healthy. While a variety of representations, ranging from

propositional to first order logic, have been used for D, T is

almost always a single target attribute called the class, which

is discrete for classification problems or continuous for

regression problems.

Clustering,3 on the other hand, is concerned with grouping

objects into subsets of objects (called clusters) that are similar

with respect to their description D: this is called distance based

clustering. There is no target property defined in clustering

tasks. In conventional clustering, the notion of a distance (or

conversely, similarity) is crucial: examples are considered to be

points in a metric space and clusters are constructed such that

examples in the same cluster are close according to a particular

distance defined on the descriptive space D. A centroid (or

prototypical example) may be used as a representative for a

cluster. The centroid is the point with the lowest average

(squared) distance to all the examples in the cluster, i.e., the

mean or medoid of the examples. Hierarchical clustering and

k-means clustering are the most commonly used algorithms

for this type of clustering.3

Predictive clustering2 combines elements from both

prediction and clustering. As in clustering, we seek clusters

of examples that are similar to each other. The distance

measure is defined on D , T, taking both the descriptive part

and the target property into account. In addition, a predictive

model must be associated to each cluster. The predictive model

assigns new instances to clusters based on their description

D and provides a prediction for the target property T. A

well-known type of model that can be used to this end is the

decision tree.22 A decision tree that is used for predictive

clustering is called a predictive clustering tree (PCT,

Fig. 1b). Each node of a PCT represents a cluster. The

conjunction of conditions on the path from the root to that

node gives a description of the cluster. Essentially, each cluster

has a symbolic description in the form of a rule (IF conjunction

of conditions THEN cluster)z, while a tree structure represents
the hierarchy of clusters. Clusters that are not on the same

branch of a tree do not overlap.

In Fig. 1, the description D of a gene consists of GO terms

with which the gene is annotated, and the target property T is

the time course expression recorded for that gene. In general,

we could include both D and T in the distance measure.

We are, however, most interested in the time course part.

Therefore, we define the distance measure only on T. We

consider the so-called qualitative distance measure (QDM),24

described in section 3.5. The resulting PCT (Fig. 1b) represents

a clustering that is homogeneous w.r.t. T and the internal

nodes of the tree provide a symbolic description of the clusters.

Note that a PCT can also be used for prediction: we can use

the tree to assign a new instance to a leaf and take the centroid

(denoted with ci in Fig. 1b) of the corresponding cluster as a

prediction.

3.2 Building predictive clustering trees

The generic algorithm for constructing PCTs2 is presented in

Table 1. It is a variant of the standard greedy recursive

top-down decision tree induction algorithm used in ref. 22.

It takes as input a set of instances I; in our case these are genes

described by GO terms and their associated time course

measurements. The algorithm calls the procedure BestTest

(Table 1, right) to search for the best acceptable test (GO

term) that can be put in a node. If such a test t* can be found

then the algorithm creates a new internal node labeled t*, splits

the instances into several subsets (partition P*) according to

the outcome of the test for each instance, and calls itself

recursively to construct a tree for each of the subsets in P*.

If no acceptable test can be found, then the algorithm creates a

leaf, and the recursion terminates. The procedure ‘‘Acceptable’’

defines the stopping criterion of the algorithm, e.g., specifying

maximum tree depth or a minimum number of instances in

each leaf. We enforce different constraints on the size of the

tree by means of the post pruning method proposed by

Garofalakis et al.,25 which employs dynamic programming

to find the most accurate subtree no larger than a given

number of leaves.

Up till here, the algorithm is identical to a standard decision

tree learner. The main difference is in the heuristic that is used

for selecting the tests. For PCTs, this heuristic is the reduction

in variance (weighted by cluster size, see line 6 of BestTest).

Maximizing variance reduction maximizes cluster homo-

geneity. The next section discusses how cluster variance can

be defined for time series.

An implementation of the PCT induction algorithm is

available in the Clus system, which can be obtained at

http://www.cs.kuleuven.be/~dtai/clus.

3.3 Computing cluster variance

The PCT induction algorithm requires a measure of cluster

variance in its heuristics. The variance of a cluster C can be

defined based on a distance measure as

VarðCÞ ¼ 1

jCj
X
X2C

d2ðX ; cÞ; ð1Þ

Table 1 Pseudo-code for the algorithm Clus that induces predictive
clustering trees (PCTs). The two key subroutines of the algorithm are
BestTest(I) and Centroid(I). The first selects the best test t* among the
possible tests, according to the heuristic h, which for each test
t measures the reduction of variance between the dataset I and the
partition P = I1, I2 produced by the test. The second procedure
calculates the cluster centroid

z This idea was first used in conceptual clustering.23
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with c the cluster centroid of C. To cluster time series, d should

be a distance measure defined on time series, such as the QDM

defined in section 3.5.

The centroid c can be computed as argminq
P

XAC d2(X, q).

We consider two possible representations for c: (a) the

centroid is an arbitrary time series, and (b) the centroid is

one of the time series from the cluster (the cluster prototype).

In representation (b), the centroid can be computed with |C|2

distance computations by substituting q with each time series

in the cluster. In representation (a), the space of candidate

centroids is infinite. This means that either a closed algebraic

form for the centroid is required or that one should resort to

approximative algorithms to compute the centroid. No closed

form for the centroid is known in representation (a) for the

QDM distance.

An alternative way to define cluster variance is based on the

sum of the squared pairwise distances (SSPD) between the

cluster elements, i.e.,y

VarðCÞ ¼ 1

2jCj2
X
X2C

X
Y2C

d2ðX ;YÞ: ð2Þ

The advantage of this approach is that no centroid is required.

It also requires |C|2 distance computations. This is the

same time complexity as the approach with the centroid in

representation (b). Hence, using the definition based on a

centroid is only more efficient if the centroid can be computed

in time linear in the cluster size. This is the case for the

Euclidean distance in combination with using the pointwise

average of the time series as centroid. For QDM no such

centroids are known. Therefore, we choose to estimate cluster

variance using the SSPD.

A second advantage is that (2) can be easily approximated

by means of sampling, e.g., by using,

VarðCÞ ¼ 1

2jCjm
X
X2C

X
Y2 sampleðC;mÞ

d2ðX ;YÞ

0
@

1
A; ð3Þ

with sample(C, m) a random sample without replacement of m

elements from C, instead of (2) if |C| Z m. The computational

cost of (3) grows only linearly with the cluster size. In the

experimental evaluation, we only use (3), as a previous

experimental comparison shows only small differences

between (2) and (3) (results not shown).

The PCT induction algorithm places cluster centroids in its

leaves, which can be inspected by the domain expert and used

as a prediction. For these centroids, we use representation (b)

as discussed above.

3.4 Estimating the predictive error of PCTs

PCTs make predictions just like regular decision trees.22 They

sort each test instance into a leaf and assign as prediction the

label of that leaf. PCTs label their leaves with the training set

centroids of the corresponding clusters.

To evaluate the predictive performance of PCTs, we first

need an error measure and also a method to estimate it. For an

error measure we use the root mean squared error (RMSE),

which is defined as:

RMSEðI ;TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jI j
X
X2I

d2ðTðXÞ; seriesðXÞÞ
s

; ð4Þ

with I the set of test instances, T the PCT that is being tested,

T(X) the time series predicted by T for instance X, series(X) the

actual series of X, and d the qualitative time course distance

measure (described in section 3.5).

For estimating the predictive performance of the PCTs we

use k fold cross-validation. In cross-validation the dataset D is

first split into k random subsets {D1, D2, . . .Dk}. We then use

k � 1 subsets to build the predictive model (in this case the

PCT) and we record its error (i.e., RMSE) on the left-out

subset(fold). We repeat this k times, each time leaving out a

different subset for testing the error. We obtain the final error

estimate by averaging the errors obtained for all of the n

instances of the dataset D.

err ¼ 1

n

X
i2D

errðPCTðD�iÞ;DiÞ ð5Þ

3.5 Qualitative distance measure

Several distance measures have been defined for time series. If

all time series have the same length then one can represent

them as real valued vectors and use standard vector distance

measures such as the Euclidean or Manhattan distance. It is

also possible to use a correlation based measure to determine

the degree of linear dependence between two time-series.17

Dynamic Time Warping (DTW)26 is appropriate to capture

non-linear distortion along the time axis and it is suitable if the

time series are not properly synchronized (this is useful if one

is delayed, or if the two time series are not of the same length).

These measures are, however, not always appropriate for

time course clustering, and in particular not for analyzing the

short time courses of expression data. The simple Euclidean or

the DTW distance mainly capture the difference in scale and

baseline. If a given time series is identical to a second time

series, but scaled by a certain factor or offset by some constant,

then the two time series will be distant (Fig. 2). Correlation is

difficult to properly estimate if the number of observations is

small (i.e., short time course data) and it only captures the

linear dependencies between the time series.

For our application (i.e., clustering short time course gene

expression data), the differences in scale and size are not of

great importance; only the shape of the time series matters.

Namely, we are interested in grouping together time-course

profiles of genes that react in the same way to a given

condition, regardless of the intensity of the up- or down-

regulation.

For that reason, we use the qualitative distance measure

proposed by Todorovski et al.24 It is based on a qualitative

comparison of the shape of the time series. Consider two time

series X and Y (Fig. 2). Then choose a pair of time points i and

j and observe the qualitative change in the value of X and Y at

these points. There are three possibilities: increase (Xi > Xj),

no-change (Xi E Xj), and decrease (Xi o Xj). dqual is obtained
y The factor 2 in the denominator of (2) ensures that (2) is identical to
(1) for the Euclidean distance.
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by summing the difference in qualitative change observed for

X and Y for all pairs of time points, i.e.,

dqualðX ;YÞ ¼
Xn�1
i¼1

Xn
j¼iþ1

2 �Diff ðqðXi;XjÞ; qðYi;YjÞÞ
N � ðN � 1Þ ; ð6Þ

with Diff(q1,q2) a function that defines the difference between

different qualitative changes (Table 2, Fig. 2). Roughly

speaking, dqual counts the number of disagreements in change

of X and Y.

QDM does not have the drawbacks of correlation based

measures. First, it can be computed for very short time series,

without decreasing the quality of the estimate. Second, it

captures the similarity in shape of the time series, regardless

of whether their dependence is linear or non-linear (Fig. 2).

4. Results

In this section, we present and evaluate the results of the

analysis of time course gene expression data with PCTs. The

expression data measures the response of yeast genes to

different types of environmental stress and we first give a brief

description of it. We then show how the produced PCT models

can be interpreted in order to obtain biologically meaningful

knowledge. We also discuss the similarity of the biological

processes that are involved in the response to different types

of stress. We finally present the results of experiments

performed for assessing the predictive performance of the

constructed PCTs.

4.1 Dataset description

For our experiments, we use the time-series expression data

from the study conducted by Gasch et al.,7 which are publicly

available. The purpose of the study is to explore the changes in

expression levels of yeast (Saccharomyces cerevisiae) genes

under diverse environmental stresses. The gene expression

levels of around 5000 genes are measured at different time

points using microarrays. The data is log-transformed and

Table 2 The definition of Diff(q1,q2)

Diff(q1,q2) Increase No-change Decrease

Increase 0 0.5 1
No-change 0.5 0 0.5
Decrease 1 0.5 0

Fig. 2 Comparison of four distance measures for time series. Time series (a) are linearly related resulting in dr(X, Y) = 0. Time series (b) are

non-linearly related, but still have a similar shape, resulting in dqual(X, Y) = 0.

Fig. 3 On the left-hand side, we show a sample PCT with 5 leaves, produced for the diamide treatment dataset. The GO terms that appear in the

nodes are used as descriptions for clusters C1 to C5, found at the leaves of the tree. On the right-hand side, we show each predicted cluster

prototype, and its related cluster size and RMSE. Clusters C1 to C3 show significant temporal changes in gene expression and have a relatively low

error. Cluster C1 includes genes that have an immediate and very significant down-regulation during diamide exposure. C3 shows the same

tendency, except the genes are less down-regulated and there is a short time-lag in their response. Cluster C2 contains genes that are up-regulated

during stress. All three cluster prototypes show that changes in gene expression levels are transient. If we just follow the ‘‘no’’ branch of the tree we

reach the cluster C5. Its size indicates that the bulk of genes fall into this cluster. We believe that most of the genes that do not have a coordinated

stress response fall into this cluster. Indicative of this is the cluster prototype, which shows no major changes in gene expression and has a large

error.
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normalized based on the time-zero measurement of yeast cells

under normal environmental conditions.

Various sudden changes in the environmental conditions are

tested, ranging from heat shock to amino acid starvation for a

prolonged period of time. We used a total of 10 datasets

(different stress conditions) for our analysis. We perform

a comparative analysis of the obtained descriptions from all

of the datasets in section 4.4. For a more detailed discussion of

the obtained descriptions (section 4.3) we considered four

representative datasets, for different types of stressful conditions

(temperature, chemical and starvation). Namely, we consider

heat shock (from 25 to 37 1C), diamide treatment, DTT

(dithiothreitol) exposure and nitrogen starvation.

From these original time series datasets, we construct

extended datasets by including gene descriptions. We obtained

the GO term annotations for each yeast gene from the Gene

Ontology14 (version June, 2009). As the GO terms are

structured in a hierarchy, we use both the part_of and is_a

relations to include all relevant GO terms for each gene. To

limit the number of features, we set a minimum frequency

threshold: each included GO termmust appear in the annotations

for at least 50 of the 5000 genes.

4.2 Interpretation of PCTs for time course profiles

As explained in section 1, a PCT represents a hierarchical

clustering of the time course data, where each leaf corresponds

to one cluster. In Fig. 3, we present a sample PCT. For

practical purposes, we show a small tree with just 5 leaves,

obtained when yeast is exposed to diamide. We also show the

cluster centroids for each of the leaves. By following the path

from the root of the tree to a leaf, we can obtain the

description for each of the clusters.

For example, if we want to derive the description of cluster

C2, we begin from the root GO term ‘‘GO:0044085’’, we follow

the ‘‘no’’ branch, obtaining the description ‘‘GO:0044085 =

no’’. We then add the ‘‘GO:0006412= yes’’ and ‘‘GO:0044429=

yes’’ by following the ‘‘yes’’ branches ending up at cluster

C2. So, the final description of cluster C2 is the following

conjunction: ‘‘GO:0044085 = no AND GO:0006412 = yes

AND GO:0044429 = yes’’. This can be interpreted as follows:

genes that are annotated by both ‘‘GO:0006412’’ and

‘‘GO:0044429’’, but not by ‘‘GO:0044085’’ are contained in

cluster C2 and have a temporal profile represented by the

prototype of cluster C2.

It should be noted here that for our application only the

positive branches of the tree are semantically meaningful. In a

biological context, the description ‘‘GO:0044085 = no’’ is not

very meaningful because it simply tells us that the genes in

cluster C2 are not annotated by that term. Therefore, to

describe a cluster we only take the positive ‘‘yes’’ terms, which

means that for describing C2 we would only use ‘‘GO:0006412 =

yes AND GO:0044429 = yes’’.

After deriving the descriptions from all of the clusters

(except for cluster C5), we represent them using a heatmap

(Fig. 4). Each row in the heatmap represents a cluster

prototype, the more intense the colours, the larger the up-

or down-regulation of the genes contained in that cluster.

Accompanying the rows, on the right-hand side, is the error of

Fig. 4 Heatmap of the cluster prototypes and their accompanying descriptions from the PCT in Fig. 3. The first number on the right-hand side of

the heatmap is the cluster’s RMS error, the number in brackets is the cluster’s size, the cluster’s descriptions follow after the colon. ‘‘Cluster 2’’

contains genes that are involved in translation and whose protein products are a part of the mitochondria. These genes are significantly up-

regulated. Cellular component biogenesis is strongly repressed, as evident on ‘‘Cluster 1’’. All of the clusters show a transient response to diamide,

except ‘‘Cluster 5’’ which shows almost a constant temporal expression profile.
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each cluster (RMSE, described in section 3.4), the cluster size and

the cluster description. Note that the heatmap ordering of the

cluster prototypes does not match the ordering produced by the

PCTs, but it is a permutation of it. This is for visualization

purposes, in order to have all of the up- and all of the

down-regulated cluster prototypes grouped together.

Fig. 6 Under nitrogen starvation conditions, there is more of a steady down-regulation of genes, rather than a transient pattern. Genes involved

in nitrogen metabolism are slowly down-regulated as well as genes coding for ribosomal proteins.

Fig. 5 When yeast is exposed to heat shock, several clusters of genes show significant, but transient changes in expression levels. According to the

heatmap intensity, genes involved in response to temperature stimulus are most strongly induced. Down-regulated are genes involved in

biosynthesis processes and genes that code for ribosomal proteins.
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4.3 Descriptions of yeast stress response clusters

We apply the procedure for deriving cluster descriptions from

the previous section, on PCTs constructed for several datasets

taken from a study of yeast stress response.7 While PCTs were

applied on all 10 datasets we only present in detail the results

for four different stress conditions (heat shock, nitrogen

starvation, diamide and DTT exposure). We present the final

descriptions by using heatmaps given in Fig. 5–8.

Fig. 7 DTT treatment of yeast interferes with proper protein folding and changes the cellular redox state. Therefore, an up-regulation of genes

involved in heat response and electron carrier activity is evident. More general biosynthetic processes and ribosomal proteins synthesis (nucleolus)

are inhibited, i.e., these genes are down-regulated.

Fig. 8 Exposure to diamide causes a response similar to DTT treatment and heat shock, in terms of response to protein folding inhibition. Also

oxidation of organic compounds is strongly up-regulated, while the down-regulation of biogenesis and ribosomal genes is also apparent.
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We first consider the heatmap for the Heat Shock dataset,

presented in Fig. 5. One can quickly identify two groups of

temporal profiles in this figure: one that shows significant

up-regulation and another one that shows significant

down-regulation of genes. These significant changes are only

transient in nature, meaning that genes first quickly react to

the heat shock and then after an adaptation period go back to

normal expression levels. This is an expected behavior,

also noted in ref. 7, which shows that the predicted cluster

prototypes are consistent with the biological reality.

From the induced genes, those involved in cellular response

to stimulus, specifically temperature stimulus, show the most

notable changes. In the repressed genes group, we can notice

two slightly different groups with respect to the delay of

response to heat shock. The first group that is quick to

react, consists of genes involved in biogenesis and different

biosynthetic and metabolitic processes. A slight delay in down-

regulation is exhibited by genes coding for ribosomal proteins,

which is consistent with general stress response (ref. 7).

In contrast to heat shock, when yeast is subjected to

nitrogen starvation, there is no transient temporal pattern

present but more of a steady down-regulation of genes, as

evident in Fig. 6. Genes involved in nitrogen metabolism

slowly decrease their activity, while genes involved in cell

growth are most significantly repressed. There is also a slight

increase in the activity of autophagy genes.

The elicited response of yeast to DTT (dithiothreitol) is

presented in Fig. 7. There is a small group of genes that is

repressed over time. These are involved in general biosynthetic

processes and genes that code for ribosomal proteins found in

the nucleolus. Genes that were most induced are involved in

electron carrier activity and genes that are a part of the general

response of heat. This is the cell’s response to the changed

cellular redox state and to the inhibition of protein folding

caused by DTT.7

Diamide exposure caused a response that can be seen as a

combination between the response to heat shock and DTT.

Genes involved in the heat shock response were induced

(due to protein folding inhibition) as were genes involved in

oxidation of organic compounds. As part of the general stress

response, genes involved in cell component biogenesis were

strongly repressed, as well as (with a small time-lag) genes

coding for ribosomal proteins.

Note that we present descriptions derived from PCTs (in

Fig. 5–8) from trees of size 60 (with 30 leaves/clusters). These

usually consist of GO terms referring to general cell processes or

locations. We chose this size as an optimal tree size, appropriate

for viewing and with an acceptably low error (RMSE)

(Fig. 10(a), (c), (e) and (g)). For obtaining clusters with more

specific descriptions, one might consider larger trees.

4.4 Semantic similarity of biological processes involved

in different types of stress

In the previous section, we presented the GO descriptions of

the clusters of gene expression time profiles for four different

stress conditions. We briefly discussed their similarities and

differences in terms of the kind of cellular processes involved

in stress response. Here, we focus on a more quantitative

analysis of the derived GO descriptions, where we also include

a whole range of stress conditions.

To quantitatively compare the GO descriptions of the

different clusterings, we use the semantic similarity measure

between GO terms proposed by Wang et al.27 Given two GO

terms, this measure quantifies their functional similarity, by

considering their common ancestors information from the

Gene Ontology. By using the semantic similarity measure,

we first determine the similarity between pairs of groups of GO

terms, corresponding to pairs of descriptions of PCTs/clusterings

of yeast genes for different stressful conditions. We proceed by

performing hierarchical clustering of the different stress types,

in order to determine to which stressful conditions the yeast

genes respond in the most functionally similar way (Fig. 9).

In Fig. 9, we can see that the cell response to heat shock is

most similar to the response to DTT exposure and to the

response when yeast is undergoing diauxic shift. This is due

primarily to the response of genes to protein unfolding, which

is the initial response to heat shock and DTT exposure. It is

also due to the induction of genes involved in alternative

carbon source utilization, which happens during diauxic shift

and also as an aftermath of the heat shock.

Hyper and hypo osmotic shock are also grouped together,

which is expected because they involve the response of the

same set of biological processes, but they respond in an

temporally inverse manner.7

Diamide is grouped with AA starvation and at a later stage

with H2O2 exposure, which is expected due to its response

being very similar to the response of these.7 Overall, we can

Fig. 9 In this figure, we present a dendrogram constructed according

to the semantic similarity of the biological processes involved in

response to different types of environmental stress. Heat shock is most

similar to DTT exposure, which can be attributed to the protein

unfolding which initially occurs in both types of stress. The other

similarity to diauxic shift appears as a result of activation of processes

for utilizing alternative carbon sources in the aftermath of heat shock.

Hyper and hypo osmotic conditions are grouped together as they

involve the same processes in response to the shock. Diamide is most

similar to AA starvation and then to H2O2 exposure. Overall there is

high similarity of all biological processes involved in different stress

responses, which is indicative of the existence of a general stress

response mechanism.
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notice that the similarity (i.e., distance) between the different

stress conditions is relatively high (low), which implies that

there is a commonality of cell responses to different types of

stress, i.e., a general stress response mechanism.7

4.5 Predicting time series with PCTs

We compare the PCTs built by Clus-TS (section 3.2) to a

default predictor DEF that always predicts the overall training

set centroid. We estimate the RMSE of these predictions by

using 10 fold cross-validation, as described in section 3.4. This

means that when estimating the error for each fold, the

training set contains approximately 4500 genes and the testing

fold approximately 500 genes.

We first perform experiments for different maximum PCT

sizes and we measure the respective RMSE of the corresponding

PCTs. In Fig. 10((a), (c), (e) and (g)), we present the results for

different values of the size upper bound. From the results,

Fig. 10 A comparison of predictive error (RMSE) of PCTs for different number of clusters ((a), (c), (e) and (g)) and percentage of data classified

((b), (d), (f) and (h)). When increasing the maximum tree size (number of leaves) the RMSE decreases until the size of the tree reaches 20–30 leaves

(i.e., clusters). The maximal improvement in the overall RMSE, as compared to the default (DEF) error, is about 15%. This small decrease in the

error is problem specific, i.e., has a biological background: not all genes have a coordinated response to the different stresses. Therefore, the PCTs

are only able to correctly predict the time-course profile of a limited number of genes. This is evident in (b), (d), (f) and (h). For about 5% of the

genes, PCTs are able to correctly predict their time-course profile with a relatively low RMSE as compared to the default (DEF). DEF is the

default predictor that always predicts the overall training set centroid.
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we can see that the optimal tree size for the PCTs is around

30 leaves. But, as one can notice, the overall RMSE is still

relatively high. We hypothesize that the overall high error

(RMSE) is domain specific, i.e., there is a biological explanation

for it.

Namely, the PCTs cluster genes that are annotated by

similar GO terms and have a similar response in expression

level to a certain change in environmental conditions. One

problem is that, as noted by Gasch et al.,7 only a subset of the

genes (about 900) have a stereotypical response to environ-

mental stress. That is, only a subset of the genes can

be accurately clustered, whereas the other genes have an

uncorrelated response. As a result, we hypothesize that the

PCTs are able to accurately predict the time series of only a

subset of the genes. We therefore perform the following

experiment. Besides recording the predicted time series for

each test set gene, we also record a confidence value for each

prediction. We then sort the genes by confidence value and

compute the RMSE of the top n percent most confident

predictions. We use the training set RMSE of the leaf that

made the prediction as a confidence estimate. This is similar to

the approach used for generating a ROC curve for a decision

tree.28 We present the results in Fig. 10((b), (d), (f) and (h)).

PCTs are obtained with the same parameters as before, except

that we use validation set based pruning instead of specifying a

size constraint on the PCTs. Clus-TS now uses 1000 genes of

the original training set for pruning and the rest for the tree

construction (as suggested by ref. 29). Simply selecting a PCT

from Fig. 10((a), (c), (e) or (g)) is unfair; it corresponds to

optimizing the size parameter on the test set. The results show

(Fig. 10) that more accurate predictions are obtained if we

restrict the test set based on the confidence of the predictions.

For example, if time course profiles are predicted for the 5% of

genes with highest confidence then the RMSE decreases to

about 50% of that of DEF. This is also shown in Fig. 3.

5. Conclusions

The typical approach to analyzing time-course expression data

is to first group together genes with similar temporal profiles

into clusters, which are then subsequently explained in terms

of gene properties (such as GO annotations). We present a

novel methodology for clustering time course profiles of gene

expression data, which unifies the two steps of clustering and

inferring a cluster description. The methodology produces a

hierarchical clustering, called a predictive clustering tree,

where each cluster is described by a conjunction of gene

properties (such as GO terms).

There are several advantages of our approach over other

analysis methods. First, we perform clustering and provide

cluster explanations in a single step. The descriptions can use

practically any gene-related information, although for our

experiments we only included Gene Ontology terms. Second,

in contrast to the usual distance measure used for clustering

(typically correlation based), our approach uses a qualitative

distance measure (QDM), which was specifically designed to

deal with short time course data. This measure explicitly takes

into account the temporal nature of the gene expression

profiles, and captures mostly the similarity in the shape of

the time course data, which is very important for the application

at hand. Third, the PCTs also enable the prediction of gene

expression time profiles for genes based on their annotations

(functions), which is usually not possible with other mainstream

clustering approaches.

We apply the proposed methodology to cluster time course

data representing yeast gene response to environmental stress.

This is repeated for different types of stress producing different

PCTs, thus producing different clusters and cluster explanations

in terms of GO annotations. Upon close inspection, the

explanations of the clusters were consistent with previously

published biological results.7 Furthermore, clusters with

similar descriptions under different stress conditions were

identified, mainly related to biosynthesis and ribosomal

proteins. The results demonstrate the usefulness of our method

for analyzing time-course expression data.

Several directions for further work remain to be explored.

We consider first and foremost extending our approach to a

so-called multi-target approach. Instead of considering a

single time course at a time, for different (stress) conditions,

we can consider the responses to different kinds of environ-

mental conditions simultaneously. The application of this

would be, for example, discovering a common stress response

pattern.30 Instead of producing a separate PCT for each

condition, we would obtain just one PCT model for all.

Another direction of further research includes the identification

of groups of genes with coordinated response. Namely, the

hierarchical nature of the PCTs, besides producing compact

clusters of ‘‘stress’’ response genes, also produces some clusters

that contain genes without a coordinated response. To focus

on clusters of genes with coordinated response, we plan to

further investigate the use of the so-called predictive clustering

rules5 for analyzing short time course data. Finally, we would

like to apply the proposed approach to other time course gene

expression data from different biological domains.
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Chapter 9

Predictive Clustering of
Multi-dimensional Time Series:
Modeling Forest Growing Stock

In this chapter, we present the instantiation of predictive clustering trees (PCTs) for
the task of modelling multi-dimensional time series. We use the distance definitions
provided in Section 2.2.3 to instantiate the variance and prototype functions for
constructing PCTs. We demonstrate the utility of the developed method on data
concerning forest growing stock in Slovenia. The growing stock of forest stands is
considered as the basic attribute for the description of spatio-temporal dynamics
of the forest ecosystem response to natural and anthropogenic impacts and pro-
vides a way to follow the structural, functional and compositional changes of forest
ecosystems.

The growing stock is typically modelled as an aggregated value from the vol-
umes of individual trees and represents the accumulation of wood production of
forest trees through the production period of forest stands. With the aggregation
of individual tree volumes, a lot of information on its composition is lost. In order
to avoid loss of information due to aggregation, we present the forest growing stock
by its distribution into three DBH classes: A 10− 29cm, B 30− 49cm, and C 50cm
and more. We consider Slovenian forest inventory data, following a number of forest
compartments over a period of four decades: 1970 until 2010. The forest compart-
ments are described with phytogeographical properties and the forest growing stock
by tree-size (measured in terms of DBH – diameter at breast size) classes. For each
forest compartment, we have information on the dynamics (across the four decades)
of the forest growing stock across the three tree-size classes: This dynamics is de-
scribed by three-dimensional time series. Such complex forestry data prompts for
methods for modelling of multi-dimensional time series.

In this study, we have used two scenarios to analyze the data at hand: quanti-
tative and qualitative. In the former scenario, we use the Euclidean distance as a
distance between time-series, while in the latter scenario, we use a qualitative dis-
tance measure. The complementary nature of the two different distance measures
in predictive clustering trees for modelling multi-dimensional time series allows for
two orthogonal interpretations of the forest growing stock data. The results reveal
that the growing stock in Slovenian forests has been increasing in the last 40 years
and that it has progressive dynamics, which indicates that Slovenian forests have
balanced structure.
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Abstract

In this paper, we propose a new algorithm for clustering multi-dimensional time series. It is

based on the predictive clustering paradigm, which combines elements of predictive modelling

and clustering. It builds upon the algorithm for predictive clustering trees for modelling time

series, and extends it to model multi-dimensional time series. We also propose adequate distance

functions for modelling multi-dimensional time series.

We apply the newly developed approach to the task of analyzing data on forest growing stock

in state-owned forests in Slovenia. This task of high importance, since the growing stock of forest

stands is a key feature describing the spatio-temporal dynamics of the forest ecosystem response

to natural and anthropogenic impacts. It can be thus used to follow the structural, functional and

compositional changes of forest ecosystems, which are of increasing importance as the forest

area in Europe has been growing steadily for the last 20 years.

We consider Slovenian forest inventory data, following a number of forest compartments

over four decades: 1970 until 2010. The compartments are described with phytogeographical

properties and the growing stock is divided into tree-size classes (in terms of DBH – diameter

at breast size). For each compartment, we have information on the dynamics (across the four

decades) of the growing stock in the three tree-size classes: This dynamics is described by three-

dimensional time series.

We have used two scenarios (quantitative and qualitative) to analyze the data at hand with

predictive clustering trees for modelling multi-dimensional time series. In the former, we use

a Euclidean distance between time series, and in the latter, we use a qualitative distance. The

complementary nature of the distances allows for two orthogonal interpretations of the forest

growing stock data. Overall, the growing stock in Slovenian forests has been increasing in the last
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40 years. More specifically, the growing stock of the three tree-size/DBH classes has progressive

dynamics, which indicates that Slovenian forests have balanced structure.

Keywords: time series modelling, multi-dimensional time series, forest growing stock, forest

inventory, predictive clustering trees

1. Introduction

1.1. European forests and their growing stock

Explanatory analysis of time series data is an important topic in ecological studies. It is

used for understanding and predicting the temporal response of ecosystems to variations in eco-

logical, environmental and management factors. The response of ecosystems can be structural,

functional and compositional, where the former refers to the spatial arrangement of various com-

ponents of an ecosystem (e.g., height of the vegetation, biomass, spatial distribution), the second

refers to various ecological processes (e.g., production of organic matter, evapotranspiration)

and the latter to the variety of ecosystem components (e.g., species richness and abundance) [1].

Structural, functional and compositional responses are interdependent, so changes of one ecosys-

tem property trigger changes of other ecosystem properties. Scientific evidence shows different

responses of ecosystems to global environment changes, such as pollution and climate change.

Many ecosystems show signs of damage, such as bleaching of coral reefs and biodiversity loss

of arable ecosystems [2], but the results of scientific research on the response of forests in the

temperate and boreal climatic zones of Europe show progressive responses over the last 20 years.

The forest area in Europe (including the European part of the Russian Federation) has in-

creased by 17 million ha and the growing stock by 8.600 million m3 in the last 20 years [3].

The observed changes could be the result of long-term effects such as suitable biological and

environmental conditions and short-term effects (a few decades) such as applied forest manage-

ment practices [4, 5]. To follow the structural, functional and compositional changes of forest

ecosystems, the growing stock of forest stands is considered as the basic attribute. It can be

used to describe the spatio-temporal dynamics of the forest ecosystem response to natural and

anthropogenic impacts, because it aggregates state and stress indicators (i.e., quality of the soil,
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rainfall, temperature, growing stock increment, annual cut). Its systemic and integrative features

can be used to assess the conditions of the forest, to diagnose the cause of structural or functional

changes and to predict future trends of growing stock. Therefore, it is used as one of the basic

statistics in forest inventories [6].

The dynamic changes of forest growing stock, as well as the predictions of their future de-

velopment, at both European and national levels, are usually estimated from the data gathered by

national forest inventories [7, 8, 9] or, more rarely, from archival forestry data [10, 11, 12, 5]. The

European Forest Sector Outlook Study II [13] analyses the dynamic changes of forest resources

at European and national levels using several different modelling approaches. In particular, it

takes into account outputs from econometric projections for production and consumption of for-

est products [14, 15], analyses of wood resources balance [16], the results of the European Forest

Information Scenario Model (EFISCEN) [17], and the results of the European Forest Institute-

Global Forest Sector Model (EFI-GTM) [18]. However, the majority of European countries

have also developed their own tools for analyzing dynamic forest changes at their national levels

(e.g., [19]). Common approaches to estimating and predicting the future development of forest

resources employ various methods, ranging from static inventory projections, to complex tech-

niques of modelling. Such induced models usually project future forest development by using

national forest inventory and yield data under some strong assumptions, e.g., that the uncertainty

of future growth is small and insignificant, or that the forest management does not change in time

[20]. In some countries, detailed inventory and yield data are not available for sufficiently long

periods of time (i.e., a few decades), and therefore, such models cannot be constructed.

1.2. Modelling overall forest growing stock

The most frequently used approach for investigating dynamic changes of forest ecosystem

structure is based on the analysis, clustering and modelling of time series data, among which

the growing stock data often is the most central. This modelling task is usually based on a

mechanistic modelling approach, where the field data are used for calibration and validation of

manually constructed models, whose structure is based on existing theoretical knowledge. Such

an approach is informative, but includes many parameters, some of which are difficult to set or

estimate. It often requires many different types of data that are not always possible to obtain

(i.e., crown ratio, regeneration). Due to the large number of parameters that have to be fitted in
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mechanistic models, it is hard to achieve stability of their output accuracy, and their predictive

power is lower [21].

Dynamic changes of forest variables (such as growing stock) are modeled using mechanistic

modelling approaches that are based on: (i) patch (gap) models that operate at a different level of

physiological detail of structural and compositional dynamics of forest ecosystems and simulate

forest succession, and species distribution (e.g., PICUS [22]), under a wide range of environmen-

tal and management conditions (e.g., FORCLIM [23]); (ii) individual-based models that explore

various management and environmental effects on the ecological, structural and spatial dynamics

of forests (e.g., MOSES [24], CAPSIS [25], iLand [26]); (iii) spatially explicit forest landscape

models that simulate spatial projections of forest derived ecosystem services, and evaluate how

these services will be impacted under future climate disturbance and management scenarios (e.g.,

LAND-CLIM [27], LANDIS II [28, 29]) and iv) data mining models that are developed with the

application of inductive machine learning techniques to available forest inventory data, in order

to find explanations for temporal changes of growing stock [30].

Even though most attributes describing structural, functional and compositional dynamic

changes of (forest) ecosystems are intertwined, all above mentioned modeling methods deal with

modeling dynamic changes of only a single attribute at once. Furthermore, ecosystem properties

are not in linear relations only but complex, nonlinear interactions between them are predomi-

nant. Therefore, methods describing the dynamics of a single property (e.g., total growing stock)

provide a limited interpretation of ecosystem responses to changing environmental conditions.

In order to overcome this obstacle, a new methodological approach to analyse, cluster and model

time series is needed, which would allow for simultaneous modeling of time series for a larger

number of ecosystems’ structural, functional and compositional properties.

1.3. Modelling forest growing stock per tree class

The growing stock is typically modelled as the aggregated value of the volumes of the in-

dividual trees and represents the accumulation of wood production of forest trees through the

production period of forest stands. With the aggregation of individual tree volumes, a lot of in-

formation on its composition is lost. In order to avoid loss of information due to aggregation,

growing stock could be described in detail with its distribution to growing stock classes or into

groups of tree species. In such a way, enough information for better understanding of the time

changes of growing stock are retained in the data.
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Most often, the growing stock distribution into age classes is given. The age structure of

forest stands is an important factor, because it could provide insights into harvesting potential,

carbon stocks, biodiversity and performance of various ecosystem services [31]. However, age

structure of forest stands can be estimated for even-aged forest stands only.

Because of various environmental and management reasons, larger forested areas consist

from both even and uneven-aged forests, therefore age classes can’t be used to extract additional

information about time dynamics of growing stock at larger spatial scales (e.g., region, country).

Furthermore, the distribution of even and uneven-aged forests at larger areas can’t be estimated

at a certainty level suitable for objective scientific studies, therefore the age structure of growing

stock has a limited potential for analysis of its dynamics at larger areas. An additional problem

of using age classes are the unpredictable changes of even-aged forests into uneven-aged forests

due to management and environmental reasons.

To avoid the limitations of using age structure for larger and more diverse forest areas, the

growing stock can be described in more detail by its distribution into DBH classes (e.g., A

10 − 29cm, B 30 − 49cm, and C 50cm and more [32], where DBH stands for diameter at breast

height). DBH classes are a good substitute for age classes, which can be used for describing

growing stock dynamics in even and uneven-aged forests. The task of modelling aggregated

forest growing stock can thus be considered as modelling of single dimensional time series data

[30], while modelling growing stock distributed to DBH classes can be considered as modelling

multi-dimensional time series data, where the multiple dimensions represent the growing stock

values of DBH growing classes A, B and C as defined above.

1.4. Motivation

The developments described in this paper were motivated by the needs of data analysis of

forest growing stock data aggregated per tree class. There are several methods that analyse

and cluster time series data from the domain of environmental sciences [33, 34]. To model

time series data, these approaches typically use hidden Markov models, neural networks, genetic

programming, regression-based approaches (e.g., autoregressive integrated moving average) or

analyse the data in the frequency domain.

Such methods are often used to forecast weather conditions (e.g., rainfall), predict river water

levels (or flood protection), analyse temporal remotely sensed data about land use and land cover

[35, 36, 37, 38], etc. For example, Li et al. [39] perform clustering on time series data using
5



hidden Markov models. The data they analyze concern the ecological effects of mosquito control

produced by changing the drainage patterns in an area south of Brisbane, Australia.

The aforementioned approaches have a number of limitations: They limit the type of vari-

ables that can be used, they make assumptions about prior distributions or missing values, and

they offer limited interpretability of the learned models. To overcome these limitations, we pro-

pose to use predictive clustering trees [40] that do not make such prior assumptions and are

readily interpretable. In the past [41], we have used predictive clustering trees to model time

series data on interdependent types of agroecosystem vegetation that support different functions

in a managed ecosystem: For optimal management, plants that provide economic output (e.g.,

crops) and those that support ecological functions (e.g., wild plants or ’weeds’ should coexist in

an agroecosystem.

1.5. Outline of the paper

The task of modelling forest growing stock data aggregated per tree class is a task of multi-

dimensional time series modelling. To address this task, we extend the approach of learning

predictive clustering trees (PCTs) to handle multi-dimensional time series. Predictive clustering

produces both clusters (of multi-dimensional time series) and explanations of the clusters simul-

taneously: To the best of our knowledge, there is no other method that handles these two aspects

simultaneously. The cluster explanations in the form of predictive clustering trees are readily

interpretable, which is a very important factor: Interpretable models can be easily used by both

domain experts and decision makers.

We apply the proposed method of PCTs for multi-dimensional time series to Slovenian forest

inventory data, in order to find explanations for structural changes in Slovenian forests over the

period from 1970 to 2010. This is a new methodological approach for explaining time dynamics

of growing stock at the level of DBH classes. This is much more informative then modelling

time dynamics of overall growing stock (at an aggregated level), and as such complements the

classic mechanistic modelling methodologies and single dimensional modelling of time series

data.

The reminder of this paper is organized as follows. The basic approaches and distances

for clustering time series that are related to the method we propose are described in Section 2.

Section 3 presents the approach of predictive clustering trees that we extend to cluster multi-

dimensional time series. The task of clustering forest compartments based on the corresponding
6



dynamics of forest growing stock is outlined in Section 4. Section 5 presents and discusses the

results obtained by applying our method to the data at hand. Finally, Section 6 concludes and

outlines directions for further work.

2. Background

2.1. Clustering in a nutshell

Clustering in general is concerned with grouping objects into classes of similar objects [42].

Given a set of examples (object descriptions), the task of clustering is to partition these examples

into subsets, called clusters. Clustering is known as cluster analysis in statistics and as unsu-

pervised learning in machine learning, where supervised learning denotes the task of learning to

predict a target property of an object. In clustering, the objects do not contain a target property

to be predicted, but only an object description.

Conventional clustering focuses on distance-based cluster analysis. The notion of a distance

(or conversely, similarity) is crucial here: examples are considered to be points in a metric space

(a space with a distance metric). The goal of clustering is to achieve high similarity between

objects within individual clusters (intra-cluster similarity) and low similarity between objects

that belong to different clusters (inter-cluster similarity).

To represent a cluster, a prototype is typically used, such as the mean/ centroid or the medoid

of the objects in the cluster. Compact clusters are desirable, where a compact cluster has a low

(intra-cluster) variance. The (per-object) variance within a given cluster is defined as

Var(C) =
1
|C|

∑

X∈C
d2(X, c) , (1)

where c is the centroid of C. Methods like k-means clustering or hierarchical agglomerative

clustering can be used to find sets of clusters with low intra-cluster variance and low inter-cluster

similarity.

In conceptual clustering [43], a symbolic representation of the resulting clusters is produced

in addition to the partition into clusters. We can thus consider each cluster to be a concept

(much like a class in classification). In rule-based clustering, the description of a concept is

a conjunction of logical conditions, called a rule. Flat clusterings (with possibly overlapping

clusters) can be described as sets of rules, while hierarchical clusterings (with non-overlapping

clusters) can be represented as tree-based structures.
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2.2. Clustering time series

Distance-based clustering methods rely on the definition of an appropriate distance measure

between two examples. When the examples are time series, we need distance measures on time

series. Typically, all time series in a data set have the same length. This holds true, for example,

for the data that we consider in this paper.

If all time series have the same length, then one can represent them as real valued vectors and

use standard distance measures such as the Euclidean distance or the Manhattan distance. These

measures are, however, not always appropriate for time series because (1) they assume that the

time series are synchronized, and (2) mainly capture the difference in scale and baseline. Below,

we discuss three distance measures that have been proposed to alleviate these shortcomings: the

correlation coefficient, dynamic time warping [44] and a qualitative distance [45].

2.2.1. Correlation coefficient

The correlation coefficient r(X,Y) between two time series X and Y is calculated as

r(X,Y) =
E[(X − E[X]) · (Y − E[Y])]

E[(X − E[X])2] · E[(Y − E[Y])2]
, (2)

where E[V] denotes the expectation (i.e., the mean value) of V . r(X,Y) measures the degree of

linear dependence between X and Y . It has the following intuitive meaning in terms of the shapes

of X and Y: r close to 1 means that the shapes are similar. If there is a linear relation between X

and Y then the time series are identical, but might have a different scale or baseline. r close to -1

means that X and Y have “mirrored” shapes, and r close to 0 means that the shapes are unrelated

(and consequently dissimilar).

Based on the above intuitive interpretation, we can define the distance between two time

series as dr(X,Y) =
√

0.5 · (1 − r(X,Y)). dr has, however, two drawbacks. First, it is difficult to

properly estimate correlation if the number of observations is small (i.e., for short time series).

Second, dr can only capture the linear dependencies between the time series and time series that

are non-linearly related will appear to be distant.

2.2.2. Dynamic time warping

Dynamic time warping (DTW) [44] can capture non-linear distortion along the time axis. It

accomplishes this by assigning multiple values of one of the time series to a single value of the
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other. As a result, DTW is suitable to use if the time series are not properly synchronized, e.g.,

if one is delayed, or if the two time series are not of the same length.

dDTW(X,Y) with X = α1, α2, . . . , αI , Y = β1, β2, . . . , βJ is defined based on the notion of a

warping path between X and Y . A warping path is a sequence of grid points F = f1, f2, . . . , fK

on the I × J plane. Let the distance between two values αik and β jk be d( fk) = |αik − β jk |, then

an evaluation function ∆(F) is given by ∆(F) = 1/(I + J)
∑K

k=1 d( fk)wk. The weights wk are as

follows: wk = (ik − ik−1) + ( jk − jk−1), i0 = j0 = 0. The smaller the value of ∆(F), the more

similar X and Y are. In order to prevent excessive distortion, we assume an adjustment window

(|ik − jk | ≤ r). dDTW(X,Y) is the minimum of ∆(F).

Both the Euclidean distance and DTW take into account differences in scale and baseline. If

a given time series is identical to a second time series, but scaled by a certain factor or offset by

some constant, then the two time series will be distant. For many applications, these differences

are, however, not important and only the shape of the time series matters. The qualitative distance

is more appropriate for such applications.

2.2.3. Qualitative Distance

The qualitative distance (QD) [45] is based on a qualitative comparison of the shape of the

time series. Consider two time series X and Y . Then choose a pair of time points i and j

and observe the qualitative change of the value of X and Y at these points. There are three

possibilities: increase (Xi > X j), no-change (Xi ≈ X j), and decrease (Xi < X j). dqual is obtained

by summing the difference in qualitative change observed for X and Y for all pairs of time points,

i.e.,

dqual(X,Y) =

n−1∑

i=1

n∑

j=i+1

2 · Diff (q(Xi, X j), q(Yi,Y j))
N · (N − 1)

, (3)

where the Diff (q1, q2) function (Table 1) defines the difference between pairs of qualitative

changes. Roughly speaking, dqual counts the number of disagreements in change of X and Y .

dqual does not have the drawbacks of the correlation based measure. First, it can be computed

for very short time series, without decreasing the quality of the estimate. Second, it captures

the similarity in shape of the time series, regardless of whether their dependence is linear or

non-linear.

9



Table 1: The definition of Diff (q1, q2).

Diff (q1, q2) increase no-change decrease

increase 0 0.5 1

no-change 0.5 0 0.5

decrease 1 0.5 0

2.3. Predictive clustering

Predictive modelling aims at constructing models that can predict a target property of an ob-

ject from a description of the object. Predictive models are learned from sets of examples, where

each example has the form (D,T ), with D being an object description and T a target property

value. While a variety of representations ranging from propositional to first order logic have been

used for D, T is almost always considered to consist of a single target attribute called the class,

which is either discrete (for classification problems) or continuous (for regression problems).

Clustering [46], on the other hand, is concerned with grouping objects into subsets of objects

(called clusters) that are similar w.r.t. their description D. There is no target property defined in

clustering tasks. In conventional clustering, the notion of a distance (or conversely, similarity) is

crucial: examples are considered to be points in a metric space and clusters are constructed such

that examples in the same cluster are close according to a particular distance metric. A centroid

(or prototypical example) may be used as a representative for a cluster. The centroid is the point

with the lowest average (squared) distance to all the examples in the cluster, i.e., the mean or

medoid of the examples. Hierarchical clustering and k-means clustering are the most commonly

used algorithms for this type of clustering.

Predictive clustering [47] combines elements of both predictive modelling and clustering. As

in clustering, we seek clusters of examples that are similar to each other, but in general taking

both the descriptive part and the target property into account (the distance measure can be defined

on D∪T or any subset thereof). In addition, a predictive model must be associated to each cluster.

The predictive model assigns new instances to clusters based on their description D and provides

a prediction for the target property T . A well-known type of model that can be used to this end

is a decision tree [48]. A decision tree that is used for predictive clustering is called a predictive

clustering tree (PCT, Figures 4 and 6). Each node of a PCT represents a cluster. The conjunction

of conditions on the path from the root to that node gives a description of the cluster. Essentially,
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each cluster has a symbolic description in the form of a rule (IF conjunction of conditions THEN

cluster), as in conceptual clustering [49], while the tree structure represents the hierarchy of

clusters. Clusters that are not on the same branch of a tree do not overlap.

In Figures 4 and 6, the description D of a forest compartment consists of phytogeographic

properties, and the target property T is the three dimensional time series of forest growing stock

DBH classes. In general, we could include both D and T in the distance measure. We are,

however, most interested in the time series part T . Therefore, we define the distance measure

only on T .

We consider various distance measures in Section 3. The resulting PCTs (Figures 4 and 6)

represent a clustering that is homogeneous with respect to T and the nodes of the tree provide

symbolic descriptions of the clusters. Note that a PCT can also be used for prediction: we use

the tree to assign a new instance to a leaf and take the centroid of the corresponding leaf cluster

as prediction.

2.4. Predictive clustering of time series

Džeroski et al. [50] have proposed to use predictive clustering trees (PCTs) for clustering

time series data. The main advantage of using PCTs over other clustering algorithms, such as hi-

erarchical agglomerative clustering and k-means, is that PCTs cluster the time series and provide

a description of the clusters at the same time. This allows one to relate various heterogeneous

data types and to draw conclusions about their relations.

Table 2 presents the generic induction algorithm for PCTs [47]. It is a variant of the standard

greedy recursive top-down decision tree induction algorithm used, e.g., in C4.5 [48]. It takes

as input a set of instances I (in our case forest compartments described by phytogeographic

properties and their associated overall forest growing stock time series). The procedure BestTest

(Table 2, right) searches for the best acceptable test (on a phtyogeographic property) that can

be put in a node. If such a test t∗ can be found, then the algorithm creates a new internal node

labeled t∗ and calls itself recursively to construct a subtree for each cluster in the partition P∗
induced by t∗ on the instances. If no acceptable test can be found, then the algorithm creates a

leaf, and the recursion terminates. (The procedure Acceptable defines the stopping criterion of

the algorithm, e.g., specifying maximum tree depth or a minimum number of instances in each

leaf).

11



Table 2: The generic PCT induction algorithm Clus.

procedure PCT(I) returns tree

1: (t∗, h∗,P∗) = BestTest(I)

2: if t∗ , none then

3: for each Ik ∈ P∗ do

4: treek = PCT(Ik)

5: return node(t∗,
⋃

k{treek})
6: else

7: return leaf(centroid(I))

procedure BestTest(I)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each possible test t do

3: P = partition induced by t on I

4: h = Var(I) −∑
Ik∈P

|Ik |
|I| Var(Ik)

5: if (h > h∗) ∧ Acceptable(t,P) then

6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

Up to this point, the algorithm is identical to a standard decision tree learner. The main

difference is in the heuristic that is used for selecting the tests and the prototype function. For

PCTs, this heuristic is the reduction in variance (weighted by cluster size, see line 4 of BestTest).

Maximizing variance reduction maximizes cluster homogeneity. The variance and prototype

function for performing the clustering of the instances need to be instantiated depending on

the prediction task at hand. So far, the predictive clustering framework has been used for the

prediction of multiple continuous variables, prediction of multiple discrete variables, hierarchical

multi-label classification (HMC) and prediction of time series [51]. An implementation of the

PCT induction algorithm is available in the Clus system, which can be obtained at http://

sourceforge.net/projects/clus.

In this work, we focus on learning PCTs for the prediction and clustering of time series.

Learning PCTs for time series data is non-trivial because for many distance measures (the correlation-

based, dynamic time warping, and qualitative distances), no closed algebraic form for the cen-

troid is known. Therefore, Džeroski et al. [50] propose to compute cluster variance based on the

sum of squared pairwise distances (SSPD) between the cluster elements.

The per-example variance of a cluster C can be defined based on a distance measure as

Var(C) =
1
|C|

∑

X∈C
d2(X, c) , (4)

with c the cluster centroid of C. To cluster time series, d should be a distance measure defined

on time series, such as the ones discussed in the previous section. The centroid c of a cluster can
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be computed as follows

c = argminq

∑

X∈C
d2(X, q) (5)

We consider two possible representations for c: (a) the centroid is an arbitrary time series, and

(b) the centroid is one of the time series from the cluster (the cluster prototype). In representation

(b), the centroid can be computed with |C|2 distance computations by substituting q with each

time series in the cluster. In representation (a), the space of candidate centroids is infinite. This

means that either a closed algebraic form for the centroid is required or that one should resort to

approximative algorithms to compute the centroid. No closed form for the centroid is known in

representation (a) for the distance measure dqual. To the best of our knowledge, the same holds

for dDTW and dr.

An alternative way to define cluster variance is based on the sum of the squared pairwise

distances (SSPD) between the cluster elements, i.e.,

Var(C) =
1

2|C|2
∑

X∈C

∑

Y∈C
d2(X,Y) . (6)

The factor 2 in the denominator of Equation 6 ensures that it is identical to Equation 4 for the

Euclidean distance. The advantage of this approach is that no centroid needs to be computed to

calculate the variance. This approach also requires |C|2 distance computations to calculate the

variance, just as the approach with the centroid in representation (b). Hence, using the definition

based on a centroid is only more efficient if the centroid can be computed in time linear in the

cluster size. This is the case for the Euclidean distance in combination with using the time-point-

wise average of the time series as centroid. For the other distance measures, no such centroids are

known. Therefore, we choose to estimate cluster variance using the SSPD. The PCT induction

algorithm places cluster centroids in its leaves, which can be inspected by the domain expert and

used both as predictions and as cluster prototypes. For these centroids, we use representation (b)

as discussed above.

2.5. Clustering multi-dimensional time series

Clustering of one-dimensional time series using hierarchical agglomerative clustering and

k-means clustering is well known and widely used. In addition, there are extensions that address

the problem of clustering multi-dimensional or multivariate time series [52], [53], [54]. All of

these approaches use the k-means or hierarchical agglomerative algorithms for clustering the time
13



series, and then post-facto search for descriptions of each cluster. By using PCTs, we perform

constrained clustering, which in a single step gives both the clusters and their descriptions.

3. Predictive clustering trees for multi-dimensional time series

In the previous section, we presented the algorithm for learning PCTs for modelling (clus-

tering or predicting) time series. More specifically, we described the variance and prototype

functions used within the PCT learning algorithm when the target property of the examples con-

sists of a single time series. We now focus on the task where the target is a multi-dimensional

time series. We begin by defining distances on structured data types. Next, we present the

distance on multi-dimensional time series. We then outline the PCT algorithm for clustering

multi-dimensional time series. Finally, we discuss the selection of proper distance function(s)

for time series.

3.1. Distances on structured data types

We distinguish between two kinds of data-types: primitive and structured data types. Prim-

itive data types have no structure and do not contain another data type within. Examples of

primitive data types include nominal, ordinal (i.e., ordered nominal) and real. Structured data

types, on the other hand, are built from primitive data types. To build structured data types, we

first need to define type constructors. Here, we consider the following type constructors: tuple

(Tuple (T1,T2, ...Tn)), set (S et {T }), and sequence (S equence [T ]). Tuple is a type constructor

that can contain any fixed number of objects, each from an arbitrary, but fixed data type (the

objects at different positions in the tuple may be of different data types). Set is a type construc-

tor that can contain any number (not fixed) of objects, all of the same (fixed) type. The type

of objects in the set can be either primitive or structured. Sequence is a type constructor that is

similar to the Set type constructor as it can contain an arbitrary number of objects of the same

type. However, while the elements of a set are unordered, in a sequence the ordering of the ele-

ments is important. The TimeSeries is a data type constructed by using the sequence constructor

where the underlying type is real and the ordering of the elements is along the time dimension

(TimeS eries = S equence[real]).

Using the notions on primitive and structured datatypes, we can define multi-

layered datatypes, i.e., structured datatypes than can consist of other structured datatypes.
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For example, we can define multi-layered objects (or datatypes) as complex as

Tuple
[
TimeS eries, S equence [Nominal] , S et {TimeS eries}]. This object is then a tuple con-

sisting of three elements: TimeS eries, S equence and S et. Furthermore, the sequence is defined

as a sequence of nominal and the set is defined as a set of TimeSeries.

Defining distances has been studied extensively and is reasonably well understood for prim-

itive data types [55]. The basic idea of a unified approach to mining structured data, such as

predictive clustering, is to derive the key components of data mining algorithms for a complex

data type (built through using type constructors) from information on the structure of that type

(what constructors on what simpler data types) and the key components for the simpler data

types. For example, a distance function d on tuples of type Tuple(T1, . . . ,Tn) can be composed

from distance functions di on types Ti by adding up the distances for each tuple component, i.e.,

d(x, y) = d((x1, ..., xn), (y1, ..., yn)) =
n∑

i=1
di(xi, yi).

Distances over structured data types can be defined as follows. For each structured data

type, we define a distance as an aggregated value of distances of pairs of underlying component

objects. For example, if the structured data type is a tuple of time series, an aggregation function

will be used to combine the distances over the pairs of elements of the tuples (i.e., pairs of time

series). In this manner, we can define the calculation of the distance recursively depending on

the structure of the objects.

The pseudo-code given in Table 3 illustrates the recursive calculation of the distance. The

calculateDistance function takes as input two data objects (O1 and O2), the definition of the

datatype of the data objects (DT ), and the distance definition (DI). The distance definition in

the case of primitive datatypes is the distanceID, e.g., δ for the nominal datatype, while for

structured datatypes it contains the definitions of the distances for the underlying datatypes and

the definition of the aggregation function (DI = (Agg,DIs)). The distance function calculation

starts by checking whether the input objects are from a primitive datatype. If that holds, then

the distance can be calculated instantly using the specified formula. For example, if the objects

are from the datatype numeric, then the distance between them can be calculated by using one

of the distances for numeric datatypes (e.g., Euclidean, Manhattan, etc). If the objects are from

a structured or multi-layered datatype, then the objects are decomposed (using the Decompose

function) into components using the datatype definition DT . After the decomposition of the two

objects, the matching procedure matches the corresponding components from the objects. In the
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next step, for each pair of components (one component from the first object and the other from the

second object) the calculateDistance function is called recursively. Based on the different data

object components, the calls to the function calculateDistance are instantiated differently, using

the components of the datatype DT and distance DI. Finally, the distances of the underlying

components of the data objects are aggregated bottom-up using the definitions provided with

Agg.

Table 3: The generic recursive algorithm for calculating the distance between two structured objects
function calculateDistance (O1,O2,DT,DI)

Input: O1, O2 - data objects; DT - datatype definition; DI - distance definition

Output: d - distance value

1: if DT is a primitive datatype then

2: return calculateDistPrimitive(O1, O2, DT , DI)

3: DTs = Decompose(DT), DI = (Agg,DIs)

4: C1 = Decompose(O1,DT )

5: C2 = Decompose(O2,DT )

6: M = Matching(C1, C2, DIs),

M = {(c1, c2, dt, di)|c1 ∈ C1, c2 ∈ C2, dt ∈ DTs, di ∈ DIs}
7: for each (c1, c2, dt, di) ∈ M do

8: dk = calculateDistance(c1, c2, dt, di)

9: d = Agg(d1, d2, ..., d|M|)

10: return d

3.2. Distances on multi-dimensional time series

Having defined distances on structured objects in general, we will continue to explain how

we can define distances between multi-dimensional time series. First, we define the structured

datatype as Tuple (T1,T2, ...Tn), where T1,T2, ...Tn are time series. Then, we define the distances

that will be used for the components. For example, for the Tuple we can use aggregation em-

ployed with the Euclidean distance (S QRT (S umS QDist)), and for the component TimeS eries

we will use Euclidean and QD distance measures. We would like to note that our framework al-

lows the use of a different distance for each component time series in the tuple. We will however

use the same distance for all of the time series in the tuple.
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Distances on structured objects define both the matching of the component objects and the

aggregation function. For example, the matching function for the Euclidean distance on time se-

ries defines that the respective elements of the time series are matched. The aggregation function

for the Euclidean distance is defined as the squared root of the sum of squared distances between

the matched pairs of elements. For the QD, the matching function and the aggregation function

are explained in detail in Section 2.2.3.

Using the pseudo-code from Table 3, we illustrate the calculation of distances over tuples of

three time series (i.e., three-dimensional time series). We illustrate this on two examples. We first

outline the calculation of the Euclidean distance for the multi-dimensional time series datatype.

We then illustrate the calculation of the distance between multi-dimensional time series that uses

the qualitative distance for the individual time series.

For both cases, the underlying datatype is DT = Tuple(TimeS eries,TimeS eries,TimeS eries)

and the distance between two objects (three dimensional tuple of time series) is calculated by

calling d = calculateDistance(O1,O2,DT,DI). For the first case, the distance is defined as

follows: DI = (S QRT (S umS QDist), [EUC, EUC, EUC]). For the second case, the distance

is defined as DI = (S QRT (S umS QDist), [QD,QD,QD]). A step-by-step explanation of the

distance calculation is given bellow.

We consider two specific data examples with the datatype definition as given above:

O1 = ([73, 66, 54, 41, 54], [225, 231, 193, 159, 147], [65, 122, 120, 185, 223]), and

O2 = ([76, 97, 81, 73, 66], [165, 208, 143, 158, 162], [53, 102, 87, 117, 181])

In the first step, the algorithm will decompose the structured tuples to their underlying com-

ponents: time series. The algorithm will then match the corresponding time series from the two

tuples: the first time series from O1 to the first time series from O2, etc. Next, it continues by

calculating the distance between the corresponding time series as follows:

d1 = QD([73, 66, 54, 41, 54], [76, 97, 81, 73, 66]) = 0.35,

d2 = QD([225, 231, 193, 159, 147], [65, 122, 120, 185, 223]) = 0.85,

d3 = QD([65, 122, 120, 185, 223], [53, 102, 87, 117, 181]) = 0.05.

In the final step, the algorithm reads the aggregation function from the distance definition (DI):

in this case, it is the sqare root of the sum of the squared distances (S QRT (S umS QDist)). The
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aggregation function is then called using the distances on the underlying time series applying the

formula from the distance definition as follows:

d =

√
d2

1 + d2
2 + d2

3 =
√

0.352 + 0.852 + 0.052 = 0.9206

At the end, the calculateDistance will return the value 0.9206 as the distance between the two

data examples O1 and O2 given above.

3.3. Predictive clustering trees for multi-dimensional time series

The algorithm for the induction of PCTs for modelling multi-dimensional time series is es-

sentially the same as presented in Section 2.4, Table 2. The major difference is in the calculation

of the variance and prototype for the task of modelling multi-dimensional time series. Both are

based on the notion of a distance between multi-dimensional time series, explained above.

The variance for the PCTs is defined as the sum of squared pairwise distances (SSPD) be-

tween the examples. In the PCT algorithm for clustering multi-dimensional time series, we use

the distances outlined in the previous subsections, especially those presented in Table 3. More

specifically, the distance on multi-dimensional time series is used to calculate the variance (Equa-

tion 6) for the split selection in the PCT induction algorithm (line 4 in Table 2, right). In line with

using the SSPD to calculate the distance, we select the centroid as one of the multi-dimensional

time series from the cluster that has the smallest sum of squared distances to the other elements

of the cluster.

3.4. Selecting appropriate distances on time series

As mentioned above, different distances on time series can be used for clustering multi-

dimensional time series (i.e., tuples of time series). We can either use one distance measure for

all time series/ dimensions, or even different distance measure for different dimensions. When

choosing which distance to use, we should take into account the application at hand and the

properties of the distances, which we discuss below.

The Euclidean distance, when applied to time series, ignores the temporal component. For

two time series to be similar according to this distance, they need to have similar magnitudes at

each time point. For highly similar series, this also implies similar shapes, i.e., temporal trends.

The DTW distance allows for time to be stretched to achieve better matching between the two

time series. This means that a time series that is delayed with respect to another one or otherwise
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temporally stretched (but maintains the approximate magnitude) will still be considered similar

to the original series. With no delays, the DTW distance behaves very much like the Euclidean

distance. The DTW distance can be used for time series of different length (unlike most of the

other distances).

The correlation measure is quite often used for time series due to its ability to capture simi-

larity in trends rather than absolute values (magnitudes). In fact, it captures linear dependencies

between the time series and is invariant to scaling and translation of the measured/observed val-

ues. In this sense, it is quite different from the Euclidean distance.

Finally, the qualitative distance (QD) primarily focuses on the shape of the time series, i.e.,

the qualitative changes (increase/decrease/steady) between pairs of time points. It can capture

non-linear dependencies, as well as linear ones. However, it ignores almost completely the mag-

nitudes of the observed values of the time series.

Based on the above properties of the distances on time series, appropriate distances can be

selected for each application domain at hand. For example, if we consider time series to be

similar despite slight temporal delays or distortions, we should use the DTW distance. If we

do not wish to allow for delays, and temporal (linear) trends are important rather than closeness

of magnitudes, correlation would be appropriate. Finally, when we want to capture non-linear

dependencies between time series and not focus on magnitudes, the QD would be appropriate.

In this work, we will consider both the magnitude and the the dynamics of the forest stock.

We argue that for the dynamics, the QD would be the more appropriate distance, and for the

magnitude the Euclidean distance. The QD measures how far apart are two time series by taking

in account only their dynamics, regardless of the magnitudes, while the Euclidean distance mea-

sures only how far apart the magnitudes are. To illustrate this, Figure 1 shows three time series

taken from the dataset. The series TS 1 and TS 2 have the same dynamics and are very similar

according to the QD, but are very dissimilar according to the Euclidean distance. On the other

hand, the series TS 1 and TS 3 are of roughly the same magnitude and very similar according to

the Euclidean distance, but are very different in their dynamics and very dissimilar according to

the QD.
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Figure 1: Three time series of forest growing stock, illustrating the differences between the Euclidean distance and the

qualitative distance. The Euclidean distance between TS 1 and TS 3 is small, and between TS 1 and TS 2 is large. It is

the other way around for the qualitative distance, according to which TS 1 and TS 2 are similar, while TS 1 and TS 3 are

much less similar.

4. Clustering forest compartments according to forest growing stock dynamics

4.1. Data description

The data used here come from the spatial information database Silva-SI [4, 56]. The data

have been gathered from various sources, mostly forest inventories within Forest Management

Plans (FMP), which are typically performed every 10 years (each year approximately 1/10 of

FMP are revised). The database currently comprises digitalised data for 21052 forest compart-

ments covering 7452km2 or 64% of the Slovenian forests for the period from the year 2010 back

to 1970 (Figure 2). Digitalisation of older data is under-way, but is not yet completed and there-

fore data from before the year 1970 were not included in this study. In our study, we use only

compartments that are 100% owned by the state, which amounts to 5237 compartments.

Forest compartments are permanent and their size and borders have not changed since the

first forest inventories. All compartments are described with the same suite of 47 environmen-

tal and stand variables, which indicate the state of forest stands. The variables describing the

geographic characteristics of compartments were acquired from a digital elevation model with a

spatial resolution of 25m × 25m. From these variables, based on a previous study [30], we se-

lected a subset of the 6 most important variables: mean inclination (INC), mean elevation (ELV),

the type of bedrock (BEDR), prevailing aspect of the compartment (ASP), phyto-geographical

region (PHYTOREG) and site productivity (PI).

The last two variables were obtained by classifying each of the compartments into one of the

six phytogeographical regions (PHYTOREG) to which Slovenian forests belong: Alpine, Pre-

Alpine, Dinaric, Pre-Dinaric, Sub-Panonian and Sub-Mediterranean. Forests within the specific

phytogeographical region have uniform climatic conditions and distinctly recognizable type and
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Figure 2: The location of the forest areas (compartments) included in the study.

structure of vegetation. Next, site productivity (PI) within the compartments was ranked on

the scale from 1 to 17 [57], where the most productive compartment gets rank 17 and the least

productive one gets rank 1.

The stand variables indicating the state of forest stands within the compartments, such as

growing stock (GS) and growing stock DBH classes (A, B, C), were estimated at 10 years’ time

steps with the official methodology of forest inventories (as approved and applied by the Slove-

nian Forestry Service). Forest inventories contain a combination of field descriptions of all stands

and tree measurements. We distinguish between growing stock (GS), which aggregates individ-

ual tree volumes for all trees, and growing stock of DBH classes, which aggregates volumes of

the trees with DBH from 10 to 29cm into DBH class A, with DBH from 30 to 49cm into DBH

class B and DBH of 50cm and more into DBH class C [32].

The dynamics of growing stock is described by the time course profiles of growing stock

values, recorded each 10 years, from 1970 to 2010. At the same 5 time points, we also have the

growing stock values per DBH class (A,B,C), representing the growing stock dynamics in more

detail. This more detailed view constitutes a multi-dimensional (three-dimensional) time series.
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Figure 3: An excerpt from the dataset assembled for the task of predictive clustering of the dynamics of growing stock

for DBH classes A, B and C. The explanatory/independent variables are ELV, INC, ASP, BEDR, PI and PHYTOREG.

The target/clustering time series are DBH A, DBH B and DBH C.

4.2. Data analysis task and study design

The data analysis task that we address is to group/cluster forest compartments with similar

growing stock dynamics as described by the growing stock DBH classes. In addition, we want

to describe the groups/clusters of forest compartments in terms of their geo-physical properties.

The goal is thus to relate the dynamics of growing stock for DBH classes A, B and C and the

variables describing forest compartments (INC, ELV, BEDR, ASP, PHYTOREG, PI). An excerpt

from the dataset assembled for this task is illustrated in Figure 3.

The task at hand is a task of predictive clustering of multi-dimensional time series. The target

time series according to which we cluster/group forest compartments are the three time series

describing the dynamics of the growing stock for DBH classes A, B and C. The explanatory

variables in terms of which we describe the clusters of compartments are INC, ELV, BEDR,

ASP, PHYTOREG and PI.

We use two scenarios for data analysis. In the first scenario, we use the Euclidean distance as

a distance between the individual time series, since it is more appropriate when analyzing their

quantitative aspect (as discussed in Section 3.4). In the second scenario, we use the qualitative

distance, since the aim here is to capture the qualitative aspect of the time series, i.e., we are

more focused on finding whether the forest growing stock increases or decreases through the
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years and less focused on how much the forest growing stock has changed. The used scenarios

are complementary to each other and give us the opportunity to have different and complementary

interpretations of the structural and temporal changes of the forest growing stock.

In both scenarios, we use PCTs for predicting/clustering multi-dimensional time series. After

building a tree (and a PCT), it is typical to prune it, in order to deal with noise and other types of

imperfection in the data. We employ two pruning algorithms: F-test pruning and MaxSize prun-

ing. The F-test pruning algorithm checks whether the addition of a split at a given leaf of the

tree significantly reduces the intra-cluster variance for the examples in that leaf: The significance

level is specified by the user. The MaxSize pruning algorithm [58] takes as input a given maxi-

mum tree size k and computes a subtree of the given tree of size at most k with minimum error.

These pruning algorithms increase the interpretability of PCTs, while maintaining (or increasing)

their predictive performance (on unseen cases). In our experiments, we set the significance level

for the F-test pruning to 0.01 and the maximal tree size to 6 leaves (i.e., clusters).

5. Results

In this section, we present the results obtained by applying predictive clustering trees for

multi-dimensional time series modelling to data on forest growing stock in Slovenia collected

over a period of 40 years. We present the results from the two modelling scenarios outlined

in the previous section. We first discuss the results of the quantitative scenario and give the

obtained predictive clustering tree (Figure 4) and a map of Slovenia illustrating the distribution

of the locations that share similar forest growing stock dynamics (Figure 5). Next, in a similar

way, we present the results for the qualitative scenario (Figure 6 gives the predictive clustering

tree and Figure 7 gives the distribution of locations with similar dynamics).

The structure of the model describing the quantitative aspect of temporal multi-dimensional

dynamics of growing stock shows that the most important variable (in state owned forests) related

to the dynamics is the phyto-geographic region (PHYTOREG), followed by the site productivity

index (PI), altitude (ELV), inclination (INC) and bedrock (BEDR) (Figure 4). While all forest

compartments (all clusters) show permanent increase of the total growing stock (e.g., due to the

impact of forest policies, the increasing importance of nature conservation, protection of large

trees ...), the dynamics of DBH classes A, B and C of forest stands is still different. In most cases,

DBH class C shows the largest accumulation of growing stock, which has the lowest increase at
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the most extreme growing productive site due to slower forest growth. However, some groups

(e.g., group four) show relatively even increase of all three DBH classes, while in other groups

(e.g., group six and partly one, two and three) the changes are uneven.
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Figure 4: The predictive clustering tree (top) for modelling multi-dimensional time series of growing stock DBH classes

A, B and C constructed by using the Euclidean distance measure between time series. In the graphs representing the

centroids/prototypes of the clusters (bottom), the x-axis denotes the time in years and the y-axis the forest growing stock

of DBH classes A, B, and C, in m3 per ha.

A more detailed examination of the model shows that forests from the Dinaric region located

at high productivity sites (C1) have the largest change of growing stock in DBH class C. For

these forests, the growing stock in DBH classes B declines slowly over the entire period, while

the growing stock in Class A remains more or less the at the same level. The different types of

change of growing stock in DBH classes B and C show that the growing stock moves from DBH

class B to DBH class C, which means that growing stock in these forests continuously increases,

while the stability of the growing stock in DBH class A does not indicate aging of these forests.

Such a pattern of change is present also in all other groups, but with a lower intensity of
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Figure 5: A map of Slovenia that illustrates the distribution of the forest compartments belonging to the different clusters

identified with the predictive clustering tree from Figure 4.

accumulation of growing stock in DBH class C. However, growing stock in DBH class C is

continually increasing, which indicates the accumulation of growing stock in larger trees. In

contrast to group one (C1), growing stock in DBH class B in increasing from year 1980, while

DBH class A stays stable. If we compare the absolute values of growing stock for DBH classes

A and B between the six groups, we can notice that forests with lower growing stock are located

either in the areas with non-favourable conditions for forest growth (e.g., low site productivity

index, high inclination, less suitable carbonate bedrock) or at lower altitudes, which were in the

past more exposed to human exploitation, due to their vicinity to more densely populated regions.

The temporal pattern of structural changes for growing stock in DBH classes A, B, and

C is similar for all six groups: We can thus conclude that the studied state-owned forests are

increasing their growing stock mostly in DBH class B, and also in DBH class C, while growing

stock in DBH class A stays at the same level. This indicates structural straightening of the studied

forests because their growing stock (biomass) is increasing and its structure indicates that they

are well developed, but they haven’t yet reached the optimal level of growing stock. The only
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exception are forests from group one, which are probably already in the optimal development

stage. It is expected that under the same management measures (e.g., planning and logging), the

structure of the growing stock in the other groups will became similar to the structure in the first

group.
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Figure 6: The predictive clustering tree (top) for modelling multi-dimensional time series of growing stock DBH classes

A, B, and C, constructed by using the qualitative distance measure between time series. In the graphs representing the

centroids/prototypes of the clusters (bottom), the x-axis denotes the time in years and the y-axis the forest growing stock

in of DBH classes A, B and C in m3 per ha.

The model constructed in the second scenario, where we use the qualitative distance between

the growing stock DBH classes A, B and C time series is given in Figure 6. It shows that the

most important variable distinguishing between different patterns of growing stock dynamics is

the elevation (ELV), followed by phyto-geographic region (PHYTOREG), inclination (INC), site

productivity index (PI) and phyto-geographic region (PHYTOREG) again.
26



Figure 7: A map of Slovenia that illustrates the distribution of the forest compartments belonging to the different clusters

identified with the predictive clustering tree from Figure 6.

The model shows significant structural changes of growing stock in some forests (e.g., groups

two, four and six) in the last 40 years. In general, the model confirms the expected interchange

of growing stock between DBH classes, where the increase of growing stock in classes B and/or

C is matched by a decrease of growing stock in class A. However, a detailed inspection of the

model reveals positive temporal dynamics of growing stock in classes B and C, but no significant

change of the growing stock of class A after the year 1990. The changes in growing stock in

classes B and C after 1990 can be attributed to several factors, such as changes in the Slovenian

forest policy due to the adoption of the new Law on Forests, lower logging intensity because of

demographic and economic reasons (e.g., decreasing importance of the economic functions of

forests and increasing importance of nature conservation).

The continuous change of forest stock also indicates that most of the forests are not yet in

a steady state balance with the growing conditions despite the very high and well structured

growing stock. This can be seen from the positive trends of growing stock in classes B and C,

while the growing stock of class A does not change significantly. Besides organizational changes
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in 1990, the National Forest Program was adopted in 1996 which set the allowable cut limit to

a maximum of 60 % of the total increment. This is reflected in the increasing trend of growing

stock in DBH classes B and C and has resulted in an increase of the total growing stock in the

period 1990-2000.

However, the growth of growing stock in DBH classes B and C has stopped in the last ten-

year period from 2000 to 2010. The reason is probably in the change of economic perception

of trees with large DBH (and tree volume), because their quality is decreasing with size, mostly

due to senescence effects (e.g, rotting inside the trunk). Because of timber market requirements

for medium sized timber, the harvest of these trees was higher than in the periods before the year

2000.

Growing stock dynamics for all DBH classes shows large variability of growing stock, ex-

cept for the first group, where growing stock in all DBH classes does not change much, but

rather stays moderately stable. This finding concurs with the observation for group one in the

model constructed by using the Euclidean distance (Figure 4). In both cases, the forests are from

the Dinaric region and are located at high productivity sites, showing development stability for

almost the entire study period. It seems that these forests have achieved steady state balance

between natural growing conditions and the applied forest management practices. It is expected

that other forests will follow this scenario and the forests with more suitable growing conditions

will achieve their development stability faster.

6. Discussion and conclusions

This paper describes an extension of predictive clustering trees for the analysis of multi-

dimensional time series and its successful application to a complex forestry data set. The analysis

of multi-dimensional time series has been thus far treated by using standard clustering algorithms

to detect the potential groups/clusters of examples. The obtained clusters have been then typically

described by post facto search for cluster descriptions. The proposed algorithm provides both the

clusters of multi-dimensional time series and their symbolic descriptions simultaneously, and to

the best of our knowledge, it is the first algorithm of this kind.

We used the proposed algorithm to model Slovenian forest inventory data consisting of phy-

togeographical properties and forest growing stock of forest compartments. The inventory data

spans over four decades, from 1970 until 2010. The task concerns the modelling of the dynamics
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of the forest growing stock distributed into DBH classes. The forest growing stock is the basic

attribute for describing the forest ecosystem response to natural and anthropogenic impacts and

allows us to follow the structural, functional and compositional changes of forest ecosystems.

We use two scenarios to analyze the data at hand: quantitative and qualitative. In the former

scenario, we use the Euclidean distance as a distance between time series, while in the latter

scenario, we use a qualitative distance. Analyzing the quantitative and the qualitative aspect of

growing stock enables better understanding of structural dynamic changes of forests as com-

pared to using traditional qualitative studies of growing stock presented either as an aggregated

indicator or its distribution into age or DBH classes. The complementarity of the two distance

measures that we used within predictive clustering trees for modelling multi-dimensional time

series allows two orthogonal interpretations of forest growing stock data. If growing stock is

given with its distribution into DBH classes (A: 10 − 29cm; B: 30 − 49cm; and C: 50cm and

more), then the proposed methodology can be used for describing growing stock dynamics in

even and uneven-aged forests on a large spatial scale (e.g., regional or national level).

Most often, the changes of growing stock given with DBH classes are considered at stand

level and smaller changes are expected at landscape/regional level. However, change of growing

stock of forest stands can occur at landscape/regional level too, and our study has identified quite

large changes. Since most of the analyzed data are from nature based/uneven-aged forest stands,

we expected that the growing stock would remain relatively stable but our results have revealed

that this was not the case.

Based on the results, we can make two important conclusions concerning the changes of

growing stock structure and its temporal dynamics. First, the quantitative model shows that

growing stock in Slovenian forests has continuously increased in the last 40 years. At the same

time, the growing stock DBH classes show intensive dynamics, which indicates that despite the

large total growing stock, Slovenian forests have not yet reached their steady state of structural

development. This is confirmed also with the second conclusion based on the qualitative model,

which shows steady and progressive temporal dynamics of growing stock in classes B and C,

while the dynamics of class A does not yet show any degressive dynamics. Thus, Slovenian

forests are increasing their growing stock while their structure is balanced which, gives them

large structural stability.
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[5] M. Klopčič, A. Bončina, Stand dynamics of silver fir (Abies alba Mill.) – European beech (Fagus sylvatica L.)

forests during the past century: a decline of silver fir?, Forestry 84 (3) (2011) 259–271.

[6] E. Tomppo, T. Gschwantner, M. Lawrence, R. E. McRoberts, National Forest Inventories: Pathways for Common

Reporting, 1st Edition, Springer, 2010.
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A. Mäkelä (Eds.), International Conference on Modeling Forest Production, 2004, pp. 176–183.

[23] L. Rasche, L. Fahse, A. Zingg, H. Bugmann, Enhancing gap model accuracy by modeling dynamic height growth

and dynamic maximum tree height, Ecological Modelling 232 (0) (2012) 133–143.

[24] H. Hasenauer, Ein Einzelbaumwachstumssimulator für ungleichaltrige Fichten-Kiefern- und Buchen-
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[30] M. Debeljak, A. Poljanec, B. Ženko, Modelling forest growing stock from inventory data: A data mining approach,

Ecological Indicators 41 (2014) 30–39.

[31] T. Vilén, K. Gunia, P. Verkerk, R. Seidl, M.-J. Schelhaas, M. Lindner, V. Bellassen, Reconstructed forest age

structure in Europe 1950–2010, Forest Ecology and Management 286 (2012) 203–218.

[32] Rules on the forest management and silviculture plans, Official Gazette of the Republic of Slovenia, no. 5/1998 of

23-1-1998 (1998).

[33] T. W. Liao, Clustering of time series data–a survey, Pattern Recognition 38 (11) (2005) 1857–1874.

[34] R. H. Shumway, D. S. Stoffer, Time Series Analysis and Its Applications: With R Examples (Springer Texts in

Statistics), 2nd Edition, Springer, 2006.

31



[35] J.-F. Mari, F. L. Ber, Temporal and spatial data mining with second-order hidden markov models, Soft Comput.

10 (5) (2006) 406–414.

[36] C. Potter, V. Genovese, P. Gross, S. Boriah, M. Steinbach, V. Kumar, Revealing land cover change in California

with satellite data, EOS, Transactions American Geophysical Union 88 (26) (2007) 269–274.

[37] N. Viovy, Automatic classification of time series (acts): A new clustering method for remote sensing time series,

International Journal of Remote Sensing 21 (6-7) (2000) 1537–1560.

[38] X. Zhou, N. Persaud, H. Wang, Scale invariance of daily runoff time series in agricultural watersheds, Hydrology

and Earth System Sciences Discussions 2 (4) (2005) 1757–1786.

[39] C. Li, G. Biswas, M. Dale, P. Dale, Building models of ecological dynamics using hmm based temporal data

clustering a preliminary study, in: F. Hoffmann, D. Hand, N. Adams, D. Fisher, G. Guimaraes (Eds.), Advances in

Intelligent Data Analysis, Vol. 2189 of Lecture Notes in Computer Science, 2001, pp. 53–62.

[40] H. Blockeel, Top-down induction of first order logical decision trees, Ph.D. thesis, Katholieke Universiteit Leuven,

Leuven, Belgium (1998).

[41] M. Debeljak, G. R. Squire, D. Kocev, C. Hawes, M. W. Young, S. Džeroski, Analysis of time series data on
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Chapter 10

Conclusions and Further Work

10.1 Scientific contributions of the thesis

This thesis is concerned with the use of distances for learning from structured data.
Its main hypothesis is that it is possible to develop distance-based learning methods
for structured data of arbitrarily structured datatypes by existing or developing new
methods from the areas of instance-based learning and predictive clustering. The
thesis explores in detail these two paradigms and proposes several approaches for
predictive modeling and clustering within each of the two paradigms.

In this way, it confirms the main hypothesis and its more specific statements
given in the introduction. In particular, the developed methods for distance-based
learning can handle:

• arbitrary structures on the input side as well as the output side of instance-
based learning (Chapter 3, Section 3.2),

• clustering methods for arbitrarily structured types of data in the context of
distance-based learning (Chapter 3, Section 3.3), and

• methods for handling arbitrarily structured target datatypes in the context of
predictive clustering (Chapter 5).

The developed approaches have been implemented in appropriate software envi-
ronments. The implementations are described in Chapter 3 (instance-based learn-
ing), as well as Chapters 5, 7, 8 and 9 (predictive clustering). Their use has been
illustrated, respectively demonstrated, by applying them to datasets coming from
practically relevant problems (Chapters 6, 8, 9).

The scientific contributions of the thesis can be summarized as follows:

• A generic framework and a software environment for instance-based learn-
ing from structured data. The framework allows for the implementation of
generic algorithms for instance-based prediction and clustering, with arbitrar-
ily structured datatypes on the input and the output side. Besides the arbitrary
datatypes, the framework supports the use of different distances on these struc-
tured datatypes, which can be composed from distances on simpler datatypes
by using aggregation functions appropriate for the type constructor applied to
the simple datatypes.
Within the framework, the nearest neighbor and k-nearest neighbor (k-NN)
prediction methods have been implemented. Two clustering algorithms have
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been implemented as well, namely the k-means algorithm and its generaliza-
tion, the k-medoids algorithm. The generalized k-NN and k-medoids algorithm
work for arbitrary types of structured data.

• Predictive clustering trees for arbitrary types of structured targets. The basic
implementation of predictive clustering trees (as well as rules) considers the
simultaneous prediction of multiple outputs of primitive data types. The pro-
totypical example is the task of multi-target regression, where the target is a
tuple of a real valued variables. We have implemented an extension of the pre-
dictive clustering framework which generalizes the basic predictive clustering
approach in several directions.
First, besides using Euclidean distances on tuples of real variables, we can
use other distances on such tuples (e.g., Manhattan distance). Furthermore,
we can use other type constructors applied to primitive datatypes within the
structured output. For example, we can consider sets of discrete/nominal
values or sequences/time series of real values.
More importantly, we have developed approaches for predictive clustering where
the target can be of a multi-layered datatype. The multi-layer datatypes can
include sets of tuples, tuples of time series, or alternatively, time series of tuples,
tuples of hierarchies or sequences of hierarchies. These have been implemented
within the software platform of the CLUS system.

• Applications of predictive clustering trees to practically relevant problems. The
predictive clustering tree approaches for different types of structured outputs
were evaluated and their utility demonstrated on a number of practically rel-
evant problems. For the basic case of tuples of real values, the application
consisted of predicting the state of the forests in Slovenia (and in particular
forest stand height and canopy cover) from remotely sensed data, i.e., satellite
images. For the case of predicting time series, the application considered was
finding explained groups of genes with similar time course profiles of gene ex-
pression under different stressful conditions. Finally, for the case of tuples of
time series, the clustering of profiles of forest growth stock in Slovenian forests
was considered.

10.2 Further work

The approaches presented in the dissertation are very general in the sense that
many different types of data can be analyzed with them. Therefore there are many
directions for further work that can be followed. Bellow we present a selection of
directions for further work, addressing first the directions for further development
of instance-based learning, then predictive clustering and finally directions that are
relevant for both instance-based learning and predictive clustering.

Concerning distance-based learning, the proposed paradigm and implemented
software environment have not been evaluated extensively. Therefore more appli-
cations in different domains should be explored, focusing on such domains where
structured data appears both on the input and the output side. At present, many
different approaches exist for analyzing data which is structured on the input side,
with scalar output, as well as many different approaches that allow for structured
output prediction with a tuple of primitives as input. An example of an application



10.2. Further work 147

where we have structured data both on the input and the output side is gene func-
tion prediction, where on the input side we could have a tuple of time series of gene
expression profiles under different experimental conditions whereas on the output
side we have tuples of hierarchies, namely the three hierarchies of the gene ontology.

Within distance-based learning, it would be interesting to explore the use of
different distance measures for same structured datatype. These can be obtained
by different choices of aggregation functions and distance measure for the simpler
datatypes at each intermediate type constructor within the datatype. This can be
done in the context of different learning tasks, for example, predicting gene function
from a tuple of time series, where different distances on the time series can be chosen
for the time series resulting from different stressful conditions. For example, for one
time series the dynamic time warping distance measure can be chosen, while for
another the qualitative distance measure can be chosen.

The use of different distance measures can also be explored in the context of dif-
ferent learning algorithms including algorithms for both clustering and prediction.
For example in the context of hierarchical agglomerative clustering, the distances
used on sets have been based on aggregating distances between pairs of elements of
the two sets by minimum, maximum and average aggregation functions. However,
it is possible to use distances such as the matching distance within this context and
derive new hierarchical agglomerative clustering algorithms based on this. It would
also be interesting to implement other distance-based algorithms within the frame-
work for distance-based learning. This could include for example online streaming
versions of algorithms for nearest neighbor classification. This has been so far con-
sidered for classification and regression, but not for structured output prediction.

Finally, a new type of metric learning can be considered within our framework.
An appropriate or most appropriate distance can be selected from a space of possible
distances on the input space. The selection can be made based on the performance
of say the nearest neighbor algorithm for predicting the values of the target, which
may be structured as well.

Many directions are also possible for further development of predictive clustering
for different types of structured output data. At present, we have focused on two
level structures, namely on tuples with one layer types as arguments of the tuple
type constructor. It would be interesting to explore different applications with the
same datatypes considered so far. For example, the prediction of tuples of time
series can be used to relate gene functions to gene expression profiles under multiple
stressful conditions.

In terms of algorithm development, we can consider the handling of even more
complex multi-layer datatypes that could go beyond two layers. While the im-
plementation of handling multi-layer datatypes in predictive clustering within the
CLUS software environment is general and can in principle handle arbitrary datatypes,
we have not in fact explored specific applications with datatypes with more than
two layers. As the complexity of the outputs increases, it is more and more difficult
to get completely annotated examples. In this context handling the missing values
of the target, for example missing one argument in a tuple, would be an interesting
direction for further development. Another interesting direction for further devel-
opment is structured output prediction with increasingly complex datatypes in a
streaming context. Here the major challenge would be the representation of sum-
maries of sets of structured values and their efficient calculation which is essentially
the same as the calculation of prototypes.
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The final direction for further work is relevant for both instance-based learning
and predictive clustering. At present, different types of structured data as well as
distances on structured datatype are not represented declaratively as input to the
algorithms for predictive clustering or instance-based learning but rather coded in a
modular way and this code is used by the two frameworks of instance-based learning
and predictive clustering. It would be desirable that different types of data, on the
one hand, and the different distances on the other hand are specified declaratively
as an input to the two frameworks.

In this context it would be of interest to have catalogs of datatypes and distances
that can be browsed and from which appropriate datatypes and distances on these
can be selected for use in instance-based learning or predictive clustering. A pos-
sible source for information on datatypes and distances could be the ontologies on
datatypes, OntoDT and on data mining OntoDM (Panov, 2012). These ontologies
need to be further populated with additional instances of datatypes and distances,
but they do provide the necessary general framework for describing, recording and
using different datatypes and distances.
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