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Abstract

In this thesis, we integrate complex nodes into predictive clustering trees (PCTs). PCTs
are well-established machine learning models that are very flexible in terms of the machine
learning tasks that they can address, including structured output prediction and semi-
supervised learning. Like standard decision trees, they are learned with a greedy top-down
induction algorithm that comes with two weaknesses. First, because of the greediness, the
algorithm makes myopic decisions, which can lead to sub-optimal trees. Second, the split
selection procedure scales poorly with the dimensionality of the output. This can lead to
prohibitively long learning times in structured output prediction problems.

To reduce the myopia of the learning algorithm, we extend PCTs with option nodes.
When there are multiple splits with heuristic scores close to the maximum one, option PCTs
do not select only the best split but combine several alternatives in an option node. For
each alternative split, the tree then continues to grow normally. When making predictions,
each alternative split in an option node makes its own prediction. These predictions are
then aggregated into the final prediction. We evaluate option PCTs on several structured
output prediction tasks: multi-target regression, multi-label classification, and hierarchical
multi-label classification. In the evaluation, we focus on how the number of option nodes
introduced in the tree affects the trade-off between the predictive performance and tree
size (which is the main factor of its interpretability). We show that if the number of option
nodes is small, the option PCT remains interpretable while improving the performance of
a standard PCT. On the other hand, option PCTs with many option nodes exhibit similar
behavior to bagging ensembles of PCTs in terms of predictive performance, model size,
and learning time.

To improve the computational complexity of learning PCTs, we propose PCTs with
oblique split nodes. In contrast to standard PCTs, oblique PCTs use linear combinations
of features in tests to split the examples. We propose two methods for learning the oblique
splits in PCTs. The SVM variant first clusters the examples based on the outputs to get the
ideal split, then learns a linear support vector machine on the features that approximates
this split. The gradient variant uses a differentiable approximation of the heuristic used
by PCTs to efficiently optimize oblique splits with gradient-based methods. The proposed
methods improve the computational scaling of standard PCTs and provide additional com-
putational benefits on sparse data. These advantages are first confirmed with theoretical
analysis and later with empirical evaluation. The results of the experiments also show
that the predictive performance of oblique PCTs is on par with that of PCTs, often even
exceeding it. We also evaluate the approach in a semi-supervised setting and get similar
results: oblique PCTs are learned faster and often achieve better performance than PCTs
as well. Additionally, we present a method for estimating feature importances from oblique
PCTs and perform experiments that confirm they are meaningful.
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Povzetek

Tema te disertacije je integracija kompleksnih vozlišč v drevesa za napovedno razvrščanje
(DNR). DNR-ji so uveljavljeni modeli v strojnem učenju, ki jih lahko uporabimo za vrsto
različnih nalog, med drugim napovedovanje strukturiranih vrednosti in polnadzorovano
učenje. Zgrajeni so s požrešnim rekurzivnim algoritmom, ki ima dve šibki točki. Prva
težava je njegova kratkovidnost, ki je posledica požrešnosti in pomeni, da so naučena
drevesa redko optimalna. Druga težava pa je računska zahtevnost učenja testov v delitvenih
vozliščih drevesa, ki hitro narašča s številom izhodnih spremenljivk. To pride še posebej
do izraza pri napovedovanju strukturiranih vrednosti.

Za zmanjšanje kratkovidnosti uporabimo opcijska vozlišča in predlagamo opcijske DNR-
je. Ko naletimo na več testov, ki izgledajo podobno dobri kot najboljši med njimi, opcijski
DNR-ji ne izberejo samo najboljšega, ampak združijo vse alternative v opcijsko vozlišče.
Za vsako alternativo se potem drevo normalno gradi naprej. Ko z zgrajenim opcijskim
DNR-jem delamo napovedi, opcijsko vozlišče primere posreduje vsem vsebujočim alter-
nativam. Vsaka izmed njih pripravi svojo napoved, le-te pa se potem združi v končno
napoved drevesa. Opcijske DNR-je smo evalvirali na več nalogah napovedi strukturiranih
podatkov: večciljni regresiji, večoznačni klasifikaciji in hierarhični večoznačni klasifikaciji.
Cilj empiričnih raziskav je bil raziskati vpliv števila opcijskih vozlišč na napovedno moč
dreves in njihovo velikost, ki ključno vpliva na zmožnost razlage naučenih modelov. Re-
zultati kažejo, da imajo opcijski DNR-ji z malo opcijskimi vozlišči boljšo napovedno moč
od navadnih DNR-jev, še vedno pa ostanejo razložljivi. Po drugi strani pa so napovedna
moč, velikost modelov in čas učenja opcijskih DNR-jev z veliko opcijskimi vozlišči podobni
tem od ansamblov DNR-jev.

Da izboljšamo računsko zahtevnost učenja DNR-jev, jih razširimo s poševnimi delitve-
nimi vozlišči, ki v svojih testih uporabljajo linearne kombinacije značilk. Takšna drevesa
poimenujemo poševni DNR-ji in predlagamo dve metodi za njihovo konstrukcijo. MPV
različica najprej razvrsti primere v dve skupini na podlagi izhodnih vrednosti in tako
dobi idealno delitev, potem pa s pomočjo linearne metode podpornih vektorjev poišče pri-
bližek te delitve na podlagi značilk. Gradientna različica pa definira odvedljiv približek
kriterijske funkcije, ki jo za ocenjevanje delitev uporabljajo navadni DNR-ji, za učinko-
vito optimizacijo testa pa uporabi gradientne optimizacijske metode. Predlagani varianti
izboljšata časovno zahtevnost algoritma na problemih z več izhodnimi spremenljivkami,
dodatne računske prihranke pa nudita na redkih podatkih. Računsko prednost najprej po-
trdimo s teoretično analizo računske zahtevnosti, nato pa še z empirično študijo. Rezultati
eksperimentov pokažejo tudi to, da poševni DNR-ji ohranijo ali celo izboljšajo vrhunsko
napovedno moč navadnih DNR-jev. Tudi evalvacija v kontekstu polnadzorovanega učenja
prikaže podobno sliko: poševni DNR-ji so hitrejši in imajo pogosto tudi boljšo napovedno
moč. Predstavimo tudi način, kako lahko iz naučenih poševnih DNR-jev pridemo do ocen
pomembnosti značilk, za katere z eksperimenti pokažemo, da so smiselne.
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Chapter 1

Introduction

In recent years, the popularity of machine learning has greatly increased. We are collecting
more and more data and the improved hardware capabilities provide the computational
power to process it. This combination has resulted in many exciting applications of machine
learning methods. Computers achieved (or exceeded) human-level performance in many
complex games (Mnih et al., 2013; Silver et al., 2017; Vinyals et al., 2019), are learning
to drive cars (Badue et al., 2021; Bojarski et al., 2016), help in the development of drugs
(Hodos et al., 2016; Sliwoski et al., 2014), analyze medical images (Anwar et al., 2018;
Araújo et al., 2017), generate coherent text (Brown et al., 2020; Latitude, 2020), and
much more.

The most common task in machine learning is supervised learning (Bratko, 2001; Lang-
ley &Morgan, 1996), where we are given a set of input-output pairs (learning examples) and
need to learn a model that maps inputs to outputs. The goal is to learn a model that makes
accurate output predictions for inputs that were not used for learning. In unsupervised
learning, on the other hand, we are simply given some data (no input/output distinction)
with the goal to find groups of similar examples (clustering) or learn (lower-dimensional)
vector representations of examples (representation learning, embedding). Semi-supervised
learning combines supervised and unsupervised learning. We are given a set of input-
output pairs (labeled examples) and another set of inputs, that are not associated with
any outputs (unlabeled examples). The goal of semi-supervised learning is to exploit both
labeled and unlabeled examples to learn a model that maps inputs to outputs. It is mainly
used when unlabeled examples are plentiful but labeled examples are rare, which limits the
ability of supervised learning to generate a model with good predictive performance. This
often happens in life sciences where labeling examples takes a lot of time or money because
it requires wet-lab experiments. For example, when developing a new drug, we perform
a screening on a handful of initial candidates. They are the labeled examples because we
measured their effect on the disease progression. To complement them, we can collect the
descriptions of any number of compounds from public online databases for which we do
not know the effect on the progression of the disease in question. However, we can still
make them available to a semi-supervised method as unlabeled examples.

The term predictive modeling is also used to refer to the tasks where the goal is to con-
struct a model that maps inputs to outputs (e.g., supervised and semi-supervised learning
tasks). An important consideration in predictive modeling problems is the type of output
data that we are dealing with. The most basic example is binary classification, where the
examples can be labeled with one of two possible labels, e.g., we predict whether students
will pass an exam or not. If there are more than two (but still a finite number of) possible
labels, the task is known as multi-class classification. To continue our previous example,
we could try to differentiate between three groups of students: those who will not pass the
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exam, those who will pass but will not impress, and those who will excel. Of course, we
could also try to predict their numeric grades directly. In this case, the output is numeric
and the task is called regression. Because the types of the targets in these cases are prim-
itive, we will refer to this group of tasks as primitive output prediction tasks. They are
among the most commonly addressed tasks in predictive modeling.

However, many real-life problems are naturally described with more complex output
types composed of multiple variables, which can have additional structure or dependencies
between them. These tasks are grouped under the term structured output prediction (Bakır
et al., 2007). For example, in multi-target regression, we are interested in jointly predicting
multiple numeric values (e.g., the grades of a student on exams for different courses). We
might also be interested in predicting which courses students will pass (or simply be good
at) and give them recommendations based on that. There are multiple courses and each
student can (hopefully) pass multiple of them, i.e., examples can have multiple labels.
This task is known as multi-label classification. We can also imagine that some courses are
more related than other, e.g., courses Algebra 1 and Algebra 2 are more similar to each
other than Programming 1 and Physics 1. Based on this information, we can construct a
hierarchy of topics with specific courses in the leaves. We could provide this hierarchy to
the learning method, and the model would then predict the topics and courses a student
would do well at. Such a task is called hierarchical multi-label classification.

A straightforward approach to structured output prediction tasks is to first decompose
them into multiple primitive output prediction tasks and solve them individually. This is
known as the local approach (Silla & Freitas, 2011). For example, when predicting which
classes a student will pass, we can construct a model for each class that predicts whether
the student passes that particular class. In contrast, the global approach (Silla & Freitas,
2011) constructs a single model that predicts the entire structured output simultaneously.
The global approach can produce more accurate models and is generally faster than the
local approach (Kocev et al., 2013).

Another important consideration for predictive modeling is the type of input data.
Traditionally, machine learning methods expect the input data in tabular form, i.e., given as
a table. Each row represents one example, and each column presents one feature describing
the examples. The success of the machine learning methods strongly depends on the
information provided by the features and whether it is enough to make accurate predictions.
Data is often naturally presented in tabular form, but for some inputs, this is not the case,
for example, text, images, sequences, and graphs. One approach to dealing with such
inputs is to transform them into tabular data by describing each example with a set of
handcrafted features (e.g., a bag of words for text). Recently, however, state-of-the-art
performance with such inputs is mostly achieved with deep learning methods, which can
handle them directly with the use of convolutional layers (He et al., 2016; Krizhevsky,
2014; Ma et al., 2018), recurrent neural networks (Liu et al., 2016; Winter et al., 2019),
and attention mechanism (Vaswani et al., 2017; Veličković et al., 2017).

Regardless of the popularity of deep learning, when the examples can be described
with good features in tabular format, traditional machine learning methods still perform
just as well (or better) and are typically easier to use. A prominent traditional method is
the induction of decision and regression trees (Breiman et al., 1984). The advantages of
tree-based methods are that they are relatively fast (to learn and to make predictions) and
that it is easy to inspect why a certain prediction was made. They are often combined into
ensembles (Breiman, 1996, 2001) and the ensembles typically achieve great performance.
Even though inspecting individual predictions in ensembles is less feasible, the models can
still be interpreted via various feature ranking methods (Petković et al., 2019a; Petković
et al., 2020). While there are novel methods such as SHAP (Lundberg & Lee, 2017) that
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are capable of explaining individual predictions for arbitrary models, they are still better
suited to tree-based methods (Lundberg et al., 2020).

Predictive clustering trees (Blockeel et al., 2002; Blockeel et al., 1998) generalize stan-
dard decision and regression trees towards structured output prediction (Kocev et al.,
2020; Kocev et al., 2013), semi-supervised learning (Levatić et al., 2017; Levatić et al.,
2020) and unsupervised learning (Dimitrovski et al., 2016). They retain the performance
and interpretability of standard trees and ensembles thereof. The main topic of this thesis
is to extend and improve predictive clustering trees by introducing complex nodes into the
trees.

1.1 Motivation

The motivation for this thesis is twofold. First, predictive clustering trees, like standard
decision trees, are induced following the traditional top-down approach. It is a greedy
algorithm that finds the best split at each step and proceeds recursively on the resulting
subsets of examples. The advantage of such an approach is that it is computationally
efficient. But selecting a split that appears to be the best at the moment without con-
sidering future options can lead to sub-optimal trees. To alleviate this issue, classification
trees have been extended with option nodes (Buntine, 1992; Kohavi & Kunz, 1997). When
multiple splits appear to be of similar quality, instead of selecting only the best one, an
option node is created, which stores several alternative splits. From that point on, the tree
construction continues recursively for each alternative split. This way, a larger subspace
of trees is investigated, which can result in a better model. We wish to extend predictive
clustering trees with option nodes and investigate their potential for structured output
prediction problems.

The other motivation was the improvement of the computational efficiency of learning
predictive clustering trees on structured output prediction tasks. While it is efficient for
primitive tasks, it scales poorly with the number of output variables. This becomes es-
pecially noticeable in (hierarchical) multi-label classification problems with thousands of
possible labels. It also affects semi-supervised learning of predictive clustering trees. Fur-
thermore, label sets in multi-label problems are typically presented as binary vectors. The
length of the vector equals the number of possible labels, and the value of each component
denotes the presence (value 1) or absence (value 0) of a specific label. Even though there
are often thousands of possible labels, most examples are typically labeled with only a
handful of them. This leads to binary vectors with a very high dimensionality and mostly
zero-valued components, i.e., sparse vectors. This sparsity could potentially be exploited
to make learning faster, but standard predictive clustering trees cannot profit from it. To
improve the computational efficiency, we consider oblique split nodes (Breiman et al., 1984;
Murthy et al., 1994). Whereas the split nodes in standard trees perform tests on a single
feature, oblique split nodes consider linear combinations of features in the tests. We believe
this can bring computational advantages on three fronts:

• By carefully designing the optimization of the oblique splits, we can improve the
scalability of learning a split with respect to the number of outputs.

• By storing sparse data in a sparse matrix format and performing matrix operations
in this representation, we can achieve an additional computational advantage.

• By using oblique splits, the trees can fit the data better with fewer split nodes. This
should result in smaller models and lower learning times.
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1.2 Goals and Hypotheses

Following the motivation presented above, the main goal of the thesis is to address the
presented limitations of predictive clustering trees (PCTs), focusing on the context of
structured output prediction. Specifically, we will develop PCTs with different types of
complex tree nodes. To achieve this goal, we will do the following.

• Develop option nodes for the predictive clustering trees to obtain option predictive
clustering trees (OPCTs).

• Evaluate the OPCTs on benchmark datasets for structured output prediction tasks
with emphasis on the influence of the number of option nodes.

• Design and implement efficient oblique predictive clustering trees and ensembles
thereof.

• Evaluate oblique PCTs on benchmark datasets for standard classification and regres-
sion tasks as well as for structured output prediction tasks. Emphasis will be on the
efficiency on high dimensional and sparse data.

• Evaluate oblique PCTs on semi-supervised learning tasks.

• Demonstrate that feature importance scores obtained from oblique PCTs are mean-
ingful.

Related to the listed goals, we formulate several hypotheses that we then investigate
throughout the thesis.

H1 Introducing few option nodes in a PCT improves its predictive performance compared
to standard PCTs while retaining the interpretability potential.

H2 Introducing many option nodes in a PCT makes the option PCTs exhibit similar be-
havior to bagging ensembles of PCTs in terms of time complexity, size, and predictive
performance.

H3 Oblique predictive clustering trees reduce learning time on high dimensional data
compared to standard PCTs without deteriorating predictive performance.

H4 Oblique predictive clustering trees exploit sparse data to reduce learning time.

H5 Oblique predictive clustering trees are learned significantly faster than standard PCTs
in a semi-supervised learning setting.

H6 Meaningful feature importances are calculated by using oblique PCTs.

1.3 Methodology

In this section, we present the methodology used to achieve the goals that we have set up.
We started by studying the specifics of the SOP tasks (Bakır et al., 2007), the working
of predictive clustering trees (Blockeel et al., 1998), and how they are applied to SOP
tasks (Blockeel et al., 2002; Kocev et al., 2013). To develop option PCTs we studied the
relevant literature on option trees (Buntine, 1992; Kohavi & Kunz, 1997). We implemented
them into CLUS predictive clustering framework (available at http://source.ijs.si/ktclus/
clus-public/). The tree induction algorithm was modified to introduce an option node and

http://source.ijs.si/ktclus/clus-public/
http://source.ijs.si/ktclus/clus-public/


1.3. Methodology 5

explore several alternative splits when selecting the best split is not an easy task, i.e., when
there are multiple candidate splits with similar heuristic scores.

The empirical comparison of option PCTs to standard PCTs and ensembles of PCTs was
performed on benchmark datasets for the following structured output prediction problems:
multi-target regression (MTR), multi-label classification (MLC), and hierarchical multi-
label classification (HMLC). We evaluated the algorithms on predefined train-test splits of
the datasets where they were provided and used 10-fold cross-validation otherwise. We
varied the number of option nodes introduced in option PCTs and studied how their
performance and interpretability is affected.

We compared the predictive performance (using task-specific performance measures)
as well model size (number of leaf nodes) and learning time. For the MTR datasets, we
also calculated bias-variance decomposition of the mean squared error (Geman et al., 1992)
to investigate the source of prediction errors. To compare and present the results of the
evaluation of option PCTs and (ensembles of) standard PCTs, we used the statistical anal-
ysis suggested in (Demšar, 2006) and average ranking diagrams. While newer protocols to
compare methods based on Bayesian statistics have been proposed (Corani et al., 2017),
their properties make them a bad fit for our experiments. Specifically, they are computa-
tionally much more demanding, only work well on very many datasets (30-50), and provide
no approach for comparing multiple methods (require pairwise comparisons).

To develop oblique PCTs, we additionally studied existing proposed oblique decision
tree methods (Breiman et al., 1984; Menze et al., 2011; Murthy et al., 1994; Prabhu
& Varma, 2014) and analyzed their strengths and weaknesses. Oblique splits require a
fundamentally different tree representation and split optimization and were developed in
a new software library because of that. The library is named spyct and it is implemented
in the Python programming language. It is available under a free license, and compatible
with the popular scikit-learn API (Pedregosa et al., 2011) to lower the barrier for user
adoption. We implemented two variants for learning oblique splits:

• The support vector machine (SVM) variant first clusters the examples into two groups
based on their output values. This clustering represents the ‘ideal’ splitting of ex-
amples. However, the actual test to split the examples must be based on the inputs.
After the ‘ideal’ clustering is determined, we label each example with 0 or 1 based
on the cluster it belongs to. We then learn a linear SVM that tries to predict these
labels based on the inputs. The weights the SVM learns are used to define the test
hyperplane for the oblique split.

• The gradient descent variant directly optimizes the hyperplane to minimize the im-
purity of outputs of examples on each side. We achieve this by calculating weighted
variances of examples on each side of the hyperplane using fuzzy membership weights.
This function is differentiable and can be efficiently minimized with gradient-based
methods.

Both variants improve the scaling of learning time with the number of descriptive and
clustering variables. They can also exploit sparse input and output spaces by using a
sparse matrix format to store the data and perform matrix operations. We also developed
bagging and random forest ensembles of oblique PCTs.

We evaluated the proposed oblique PCTs in both single-tree and ensemble setting on
benchmark MTR, MLC, and HMLC datasets. Since the method is novel also for primi-
tive output prediction tasks, we also performed an empirical comparison on single-target
regression, binary classification, and multi-class classification datasets. We first performed
experiments on a smaller set of datasets for each task to investigate the influence of differ-
ent methods’ parameters on its predictive performance and learning time. We determined
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default values that offer a solid trade-off between performance and efficiency. Next, we
compared the oblique PCTs to standard PCTs, ensembles of PCTs, and other state-of-the-
art methods for different predictive modeling tasks. To estimate the predictive performance
of the learned models, we used 10-fold cross-validation and task-specific performance eval-
uation measures. We also compared model sizes and learning times.

Additionally, we used the same experimental design as described above to evaluate
the performance and efficiency of oblique PCTs on SSL tasks and compare them to semi-
supervised PCTs. This was done because the improved scaling of oblique PCTs is especially
useful for the semi-supervised approach.

Finally, we learned oblique PCTs on datasets with added random features and inves-
tigated feature importance scores obtained with our algorithm. These experiments were
designed to show whether the obtained scores are meaningful and whether the oblique
PCTs are resilient to irrelevant features.

1.4 Contributions

The scientific contributions of the dissertation are summarized as follows:

1. A method for learning option predictive clustering trees that are capable of addressing
structured output prediction (SOP) tasks.

2. An empirical evaluation of option PCTs on benchmark datasets for SOP and their
comparison to standard PCTs and ensembles thereof.

3. SVM-based and gradient-descent-based methods for efficient learning of oblique PCTs
capable of addressing SOP tasks and handling high dimensional and sparse data.

4. An empirical evaluation of oblique PCTs and ensembles thereof on benchmark datasets
for standard classification and regression tasks as well as for SOP tasks.

5. An empirical comparison of oblique PCTs and standard PCTs on semi-supervised
learning tasks.

Papers presenting these contributions have been published or submitted to conferences
or journals. The details related to the publications are listed in the Bibliography section
at the end of the thesis.

1.5 Organisation of the Thesis

This first section provided a general perspective and context of the thesis. The remainder is
organized as follows. Chapter 2 presents the background and work related to the thesis in
detail. This includes the description of predictive modeling in general and the specific tasks
we considered. We present predictive clustering trees in detail and provide an overview of
existing approaches for learning option trees and oblique trees.

Chapter 3 then presents the core ideas developed in the thesis. It provides a general
overview of the developed methods for learning option PCTs and oblique PCTs, their inner
workings, and their instantiations for different learning settings: different structured output
prediction tasks, as well as supervised and semi-supervised learning. It also contains the
theoretical analysis of their computational complexities.

Chapters 4-8 present the contributions of this thesis in detail. These chapters include
papers (either published or under review) that present the proposed methods and their
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extensive experimental evaluations. Each chapter begins with a summary of the work
presented in the paper included in the specific chapter.

Option predictive clustering trees come first. Chapter 4 treats option PCTs for multi-
target regression, Chapter 5 presents how they are used for multi-label classification, and
Chapter 6 how they work for hierarchical multi-label classification. Each chapter also
includes all the relevant evaluation experiments.

Next, Chapter 7 describes both the SVM and the gradient descent variants of oblique
PCTs, presents the results of their extensive evaluation for 6 predictive modeling tasks,
analyzes the influences of different parameters, and the feature importance scores that
can be extracted from the learned trees. Chapter 8 then presents how oblique PCTs can
be learned in a semi-supervised manner and presents the experimental evaluation of the
approach.

Finally, Chapter 9 concludes by discussing the contributions to science made with this
thesis and outlines directions for future work.
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Chapter 2

Background

In this chapter, we describe in detail the background for the thesis. We start by presenting
the basics of predictive modeling (Section 2.1). We differentiate between primitive output
prediction (Section 2.1.1) and structured output prediction (Section 2.1.2) based on the type
of the output. The naming is derived from the International Organization for Standard-
ization (ISO) naming of the datatypes (International Organization for Standardization,
2007) and the Generic ontology of datatypes (Panov, Soldatova, et al., 2016). Primitive
datatypes are defined axiomatically and do not reference other datatypes (e.g., numeric
and nominal values), whereas generated (or structured) datatypes are defined in terms of
other datatypes (e.g., vectors of numeric values, sets of nominal values). We also present
the difference between supervised and semi-supervised learning (Section 2.1.3). Next, we
discuss the predictive clustering trees as a generalization of standard decision trees and
their use in the predictive modeling tasks we introduced (Section 2.2). Finally, we present
the related work on option trees (Section 2.3) and oblique trees (Section 2.4), the two main
concepts that our work in this thesis develops further in the context of predictive clustering
trees and structured output prediction.

2.1 Predictive Modeling

The goal in predictive modeling is to learn a model that predicts an output for a given
example described with its input variables. In this thesis, we focus on tabular data, where
each example is described with a fixed number of features. The features can be either
numeric, meaning their domain is a subset of R, or nominal, meaning their domain is a
finite set of predefined values. In the simplest case, the output is a single target variable
(or target) that can again be numeric or nominal. Features are traditionally denoted as xi
and the target as y. The data is called tabular because it can be naturally presented as a
table, where rows correspond to examples and columns contain the values of the features
and the target. Table 2.1 shows an example of a data table where examples are described
with D features. Features x1 and xD are numeric, whereas feature x2 and target y are
nominal.

The learning algorithm constructs a model with the help of a learning set (also called
a training set), which contains learning (training) examples with their associated targets.
However, the model should be able to make accurate predictions for examples that the
algorithm did not see during learning, i.e., it should generalize well. This predictive per-
formance is measured with a performance measure that compares the model’s predictions
to real target values. For example, with nominal targets, we can look at the percentage of
correctly classified examples. With numeric targets, we can calculate how far the predic-
tions are from real values on average. Various performance measures have been proposed
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Table 2.1: Example of a tabular dataset where each example is described with D numeric
or nominal features and a binary target variable.

x1 x2 . . . xD y

5.12 blue . . . 25 yes
2.67 green . . . 51 no
3.91 red . . . 12 no

...
4.48 green . . . 29 yes

that are appropriate for problems with different characteristics (Kocev et al., 2013; Mad-
jarov et al., 2012; Vens et al., 2008; Witten & Frank, 2002). The performance measure
should be determined in advance, as it influences the selection of the learning algorithm
or its parameters.

There are two standard strategies for estimating the predictive performance of a model.
The first strategy is to split the available data into a training set and a test set. The model
is learned on the training set and then used to make the predictions for the test set. The
predictions are then compared to the real target values. This process can be repeated
several times for different selections of the training and test sets to get more accurate
estimations of the performance. The other strategy is called k-fold cross-validation, where
the data is split into k parts (folds) of equal sizes (or as close to it as possible). One fold
is selected for the test set and the union of the other folds as the training set. This is
repeated k times so that each fold is selected for the test set once.

The predictive performance of the model is not necessarily the only criterion for eval-
uating the models. In many domains, it is important to have insight into the model to
understand why it made a given prediction – the model needs to be interpretable. Inter-
pretability typically improves the confidence in the predictions in sensitive applications
(e.g., medical diagnosis) and supports the discovery of new knowledge. It can be seen
from two viewpoints: interpreting the model as knowledge extracted from the data (for
this, the model size can play an important role) and interpreting the predictions made by
the model. For the former, one needs models that are readily interpretable (e.g., decision
trees) or proxies such as feature ranking estimated from the model (Petković et al., 2019a;
Petković et al., 2020). For the latter, one can use specifically designed methods for explain-
ing individual predictions (Štrumbelj & Kononenko, 2014), feature importance estimation
for making predictions for subsets of examples (Petković et al., 2019b), or novel methods
such as SHAP (Lundberg & Lee, 2017) that are capable of explaining individual predic-
tions for arbitrary models (note that they are still better suited to tree-based methods
(Lundberg et al., 2020)).

Another important consideration can be computational efficiency, both for learning the
model and using the model to make predictions. Better learning efficiency can allow the
algorithms to process more learning data, which typically leads to more accurate models.
Moreover, for some domains with large numbers of examples, features, and outputs, the
computational cost of learning can be a limiting factor (for example, analysis of metage-
nomic data, virtual compound screens). Several problems also require models capable of
making predictions very quickly (e.g., automated stock trading).

Some algorithms, like many decision tree implementations, can deal with both numeric
and nominal variables. Others, like neural network methods, only accept numeric variables,
which means nominal variables need to be encoded with one or more numeric variables.
This can be done in a number of ways, and we here present the two most commonly used
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{Red, Green, Blue}

Red   → 1
Green → 2
Blue  → 3

Red   → [1, 0, 0]
Green → [0, 1, 0]
Blue  → [0, 0, 1]

one-hotordinal

Figure 2.1: An example of ordinal and one-hot encoding strategies of a nominal variable
with three possible values: red, green and blue.

strategies. Suppose we have a nominal variable with n possible values that we organized in
an arbitrary order [v1, v2, . . . , vn]. In ordinal encoding, we encode each value of the nominal
variable with a single integer, e.g., we can encode vi with integer i. The second common
encoding strategy is one-hot encoding, where the values are encoded with binary vectors
of length n. Each component corresponds to a specific value, and all components are set
to 0 except the component corresponding to the value that the vector encodes, which has
a value of 1. For example, we encode the value vi with an n-dimensional vector, where
all components are 0 except the i-th one, which is 1. Figure 2.1 demonstrates ordinal and
one-hot encodings on a simple example.

2.1.1 Primitive output prediction

The simplest predictive modeling tasks are the ones with a single target variable which has
a primitive data type (Panov, Soldatova, et al., 2016). Depending on whether the target
is numeric or nominal, we differentiate between different predictive modeling tasks.

If the target is nominal, the task is called classification, and the different values of the
target are referred to as classes. For example, the target in Table 2.1 has two possible
values, “yes” and “no”. Classification tasks are further divided based on the number of
classes. When there are only two possible classes, like in the example, the task is known
as binary classification (BC). And with three or more possible classes, we are referring
to the task as multi-class classification (MCC). Some examples of classification tasks are
predicting the winning team in a basketball match, predicting whether to buy or sell a
stock, detecting the language of a text, identifying the animal in an image, etc.

Alternatively, if the target is numeric, the task is called regression. Examples of regres-
sion tasks are predicting the point difference in a basketball match, predicting the price
increase/decrease of a stock, predicting the temperature tomorrow, predicting how much
a molecule inhibits a protein, etc. As we hinted at with our examples, regression tasks
are often naturally transformed into classification tasks by discretizing the numeric target
into several bins and treating the different bins as classes. For example, predicting the
point difference in a basketball match can be transformed into a classification problem of
predicting which team will win. In the tasks presented above, the target is a single value.
We will refer to this group of tasks as primitive output prediction tasks.

One can also encode a nominal target variable in the same way as the descriptive
variables. We can thus approach a classification problem with regression algorithms. This
is mostly used for binary classification problems, where the two classes can be encoded
with values 0 and 1. Then the output of a regression model can be interpreted as the
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Figure 2.2: Weather forecasts can be a source of multi-target regression problems. For
example, we may wish to predict the temperatures or atmospheric pressures for the next
day at several locations. Source: meteo.arso.gov.si.

pseudo-probability (propensity) of an example belonging to class 1.

2.1.2 Structured output prediction

In the previous section, we discussed predictive modeling tasks where the output consisted
of a single target variable. In this section, we will consider tasks that are more naturally
described with more complex outputs, consisting of multiple target variables that may
have an additional structure defined on top of them. Specifically, we will describe the tasks
multi-target regression, multi-label classification, and hierarchical multi-label classification.

2.1.2.1 Multi-target regression

In the regression task described above, there was a single numeric target for the model
to predict. From now on, we will refer to this task as single-target regression (STR)
for clearer distinction. In multi-target regression (MTR), the task is to predict multiple
numeric targets simultaneously. Some examples of multi-target regression problems are
predicting the point differential of multiple basketball games (each game featuring our
favorite team and some other opponent), predicting the temperature on multiple locations
(e.g., Figure 2.2), predicting the height and weight of a person, etc. Additionally, multi-
class classification problems can be treated as multi-target regression if we encode the
nominal target with one-hot encoding. In the end, we predict the class for which the value
predicted by the MTR algorithm was the largest.

A straightforward approach to MTR is problem transformation, where we transform the
problem of predicting t numeric targets into t independent STR problems. This allows us
to use any STR method to deal with MTR. However, by doing so, we overlook the potential
interactions among the different targets (e.g., temperatures at neighboring locations are
similar, if our team beats team A, it may be more likely to also beat team B, tall people
tend to weigh more than short people, etc.). Another way to approach MTR is to use
algorithms designed or adapted for dealing with multiple numeric targets. Such methods

meteo.arso.gov.si
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Figure 2.3: Image tagging is typically a multi-label classification problem. This image was
tagged with labels nature, mountain, water, lake, forest, and park. Source: hdwallpapers.
in.

can exploit correlations among the targets. By building a single model, we can also benefit
from improved time-complexity and interpretability (Kocev et al., 2013).

2.1.2.2 Multi-label classification

In binary and multi-class classification problems, examples are labeled with one label out
of two or more options. In multi-label classification (MLC), examples are labeled with a
subset of a finite set of possible labels. For example, we can look at the image tagging
problem (Figure 2.3). Each image can be tagged with multiple labels, and hundreds of
potential labels exist. Some other examples of MLC problems are topic classification of
texts, movie genre classification, protein-protein interaction prediction, etc.

Label sets in MLC are most often encoded as k-hot binary vectors. It is similar to
one-hot encoding we discussed in Section 2.1, except that multiple components can have
value 1 because multiple labels can be present for each example. For many problems, the
number of possible labels is very large, but for most examples only a very small subset of
them is relevant. This leads to high-dimensional vectors that are sparse – the vast majority
of components have a value 0.

Multiple problem transformation approaches to MLC have been proposed (Tsoumakas
et al., 2009). Suppose we have a problem with L possible labels. The simplest approach
is to construct L binary classifiers, each of which decides if a single label is present or
not. This approach is known as binary relevance and its disadvantage is that it ignores
any interactions between the labels. Another approach is to learn L(L− 1)/2 models, one
for each pair of labels. Each model decides which of the two labels is more appropriate,
and individual predictions are then aggregated into the final decision. This improves upon
binary relevance by taking some label interactions into account but is considerably more
computationally intensive.

MLC can also be transformed into a multi-class classification problem by treating each
combination of labels as a separate class. The disadvantage of this approach is that the
number of classes grows exponentially with the size of the label set which makes all classes
very rare. Most classes are not represented often in the learning set (if at all), and label
sets not present in the learning set cannot be predicted.

As with MTR, algorithms also exist that were designed or adapted to be used for MLC

hdwallpapers.in
hdwallpapers.in
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nature

mountain water forest park

lake

Figure 2.4: Example of a hierarchy constructed from the labels of the image presented in
Figure 2.3.

directly. Some examples are predictive clustering trees (Kocev et al., 2020; Kocev et al.,
2013), support vector machines (Elisseeff & Weston, 2002) and neural networks (Chen et
al., 2019).

2.1.2.3 Hierarchical multi-label classification

Hierarchical multi-label classification (HMLC) is a generalization of the MLC task where
a partial ordering among the labels is defined, i.e., some labels are special cases of other
labels. This partial ordering organizes the labels in a hierarchy and imposes a hierarchical
constraint: if an example has a label l, it also has all the parent labels of l in the hierarchy
(the labels that generalize l). Predictive models can take advantage of this constraint.

The image tagging task we presented as an example of an MLC task can be posed as
an HMLC task if we organize the labels into a hierarchy. Figure 2.4 presents one possible
hierarchy constructed from the labels of Figure 2.3. It is just a part of the hierarchy that
would be constructed from all the possible image labels. In this case, the hierarchy is
in the form of a tree – each label has one parent. Partial ordering could also induce a
hierarchy in the form of a directed acyclic graph, where a label can have multiple parents.
Other examples of HMLC problems are classification of living beings into taxonomic ranks
(Dimitrovski et al., 2012), classification of gene functions (Consortium, 2019), classification
of medical paper topics with Medical Subject Headings (Minguet et al., 2017), etc.

A straightforward approach to HMLC is to ignore the hierarchy and treat it as an MLC
problem. In the end, the predictions made with such an approach must be post-processed
to take into account the hierarchical constraint. There are also several approaches that can
take the hierarchy into account, both local, which decompose the problem into multiple
smaller ones (for example, one model for each non-terminal node in the hierarchy, that
decides which children nodes are appropriate), and global, where a single model is made
to deal with all the labels. Local approaches can be used with any classification algorithm.
Examples of global approaches include predictive clustering trees (Vens et al., 2008), kernel-
based approaches (Rousu et al., 2006), and neural networks (Wehrmann et al., 2018).

2.1.3 Supervised and semi-supervised learning

So far, we focused on the supervised learning approach to predictive modeling. Here, the
model is learned with the help of a learning set where each example is labeled, i.e., has a
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Figure 2.5: Motivation for semi-supervised learning. The information provided by the
unlabeled examples (grey circles) influences the decision boundary between the two classes
(black and white circles). Source: wikipedia.org.

target value assigned. The quality of the model very much depends on the quality of the
learning set. If the learning examples do not represent the distribution of the data well
enough, it is difficult to construct a model that generalizes well.

A problem that is present in many domains is that labeled examples can be difficult
to obtain, which means that learning sets can be too small for accurate modeling. This
is common for biological and chemical problems where the process of labeling examples
often requires wet-lab experiments, which are time-consuming and expensive, or medical
problems where purposeful labeling can be unethical.

For some problems where labeled examples are rare, examples without assigned target
values (unlabeled examples) are abundant. For example, the efficiency of compounds for
a specific condition is measured for a small set of compounds, while public databases exist
containing millions of compounds and their descriptions. This is the setting that semi-
supervised learning addresses. We are presented with a set of labeled examples and a set
of unlabeled examples. Typically the number of labeled examples is (much) lower than the
number of unlabeled examples.

Semi-supervised methods use the information about the distribution of the data in
the input space provided by the unlabeled examples aiming to learn a better predictive
model. The intuition is presented in Figure 2.5. Semi-supervised methods rely on some
assumptions about the data. The most common assumptions are the clustering assumption,
which assumes that points nearby in the input space have similar target values, and the
manifold assumption, which assumes that examples lie on lower-dimensional manifolds in
the input space (as is the case in Figure 2.5).

The most straightforward semi-supervised method is self-training (Rosenberg et al.,
2005). It is an iterative procedure, where at each step we learn a model on the labeled
examples. This model then makes predictions for the unlabeled examples, and the most
confident predictions are then included among the labeled examples in the next iteration.

wikipedia.org
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education = PhD

2300€

Yes

#cars > 2

No

1800€

Yes

1000€

No

Figure 2.6: An example of a regression tree that predicts the monthly income of a person.
The tree is interpreted in the following way: if a person has a PhD, they are expected to be
wealthy and have a salary of 2300e per month. Otherwise, having multiple cars indicates
a higher expected salary (1800e) than having a single car or none at all.

A related approach is co-training (Zhou & Li, 2007), where, instead of a single model, we
have two models that label the examples for each other. The models are usually different or
are provided with different views of the data. There are also methods that take unlabeled
examples into account to draw decision boundaries in low density regions in the input space.
Examples include semi-supervised SVMs (Bennett & Demiriz, 1998) and semi-supervised
predictive clustering trees (Levatić et al., 2017; Levatić et al., 2020).

2.2 Predictive Clustering Trees

In this section, we start by briefly presenting standard decision trees and their use in
ensembles. We then describe predictive clustering trees in detail and show how they are
used for structured output prediction tasks and semi-supervised learning.

2.2.1 Basics of decision trees

Tree-based predictive models have been popular for the last several decades (Breiman et
al., 1984). Their use is widespread: they can solve both classification and regression tasks
and can handle both numeric and nominal features. A small regression tree is presented
in Figure 2.6.

Tree models are typically constructed with the recursive top-down induction algorithm
outlined in Algorithm 2.1. The construction starts with the full set of learning examples.
At each step, the algorithm goes through all the possible tests for all the features and
selects the best one based on some heuristic score. The tests for numeric features xi are
typically of the form

xi > t,

where t ∈ R is some threshold. For tests on nominal features, there are two common
options:

xi = vi and xi ∈ V,
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Algorithm 2.1: Learning a decision tree: The inputs are aN×D table of features
X describing the N learning examples, and a list of N targets y that are assigned
to them.
Function grow_tree(X, y):

test = best_test(X, y)
if test 6= None then

rows1, rows2 = split(X, test)
left_subtree = grow_tree(X[rows1], y[rows1])
right_subtree = grow_tree(X[rows2], y[rows2])
return SplitNode(test, left_subtree, right_subtree)

else
return LeafNode(prototype(Y ))

Function best_test(X, y):
best = None
for d = 1, . . . , D do

for test in possible_tests(X, d) do
if acceptable(test) and score(test, X, y) > score(best, X, y) then

best = test
return best

Function score(test, X, y):
rows1, rows2 = split(X, test)
n1 = num_rows(rows1)
n2 = num_rows(rows2)
n = n1 + n2
return n · imp(y)− n1 · imp(y[rows1])− n2 · imp(y[rows2])

where vi is a specific value that this feature can have, and V is a subset of them.
The heuristic score is determined based on some measure of impurity of a set of ex-

amples that we aim to minimize. The main requirement for the impurity function is that
it achieves its minimum on sets of examples with identical targets and increases with the
diversity of the targets. For regression tasks, the most common choice is variance of the
target values, i.e.,

Var(y) =
1

N

N∑

i=1

y2i − (
1

N

N∑

i=1

yi)
2. (2.1)

For classification tasks, a common choice is Gini impurity, defined as

Gini(y) =
L∑

i=1

νi(1− νi), (2.2)

where L is the number of classes and νi are the frequencies of classes in y. If we randomly
choose an element of y and assign it a random class according to the class frequencies νi,
Gini impurity is the probability the assignment would be incorrect.

The tests must also be acceptable in order to be considered, which depends on pre-
pruning conditions we need to specify in advance. For example, we can limit the depth of
the tree, require at least some number of examples in the resulting subsets of examples,
or require the split to reduce the impurity by at least a certain amount. After the best
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acceptable test is selected, the data is split according to it, and the construction continues
recursively on each subset of examples. If no acceptable test is found, a leaf node is
constructed, where a prototype is stored, which is later used to make predictions. The
selection of the prototype can depend on the performance measure that is used to evaluate
the predictions of the model. For classification, using the majority class (i.e., the class with
the highest frequency among the examples in the leaf) maximizes the probability that a
randomly selected example from the leaf will be classified correctly. For regression, using
the mean target value minimizes the mean squared error between the prototype and the
examples in the leaf.

Because the tests only have two possible outcomes, the resulting trees are binary. The
greediness of the algorithm means that the constructed tree is usually not optimal, how-
ever, this approach is necessary to keep the tree construction computationally manageable.
Finding the optimal tree for a set of examples is a NP-hard problem (Laurent & Rivest,
1976).

Once a tree is constructed, it can be used to make predictions for previously unseen
examples. A new example is first sorted down to a leaf node, based on its feature values.
Then, the prototype stored in that leaf is predicted. A single tree can be inspected, and
its predictions interpreted easily. However, tree learning algorithms are typically unstable,
meaning that a small change in the learning set can lead to a completely different tree.
This instability hurts the predictive performance of tree models (Breiman, 1996; Geman
et al., 1992).

This problem is addressed by tree ensembles: instead of using a single tree to make
predictions, we construct multiple trees and use them together. Each tree in the ensemble
makes its own prediction, and the predictions of the individual trees are then aggregated
into the final prediction of the ensemble. Typical aggregations are majority voting for
classification problems and averaging for regression problems.

To profit from an ensemble, we need variety among the individual trees – if all the trees
were the same, the ensemble prediction would be equal to the predictions of the individual
trees. The diversity of the trees is achieved by introducing randomization in the learning
process.

The original tree ensembles are bagging ensembles (Breiman, 1996), where each tree
is learned on a different subset of the learning set, which is sampled with replacements
(bootstrapping). Because tree learning is unstable, these changes to the learning sets lead
to different trees, which benefits the ensemble. Nowadays, most commonly used ensembles
are random forests (Breiman, 2001). In addition to bootstrapping the learning sets, they
introduce randomization also in the individual tree construction by only considering a
subset of features when searching for a test to split the data. This subset is drawn randomly
for each split.

The performance boost gained by the ensembles comes at the cost of reduced inter-
pretability. Ensembles often have 100 or more trees, and inspecting them individually is
infeasible. To counter this, different feature ranking approaches based on tree ensembles
have been developed (Breiman, 2001; Petković et al., 2019a; Petković et al., 2020). A
feature ranking shows how much an ensemble relies on individual features to make predic-
tions.

2.2.2 Basics of predictive clustering trees

Predictive clustering trees (PCTs) (Blockeel et al., 2002; Blockeel et al., 1998) generalize
standard decision/regression trees by differentiating between three types of variables.

• Features are the variables that can be used in the internal nodes of the tree to make
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Algorithm 2.2: Learning a PCT: The inputs are a N ×D table of features X,
a N × T table of targets Y , and a N ×K table of clustering attributes Z.
Function grow_tree(X, Y, Z):

test = best_test(X, Z)
if test 6= None then

rows1, rows2 = split(X, test)
left_subtree = grow_tree(X[rows1], Y[rows1], Z[rows1])
right_subtree = grow_tree(X[rows2], Y[rows2], Z[rows2])
return SplitNode(test, left_subtree, right_subtree)

else
return LeafNode(prototype(Y ))

Function best_test(X, Z):
best = None
for d = 1, . . . , D do

for test in possible_tests(X, d) do
if acceptable(test) and score(test, X, Z) > score(best, X, Z) then

best = test
return best

Function score(test, X, Z):
rows1, rows2 = split(X, test)
n1 = num_rows(rows1)
n2 = num_rows(rows2)
n = n1 + n2
return n · imp(Z)− n1 · imp(Z[rows1])− n2 · imp(Z[rows2])

decisions. They are used in the same way as in standard decision trees.

• Targets are the variables that are predicted in the leaves of the tree. The important
difference compared to standard decision trees is that there can be multiple targets,
instead of just one. This requires a change in the prototype function.

• Clustering attributes are the variables that are used by the heuristic scoring func-
tion to evaluate the splits and therefore guide the tree construction. In standard
decision trees, there is no difference between clustering attributes and the targets. In
PCTs, they are theoretically independent from the features and the targets. However,
since we want the tree to make accurate predictions for the targets in the leaves, some
connection to the targets is desired. This requires a change in the impurity function.

Algorithm 2.2 presents a step-by-step procedure for constructing a PCT. It is very
similar to Algorithm 2.1 but takes into account the differences we mentioned above. There
can be multiple targets and the best_test and score functions use the clustering variables
instead of the targets.

This differentiation of variables, support for multiple targets, and various instantiations
of prototype and impurity functions give PCTs a lot of flexibility. They have been used
for several structured output prediction tasks (Kocev et al., 2020; Kocev et al., 2013;
Madjarov et al., 2012), semi-supervised learning (Levatić et al., 2017; Levatić et al., 2020;
Levatić et al., 2018), and also unsupervised learning (Dimitrovski et al., 2016). We also
explored using low-dimensional embeddings of label sets as clustering attributes to reduce
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the learning time of the models (Stepišnik & Kocev, 2020a).

2.2.3 PCTs for structured output prediction

In this section, we will present the impurity and prototype functions that PCTs use to
address MTR, MLC, and HMLC tasks. The general form of the impurity that PCTs
calculate is

imp(Z) =
1

K

K∑

i=1

pi
imp(Zi)

imp(Ztrain
i )

, (2.3)

where imp(Zi) is the impurity of the i-th clustering attribute, imp(Ztrain
i ) is the impurity

of that attribute on the entire training dataset, and pi is the priority weight we assign to
this attribute. In other words, the total impurity is the weighted sum of relative impurities
of the individual clustering attributes. The impurities are considered relative to the entire
learning set to put the impurities of different variables on the same scale. For individual
impurities, we use variance for numeric variables and Gini impurity for nominal variables.

In a supervised setting, the clustering attributes are typically the same as the targets.
For the MTR task, assuming we do not prioritize some targets over others, this means that
the impurity used is

imp(Z) = imp(Y ) =
1

T

T∑

i=1

Var(Yi)
Var(Y train

i )
. (2.4)

Note that when there is only one numeric target, this is equivalent to the splitting criterion
used by standard regression trees. For the prototype function, we simply use the vector of
mean target values of the training examples in that leaf.

For MLC, the approach is similar to MTR. We represent the label sets with binary
vectors using k-hot encoding (Section 2.1.2.2), so the number of targets is equal to the
number of different labels. For binary variables, Gini impurity and variance are equivalent
as impurity measures1. After the encoding, the tree construction is the same for MLC as
it was for MTR. For the prototypes, we again use the averages of the target values, which
in this case represent label frequencies in the leaves. These averages can be used directly
for predictions and treated as pseudo-probabilities of individual labels or used to rank the
labels in order of relevance for a given example. Alternatively, we can apply some threshold
(typically 0.5) to the averages and only predict the labels for which the computed average
exceeds the selected threshold.

The HMLC task is again approached in a similar way to MLC, except we also take into
account that labels higher in the hierarchy are more important than labels lower in the
hierarchy. Label sets are represented with binary vectors, and variance is used to measure
the impurity for the individual labels. However, we also make use of weights to prioritize
selected labels. The impurity used is

imp(Y ) =
1

T

T∑

i=1

pi
Var(Yi)

Var(Y train
i )

, (2.5)

where pi = pαi
0 is the priority weight assigned to the i-th label, αi is the depth of this label

in the hierarchy, and p0 some initial priority. If p0 < 1, the importance of a label drops
exponentially with its depth. Predictions are made in the same way as for MLC. Because
the hierarchical constraint is satisfied for all learning examples, it is also satisfied for the
prototypes calculated in the leaves – the frequency of a given label will always be lower
than the frequency of its ancestors in the hierarchy.

1Simple exercise for the reader, it follows from the fact that v2 = v for v ∈ {0, 1}.
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2.2.4 PCTs for semi-supervised learning

As we discussed in Section 2.1.3, semi-supervised methods look to exploit labeled and
unlabeled examples to learn better models in situations where labeled examples are scarce.
We start with a N × D table Xl containing the features of the Nl labeled examples, a
Nl × T table containing the targets assigned to them, and a Nu ×D table Xu containing
the features of theNu unlabeled examples. Suppose we concatenate the tables with features
of labeled and unlabeled examples into a (Nl +Nu)×D table X.

The way that PCTs include the information from unlabeled examples in the learning
process is by using both targets and features as the clustering attributes (Levatić et al.,
2018). When calculating the impurity of individual clustering attributes, only labeled
examples are taken into account for the targets (imp(Yi)). Following this information,
Equation 2.3 transforms into

imp(Z) =
1− ω
D

D∑

i=1

pXi
imp(Xi)

imp(Xtrain
i )

+
ω

T

T∑

i=1

pYi
imp(Yi)

imp(Y train
i )

, (2.6)

where pXi and pYi are the priority weights assigned to the feature and target subsets of
the clustering attributes, respectively, and ω ∈ [0, 1] is the parameter that determines the
degree of supervision. There are three settings for ω to consider.

• If ω = 1, the part of the impurity that is derived from the features is ignored because
it is weighted with 1−ω. Since the impurity for the targets is only calculated only on
the labeled examples, the unlabeled examples are effectively ignored when evaluating
the splits and the tree construction is completely supervised.

• If ω ∈ (0, 1), both features and targets influence the impurity and learning is in fact
semi-supervised.

• In the second extreme case, where ω = 0, the impurities of targets are ignored. This
means the tree is constructed in an unsupervised manner and examples are clustered
together based on their feature values. However, in the leaves, the targets are still
used to calculate the prototypes.

2.2.5 Time complexity of learning a split

Here, we analyze the time complexity of learning a split in PCTs. Suppose we have N
examples with D features, T targets, and K clustering attributes. When searching for a
split, we iterate over all D features and evaluate all the different splits by that feature.
For each feature, we start by sorting the examples according to the values of that feature.
This requires O(N logN) operations. Then we can evaluate all the tests for this feature
in a single pass over the examples, but we need to keep track of some statistics needed to
calculate the impurity for each clustering attribute. This takes O(NK) operations. When
the best test is found, it only takes O(N) operations to split the data according to it, which
is negligible. The total cost of learning a split is therefore O(DN logN +DNK) (Kocev
et al., 2013).

Remember that for normal supervised learning K = T . This means that learning
time scales with the product of the numbers of features and targets. Especially for MLC
and HMLC problems, the number of labels can often reach hundreds and even thousands.
If coupled with a high-dimensional input, the learning times become prohibitively long.
Furthermore, for semi-supervised learning, clustering attributes include both features and
targets, so K = D+ T . Therefore, the learning time scales quadratically with the number
of features, which is also problematic.
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Figure 2.7: An example of an option decision tree predicting the monthly income of a
person. Suppose we have a person without a PhD that owns 3 cars, owns a house, and
lives in the countryside. The first test sends this person to the right subtree where it
encounters an option node. Option nodes send examples down all its subtrees, each of
which makes a prediction. In this case, the first subtree predicts the income of 1800e
because the number of cars owned is at least 2, the second tree predicts 2500e because the
person owns a house, the third subtree predicts 1100e because the person does not live in
the city. The prediction of the option tree is the mean of these options: 1800e.

2.3 Option Decision Trees

Option trees were first introduced by Buntine (1992). They generalize standard decision
trees by allowing option nodes in addition to normal split and leaf nodes. When looking
for a test to split the data, we can find multiple tests with heuristic scores similar to
the best test. Instead of only selecting the best test and ignoring the rest, option trees
create an option node, which combines several of the best splits. Each of the selected
splits then continues into its own alternative subtree. An important note is that when
considering the tests for an option node, only tests based on different features are taken
into account. Having similar heuristic scores for multiple tests using the same feature
(especially a numeric feature where the threshold can be slightly changed) is expected so
such cases are not included in an option node.

Option trees make predictions in a manner similar to standard decision trees. Examples
start at the top of the tree and are sorted downwards based on the tests in the split nodes.
When an option node is encountered, the example is sent to each of the alternative subtrees.
This means that an example can reach multiple leaf nodes where predictions are made.
The prediction of the option tree is then the aggregation (average or majority class) of
these individual predictions. Figure 2.7 presents an example of an option tree.

Compared to standard decision trees, option trees have two main advantages.

• The tree construction algorithm presented in Algorithm 2.1 is greedy and selects the
test that appears the best at the moment, disregarding future options. If we have
several tests with similarly good heuristic scores, the test with the highest score based
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on the learning set might only appear so due to some noise in the data or a couple
of outliers. By creating an option node and keeping several good alternatives, we
reduce the greediness and increase the chance of keeping the actually most fitting
test.

• Because the tree construction is unstable, a small change in a test close to the root
node leads to great changes lower in the tree. On the one hand, this means that
selecting the wrong test early in the tree construction can be very harmful in standard
trees. On the other hand, we can expect substantial differences among the alternative
subtrees constructed from an option node. Like with ensembles, this is helpful when
aggregating their predictions.

Option trees can be seen as a compact way of presenting a set of trees with common prefixes.
In this sense, they are a bridge between single trees and tree ensembles. Increasing the
number of options leads to better predictive performance but comes with an increased
computational cost and lower interpretability.

In the experiments performed by Buntine (1992), option nodes were most often created
lower in the trees where the uncertainty of split evaluation was greater due to smaller data
samples. In a later study, Kohavi and Kunz (1997) analyzed option trees in detail and
showed that option nodes closer to the root of the tree improve the performance more than
option nodes lower in the tree. They go on to propose multiple strategies for limiting the
number of option nodes. The first strategy is to only create option nodes when multiple
tests have heuristic scores within some predefined relative margin of the best score. The
second strategy limits option nodes to the first couple of levels of the tree. With the third
strategy, each option node is only allowed to include up to a specified number of options.
Buntine (1992) only used the first strategy and included all options that were within a
factor 0.005 of the best test. Kohavi and Kunz (1997) increased this factor greatly, up to
0.5, but additionally used the other two strategies to limit the size of the trees.

2.4 Oblique Decision Trees

All the trees we have seen and discussed thus far used only a single feature in each test.
This means that the split boundaries are hyperplanes that are parallel to one axis in the
input space, which is why such trees are called axis-parallel trees. In contrast, oblique trees
(also called multivariate trees) use linear combinations of features in the tests. Individual
tests have the form

w · x+ b > 0,

where x ∈ RD is the vector of features, w ∈ RD and b ∈ R are the weights and the bias
term defining the split hyperplane, and w · x is the scalar product of vectors. This makes
splits more general because the boundary can be an arbitrary hyperplane in the input
space. The increased flexibility can lead to models that fit the data much better, as we
demonstrate in Figure 2.8. It also means that nominal features need to be encoded with
numerical features in one of the ways we described in Section 2.1 and Figure 2.1.

However, despite this advantage, oblique trees receive significantly less attention from
the machine learning community than axis-parallel trees. One reason is that oblique splits
are more difficult to optimize. With axis-parallel trees, finding the optimal tree is NP-hard,
but finding the optimal split for the greedy algorithm is easy, because we can iterate over all
options. With oblique trees, even optimizing a single split is difficult. Finding a hyperplane
that splits a set of examples with binary labels in a way that minimizes misclassified
examples on each side of the hyperplane was shown to be an NP-hard problem (Heath,
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Figure 2.8: A toy dataset (a) with drawn decision boundaries learned by axis-parallel (red,
dashed) and oblique (blue, solid) decision trees (b).

1993). Additionally, oblique splits also lose some of the interpretability of axis-parallel
splits, especially if the number of features they use is large.

We found that existing oblique tree methods are specialized for specific predictive
modeling tasks (mostly binary classification) and are often computationally inefficient. The
initial proposals for the induction of oblique trees (Breiman et al., 1984; Murthy et al.,
1994) relied on local search optimization. Such approaches scale poorly to contemporary
problems that have thousands of examples and/or features. More recently, Yang et al.
(2019) proposed Weighted Oblique Decision Trees that learn splits by optimizing weighted
information entropy. They are relatively efficient and can be used for binary and multi-class
classification tasks.

Oblique random forests (Menze et al., 2011) follow the standard random forest paradigm.
They learn individual trees on different bootstrapped samples of the training set and use
a different random subset of features for each split. Split learning is performed via ridge
regression, which allows for efficient optimization of the hyperplanes, but their approach
is limited to binary classification problems.

Additionally, FastXML (Prabhu & Varma, 2014) and PfastreXML (Jain et al., 2016) are
methods based on oblique trees for multi-label classification. The focus of the methods is
on problems with thousands of features and labels, so they specialize in working with sparse
data. When learning a split, these methods optimize a complex objective function that
combines L1 regularization, logarithmic loss, and normalized distributed cumulative gain
(nDCG) of examples on each side of the hyperplane. The criterion function is optimized
in two steps. First, the examples are partitioned in a way that minimizes nDCG in each
partition; this partitioning is improved iteratively. Then, a hyperplane is learned that
approximates this partitioning as best as it can. This is done by using GLMNET method
to solve a logistic regression problem.
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Chapter 3

Complex Nodes in Trees: the Basics

In this chapter, we present the core ideas behind the developed variants of predictive
clustering trees with complex nodes. We first focus on developing option nodes and then
on developing oblique splits. Our goal is to keep the developed methods applicable to all
the tasks that PCTs could address originally, as presented in Section 2.2. The proposed
methods extend PCTs in orthogonal directions - one allowing a more extensive exploration
of the search space of possible splits, and the other by changing the split search space from
the standard univariate splits to the space of multivariate splits. Conceptually, combining
option nodes with oblique splits is straightforward. However, the methods we developed for
optimizing oblique splits are poorly suited to this because they do not provide alternative
splits that could be included in an option node. The details on the use of the developed
variants for different structured output prediction tasks and their experimental evaluations
can be found in Chapters 4-8.

3.1 Option Predictive Clustering Trees

Option predictive clustering trees (OPCTs) extend standard PCTs with option nodes. As
we described in Section 2.3, option decision trees create option nodes when there are mul-
tiple tests with heuristic scores close to the maximum score. The main differences between
PCTs and standard decision trees are the heuristic scoring and prototype functions. OPCTs
use the same heuristic scores and prototypes as PCTs. Since the heuristic score used by
PCTs still returns a single real value, we can use the same criterion for the introduction
of option nodes as option decision trees. The prototype function does not interfere with
option nodes in any way.

Algorithm 3.1 outlines the OPCT induction procedure. There are two main differences
from the standard algorithm (Algorithm 2.2). First, the best_test function now finds the
best test for each feature. Let tbest be the heuristic score of the overall best test (across all
features). Among the best tests for individual features, the function then returns all tests
t for which

score(t)
score(tbest)

≥ 1− ε · dlevel, (3.1)

where ε is the margin parameter, level is the current depth of the node in the tree and d
the decay rate. The decay rate determines how fast the margin for the inclusion of tests
in an option node is shrinking. This parameter is included so we can be more liberal with
options higher in the tree where they have a greater impact and stricter lower in the tree to
limit the tree size. Additionally, we can limit the maximum number of options per option
node to O. This means only the best O tests satisfying the condition in Equation 3.1 are
included. We can also limit option nodes to only the top L levels of the tree. If that is
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Algorithm 3.1: Learning an OPCT: The inputs are a N × D table of features
X, a N × T table of targets Y , and a N ×K table of clustering attributes Z.
Function grow_tree(X, Y, Z):

tests = best_test(X, Z)
splits = [ ]
for test ∈ tests do

rows1, rows2 = split(X, test)
left_subtree = grow_tree(X[rows1], Y[rows1], Z[rows1])
right_subtree = grow_tree(X[rows2], Y[rows2], Z[rows2])
splits.add(SplitNode(test, left_subtree, right_subtree))

if length(splits) > 1 then
/* If there are multiple splits, create an option node. */
return OptionNode(splits)

else if length(splits) = 1 then
/* If there is only one split, use it. */
return splits[0]

else
return LeafNode(prototype(Y ))

Function best_test(X, Z):
best_feature_tests = [ ]
for d = 1, . . . , D do

best = None
for test in possible_tests(X, d) do

if score(test, X, Z) > score(best, X, Z) then
best = test

best_feature_tests.add(best)
return almost_best(best_feature_tests)

Function score(test, X, Z):
rows1, rows2 = split(X, test)
n1 = length(rows1)
n2 = length(rows2)
n = n1 + n2
return n · imp(Z)− n1 · imp(Z[rows1])− n2 · imp(Z[rows2])

the case, the function only returns the overall best test when level > L. This is equal to
setting O = 1.

The second major difference is dealing with the results of the best_test function. A
tree is grown for each test that was returned. If there was more than one, an option node
is created containing all the alternative splits. If there was just one test, the algorithm
creates a standard split node. Otherwise, no acceptable splits were found and a leaf node
is created.

Once an OPCT is learned, the predictions are made in the same way they are made
with option decision trees. The prototypes in the leaves are also the same as the ones used
by PCTs and depend on the predictive modeling task that the tree is addressing.

Constructing an option node takes no additional time compared to a normal split node
because the most time-consuming part is the evaluation of all the possible tests, which is
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done in both cases. However, the learning time of the entire tree is increased because the
tree continues to grow from each available alternative split in a given option node. In the
worst case (computationally), we introduce option nodes wherever possible at the first L
levels, each including the maximum O options allowed. From that point on, we essentially
construct OL standard PCTs. On larger datasets, the total depth of the learned trees is
typically significantly greater than L, so the worst-case learning time of an OPCT is similar
to the learning time of a bagging ensemble of OL standard PCTs.

3.2 Oblique Predictive Clustering Trees

In this section, we present our proposal for learning predictive clustering trees with oblique
splits, named SPYCTs 1. The development of oblique splits required bigger changes to the
induction algorithm compared to OPCTs. While we kept the standard top-down recursive
structure, we had to design a completely different way of optimizing the tests to split
the data. The grow_tree function from Algorithm 2.2 remains the same, however the
best_test function was redesigned to optimize oblique splits.

We will propose two variants for optimizing oblique splits in Section 3.2.1 and Sec-
tion 3.2.2, but to start with, let us introduce the notation used throughout this chapter.
As discussed in Section 2.4, oblique splits require the nominal features to be encoded with
numerical features. The data can then be represented as matrices with real-valued ele-
ments. Let X ∈ RN×D be the matrix containing the D features of the N examples in
the learning set, Y ∈ RN×T be the matrix containing the T targets associated with the N
examples in the learning set, and Z ∈ RN×K be the matrix containing the C clustering
attributes associated with the N examples in the learning set. Let p ∈ RK be the priority
vector containing the weights assigned to the clustering attributes (see Section 2.2 on PCTs
for details on the usefulness of these weights). To include the semi-supervised learning sce-
nario in the following definitions, we allow missing values in these matrices. The labeled
and unlabeled examples can then be mixed together with the unlabeled examples, simply
having missing values for targets in Y and Z (if targets are included among clustering
attributes).

Let M ∈ RR×C be an arbitrary matrix. We define a missing value indicator matrix
IM ∈ {0, 1}R×C as a binary matrix with dimensions of matrix M where

IMi,j =

{
0 if Mi,j is missing,
1 otherwise.

(3.2)

Analogously, let Iv be the missing value indicator for a vector v. The matrices and vec-
tors can have any values stored in place of missing values, we can check in the indicator
matrices/vectors to see if a value is real or a placeholder. Below, Mi,: will refer to the i-th
row and M:,i to the i-th column of the matrix M . Let colmean(M) be a vector of column
mean values of the matrix M calculated only from the non-missing values:

colmean(Mj) =

∑R
i=1 I

M
i,jMi,j∑R

i=1 I
M
i,j

, 1 ≤ j ≤ C. (3.3)

Oblique splits are defined by a general hyperplane in the input space. We parametrize
the hyperplane with a vector of weights w ∈ RD and a bias term b ∈ R. We will refer to the
subset of examples where Xi,: ·w+ b > 0 as the positive subset, and the subset of examples

1Starting from PCTs, we added PY because they are implemented in Python, and SP because the initial
motivation was efficiency on sparse data.
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where Xi,: · w + b ≤ 0 as the negative subset. The goal is to find a hyperplane where the
examples on each side have similar values of the clustering attributes (in Z). The details
on the optimization of the splits are presented a little later, for now, we continue with the
general overview of the algorithm.

After the split hyperplane has been optimized, the tree construction continues recur-
sively on the positive and negative subsets. Similar to standard PCTs, the learning stops
when the learned split is not acceptable, and a leaf node is made, where the prototype
of the targets is stored. SPYCTs use the same prototypes as standard PCTs, which for
numeric and encoded data are mean values of the targets over the (labeled) examples in
the leaf, i.e., colmean(Y).

When making a prediction for a new example with features x ∈ RD, we calculate the
value x ·w+ b in the root node. If it is non-negative, we repeat the process in the positive
subtree, otherwise in the negative subtree. This is done until a leaf node is reached, where
the stored prototype is predicted.

3.2.1 SVM-based split learning

The first proposal for learning oblique splits is based on linear support vector machines
(SVMs). Here, we present the general formulation of the optimization problem, for special
cases applicable specifically to supervised and semi-supervised structured output prediction
problems see Chapter 7 and Chapter 8, respectively. The SVM variant performs the
hyperplane optimization in two steps. In the first step, we group the examples into two
subsets in such a way that the similarity of the clustering attributes in each subset is
maximized, regardless of the values of the features. Therefore, only the matrix Z is needed
for this step. To obtain the groups, we use k-means clustering (Hartigan & Wong, 1979)
to cluster the rows (examples) in Z into two clusters.

For the initial centroids, two different rows in Z are randomly selected, i.e., c0 = Zi,:
and c1 = Zj,: for some 1 ≤ i, j ≤ N . We then calculate the weighted Euclidean distances
between each row in Z and the two centroids, weighted with the priority weights p and
again disregarding any missing values. Specifically, the distance between the i-th row and
a centroid c is defined as

dist(c, i) =

∑K
k=1 pkI

Z
i,kI

c
k(Zi,k − ck)2∑K

k=1 pkI
Z
i,kI

c
k

. (3.4)

Next, we sort each row into the cluster based on which centroid is closer to it. Let si
denote the cluster assigned to the i-th row, i.e., si = argminj dist(c

j , i). The new centroids
are then column mean values of examples in each cluster. This process is repeated for a
fixed number of iterations.

After obtaining the final cluster assignments, we search for a hyperplane in the input
space that approximates this partitioning. In essence, we convert the split hyperplane
optimization problem into a binary classification problem. We solve the following problem:

min
w,b
‖w‖1 + C

N∑

i=1

max(0, 1− si(Xi,: · w + b))2,

where parameter C ∈ R determines the strength of regularization. To solve this problem,
we use the LIBLINEAR library (Fan et al., 2008), specifically their L1-regularized L2-loss
support vector classification. This provides the w, b parameters that define the split.
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3.2.2 Gradient-descent-based split learning

Unlike the SVM variant, where the split is optimized indirectly by first determining an ideal
split and then trying to approximate it with a hyperplane, the gradient descent variant
directly searches for a hyperplane split that minimizes the impurity on each side. We
initialize the weight vector w randomly, then set b = median(−Xw) so that the examples
are initially split in half.

Next, we will define the optimization criterion for the split learning problem. Let
s = σ(Xw + b) ∈ [0, 1]N , where the sigmoid function σ is applied component-wise. The
vector s contains values from the [0, 1] interval, and we treat it as a fuzzy membership
indicator. Specifically, the value si tells us how much the i-th example belongs to the
positive subset, whereas the value 1 − si tells us how much it belongs to the negative
subset.

To measure the impurity of the positive subset, we use the weighted variance of each
column (variable) in Z, and we weigh each row (example) with its corresponding weight in
s. To measure the impurity of the negative subset, we again use weighted column variance,
this time with weights 1 − s. Again, we ignore any missing values when calculating the
variance. We define the weighted variance of j-th column in Z with arbitrary weights
a ∈ RN as

var(Z, j, a) =

∑N
i=1 I

Z
i,jai(Zi,j − mean(a, Z:,j))

2

∑N
i=1 I

Z
i,jai

, (3.5)

where

mean(a, Z:,j) =

∑N
i=1 I

Z
i,jaiZi,j∑N

i=1 I
Z
i,jai

, (3.6)

is the weighted mean of the j-th column in Z.
The impurity of a subset of examples is the weighted sum of weighted variances over

all the clustering attributes. For weighing different attributes, we use the priority vector p.
The impurity of the positive subset is then imp(Z, p, s) =

∑L
j=1 pjvar(Z, j, s), and similarly

imp(Z, p, 1− s) is the impurity of the negative subset. The split quality is estimated as

f(w, b) = S ∗ imp(Z, p, s) + (N − S) ∗ imp(Z, p, 1− s), (3.7)

where s = σ(Xw + b) and S =
∑N

i=1 si. The terms S and N − S represent the sizes of
positive and negative subsets. This mirrors the heuristic score for evaluating the splits in
standard PCTs (see Section 2.2).

Finally, we add regularization of the hyperplane weights, so the final optimization
problem is

min
w,b
‖w‖ 1

2
+ Cf(w, b),

where C again controls the strength of regularization and ||w|| 1
2
= (

∑D
i=1

√
|wi|)2 is the L1

2

norm. We selected L1
2 regularization because it induces weight sparsity more aggressively

than L1. Regularization makes the algorithm pick the features it uses for a split more
carefully, which improves the interpretability of splits and reduces the model size.

The final optimization criterion is differentiable, which enables the use of efficient op-
timization methods. For this purpose, we selected the Adam gradient descent method
(Kingma & Ba, 2014).

3.2.3 Time complexity analysis

In this section, we analyze the time complexities of learning oblique splits with both SPYCT
variants. In the SVM variant, the first step is to perform a 2-means clustering on the
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clustering data Z ∈ RN×K . In each iteration, we have to calculate the distances between
the centroids and the examples, which requires O(NK) operations. If Ic denotes the
number of clustering iterations, the total cost of clustering is O(IcNK). Learning the linear
SVM to differentiate the clusters costs O(NDIo), where Io is the number of optimization
iterations. The total cost is then O(N(KIc +DIo)).

For the gradient descent variant, the main operation is gradient calculation. We vector-
ize the operations whenever possible. The most expensive parts are the multiplication of
X with w to get the fuzzy indicators s and the multiplication of Z with s when calculating
the derivative of the objective function by s. These products require O(ND) and O(NK)
operations, respectively. If Io again denotes the number of optimization iterations, the
time complexity of learning a split is O(IoN(D +K)).

In comparison, the time complexity of learning a split in standard PCTs isO(DN logN+
NDK) (Section 2.2). The important difference we can notice is that standard PCTs scale
with DK, whereas both proposed variants of oblique PCTs scale with D + K. This is
an important difference when addressing problems with many clustering attributes, i.e.,
high-dimensional output for supervised learning, and high-dimensional input or output for
semi-supervised learning.

Additionally, the optimization of both SPYCT variants can exploit sparsity in data.
When a feature or clustering value is 0, we can skip most operations it is involved in. Let
D̂ � D and K̂ � K be the average numbers of non-zero elements per row in matrices x
and Z, respectively. Then, the learning complexity reduces to O(N(K̂Ic + D̂Io)) for the
SVM variant and O(NIo(D̂ + K̂)) for the gradient descent variant.

3.2.4 Ensembles of oblique predictive clustering trees

Like other tree-based methods, SPYCTs can be used in ensembles to achieve better per-
formance. In fact, since even individual oblique trees are difficult to interpret visually, we
believe that SPYCTs are most naturally used in ensembles. The use of SPYCTs in both
bagging and random forest ensembles is straightforward. For bagging ensembles, we simply
construct each oblique PCT on a different bootstrapped sample of the learning set. For
random forests, we additionally learn each split hyperplane on a random subset of features.
After the hyperplane weights are learned, the weights wi for the features that were not
selected are set to 0. When making predictions, we again average the prototypes predicted
by each tree in the ensemble to get the final prediction.
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Chapter 4

Option Predictive Clustering Trees
for Multi-Target Regression

In this chapter, we detail the first contributions of the thesis: option predictive clustering
trees and their use for the multi-target regression task. In the introductory sections,
we provided a high-level overview of OPCTs (Section 3.1) and described the MTR task
(Section 2.1.2), where the goal is to predict multiple numeric targets. Specifically, the
contributions in this context are:

1. Extension of PCTs with option nodes in the MTR context.

2. Extensive experimental evaluation of the proposed method, focusing on the influence
of different parameter settings on the predictive performance, time complexity, and
interpretability.

3. Bias-variance decomposition of the error for a deeper insight into the predictive
performance and statistical analysis of the results.

The initial work was presented at the DS-2016 conference (Osojnik et al., 2016) and
included the proposal of OPCTs for MTR aiming to address the myopia of standard PCTs.
The experimental evaluation showed that OPCTs outperform single PCTs and achieve
performance comparable to ensembles of PCTs (bagging and random forest). It is worth
pointing out, however, that the selected parameter settings resulted in OPCTs with many
option nodes which lead to learning times and model sizes on par with ensembles.

We later extended this work in a paper presented in the journal Computer Science and
Information Systems (Stepišnik, Osojnik, et al., 2020), which we include in this chapter.
This extension includes a formal analysis of the time complexity of learning OPCTs, and
a more extensive experimental evaluation, including the bias-variance decomposition of
errors. We focused the evaluation on the influence of the number of option nodes on
the predictive performance and total model size, which increases the learning time and
reduces the interpretability. We selected two parameter configurations: one very liberal,
introducing many option nodes, and one with stricter conditions for including options. The
configuration with many option nodes is similar to bagging ensembles in terms of predictive
performance, model size, and learning time. The configuration with fewer option nodes
presents a middle-ground between single trees and ensembles: it achieves significantly
better performance than single trees at the cost of increased model sizes. The models are
still smaller compared to ensembles (and the previously discussed OPCT configuration).
However, they also trade some performance in exchange.

The bias-variance decomposition was performed for a wide spectrum of parameter
configurations. The results show that including more options in an OPCT reduces the
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variance component of the model, whereas the bias component is rarely affected in a
significant way. This means that adding option nodes to OPCTs has a similar effect to
adding trees to tree ensembles.

From the hypotheses we defined in Section 1.2, this chapter addresses the following:

H1 Introducing few option nodes in a PCT improves its predictive performance compared
to standard PCTs while retaining the interpretability potential.

H2 Introducing many option nodes in a PCT makes the option PCTs exhibit similar be-
havior to bagging ensembles of PCTs in terms of time complexity, size, and predictive
performance.

Our paper confirmed H1 and H2 for the MTR task with the analysis of the two parameter
configurations we described and the bias-variance decomposition. Random forest ensem-
bles have similar performance and model sizes as large OPCTs, however, they have an
advantage in time complexity. This advantage is achieved through feature sub-sampling
when selecting a split, but this change is orthogonal to the introduction of option nodes –
option trees can be combined with feature sub-sampling seamlessly.

The paper included in this Chapter is:

• Stepišnik, T., Osojnik, A., Džeroski, S., Kocev, D. (2020). Option predictive clus-
tering trees for multi-target regression. Computer Science and Information Systems,
17(2), 459–486.

The contributions of Tomaž Stepišnik to this paper are as follows. He designed
and carried out the experiments for bias-variance decomposition, processed the results, and
performed statistical analysis on them. He wrote the sections describing the experimental
results and revised the paper following the feedback from the reviewers.
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Abstract. Decision trees are one of the most widely used predictive modelling
methods primarily because they are readily interpretable and fast to learn. These
nice properties come at the price of predictive performance. Moreover, the standard
induction of decision trees suffers from myopia: a single split is chosen in each
internal node which is selected in a greedy manner; hence, the resulting tree may
be sub-optimal. To address these issues, option trees have been proposed which can
include several alternative splits in a new type of internal nodes called option nodes.
Considering all of this, an option tree can be also regarded as a condensed represen-
tation of an ensemble. In this work, we propose to learn option trees for multi-target
regression (MTR) based on the predictive clustering framework. The resulting mod-
els are thus called option predictive clustering trees (OPCTs). Multi-target regres-
sion is concerned with learning predictive models for tasks with multiple numeric
target variables. We evaluate the proposed OPCTs on 11 benchmark MTR data sets.
The results reveal that OPCTs achieve statistically significantly better predictive
performance than a single predictive clustering tree (PCT) and are competitive with
bagging and random forests of PCTs. By limiting the number of option nodes, we
can achieve a good trade-off between predictive power and efficiency (model size
and learning time). We also perform parameter sensitivity analysis and bias-variance
decomposition of the mean squared error. Our analysis shows that OPCTs can re-
duce the variance of PCTs nearly as much as ensemble methods do. In terms of
bias, OPCTs occasionally outperform other methods. Finally, we demonstrate the
potential of OPCTs for multifaceted interpretability and illustrate the potential for
inclusion of domain knowledge in the tree learning process.

Keywords: multi-target regression, option trees, interpretable models, predictive
clustering trees, bias-variance decomposition of error.

1. Introduction

Supervised learning is one of the most widely researched and investigated areas of ma-
chine learning. The goal in supervised learning is to learn, from a set of examples with
known class, a function that outputs a prediction for the (scalar-valued) class of a previ-
ously unseen example. However, in many real life problems of predictive modelling the
output (target) is structured, e.g. it is a vector of classs values or a tuple of target variables.
There can be dependencies between the class values/targets (e.g., they can be organized

? The authors wish it to be known that the first two authors should be regarded as joint first authors.
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into a tree-shaped hierarchy or a directed acyclic graph) or some internal relations be-
tween the class values may exist (e.g., as in sequences).

In this work, we concentrate on the task of predicting multiple numeric variables.
Examples thus take the form (xi,yi), where xi = (xi1, . . . , xik) is a vector of k input
variables and yi = (yi1, . . . , yit) is a vector of t target variables. This task is known
under the name of multi-target regression (MTR) [4, 23, 24] (also known as multi-output
or multivariate regression). MTR is a type of structured output prediction task which has
applications in many real life problems, where we are interested in simultaneously pre-
dicting multiple numeric variables. Prominent examples come from ecology and include
predicting the abundance of different species living in the same habitat [12] and predict-
ing properties of forests [21, 29]. Due to its applicability to a wide range of domains, this
task is recently gaining increasing interest in the research community.

Several methods for addressing the task of MTR have been proposed [24, 31]. These
methods can be categorized into two groups of methods [2]: (1) local methods, that predict
each of the target variable separately and then combine the individual model predictions
to get the overall model prediction and (2) global methods, that predict all of the variables
simultaneously (also known as ‘big-bang’ approaches). In the case of local models, for a
domain with t target variables one needs to construct t predictive models – each predicting
a single target. The prediction vector (that consists of t components) of an unseen example
is then obtained by concatenating the predictions of the multiple single-target predictive
models. Conversely, in the case of global models, for the same problem one needs to
construct only one model. In this case, the prediction vector of an unseen example is
obtained by passing the example through the model and getting its (complete) prediction.

In the past, several researchers proposed methods for solving the task of MTR directly
and demonstrated their effectiveness [1, 8, 10, 21, 24, 20, 30]. The global methods have
several advantages over the local methods. First, they exploit and use the dependencies
that exist between the components of the structured output in the model learning phase,
which can result in better predictive performance. Next, they are typically more efficient:
it can happen that the number of components in the output is very large (e.g., predicting
the bioactivity profiles of compounds described with their quantitative structure-activity
relationships on a large set of proteins), in which case executing a basic method for each
component is not feasible. Furthermore, they produce models that are typically smaller
than the sum of the sizes of the models built for each of the components.

The state-of-the-art methods for MTR are based on tree and ensemble learning [8, 24,
27, 31]. Trees for MTR (from the predictive clustering framework) inherit the properties
of regression trees: they are interpretable models, but their construction is greedy. The
performance of trees is significantly improved when they are used in an ensemble setting
[24, 20]. However, the myopia, i.e., greediness, of the tree construction process can lead to
learning sub-optimal models. One way to alleviate this is to use a beam-search algorithm
for tree induction [22], while another approach is to introduce option splits in the nodes
[9, 25].

Beside the many appealing properties of trees, their predictive performance is often
limited. In a variety of machine learning tasks including MTR, learning ensembles of trees
typically significantly improve the predictive power of the single models [24]. However,
learning ensembles has a significant drawback – lack of a possibility to interpret the ob-
tained predictive model. It is not feasible to analyze each tree in an ensemble due to both
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the number of trees and the randomized procedure that is used to learn them. Typically,
this means that there is a trade-off between interpretability and predictive performance.

To address this issue, we propose to extend predictive clustering trees (PCTs) for
MTR towards option trees, i.e., we introduce option predictive clustering trees (OPCTs).
An option tree can be seen as a condensed representation of an ensemble of trees which
shares a common substructure. More specifically, the heuristic function for split selection
can return multiple values that are close to each other within a predefined range. These
splits are then used to construct an option node. For illustration, see Figure 1.

The contributions of this work can be summarized as follows:

– We introduce a new method for addressing the task of MTR that provides a balance
between interpretability and predictive performance: An option PCT can be treated
as an ensemble, or the best subtree can be extracted and analyzed as a single tree.

– We analyze the computational complexity of the proposed method and compare it to
the complexity of the competing methods.

– We perform an empirical evaluation of the performance of the proposed method along
three dimensions: predictive power, time efficiency and size of the models.

– We further analyse the predictive performance by examining the bias-variance de-
composition of the models’ errors. We perform the analysis for the proposed method
as well as the competing methods. As far as we are aware, such an analysis has not
been performed before for MTR methods.

This work extends our earlier work presented in [26] along two major directions. First,
we perform a theoretical analysis of the computational complexity of the proposed method
and compared it to the computational complexity of learning a single PCT and ensembles
of PCTs. Second, we calculate the bias-variance decompositions of mean squared errors to
determine which components of the error are addressed by different parameter selections
and competing methods.

The remainder of this paper is organized as follows. Section 2 proposes the algorithm
for learning option PCTs for MTR. Next, Section 3 outlines the design of the experimen-
tal evaluation and the details on the bias-variance decomposition of the error. Section 4
continues with a discussion of the results. Finally, Section 5 concludes and provides di-
rections for further work.

2. Option predictive clustering trees

The predictive clustering trees framework views a decision tree as a hierarchy of
clusters. The top-node corresponds to one cluster containing all data, which is recur-
sively partitioned into smaller clusters while moving down the tree. The PCT frame-
work is implemented in the CLUS system [3], which is available for download at
http://clus.sourceforge.net.

PCTs are induced following the top-down induction of decision trees (TDIDT) algo-
rithm [7]. There are however two major differences: the heuristic score and the prototype
function are instantiated by the PCT algorithm based on the task that is being addressed
(classification, regression or multi-target prediction etc.). The heuristic score used for se-
lecting the tests in the internal nodes of a regular PCT is the maximization of the variance
reduction resulting from the partitioning of the instances into subtrees corresponding to

35
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the outcome of the tests. By doing so, we also maximize cluster homogeneity, and, con-
sequently, improve the predictive performance. The PCT algorithm also defines the pro-
totype functions used in each tree leaf to give predictions for new examples based on the
task at hand (e.g., uses averaging for MTR).

Option predictive clustering trees (OPCT) extend the usual PCT framework, by in-
troducing option nodes into the tree building procedure outlined in Algorithm 1. Option
decision trees were first introduced as classification trees by [9] and then analyzed in more
detail by [25]. [17] analyzed regression option trees in the context of data streams.

The major motivation for the introduction of option trees is to address the myopia of
the top-down induction of decision trees (TDIDT) algorithm [7]. Viewed through the lens
of the predictive clustering framework, a PCT is a non-overlapping hierarchical clustering
of the whole input space. Each node/subtree corresponds to a clustering of a subspace and
prediction functions are placed in the leaves, i.e., lowest clusters in the hierarchy. An
OPCT, however, allows the construction of an overlapping hierarchical clustering. This
means that, at each node of the tree several alternative hierarchical clusterings of the
subspace can appear instead of a single one.

When using an OPCT for prediction on a new example, we produce the prediction
by aggregating over the predictions of the alternative subtrees (overlapping clusters) the
example may encounter. However, as not all parts of the tree (hierarchical clustering) are
necessarily overlapping, the example may encounter only nonoverlapping (sub)clusters.
In that case, we produce the prediction as we would with a regular PCT.

When using TDIDT to construct a predictive clustering tree, and in particular when
partitioning the data, all possible splits are evaluated by using a heuristic and the best
one is selected. However, other splits may have very similar heuristic values. The best
partition could be obtained with another split as a consequence of noise or of the sampling
that generated the data. In this case, selecting a different split could be optimal. To address
this concern, the use of option nodes was proposed [25].

An option node is introduced into the tree when it would be hard to determine the best
split, that is when the best splits have similar heuristic values. When this occurs, instead
of selecting only the best split, we select several of them. Specifically, we select up to 5
splits s, called options, that satisfy the following

Heur(s)

Heur(sbest)
≥ 1− ε · dlevel,

where sbest is the best split, ε determines how similar the heuristics must be, d ∈ [0, 1] is
a decay factor and level is the level in the tree of the node we are attempting to split. This
equation assumes that heuristic scores are to be maximized (higher value is better). After
we have determined the candidate splits, we introduce an option node whose children are
split nodes obtained by using the selected splits, i.e., an option node contains options as
its children. Selecting more than 5 options is possible, but, uses more resources and is not
advised [25]. A drawback of this method of split selection is that if some attributes are
highly correlated to the attribute that produces the best split, those attributes will likely be
selected for other splits in the option node. In this case the option node will only increase
the learning time.

As usual, we define the level of a node to be the number of its ancestor nodes, however,
we do not count option nodes. This is motivated by the predictive clustering viewpoint,
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i.e., the option nodes only mark that there are overlapping clusters and not that there is an
additional level of clustering.

The use of a decay factor makes the selection criterion more stringent in the lower
nodes of the tree. The intuition behind this is that higher up, the split selection is more im-
portant and a larger error would be inferred by introducing a non-optimal split. However,
as we get deeper into the tree, the use of a non-optimal split makes decreasing impact.
This intuition also allows us to prohibit the use of option nodes on levels 3 and greater,
which severely mitigates the problem of combinatorial explosion.

Outline of the entire tree building process is presented in algorithm 1. The variable
candidates is a list of at most 5 tests with the highest heuristic values. Every test is repre-
sented as a triplet (t, h, P ), where t is the actual test function, h its heuristic value and P
the partitions produced by the test.

When using a small ε, e.g., ε = 0.1, we are selecting only options whose heuristics
are within 10% of the best split. However, the use of larger ε, in the extreme case even
ε = 1, can also be motivated through the success of methods such as random forests
and ensembles of extremely randomized trees. Allowing the selection of splits whose
heuristic values are considerably worse than the heuristic value of the best split might not
necessarily reduce the performance of the tree, but actually increase it.

Algorithm 1 The top-down induction algorithm for option PCTs.
Procedure OptionPCT
Input: A data set E, parameter ε, decay factor d, current tree level l
Output: An option predictive clustering tree
candidates = FindBestTests(E, 5)
if |candidates| > 0 then

if |candidates| = 1 or l > 2 then
(t∗, h∗,P∗) = candidates[0]
for each Ei ∈ P∗ do

treei = OptionPCT(Ei, ε, d, l + 1)

return node(t∗,
⋃

i{treei})
else

(t∗0, h
∗
0,P∗

0 ) = candidates[0]
nodes = {}
for each (t∗i , h

∗
i ,P∗

i ) ∈ candidates do
if h∗

i
h∗
0
≥ 1− ε · dl then

for each Ej ∈ P∗
i do

treej = OptionPCT(Ej , ε, d, l + 1)

nodes = nodes ∪ {node(t∗,⋃j{treej})}
if |nodes| > 1 then

return option node(nodes)
else

return nodes[0]

else
return leaf(Prototype(E))
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Once an OPCT is built, we want to use it for prediction. In a regular PCT, it is simple
to produce a prediction for a new example. It is sorted into a leaf (reached according to
the splits of the tree) where a prediction is made by using a prototype function. When
traversing an example through an OPCT, we behave the same when we encounter a split
or leaf node. If we traverse an example to an option node, however, we clone the example
for each of the options and traverse one of the copies down each of the options. This
means that in an option node an example is (by proxy of its copies) traversed to multiple
leaves, where multiple predictions are produced. To obtain a single prediction in an option
node, we aggregate the obtained predictions. When addressing multi-target regression this
is generally done by averaging all the predictions per target.

An option tree is usually seen as a single tree, however, it can also be interpreted as a
compact representation of an ensemble. To generate the ensemble of the embedded trees,
we start recursively from the root node and move in a top-down fashion. Each time we
encounter an option node we copy the tree above (and in ”parallel”) for each of the options
and replace the option node with only the option, i.e., single split. This produces one tree
for each option while removing the option node in question. We repeat this procedure on
all the generated trees until we are left with no option nodes. This is illustrated in Figure 1.
For this reason, we will sometimes refer to option trees as pseudo-ensembles.

A given OPCT is also an extension of the PCT that would be learned on the same
data. By definition, whenever we introduce an option node, we include the best split (in
terms of the heuristic)3. In regular construction of PCTs, this is the only split we consider.
Consequently, the PCT is embedded in the OPCT. We can extract it if we, in a top-down
fashion, select the best option in each option node.

Let’s consider a full option node, that is one where we have the full 5 options. Let’s
assume that there are no option nodes further down in the tree. Since we have 5 options
and no options lower in the tree, we have a total of 5 embedded trees. Now, let’s consider
the size of the embedded ensemble, when we add two such nodes under a split node, i.e.,
each leaf of a split node was extended into a full option node. To construct an embedded
tree we can now choose one of the 5 options when the test is satisfied and one of 5
options when it is not. This results in 25 different embedded trees. It can be inferred, that
to calculate the number of embedded trees for an option node we need to sum up the
number of embedded trees for each of its options. In a (binary) split node, however, we
multiply the numbers of embedded trees of the subtree that satisfies the split and of the
subtree that does not, to obtain the total number of embedded trees.

Given the construction constraints described above, we know that option nodes with
up to 5 options can appear only on the first three levels, i.e., levels 0, 1 and 2. If we
now consider a full option tree, we calculate a maximum of (52 · 5)2 · 5 = 57 = 78125
embedded trees. However, many of these trees overlap to a large extent.

Note that a given example will not traverse the entire tree. For example, in Figure 1,
if an example reaches S1 and is traversed into the left child L1, the same result would
happen in both the first and second embedded tree. The example is ”agnostic” of any
option nodes in the right child of S1. Therefore, in a general option tree, a given example
will visit only up to 53 = 125 leaves, as it will only traverse down one side of the tree in
each split node.

3 Not only is the best split included, other splits are compared to it to determine their inclusion in
the option tree.

38 Chapter 4. Option Predictive Clustering Trees for Multi-Target Regression



Option predictive clustering trees for multi-target regression 465

In other words, there are a maximum of 125 different predictions that would be aggre-
gated in order to obtain the final prediction of an option tree constructed this way. This can
be compared to a single tree, where only 1 prediction will be made for each example, or
to a tree ensemble, where 1 prediction would be made for each member of the ensemble
and then aggregated to produce the final prediction.

[24] show that the computational complexity of building a multi-target PCT isO((S+
logN)DN logN), where N is the number of examples in the data set, D is the number
of descriptive variables and S is the number of target variables. Let A be the maximum
number of options in an option node (in our case, we set A to 5) and B the maximum
depth at which an option node can occur (in our case, we set B to 3). When constructing
an OPCT, in the worst case scenario, computationally-wise, we have option nodes at all
allowed levels with the maximum number of options. From that point onward we essen-
tially construct AB regular PCTs. Assuming that B is only a fraction of the final tree
depth (i.e., B << logN ), we conclude that the computational complexity of building an
OPCT is AB times greater than the computational complexity of a regular PCT.
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Fig. 1. An option tree (a) and the ensemble of its embedded trees (b). Oi are option nodes, Sj split
nodes and Lk leaf nodes.
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In comparison, a bagging ensemble constructs M independent PCTs on bootstrapped
training sets, making their computational complexity M times that of a single PCT. Ran-
dom forests, in addition to boostrapping, only consider f(D) descriptive variables at each
node. In the regular case, i.e., when f(D) =

√
D, this yieldsO((S+logN)

√
DMN logN)

complexity. To summarize, OPCTs and bagging ensembles are constant factor-times slower
(AB and M respectively) than single PCTs, while random forests can be faster than a sin-
gle PCT for data sets with large numbers of descriptive variables.

3. Experimental design

To evaluate the performance and efficiency of the OPCT method, we construct OPCTs
with two parameter configurations, as well as standard PCTs and ensembles of PCTs. We
first present the benchmark data sets used for evaluation of the methods and then give the
specific experimental setup: parameter selections and evaluation measures.

3.1. Data description

The 11 data sets with multiple numeric targets used in this study come mainly from the
domain of ecological modelling. Table 1 outlines the properties of the data sets. The selec-
tion contains data sets with various numbers of examples described with different numbers
of attributes. For more details on the data sets, we refer the reader to the referenced lit-
erature, the repositories available at: http://mulan.sourceforge.net/datasets-mlc.html and
http://kt.ijs.si/DragiKocev/PhD/resources/, as well as [24] and the references therein.

3.2. Evaluation of predictive performance and efficiency

We parameterize OPCTs by selecting values for the parameters ε and d. We consider two
parameter configurations: (ε = 1, d = 1) and (ε = 0.2, d = 1). When ε = 1, there
are no constraints on the heuristic value of the selected splits with regards to the best

Table 1. Properties of the data sets with multiple numeric targets (regression data sets): M is the
number of instances, |D| the number of descriptive attributes, and T the number of target attributes.

Name of data set M |D| T

Collembola [18] 393 47 3
EDM [19] 154 16 2
Forestry-Kras [29] 60607 160 11
Forestry-Slivnica-LandSat [28] 6218 150 2
Forestry-Slivnica-IRS [28] 2731 29 2
Forestry-Slivnica-SPOT [28] 2731 49 2
Sigmea real [11] 817 4 2
Soil quality [12] 1944 142 3
Vegetation Clustering [16] 29679 65 11
Vegetation Condition [21] 16967 40 7
Water quality [14] 1060 16 14
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test. However, since only the 5 best splits are selected, the risk that a split which would
decrease the predictive performance would be selected is relatively low. This setting most
resembles the ensemble setting, where greater variation is desired. The other parameter
configuration provides a balance between predictive performance and efficiency. In our
previous work [26], we used ε = 0.5 for the efficient version, but it turned out to be too
close to the ensembles still. So in this paper, we selected ε = 0.2.

Next, we define the parameter values used in the algorithms for constructing single
PCTs and ensembles of PCTs. The multi-target PCTs are obtained using F-test pruning.
This pruning procedure uses the exact Fisher test to check whether a given split/test in an
internal node of the tree results in a reduction in variance that is statistically significant
at a given significance level. If there is no split/test that can satisfy this, then the node is
converted to a leaf. An optimal significance level was selected by using internal 3-fold
cross validation, from the following values: 0.125, 0.1, 0.05, 0.01, 0.005 and 0.001.

We consider two ensemble learning techniques: bagging [5] and random forests [6].
These are the most widely used tree-base ensemble learning methods. The construction of
both ensemble methods takes as an input parameter the size of the ensemble, i.e., number
of base predictive models to be constructed. We constructed ensembles with 100 base
predictive models [24]. Furthermore, the random forests algorithm takes as input the size
of the feature subset that is randomly selected at each node. For this purpose, we use the
square root of the number of descriptive attributes d

√
|D|e.

We use 10-fold cross-validation to estimate the predictive performance of the used
methods. We assess the predictive performance of the algorithms using several evalua-
tion measures. In particular, since the task we consider is MTR, we employed three well
known measures: the correlation coefficient (CC), mean squared error (MSE) and relative
root mean squared error (RRMSE). We present here the bias-variance analysis of MSE
and statistical comparison of methods according to RRMSE, where similar conclusions
hold also for the other two measures. Finally, the efficiency of the proposed methods is
measured with the time needed to learn a model and the size of the models (in terms of to-
tal number of leaf nodes). While OPCTs can be learned in parallel on node splitting level,
our implementation does not support it yet. For this reason we used no parallelization in
our experiments, to provide a fairer comparison.

In order to assess the statistical significance of the differences in performance of the
studied algorithms, we adopt the recommendations by [13] for the statistical evaluation of
the results. In particular, we use the Friedman test for statistical significance. Afterwards,
to detect where statistically significant differences occur (i.e., between which algorithms),
we use the Nemenyi post-hoc test.

We present the results of the statistical analysis with average ranks diagrams. The
diagrams plot the average ranks of the algorithms and connect those whose average ranks
differ by less than a given value, called critical distance. The critical distance depends on
the level of the statistical significance (set in our case to 0.05). The difference in perfor-
mance of the algorithms connected with a line is not statistically significant at the given
significance level.

3.3. Parameter sensitivity analysis

This set of experiments is designed to provide more insight into how varepsilon and d
parameters affect the performance and efficiency of OPCTs. For ε we consider the values
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{0.1, 0.2, 0.5, 1.0}, corresponding in order from the most stringent to the least stringent
construction criterion. If we were to select ε = 0, the resulting OPCT would almost
always directly coincide with a regular PCT, as no split would likely reach exactly the
same heuristic value as the best split. Hence, the only way an option node would be
induced is if two splits had the exact same heuristic value, therefore this configuration is
not of interest.

As discussed above, the higher in the tree an option node is induced, the higher the
variation in the learned subtrees. Induction of option nodes in lower levels of the tree not
only contributes to the combinatorial explosion of the number of trees (and consequently
the use of resources), but also generates less variation in the predictions, since the subtrees
affected cover a smaller number of examples. Hence, we wish to curtail the number of
options induced in option nodes lower in the tree. If we select a decay factor of d = 1,
the depth of the option node induction will have no impact, while selecting a decay factor
of 0.5 will effectively double the effective heuristic requirement ε · dl at each level. For
example, for ε = 0.5 and d = 0.5, the requirement would be 0.5 at the root level, 0.25 at
the first level and 0.125 at the third level. We use the following values of the decay factor:
{0.5, 0.9, 1}, these are the most to the least constrictive in terms of the construction of the
OPCT.

Note that, on a given data set, all values of ε and d could produce the same OPCT, if
the splits have very similar heuristic values, e.g., there could always be 5 splits that are
within 10% · dl of the heuristic value of the best split. Therefore, the evaluation of how ε
and d affect both the predictive performance and efficiency must by design be evaluated
on multiple data sets. The parameterized version of the OPCT method for a given ε and d
is denoted OPCTeεdd, e.g., OPCTe0.5d0.9.

In order to facilitate replication of all the experiments, we implemented the method
proposed in this paper in the latest version of CLUS, already available in the public
CLUS repository at http://clus.sourceforge.net.

3.4. Bias-variance decomposition

We analyze the predictive performance of OPCTs as well as the performance of the com-
peting methods by using bias-variance decomposition of the mean squared error [15]. The
analysis allows us to investigate the source of errors of the methods. We perform it for
each target separately. To calculate the decomposition, we need to predict the targets of a
single data sample several times using models trained on different training sets.

Suppose we have a set of m predictive models learned using the same method on
different, but related, training sets. They give m predictions for a target variable for each
of the n data samples. Let yi be the real target value of the i-th data sample and let fij
be the models’ prediction for yi obtained on the j-th training set. Then the mean squared
error (MSE), bias and variance can be calculated as follows:

f̄i =
1

m

m∑

j=1

fij
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Bias =
1

n

n∑

i=1

(yi − f̄i)
2

Variance =
1

mn

n∑

i=1

m∑

j=1

(fij − f̄i)
2

MSE =
1

mn

n∑

i=1

m∑

j=1

(fij − yi)
2.

It is easy to show that MSE = Bias + Variance.
More complex models tend to have lower bias because they can better accommodate

individual variations in the data, but this also increases their sensitivity to changes in the
training set, leading to increased variance. Therefore, to minimize the error of the model
a balance between bias and variance should be attained.

As mentioned earlier, the bias-variance decomposition procedure requires several pre-
dictions for each example obtained from models trained on different training sets using
the same method. Standard 10-fold cross validation will therefore not suffice. To this end,
after we split a data set into 10 folds, we select each of the folds for test set once and use
the remaining non-test folds as a source of training sets. From this source we generate 20
training sets using bootstrapping and we learn predictive models on each bootstrap sam-
ple. The learned models are then applied to the examples from the test folds to obtain the
multiple predictions for each data example.

4. Results and discussion

We discuss the results from the experimental evaluation along four major dimensions.
First, we compare the performance of OPCTs with a single PCT and ensembles of PCTs.
We compare them based on their predictive performance, learning time and size of the
produced models. Next, present the effect of different parameter values on the construc-
tion of OPCTs. Third, we inspect the biases and variances of the algorithms to gain a better
understanding of the comparisons of the predictive performance. Finally, we discuss the
interpretability of OPCTs in juxtaposition to PCTs.

When analyzing the predictive power of algorithms in sections 4.2 and 4.1, ranking
was done separately for every target of every data set, giving us a total of 59 samples. For
efficiency we compared times needed to induce a model on entire data sets and the total
sizes of these models. The Friedman test showed significant differences at p < 1 · 10−8

in all cases and the results of Nemeny post-hoc tests are presented as average ranking
diagrams.

4.1. Predictive performance and efficiency

Figure 2 shows the results of the statistical evaluation of the predictive performance of
the proposed OPCT method in comparison to a single PCT and ensembles of PCTs. First
of all, we note that there is no statistically significant difference in the performance of
bagging of PCTs, random forests of PCTs and OPCTe1d1. Notwithstanding this, random
forests of PCTs have a slightly better average rank compared to the other two methods
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that are very close in rank. Second, while OPCTe0.2d1 is significantly worse than the
three aforementioned methods, it is still significantly better than a single PCT.

Fig. 2. Comparison of OPCTs predictive performance of OPCTs to the competing methods: Average
rank diagram in terms of predictive performance.

In figure 3 we compare the methods in terms of their efficiency. It shows that learning
PCTs is the most efficient method both in terms of time needed for model construction
and model size, according to the average rank. However, learning OPCTe0.2d1 is not
statistically significantly worse in terms of both time and size efficiency than learning a
single PCT. Random forests of PCTs are close to single PCTs in terms of time, but not
in terms of size, as they are significantly larger. Bagging of PCTs and OPCTe1d1 are the
two slowest and largest methods.

Focusing on the efficiency of the OPCT models, we see that OPCTe1d1 is the least
efficient: it produces models with the largest numbers of leaves and takes the most time
for model construction. Recall that this is consistent with the analysis of computational
complexity, as OPCTe1d1 can be seen as a condensed representation of what amounts
to 125 PCTs, since the the algorithm selects the 5 best options at the first three levels.
Furthermore, reducing the value of the ε parameter to 0.2 offers a good trade-off between
predictive performance and efficiency. These models give significantly better predictive
performance than a single PCT and are not significantly larger or slower to learn.

(a) Time efficiency (b) Size efficiency

Fig. 3. Comparison of the efficiency of OPCTs to that of the competing methods as measured by
the time needed to learn a model and the size of the models (number of leaf nodes).
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4.2. Parametrization of OPCTs

Figures 4, 5 and 6 show the average rank diagrams for predictive performance, learning
time and size of different OPCTs, respectively, obtained using the experimental design
outlined above. Notably, low values of both parameters lead to degradation in predictive
performance. This is to be expected, since lower values of parameters force the algorithm
to introduce fewer option nodes, resulting in smaller OPCTs. On the opposite side of the
spectrum are the OPCTs obtained with large values of the parameters. These achieve the
best predictive performance and the corresponding OPCTs are the largest in terms of the
number of leaves.

Fig. 4. Average rank diagram in terms of predictive performance for OPCTs obtained with different
values of the parameters ε (e) and d.

Fig. 5. Average rank diagram in terms of learning time for OPCTs obtained with different values of
the parameters ε (e) and d.

Additionally, we observe that the ε parameter has a stronger influence on the perfor-
mance than d. Namely, the OPCTs constructed using ε values of 0.1 and 0.2 (with the
exception of OPCTe0.2d1) are the ones with the weakest predictive power. Furthermore,
we also note that larger values for d also lead to better predictive performance. The best
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Fig. 6. Average rank diagram in terms of model size for OPCTs obtained with different values of
the parameters ε (e) and d.

predictive performance is obtained when using 1 as the value of both parameters. This
setting produces the largest OPCTs and requires the most learning time. Tables 2-4 in the
Appendix present all values for learning times, model sizes and option node counts for
different parameter values.

4.3. Bias-variance decomposition of the errors

Figures 7, 8 and 9 present the bias-variance decomposition of MSE for every target of the
Vegetation Condition, Sigmea real and Forestry-Slivnica-LandSat data sets, respectively.
The graphs for the remaining data sets are presented in Appendix.

Algorithms are presented in the following order: PCT, bagging of PCTs, random for-
est of PCTs, then OPCTs with e0.1d0.5, e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1,
e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1. For every target of every data set values
were scaled to [0, 1] by the largest MSE of all algorithms for that target, so that they can
be presented on one figure. While the biases (and variances) of the different targets are
presented on the same scale, only the values of different algorithms on the same target
variable can be reasonably compared among each other.

The decompositions of the errors are presented on the same graph for all targets of a
data set to show that they produce very similar results. That is, if a method has smaller
bias (or variance) than another method on one target of a data set, it tends to have smaller
bias (or variance) on the other targets of that data set as well.

The results for the Vegetation Condition data set given in Figure 7 represent the most
common behavior. The bias of the methods is fairly similar, with less restrictive OPCTs
(larger parameter values) being slightly better in this regard. PCTs have the largest vari-
ance (and consequently total error), while random forests of PCTs have the smallest.
Increasing the parameter values of OPCTs also reduces the variance, bringing it on par
with that of bagging and random forests.

The error decomposition for the Sigmea real data set given in Figure 8 stands out,
since OPCTs have larger bias and variance than other algorithms for all parameter values.
Increasing parameter values again reduces the variance although to a lesser extent, but
bias for the second target is increased at the largest values.
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Fig. 7. Bias-variance decomposition of MSE for every target of the Vegetation Condition data set.
Algorithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5,
e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.

Fig. 8. Bias-variance decomposition of MSE for every target of the Sigmea real data set. Algo-
rithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9,
e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.
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Fig. 9. Bias-variance decomposition of MSE for every target of the Forestry-Slivnica-LandSat data
set. Algorithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5,
e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.

The variance results for the Forestry-Slivnica-LandSat data set in Figure 9 are similar
to the results for the Vegetation condition data set, with the notable difference that the bias
of random forest of PCTs is substantially larger than the bias of the other algorithms. This
occurred also in a few data sets which are shown in Appendix 5 and is not surprising,
since individual trees in a random forest only use a fraction of all attributes to learn.

The results show that the difference in the predictive performance mainly arises from
the difference in their variances. With a few exceptions, PCTs have the largest variance,
followed by OPCTs with small parameter values. Increasing the parameter values greatly
reduces the variance of OPCTs, while bagging and especially random forests have the
smallest variances. The biases of different methods are generally very similar. Single
PCTs and random forests have larger values on some data sets, while biases of OPCTs
produced with large parameter values are occasionally smaller.

4.4. Interpretability of OPCTs

OPCTs, like option trees in general, offer a much higher degree of interpretability than
ensemble methods. This is expressed through both the fact that the ”ensemble” of an
option tree is represented in a compact form, i.e., a single tree, as well as the fact that
many of the embedded trees overlap. Additionally, the regular PCT that would be learned
from the same data is always present in the OPCT, as described in Section 2. A PCT and
an OPCT learned on the EDM data set, and their relationship are illustrated in Figure 10.

Providing a domain expert with an option tree gives them a lot of choices with regards
to the model. They can observe the selected options and attempt to determine which of the
selected options were selected due to their actual importance as opposed to the sampling
of the data set or other artifacts of the data. If they are able to discard all but one of
the options in each of the option nodes, we can collapse the OPCT into a single tree,
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specifically a PCT, which corresponds not only to the data, but also to the knowledge of
the domain expert. In terms of the predictive clustering framework, this means selecting
only one of the overlapping hierarchical clusters when multiple clusters are presented.
This approach also has the advantage that the domain expert need not be available for
interaction when the model is learned, but can assess the OPCT and chose the preferred
options later on.

This process can also be looked at through a different lens. As we have introduced
option trees (in part) to address myopia, by considering more options and later deciding
on only one of them in each option node, we are essentially ”looking ahead” of just the
one split and utilizing, in the case of the domain expert, additional domain knowledge.

However, instead of using domain knowledge by proxy of interaction with a domain
expert, we could also collapse the learned OPCT to a single PCT by using additional un-
seen data, i.e., by calculating an unbiased estimate of the predictive performance of the
different options present in the OPCT. Since the collection and preparation of additional
data examples could be expensive to the point of infeasibility, we could introduce a mod-
ified experimental setup. Part of the training data could be separated into a validation set
which would not be used for the initial learning of the OPCT, but would be utilized to
determine which of the selected options, and consequently embedded trees, has the best
predictive performance. We would then collapse the OPCT into a PCT according to this
validation set, after which we would test the obtained PCT on the test set. In this sce-
nario, we could not only study the effect of myopia by comparing the collapsed OPCT
to a PCT learned on the entire training data set, but also observe the effect of averaging
multiple predictions on the predictive performance by comparing the collapsed PCT and
the original (pseudo-ensemble) OPCT.

5. Conclusions

In this work, we propose an algorithm for learning option predictive clustering trees
(OPCTs) for the task of multi-target regression (MTR). In contrast to standard regres-
sion, where the output is a single scalar value, in MTR the output is a data structure – a
tuple/vector of numeric variables. We consider learning of a global model, that is a single
model that predicts all target variables simultaneously.

More specifically, we propose OPCTs to address the myopia of the standard greedy
PCT learning algorithm. OPCTs have the possibility to construct option nodes, i.e., nodes
with a set of alternative sub-nodes, each containing a different split. These option nodes
are constructed in the cases when the heuristic scores of the candidate splits are close
to each other. Furthermore, OPCTs, and option trees in general, can be regarded as a
condensed representation of an ensemble of trees.
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The proposed method was experimentally evaluated on 11 benchmark MTR data sets.
We selected two parameter configurations, OPCTe1d1 (ε = 1, d = 1), the largest OPCT
which offers the best predictive performance, and OPCTe0.2d1 (ε = 0.2, d = 1), which
provides a balance between predictive performance and efficiency. We compared this pair
of OPCTs to regular PCTs and two ensemble learning methods – bagging and random
forests of PCTs. The evaluation revealed that both OPCTe1d1 and OPCTe0.2d1 yield sta-
tistically significantly better predictive performance than single PCT. Next, the predictive
performance of OPCTe1d1 is not statistically significantly different than that of the other
two ensemble methods, however, it is slower to train and produces more leaves than the
other compared methods. While the predictive performance of OPCTe0.2d1 was not on
par with ensemble methods, it was not statistically significantly less efficient than PCTs,
while offering significantly better performance.

We also performed parameter sensitivity analysis. The results show that both parame-
ters that control the number of option nodes need large values to achieve good predictive
performance. However, limiting the number of option nodes can lead to a more favorable
trade-off between performance and efficiency.

We performed bias-variance decomposition of the mean squared error to determine
the source of errors of the different methods. The results show the bias of the compared
methods exhibits very similar behavior. OPCTs with larger parameter values were occa-
sionally better in this regard, while random forests of PCTs sometimes had larger bias
than other methods. On the other hand, the variance component often differed greatly be-
tween the algorithms. It was almost always the largest for single PCTs and smallest for
random forests of PCTs. Increasing the parameter values for OPCTs reduced the variance
and in some cases OPCTe1d1 achieved variance similar to that of the ensemble methods.

Finally, through an example, we illustrated the interpretability of the constructed
OPCTs: they offer a multifaceted view on the data at hand.

We plan to extend this work along several directions. We will evaluate the OPCTs
in the single tree context, i.e., we will use the induction of OPCTs as a beam-search
algorithm for tree induction. Next, we will evaluate the influence of the two parameters
at a more fine grained resolution. Finally, we will extend the algorithm towards other
output types, i.e., machine learning tasks, such as multi-label classification, hierarchical
multi-label classification and time series prediction.
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10065, Jožef Stefan Institute (2008)

17. Ikonomovska, E., Gama, J., Zenko, B., Dzeroski, S.: Speeding-up hoeffding-based regression
trees with options. In: Proceedings of the 28th International Conference on Machine Learning,
ICML 2011. pp. 537–544 (2011)
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Appendix

Bias-Variance Graphs

Fig. 11. Bias-variance decomposition of MSE for every target of the Collembola data set. Algo-
rithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9,
e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.
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Fig. 12. Bias-variance decomposition of MSE for every target of the EDM data set. Algorithms in
order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9, e0.1d1,
e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.

Fig. 13. Bias-variance decomposition of MSE for every target of the Forestry-Kras data set. Algo-
rithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9,
e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.
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Fig. 14. Bias-variance decomposition of MSE for every target of the Forestry-Slivnica-IRS data set.
Algorithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5,
e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.

Fig. 15. Bias-variance decomposition of MSE for every target of the Forestry-Slivnica-SPOT data
set. Algorithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5,
e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.
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Fig. 16. Bias-variance decomposition of MSE for every target of the Soil quality data set. Algo-
rithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9,
e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.

Fig. 17. Bias-variance decomposition of MSE for every target of the Vegetation Clustering data set.
Algorithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5,
e0.1d0.9, e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.
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Fig. 18. Bias-variance decomposition of MSE for every target of the Water quality data set. Algo-
rithms in order: PCT, bagging of PCTs, random Forest of PCTs and OPCTs with e0.1d0.5, e0.1d0.9,
e0.1d1, e0.2d0.5, e0.2d0.9, e0.2d1, e0.5d0.5, e0.5d0.9, e0.5d1, e1d0.5, e1d0.9, e1d1.
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Chapter 5

Option Predictive Clustering Trees
for Multi-Label Classification

This chapter details our contributions in the context of option predictive clustering trees
and their use for the multi-label classification task. In the introductory sections, we pro-
vided a high-level overview of OPCTs (Section 3.1) and described the MLC task (Sec-
tion 2.1.2), where examples are labeled with sets of labels. Specifically, the contributions
are the following:

1. Extension of PCTs with option nodes in the MLC context.

2. Experimental evaluation of the proposed method with a focus on investigating the
trade-off between predictive performance and model sizes obtained with different
parameters.

3. Evaluation of standard PCTs extracted from OPCTs by selecting specific options in
option nodes.

The initial work was presented at the ETAI-2018 conference (Stepišnik Perdih et al.,
2018). It included the proposal of OPCTs for MLC and a brief evaluation, which showed
that OPCTs with many option nodes outperform standard PCTs and are on par with
ensembles thereof also in the MLC setting. This work was later greatly extended and
presented in the journal APH Journal of Applied Sciences (Stepišnik, Kocev, & Džeroski,
2020). We include the resulting paper in this chapter. It includes a detailed experimental
comparison of OPCTs with different numbers of option nodes and bagging ensembles of
PCTs with different numbers of trees. We show that OPCTs exhibit a similar trade-off
between predictive performance and model size as bagging ensembles. However, OPCTs
have an advantage in interpretability over ensembles of similar size because they can be
represented as a single tree.

Additionally, we investigated the extraction of a standard PCT from an OPCT by
selecting specific options in the option nodes. We explored two strategies: one based on
the training set performance and another one based on the performance on a separate
validation set. A standard PCT is always one of the trees that can be extracted from an
OPCT in this way because the best split (which the standard tree selects) is always one of
the options in an option node. Our results show that the extracted trees can outperform
standard PCTs, due to the larger space of trees that are considered this way. Interestingly,
the extracted trees are often the same as PCTs built with the standard algorithm and may
occasionally give a worse performance on the test set.

Furthermore, we investigated where in the tree are option nodes most useful. We found
that when the entire OPCT is used, option nodes are more useful closer to the root node.
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However, when extracting standard PCTs from an OPCT, it is better to spread the option
nodes also to lower levels. A possible reason for this is that while splits higher in the tree
are more impactful, the evaluation of tests lower in the trees is less reliable because fewer
learning examples are present. Keeping multiple options available on such occasions seems
beneficial when extracting the final tree. We also presented a use-case for labeling music
emotions, where the extracted tree performed better than the standard PCT despite being
much smaller.

From the hypotheses we defined in Section 1.2, this chapter addresses the following:

H1 Introducing few option nodes in a PCT improves its predictive performance compared
to standard PCTs while retaining the interpretability potential.

H2 Introducing many option nodes in a PCT makes the option PCTs exhibit similar be-
havior to bagging ensembles of PCTs in terms of time complexity, size, and predictive
performance.

For the H1 hypothesis, we point out that the strictest parameter configuration for
OPCTs allowed very few options nodes, in some cases even none at all, i.e., a standard
PCT was constructed. When the parameters were relaxed so that a few more option nodes
were created, the performance immediately improved. This confirms the H1 hypothesis
in the MLC context. Hypothesis H2 was directly confirmed in the MLC setting by the
comparison to bagging ensembles described above.

The paper included in this Chapter is:

• Stepišnik, T., Osojnik, A., Džeroski, S., Kocev, D. (2020). Option Predictive Clus-
tering Trees for Multi-label classification. Acta Polytechnica Hungarica – Journal of
Applied Sciences, 17(10), 109–128.

The contributions of Tomaž Stepišnik to this paper are as follows. He designed
and implemented the investigated methods. He participated in the design of the study,
carried out the experiments, and analyzed the results. He drafted the paper and revised
it following the feedback from the co-authors and the reviewers.
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Abstract: In this work, we focus on the task of multi-label classification (MLC), where 

every example is associated with a set of labels. We present an algorithm for learning 

option predictive clustering trees (OPCTs) for MLC, based on the predictive clustering 

framework. The algorithm addresses the myopia of the standard tree induction algorithm 

by considering alternative splits in the internal nodes of the tree and introducing option 

nodes where appropriate. An option tree can be viewed as a compact representation of an 

ensemble, as well as, used as a pool of candidates from which a single tree can be 

extracted. This broadens the space of trees that is searched and reduces the myopia, 

compared to the standard tree induction. We evaluate the proposed OPCTs on 12 

benchmark MLC datasets from different domains. Results show that OPCTs as ensembles 

can achieve performance similar to the bagging ensembles of PCTs, while the single trees 

extracted from OPCTs can outperform standard PCTs. We also perform parameter 

sensitivity analysis and provide avenues for future work. 

Keywords: predictive clustering trees; option trees; multi-label classification; myopia 

1 Introduction 

The most widely studied machine learning task is binary classification where the 

goal is to predict whether an example belongs to a group/class or not. If the 

examples can belong to a single class from a given set of m classes (m > 2) the 

task is known as multi-class classification. In this work, we focus on the multi-

label classification (MLC) task, where a single example can be assigned several 

labels (i.e., a subset of a given set of possible labels). 

MLC is a well-established predictive modelling task. The methods addressing this 

task belong in two groups: problem transformation and algorithm adaptation 

methods [4]. The problem transformation methods transform the multi-label 

learning problem into one or more single-label classification problems, which a 

great number of machine learning algorithms are capable of solving. 
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The problem transformation methods can be further split into three categories: 

binary relevance, label power-set and pair-wise methods. Binary relevance 

methods use the one-against-all strategy to convert the problem into several binary 

classification problems. A closely related method is the classifier chain method 

and its ensemble extension [9]. Label power-set (LP) methods transform the 

problem into a single multi-class classification problem, where a separate class is 

created for every possible subset of original labels. In this way, LP based methods 

directly take into account the label correlations. Representative methods include 

HOMER [5] and RAkEL [3]. Pair-wise methods perform pair-wise or round robin 

classification, with binary classifiers using Q(Q - 1)/2 classifiers covering all pairs 

of labels [17]. To combine these classifiers, the pairwise classification method 

uses majority voting. 

The algorithm adaptation methods customize existing machine learning 

algorithms for the task of MLC. There are extensions of the following machine 

learning algorithms: boosting, k-nearest neighbors, decision trees and neural 

networks. The extended methods are able to directly handle multi-label data. 

AdaBoost.MH and AdaBoost.MR [8] are two extensions of AdaBoost for multi-

label data. While AdaBoost.MH is designed to minimize Hamming loss, 

AdaBoost.MR is designed to find a hypothesis which ranks the correct labels at 

the top. Several variants for multi-label learning (ML-kNN) of the popular k-

Nearest Neighbors (kNN) lazy learning algorithm have been proposed [1]. 

Decision tree extension was proposed within the predictive clustering framework 

[22]. A single predictive clustering tree (PCT) is constructed by using a splitting 

criterion that considers all of the labels. The PCTs for MLC were also used in an 

ensemble setting [14]. Neural networks have been adapted for MLC by 

introducing a new error function that takes multiple labels into account [18]. 

An extensive experimental comparison [12] of 12 MLC methods on 11 datasets 

using 16 performance measures showed that ensembles of PCTs are a state-of-the-

art method for the MLC task. However, as already pointed out, a common concern 

with decision tree based models is their myopia, resulting from the greedy 

induction algorithm used to learn them. For this reason, several alternatives were 

proposed, such as beam search induction [15] and option trees [19], aimed at 

reducing the myopia of the trees. Both approaches showed that they can improve 

the performance of standard decision trees, while [12] also showed that very large 

option trees achieve the performance of bagging ensembles of decision trees. 

Conversely, [10] argues that exhaustive searching of the model space often leads 

to an inferior generalization. 

In this work, we extend predictive clustering trees (PCTs) for MLC with option 

nodes, thus forming option predictive clustering trees (OPCTs). An option tree can 

be seen as a condensed representation of an ensemble of trees which share a 

common substructure. For illustration, see Figures 2 and 6. We also examine 

different techniques for selecting the optimal embedded tree from the OPCT. In 

this way, we increase the space of trees searched by the algorithm. We evaluate 
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both OPCTs as ensembles and the best embedded trees extracted from OPCTs on 

several datasets from different domains. The goal of this paper is to see whether 

OPCTs as ensembles can achieve the performance of bagging ensembles for the 

MLC task, and if selecting the best embedded tree can reduce the myopia of the 

standard decision trees. 

The remainder of this paper is organized as follows. Section 2 describes the 

algorithm for learning OPCTs for MLC. Next, Section 3 outlines the design of the 

experimental evaluation. Section 4 continues with a discussion of the results. 

Finally, we conclude and provides possible directions for further work. 

2 Option Predictive Clustering Trees 

The predictive clustering trees framework views a decision tree as a hierarchy of 

clusters. The top-node corresponds to one cluster containing all data, which is 

recursively partitioned into smaller clusters while moving down the tree. The PCT 

framework is implemented in the CLUS system [23] available at 

http://clus.sourceforge.net. 

OPCTs extend the PCT framework by introducing option nodes into the tree 

building procedure. Option decision trees were first introduced as classification 

trees by Buntine [19] and then analyzed in more detail by Kohavi and Kunz [13]. 

Ikonomovska et al. [16] analyzed regression option trees in the context of data 

streams. We also evaluated OPCTs for the multi-target regression task [11] and 

hierarchical multi-label classification task [7]. 

The motivation for the introduction of option trees is to address the myopia of the 

top-down induction of decision trees (TDIDT) algorithm [20]. From the 

perspective of the predictive clustering framework, a PCT is a non-overlapping 

hierarchical clustering of the whole input space. Each node (subtree) corresponds 

to a clustering of a subspace and prediction functions are placed in the leaves, i.e., 

the lowest clusters in the hierarchy. In contrast, an OPCT allows the construction 

of an overlapping hierarchical clustering. This means that at each node of the tree 

several alternative hierarchical clusterings of the subspace can appear instead of a 

single one. When using TDIDT to construct a predictive clustering tree, all 

possible splits are evaluated by using a heuristic, and the best split is selected. 

However, other splits may have very similar heuristic values and the difference 

between them could be a consequence of noise or sampling that generated the 

data. In this case, selecting a different split could be optimal. To address this 

concern, the use of option nodes was proposed [13]. 

Figure 1 presents the TDIDT algorithm modified for the induction of OPCTs. The 

function call FindBestTests(E,O) returns the O best tests according to the heuristic 

score in descending order (best first). Every test is represented as a triplet (t,h,P), 
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where t is the actual test function, h is its heuristic value and P is the set of 

partitions produced by the test. 

 

Figure 1 

The top down induction algorithm for option PCTs 

The main component of the algorithm is the heuristic score used to evaluate the 

splits. For the MLC task, sets of labels are presented as binary vectors, where 

every component denotes the presence (1) or absence (0) of one label. For every 

component the Gini index is calculated, and their average is the final heuristic 

score. The algorithm introduces an option node into the tree when the best splits 

have similar heuristic values. Instead of selecting only the best split, we select 

every split s that satisfies the condition: 

1
)(

)(

bestsHeur

sHeur
                     (1) 

66 Chapter 5. Option Predictive Clustering Trees for Multi-Label Classification



Acta Polytechnica Hungarica Vol. 17, No. 10, 2020 

 – 113 – 

where sbest is the best split and ε determines how similar the heuristics must be. 

E.g., when ε=0.1, we are selecting only splits whose heuristics are within 10% of 

the best split. Typical values of ε are in the [0, 1] interval. After we have 

determined the candidate splits, we introduce an option node whose children are 

split nodes containing the selected splits. When no suitable test is found, a leaf 

node is created that stores the prototype of examples sorted to that leaf. For the 

MLC task, the i-th component of the prototype is the average value of the i-th 

components of examples in that leaf. 

Introducing an option node with a large number of options is not advised [13] as it 

can lead to the explosion of model sizes. Therefore, we limit the maximum 

number of options included in a single option node (parameter O). To further limit 

the exponential growth of the tree, we also set the maximum depth in the tree 

where an option node can be introduced (parameter L). This means that on levels 

deeper than L, the tree is built following the standard TDIDT algorithm. This 

follows our intuition that splits lower in the tree, where clusters are already more 

homogeneous, are less important than splits higher in the tree. 

Once an OPCT is learned, we use it to make predictions. In a regular PCT an 

example is sorted into a leaf (reached according to the tests in the nodes of the 

tree) where the prototype stored in that leaf is predicted. Traversing an example 

through an OPCT is the same for split nodes and leaves. When we encounter an 

option node, however, we traverse the example down each of the options. This 

means that in an option node an example is sorted to multiple leaves, where 

multiple predictions are produced. To obtain a single prediction in an option node, 

we aggregate the obtained predictions. For the MLC task, the aggregation is 

simple component-wise averaging of the vectors, as it is done in PCT ensembles. 

The resulting vector gives us pseudo-probabilities of every label, to which a 

threshold can be applied to select the actual labels. 

An option tree is usually observed as a single tree, however, it can also be 

interpreted as a compact representation of an ensemble. We can extract embedded 

trees out of an option tree by replacing every option node with one of its options 

(Figure 2). A given OPCT is also an extension of the PCT learned on the same 

data. By definition, whenever we introduce an option node, the best split is one of 

the options included. Consequently, the PCT is an embedded tree in the OPCT, 

resulting from replacing all option nodes with the best option. 

In addition to using an option tree as an ensemble of embedded trees, we can also 

extract a single embedded PCT out of it. This increases the space of trees searched 

by the TDIDT algorithm and directly addresses its myopia. The simplest way to 

select a single embedded PCT is to use the error on the training dataset as the 

selection criterion. This is an attractive option since it requires very little extra 

work and no extra data, but can lead to overfitting. 
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Figure 2 

An option tree (left) and the ensemble of its embedded trees (right). Oi are option nodes, Sj split nodes 

and Lk leaf nodes. 

Another option is to use a part of the training data as a separated validation set, 

which would not be used for the initial learning of the OPCT, but would be 

utilized to determine which of the embedded trees has the best predictive 

performance. We can also use expert knowledge to select the embedded tree. 

Providing a domain expert with an option tree gives them a lot of choices with 

regards to the model. This approach also has the advantage that the domain expert 

need not be available for interaction when the model is learned, but can assess the 

OPCT and chose the preferred options later on. 

3 Experimental Design 

The experimental evaluation was performed on 12 datasets from biology, text 

classification and multimedia domains. They are described in Table 1. All datasets 

except CAL500 were retrieved pre-divided into training and testing sets and we 

used them in their original format to facilitate easier comparison of the results. 

The CAL500 dataset was randomly split on training and test sets. All 12 datasets 

can be found at http://mulan.sourceforge.net/datasets-mlc.html. 

There are many measures of performance used for the MLC task [12]. In our 

comparison we focus on Area Under the Average Precision-Recall Curve 

( ) [2]. It combines the pseudo-probabilities of all the different labels as if 

they belonged to a single binary classification problem, and calculates the area 

under the precision-recall curve from them. A nice feature of  is that it is 
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a threshold independent measure, so we do not have to worry about setting the 

threshold at which the labels are predicted in the leaves (as explained in Section 

2). In the appendix we include the results for two additional performance 

measures (Ranking Loss and One Error [12]), from which similar conclusions can 

be made. 

Table 1 

Properties of the datasets used in the study: number of examples in the training/testing datasets 

(Ntr/Nte), number of descriptive attributes (discrete/continuous, D/C), the total number of labels (Q) 

and label cardinality (lc) 

 Ntr/Nte D/C Q lc 

bibtex 4880/2515 1836/0 159 2.40 

birds 322/323 2/258 19 1.01 

CAL500 302/200 0/68 174 26.0 

corel5k 4500/500 499/0 374 3.52 

emotions 391/202 0/72 6 1.87 

enron 1123/579 1001/0 53 3.38 

flags 129/65 9/10 7 3.39 

genbase 463/199 1185/0 27 1.25 

medical 645/333 1449/0 45 1.25 

scene 1211/1196 0/294 6 1.07 

tmc2007-500 21519/7077 500/0 22 2.16 

yeast 1500/917 0/103 14 4.24 

We used the 12 benchmark datasets to evaluate OPCTs. Firstly, we wanted to see 

how the OPCTs as ensembles of embedded PCTs compare to the bagging 

ensembles of PCTs [21]. Specifically, we were interested in the trade-off between 

the performance and the size of the model. For the size of the model we looked at 

the total number of leaves in the tree(s). For the bagging ensembles of PCTs, the 

number of trees in the ensemble is the primary way to control the size of the 

model. We ran the experiments with 10, 25, 50, 100 and 125 PCTs in the 

ensemble. 

For OPCTs, we can influence the number of option nodes introduced into the tree 

by using different parameter values. We considered different values for the ε 

parameter from the set {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0}. When ε=1, option 

nodes with the best O splits are always introduced at the top L levels of the tree. 

We also tried different settings of the O and L parameters. Specifically, we used 

pairs (O, L) from the set {(10, 2), (5, 3), (3, 4)}. In addition to a better 

understanding of the performance vs. size trade-off, this also gives us insight into 

what is more valuable in OPCTs: more options at the top of the tree, or allowing 

option nodes lower in the tree. The pairs were selected in a way that at the 

maximum amount of option nodes introduced (e.g., at ε=1), the OPCTs would 

aggregate a similar amount of predictions compared to bagging ensembles of 100 
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PCTs. An important thing to note here is that different selections of parameters 

can still produce the same OPCT, if for a given dataset the same splits satisfy both 

criteria. 

We also compared standard PCTs to the best embedded trees extracted from 

OPCTs (from here on referred to as BestEmbedded trees). We tried two 

approaches to extracting the BestEmbedded trees from OPCTs: selecting the 

embedded tree based on the training set performance, and based on the 

performance on a separate validation set not used to build the original OPCT. 

Both PCTs and BestEmbedded trees were post pruned using the training set in the 

first set of experiments, and using the validation set in the second set. This way, 

standard PCTs also benefited from the validation set, thus enabling a fair 

comparison. Note that BestEmbedded trees therefore use the validation set both 

for embedded tree selection and pruning. BestEmbedded trees were extracted from 

various OPCTs built with the same parameter settings described in the previous 

paragraph. This gave us insight into how different parameters influence the 

performance of the BestEmbedded trees. As a validation set, we randomly 

selected 20% of examples from the initial training set. 

4 Results and Discussion 

4.1 Comparison of OPCTs and Bagging Ensembles 

Figure 3 shows the trade-off between the performance and size of the model for 

bagging ensembles of PCTs and OPCTs as ensembles. We can see that increasing 

the number of options improves the performance of OPCTs. In contrast to adding 

more trees to an ensemble, this is not guaranteed, since additional options include 

split nodes with lower heuristic scores. The performance improvement saturates at 

the largest OPCTs and often reaches the performance of bagging ensembles (on 7 

datasets). All models seem to perform equally well on the genbase dataset, and 

much better than single PCTs (results on Figure 4). 

Note that the comparison of the sizes of the trees is closely related to the 

comparison of running times. The most time consuming items when learning a 

tree are the evaluations of the candidate splits and then splitting the data. This is 

done in the same way in both PCTs (and ensembles thereof) and OPCTs, 

therefore, similar number of nodes in the trees indicates similar time needed for 

their induction. 

 

70 Chapter 5. Option Predictive Clustering Trees for Multi-Label Classification



Acta Polytechnica Hungarica Vol. 17, No. 10, 2020 

 – 117 – 

 

Figure 3 

Trade-off between size and performance of bagging ensembles of PCTs and OPCTs. The size of 

ensembles is influenced by the number of trees, whereas the size of OPCTs is mainly influenced by the 

number of option nodes introduced into the tree. Note that every graph is on a different scale. 

By comparing the results of OPCTs with different settings of parameters O and L, 

we can see that the pair (O, L) = (10, 2) offers the best performance, followed by 

(O, L) = (5, 3). This confirms our intuition that option nodes lower in the tree are 

less useful and do not offer enough improvement in performance to justify the 

increased model size. This is especially evident on the bibtex, birds, emotions and 

scene datasets. 
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Figure 4 

Performance of BestEmbedded trees produced by different parametrizations of OPCTs and selected 

based on training set performance, compared to the performance of a single PCT. Note that every 

graph is on a different scale. 

4.2 Comparison of BestOptions and Standard PCTs 

Figures 4 and 5 show the comparison of standard PCTs and the BestEmbedded 

trees extracted from OPCTs with different parameters. Figure 4 shows the results 

for BestEmbedded trees selected based on the training set performance, and 

Figure 5 based on the validation set performance. First thing we can notice is that 
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the BestEmbedded trees and PCTs often have very similar or identical 

performance. There are usually no significant differences in size as well. In fact, 

often the BestEmbedded tree is the same as the standard PCT, especially when it 

is selected based on the training set. This is not surprising, since standard PCTs 

choose splits that perform best on the training set at each step. We can also see 

that having a separate validation set for pruning can greatly improve the 

performance of both standard PCTs and BestEmbedded trees (the bibtex, genbase, 

medical and tmc2007 datasets). 

 

Figure 5 

Performance of BestEmbedded trees produced by different parametrizations of OPCTs and selected 

based on validation set performance, compared to the performance of a single PCT. Note that every 

graph is on a different scale. 
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Another thing that the results show is that for extracting BestOptions, option 

nodes deeper in the tree are still helpful. While the parameter values (O, L) = (10, 

2) always provided the best results for OPCTs as ensembles, even parameter 

values (O, L) = (3, 4) often lead to the best selection of BestEmbedded trees. 

With larger OPCTs a larger space of trees is searched when selecting 

BestEmbedded trees, and that is where there are more differences compared to 

standard PCTs. Even when selected based on the training set performance, 

BestEmbedded trees often perform better than standard PCTs (on the scene, 

tmc2007 and mostly flags datasets). But it also frequently happens that the 

BestEmbedded tree generalizes worse than the standard PCT (the bibtex, 

emotions, genbase and flags datasets). 

Using a validation set to select the BestEmbedded tree mostly helps in selecting a 

tree that generalizes better, when compared to the train set selection. This can be 

nicely seen on the bibtex, emotions, enron, scene and flags datasets. However, in 

some cases it leads to a worse selection relatively to the standard PCT, as seen on 

the medical, tmc2007 and yeast datasets. The cause for this may be oversearching, 

as described in [10]. By searching the space of trees more exhaustively, we have a 

higher chance of discovering "fluke" theories that fit the data well, but generalize 

poorly. As opposed to what is commonly understood as overfitting, these "fluke" 

theories are not overly complex. For example, when selecting the BestEmbedded 

tree, the standard PCT is always one of the options. It often happens that the tree 

with the best performance on the validation set is smaller (represents a simpler 

theory) than the standard PCT, but it still has a poorer performance on the test set. 

4.3 Use Case Demonstration 

We demonstrate the usefulness of OPCTs on the emotions dataset [6]. The 

examples in the emotions dataset are 30 seconds long music samples extracted 

from 100 different songs from different genres. The goal is to label the music 

samples with the emotions present in the music. There are 6 possible labels 

corresponding to 6 emotional clusters. The music samples are described with 8 

rhythmic features and 64 timbre features. 

Figure 6 shows an example of an OPCT trained on the emotions dataset for 

illustrative purpose. It was pruned to reduce the tree size to a humanly manageable 

proportions and contains only one option node with three options. 
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Figure 6 

A heavily pruned OPCT constructed on the emotions dataset. Option nodes are represented as circles, 

standard split nodes have oval shape and leaf nodes are shown as boxes containing the labels predicted 

in that leaf. 

Figure 7 shows a PCT trained using the standard top down induction algorithm. 

 

Figure 7 

A standard PCT constructed on the emotions dataset. Split nodes have oval shapes and leaf nodes are 

shown as boxes containing the labels predicted in that leaf. 

Figure 8 shows the BestEmbedded tree selected from OPCT_O5_L3 with ε=0.2. 

They were both pruned using the validation set. The standard PCT has 22 leaf 

nodes and it achieved 0.57 , while the BestEmbedded tree is much 

smaller with only 9 leaves and has better predictive performance with 0.62 

. We can see that they differ already at the root node. 

This demonstrates the ability of OPCTs to help us find better performing trees, 

which can even be smaller than standard trees. Ideally, the BestEmbedded trees 

can be selected by experts, looking at the OPCT and selecting the options that are 

consistent with their knowledge. 
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Figure 8 

The BestEmbedded tree selected from OPCT_O5_L3 with ε=0.2 constructed on the emotions dataset. 

Standard split nodes have oval shapes and leaf nodes are shown as boxes containing the labels 

predicted in that leaf. 

Conclusions 

In this work, we present an algorithm for learning option predictive clustering 

trees for the task of multi-label classification, where every example is associated 

with a set of labels. OPCTs are global models that predict the entire label sets 

simultaneously and belong in the algorithm adaptation group of methods. The 

main purpose of the proposed algorithm is to reduce the myopia of the standard 

greedy algorithm for learning PCTs. During tree construction, if multiple tests 

have heuristic scores similar to that of the best test, an option node is created that 

contains a set of alternative sub-nodes, called options, i.e., a set of the best 

performing splits. When predicting the labels of an example, each option produces 

a prediction, and predictions from different options are then aggregated in the 

option node. This leads us to consider option trees as condensed representations of 

an ensemble of trees. 

In addition to the pseudo-ensemble aspect of OPCTs, we can also look at them as 

a set of possible PCTs (embedded trees), and select one of them as the final 

model. This broadens the search over the space of possible trees and decreases the 

myopia of the algorithm. There are multiple ways of selecting the best embedded 

trees. In our experiments, we used the performance on the training set, and the 

performance on a validation set. Another option is to use expert knowledge to 

select the best options in the option tree. 

We performed an experimental evaluation of the OPCT method and the 

BestEmbedded trees, and compared them to standard PCTs and bagging 

ensembles of PCTs. The evaluation was performed on 12 datasets appropriate for 

the MLC task, and we measured model performance with . The results 

show that large OPCTs can often reach the performance of tree ensembles, and 

that BestEmbedded trees can outperform standard trees. Unfortunately, we can 

also fall in the trap of oversearching and find BestEmbedded trees with worse 
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predictive performance compared to standard PCTs. We also looked into how 

different parameters affect the performance of OPCTs and BestEmbedded trees. 

We found that allowing more option nodes higher in the tree, while limiting them 

on the lower levels (parameter values (O, L) = (10, 2)) works best for OPCTs as 

ensembles. For BestEmbedded trees, option nodes lower in the tree are still useful 

and can help find better trees. We demonstrated the potential of OPCTs on a 

music emotion labelling dataset, where the BestEmbedded tree was much smaller 

than the standard PCT, yet had a better predictive performance. 

There are several paths for further work. We would like to evaluate OPCTs and 

BestEmbedded trees in a domain where an expert would help select the best splits 

in the option nodes. Additionally, we plan to investigate the use of OPCTs for 

feature ranking and selection for MLC datasets. 
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Appendix – additional results 

 

Figure 9 

Comparison of bagging and OPCTs using the ranking loss measure. For details see Figure 3. 
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Figure 10 

Comparison of PCTs and BestOption trees selected based on the training set performance using the 

ranking loss measure 

 

 

Figure 11 

Comparison of PCTs and BestOption trees selected based on the validation set performance using the 

ranking loss measure 
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Chapter 6

Option Predictive Clustering Trees
for Hierarchical Multi-Label
Classification

In this chapter, we detail the contributions related to option predictive clustering trees and
their use for the hierarchical multi-label classification task. In the introductory sections,
we provided a high-level overview of OPCTs (Section 3.1) and described the HMLC task
(Section 2.1.2), where examples are again labeled with sets of labels. Additionally, we have
a partial ordering defined among the labels. Our contributions in this context are:

1. Extension of PCTs with option nodes in the HMLC context.

2. Experimental evaluation of the proposed method, focusing on the influence of dif-
ferent parameter settings on the predictive performance, time complexity, and inter-
pretability.

The listed contributions were presented with a paper at the DS-2017 conference (Stepišnik
Perdih et al., 2017), which we include in this chapter. Chronologically, we performed this
research between the MTR and MLC papers presented in the previous two chapters. We
include it here after our work on MLC because HMLC generalizes MLC. We proposed
OPCTs for HMLC and experimentally evaluated them with different parameter settings
controlling the number of option nodes introduced to the trees. We identified three in-
teresting settings. The least strict setting again resulted in OPCTs that were similar to
bagging ensembles in terms of predictive performances and model sizes. The middle set-
ting traded a small amount of predictive performance for much smaller models. In the
setting that allowed the fewest option nodes, OPCTs came closer to PCTs in terms of size
while maintaining a noticeable advantage in predictive performance. Therefore, OPCTs
solidified their place as a bridge between single trees and ensembles thereof.

From the hypotheses we defined in Section 1.2, this chapter addresses the following:

H1 Introducing few option nodes in a PCT improves its predictive performance compared
to standard PCTs while retaining the interpretability potential.

H2 Introducing many option nodes in a PCT makes the option PCTs exhibit similar be-
havior to bagging ensembles of PCTs in terms of time complexity, size, and predictive
performance.

Our results confirmed hypotheses H1 and H2 also for the HMLC task: different param-
eter settings result in OPCTs with various amounts of option nodes, providing different
trade-offs between model size/interpretability and predictive performance.
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The paper included in this Chapter is:

• Stepišnik Perdih, T., Osojnik, A., Džeroski, S., Kocev, D. (2017). Option Predic-
tive Clustering Trees for Hierarchical Multi-label Classification. In A. Yamamoto, T.
Kida, & T. Kuboyama (Eds.), Discovery Science (pp. 116–123). Springer Interna-
tional Publishing.

The contributions of Tomaž Stepišnik to this paper are as follows. He con-
tributed to the design and implementation of OPCTs for HMLC. He participated in the
design of the study, carried out the experiments, and analyzed the results. He drafted the
paper and revised it following the feedback from the co-authors and the reviewers.
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Abstract. In this work, we address the task of hierarchical multi-label
classification (HMLC). HMLC is a variant of classification, where a single
example may belong to multiple classes at the same time and the classes
are organized in the form of a hierarchy. Many practically relevant prob-
lems can be presented as a HMLC task, such as predicting gene function,
habitat modelling, annotation of images and videos, etc. We propose to
extend the predictive clustering trees for HMLC – a generalization of
decision trees for HMLC – toward learning option predictive clustering
trees (OPCTs) for HMLC. OPCTs address the myopia of the standard
tree induction by considering alternative splits in the internal nodes of
the tree. An option tree can also be regarded as a condensed represen-
tation of an ensemble. We evaluate OPCTs on 12 benchmark HMLC
datasets from various domains. With the least restrictive parameter val-
ues, OPCTs are comparable to the state-of-the-art ensemble methods
of bagging and random forest of PCTs. Moreover, OPCTs statistically
significantly outperform PCTs.

1 Introduction

Supervised learning is one of the most widely researched areas of machine learn-
ing, where the goal is to learn, from a set of examples with known class, a function
that outputs a prediction for the class of a previously unseen example. The most
widely studied machine learning task is binary classification where the goal is to
classify the examples into two groups. The task where the examples can belong
to a single class from a given set of m classes (m ≥ 3) is known as multi-class
classification. The case where the output is a real value is called regression.

In many real life problems of predictive modelling the target is structured
(e.g., the target is a vector of values with dependencies between them, or a time
series). In this work, we focus on the task of hierarchical multi-label classification
(HMLC). HMLC is a variant of classification, where a single example may belong
to multiple classes at the same time and the classes are organized in the form of
a hierarchy. An example that belongs to some class c automatically belongs to all
super-classes of c: This is called the hierarchical constraint. Problems of this kind
can be found in many domains including text classification, functional genomics,

c© Springer International Publishing AG 2017
A. Yamamoto et al. (Eds.): DS 2017, LNAI 10558, pp. 116–123, 2017.
DOI: 10.1007/978-3-319-67786-6 9
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and object/scene classification. Silla and Freitas [19] give a detailed overview of
the possible application areas and the different approaches to HMLC.

Decision tree based methods take a very notable place among approaches to
HMLC. When used as base predictive models in an ensemble, they can yield a
state-of-the-art performance [13,18]. A prominent global tree method for HMLC
is a predictive clustering tree (PCT) for HMLC [20]. PCTs for HMLC inherit
the properties of decision trees: they are interpretable models, but learning them
is greedy. The performance of the trees is significantly improved when they are
used in an ensemble setting [13]. However, the greediness of the tree construction
process can lead to learning sub-optimal models. One way to alleviate this is to
use a beam-search algorithm for tree induction [12], while another approach is
to introduce option splits in the nodes [5,14].

In this work, we propose to extend predictive clustering trees (PCTs) for
HMLC towards option trees, hence we propose to learn option predictive clus-
tering trees (OPCTs). An option tree can be seen as a condensed representation
of an ensemble of trees which share a common substructure. More specifically,
the heuristic function for split selection can return multiple values that are close
to each other within a predefined range. These splits are then used to construct
an option node. For illustration, see Fig. 1.

The remainder of this paper is organized as follows. Section 2 proposes the
algorithm for learning option PCTs for HMLC. Next, Sect. 3 outlines the design
of the experimental evaluation. Section 4 continues with a discussion of the
results. Finally, Sect. 5 concludes and provides directions for further work.

2 Option Predictive Clustering Trees

The predictive clustering trees framework views a decision tree as a hierarchy
of clusters. The top-node corresponds to one cluster containing all data, which
is recursively partitioned into smaller clusters while moving down the tree. The
PCT framework is implemented in the CLUS system [1], which is available at
http://clus.sourceforge.net.

Option predictive clustering trees (OPCT) extend the usual PCT framework,
by introducing option nodes into the tree building procedure. Option decision
trees were first introduced as classification trees by Buntine [5] and then ana-
lyzed in more detail by Kohavi and Kunz [14]. Ikonomovska et al. [10] analyzed
regression option trees in the context of data streams. We also evaluated OPCTs
for the multi-target regression task [16].

The major motivation for the introduction of option trees is to address
the myopia of the top-down induction of decision trees (TDIDT) algorithm [4].
Viewed through the lens of the predictive clustering framework, a PCT is a non-
overlapping hierarchical clustering of the whole input space. Each node/subtree
corresponds to a clustering of a subspace and prediction functions are placed
in the leaves, i.e., lowest clusters in the hierarchy. An OPCT, however, allows
the construction of an overlapping hierarchical clustering. This means that, at
each node of the tree several alternative hierarchical clusterings of the subspace
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can appear instead of a single one. When using TDIDT to construct a predic-
tive clustering tree, and in particular when partitioning the data, all possible
splits are evaluated by using a heuristic and the best one is selected. However,
other splits may have very similar heuristic values. The best partition could be
obtained with another split as a consequence of noise or of the sampling that
generated the data. In this case, selecting a different split could be optimal. To
address this concern, the use of option nodes was proposed [14].

The procedure of PCT learning for the HMLC task is presented in [13]. We
modify it by introducing an option node into the tree when the best splits have
similar heuristic values. Instead of selecting only the best split, we select several
of them. Specifically, we select splits s, that satisfy the condition:

Heur(s)

Heur(sbest)
≥ 1 − e · dl, (1)

where sbest is the best split, e determines how similar the heuristics must be,
d ∈ [0, 1] is a decay factor and l is the depth of the node we are attempting to
split. E.g., when e = 0.1, we are selecting only splits whose heuristics are within
10% of the best split at the top level. We define the depth of a node to be the
number of its ancestor nodes, excluding option nodes, as they do not split the
data. The use of a decay factor makes the selection criterion more stringent in
the lower nodes of the tree, where the impact of the split selection is also lower.
After we have determined the candidate splits, we introduce an option node
whose children are split nodes obtained by using the selected splits.

Introducing an option node with a large number of options is not advised [14]
as it can lead to the explosion of model sizes. Therefore, we limit the maximum
number of options for a single option node to 5 and also prohibit the induction
of option nodes on depth 3 and greater.

Fig. 1. An option tree (left) and the ensemble of its embedded trees (right). Oi are
option nodes, Sj split nodes and Lk leaf nodes.
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Once an OPCT is learned, we use it for prediction. In a regular PCT an
example is sorted into a leaf (reached according to the tests in the nodes of
the tree) where a prediction is made using a prototype function. Traversing an
example through an OPCT is the same for split nodes and leaves. When we
encounter an option node, however, we traverse the example down each of the
options. This means that in an option node an example is sorted to multiple
leaves, where multiple predictions are produced. To obtain a single prediction in
an option node, we aggregate the obtained predictions.

An option tree is usually observed as a single tree, however, it can also be
interpreted as a compact representation of an ensemble. We can extract embedded
trees out of an option tree by replacing every option node with one of its options
(Fig. 1). A given OPCT is also an extension of the PCT learned on the same
data. By definition, whenever we introduce an option node, we include the best
split. Consequently, the PCT is an embedded tree in the OPCT, resulting from
replacing all option nodes with the best option.

3 Experimental Design

We evaluated the performance and efficiency of the proposed OPCT method with
different parameter values and compared it to the standard PCTs and ensembles
of PCTs. Evaluation was done on 12 datasets from biology, text classification and
image annotation domains. They are described in Table 1. The datasets came
pre-divided into training and testing sets and we used them in their original
format, for easier comparison of the results.

OPCTs are evaluated for various values of parameters e and d. For e we
consider values 0.1, 0.2, 0.5 and 1.0, while d takes values 0.5, 0.9 and 1.0. Notably,
different selections of parameters can produce the same OPCT, if for a given
dataset the same splits satisfy both criteria. Hereafter, the OPCT method with
specific parameter values is denoted OPCT eX dY (e.g., for e = 0.5, d = 0.9,
OPCT e0.5 d0.9). The border case OPCT e1 d1 always selects the 5 best options
regardless of their heuristic score, making this setting similar to ensembles.

For PCTs and OPCTs we use the F-test as a pruning mechanism. Specifically,
we check if a split results in a statistically significant improvement over the single
node. If no split satisfies the F-test, the learning in the node stops. The signifi-
cance level for the test was selected from the set of values {0.125, 0.1, 0.05, 0.01,
0.005, 0.001} using internal 3-fold cross validation on the training set.

For ensembles, we considered bagging [2] and random forests [3]. For both
methods we used 100 trees in the ensemble. Random forests algorithm also takes
as input the size of the feature subset randomly selected at each node. For this
we used the square root of the number of descriptive variables (�

√
|D| + |C|�).

Performance was measured using Area Under the Average Precision-Recall
Curve (AUPRC) [20]. For efficiency, we looked at the model size (number of
leaves in a tree/ensemble). For statistical comparison of the methods we adopted
the recommendations by Demšar [7]. Specifically, we used the Friedman test for
statistical significance and Nemenyi post-hoc test to detect between which algo-
rithms the significant differences occur. For both tests we selected confidence
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Table 1. Descriptions of datasets used for the evaluation. The table shows the number
of examples in the training and testing sets (Ntr/Nte), number of descriptive attributes
(discrete/continuous, D/C), number of labels in the hierarchy (|H|), maximal depth of
the labels in the hierarchy (Hd) and average number of labels per example (L).

Ntr/Nte |D|/|C| |H| Hd L
Diatoms [9] 2065/1054 0/371 377 3.0 1.95

Enron [11] 988/660 0/1001 54 3.0 5.30

Expression–FunCat [6] 2494/1291 4/547 475 4.0 8.87

Exprindiv–FunCat [6] 2314/1182 1252 261 4.0 3.36

ImCLEF07A [8] 10000/1006 0/80 96 3.0 3.0

ImCLEF07D [8] 10000/1006 0/80 46 3.0 3.0

Interpro–FunCat [6] 2455/1264 2816 263 4.0 3.34

Reuters [15] 3000/3000 0/47236 100 4.0 3.20

SCOP-GO [6] 6507/3336 0/2003 523 5.5 6.26

Sequence-FunCat [6] 2455/1264 2/4448 244 4.0 3.35

WIPO [17] 1352/358 0/74435 183 4.0 4.0

Yeast-GO [6] 2310/1155 5588/342 133 6.3 5.74

level 0.05. The results of the statistical analysis are presented with average rank-
ing diagrams. They plot the average ranks of the algorithms and connect those
whose average ranks differ by less than the critical distance. The performance of
the algorithms connected with a line is not statistically significantly different.

4 Results and Discussion

We present our experimental results as graphs with size on the horizontal axis
and performance on the vertical axis. Figure 2 shows the results on four datasets.
The remaining graphs are very similar and are omitted for brevity. Notably, the
figures are on separate scales and on some figures the differences in performance
between the different models are very small, e.g., on the SCOP-GO dataset.

Observing the points representing the results of OPCTs, the trade-off
between size and performance is clearly visible. This trade-off is achieved as
a consequence of different choices of the parameter values. The models’ pre-
dictive performance generally rises with increasing model size, indicating that
even the largest OPCTs do not overfit the training set, or possibly, different
options overfit different parts of the input space. The increase in predictive per-
formance in terms of increasing size also appears to saturate at the higher val-
ues of the observed parameter settings. This indicates that learning even larger
less-restrictive OPCTs is not likely to provide a significant boost to predictive
performance.

Compared to a PCT, OPCTs generally produce more accurate models that
are mostly much larger. However, the increase in predictive performance is often
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Fig. 2. Performances and sizes of models produced by different methods

noticeable even for the lowest parameter values when the difference in size is
relatively small. The comparison between OPCTs and ensembles of PCTs is more
varied. Bagging of PCTs is usually better than OPCTs (SCOP-GO), though
often very slightly (Enron) and sometimes worse (IMCLEF07D). However, the
size of a bagging ensemble can considerably surpass the size of even the largest
OPCTs. On the Enron dataset, random forests of PCTs outperform all other
methods by a solid margin. They also provide good performance on the SCOP-
GO dataset with relatively small trees, however, on the WIPO dataset they
produce the largest model which only outperforms a PCT.

We selected 3 parameter configurations as trade-off points between predic-
tive performance and model size: OPCT e1 d1, as it offers the best performance,
OPCT e1 d0.5, as its performance was similar to that of OPCT e1 d1 but it
often produced noticeably smaller models, and OPCT e0.5 d0.5, as it consis-
tently produced much smaller models than other two selected configurations,
albeit at the cost of some performance.

We compared the performance and size of these three configurations to that of
a PCT and their ensembles, using Friedman test to check if there is a significant
difference between the algorithms and the Nemenyi post-hoc test to show where
the differences occur. Results are presented in Fig. 3. The performance of a PCT
and its size is significantly lower than that of ensembles of PCTs, OPCT e1 d1
and OPCT e1 d0.5. Additionally, the size of OPCT e0.5 d0.5 is significantly
lower than that of the four aforementioned methods, but its performance is not.
We also observe that the average rank of OPCT e1 d0.5 in performance is on
par with ensembles of PCTs (it placed between bagging and random forests),
while its average rank in size is noticeably better. As expected, a PCT always
produced the smallest model with the worst performance.
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Fig. 3. Average ranking diagrams of the performance and size of selected methods

5 Conclusions

In this work, we proposed an algorithm for learning option predictive clustering
trees (OPCTs) for the hierarchical multi-label classification task. The purpose
of OPCTs is to address the greediness of the standard algorithm for PCT learn-
ing. We experimentally evaluated the proposed method with various parameter
values and compared it to PCTs and ensembles of PCTs (bagging and random
forests). The results show that increasing the values of e and d increases the
model performance and size compared to PCTs. At the highest parameter val-
ues of e = 1, d = 1, OPCTs are comparable to the state-of-the-art ensemble
methods of bagging and random forest of PCTs.

We identified three interesting parameter selections for OPCTs and per-
formed statistical comparison of these three methods and regular PCTs and
their ensembles. The results show that regular PCTs have significantly lower
performance and size than other methods with the exception of OPCT e0.5 d0.5.
Additionally, OPCT e0.5 d0.5 produces significantly smaller models than bag-
ging of PCTs, random forests of PCTs and OPCT e1 d1. Average performance
ranks of bagging, random forests, OPCT e1 d1 and OPCT e1 d0.5 are very sim-
ilar, while average size rank of OPCT e1 d0.5 is noticeably lower than that of
the other three methods. Based on these results, we suggest the parameter values
of e ∈ {0.5, 1} and d ∈ {0.5, 1} for future analyses.

There are several avenues for further work. Notably, the OPCT method-
ology described in this paper can be easily applied to the task of multi-label
classification. In the future, we also plan to use the OPCT methodology as a
part of a guided process to produce regular PCTs though either input from a
domain expert, or through the use of additional validation data. Finally, we will
investigate the use of OPCTs for performing feature ranking and selection for
HMLC.
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Chapter 7

Oblique Predictive Clustering Trees

This chapter presents our contributions concerning oblique predictive clustering trees. We
provided a general overview of SPYCTs in Section 3.2 and described various predictive
modeling tasks in Section 2.1. Here, we present both the SVM and the gradient variants
of SPYCTs for supervised learning and their experimental evaluation for six predictive
modeling tasks, including both structured and primitive outputs, as the approach is novel
for both. The main contributions are the following:

1. Development of PCTs with oblique splits: SVM-based and gradient-descent-based
methods proposed.

2. Extensive experimental evaluation of the proposed methods on benchmark datasets
for six predictive modeling tasks: binary classification (BC), multi-class classifica-
tion (MCC), multi-label classification (MLC), hierarchical multi-label classification
(HMLC), single-target regression (STR), and multi-target regression (MTR).

3. Parameter sensitivity analysis of the proposed methods.

4. An algorithm for extracting feature importances from the learned oblique trees.

5. Experimental evaluation of the proposed feature importance extraction approach.

The initial work was presented at the ISMIS-2020 conference (Stepišnik & Kocev,
2020b). It contained an initial proposal of the gradient SPYCT variant for classification
tasks. The proposed method was experimentally evaluated on 12 benchmark datasets, 3 for
each of the 4 classification tasks (BC, MCC, MLC, HMLC). The results show that SPYCTs
mostly achieve better performance than standard axis-parallel PCTs both in single-tree and
ensemble settings and confirm the theoretical advantage in computational complexity.

The conference publication was greatly expanded and submitted to the Knowledge-
Based Systems journal (Stepišnik & Kocev, 2020c). The paper presenting the extended
work is included in this chapter. It includes the proposal of the SVM SPYCT variant,
a revised version of the gradient variant (GRAD-SPYCT), and implementations that can
exploit sparsity in data. The experimental evaluation was much more extensive, including
STR and MTR tasks and 10 benchmark datasets per task, for a total of 60 datasets.
Additional datasets were used for parameter sensitivity analysis. For comparison, we used
different state-of-the-art baselines for different tasks as well as previously proposed oblique
decision tree methods.

Overall, the results show that the performance of SPYCT ensembles is at least on par
with other state-of-the-art methods. Bagging ensembles of GRAD-SPYCTs achieved the
lowest average ranks on 3 tasks and were close to the top on the other 3. The performance of
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the SVM-SPYCTs was slightly behind the GRAD-SPYCTs when used in ensembles, how-
ever, it was slightly better in single-tree settings. This indicates that GRAD-SPYCT trees
might overfit the learning data more than SVM-SPYCTs trees, which is helpful for ensem-
bles but hurts individual trees. On datasets with high-dimensional inputs or outputs, the
learning times for both variants were orders of magnitudes lower than for standard PCTs.
We also showed that using sparse data representation where appropriate gives additional
computational benefits. The experimental results confirmed our theoretical analysis and
additionally indicated that using matrix operations to do the most computationally inten-
sive tasks can be beneficial. While the theoretical complexity is the same, the hardware
is very well optimized for such operations. We also showed that the feature importances
extracted from oblique trees with the proposed method are meaningful and successfully
identify irrelevant features.

We also briefly explored random forests of SPYCTs, where each oblique split is learned
on a different random subset of features. In principle, the advantage over bagging ensembles
is better scaling with the number of features, same as for axis-parallel splits. In the majority
of cases, the results were good and similar to bagging ensembles. However, on some very
sparse datasets and datasets with several one-hot encoded attributes, the results were
surprisingly poor. An unlucky subset selection in such scenarios prevented the learning
of a useful split and the trees stopped growing. This issue can be addressed in different
ways, including using different attribute encoding, giving the algorithm multiple tries to
find a split, changing the pre-pruning settings, etc. This makes random forest ensembles a
promising avenue for further work.

From the hypotheses we defined in Section 1.2, this chapter addresses the following:

H3 Oblique predictive clustering trees reduce learning time on high dimensional data
compared to standard PCTs without deteriorating predictive performance.

H4 Oblique predictive clustering trees exploit sparse data to reduce learning time.

H6 Meaningful feature importances are calculated by using oblique PCTs.

All three hypotheses were confirmed. For H3, not only did predictive performance not
deteriorate, SPYCTs generally performed better than standard PCTs in addition to their
clear computational advantages. The computational advantage addressed in H3 and H4
was confirmed with both theoretical and empirical analyses. The proposed methods are
therefore computationally efficient, versatile, and good predictors.

The paper included in this Chapter is:

• Stepišnik, T., Kocev, D. (2020c). Oblique predictive clustering trees. Knowledge-
Based Systems [Under Review].

The contributions of Tomaž Stepišnik to this paper are as follows. He designed
and implemented the SVM and gradient variants of oblique predictive clustering trees. He
participated in the design of the study, carried out the experiments, and analyzed the
results. He drafted the paper and revised it following the feedback from the co-authors
and the reviewers.
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1. Introduction

In predictive modeling, a set of learning examples is used to induce a model
that can be used to make accurate predictions for unseen examples. The ex-
amples are described with features and are associated with a target variable.
The model uses the features to predict the value of the target variable. In most
common tasks, there is only one target variable. If it is numeric, the task is
called regression; if the target is discrete, the task is called classification.

However, many real-life problems can be more naturally represented with
more complex targets composed of multiple variables that can have additional
structure or dependencies among them. Such problems are encountered in a
variety of disciplines: life sciences (e.g., gene and protein function prediction),
environmental sciences (e.g., soil functions, habitat modeling), text and image
analysis (e.g., document classification, image annotation) and others. These
problems are addressed with the task of structured output prediction (SOP). In
this work, we focus on three types of SOP tasks:

• Multi-target regression (MTR) is a predictive modeling task where the
target is a vector with numeric components/variables.

• Multi-label classification (MLC) is a generalization of the standard clas-
sification where each example can be a member of multiple classes: the
targets are subsets of a finite set of possible labels.

• Hierarchical multi-label classification (HMLC) further extends the task of
MLC by additionally considering a partial order on the set of possible
labels, i.e., some labels are specialized cases of other labels. The partial
order organizes the labels into a hierarchy that can be represented with a
directed acyclic graph.

Predictive clustering trees are a variant of decision trees that have been
successfully applied to various predictive modeling tasks, including structured
output prediction and semi-supervised learning. However, they scale poorly to
problems with many target variables and cannot take advantage of sparsity in
the data. Both of these properties are quite common, especially in structured
output prediction problems. For example, in (H)MLC problems there are often
hundreds or thousands of possible labels (many target variables). Additionally,
each example is typically labeled with only a handful of labels, which leads
to sparse target matrices. Data can also be sparse on the input side, e.g.,
compounds described with binary fingerprints, text described with bag of words
representations, etc.

In this paper, we propose two methods for learning oblique predictive clus-
tering trees, designed to improve the efficiency of learning on high dimensional
and/or sparse data. The first variant of oblique predictive clustering trees is
based on SVM and the second on gradient descent. We experimentally evaluate
the proposed methods and show that they achieve state-of-the-art performance
and are learned orders of magnitude faster than axis-parallel trees. We also
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perform parameter sensitivity analysis and demonstrate that meaningful fea-
ture importance scores can be extracted from the learned models.

Initial experiments on classification with the gradient descent variant were
presented in [1]. The method has since been revised and improved with better
support sparse data and regularization to reduce model sizes. In addition to
the initial study, this paper proposes a new method (the SVM-based) and more
extensive experiments that include single-target classification and regression as
well as the three above-mentioned SOP tasks (MTR, MLC, and HMLC).

The remainder of the paper is organized as follows. In Section 2, we present
the background related to this paper. In Section 3, we describe and analyze our
proposed methods in detail. Next, we present our experimental setup (Section 4)
and results from the benchmarking experiments (Section 5). We then illustrate
the meaningfulness of the feature importances extracted from our models (Sec-
tion 6) and present the results of parameter sensitivity analysis (Section 7). In
Section 8, we conclude the paper with a summary of the main findings.

2. Background

The research of tree-based predictive models was popularized in the 1980s
[2]. Their use is widespread: they can be used for classification and regression
tasks and can handle both numeric and nominal features. A single tree can be
inspected and its predictions interpreted easily. When used in ensembles [3, 4]
they can achieve state-of-the-art performance. The performance boost comes at
the cost of reduced interpretability, hence, different feature ranking approaches
based on trees and tree ensembles have also been developed [4, 5].

Predictive clustering trees [6, 7] generalize standard decision/regression trees
by differentiating between three types of attributes: features, clustering at-
tributes, and targets. Features are used to divide the examples; these are the
attributes encountered in the split nodes. Clustering attributes are used to cal-
culate the heuristic which guides the search of the best split at a given node.
Targets are the attributes predicted in the leaves. The algorithm for learning
PCTs follows the top-down induction algorithm described by [2], and is pre-
sented in Algorithm 1.

The algorithm takes as input matrices of features (X), clustering attributes
(Y ), and targets (Z). It then goes through all features and searches for a test
that maximizes the heuristic score. The heuristic that is used to evaluate the
tests is the reduction of impurity caused by splitting the data according to a
test. It is calculated on the clustering attributes. If no acceptable split is found
(e.g., no test reduces the variance significantly, or the number of examples in
a node is below a user-specified threshold), then the algorithm creates a leaf
and computes the prototype of the targets of the instances that were sorted to
the leaf. The selection of the impurity and prototype functions depends on the
types of clustering attributes and targets (e.g., variance and mean for regression,
entropy and majority class for classification).

In theory, clustering attributes can be completely independent of the features
and the targets. In practice, the ultimate goal is to make accurate predictions
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Algorithm 1 Learning a PCT: The inputs are matrices of features X ∈ RN×D,
targets Y ∈ RN×T and clustering attributes Z ∈ RN×K .

1: procedure grow tree(X, Y, Z)
2: test = best test(X, Z)
3: if acceptable(test) then
4: rows1, rows2 = split(X, test)
5: left subtree = grow tree(X[rows1], Y[rows1], Z[rows1])
6: right subtree = grow tree(X[rows2], Y[rows2], Z[rows2])
7: return Node(test, left subtree, right subtree)
8: else
9: return Leaf(prototype(Y))

10: procedure best test(X, Z)
11: best = None
12: for d = 1, . . . , D do
13: for test ∈ possible tests(X, d) do
14: if score(test, X, Z) > score(best, X, Z) then
15: best = test
16: return best

17: procedure score(test, X, Z)
18: rows1, rows2 = split(X, test)
19: n1 = num rows(rows1)
20: n2 = num rows(rows2)
21: n = n1 + n2
22: return n· impurity(Z) - n1· impurity(Z[rows1]) - n2· impurity(Z[rows2])

for the targets, and the splitting heuristic should reflect that. The most ba-
sic (and common) approach is to use the targets also as clustering attributes.
For example, in a classification problem, doing so makes PCTs equivalent to
standard decision trees. But the attribute differentiation gives PCTs a lot of
flexibility. They have been used for predicting various structured outputs [8]. In
addition to targets, we can also include features among the clustering attributes.
This makes leaves homogeneous also in the input space, which is helpful if the
targets are noisy, and can also be used for semi-supervised learning [9, 10]. Em-
beddings of the targets have also been used as clustering attributes in order to
reduce the time complexity of tree learning [11].

Most of the research focus, including all of the above-mentioned work, is on
axis-parallel trees. The tests in axis-parallel trees only use single features and
the splits are axis-parallel hyperplanes in the input space. Alternatively, oblique
trees (also called multivariate trees) use linear combinations of features in the
tests, which allow for splits corresponding to an arbitrary hyperplane in the in-
put space. They receive a lot less attention than axis-parallel trees, possibly due
to the increased complexity of optimizing the split. Finding a hyperplane that
splits a set of examples with binary labels in a way that minimizes misclassified
examples on both sides of the hyperplane is an NP-hard problem [12]. But the
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a) b)

Figure 1: A toy dataset (a) with drawn decision boundaries learned by axis-parallel (red,
dashed) and oblique (blue, solid) decision trees (b).

increased flexibility of splits can lead to models that fit the data much better
as illustrated in Figure 1.

The initial proposals [2, 13] for the induction of oblique trees relied on local
search optimization and scale poorly to contemporary problems with thousands
of examples and/or features. Weighted Oblique Decision Trees [14] learn splits
by optimizing weighted information entropy and are a relatively efficient method
for binary and multi-class classification. Oblique random forests [15] follow the
standard Random Forest paradigm of learning trees on different bootstrapped
samples of the training set and searching for each split in a different subset
of features. Split learning is performed via ridge regression, which allows for
efficient optimization of the hyperplanes, but their approach is limited to bi-
nary classification problems. Additionally, FastXML [16] and PfastreXML [17]
present methods based on oblique trees for multi-label classification which work
efficiently even with thousands of features and labels. When learning a split,
these methods optimize a complex objective function that combines L1 regular-
ization, logarithmic loss and normalized Distributed Cumulative Gain (nDCG)
of examples on each side of the hyperplane. The criterion function optimization
is performed in two steps. First, the examples are partitioned in a way that min-
imizes nDCG in each partition; this partitioning is improved iteratively. Then,
a hyperplane is learned that approximates this partitioning as best as it can.
This is done by using GLMNET method to solve a logistic regression problem.

Existing oblique tree methods are specialized for specific predictive tasks
and/or computationally inefficient. In this paper, we present a method that
combines the flexibility of PCTs, uses oblique splits, applicable to a variety of
predictive modeling tasks, and is computationally efficient.

5

97



3. Method description

In this section, we describe oblique predictive clustering trees. We also follow
the top-down induction algorithm presented in Algorithm 1, but we modify the
split searching procedure (the BEST TEST function) to learn oblique tests. We
propose two modifications of the BEST TEST function based on SVMs and
gradient descent.

We start with the introduction of the notation used throughout the manuscript.
LetX ∈ RN×D be the matrix containing theD features of theN examples in the
learning set, Y ∈ RN×T be the matrix containing the T targets associated with
the N examples in the learning set, and Z ∈ RN×K be the matrix containing
the C clustering attributes associated with the N examples in the learning set.
This formulation encapsulates several predictive modeling tasks. First, single-
target regression (T = 1) and multi-target regression (T > 1) fit this description
easily. Second, for classification problems, the Y matrix contains binary values:
The value yij = 1 if the i-th example has j-th label, otherwise yij = 0. Third,
for binary classification problems, the number of targets is T = 1. Next, for
multi-class classification with k possible classes, the class information can be
encoded via one-hot encoding (T = k). Each row in Y has exactly one element
set to 1, and the rest are set to 0. Note that similarly as for the targets, nominal
features across all tasks are supported via one-hot encoding. Finally, label sets
in (hierarchical) multi-label classification with k possible labels can be encoded
with binary vectors (T = k), but here each row can have multiple elements set
to 1.

Below, Mi. will refer to the i-th row and M.i to the i-th column of the
matrix M . Let colmean(M) be a vector of column means of the matrix M. We
wish to learn a vector of weights w ∈ RD and a bias term b ∈ R that define a
hyperplane, which splits the learning examples into two subsets. We will refer
to the subset where Xi. ·w+ b ≥ 0 as the positive subset, and the subset where
Xi. · w + b < 0 as the negative subset. We want the examples in the same
subset to have similar values of clustering attributes in Z. Prior to learning
each split, features and clustering attributes are standardized to mean 0 and
standard deviation 1. After learning the split, the tree construction continues
recursively on the positive and negative subsets. As with standard PCTs, the
learning stops when the learned split is not acceptable, at which point a leaf
node is made where the prototype of the targets is stored. As prototypes, we
use target means over the examples in the leaf, i.e., colmean(Y). This prototype
can be used as-is to make predictions (regression problems, pseudo-probabilities
for classification problems), or it can be used to predict the majority class, or all
labels with frequencies above a specified threshold (multi-label classification).

When making a prediction for a new example with features x ∈ RD, we
calculate the value x · w + b in the root node. If it is non-negative, we repeat
the process in the positive subtree, otherwise in the negative subtree. This is
done until a leaf node is reached, where a prediction is made.
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3.1. SVM-based split learning

In the SVM-based split learning, we perform hyperplane optimization in
two steps. First, we group the examples into two subsets in such a way that
the similarity of clustering attributes in each subset is maximized, regardless
of the values of the features. This is calculated using only the Z matrix, while
X is ignored. For example, in binary classification the subset partitioning is
clear: each subset should contain examples from one class. For other tasks, the
subsets are not obvious. To obtain them we use the k-means clustering [18] to
cluster rows in Z into two clusters. Let vector c ∈ {0, 1}N be the result of the
clustering.

Next, we look for a hyperplane in the input space that approximates this
partitioning. In essence, we convert the split hyperplane optimization problem
into a binary classification problem. We solve the following problem:

min
w,b
||w||1 + C

N∑

i=1

max(0, 1− ci(Xi. · w + b))2,

where parameter C ∈ R determines the strength of regularization. To solve this
problem we use the LIBLINEAR library [19], specifically their L1-regularized
L2-loss support vector classification.

3.2. Gradient-descent-based split learning

In the gradient-descent-based split learning, we directly search for a hyper-
plane split that minimizes the impurity on both sides of the hyperplane, unlike
in the SVM-based split learning, where the split hyperplane is optimized indi-
rectly, by first determining an ideal split and then trying to approximate it with
a hyperplane. First, we calculate the vector s = σ(Xw + b) ∈ [0, 1]N , where
the sigmoid function σ is applied component-wise. The vector s contains values
from the [0, 1] interval, and we treat it as a fuzzy membership indicator. Specif-
ically, the value si tells us how much the i-th example belongs to the positive
subset, whereas the value 1 − si tells us how much it belongs to the negative
subset.

To measure the impurity of the positive subset, we calculate the weighted
variance of each column (attribute) in Z, and we weigh each row (example) with
its corresponding weight in s. To measure the impurity of the negative subset,
we calculate the weighted variances with weights from 1− s. Weighted variance
of a vector v ∈ Rn with weights a ∈ Rn is defined as

var(v, a) =

∑n
i=1 ai(vi − mean(v, a))2

A
= mean(v2, a)− mean(v, a)2,

where A =
∑n

i=1 ai is the sum of weights and mean(v, a) = 1
A

∑n
i=1 aivi is the

weighted mean of v.
The impurity of a subset is the weighted sum of weighted variances over all

the clustering attributes. The impurity of the positive subset is imp(Z, p, s) =
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∑L
j=1 pjvar(Z.j , s), and similarly imp(Z, p, 1 − s) is the impurity of the nega-

tive subset. Weights p ∈ RK enable us to give different priorities to different
clustering attributes. The final split fitness function is

f(w, b) = S ∗ imp(Z, p, s) + (N − S) ∗ imp(Z, p, 1− s),

where s = σ(Xw + b) and S =
∑N

i=1 si. The terms S and N − S represent the
sizes of positive and negative subsets, and are added to guide the split-search
procedure towards balanced splits. Finally, to obtain the split hyperplane, the
following optimization problem is solved:

min
w,b
||w|| 1

2
+ Cf(w, b),

where C again controls the strength of regularization and ||w|| 1
2

= (
∑D

i=1

√
|wi|)2

is the L 1
2 norm. We selected L 1

2 regularization because it induces weight sparsity
more aggressively than L1, which helps reducing the model size.

For examples that are not close to the hyperplane, si is close to 0 or 1.
Weighted variances are therefore approximations of the variances of the subsets,
that the hyperplane produces. This formulation makes the objective function
differentiable and enables us to use the efficient Adam [20] gradient descent
optimization method. The weight vector w is initialized randomly, then b is set
such that the examples are initially split in half.

3.3. Time complexity analysis

In this section, we analyze the time complexity of learning oblique predictive
clustering trees and compare it to the time complexity of learning standard
PCTs. We focus on the cost of learning a split since this is the only significant
difference between the two methods.

Let us start with the SVM variant. The first step is to perform 2-means
clustering on the clustering data Z ∈ RN×K , with time complexity O(NKIc),
where Ic is the number of clustering iterations we perform. Learning the linear
SVM to differentiate the clusters costs O(NDIo), where Io is the number of
optimization iterations. The total cost is then O(N(KIc +DIo)).

For the gradient descent variant, the main operation is gradient calculation.
The most expensive part of it is the multiplications of matrices X and Z with
vectors, which costs O(ND) and O(NK), respectively. The total cost of learning
a split is then O(NIo(D + K)), where Io is again the number of optimization
iterations.

The time complexity of learning a split in standard PCTs is O(DN logN +
NDK) [8]. The important difference we can notice is that standard PCTs scale
with DK, whereas both proposed variants of oblique PCTs scale with D + K.
This difference is very noticeable when solving problems with many cluster-
ing variables, e.g., (hierarchical) multi-label classification and semi-supervised
learning. An additional benefit of our approach can be obtained when dealing
with sparse data. If the features and/or clustering data is sparse, both variants
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can exploit the sparsity by performing operations with sparse matrices. This
reduces the time complexity to O(N(K̂Ic + D̂Io)) for the SVM variant and
O(NIo(D̂+ K̂) for the gradient descent variant, where D̂ � D and K̂ � K are
average numbers of non-zero elements in each row of matrices X and Z.

3.4. Ensembles of oblique predictive clustering trees

Single decision trees are mainly used when we wish to visually inspect and
interpret the model. To achieve state-of-the-art performance, trees have to
be used in ensembles. Oblique trees are inherently more difficult to visually
interpret, because of the linear combinations in the split nodes. Also, because
the splits are more complex, they can very easily overfit the data in the deeper
nodes. For these reasons, we believe the most natural use of oblique PCTs is
by combining them in ensembles.

To construct bagging ensembles [3], we simply construct each oblique PCT
on a different bootstrapped sample of the learning set. When making predic-
tions, we average the prototypes predicted by each tree in the ensemble to get
the final prediction. We can also build random forest ensembles [4] of oblique
PCTs. In addition to bootstrapping, each split hyperplane is only learned on a
random subset of features. After the hyperplane weights are learned, the wi for
features that were not in the selected subset are set to 0.

3.5. Feature importance

Even though ensembles of oblique PCTs are hard to interpret directly, we
can still gain insight into how the models make their decision by calculating
feature importances, much like it is done with ensembles of axis-parallel trees.
The feature importance scores of a single oblique PCT are calculated as follows:

imp(T ) =
∑

s∈T

sn
N

sw
‖sw‖1

,

where s iterates over split nodes in tree T , sw is the weight vector defining the
split hyperplane, sn is the number of learning examples that were present in
the node and N is the total number of learning examples. The contributions
of each node to the final feature importance scores are weighted according to
the number of examples that were used to learn the split. This puts more
emphasis on weights higher in the tree, which affect more examples. To get
feature importance scores of an ensemble, we simply average feature importances
of individual trees in the ensemble.

3.6. Implementation

We implemented the proposed oblique predictive clustering trees in a python
package spyct. It is freely licensed and available for use and download at
https://gitlab.com/TStepi/spyct. The package includes both SVM and
gradient descent variant, single trees, bagging, and random forest ensembles.
In ensembles, trees can be built in parallel. We also provide a number of pre-
pruning options: maximum tree depth, minimum number of examples required
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to perform a split, and the minimum reduction of impurity required for a split
to be accepted. By default, tree depth is not limited, a split is always attempted
if more than 1 example is still present in a node, and it is accepted if the im-
purity is reduced by at least 5% in at least one of the subsets. Additionally,
the splitting stops if one of the subsets is empty (the hyperplane does not split
the data). We can control the maximum number of clustering iterations (SVM
variant, 10 by default), learning rate (gradient variant, default 0.1), and the
maximum number of hyperplane optimization iterations (both variants, default
100). We also make use of early stopping in both clustering and hyperplane
optimization, if the process converges. Strength of regularization (both vari-
ants, C = 10 by default) and other parameters of the Adam optimizer (gradient
variant, default values from PyTorch 1 library) are also configurable.

4. Experimental setting

In this section, we present a comprehensive experimental study designed
to evaluate the proposed oblique PCTs and compare them to standard PCTs
and other baseline methods. We evaluated the methods on benchmark datasets
from the classification spectrum: binary (BIN), multi-class (MCC), multi-label
(MLC), and hierarchical multi-label classification (HMLC), as well as from the
regression spectrum: single-target (STR) and multi-target regression (MTR).
We first present the competing methods, and then the benchmark data and
evaluation strategy.

4.1. Competing methods

The main baselines for comparison are standard PCTs, which can be used
for all 6 predictive modeling tasks considered. We trained single trees, bagging
ensembles of PCTs, and random forests of PCTs. Next, we compared to exist-
ing oblique tree methods in single tree settings, as they were proposed by the
authors. This includes CART-LC [2], OC1 [13] and WODT [14]. Both CART-
LC and OC1 are only applicable to BIN problems, whereas WODT can also be
used for MCC.

For ensembles of oblique trees, we considered oblique random forests (ORF)
[15] and the FastXML method [16] as competing methods. The ORF method
is only applicable to BIN problems. The FastXML method is specialized for
the MLC task and optimized to work with sparse data. We will also use it as
a baseline for the HMLC datasets, by discarding the hierarchy and treating the
problem as a flat MLC task.

Additionally, the comparison includes LightGBM gradient boosted tree
ensembles [21]. They can be used for BIN, MCC, and STR tasks. Finally, to
include a non-tree-based baseline, we used linear SVMs. They can be directly
applied to BIN and STR tasks. We will also use them as baselines for other tasks,

1https://pytorch.org/docs/stable/optim.html
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Method Tasks Implementation
spyct-svm all gitlab.com/TStepi/spyct

spyct-grad all gitlab.com/TStepi/spyct

PCT all http://source.ijs.si/ktclus/clus-public/

SVM all https://scikit-learn.org/stable/

CART-LC BIN github.com/AndriyMulyar/sklearn-oblique-tree

OC1 BIN github.com/AndriyMulyar/sklearn-oblique-tree

WODT BIN, MCC www.lamda.nju.edu.cn/yangbb

ORF BIN rdrr.io/cran/obliqueRF/man/obliqueRF.html

FastXML MLC, HMLC manikvarma.org/code/FastXML/download.html

LightGBM BIN, MCC, STR lightgbm.readthedocs.io

Table 1: Methods included in the benchmarking comparison.

Dataset N D
ailerons [22] 13750 40
cpmp-2015 [22] 2108 23
cpu small [22] 8192 12
elevators [22] 16599 19
house 8L [22] 22784 8

Dataset N D
puma8NH [22] 8192 8
qsar-234 [22] 2145 1024
satellite image [22] 6435 36
space ga [22] 3107 6
triazines [22] 186 60

Table 2: Properties of the benchmark STR datasets. Columns show the number of examples
(N) and the number features (D).

Dataset N D T
atp1d [23] 337 411 6
edm [23] 154 16 2
enb [23] 768 8 2
jura [23] 359 15 3
oes10 [23] 403 298 16

Dataset N D T
oes97 [23] 334 263 16
rf1 [23] 9125 64 8
rf2 [23] 9125 576 8
scm1d [23] 9803 280 16
slump [23] 103 7 3

Table 3: Properties of the benchmark MTR datasets. Columns show the number of examples
(N), the number of features (D) and the number of targets (T).

by learning a separate SVM for each label/target (one-vs-all approach in MCC,
binary relevance in MLC and HMLC, local approach to MTR). We decided to
use the linear kernel to keep the learning time manageable and because it is
closest to the nature of the splits used in the oblique trees.

Table 1 sums up the baseline methods and provides links to the implemen-
tations we used in the experiments. We will refer to the proposed methods as
spyct-svm and spyct-grad, for the SVM and gradient descent variant, re-
spectively. For standard and oblique PCTs, we will prepend BAG or RF to
mark bagging and random forest ensembles, respectively (e.g., BAG-spyct-
grad denotes bagging ensembles of gradient descent variant oblique PCTs).
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Dataset N D
banknote [22] 1372 4
bioresponse [22] 3751 1776
credit-approval [22] 690 15
credit-g [22] 1000 20
diabetes [22] 768 8

Dataset N D
musk [22] 6598 166
OVA Breast [22] 1545 10935
OVA Lung [22] 1545 10935
spambase [22] 4601 57
speeddating [22] 8378 120

Table 4: Properties of the benchmark BIN datasets. Columns show the number of examples
(N) and the number of features (D).

Dataset N D T
amazon-reviews [22] 1500 10000 50
balance [22] 625 4 3
diabetes130us [22] 101766 47 3
gas-drift [22] 13910 128 6
hepatitisC [22] 283 54621 3

Dataset N D T
isolet [22] 7797 617 26
mfeat-pixel [22] 2000 240 10
micro-mass [22] 571 1300 20
vehicle [22] 846 18 4
wine-white [22] 4898 11 7

Table 5: Properties of the benchmark MCC datasets. Columns show the number of examples
(N), the number of features (D) and the number of classes (T).

Dataset N D T Sparse
bibtex [23] 7395 1836 159 D, T
bookmarks [23] 87856 2150 208 D, T
CAL500 [23] 502 68 174 T
corel5k [23] 5000 499 374 D, T
emotions [23] 593 72 6
eurlex-eurovoc [23] 19348 5000 3993 D, T
flags [23] 194 19 7
rcv1subset1 [23] 6000 47236 101 D, T
scene [23] 2407 294 6
tmc2007 [23] 28596 49060 22 D

Table 6: Properties of the benchmark MLC datasets. Columns show the number of examples
(N), the number of features (D), the number of targets/labels (T), and whether the input or
output space is sparse.

4.2. Evaluation

We evaluated the methods on 60 benchmarking datasets, 10 for each of
the 6 tasks. Their details are presented in Tables 2-7. If the input or output
data matrix had fewer than 10% of nonzero values, it was represented in a
sparse format (marked in the tables, where applicable). To measure predictive
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Dataset N D T Sparse
enron [24] 1648 1001 56 D, T
imclef07d [24] 11006 80 46 T
reuters [24] 6000 47235 102 D, T
wipo [24] 1710 74435 188 D, T
yeast GO [25] 3465 5930 133 D, T
yeast spo FUN [25] 3711 80 594 T
yeast expr FUN [25] 3788 551 594 T
ara exprindiv FUN [25] 3496 1251 261 T
yeast gasch1 FUN [25] 3773 173 594 T
ara interpro GO [25] 11763 2815 630 D, T

Table 7: Properties of the benchmark HMLC datasets. Columns show the number of examples
(N), the number of features (D), the number of targets/labels (T), and whether the input or
output space is sparse.

performance of the methods on STR and MTR datasets, we used the coefficient
of determination as performance measure

R2(y, ŷ) = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

,

where y is the vector of true target values, ȳ is their mean, and ŷ is the vector
of predicted values. For MTR problems, the mean of R2 scores per target was
calculated. For BIN and MCC tasks, we used F1 score, macro averaged in the
MCC case.

Methods solving MLC and HMLC tasks typically return a score for each
label and each example, higher score meaning that example is more likely to
have that label. Let y ∈ {0, 1}n×l be the matrix of label indicators and ŷ ∈ Rn×l

the matrix of label scores returned by a method. We measured the performance
of methods with weighted label ranking average precision

LRAP (y, ŷ) =
1

n

n−1∑

i=0

∑

j:yij=1

wj

Wi

Lij

Rij
,

where Lij = |{k : yik = 1 ∧ ŷik ≥ ŷij}| is the number of real labels assigned to
example i that the method ranked higher than label j, Rij = |{k : ŷik ≥ ŷij}| is
the number of all labels ranked higher than label j, wj is the weight we put to
label j and Wi is the sum of weights of all labels assigned to example i. For MLC
tasks we put equal weights to all labels, whereas for HMLC task we weighted
each label with 0.75d, where d is the depth of the label in the hierarchy [8].

For all three measures used (R2, F1, LRAP), a higher value indicates bet-
ter performance, with a value of 1 indicating the best possible performance.
We estimated the predictive performance using 10-fold cross-validation on each
dataset. In addition to performance measures, we also recorded the learning
time of each method. All experiments were performed on the same computer
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and the methods were allowed to use up to 10 processor cores. We set the
number of trees in the ensembles to 50. Random forest ensembles (RF-PCT,
RF-spyct-svm, RF-spyct-grad, ORF) used

√
D features for each split, where D

is the number of features. For SVM and LightGBM methods, parameter tuning
is advised. In experiments with these methods, we set aside 20% of the training
set for each fold to tune the parameters. For SVM we selected the regulariza-
tion parameter C from values {0.1, 1, 10, 100, 1000}. For LightGBM we selected
the maximum number of leaves in the trees among values {20, 50, 100} and the
minimum number of samples to perform a split from values {1, 10, 100, 1000}.
The ORF method includes internal optimization of its regularization parameter,
which we left at its default setting. In the HMLC experiments, standard and
oblique PCTs also received the same label weights used to calculate LRAP.

5. Results and discussion

In this section, we present the results of our extensive benchmarking ex-
periments. We first discuss the predictive performance of the proposed oblique
PCTs in an ensemble setting. Next, we analyze the learning times, focusing
on large and sparse datasets. Finally, we present a comparison of the proposed
methods to other single-tree methods.

5.1. Predictive performance

To keep the paper concise, we do not present the large number of raw perfor-
mance results of our experiments here (they are available in the Appendix), but
instead focus on the aggregated results presenting the overall findings. Figure 2
presents the average ranks of the methods based on predictive performance on
the benchmark datasets, grouped by predictive modeling tasks. If a method did
not finish the evaluation in 3 days, it was assigned the lowest rank. This only
occurred for the MLC task, where BAG-PCT did not finish on eurlex-eurovoc
and tmc2007 datasets, and RF-PCT did not finish on eurlex-eurovoc dataset.

In a nutshell, the results show that in terms of predictive performance, the
proposed bagging ensembles (BAG-spyct-svm and BAG-spyct-grad) are
on par with current state-of-the-art methods. Furthermore, BAG-spyct-grad
achieves the best rank on 3 tasks (MTR, MCC, and MLC), and is close to the
top on the other 3 tasks as well (close second on BIN and HMLC, where on the
latter best performing is BAG-spyct-svm).

While the bagging ensembles of oblique PCTs have premium predictive per-
formance, the proposed random forest ensembles of oblique PCTs (RF-spyct-
svm and RF-spyct-grad) did not perform well. Especially RF-spyct-svm
struggled to learn on several datasets. We believe this is the result of sparse
input features (exacerbated by the one-hot encoding required for nominal fea-
tures) combined with the stopping criterion used. A poor feature subset selec-
tion consisting of irrelevant features and features with most or all values of 0,
makes split optimization difficult. If the learned split is not useful, splitting
is immediately stopped on the current branch, hence the trees become heavily
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a) STR b) MTR

c) BIN d) MCC

e) MLC f) HMLC

Figure 2: Average ranks of predictive performances obtained by methods on single-target re-
gression (a), multi-target regression (b), binary classification (c), multi-class classification (d),
multi-label classification (e) and hierarchical multi-label classification (f) benchmark datasets.

over-pruned. It appears that random forest ensembles of oblique PCTs require
a deeper redesign of the learning algorithm and straight-forward subspacing is
not effective.

5.2. Learning time

Experimental comparison of the learning times of different methods is a
challenging task and difficult to do completely fairly. The implementations
are in different programming languages (python, java, R, C++) and they are
not equally optimized for efficient execution. Hence, we focus on the largest
datasets, where time efficiency is more pronounced, and where the method’s
time complexity is more likely to dominate any implementation details.
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Dataset Task
BAG-
spyct-

svm

BAG-
spyct-
grad

BAG-
PCT FastXML

Light-
GBM

diabetes130us MCC 95.7 65.4 749.0 NA 11.2
hepatitisC MCC 5.4 1.8 12.4 NA 55.4
bookmarks MLC 28.4 44.4 1747.7 16.8 NA
eurlex-eurovoc MLC 200.8 8.0 DNF 8.1 NA
rcv1subset1 MLC 6.0 18.2 987.2 0.4 NA
tmc2007 MLC 22.5 129.2 DNF 4.8 NA
reuters HMLC 4.0 11.8 883.2 0.4 NA
yeast expr FUN HMLC 17.2 1.2 517.1 3.0 NA

Table 8: Learning times of bagging ensembles on large datasets in minutes. NA means the
method is not applicable to the task, DNF means the method did not finish in 3 days (4320
minutes). For dataset properties see Tables 5-7.

Table 8 presents the learning times on selected datasets with large numbers of
examples, features, and/or targets. It is apparent, that both proposed variants
spyct-svm and spyct-grad are computationally much more efficient than
standard PCTs. There are several reasons for the improvement of the learning
time. To begin with, the main advantage comes from better scaling with the
number of targets (as theoretically analyzed in Section 3.3), which is evident
in the large differences on MLC and HMLC datasets. Next, another advantage
is the exploitation of the sparse representation of the data. For example, if
dense matrices are used instead of sparse matrices on the reuters dataset the
learning time is dramatically increased: for BAG-spyct-svm it increases from
4 minutes to 247.7 minutes, and for BAG-spyct-grad from 11.8 minutes to 54
minutes. Although learning from dense matrices is much slower than learning
on sparse matrices, it is still faster than BAG-PCT. Furthermore, another
source of learning time improvements is that with oblique splits, models can
be much smaller (in terms of numbers of split nodes) compared to axis-parallel
trees, because the splits are more expressive. An illustrative example of this
is the diabetes130us dataset that does not even have multiple targets or sparse
features: The BAG-spyct-svm model consists of only 87 nodes and the BAG-
spyct-grad of 2345 nodes, while the standard BAG-PCT model consists of
1803069 nodes. Lastly, we noticed faster learning on datasets with a large
number of features, even when they are not sparse (e.g., the learning times of
the hepatitisC dataset). We believe this is because the matrix operations are
very well optimized in modern CPUs, which gives an advantage to the proposed
optimization of oblique splits, compared to exhaustive search over the features
in axis-parallel trees.

We can also note that LightGBM is very efficient on datasets with many
examples (diabetes130us), but less so on datasets with many features (hepati-
tisC ). Furthermore, the implementation of the FastXML method is extremely
well optimized for (H)MLC datasets with a sparse structure. Therefore, even
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a) BIN b) MTR

Figure 3: Average ranks of predictive performances obtained by single-tree methods on binary
classification and multi-target regression benchmark datasets.

though its theoretical computational complexity is very similar to our proposed
methods, it has lower learning times on such datasets. However, when the fea-
tures were not sparse, the observed learning times were in the same range as the
proposed methods (e.g., for the yeast expr FUN dataset, FastXML has worse
learning time than BAG-spyct-grad and better than BAG-spyct-svm).

5.3. Single tree methods

Even though we believe the oblique PCTs are mostly suited for use in en-
sembles, we briefly discuss our experiments for learning single trees. The results
are illustrated in Figure 3 by presenting the average ranks on two tasks: BIN
and MTR. Note that the same behavior can be observed for all the other tasks.
As discussed in the introduction, most existing oblique trees are applicable only
to binary classification problems. We see that our proposed methods achieve
competitive performance also in the single tree setting. The results for the OC1
method on 3 datasets (bioresponse, OVA Breast and OVA Lung) are missing,
because the algorithm exited without returning a tree when it was unable to
find a split of the root node. It was assigned the worst ranking in those cases.
We should note that even though WODT method performed poorly on BIN
datasets, it was on par with other methods on MCC datasets. On SOP tasks,
oblique PCTs generally outperformed standard PCTs, as illustrated in Fig-
ure 3b.

6. Feature importance scoring

We demonstrate the capability of extracting meaningful feature importance
scores from the models using the approach described in Section 3.5. To evaluate
the proposed approach, we added random noise features to the datasets and
then learned BAG-spyct-svm and BAG-spyct-grad models on the expanded
datasets. If the dataset originally had d features, we added another d features
with random values, so the number of features has doubled. We took data
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Figure 4: Feature importance scores obtained on different datasets by BAG-spyct-svm (left)
and BAG-spyct-grad (right) methods. Results shows that the models do not rely on irrelevant
features.

sparsity into account, so the ratio of non-zero values did not change (i.e., sparse
datasets remained sparse).

Figure 4 presents the results on 6 datasets – we illustrate this on one dataset
for each task. The importances of real features have diverse values which is
expected: Datasets can contain features that are informative and features that
are less informative or not informative at all. The main observation is that the
added random features do not obtain high importance scores. This indicates
that obtained importance scores are meaningful, and that methods are resilient
to spurious features. This holds even on datasets with thousands of features
and on datasets with sparse features.

7. Parameter sensitivity analysis

We performed parameter sensitivity analysis to investigate the influence of
the different parameter values on the performance of the proposed methods.
The analysis was performed on a different selection of datasets than the bench-
marking experiments, to avoid any test set leakage. We used 3 datasets per task,
yielding 18 datasets – their properties are presented in Table 9. For estimating
the predictive performance, we used 5-fold cross validation.We experimented
with different regularization strengths C ∈ {0.1, 1, 10, 100, 1000} and different
numbers of ensemble members (1, 10, 25, 50, 100). We also tried different thresh-
olds for impurity reduction required to accept a split: {0%, 5%, 10%, 20%}. Note
that at 0%, pre-pruning based on impurity reduction is turned off.

We present the most interesting observations in Figure 5. First, as expected,
increasing the number of trees in the ensemble leads to better predictive perfor-
mance. However, on several datasets (e.g., the scm1d dataset) the improvements
become relatively small already from 10-25 trees onward. Second, the regular-
ization strength C is difficult to get right. If the value is too low, the model
does not fit the data enough. If it is too high, the model can overfit and the
split weights are less sparse which can lead to large model sizes (memory-wise).
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Dataset Task N D T Sparse
cholesterol [22] STR 303 13 1
pol [22] STR 15000 48 1
qsar-30007 [22] STR 534 1024 1
andro [23] MTR 49 30 6
atp7d [23] MTR 296 411 6
wq [23] MTR 1060 16 14
arrhythmia [22] BIN 452 279 1
OVA Endometrium [22] BIN 1545 10935 1
transfusion [22] BIN 748 4 1
energy efficiency [22] MCC 768 8 37
gcm [22] MCC 190 160063 14
gesture [22] MCC 9873 32 5
birds [23] MLC 645 260 19 T
delicious [23] MLC 16105 500 983 D,T
mediamill [23] MLC 43907 120 101 T
ara scop GO [25] HMLC 9843 2003 572 T
imclef07a [24] HMLC 11006 80 96 T
yeast seq FUN [25] HMLC 3932 478 594 T

Table 9: Properties of datasets for parameter sensitivity study. Columns show predictive
modelling task, number of examples (N), number of features (D), number of targets (T) and
whether the input or output is sparse.

Gradient descent variant appeared to be more sensitive to this parameter than
the SVM variant. The performance-wise results show that it is less damaging
if C is too large, compared to if it is too small. Third, the impurity reduction
threshold determines how good a split must be to be accepted (otherwise the
current tree branch stops growing). Similar to the regularization strength, if the
threshold is set too high, the model does not fit the data enough. If it is set too
low, we risk overfitting the data (e.g., the cholesterol dataset) and/or inflating
the model for no benefit (increases learning time and memory requirements,
e.g., the birds dataset). Finally, our benchmarking experiments have shown
that the selected default parameter values work well overall, however, they are
unlikely to be optimal for any particular dataset. The best performance on a
given dataset will be obtained by tuning the parameters for that dataset.

8. Conclusions

In this paper, we propose two methods for learning oblique predictive clus-
tering trees. The nodes in oblique trees contain oblique splits that have linear
combinations of features in the tests, hence the splits correspond to an arbi-
trary hyperplane in the input space. The first method starts by clustering the
examples based on the target values and then learns a hyperplane in the in-
put/feature space that approximates this clustering (the spyct-svm variant).
The second method uses fuzzy membership indicators and weighted variance
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Figure 5: Predictive performance obtained with different numbers of ensemble members (top),
regularization strengths (middle) and impurity reduction thresholds (bottom).

to directly optimize the hyperplane to minimize the impurity of examples on
both sides (the spyct-grad variant). The proposed methods are designed to
have drastically lower learning time on datasets with many targets compared to
axis-parallel predictive clustering trees, while being capable of addressing many
predictive modeling tasks, including structured output prediction. They can
also exploit the sparsity present in the input/output data to more efficiently
learn the predictive models.

We evaluated the proposed methods in a single tree and ensemble settings
on 60 benchmark datasets for 6 predictive modeling tasks: binary classifica-
tion, multi-class classification, multi-label classification, hierarchical multi-label
classification, single-target regression, and multi-target regression. The results
from the empirical study show that the predictive performance of ensembles of
spyct-svm and spcyt-grad trees is on-par with state-of-the-art methods on
all considered predictive modeling tasks, often exceeding it (especially spyct-
grad). The learning times on datasets with high dimensional input and output
spaces are orders of magnitude lower than learning times of standard PCTs,
especially when the data is sparse. We also demonstrate the potential for ex-
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tracting meaningful feature importance scores from the models, additionally
indicating that the models are resilient to irrelevant features.

In future work, we plan to extend our work in several directions. To begin
with, random forest ensembles of proposed oblique PCTs were not very success-
ful. Hence, we plan to research the reasons behind these results and develop an
improved version of the algorithm. Next, we will extend the developed methods
towards the task of semi-supervised learning, where axis-parallel PCTs scale
especially poorly in terms of computational cost due to a large number of clus-
tering attributes considered there. Last but not least, we will evaluate the use
of oblique trees for efficient learning of feature rankings in all of the above tasks
as well as in the context of semi-supervised learning.
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[10] J. Levatić, D. Kocev, M. Ceci, S. Džeroski, Semi-supervised trees for multi-
target regression, Information Sciences 450 (2018) 109–127. doi:10.1016/
j.ins.2018.03.033.
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Figure 7: Predictive performance of ensemble methods and SVMs on multi-target regression
datasets

Figure 8: Predictive performance of ensemble methods and SVMs on binary classification
datasets
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Figure 9: Predictive performance of ensemble methods and SVMs on multi-class classification
datasets

Figure 10: Predictive performance of ensemble methods and SVMs on multi-label classification
datasets
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Figure 11: Predictive performance of ensemble methods and SVMs on hierarchical multi-label
classification datasets
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Chapter 8

Semi-Supervised Oblique Predictive
Clustering Trees

In this chapter, we present the final set of contributions in this thesis – those related to semi-
supervised learning of oblique predictive clustering trees. In the introductory sections, we
described the principles of semi-supervised learning (Section 2.1.3) and provided a general
overview of SPYCTs (Section 3.2) which included semi-supervised learning of SPYCTs
(SSL-SPYCTs) as a special case. This section presents all the relevant details. Specifically,
the contributions to this topic include:

1. Extension of the SVM variant of oblique predictive clustering trees towards support-
ing semi-supervised learning.

2. Extension of the gradient variant of oblique predictive clustering trees towards sup-
porting semi-supervised learning.

3. Experimental evaluation of the proposed methods on benchmark datasets for 6 pre-
dictive modeling tasks: binary classification (BC), multi-class classification (MCC),
multi-label classification (MLC), hierarchical multi-label classification (HMLC), single-
target regression (STR), and multi-target regression (MTR).

The work on this topic was organized in a paper that was submitted to PeerJ Computer
Science journal (Stepišnik & Kocev, 2020d) and is included in this chapter. It presents
how both variants of SPYCTs can be learned in a semi-supervised manner and experimen-
tally evaluates the proposed methods on 30 datasets for 6 predictive modeling tasks, both
primitive and structured. We try different numbers of labeled examples for each dataset
and focus on the comparison to supervised SPYCTs and semi-supervised standard PCTs
(SSL-PCTs).

The main motivation for SSL-SPYCTs was the computational benefit they offer com-
pared to SSL-PCTs, due to the better scaling with the number of clustering attributes,
which in a semi-supervised setting include all the features. This advantage was confirmed
with the experiments where SSL-SPYCTs had drastically lower learning times than SSL-
PCTs. Additionally, we compared predictive performances of both variants of SSL-SPYCTs
to their supervised counterparts and SSL-PCTs, both in single tree settings and in bagging
ensembles. The results were again favorable. SSL-SPYCTs often achieved better predic-
tive performance than both supervised SPYCTs and SSL-PCTs. The performance edge
was often observed even in ensemble settings, where SSL-PCTs typically do not outper-
form supervised PCTs. Finally, we compared the feature importance scores obtained with
SSL-SPYCTs and supervised SPYCTs and found that the semi-supervised approach can
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be more successful at identifying important features from few learning examples. This
points to the potential for the development of a method for feature ranking in the context
of semi-supervised learning.

From the hypotheses we defined in Section 1.2, this chapter addresses the following:

H5 Oblique predictive clustering trees are learned significantly faster than standard PCTs
in a semi-supervised learning setting.

H3 Oblique predictive clustering trees reduce learning time on high dimensional data
compared to standard PCTs without deteriorating predictive performance.

H6 Meaningful feature importances are calculated by using oblique PCTs.

The main focus in this chapter was on H5, which was confirmed with the theoretical
analysis and experimental evaluation. Technically, we also addressed H3 and H6 and
confirmed them for the semi-supervised context.

The paper included in this Chapter is:

• Stepišnik, T., Kocev, D. (2020d). Semi-supervised oblique predictive clustering trees.
PeerJ Computer Science [Under Review].

The contributions of Tomaž Stepišnik to this paper are as follows. He designed
and implemented the extensions of both SPYCT variants towards semi-supervised learning.
He participated in the design of the study, carried out the experiments, and analyzed the
results. He drafted the paper and revised it following the feedback from the co-authors
and the reviewers.
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ABSTRACT10

Semi-supervised learning combines supervised and unsupervised learning approaches to learn predictive
models from both labeled and unlabeled data. It is most appropriate for problems where labeled
examples are difficult to obtain but unlabeled examples are readily available (e.g., drug repurposing).
Semi-supervised predictive clustering trees (SSL-PCTs) are a prominent method for semi-supervised
learning that achieves good performance on various predictive modeling tasks, including structured
output prediction tasks. The main issue, however, is that the learning time scales quadratically with the
number of features. In contrast to axis-parallel trees, which only use individual features to split the data,
oblique predictive clustering trees (SPYCTs) use linear combinations of features. This makes the splits
more flexible and expressive and often leads to better predictive performance. With a carefully designed
criterion function, we can use efficient optimization techniques to learn oblique splits. In this paper, we
propose semi-supervised oblique predictive clustering trees (SSL-SPYCTs). We adjust the split learning
to take unlabeled examples into account while remaining efficient. The main advantage over SSL-PCTs
is that the proposed method scales linearly with the number of features. The experimental evaluation
confirms the theoretical computational advantage and shows that SSL-SPYCTs often outperform SSL-
PCTs and supervised PCTs both in single-tree setting and ensemble settings. We also show that
SSL-SPYCTs are better at producing meaningful feature importance scores than supervised SPYCTs
when the amount of labeled data is limited.
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INTRODUCTION28

The most common tasks in machine learning are supervised and unsupervised learning. In supervised29

learning, we are presented with a set of examples described with their properties (i.e., descriptive variables30

or features) as well as with a target property (i.e., output variables, target variables, or labels). The goal31

of a supervised learning method is to learn a mapping from the descriptive values to the output values32

that generalizes well to examples that were not used for learning. In unsupervised learning, on the other33

hand, no output values are provided for the examples. Instead, unsupervised methods aim to extract some34

underlying structure of the examples (e.g., discover clusters of similar examples, learn low dimensional35

representations, etc.).36

Semi-supervised learning combines these two approaches (Chapelle et al., 2006). We are presented37

with a set of examples, where a (smaller) part of them are associated with output values (labeled examples),38

and a (larger) part of them are not (unlabeled examples). Semi-supervised methods learn a mapping39

from examples to the output values (like supervised methods), but also include unlabeled examples in40

the learning process (like unsupervised methods). The semi-supervised approach is typically used when41

learning examples are too scarce for supervised methods to learn a model that generalizes well, and,42

at the same time, unlabeled examples are relatively easy to obtain. This often happens in problems43

from life sciences, where the process of labeling the examples requires wet-lab experiments that are44

time-consuming and expensive. For example, consider the problem of discovering a new drug for a45

certain disease. Testing the effects of compounds on the progression of the disease requires screening46
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Figure 1. A toy dataset (a) with drawn decision boundaries learned by axis-parallel (red, dashed) and
oblique (blue, solid) decision trees (b).

experiments, so labeling the examples (compounds) is expensive. On the other hand, millions of unlabeled47

compounds are present and described in online databases. Ideally, a semi-supervised method can use a48

handful of labeled compounds, combine them with the unlabeled compounds, and learn a model that can49

predict the effect of a compound on the disease progression, to facilitate the discovery of a novel drug.50

The most common approaches to semi-supervised learning are wrapper methods (Van Engelen and51

Hoos, 2020), such as self-training (Kang et al., 2016), where a model iteratively labels the unlabeled52

examples and includes these pseudo-labels in the learning set in the next iteration. Alternatively, in co-53

training (Zhou and Li, 2007) there are two models that iteratively label the data for each other. Typically,54

these two models are different or at least learn on different views of the data. Among the intrinsically55

semi-supervised methods (Van Engelen and Hoos, 2020), semi-supervised predictive clustering trees56

(Levatić, 2017) are a prominent method. They can be used to solve a variety of predictive tasks, including57

multi-target regression and (hierarchical) multi-label classification (Levatić, 2017; Levatić et al., 2017,58

2018; Levatić et al., 2020). They achieve good predictive performance and, as a bonus, the learned59

models can be interpreted, either by inspecting the learned trees or calculating feature importances from60

ensembles of trees (Petković et al., 2020). However, the method scales poorly with data dimensionality –61

the model learning can take a very long time on datasets with many features or targets.62

Standard decision/regression trees (Breiman et al., 1984) split data based on the features in a way that63

minimizes the impurity of the target in the resulting clusters (e.g., variance for regression, entropy for64

classification). In the end nodes (leaves), predictions for the target are made. Predictive clustering trees65

(Blockeel et al., 1998, 2002) (PCTs) generalize standard trees by differentiating between three types of66

attributes: features, clustering attributes, and targets. Features are used to divide the examples; these are67

the attributes encountered in the split nodes. Clustering attributes are used to calculate the heuristic that68

guides the search of the best split at a given node, and targets are predicted in the leaves. The role of69

the targets in standard trees is therefore split between the clustering attributes and targets in PCTs. In70

theory, the clustering attributes can be selected independently of the features and the targets. However, the71

learned tree should make accurate predictions for the targets, so minimizing the impurity of the clustering72

attributes should help minimize the impurity of the targets. This attribute differentiation gives PCTs a lot73

of flexibility. They have been used for predicting various structured outputs (Kocev et al., 2013), including74

multi-target regression, multi-label classification, and hierarchical multi-label classification. Embeddings75

of the targets have been used as clustering attributes in order to reduce the time complexity of tree learning76

(Stepišnik and Kocev, 2020a). Semi-supervised PCTs use both targets and features as clustering attributes.77

This makes leaves homogeneous in both the input and the output space, which allows unlabeled examples78

to influence the learning process.79

PCTs use individual features to split the data, which means the split hyperplanes in the input spaces80

are axis-parallel. SPYCTs (Stepišnik and Kocev, 2020b; Stepišnik and Kocev, 2020) are a redesign of81

standard PCTs and use linear combinations of features to achieve oblique splits of the data – the split82

hyperplanes are arbitrary. The potential advantage of oblique splits compared to axis-parallel splits is83

2/14

122 Chapter 8. Semi-Supervised Oblique Predictive Clustering Trees



Algorithm 1 Learning a SSL-SPYCT: The inputs are features Xl ∈ RL×D and Xu ∈ RU×D of labeled
and unlabeled examples, targets Y ∈ RL×T of the labeled examples, and a vector c ∈ RD+T of clustering
weights.

1: procedure GROW TREE(Xl , Xu, Y , c)
2: w,b = get split hyperplane(Xl , Xu, Y , c)
3: score = Xw+b
4: rows1 = {i | scorei > 0}
5: rows2 = {i | scorei ≤ 0}
6: if acceptable split(rows1, rows2) then
7: left subtree = grow tree(Xl[rows1], Xu[rows1], Y [rows1], c)
8: right subtree = grow tree(Xl[rows2], Xu[rows2], Y [rows2], c)
9: return Node(w, b, left subtree, right subtree)

10: else
11: return Leaf(prototype(Y ))

presented in Figure 1. SPYCTs offer state-of-the-art predictive performance, scale better with the number84

of clustering attributes, and can exploit sparse data to speed up computation.85

In this paper, we propose SPYCTs for semi-supervised learning. We follow the same semi-supervised86

approach that regular PCTs do, which includes features in the heuristic function for evaluating the quality87

of a split. This makes the improved scaling of SPYCTs over PCTs especially beneficial, which is the88

main motivation for our proposal. We modify the oblique split learning objective functions of SPYCTs to89

account for missing target values. We evaluate the proposed approach on multiple benchmark datasets for90

different predictive modeling tasks.91

In the remainder of the paper, we first describe the proposed semi-supervised methods and present the92

experimental setting for their evaluation. Next, we present and discuss the results of our experiments and,93

finally, conclude the paper by providing several take-home messages.94

METHOD DESCRIPTION95

In this section, we present our proposal for semi-supervised learning of SPYCTs (SSL-SPYCTs). We96

start by introducing the notation used in the manuscript. Let X l ∈ RL×D and Xu ∈ RU×D be the matrices97

containing the D features of the L labeled and U unlabeled examples, respectively. Let Y ∈ RL×T be the98

matrix containing the T targets associated with the L labeled examples. And let X = [(X l)T (Xu)T ]T ∈99

R(L+U)×D be the matrix combining the features of both labeled and unlabeled examples. Finally, let100

p ∈ RD+T be the vector of clustering weights, used to put different priorities to different clustering101

attributes (features and targets) when learning a split.102

There are two variants of SPYCTs that learn the split hyperplanes in different ways.103

1. The SVM variant first groups the examples into two clusters based on the clustering attributes using104

k-means clustering, then learns a linear SVM on the features with cluster indicators as targets to105

approximate this split.106

2. The gradient variant uses a fuzzy membership indicator to define a differentiable objective function107

which measures the impurity on both sides of the split hyperplane. The hyperplane is then optimized108

with gradient descent to minimize the impurity.109

The basis of the semi-supervised approach is to use both features and targets as clustering attributes,110

so that unlabeled examples influence the learning process through the heuristic score calculation, despite111

the missing target values. For the SVM variant, this means that examples are clustered based on both112

target and feature values. For the gradient variant, the split is optimized to minimize the impurity of both113

features and targets on each side of the hyperplane. The overview of the SSL-SPYCT learning algorithm114

is presented in Algorithm 1. The weights w ∈ RD and bias b ∈ R define the split hyperplane, and they are115

obtained differently for each SPYCT variant as follows.116

SVM variant The first step is to cluster examples into two groups using k-means clustering. The initial
centroids are selected randomly from the labeled examples. Since the clustering is performed based
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on both features and targets, the cluster centroids consist of feature and target parts, i.e.,

c0 =
[
X l

i,: Yi,:
]
∈ RD+T , c1 =

[
X l

j,: Yj,:
]
∈ RD+T .

Next, we calculate the Euclidean distance to the two centroids for each of the examples. For
unlabeled examples, we only calculate the distance to the feature part of the centroids (cx

0 and cx
1):

d(i, j) =
D

∑
k=1

pk(X j,k− ci
k)

2 +α
T

∑
k=1

pD+k(Yj,k− ci
D+k)

2,

where i ∈ {0,1} is the cluster indicator, 1 ≤ j ≤ L+U is the example index, and α = 1 if the117

example is labeled (i.e., j ≤ L) and α = 0 if it is unlabeled. The examples are split into two clusters118

according to the closer centroid. In the case of ties in the distance, the examples are assigned119

(uniformly) randomly to a cluster.120

Let s ∈ {0,1}L+U be the vector indicating the cluster membership. The new centroids are then the
means of the examples assigned to each cluster. The means of the target parts of the centroids are
calculated only using the labeled examples, i.e.,

ci
j =

∑L+U
k=1 1[sk = i]Xk, j

∑L+U
k=1 1[sk = i]

, if 1≤ j ≤ D,

ci
j =

∑L
k=1 1[sk = i]Yk, j−D

∑L
k=1 1[sk = i]

, if D < j ≤ D+T.

This procedure is repeated for a specified number of iterations. After the final clusters are de-
termined, a linear SVM is used to approximate this split based on the features. Specifically, the
following optimization problem is solved:

min
w,b
||w||1 +C

L+U

∑
k=1

max(0,1− sk(Xk,: ·w+b))2,

where parameter C ∈ R determines the strength of regularization.121

Gradient variant We start with randomly initialized weights (w) and bias (b) and calculate the fuzzy
membership vector s = σ(Xw+b) ∈ [0,1]L+U . The value si tells us how much the corresponding
example belongs to the ”positive” group, whereas the value 1− si tells us how much it belongs to
the ”negative” group. To calculate the impurity of a group, we calculate the weighted variance for
every feature and every target. For the targets, only labeled examples are used in the calculation.
Weighted variance of a vector v ∈ Rn with weights a ∈ Rn is defined as

var(v,a) =
∑n

i ai(vi−mean(v,a))2

A
= mean(v2,a)−mean(v,a)2,

where A = ∑n
i ai is the sum of weights and mean(v,a) = 1

A ∑n
i aivi is the weighted mean of v. The

impurity of the positive group is then calculated as

imp(s, p) =
D

∑
k=1

pkvar(X:,k,s)+
T

∑
k=1

pD+kvar(Y:,k,s).

To get the impurity of the negative group imp(1− s, p), we simply swap the fuzzy membership
weights with 1− s. The split fitness function we wish to optimize is then

f (w,b) = S ·imp(s, p)+(L+U−S) ·imp(1− s, p),

where s = σ(Xw+b) and S = ∑i si. The terms S and L+U−S represent the sizes of the positive
and negative subsets and are added to guide the split search towards balanced splits. The final
optimization problem for learning the split hyperplane is

min
w,b
||w|| 1

2
+C f (w,b),

where C again controls the strength of regularization. The objective function is differentiable,122

and we can efficiently solve the problem using the Adam(Kingma and Ba, 2014) gradient descent123

optimization method.124
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The clustering weights are uniform for the targets for tasks of binary classification, multi-class125

classification, multi-label classification, regression, and multi-target regression. For hierarchical multi-126

label classification, the weights for target labels positioned lower in the hierarchy are smaller. This gives127

more importance to labels higher in the hierarchy when splitting the examples.128

We also implement a parameter ω that determines the degree of supervision. The clustering weights,129

corresponding to features (pi for 1≤ i≤ D), are scaled so that their sum is 1−w, and clustering weights,130

corresponding to targets (pi for D < i ≤ D+T ), are scaled so that their sum is ω . This enables us to131

determine the relative importance of features and targets when splitting the data. With the borderline132

values selected for ω (0 or 1), we get the extreme behavior in terms of the amount of supervision.133

Setting the value of ω to 0 means that the target impurity is ignored and tree construction is effectively134

unsupervised, i.e., without supervision. Alternatively, setting the value of ω to 1 means that feature135

impurity is ignored when learning splits, hence, the unlabeled examples do not affect the split selection.136

The tree construction in this case is fully supervised.137

The splitting of the examples (i.e., the tree construction) stops when at least one of the following138

stopping criteria is reached. We can specify the minimum number of examples required in leaf nodes (at139

least one labeled example is always required otherwise predictions cannot be made). We can also require140

a split to reduce the impurity by a specified amount or specify the maximum depth of the tree.141

After the splitting stops, a leaf node is created. The prototype of the targets of the remaining examples142

is calculated and it is stored for use as the prediction for the examples reaching that leaf. Since the targets143

in SOP are represented as tuples/vectors, the prototypes are calculated as column-wise mean values of144

the targets (Y ). They can be used directly as predictions (in regression problems) or used to calculate the145

majority class (in binary and multi-class classification), or used to predict all labels with the mean above a146

certain threshold (in hierarchical and flat multi-label classification).147

The time complexity of learning a split in standard PCTs is O(DN logN +NDK) (Kocev et al., 2013),148

where K is the number of clustering attributes. For the SVM and gradient variant of SPYCTs, the time149

complexities are O(N(IcK + IoD)) and O(NIo(D+K)), respectively (Stepišnik and Kocev, 2020), where150

Io is the number of w,b optimization iterations and Ic is the number of clustering iterations (SVM variant).151

When learning SSL variants (SSL-PCTs and SSL-SPYCTs), clustering attributes consist of both features152

and targets, therefore K = D+T . This means that SSL-PCTs scale quadratically with the number of153

features, whereas both variants of SSL-SPYCTs scale linearly. SSL-SPYCTs are therefore much more154

computationally efficient, and can additionally take advantage of sparse data by performing calculations155

with sparse matrices. Our implementation of the proposed method is freely licensed and available for use156

and download at https://gitlab.com/TStepi/spyct.157

EXPERIMENTAL DESIGN158

We evaluated our approach on multiple benchmark dataset for different predictive modeling tasks: binary159

classification (BC), multiclass classification (MCC), multi-label classification (MLC), and hierarchical160

multi-label classification (HMLC), single-target regression (STR) and multi-target regression (MTR).161

The datasets are freely available and were obtained from the following repositories: openml1, mulan2,162

dtai-cs3 and kt-ijs4. The selected datasets have diverse properties in terms of application domains,163

number of examples, number of features, and number of targets. Their properties and sources are presented164

in Table 1.165

We focus on the comparison of our proposed SSL-SPYCT method with the original supervised method166

SPYCT and the semi-supervised learning of axis-parallel PCTs: the SSL-PCT Levatić (2017). These167

two baselines are the most related supervised and semi-supervised methods of the proposed approach,168

respectively. For completeness, we also include supervised PCTs in the comparison. Note that SPYCTs169

and PCTs are the only available methods able to address all of the structured output prediction tasks in a170

uniform manner. We evaluate the methods in single tree setting and in bagging ensembles Breiman (1996)171

of 50 trees.172

We follow the evaluation setup used for the evaluation of SSL-PCTs Levatić et al. (2020). For173

semi-supervised methods, we select the ω parameter with 3-fold internal cross-validation on the training174

1https://www.openml.org
2http://mulan.sourceforge.net/datasets.html
3https://dtai.cs.kuleuven.be/clus/hmc-ens/
4http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification
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Table 1. Details of the benchmark datasets used for the evaluation. The task column shows the
predictive modeling task applicable to the datasets (BC is binary classification, MCC is multi-class
classification, MLC is multi-label classification, HMLC is hierarchical multi-label classification, STR is
single-target regression, MTR is multi-target regression), N is the number of examples, D is the number
of features, and T is the number of targets (for MCC, it is the number of classes).

dataset source task N D T
bioresponse openml BC 3751 1776 1
mushroom openml BC 8124 22 1
phoneme openml BC 5404 5 1
spambase openml BC 4601 57 1
speeddating openml BC 8378 120 1
cardiotocography openml MCC 2126 35 10
gesture openml MCC 9873 32 5
isolet openml MCC 7797 617 26
mfeat-pixel openml MCC 2000 240 10
plants-texture openml MCC 1599 64 100
bibtex mulan MLC 7395 1836 159
birds mulan MLC 645 260 19
bookmarks mulan MLC 87856 2150 208
delicious mulan MLC 16105 500 983
scene mulan MLC 2407 294 6
ara interpro GO dtai-cs HMLC 11763 2815 630
diatoms kt-ijs HMLC 3119 371 398
enron kt-ijs HMLC 1648 1001 56
imclef07d kt-ijs HMLC 11006 80 46
yeast seq FUN dtai-cs HMLC 3932 478 594
cpmp-2015 openml STR 2108 23 1
pol openml STR 15000 48 1
qsar-197 openml STR 1243 1024 1
qsar-122261 openml STR 1842 1024 1
satellite image openml STR 6435 36 1
atp1d mulan MTR 337 411 6
enb mulan MTR 768 8 2
oes97 mulan MTR 334 263 16
rf2 mulan MTR 9125 576 8
scm1d mulan MTR 9803 280 16

set. We select the best value from the set {0,0.25,0.5,0.75,1}. We investigate the influence of the number175

of labeled examples L on the performance of the semi-supervised methods. We set L to the following176

numbers of available labeled examples: {25,50,100,250,500}. For each L, we randomly sample L177

examples from the dataset as labeled examples. The remaining examples are used both as unlabeled178

examples (by discarding their labels) and as a testing set. This follows the transductive learning setting179

Malerba et al. (2009), where the learning algorithms see the features of the testing examples, but not180

their targets. The supervised algorithms do not use unlabeled examples, so they are only learned on the L181

labeled examples, and evaluate on the same test set. We repeat this procedure 10 times for each selection182

of L. On the two MTR datasets that have fewer than 500 examples (atp1d and oes97) experiments with183

L = 500 are not performed.184

To measure the predictive performance of the methods on STR and MTR datasets, we use the
coefficient of determination

R2(y, ŷ) = 1− ∑i(yi− ŷi)
2

∑i(yi− ȳ)2 ,

where y is the vector of true target values, ȳ is their mean, and ŷ is the vector of predicted values. For185

MTR problems, we calculate the mean of R2 scores per target. For BIN and MCC tasks, we use F1 score,186
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Figure 2. Comparison of supervised and semi-supervised variants of SPYCT-SVM and SPYCT-GRAD
methods (columns) in both single tree and ensemble settings (rows) on the rf2 dataset with different
numbers of labeled examples (L).

macro averaged in the MCC case.187

Methods solving MLC and HMLC tasks typically return a score for each label and each example,
higher score meaning that example is more likely to have that label. Let y ∈ {0,1}n×l be the matrix
of label indicators and ŷ ∈ Rn×l the matrix of label scores returned by a method. We measured the
performance of methods with weighted label ranking average precision

LRAP(y, ŷ) =
1
n

n−1

∑
i=0

∑
j:yi j=1

w j

Wi

Li j

Ri j
,

where Li j = |{k : yik = 1∧ ŷik ≥ ŷi j}| is the number of real labels assigned to example i that the method188

ranked higher than label j, Ri j = |{k : ŷik ≥ ŷi j}| is the number of all labels ranked higher than label j,189

w j is the weight we put to label j and Wi is the sum of weights of all labels assigned to example i. For190

the MLC datasets, we put equal weights to all labels, whereas, for the HMLC datasets, we weighted191

each label with 0.75d , with d being the depth of the label in the hierarchy Kocev et al. (2013). The same192

weights are also used as the clustering weights for the targets for all methods.193

RESULTS AND DISCUSSION194

Predictive performance comparison195

We first present the results obtained on the rf2 dataset in Figure 2. Here, the semi-supervised approach196

outperforms supervised learning for both SPYCT variants, in both single-tree and ensemble settings, and197

all considered numbers of labeled examples. The only exception is for a single SPYCT-SVM tree with 25198

labeled examples, where the semi-supervised variant selected ω = 1 and the performance is therefore199

equivalent to the supervised variant. These results demonstrate the potential of the proposed SSL methods.200
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L = 25 L = 25

L = 50 L = 50

L = 100 L = 100

L = 250 L = 250

L = 500 L = 500

Figure 3. Average ranking diagrams comparing the predictive performance of the proposed
SPYCT-SVM-SSL and SPYCT-GRAD-SSL methods and the baselines with different numbers of labeled
examples.

For a high-level comparison of the predictive performance of the proposed SSL methods and the201

baselines, we use average ranking diagrams Demsar (2006). The results are presented in Figure 3. The202
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Table 2. Comparison of the proposed SSL-SPYCT methods to their supervised counterparts and
SSL-PCTs in single tree setting in terms of number of wins. Bolded values indicate that the sign test
Demsar (2006) showed significant difference in performance at α = 0.05.

#wins L = 25 L = 50 L = 100 L = 250 L = 500
1-SPYCT-GRAD-SSL
vs. 1-SPYCT-GRAD

23 25 24 20 22

1-SPYCT-SVM-SSL
vs. 1-SPYCT-SVM

18 19 20 19 20

1-SPYCT-GRAD-SSL
vs. 1-PCT-SSL

19 21 18 21 21

1-SPYCT-SVM-SSL
vs. 1-PCT-SSL

18 17 15 18 20

Table 3. Comparison of the proposed SSL-SPYCT methods to their supervised counterparts and
SSL-PCTs in ensemble setting in terms of number of wins. Bolded values indicate that the sign test
Demsar (2006) showed significant difference in performance at α = 0.05.

#wins L = 25 L = 50 L = 100 L = 250 L = 500
50-SSL-SPYCT-GRAD
vs. 50-SPYCT-GRAD

20 17 17 17 14

50-SSL-SPYCT-SVM
vs. 50-SPYCT-SVM

15 21 17 15 16

50-SSL-SPYCT-GRAD
vs. 50-SSL-PCT

24 24 20 21 20

50-SSL-SPYCT-SVM
vs. 50-SSL-PCT

19 21 18 17 17

first observation is that SSL-SPYCT-GRAD achieves the best rank for all numbers of labeled examples203

in both single tree and ensemble settings. Additionally, SSL-SPYCT-SVM also ranks better than both204

its supervised variant and SSL-PCT for all values of L and both single tree and ensemble settings. For205

standard PCTs, the semi-supervised version performed better than the supervised version in a single tree206

setting with very few labeled examples (L = 25,50,100), otherwise, their performances were very similar.207

This is consistent with the previous studies Levatić et al. (2017, 2018); Levatić et al. (2020).208

Next, we dig deeper into the comparison of SSL-SPYCT variants to the supervised SPYCTs and209

SSL-PCTs. We performed pairwise comparisons among the competing pairs with sign tests Demsar210

(2006) on the number of wins. Table 2 and Table 3 present the results for single tree and ensemble settings,211

respectively. The results show that in a single tree setting, SSL-SPYCT-GRAD outperforms its supervised212

version for all different numbers of labeled examples. The difference is statistically significant, the only213

exception is for L = 250 where it falls slightly short. On the other hand, while SSL-SPYCT-SVM also214

outperforms its supervised version more often than not, the difference was only statistically significant for215

L = 500. Both SSL-SPYCT-GRAD and SSL-SPYCT-SVM compare favorably to SSL-PCTs, winning on216

more than half datasets for any value of L. Statistically significant difference is more often achieved by217

SSL-SPYCT-GRAD variant. Another important observation is that supervised variants never significantly218

outperform the SSL variants. This confirms that dynamically selecting the ω parameter prevents scenarios219

where unlabeled examples are detrimental to the predictive performance and supervised learning works220

better. We can also see that SSL variants outperform supervised counterparts more often in single tree221

settings compared to ensembles. This is again consistent with the studies of SSL-PCTs Levatić et al.222

(2017, 2018); Levatić et al. (2020).223

Learning time comparison224

To compare the learning times of the proposed SSL methods and SSL-PCTs, we selected one large225

dataset for each predictive task. We focused on the large datasets where the differences highlight the226

scalability of the methods with respect to the numbers of features and targets. We compare learning times227

of tree ensembles, as they also serve as a (more reliable) comparison for learning times of single trees.228

Figure 4 shows the learning times on the selected datasets. The results confirm our theoretical analysis229
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Figure 4. Comparison of learning times of the SSL algorithms on a selection of large benchmark
datasets.

and show that the proposed SSL-SPYCTs are learned significantly faster than SSL-PCTs. The differences230

are especially large on datasets with many features and/or targets (e.g., ara interpro GO). The learning231

times are most similar on the gesture dataset, which has only 32 features, so the theoretical advantage of232

SSL-SPYCTs is less accentuated. Notwithstanding, the proposed methods are faster also on this dataset.233

Investigating the ω parameter234

The ω parameter controls the amount of influence of the unlabeled examples on the learning process.235

Figure 5 shows the distributions of the ω values selected with the internal 3-fold cross-validation. We236

can see that the selected values varied greatly, sometimes different values were chosen even for different237

folds of the same dataset. This confirms the need to determine ω with internal cross-validation for each238

dataset separately. Additionally, we notice that larger of ω values tend to be selected with more labeled239

examples and by ensembles compared to single trees. With larger numbers of labeled examples, it makes240

sense that the model can rely more heavily on the labeled part of the data and unlabeled examples are241

not as beneficial. For ensembles, this indicates that they can extract more useful information from few242

labeled examples compared to single trees. Whereas this seems clear for larger datasets, bootstrapping243

on few examples is not obviously beneficial. The fact that ensembles tend to select larger ω values also244

explains why the differences in predictive performance between supervised and semi-supervised variants245

are smaller in ensembles compared to single trees. We also investigated whether the selected ω values246

were influenced by the predictive modeling task (regression vs. classification, single target vs. multiple247

targets), but we found no noticeable differences between the ω distributions.248

Investigating feature importances249

We can extract feature importance scores from learned SPYCT trees Stepišnik and Kocev (2020). The250

importances are calculated based on absolute values of weights assigned to individual features in all251

the split nodes in a tree (or ensemble of trees). These scores tell us how much the model relies on252

individual features and can also be used to identify important features for a given task. We investigated if253

SSL-SPYCTs are more successful at identifying important features compared to supervised SPYCTs in254

problems with limited labeled data. To do this, we followed the setup from Stepišnik and Kocev (2020)255

and added random features (noise) to the datasets. For each original feature, we added a random one so256

that the total number of features was doubled. Then we learned SPYCTs and SSL-SPYCTs and compared257
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Figure 5. Distributions of the selected ω parameters for different number of labeled examples.

the extracted feature importances.258

Figure 6 presents the results on the qsar-197 dataset. For convenience, we also show the predictive259

performances of SPYCT and SSL-SPYCT methods. A good feature importance scoring would put the260

scores of random features (orange) to zero, whereas some real features (blue) would have noticeably261

higher scores. Low scores of many real features are not concerning, as datasets often include features262

that are not very useful for predicting the target. This example shows that SSL-SPYCTs can be better263

at identifying useful features than supervised SPYCTs. The difference here is greater with the gradient264

variant, especially with 50-250 labeled examples. This is also reflected in the predictive performance of265

the methods.266

In general, the quality of feature importance scores obtained from a model was correlated with the267

model’s predictive performance. This is expected and means that the conclusions here are similar. In268

terms of feature importance scores, SSL-SPYCTs are often similar to supervised SPYCTs, but there are269

several examples (e.g., Figure 6) where they are significantly better and worth the extra effort.270

CONCLUSION271

In this paper, we propose semi-supervised learning of oblique predictive clustering trees. We follow272

the approach of standard semi-supervised predictive clustering trees and adapt both SVM and gradient273

variants of SPYCTs and make them capable of learning from unlabeled examples. The main motivation274

for the proposed methods was the improved computational scaling of SPYCTs compared to PCTs which275

is highlighted in the proposed SSL approach, where features are also taken into account when evaluating276

the splits.277

We experimentally evaluated the proposed methods on 30 benchmark datasets for various predictive278

modeling tasks in both single tree and ensemble settings. The experiments confirmed the substantial279

theoretical computational advantage the proposed SSL-SPYCT methods have over standard SSL-PCTs.280

The results also showed that the proposed methods often achieve better predictive performance than281
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Figure 6. Comparison of feature importance scores of real and random features (scaled to [0,1] interval)
for the qsar-197 dataset with different numbers of labeled examples. The first column shows the
SPYCT-SVM method, the second column the SPYCT-GRAD method. The first row shows importance
scores obtained with the supervised method, the second row shows the importance scores obtained with
the unsupervised method, and the third row presents the predictive performance of both supervised and
semi-supervised methods.

both supervised SPYCTs and SSL-PCTs. The performance edge was often preserved even in ensemble282

settings, where SSL-PCTs typically did not outperform supervised PCTs. Finally, we demonstrated that283

SSL-SPYCTs can be significantly better at obtaining meaningful feature importance scores.284

The main drawback of SSL-SPYCTs (which is shared with SSL-PCTs) is the requirement to determine285

the ω parameter dynamically with internal cross-validation. This increases the learning time compared286

to supervised learning but prevents occasions where introducing unlabeled examples into the learning287
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process hurts the predictive performance. We investigated the selected values for ω and found that higher288

values tend to be selected when there is more labeled data available, and by ensembles compared to single289

trees. But the selected values were still very varied, which confirms the need for dynamic selection of ω .290

For future work, we plan to investigate SPYCTs in boosting ensembles for both supervised and semi-291

supervised learning. Variants of gradient boosting Friedman (2001) have proven especially successful in292

many applications recently. We will also try improving the interpretability of the learned models with293

Shapley additive explanations (SHAP Lundberg et al. (2020)). Because our method is tree-based we might294

be able to calculate the Shapley values efficiently, similarly to how they are calculated for axis-parallel295

tree methods.296
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Chapter 9

Conclusions and Further Work

In this thesis, we presented two approaches to learning predictive clustering trees with
complex nodes. PCTs are well-established machine learning models that can be used for
a variety of tasks and achieve great predictive performance in ensembles. However, like
standard decision trees, they are induced with a greedy top-down induction algorithm,
which makes myopic decisions that can lead to sub-optimal trees. Additionally, while
this algorithm is efficient for primitive data, it scales poorly with the number of clus-
tering attributes. This becomes a noticeable problem with multiple outputs encountered
in structured output prediction problems and, especially, in the semi-supervised setting
where clustering attributes include both targets and features. We proposed option nodes
and oblique split nodes to tackle these weaknesses while retaining the flexibility of original
PCTs in terms of machine learning tasks they can address, i.e., primitive and structured
outputs in supervised and semi-supervised settings.

In the remainder of this chapter, we first summarize the scientific contributions of the
thesis. We then provide directions for further work, including approaches to address the
limitations of the proposed methods.

9.1 Summary of the Contributions

A method for learning option predictive clustering trees that are capable of
addressing structured output prediction (SOP) tasks

Option decision trees were proposed to reduce the myopia of the tree-learning algorithm
by taking into account multiple alternative splits when the best split is not clearly distin-
guishable (i.e., when multiple splits achieve heuristic scores close to the maximum). We
extended PCTs with option nodes to create option predictive clustering trees (OPCTs).
Compared to standard decision trees, PCTs modify the split evaluation and the proto-
types in the leaves. However, the split evaluation is still performed with a heuristic scoring
function that returns a real value, and the prototypes are not involved in option nodes.
Therefore, we were able to naturally extend PCTs with option nodes using the same mech-
anisms that were proposed for option decision trees while keeping the flexibility of standard
PCTs intact.

An empirical evaluation of option PCTs on benchmark datasets for SOP and
their comparison to standard PCTs and ensembles thereof

We evaluated the proposed OPCTs for multi-target regression, multi-label classification,
and hierarchical multi-label classification tasks. We investigated how the number of option
nodes introduced in a tree affects the trade-off between the predictive performance and
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the interpretability (size) of the learned models. We found that introducing many option
nodes into OPCTs makes them similar to bagging ensembles of PCTs. They achieve great
predictive performance, but models are large and take a relatively long time to learn. On
the other hand, by strictly limiting the number of option nodes, OPCTs remain more sim-
ilar to single PCTs. Like ensembles with very few trees, predictive performance typically
improves quickly even with just a few option nodes. However, OPCTs offer better inter-
pretability compared to ensembles of similar sizes because the different options still share
common ancestor splits, whereas the trees in an ensemble are completely independent.

SVM-based and gradient-descent-based methods for efficient learning of oblique
PCTs capable of addressing SOP tasks and handling high dimensional and
sparse data.

To improve the computational scaling of PCTs, we proposed oblique predictive clustering
trees (SPYCTs). They replace axis-parallel split nodes with oblique split nodes where tests
use linear combinations of features. Because it is computationally infeasible to iterate over
all possible oblique splits and select the one with the highest heuristic score, we needed
to thoroughly redesign the split selection part of the learning algorithm. We proposed
two methods for optimizing split hyperplanes. The SVM variant first finds an ideal split
based on the clustering attributes and then optimizes a hyperplane in the input space
that approximates it. The gradient variant uses fuzzy membership indicators to define a
differentiable approximation of the heuristic score used by standard PCTs. The hyperplane
is then optimized to minimize it using gradient-based methods.

While the learning time of standard PCTs scales with the product of the numbers
of features and clustering attributes, the learning times for both proposed variants for
learning SPYCTs scale with their sum. Additionally, both variants can exploit sparsity
in the data to further reduce the computational costs by skipping the operations where
0-valued features/targets are involved.

An empirical evaluation of oblique PCTs and ensembles thereof on benchmark
datasets for standard classification and regression tasks as well as for SOP tasks

We evaluated the proposed methods for learning SPYCTs on benchmark datasets for MTR,
MLC, and HMLC tasks. Because the approach is also novel for primitive outputs, we
evaluated the methods on binary classification, multi-class classification, and single-target
regression problems as well. The experiments confirmed the significant theoretical compu-
tational advantage of SPYCTs over standard PCTs. Furthermore, the predictive perfor-
mance of SPYCTs, especially the gradient variant, was at least on par with other similar
and state-of-the-art methods. Most notably, they compare favorably to other oblique tree
methods and standard PCTs, both in ensembles and single-tree settings. The computa-
tional gains were achieved without sacrificing performance. Finally, we demonstrated the
possibility of extracting meaningful feature importances from the learned SPYCTs and
ensembles thereof.

An empirical comparison of oblique PCTs and standard PCTs on semi-supervised
learning tasks

The scaling problem of PCTs is most noticeable when they are learned in the semi-
supervised setting. For this reason, we also compared semi-supervised SPYCTs and semi-
supervised PCTs. We used the same 6 predictive modeling tasks as for the supervised
setting for the comparison. The experiments again confirmed the computational advan-
tage of SPYCTs. Additionally, SSL-SPYCTs often achieved better predictive performance
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than both SSL-PCTs and supervised SPYCTs. This was the case in single-tree settings
as well as in ensembles, where SSL-PCTs typically do not outperform supervised PCTs.
We also showed that SSL-SPYCTs can be better than supervised SPYCTs at extracting
feature importances in problems with few learning examples.

9.2 Further Work

The presented work addressed the problems presented in the introduction, and the proposed
methods were evaluated in a wide variety of settings. However, there are still some avenues
left to explore and new directions that opened up as a result of our research.

First, while OPCTs address the myopia of the learning algorithm, they still exhibit the
scaling problems of original PCTs. One obvious idea is to combine option nodes and oblique
split nodes. Unfortunately, the proposed methods for learning oblique splits optimize a
single split, and looking for alternative splits to create an option node would come with
a great computational cost. Alternative splits can be obtained by learning multiple splits
with the proposed methods and different initializations, or by replacing gradient-based
optimization with population-based optimization methods (e.g., genetic algorithms). On
the other hand, one can use feature sampling in the manner of random forests to only
evaluate tests for a subset of features at each node and improve the scaling with the
number of features. It would be interesting to see how such a method would perform and
how the number of option nodes would be affected by the subsampling.

On a related note, our first attempt at feature sampling in SPYCTs was not completely
successful because trees sometimes stopped growing prematurely. Multiple options can be
explored to fix this behavior. First, using encodings of nominal features that are less
sparse than the one-hot encoding we used can help reduce the probability of selecting a
bad subset of features. Second, a different strategy for selecting the feature subset might
be more appropriate than a uniformly random approach. A smart sampling strategy could
help us avoid particularly bad feature subsets. Finally, we could give the algorithm multiple
chances to learn a split. If the process was unsuccessful on the first subset of features, we
try again on a different sample.

In terms of the interpretability of OPCTs, we mostly focused on manual inspection
of the learned trees. The feasibility of such an approach depends mostly on the size of a
tree, which is why we investigated the numbers of option nodes introduced with different
parameters. On the other hand, we could also use OPCTs to calculate feature importances,
similarly to how they are calculated from tree ensembles (Petković et al., 2020). While less
informative, the feature importances still provide insight into which features the model re-
lies upon. This approach for extracting feature importances from OPCTs, and the method
for extracting feature importances from SPYCTs that we proposed, can also be used to do
feature ranking. We can then explore how the feature rankings obtained from OPCTs and
SPYCTs compare to feature rankings obtained from PCT ensembles.

While feature rankings and importances tell us which features a model relies upon and
how much, they do not tell us in what way they influence the predictions. For example,
when predicting if a patient has breast cancer, the sex of the patient would have a very high
feature importance score. However, this would not tell us whether the model predicts higher
probabilities of breast cancer for men or for women. For standard trees and ensembles
thereof, the TreeSHAP method (Lundberg et al., 2020) can be used to obtain this level
of insight into the model. We plan on investigating how this approach can be used with
OPCTs and SPYCTs to improve their interpretability as well.
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