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Abstract

The proposed dissertation belongs primarily to the �eld of machine learning on the one
hand, but also to the �eld of soil science on the other hand. In terms of machine learning, it
is concerned with the improvement of existing machine learning algorithms for predicting
structured outputs, more speci�cally for multi-target prediction. In terms of soil science, it
addresses two case studies of applying machine learning methods for multi-target prediction
to two practical problems of modeling two di�erent soil functions from data in the context
of Irish agriculture.

The majority of approaches for multi-target prediction (MTP) do not explicitly take
into account the dependencies among the multiple targets. In order to address this draw-
back, in the proposed dissertation, we propose approaches that �nd dependencies in the
target space by explicitly structuring, in a hierarchical manner, the di�erent targets. Using
di�erent representations of the target's attributes (based on the feature importance scores
of the input attributes for predicting each target), we use hierarchical clustering of the tar-
gets. Having discovered a hierarchy on the target space, we obtain a reformulation of the
original task of multi-target prediction into a task of hierarchical multi-target prediction.
We then employ approaches for hierarchical multi-target prediction on the transformed
task, expecting improved predictive performance.

We address two tasks of MTP, namely multi-label classi�cation (MLC) and multi-
target regression (MTR). In both cases, we use feature importance estimation based on
tree-ensembles, for classi�cation and regression, respectively, based on the GENIE3 ap-
proach. We use di�erent clustering approaches for structuring the target space, includ-
ing balanced k-means, agglomerative clustering, and predictive clustering trees (PCTs):
Of these, balanced k-means gives the best results. On the hierarchical versions of the
problems, we use PCT ensembles for hierarchical MLC (HMLC) and hierarchical MTR
(HMTR), respectively.

We conduct an extensive experimental evaluation on various benchmark datasets for
MTP (MLC and MTR) tasks, showing the advantage of using our proposed method for
structuring the output space. Using ensembles of PCTs for HMLC and HMTR on the
structured output spaces performs clearly better than using PCT ensembles for MLC and
MTR on the original spaces. The di�erences in performance are largest for large output
spaces (with more than 100 targets).

We also address two case studies of applying machine learning methods for multi-target
prediction to two practical problems of modeling two di�erent soil functions from data in
the context of Irish agriculture. The data were provided by TEAGASC, Environment Soils
and Land-use Department, from Ireland. TEAGASC was also the source of expertise about
the tasks.

First, we apply PCTs for MTR, as well as ensembles (random forests) thereof to the
task of estimating the total herbage production and nutrient uptake, i.e., the task of mod-
eling the soil function of primary productivity, on Irish dairy farms. We then apply PCTs
(and ensembles) for semi-supervised MTR to model a combination of another two soil func-
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tions, i.e., water regulation and puri�cation, and provision and cycling of nutrients. More
speci�cally, we learn models for assessing the chemical quality (nitrogen and phosphorus
loss from soils through runo� and leaching) and the biological quality of water in Irish
agricultural lands. In the latter case, we used incompletely (partially) labeled data, which
has missing values for the target variables we want to predict. This is an innovative use
of semi-supervised PCTs for MTR, as only fully labeled (all target values present) or fully
unlabeled (no target values) examples had been used so far, whereas the real-world data
from this study has partially labeled examples (with some but not all target values).

In both case studies, models are learnt in the form of PCTs and PCT ensembles. They
are both accurate (especially ensembles) and understandable (individual PCTs). They
reveal knowledge about the studied domains, which is both consistent with existing knowl-
edge of domain experts and provides new insights, important for practical use in the context
of achieving better soil function outcomes for given �elds/agricultural lands.
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Povzetek

Predlagana disertacija sodi na podro�cje strojnega u�cenja, po eni strani, ter na podro�cje
pedologije, po drugi strani. Z vidika strojnega u�cenja je v disertaciji predstavljena metodologija
za izbolj�sanje obstoje�cih algoritmov strojnega u�cenja za napovedovanje strukturiranih vred-
nosti, oz. za napovedovanje ve�c ciljnih spremenljivk. Z vidika pedologije, disertacija obrav-
nava dve prakti�cni �studiji primerov, in sicer uporabo metod strojnega u�cenja za modeliranje
razli�cnih funkcij tal na osnovi realnih kmetijskih podatkov iz Republike Irske.

Ve�cina pristopov za ve�cciljno napovedovanje ne upo�steva neposredno odvisnosti med
ciljnimi spremenljivkami. Za odpravo te pomanjkljivosti disertacija predlaga pristope, ki
najdejo odvisnosti med ciljnimi spremenljivkami in jih nato organizirajo v hierarhi�cno
strukturo. S pomo�cjo obstoje�cih metod hierarhi�cno razvr�s�camo ciljne spremenljivke na
podlagi ocen pomembnosti zna�cilk za napovedovanje vsake posamezne ciljne spremenljivke.
Na ta na�cin transformiramo problem ve�cciljnega napovedovanja v problem hierarhi�cnega
ve�cciljnega napovedovanja. Nato uporabimo pristope za hierarhi�cno ve�cciljno napove-
dovanje na preoblikovanem problemu in dobimo bolj�se to�cnosti napovedi.

Obravnavamo dve nalogi ve�cciljnega napovedovanja, in sicer ve�cciljno klasi�kacijo in
ve�cciljno regresijo. V obeh primerih uporabljamo ocene pomembnosti zna�cilk dobljene
iz ansamblov dreves za klasi�kacijo in regresijo. Za strukturiranje prostora ciljnih spre-
menljivk uporabljamo razli�cne pristope razvr�s�canja, vklju�cno z uravnote�zena metoda k-
means, hierarhi�cnim aglomerativnim razvr�s�canjem ter drevesi za napovedno razvr�s�canje,
pri �cemer da uravnote�zeno metodo k-means najbolj�se rezultate. Pri hierarhi�cnih ra-
zli�cicah problemov napovednega modeliranja uporabljamo ansamble dreves za napovedno
razvr�s�canje za hierarhi�cno ve�cciljno klasi�kacijo oz. hierarhi�cno ve�cciljno regresijo.

Prednosti uporabe predlagane metode poka�zemo z obse�zno eksperimentalno evalvacijo
na razli�cnih naborih podatkov za probleme ve�cciljnega napovedovanja (ve�cciljne klasi-
�kacije in regresije). Uporaba ansamblov dreves za hierarhi�cno ve�cciljno klasi�kacijo in
hierarhi�cno ve�cciljno regresijo na hierarhi�cnih razli�cicah problemov daje signi�kantno bolj�se
rezultate kot uporaba ansamblov dreves za ve�cciljno klasi�kacijo in ve�cciljno regresijo na
izvirnih problemih. Razlike v uspe�snosti so najve�cje pri velikih izhodnih prostorih (z ve�c
kot 100 ciljnimi spremenljivkami).

Obravnavali smo tudi dve �studiji primerov uporabe metod strojnega u�cenja za ve�cciljno
napovedovanje na dveh prakti�cnih problemih modeliranja razli�cnih funkcij tal na realnih
kmetijskih podatkih. Podatke je zagotovil TEAGASC, Oddelek za okolje in rabo zemlji�s�c
Republike Irske. Strokovnjaki TEAGASC so bili tudi vir domenskega znanja pri inter-
pretaciji dobljenih rezultatov tj. nau�cenih modelov in njihovih napovedi.

Najprej smo uporabili drevesa za napovedno razvr�s�canje za ve�cciljno regresijo kot tudi
njihove ansamble (nau�cene z metodo naklju�cnih gozdov) za nalogo ocenjevanja pridelave
travinje in vnosa hranil. Gre za nalogo modeliranjene funkcije tal, tj. primarne pro-
duktivnosti na irskih mle�cnih kmetijah. Nato smo drevesa za napovedno razvr�s�canje (in
ansamblem teh dreves) uporabili za polnadzorovano ve�cciljno regresijo pri modeliranju
druge funkcije tal, in sicer regulacije in �ci�s�cenja vode. U�cili smo se modelov za ocenje-
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vanje kemijske kakovosti (izgube du�sika in fosforja) in biolo�ske kakovosti voda na irskih
kmetijskih zemlji�s�cih. V slednjem primeru smo uporabili nepopolno (delno) ozna�cene po-
datke, v katerih so manjkale vrednosti za ciljne spremenljivke. Gre za inovativno uporabo
polnadzorovanih dreves za napovedno razvr�s�canje za ve�cciljno regresijo, saj so bili doslej
v objavljenih znanstvenih publikacijah uporabljeni popolnoma ozna�ceni podatki (z vsemi
ciljnimi vrednostmi) in popolnoma neozna�ceni podatki (brez ciljnih vrednosti), ne pa tudi
delno ozna�ceni podatki.

V obeh �studijah primerov smo se u�cili modelov v obliki dreves za napovedno razvr�s�canje
in ansamblov dreves za napovedno razvr�s�canje. Oba pristopa sta natan�cna (zlasti ansambli)
in razumljiva (posamezna drevesa za napovedno razvr�s�canje). Iz podatkov sta odkrila
znanje o preu�cevanih domenah, ki je v skladu z obstoje�cim domenskim znanjem ter hkrati
ponuja nove vpoglede, pomembne za prakti�cno uporabo v smislu doseganja bolj�sih funkcij
tal na danih kmetijskih zemlji�s�cih.
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Chapter 1

Introduction

We live in the age of arti�cial intelligence. The term arti�cial intelligence may sound
threatening, yet it has been used for a considerable length of time and its applications are
more mundane than human fantasy may envision. Arti�cial intelligence (AI) (Russell &
Norvig, 2009) aids each aspect of our lives, regardless of whether we are attempting to
read our emails, get driving directions, start a new business, or even trying to book an
accommodation in a hotel, chatting directly with "chatbots".

Arti�cial intelligence, as a sub-�eld of computer science referring to the intelligent
behavior of machines (i.e., computers), has been gaining momentum in almost every domain
where the large amounts of data and knowledge are available. AI helps to better understand
the data, produce novel knowledge and facilitate the decision-making process. Machine
learning (ML) is a branch of AI that is concerned with designing methods for data analysis
that can automatically induce predictive models from data, rather than following some pre-
programmed rules (Mitchell, 1997). Data mining is a process that uses di�erent approaches
(including machine learning) to extract potential knowledge and/or interesting patterns
from data (Witten & Frank, 2005).

The proposed dissertation addresses the topic of machine learning, currently one of
the most prominent topics in the �eld of information and communication technologies.
The data used for predictive modeling, the most common task of machine learning, are
composed of inputs (attributes) and outputs (targets). The input space consists of vectors
of values of the descriptive attributes, while the output space can be represented di�er-
ently. The values taken by the output space may be simple primitive data types (discrete,
Boolean, continuous values, etc.) or complex data structures, such as tuples of values,
sequences (including time series) and hierarchies (Panov et al., 2016). The speci�c task
concerned with learning structured outputs is called structured output prediction (Bak�r
et al., 2007; D�zeroski, 2006; Panov et al., 2014).

The main goal in structured output prediction is to learn a model predicting the target
value(s) of previously unseen examples. The model is learned from a set of examples with
known values of the target variable(s). If the target space consists of a single target, the
learning task at hand is a single-target prediction task. If the target space consists of more
than one target, the task at hand is called multi-target prediction (MTP).

A multi-target prediction task can be addressed by learning local or global models. In
the �rst case, a separate model for each target attribute is learned. In the second case, a
single, global model is learned, predicting all the target variables simultaneously.

If the values of the target attributes are numerical, the learning task is called a multi-
target regression task. If the target attributes are discrete/nominal, the learning task is
called multi-target classi�cation task. Speci�cally, if each example can be associated with
multiple labels, i.e. target attributes with binary values (0 or 1), the learning task is called
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multi-label classi�cation task (Tsoumakas & Katakis, 2007).

There are many real-life examples, where there is a practical need for MTP models.
Prominent examples can be found in ecology, for instance, predicting the abundance of
di�erent species occupying the same habitat (Dem�sar et al., 2006), estimating di�erent
vegetation quality indices for the same site (Kocev et al., 2009), predicting the weed cover
pro�le from crop-related input variables (Debeljak et al., 2011), predicting the composi-
tion of a community of organisms (Levati�c, Kocev, Debeljak, et al., 2015), predicting soil
bulk density based on visual parameters (Bondi et al., 2018) and mapping vegetation-
impervious-soil fractions across multiple cities by using multi-target regression models
(Okujeni et al., 2018).

1.1 Motivation

Both local and global models have been extensively studied in the �eld of MTP. It has been
shown that transformations of the output space can yield improved predictive performance
as compared to standard local and global models using the original targets. An example
of this are the ensembles of local and global models, which consist of base models learned
on parts of the output space (Breskvar et al., 2018).

Next, several studies have investigated the in�uence of introducing a structure in the
output space on predictive performance (Levati�c, Kocev, & D�zeroski, 2015; Madjarov et
al., 2019). Furthermore, Madjarov et al. (2016) propose a methodology for data-driven
structuring of the label space in multi-label classi�cation, by constructing a hierarchical
representation on top of the labels. Then, the hierarchy of labels is used in hierarchical
multi-label classi�cation, a hierarchical variant of the MLC task.

Further, Szymanski et al. (2016) show that data-driven hierarchies obtained by struc-
turing the label space in MLC, are superior to random generated graphs. Both Madjarov
et al. (2016) and Szymanski et al. (2016) exploit hierarchies obtained by clustering the
labels space. In this dissertation, we propose a novel approach, for constructing a label
hierarchy in MLC by considering feature importance scores for each label (Nikoloski et al.,
2018).

Unlike the case of MLC, in the case of MTR, there is no research investigating and
exploring the dependencies among the target variables. In this dissertation, like for the
case of MLC, we identify relations among targets and structure the output space in MTR.
We do this by clustering the values of the target attributes, or the values of the feature
importance scores for the target attributes (Nikoloski, Kocev, & D�zeroski, 2019). We
investigate whether data-driven structuring of the target space is superior to considering
the original MTR task. We transform the original MTR task to a task of hierarchical
multi-target regression (HMTR) (Mileski et al., 2017) from the learned target hierarchy.
The proposed approach is also of interest for eliciting domain knowledge, since the domain
experts are typically interested in the relations among targets, i.e., response variables. We
thus provide a methodological pipeline to upgrade the existing and potentially discover
new knowledge about the relations among the targets.

We also investigate whether the concept of structuring large target spaces is applicable
to environmental data. We apply our approach of structuring the output space to two
datasets with large output spaces, one with 111 target attributes indicating the relative
abundance of diatom species in a label and another one with 492 target attributes indi-
cating the abundance of water bioindicator species in Slovenian rivers (Nikoloski, Kocev,
& D�zeroski, 2019).

The main focus of the dissertation is on the machine learning task of structured output
prediction, i.e., predictive modeling with multiple response variables, known as multi-target
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prediction. The structured output can be either `complete', i.e., all the values of all target
attributes are known (supervised learning) or `incomplete', i.e., some of the values of some
of the target attributes in some examples are not known (semi-supervised learning). This
happens in practice in domains with a very complex process of monitoring or very expensive
acquisition of the values of the target attributes. In the dissertation, we investigate learning
scenarios where the data can have complete or incomplete structured output values.

In many domains, such as computer vision (Navaratnam et al., 2007; Rosenberg et
al., 2005), computer linguistics (Yarowsky, 1995), etc., it is not always possible to obtain
complete data, but there are vast numbers of 'incomplete' examples. In that case, a novel
methodology for exploiting those 'incomplete' data is needed. Semi-supervised learning
(SSL) is able to solve this problem to some extent. Namely, recent methods for semi-
supervised learning, e.g. for multi-target regression, consider only unlabeled data (i.e.,
examples with completely unknown values for all target attributes) in addition to labeled
data (i.e., examples with completely known values for all target attributes) (Levati�c et al.,
2018). However, in practice, the collected samples (neither all nor none) may have known
values for some of the target attributes. In that case, the partially-labeled examples are
discarded from the learning set. In this dissertation, we propose the use of a re-designed
semi-supervised method that can handle partially-labeled examples applied on soil-related
data.

In collaborative interdisciplinary research, there is often a gap in communicating the
expertise between computer scientists and domain experts, hence it is normal to ask the
question whether and how communication could be improved. In order to answer it,
a stronger connection and collaboration between the domains needs to be fostered by
performing research in an iterative way. For example, problems from environmental and soil
sciences could inspire the development of new methods for data analysis, while data analysis
could yield some new knowledge about the environmental system under observation.

A major attempt to address this problem has been made within the LANDMARK
H2020 EU project (www.landmark2020.eu), where experts from the domains of soil and
computer science collaborated in order to quantify the current and potential supply of
the �ve main soil functions on agricultural land across the EU. Those functions are: (i)
primary productivity; (ii) water regulation and puri�cation; (iii) carbon sequestration and
climate regulation; (iv) habitat for functional and intrinsic biodiversity and (v) nutrient
cycling and provision (Schulte et al., 2014). The collaboration within the LANDMARK
H2020 EU projects resulted in a decision support tool called the Soil Navigator (Debeljak
et al., 2019). The Soil Navigator is an evidence-based DSS, which aims to assess and
improve the supply of several soil functions simultaneously, using multi-criteria decision
modeling with the Decision Expert (DEX) integrative methodology (Bohanec, 2014, 2017;
Bohanec & Rajkovi�c, 1990). Instead of using expert knowledge only, our dissertation
takes a complementary approach providing additional insights by using advanced machine
learning methods for �nding patterns and new knowledge from data.

The work performed in the dissertation lies at the intersection of arti�cial intelligence
and ecological modeling. In order to attempt to bridge the gap between computer scientists
on one and environmental and soil scientists on the other side, we have applied machine
learning methodologies to real-world data. We apply existing approaches for multi-target
regression in the domain of soil function modeling, handling the interdependencies among
di�erent aspects of soil functions or interdependencies among the main drivers of speci�c
soil functions, by using predictive clustering trees (PCTs) or ensembles (random forests)
of PCTs for multi-target regression. First, we study the problem of predicting multiple
indicators of the primary productivity of soil. In particular, we address the prediction of
herbage potential and nutrient uptake in Irish diary grassland farms. Our purpose is to
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propose potential management practices for increasing the grass yield production as the
main feed for the dairy cattle and sheep (Nikoloski, Murphy, et al., 2019).

Second, we use semi-supervised PCTs and ensembles to learn from partially-labeled
data about water quality in Irish grassland soils (Schulte et al., 2006). The data include
three target attributes, i.e., biological water quality, phosphorus and nitrogen concentration
in water, and only 50% of the data samples are `completely' labeled. The remaining 50%
are `incomplete' (i.e., partially-labeled). We have learned local and global models by using
complete data (partially-labeled in addition to labeled) and investigate whether the models
learned from `incomplete' data are accurate, understandable and interpretable from the
domain perspective (Nikoloski et al., 2020).

Here we must note that the soil functions and their outcomes modeled in this disserta-
tion are closely related to the soil functions considered in the project LANDMARK, but
are not exactly the same. In the LANDMARK Soil Navigator tool for the assessment of
soil functions, overall assessments are obtained by integrating the expert assessments of
many di�erent aspects of that soil function. In this dissertation, we model speci�c aspects
and outcomes of a soil function, but not the complete soil function.

All in all, the thesis proposes the implementation and evaluation of new approaches
for structuring the output spaces in MLC and MTR learning tasks. We use predictive
clustering trees (PCTs) as the most adequate technology for developing our concept. PCTs
are implemented in the CLUS software package (http://source.ijs.si/ktclus/clus-public).
The existing MTR methods and the novel methods for structuring the output space have
been applied to environmental and soil-related data obtained from various sources, mainly
from TEAGASC, Ireland.

1.2 Goals, Hypotheses and Methodology

The main goal of the dissertation is to enhance the methods for MTP by addressing the
MTP task through its hierarchical counterpart � hierarchical multi-target prediction. This
is achieved by discovering hierarchical structures among the target attributes (binary la-
bels in the case of MLC or continuous targets in the MTR case). With the newly designed
framework, we will strive to improve the accuracy of predictive models, especially for large
output spaces (>100 targets/labels). Next, we aim to investigate the potential of existing
semi-supervised learning algorithms for MTR to exploit partially-labelled examples (`in-
complete' examples where not all of the values for the target attributes are known). Finally,
we aim to extensively analyse and evaluate the proposed methodology in various domains,
either on existing benchmark datasets for MLC and MTR, or on new data appropriate for
the tasks at hand.

We also aim to apply the methodology of MTR on environmental, and in particular soil,
data provided by TEAGASC, Ireland. Our goal is to show whether the predictive clustering
trees for multi-target regression could provide accurate and understandable models that
will empower the domain experts to look for novel insights, relations and patterns in
the data. Finally, the novel insights coupled with the existing body of knowledge might
translate into useful recommendations to the practitioners from the speci�c domain under
study � in our case, these would be the Irish farmers.

The main hypotheses investigated in this dissertation are:

Hypothesis 1. Transforming MTP tasks to hierarchical MTP tasks by using data-derived
hierarchies obtained by structuring the output spaces in the MTP tasks will improve
the predictive performance on the original MTP tasks (especially for large output
spaces).

http://source.ijs.si/ktclus/clus-public
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a. Structuring the label/output space in MLC tasks by using per label feature im-
portance scores to describe labels will improve the predictive performance on
the original MLC tasks.

b. Structuring the target space in MTR tasks by using the target values themselves or
the feature importance scores for each target will translate MTR tasks to HMTR
tasks and this will lead to improved predictive performance on the original MTR
tasks.

Hypothesis 2. PCTs can learn predictive models with good predictive performance that
contribute novel domain knowledge in estimating herbage potential and nutrient
uptake from soil, management and environmental data about Irish dairy farms.

Hypothesis 3. Exploiting partially labeled examples brings additional value to the learned
models in terms of predictive performance and understandability in the domain of
modeling water quality across Irish agricultural land.

To achieve the research goals and to test all the hypotheses stated above, we use predic-
tive clustering trees PCTs (Blockeel et al., 1998; Struyf & D�zeroski, 2006) and ensembles
thereof (Kocev et al., 2013). The PCT algorithm is one of the most appropriate model-
ing algorithms for solving the original problem of MTP (MLC and/or MTR), as well as
the problem of hierarchical multi-target prediction (HMTP), given the use of PCTs for
HMLC (Vens et al., 2008) (Hypothesis 1a.) and PCTs for HMTR (Mileski et al., 2017)
(Hypothesis 1b.). In order to test the second hypothesis, we apply PCTs for MTR to a
set of data collected at Irish dairy farms. We address the problem of predicting herbage
accumulation and nutrient uptake from soil, management and environmental data. On one
hand, we evaluate the predictive performance of the built models. On the other hand, we
have domain experts inspect the built models and assess whether they are consistent with
existing and contribute novel domain knowledge.

In order to test the third hypothesis, we investigate the use of SSL for MTR (Levati�c
et al., 2018) with PCTs for exploiting partially labeled examples. We use ensembles of
PCTs (random forests of PCTs) (Kocev et al., 2013) for MTP in order to obtain models
with state-of-the-art predictive performance. In the domain of modeling water quality
across Irish agricultural land, we also use the learned ensembles of PCTs for generating
and drawing accurate maps.

All of the proposed methods for structured output prediction will be developed in the
CLUS framework (http://source.ijs.si/ktclus/clus-public).

In the proposed dissertation, we depart from the existing local and global modeling
approaches for structured output prediction, by implementing a novel algorithm for struc-
turing the output space in multi-target prediction tasks. We create data-derived hierar-
chies by clustering two di�erent target-related representations, i.e., the representation of
targets by their target values for each example and the representation of targets by the
feature importance scores of each feature for that target. We use the obtained data-derived
hierarchy and transform the original MLC/MTR tasks to hierarchical MLC/MTR tasks
(HMLC/HMTR). Furthermore, we investigate the in�uence of the proposed methodology
on predictive performance in the case of learning both PCTs and ensembles of PCTs. In
order to obtain the feature importance scores for predicting individual targets/labels, we
use the GENIE3 feature ranking method (Huynh-Thu et al., 2010). For hierarchy cre-
ation, i.e., clustering the targets from the output space, we use hierarchical agglomerative
clustering (with complete and single linkage), balanced k-means, and predictive clustering
trees (PCTs).

http://source.ijs.si/ktclus/clus-public
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The performance of the methods for creating predictive models can vary across dif-
ferent domains. We evaluate our methods on various benchmark datasets from di�erent
domains (for MLC: text classi�cation, movie clips and genre classi�cation and biology,
presented in Chapter 5.1 (Nikoloski et al., 2018); for MTR: socio-economic and environ-
mental sciences, presented in Chapter 5.2). Moreover, we evaluate our methods on several
real-world datasets, in the domain of environmental sciences, especially our methods for
MTR. The datasets mostly have large output spaces. Therefore, structuring large output
spaces in these datasets provides a clear picture of whether our proposed methods perform
well (Nikoloski, Kocev, & D�zeroski, 2019).

In order to investigate the usability of the existing and proposed methods for structured
output prediction, we have developed two case studies in the domain of environmental and
soil sciences. We use practically relevant data provided by TEAGASC, Environment Soils
and Land-use Department, Ireland. TEAGASC � the Agriculture and Food Development
Authority � is the national body providing integrated research, advisory and training
services to the agriculture and food industry and rural communities of Ireland.

The �rst case study, presented in Chapter 6.1 of this dissertation, corresponds to our
second hypothesis. In this case study, we have investigated the usability of predictive
clustering trees for multi-target regression as well as random forests of PCTs for MTR in
estimating herbage accumulation and nutrient uptake on Irish dairy farms. This task is
related to the primary productivity soil function (Nikoloski, Murphy, et al., 2019). The
second case study, presented in Chapter 6.2 of the dissertation, corresponds to our third
hypothesis. In this case study, we have focused on using supervised PCTs (that handle
only complete data) and semi-supervised PCTs (that handle incomplete data, in addition
to the complete data) for MTR, as well as ensembles of PCTs (random forests) for MTR
for assessing the water quality in Irish agricultural lands by simultaneous estimation of
the biological water quality as well as phosphorus and nitrogen concentration in the water.
This task includes speci�c aspects and outcomes of two soil functions: (1) water regulation
and puri�cation and (2) provision and cycling of nutrients.

1.3 Contributions

The work presented in this dissertation comprises several contributions to the �eld of com-
puter science, especially in machine learning algorithms for structured output prediction
and application of such methods in the �eld of environmental (soil) sciences. A com-
plete list of publications related to this research are given in the Bibliography section. A
summary of the thesis contributions is given as follows:

Contribution 1. Improving the predictive performance on multi-target prediction (MTP)
tasks by structuring the output space and using the obtained data-derived hierarchy
in hierarchical multi-target prediction (HMTP) tasks.

• A novel method for MLC, which structures the output space by clustering la-
bels represented by feature importance scores and uses the obtained hierarchy in
HMLC tasks.

• A novel method for MTR, which structures the output space by clustering targets
represented by their original target values (target space) or by feature importance
scores (feature ranking space) and uses the obtained hierarchy in HMTR tasks.

• An extensive empirical evaluation of the novel methods on benchmark datasets,
which shows their improved performance.
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This contribution is mainly related to a novel methodology for multi-target prediction
(MLC/MTR) tasks that converts the original MLC/MTR tasks to hierarchical variants,
i.e., HMLC/HMTR tasks, using data-derived hierarchies structuring large output spaces.
Namely, from the output space, we generate two di�erent target representations, one con-
sisting of the original values of the target/label attributes and another consisting of the im-
portance scores of the input attributes for each target/label. For multi-label classi�cation
tasks, we show that better performance can be achieved if the hierarchy of labels, obtained
by clustering the feature ranking representation, is used. Improvements are achieved along
the majority of the 13 di�erent most commonly used evaluation measures (Chapter 5.1),
con�rming Hypothesis 1a. Next, we perform an extensive study on di�erent benchmark
datasets in the case of multi-target regression (MTR) task. We show that structuring the
target space, i.e., using data-derived hierarchies, improves the predictive performance as
compared to the original MTR task where no hierarchy is used. Moreover, we show that
by using data-derived hierarchies in the HMTR task, there are improvements in predic-
tive performance even over using expert-provided (i.e., existing) hierarchies, especially in
datasets with large (>100 targets) output spaces (Chapter 5.2), con�rming Hypothesis 1b.
In both studies, the divisive clustering methods (balanced k-means and PCTs) proved to
be better than agglomerative methods for structuring (i.e., clustering) the output space.
Overall, the results con�rm Hypothesis 1.

Contribution 2. A case study of modeling primary productivity (total herbage production
and nutrient uptake) of Irish dairy farms from existing soil, weather and management
data by using machine learning algorithms for multi-target regression.

This contribution concerns the problem of modeling total herbage production and nu-
trient uptake. To this end, we use existing soil, environmental (weather) and management
data from 15 commercial dairy farms in Ireland. The study related to this scienti�c contri-
bution is presented in Chapter 6.1. The goal of this study is to develop a predictive model
that can easily explain the relations between primary productivity and controllable (and
non-controllable) factors related to soil, weather and management practices.

For learning predictive models we use predictive clustering trees (PCTs) and random
forests of PCTs for single- and multi-target regression. Moreover, we perform additional
research on �nding the most limiting nutrient uptake for the total yield produced. Our re-
sults con�rm the stated hypothesis (Hypothesis 2.), i.e., we have learned easily explainable
predictive models with good predictive performance for all target variables (total herbage
production, N, P and K uptake) simultaneously.

The results in terms of the predictive performance of the obtained PCT models for MTR
are in accordance with the expectations of the domain community. Our main contribution
is related to the understandability of the model and its application in the domain. We
have found that the number of grazing events is closely related to the soil drainage class.
Therefore, we have performed predictive modeling on three data subsets (in addition to
the complete dataset), de�ned by the soil drainage class, i.e., for well-drained, somewhat-
poorly drained, and poorly-drained soils.

Overall, our results show that phosphorus (P) uptake was the most limiting nutrient for
herbage production on these Irish dairy farms, followed by nitrogen (N) and potassium (K).
The predictive rules embodied in the multi-target regression tree are in accordance with the
existing expert knowledge. Moreover, they provide additional insights into the factors that
drive the yield production and nutrient uptake the most. This is very important in guiding
the process of further collecting of data. Namely, instead of collecting all the features
gathered so far, which is a very complex and laborious process, it is enough to collect only
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the relevant features that appear in the predictive rules streamlining the process of data
monitoring and collection.

Contribution 3. A case study of modeling water quality across agricultural lands in Ire-
land, learning from partially-labeled data by using semi-supervised learning algorithms
for multi-target regression.

The contribution of this part of the thesis is the novel application of recent semi-
supervised algorithms for multi-target regression in the �eld of environmental (soil) sci-
ences. Besides the application domain point-of-view, there are two important methodolog-
ical aspects of this contribution. The use case study related to this scienti�c contribution
is presented in Chapter 6.2 of this dissertation.

First, to the best of our knowledge, semi-supervised learning approaches have not yet
been applied in the domain of environmental sciences. In fact, semi-supervised learning
approaches are typically evaluated in benchmark settings where the labels of all examples
are known and missing labels are simulated by arti�cially deleting the known labels. Prac-
tical applications are not common, and where they exist they typically come from domains
like text, image and multi-media classi�cation, and possibly drug design/re-purposing.

Second, most methods for semi-supervised learning in the context of structured-output/
multi-target prediction cannot deal with partially-labeled examples. They can use fully-
labeled examples, with known values for all targets. They can also use fully-unlabeled
examples with no known values for any target. But they cannot make use of examples
that have known values for some and unknown values for other targets: This is a unique
capability of the approach employed in this thesis.

We use existing and already pre-processed water quality data, collected during the
national monitoring program in the years 2001, 2002 and 2003, in the Republic of Ireland.
The data consist of pressure and pathway-related variables, the main drivers of water
quality. We build data-driven models learning to predict the following target variables:
biological water quality (Q-value), phosphorus (P) and nitrogen (N) concentrations.

Note that not all of the target variables are measured in each of the 708 data samples
(examples). Namely, the descriptive attributes are complete/labeled for all data sam-
ples and the three predictors (i.e., target attributes) are incomplete, i.e., partially-labeled.
Therefore, we use semi-supervised predictive clustering trees (PCTs) for multi-target re-
gression to learn from the partially-labeled data. We use single PCTs and ensembles
(random forests) of PCTs as learning methods.

Our results show that more accurate models can be achieved when semi-supervised
approaches are used. Global (i.e., multi-target) models predict all targets simultaneously
and over�t less. The most accurate predictions are obtained by using ensemble (i.e.,
random forest) PCT models, but ensembles are not easily explainable. Finally, single
semi-supervised PCTs for MTR are smaller and more easily explainable. Overall, these
results con�rm Hypothesis 3 in full.

1.4 Organization of the Thesis

The current chapter is introductory. So far, it has provided motivation and an overview of
the current research on the topic.

Next, it has outlined the research goals of the thesis and the hypotheses. Also, the
methodology, used to accomplish the set of goals has been described brie�y. In the pre-
vious subsection, the main scienti�c contributions of the thesis have been explained. The
remainder of the dissertation is organized as follows.
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Chapter 2 describes the background of the thesis. It begins with predictive mod-
eling, i.e., machine learning for structured output prediction. Descriptions and formal
de�nitions are given of the tasks of multi-target prediction (MLC/MTR) and hierarchical
multi-target prediction (HMLC/HMTR). Next, we discuss semi-supervised learning from
partially/incompletely labeled data. Finally, we brie�y describe the problem of modeling
soil functions. Namely, we de�ne the �ve main soil functions and brie�y review the recent
research on modeling these soil functions within the LANDMARK project (LANDMARK,
2019).

Chapter 3 describes in more detail related work concerning methods for SOP. First we
present the state-of-the-art of methods for MLC and MTR, followed by the state-of-the-art
methods for HMLC and HMTR. Finally, we end this chapter with a description of existing
methods for structuring the output space in MTP.

Chapter 4 presents the state-of-the-art of using arti�cial intelligence methods for mod-
eling soil functions. On the one hand, we present the existing uses of machine learning in
this area. On the other hand, we review the use of decision support methods for modeling
each soil function.

Chapter 5 describes the problem of structuring the output space in multi-target pre-
diction and our �rst set of contributions to science. First, we present our method for
structuring the output space in multi-label classi�cation by clustering labels in terms of
feature importance scores per label. We compare our results to the results obtained for the
�at MLC tasks, where no hierarchy on the labels is used. We next present our study related
to the problem of structuring the output space in MTR. We propose two algorithms for
structuring the output space in MTP based on two di�erent representations of the targets.
The �rst algorithm represents the targets by the values of their attributes while the sec-
ond represents them by the feature importance scores. We use the data-derived structure
(hierarchy) in the hierarchical multi-target regression, HMTR reformulation of the original
task.

Chapter 6 describes our case studies of modeling two speci�c soil functions: primary
productivity, and water regulation and puri�cation, by using predictive clustering trees
(PCTs) and random forest of PCTs for multi-target regression. Our �rst case study comes
from the domain of dairy science. Namely, we use PCTs and random forests of PCTs for
multi-target regression for modeling the total herbage production and nutrient uptake on 15
commercial dairy farms in Ireland. We use existing soil, environmental and management
data from these farms, collected in the years 2015 and 2016. Our second case study
concerns the modeling of water quality in Irish agricultural catchments. The data describes
708 sites (i.e., examples) in terms of pressure-pathway descriptive attributes and three
partially-labeled water quality indicators (targets): biological water quality (Q-value), as
well as phosphorus (P) and nitrogen (N) concentrations. The data were collected during
the national monitoring program in the years 2001, 2002 and 2003 and not all of the
target attribute values have been measured. We use supervised and semi-supervised PCTs
for MTR and ensembles thereof and compare the predictive performance and complexity,
represented by model accuracy and model size in both local (single-target) and global
(multi-target) predictive modeling scenarios.

Finally, Chapter 7 concludes the dissertation. It summarizes the scienti�c contributions
of the thesis and outlines several possible directions for further work.
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Chapter 2

Background

2.1 Structured Output Prediction (SOP)

In this section we will describe the main data constituents, which machine learning algo-
rithms require to learn from. The data constituents are the attributes and the values for
those attributes given as data examples or data instances. Technically, data example is
a record with one or more qualities with certain constraints, which apply to the values
that can be taken by data examples with respect to that given quality. Therefore, each
data quality must specify its own constraints on the values which is done through the use
of data types. Data types are fully described in OntoDT data type taxonomy, a part of
OntoDM-ontology for data mining (Panov et al., 2016). We have two groups of data types:
primitive and generated. Primitive data types are: Boolean data types that can be either
false (⊥) or true (>); real data type consisting of the values from the set of real numbers
IR and discrete data types, consisting of the values given in the prede�ned set of possible
values (for example: apple, orange, pear and peach). Generated data types are constructed
either fully or partially by primitive data types. There are various generated data types
(Allison, 2003), but in this dissertation we will focus on generated data type called tuple.
A tuple is an ordered list of data types. An example of a tuple that takes two values would
be tuple (Boolean, discrete(apple, orange, pear)). The �rst value is from Boolean data
type and could be either ⊥ or >, but the second value is discrete and can be taken from
the set of values {apple, orange, pear}. Examples of such tuples are: (>,apple), (⊥, pear),
etc.

Therefore there are many di�erent data representations. Machine learning methods
are robust, because they have an ability to process any given data representation. One
of the possible representations of the data is a matrix representation. The data matrix
(i.e., dataset) consists of data examples in the rows. The columns in the matrix are
called attributes and they denote the properties of a speci�c data example. In predictive
modeling, data attributes are represented by an input set of attributes X, called features
or descriptors, and an output set of attributes Y , named targets or predictors. In classical
machine learning tasks (single-target), the output space Y consists of one target (i.e.,
predictor) of a primitive data type. However, in this dissertation we will focus on output
space Y consisting of more than one attribute (|Y | > 1) that can be represented by complex
data structures, such as tuples of values, sequences (including time series) and hierarchies
(Bak�r et al., 2007; D�zeroski, 2006; Panov et al., 2016). This speci�c task concerned with
learning from structured outputs is called structured output prediction (SOP).
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2.2 Multi-Target Prediction (MTP)

We can distinguish among di�erent machine learning tasks for SOP based on the repre-
sentation of the output space Y . If Y is represented by tuples of values for the target
attributes, the speci�c SOP task is known as the multi-target prediction (MTP) task. If
the values in the tuple in the MTP task are from real/numeric type, the MTP task is called
the multi-target regression (MTR) task. An illustrative example of the data set used for
the MTR task is given in Figure 2.1. Likewise, if the values in the tuple are from a discrete
data type, the MTP task is called the multi-target classi�cation (MTC) task. Speci�cally,
if the values in a tuple are from binary (0 or 1), i.e., Boolean type (i.e., ⊥ or >), the speci�c
MTP task is known as the multi-label classi�cation (MLC) task. An illustrative example
of the dataset used for image classi�cation using MLC is given in Figure 2.2. Moreover,
if the target variables from the original MTP task are structured in a form of hierarchy,
the ML task at hand is known as the hierarchical multi-target prediction (HMTP) task.
Analogously, we can de�ne hierarchical multi-target regression (HMTR) and hierarchical
multi-label classi�cation (HMLC) task as a variants of the HMTP task.

Image
Descriptive attributes Target attributes

… traffic
light car truck building traffic 

sign bridge tree

32 3 54 … 5 5 1 3 4 0 5

55 43 1 … 18 6 2 3 3 1 9

23 4 5 … 6 2 0 4 2 0 2

23 4 5 … 8 3 2 9 0 0 5

21 2 4 … 4 1 0 0 3 0 3

… … … … … … … … … … … …

Figure 2.1: An illustrative example of a multi-target regression (MTR) dataset. The table
contains a set of images described with visual features extracted from the images, such
as the number of lines of di�erent type (curved, horizontal, diagonal, etc.) and target
attributes given as numerical values (numbers of objects of the given types).

The formal de�nition of the multi-target prediction (MTP) task, covering both multi-
label classi�cation (MLC) and multi-target regression (MTR) task, is the following (D�zeroski,
2006; Kocev et al., 2013):
Given:

• A descriptive (input) space,a Cartesian product of D descriptive attributes, i.e.,
X = X1 ×X2 × · · · ×XD;
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� In MLC: An output (label) space Y = 2L, which consists of all possible subsets
of a �nite set of disjoint labels L = {λ1, λ2, . . . , λQ} and Q > 1; An alternative
view of Y in MLC is Y = Y1 × Y2 × · · · × YQ where Yi = {0, 1}

� In MTR: An output (target) space Y spanned by T continuous target variables,
i.e., Y = Y1 × Y2 × · · · × YT ;

• A set of examples I consisting of pairs of elements, one from the input and one from
the output space, accordingly.

• A quality criterion q, which selects and chooses the models with the lowest predictive
error.

Find:

• A function f that maximizes quality criterion q such that:

� In MLC: f : X → 2L;

� In MTR: f : X → Y .

Image
Descriptive attributes Target attributes

… traffic
light car truck building traffic 

sign bridge tree

32 3 54 … ꓔ ꓔ ꓔ ꓔ ꓔ ꓕ ꓔ

55 43 1 … ꓔ ꓔ ꓔ ꓔ ꓔ ꓔ ꓔ

23 4 5 … ꓔ ꓔ ꓕ ꓔ ꓔ ꓕ ꓔ

23 4 5 … ꓔ ꓔ ꓔ ꓔ ꓕ ꓕ ꓔ

21 2 4 … ꓔ ꓔ ꓕ ꓕ ꓔ ꓕ ꓔ

… … … … … … … … … … … …

Figure 2.2: An illustrative example of a multi-label classi�cation (MLC) dataset. The
table contains a set of images described with visual features extracted from the images,
such as the number of lines of di�erent type (curved, horizontal, diagonal, etc.) and target
attributes denoting the presence (>) or absence (⊥) of objects of di�erent types.

2.3 Hierarchical Multi-Target Prediction (HMTP)

If the output space in the ML task for SOP is represented as a hierarchy of target attributes,
the ML task at hand is known as the hierarchical multi-target prediction (HMTP) task.
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The main di�erence with the de�nition of the MTP task is in the representation of the
output space. In HMTP, the targets are structured in a hierarchical format and each node
in the target hierarchy (meta-label) is a result of an aggregation function on their respective
children. Therefore, the formal de�nition of the HMTP task is the following:
Given:

• A descriptive (input) space X spanned by D independent descriptive variables, X =
X1 ×X2 × · · · ×XD;

• A target (output) space Y spanned by T target variables, Y = Y1×Y2×· · ·×YT . Note
that Yi ⊆ IR for MTR and Yi = {0, 1} for MLC. We de�ne a hierarchy H = (Y,≤h)
for the variables from the output space Y . The relation ” ≤h ” represents a parent-
child relationship between tree nodes (∀(Y1, Y2) ∈ H : Y1 ≤h Y2 if and only if Y2
is a parent (meta-label) of Y1) and de�nes a hierarchical constraint. In the HMTP
task, the parent-labels are the result of an aggregation function on their respective
children, i.e Yk = agg{Yi|Yi ≤h Yk};

• Set of examples E consisting of pairs of elements, one from input and another from
output space, accordingly, i.e., E = {(xi, yi)|xi ∈ X, yi ∈ Y, 1 ≤ i ≤ N}, where N
is the number of examples and where the values of the target variables satisfy the
hierarchical constraint ” ≤h ” i.e ∀j : ∃i(yi ≤h yj =⇒ yj = agg{yi|yi ≤h yj});

• A quality criterion q which selects and chooses the models with the lowest predictive
error and the highest accuracy.

Find:

• Function f : X → Y , which maximizes the quality criterion q, and all predictions
ŷ = f(x) are satisfying the hierarchical constraint.

The di�erence from the task of MTP is in the de�nition of the output space: for
HMTP, we have a set of classes/targets organized in a hierarchy instead of a �at tuple of
classes/targets.

According to the general de�nition of the HMTP task given above, we can de�ne
di�erent HMTP tasks based on the aggregation function. HMLC task de�nition is one
variant of the HMTP de�nition, where tuples of target variables are represented as a set
of labels/classes, structured in a form of hierarchy. The values of those classes/labels in
each example are Boolean values (> or ⊥) that can be represented with binary values (1 or
0), accordingly. Then, by instantiating the aggregation function as logical OR, we obtain
hierarchical constraint as de�ned by Vens et al. (2008) i.e., we de�ne the HMLC task. An
example of a dataset for the HMLC task is given in Figure 2.3.

In HMTR task (Mileski et al., 2017), the output space is represented by tuples of T
continuous target variables organized as a hierarchy. In HMTR, there are more possibili-
ties for instantiating the aggregation function that will de�ne the hierarchical constraint.
Possible choices are sum, max, min, average, etc. The de�nition of the parent-child re-
lationships (hierarchy constraint) states that the variable belonging to a given hierarchy
node automatically contributes to all its parent nodes. Therefore, it is very important to
notice that, during calculation of the meta-labels by using the aggregate functions, we have
to carefully select the aggregation function and the (prototype) function for calculating the
predictions, in order not to break the hierarchical constraint.
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Image
Descriptive attributes Target 

attributes

…

32 3 54 …
traffic@
tree@
building

55 43 1 … environment

23 4 5 …

car@
signal device@

tree@
building

23 4 5 …
vehicle@
tree@
building

21 2 4 …
signal device@

car@
tree

… … … … … …

environment

vehicle

car truck

bridge

traffic 
light

tree

building

traffic

signal 
device 

traffic 
sign

concrete

Figure 2.3: An illustrative example of a hierarchical multi-label classi�cation (HMLC)
dataset. The table contains a set of images described with visual features extracted from
the images, such as the number of lines of di�erent type (curved, horizontal, diagonal, etc.)
and target values given as a hierarchical representation of labels, i.e., strings where child
labels from di�erent branches of the hierarchy are separated by the symbol '@'.

2.4 Semi-Supervised Learning for SOP

The speci�c tasks for structured output prediction covered in this dissertation are based
on the data labeling given in Figure 2.4. The data example is labeled if all of the target
attribute values are known, i.e., labeled. The data consisting of labeled data examples is
called labeled data. The speci�c machine learning task for SOP dealing with labeled data
is known as the supervised learning task. The data examples are unlabeled if all values of
the target attributes are unknown, i.e., unlabeled. The data consisting of unlabeled exam-
ples is called unlabeled data. The speci�c ML task for SOP that handles only unlabeled
data is known as the unsupervised learning task. In the SOP task, we have another type
of data examples where not all of the target attributes are labeled, i.e., target attributes
are partially-labeled. We called those data examples partially-labeled examples. The data
consisting of partially-labeled examples is called partially-labeled data. We can distinguish
between two task-dependent 'incomplete' examples. In the classical (i.e., single-target)
learning tasks, as an 'incomplete' example can be considered the unlabeled examples i.e.,
the example where the class value is unknown, while in the SOP task, as an 'incomplete'
example, beside the completely unlabeled examples, we can consider partially-labeled ex-
amples, where only a part of the target values are known/labeled.

Motivated by data incompleteness, i.e., di�erently labeled data, we de�ne another
machine learning task for SOP that is 'in-between' supervised and unsupervised ML task,
known as the semi-supervised learning (SSL) task. The classical semi-supervised learning
(SSL) tasks can handle both, unlabeled and labeled examples, while the SSL task for
SOP can handle partially-labeled examples in addition to the labeled and unlabeled data
examples. In practice, there is a large amount of 'incomplete' data which consists of
partially-labeled and unlabeled data examples. Therefore, the very important advantage
of the semi-supervised over supervised learning approaches is that the former considers
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the additional information of the 'incomplete' examples and the latter usually discards
them from the learning process. As a result, the semi-supervised models achieve better
predictive performance, use more examples for learning and could be better explained.

Next, we will describe two di�erent semi-supervised learning variants, one that can
learn from unlabeled and another that can learn from partially-labeled data, in addition
to labeled data.

2.4.1 Semi-supervised learning (SSL) with labeled and unlabeled data

As the name suggests, semi-supervised learning (SSL) belongs somewhere between the
supervised and unsupervised learning paradigm and the motivation behind this learning
task is related to the high availability of additional information contained in the unlabeled
data. In fact, it can be considered as an extension of either supervised or unsupervised
learning. As the extension of the supervised learning, SSL is also called semi-supervised
prediction, where the labeled training data is enriched by unlabeled training examples. An
excerpt of the MTR dataset in the SSL setting is given in Table 2.1.

The goal of the semi-supervised prediction is to build a model from labeled and unla-
beled data with better prediction quality than the model learned from labeled examples
only. On the other hand, as the extension of unsupervised learning, SSL is also known
as constrained clustering, where the data clusters consisting of unlabeled examples are en-
riched with additional constraint, i.e., "supervised information" about the clusters. The
constraint is called "must-link" constraint if two data examples are close in the descriptive
space, i.e., are in the same cluster or "cannot-link" if two data examples are in di�erent
clusters (Zhu & Goldberg, 2009).

In order to illustrate the semi-supervised learning with unlabeled in addition to labeled
examples, we will present a very simple example shown in Figure 2.5. Let us assume
that each example is represented as a one-dimensional feature x ∈ R. There are two

Classical tasks 
(single target prediction)

Labeled data

Unlabeled data

Structured output 
prediction

(MTP, HMTP ...)

Labeled data

Partially 
labeled data

Unlabeled data

Target is known

Target is unknown

Part of the target is 
unknown

Figure 2.4: An illustration of the semi-supervised learning in structured output prediction
with respect to di�erent data labeling.



2.4. Semi-Supervised Learning for SOP 17

Table 2.1: A multi-target regression (MTR) dataset in the semi-supervised learning (SSL)
setting. '?' denotes a missing value.

ID Description Space Target Space

#
Hi drain

q1

drainage

factor

Total N

input
... Q P N

Example

type

#1 3 0.35 121.26 ... 3.86 0.04 0.47

Labeled
examples

#2 2 0.25 119.86 ... 4.28 0.34 20.71

#3 2 0 120.4749 ... 4.35 0.024 0.43

#4 2 0.24 120.95 ... 3.47 0.155 0.15

#5 2 0.15 119.2568 ... ? ? ?

Unlabeled
examples

#6 3 0 121.0236 ... ? ? ?

#7 2 0.86 119.3698 ... ? ? ?

#8 2 0 115.3987 ... ? ? ?

classes: positive (+1) and negative (-1). In supervised learning, two examples are given,
one positive, shown as a green circle, and one negative, shown as a red cross, respectively.
The best estimate of the decision boundary is x = 0 and if the class value of a new example
is x < 0, then an example is considered as negative (-1), otherwise, if the class value of a
new example is x ≥ 0, it is considered as positive (+1).

In addition, a large number of unlabeled examples are also given there, shown as
blue dots in Figure 2.5. We do not know the correct class assignment of those examples.
Under the assumption that the unlabeled examples are normally distributed such that the
examples from each class are centering around the central mean. Obviously, the prototype
of the two labeled examples does not hold anymore for making a decision on the new class
assignments. In semi-supervised learning, the estimate of the decision boundary should be
somewhere between the two groups, i.e., x ≈ 0.4.

0-1 1

Supervised 
decision 

boundary

Semi-supervised 
decision 
boundary

Positive labeled data (+1)

Negative labeled data (-1)

Unlabeled data

Figure 2.5: A simple example to demonstrate semi-supervised learning with labeled and
unlabeled data.
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2.4.2 Semi-supervised learning (SSL) with partially-labeled data

As we mentioned previously, machine learning methods which use unlabeled examples
in addition to labeled ones, aiming to improve the performance of supervised methods,
are called semi-supervised learning (SSL) methods (Chapelle et al., 2006; Levati�c et al.,
2018). Note that learning from partially-labeled data can be considered as semi-supervised
learning for SOP.

An example excerpt from a SSL dataset with partially labelled examples is given in
Table 2.2. It contains all three possible kinds of examples: unlabeled, partially labeled
and (fully) labelled examples. The partially labeled examples include all six possible com-
binations of known and missing values of the three targets: three examples have only one
target value known and three examples have only one target value unknown.

Table 2.2: A MTR dataset with partially labeled examples. '?' denotes a missing value.

ID Description Space Target Space

#
Hi drain

q1

drainage

factor

Total N

input
... Q P N

Example

type

#1 3 0.35 121.26 ... 3.86 0.04 0.47

Labeled
examples

#2 2 0.25 119.86 ... 4.28 0.34 20.71

#3 2 0 120.4749 ... 4.35 0.024 0.43

#4 2 0.24 120.95 ... 3.47 0.155 0.15

#5 2 0 120.26 ... 3.7 ? ?

Partially
labeled
examples

#6 3 0.75 121.26 ... 2.95 ? 5.71

#7 2 0.565 120.47 ... 4.4 0.026 ?

#8 3 0 116.86 ... ? 0.68 ?

#9 3 0.547 116.56 ... ? ? 0.21

#10 2 0.65 118.36 ... ? 0.13 0.11

#11 2 0.15 119.2568 ... ? ? ?

Unlabeled
examples

#12 3 0 121.0236 ... ? ? ?

#13 2 0.86 119.3698 ... ? ? ?

#14 2 0 115.3987 ... ? ? ?

Usually, in SSL, the class information of unlabeled examples is entirely missing. Partially-
labeled examples can also be considered as an additional source of information in the spirit
of SSL. Namely, the known information of the descriptive attributes for unlabeled and
partially-labeled examples can be exploited in order to improve the prediction quality and
model itself. Here, we formally de�ne the task of semi-supervised learning with partially-
labeled data, as follows:

Given:

• A description (input) space XD spanning D descriptive variables, i.e.,

XD = X1 ×X2 × · · · ×XD,

where Xi is the set of possible values of the i− th descriptive variable;

• A target (output) space YT spanning T target variables, i.e.,

YT = (Y1 ∪ {?})× (Y2 ∪ {?})× · · · × (YT ∪ {?}),
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where Yj is the set of possible values of the j − th target variable, extended with
potentially missing value (denoted as ?);

• A set I of N examples (x, y) where x ∈ XD and y ∈ YT and an example (x, y) is





fully- labeled, if ∀i ∈ {1, 2, . . . , T} : yi ∈ Yi
unlabeled, if ∀i ∈ {1, 2, . . . , T} : yi = ?

partially- labeled, otherwise

.

• A quality criterion q, which rewards the models with the lowest predictive error.

Find:

• a function f : XD → YT by using the set of examples I, such that f maximizes the
quality criterion q.

Depending on the example set I, changing with respect to the output (target) space
YT , we can distinguish between di�erent MTR tasks. If there are labeled examples only
in I, then we have the classical supervised multi-target regression task (MTR). We de�ne
the task of semi-supervised learning for multi-target regression (SSL for MTR) if we have
only fully labeled and unlabeled examples in I in addition (Levati�c et al., 2018).

We must note that, at �rst glance, it might seem paradoxical learning with the predictor
f : X → Y from unlabeled and partially-labeled data, because the unlabeled data does
not provide any examples of such mapping. The answer lies in the assumption of the link
between the distribution of unlabeled data and the target label, i.e., the information given
in the descriptive space of the unlabeled examples.

2.5 Modeling Soil Functions

In this section, we will describe the soil functions de�ned within the LANDMARK EU
H2020 project (LANDMARK, 2019). The case studies presented in the dissertation (Chap-
ter 6) are related to modeling two soil functions: primary productivity (i.e., estimation of
total herbage production and nutrient uptake) and water puri�cation and regulation (i.e.,
water quality assessment), by using the existing machine learning predictive modeling
techniques for multi-target regression.

Soils are base providers of food, feed and �ber for humans and animals, respectively,
and play a key role for functioning of terrestrial ecosystems. During the recent decades,
a need to establish methods to evaluate the ability of soils to provide ecosystem services
has moved towards the top of the agenda in soil science. The expansion of settlements
and infrastructure, the development of industry and transport, the emergence of land�lls,
mining and intensive agriculture all a�ect the soils and their functioning. Deterioration of
soil characteristics usually occurs as a result of human activity, and leads to degradation
of one or more soil ecosystem services.

Scienti�c community pays considerable focus on the classi�cation and valuation of
individual soil ecosystem services with several resulting classi�cation schemes, but limited
consensus on a comprehensive framework (J�onsson & Dav��dsd�ottir, 2016). Consequently,
limited attention is devoted to understanding co-functionality of such ecosystem services
and e�ects of coordinated management on total natural capital and long-term sustainable
goals (Pereira et al., 2018). The most recent comprehensive endeavor of classi�cation,
valuation and simultaneous management of soil ecosystem services has been performed
within the activities of EU H2020 project LANDMARK (LANDMARK, 2019). Project
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LANDMARK addresses the necessity to strike a balance between interests of policy-making
bodies on di�erent spatial scales (local and regional) to achieve a harmonious use of soils
and to limit the lowering of balance in the overall ecosystem by enforcing sustainable
management.

To ease the presentation of applicability of our proposed methodology for structured
output prediction with interpretable models on a real-world problem, i.e., modeling soil
ecosystem services, the classi�cation and valuation of soil ecosystem services, proposed
within research activities of project LANDMARK (further referred to as LANDMARK
classi�cation and/or valuation framework), have been adopted.

LANDMARK classi�cation framework (Schulte et al., 2014) focuses on functional ca-
pacity of soils to directly contribute towards the delivery of ecosystem services referred to
as soil functions � being a 'demand' of particular service. Valuation, on the other hand,
is de�ned as a 'supply' to a particular demand, i.e., soil function. The framework adopts
�ve soil functions: primary productivity (agriculture), water puri�cation and regulation,
carbon sequestration and climate regulation, provision of functional and intrinsic biodi-
versity, and provision and cycling of nutrients. Composition of all �ve soil functions with
emphasis on their inter-connectivity and cohabitation is given in Figure 2.6.

Figure 2.6: Illustrative representation of
the �ve soil functions (Schulte et al.,
2014).

Primary productivity is the capacity of a
soil to produce plant biomass for human use,
providing food, feed, �ber and fuel within nat-
ural or managed ecosystem boundaries (white
box).

Water puri�cation and regulation is the
capacity of a soil to remove harmful compounds
from the water that it holds and to receive, store
and conduct water for subsequent use and the
prevention of prolonged droughts and �ooding
and erosion (blue box).

Carbon sequestration and climate regula-

tion is the capacity of a soil to reduce the neg-
ative impact of increased greenhouse gas (i.e.,
CO2, CH4, and N2O) emissions on climate
(black box).

Provision of functional and intrinsic bio-

diversity is the multitude of soil organisms
and processes, interacting in an ecosystem,
making up a signi�cant part of the soil's natural capital, providing society with a wide
range of cultural services and unknown services (green box).

Provision and cycling of nutrients is the capacity of a soil to receive nutrients in
the form of by-products, to provide nutrients from intrinsic resources or to support the
acquisition of nutrients from air or water, and to e�ectively carry over these nutrients into
harvested crops (purple box).

Classi�cation and valuation of soil ecosystem services into the �ve soil functions boosts
the ability to improve their modeling both, individually and simultaneously. The former
allows better understanding of the soil function, while the latter imposes better under-
standing of their competition and trade-o�s with a goal to improve overall management
on a local or regional scale.
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Thus, for modeling purposes, LANDMARK valuation framework de�nes each soil func-
tion as an index with qualitative (indicative) value scale, composed from factors that can
be valued with existing indicators or indices already familiar to the domain experts. Such
lower level indicators or indices represent natural processes or phenomena underneath soil
functions, which are grouped into three categories based on their nature: soil (S)-related
(biological, chemical and physical), environmental (E) -related (humidity, temperature, hy-
drology, etc.) and management (M)-related (drainage, tillage, nutrient and pest manage-
ment, etc.) processes or phenomena. Thus, mathematically, each soil function is a function
of the soil (S), environmental (E) and management (M) factors, i.e., SF = f(S×E×M).

For sake of clarity, each lower level indicator or index is referred to as proxy-indicator
that itself can be further decomposed or dependent on other set of proxy-indicators. The
hierarchical dependency ends with quanti�able factors that can be expressed quantitatively
or qualitatively. In modeling setting, such factors are referred to as attributes.

Modeling activities within LANDMARK have been performed with knowledge-based
and data-driven approaches of arti�cial intelligence (AI), using DEX (Decision EXpert)
methodology for qualitative multi-criteria decision modeling (Bohanec, 2014, 2017; Bo-
hanec & Rajkovi�c, 1990) and various machine learning (ML) methods, respectively.

Primary outcome of the modeling activities is an online decision support tool (DST),
so-called, Soil Navigator for management and simultaneous optimization of all �ve soil
functions on a �eld scale (Debeljak et al., 2019). The Soil Navigator DST operates on
knowledge-based implementation through DEX methodology, where each soil function is
integrated with two DEX models � one for each, cropland and grassland ecosystem, cor-
respondingly. However, the experts have been using machine learning for modeling soil
functions in order to better understand the integration of proxy-indicators and attributes,
and consequently improve the DEX models.

The thesis follows the LANDMARK modeling framework and each soil function with
de�ned hierarchical composition, in order to present the applicability of our proposed
methodology and improvements in modeling certain indices, as well as proxy-indicators.
Therefore, the modeling outcomes per soil function, achieved within the project LAND-
MARK, are described in Section 4. Along with modeling LANDMARK achievements, a
related work with AI methods for modeling soil functions or subsequent proxy-indicators
is given.
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Chapter 3

Related Work

3.1 Methods for Multi-Target Prediction

Methods for the multi-target prediction (MTP) task have been extensively researched in
the last decades since a lot of domains aim to estimate more than one output attributes
simultaneously. We can distinguish between two categories of methods for solving the
MTP task (Bak�r et al., 2007; Borchani et al., 2015). One category is concentrated on the
task itself and the other on the algorithm that solves the MTP task. In order to solve
the MTP task, the former category of algorithms transforms the task itself and they are
known as problem transformation (i.e., local) methods. Local methods construct t separate
models for the t predictive variables which are combined to give the overall prediction for
all the predictors. On the other hand, the latter category relies on tuning of the algorithm
in order to solve the MTP task and they are known as algorithm adaptation (i.e., global)
methods. Global methods build only one model for predicting all of the t predictive
variables simultaneously.

The main drawback of local and global models is that they are not considering the
target dependencies represented by the parent-child relationships in target attributes, but
they deal with the target space as with a set of independent target attribute vectors. The
methods that are �lling the gap caused by the way the local and global MTP methods han-
dle the target attributes are called methods for structuring the output space. The methods
for structuring the output space can be considered as a task transformation methods, be-
cause they transform the classical MTP task to hierarchical MTP (HMTP) task and solve
the MTP task by learning from hierarchical structured output space od labels/targets.
The methods concerned with learning from hierarchically structured target attributes are
called methods for the hierarchical multi-target prediction (HMTP) task.

In the next subsections, we will describe the related work for both, problem trans-
formation and algorithm adaptation methods for solving the most representative MTP
tasks, multi-label classi�cation and multi-target regression as well as the currently known
methods for solving the HMTP task. Finally, we will present the most prominent research
attempts for solving the problem of structuring the output space.

3.1.1 State-of-the-art methods for multi-label classi�cation

As we mentioned before, multi-label classi�cation is a special case of multi-target predic-
tion, where the output space is given by a set of vector rows with Boolean data type values
representing the label co-occurrences (the ">" value for current label means the occurrence
of that speci�c label and the label value "⊥" shows that the label does not occur for a
given arbitrary data example). Next, we will present the local and global state-of-the-art
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methods for solving the multi-label classi�cation (MLC) task.

Local (problem transformation) methods for MLC The simplest problem trans-
formation (i.e., local) method for solving the MLC task is called binary relevance (M.-L.
Zhang et al., 2018). This approach decomposes the initial MLC task with t labels into
t independent binary learning (single-target classi�cation) tasks and each binary learning
task is solved separately. Binary relevance method has a lot of crucial disadvantages such
as limited usefulness in solving MLC problems with high-dimensional label spaces, not
considering label dependencies, introducing imbalance in the example space (Zhou et al.,
2012). However, Read et al. (2011) present some advantages of using this method such as
linear scaling with the increase of labels as well as the possibility of parallelization of the
training process because of independence of the binary tasks.

The next well-known problem transformation (i.e., local) method for solving the MLC
task is classi�er chains (B. Chen et al., 2016; Enrique Sucar et al., 2014; Read et al.,
2011). This method is based on the binary relevance approach and during the learning
process it generates chains of binary classi�ers with permutation of labels. The predictions
obtained from each single-label classi�er (i.e., binary learning task) are added to the train-
ing set before learning the next classi�er in the chain. Only in learning of the �rst binary
classi�er in the chain, the original input variables are used. Recently, some variants and
improvements of classi�er chains approach are proposed. Alali and Kubat (2015) present
a method called PruDent, for chaining the layers of two binary classi�ers. Similarly like
in the classical classi�er chain approach, the predictions obtained from binary relevance
models in the �rst layer are used as an input to the classi�er in the second layer in the
chain, etc. Next, Read et al. (2015) address to the scalability issue of the classi�er chain
algorithm by proposing a large-scale approach for e�cient learning from a large number
od labels based on a hill climbing heuristic: the classi�er trellis.

Another popular problem transformation (i.e., local) method for solving the MLC task
is the label power set method (Boutell et al., 2004; Read et al., 2008; Tsoumakas & Vla-
havas, 2008). This approach transforms the MLC problem into a multi-class classi�cation
problem. Each possible subset of labels in the data set becomes a new meta-class. There-
fore, this approach has problems with scalability because the number of combinations of
label subsets grows by adding a new label. The scalability issue has been tackled by Read
et al. (2008) by pruning the set of all possible label subsets (i.e., label power set).

Binary pairwise is another problem transformation approach for solving the MLC task
concerning with learning a binary classi�cation model for each pair of labels (F�urnkranz
et al., 2008). For each pair of labels (λ1, λ2), an arti�cial calibrated label λ0 is created
for each example, such as distinguish between a set of positive (i.e., examples labeled with
λ1) and negative (i.e., examples labeled with the λ2) examples. Then, binary relevance
classi�er is used for learning from each augmented data set consisting of calibrated label
λ0 for each pair of labels that make this approach computationally expensive. Motivated
by calibrated binary approach, Madjarov et al. (2012) propose a two-stage approach where
in the �rst stage, binary relevance models are learned and the second stage consists of
pairwise models with a calibrated label for each pair of labels.

Global (algorithm adaptation) methods for MLC In the last decades, some neural
network-based problem adaptation algorithms were developed towards solving the MLC
task. M.-L. Zhang and Zhou (2006) proposed an adaptation of the well-known back-
propagation neural network algorithm (Riedmiller & Braun, 1993) by introducing a novel
error function for label ranking according to their belonging to an instance, i.e., labels
belonging to the instance are ranked higher than those that are not belonging. Next,
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M.-L. Zhang (2009) presents a neural network-based algorithm for multi-label learning
induced by a well-known radial basis function (ML-RBF) and achieves competitive results
compared to the other state-of-the-art methods for solving the MLC task.

Next, M.-L. Zhang and Zhou (2007) adapt the k-nearest neighbor (kNN) method pro-
posed by Cover and Hart (1967) towards solving the MLC task. Using the proposed
ML-kNN method, the label(s) for an unseen example were determined by using maximum
a posteriori principle making this method superior against the other well-established MLC
methods. Moreover, for solving the MLC task, kNN algorithm can be used in combina-
tion with binary relevance (Spyromitros-Xiou�s et al., 2008) and logistic probability model
(Cheng & H�ullermeier, 2009). Furthermore, Pugelj and D�zeroski (2011) proposed a method
for structured output prediction by using kNN which can be adapted for solving the MLC
task.

Support vector machines (SVMs) (Cortes & Vapnik, 1995; Elissee� & Weston, 2001;
Hofmann et al., 2008) are very well-established MLC methods, especially in the domain
of text classi�cation (T. Gon�calves & Quaresma, 2004; Joachims, 1998). In order to solve
the MLC task, many approaches exist that can combine SVMs with classi�er chains (E. C.
Gon�calves et al., 2013) and/or with binary classi�ers (W.-J. Chen et al., 2016). Jayadeva et
al. (2007) present an adapted SVMs algorithm, called twin SVMs, which is computationally
e�cient and discovers two dimensional projections of the data since it uses two non-parallel
separating planes by solving two simpler SVMs tasks.

Predictive clustering trees (PCTs) are tree-based methods built within the predictive
clustering framework (Blockeel et al., 1998). This framework learns decision trees called
predictive clustering trees (PCTs) where the top node contains all of the training examples
and then it recursively splits into lower partitions (clusters) of the whole train set. PCTs
can be used for various multi-target prediction tasks, including MLC. Kocev et al. (2013)
propose bagging and random forests of PCTs as ensemble methods for solving the MLC
task and present the improvements of the predictive performance over the classical (i.e.,
single PCTs) scenario.

Decision trees can be used in combination with many of the well-established methods
for solving the MLC task. Gjorgjevic et al. (2013) propose a hybrid method that generates a
tree using decision trees and then use SVMs for making the predictions for the individual
labels in the tree leaves. Next, Madjarov and Gjorgjevikj (2011) present an approach
which combines multi-label model trees with single-label SVMs in such a way that �rst,
they induce the ML model tree and then use binary relevance SVMs for the calculation of
a prediction for each label. Moreover, Wu et al. (2015) propose the ML-TREE approach
consisting of decision trees that internally use SVMs in such a way that at each test node,
an individual one-vs-all SVM classi�er is trained for the evaluation of node splits, which
makes this approach computationally expensive. Furthermore, decision trees can be used
in various domains, such as the domain of gene function prediction. Clare and King (2001)
propose decision trees with a modi�ed entropy function for the calculation of the splits,
learned on gene expression data.

3.1.2 State-of-the-art methods for multi-target regression

Local (problem transformation) methods for MTR Since the local methods trans-
form the problem into t separate single-target models, any known single target regression
algorithm can be used to learn the single-target models. Prominent methods addressing
the MTR task include: ridge regression (Hoerl & Kennard, 1970), support vector regression
machines (W. Zhang et al., 2012), regression trees (Breiman, 1996) and stochastic gradi-
ent boosting (J. Friedman, 2002). Hoerl and Kennard (1970) proposed a separate ridge
regression algorithm that deals with MTR problems.
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Regressor chain (RC) (Spyromitros-Xiou�s et al., 2012) is another problem transfor-
mation method motivated by the multi-label chain classi�er (Read et al., 2011). During
the training process, RC randomly selects a chain (permutation) of the target space, then
builds a separate regression model for each target in consistence with the selected chain.
Since RC uses the actual values of all previous targets in a chain, Spyromitros-Xiou�s et al.
(2012) also proposed regressor chain corrected (RCC) that uses cross-validation estimates
instead of actual values. However, RC and RCC are sensitive to the selected chain order-
ing. In order to avoid this problem, Spyromitros-Xiou�s et al. (2016), proposed ensemble
approaches called ensemble of regressor chains (ERC) and ensemble of regression chains
corrected (ERCC), where they randomly select as many models as the number of distinct
label chains if the number of labels is less than 10. Otherwise, they randomly selected 10
chains and constructed an ensemble of chains.

Multi-target regressor stacking (MTRS) (Spyromitros-Xiou�s et al., 2012) is another
problem transformation method inspired by Godbole and Sarawagi (2004) where multi-
label classi�cation is performed by using stacked generalization. MTRS training is per-
formed in two stages. First, t di�erent single-target models are learned and then, instead
of concatenating the t obtained predictions, MTRS includes an additional training stage,
where a second collection of t separate single target meta-models are learned. At the end,
the predictions are calculated from both stages. The predictions from the second stage use
and adjust the predictions from the �rst stage.

W. Zhang et al. (2012) presented a new problem transformation method based on the
multi-output support vector regression approach. Basically, they extend the actual feature
space and represent the multi-output problem as equivalent single-output problems, that
are solved using the single-output least squares SVRs (LS-SVR) algorithm. The multi-
output model takes into account the target correlations by using the vector virtualization
method.

Recently, J. Wang et al. (2019) propose a multi-target regression method (MTR-TSF)
that embeds the intra-target relationships. First, by using hierarchical clustering on the
output space, they reveal the correlation among the targets and create an additional feature
vector Xindex consisting of the indices of the nodes where speci�c instances belongs to.
Next, they use a boosting regression algorithm to learn a similarity matrix for each target.
Finally, by querying and clustering the similarity matrix, a target-speci�c feature vector
Xtsf is created for all instances and is added to the original feature vector X. At the
end, a prediction model per target is learned by considering the 'merged' feature space
X ′ = X

⋃
Xindex

⋃
Xtsf .

Global (algorithm adaptation) methods for MTR Algorithm adaptation methods
learns a single model for all target variables and thus take into account the dependencies
among the targets. There are many advantages over the local methods such as inter-
pretability, better predictive performances, especially, if the targets are related (Kocev et
al., 2013). Below, we brie�y discuss various algorithm adaptation methods proposed in the
literature.

The �rst attempt to deal with the prediction of multiple target variables are the statisti-
cal methods such as reduced-rank regression (Izenman, 1975). Furthermore, van der Merwe
and Zidek (1980) proposed the general version of a multivariate regression problem of the
James-Stein estimator, called �ltered canonical y-variate regression. Next, lasso regression
Tibshirani (1996) is a popular regression method for the estimation in linear models. It
produces interpretable models while at the same time it is stable. Next, gaussian processes
for MTR are based on the algorithm proposed by Rasmussen and Williams (2006). The
most prominent statistical approach that deals with multiple targets is the curds and whey
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(C & W) method (Breiman & Friedman, 1997).

Predictive clustering trees (PCTs) are tree-based methods built within the predictive
clustering framework (Blockeel et al., 1998). Similarly for MLC, they can be used to
solve MTR tasks. We presented a detailed description earlier. In addition, Appice and
D�zeroski (2007) presented an algorithm called multi-target step-wise model tree induction
(MTSMOTI) for generating a multi-target model tree in a step-wise manner. The tree
model is generated similarly as in PCTs, with the TDIDT algorithm. The di�erence is that
each leaf in a tree model is associated with a set of linear models which generate the �nal
target predictions. Conditional Inference Trees (CTrees) are non-parametric regression
trees embedding tree-structured regression models into conditional inference procedures
and estimate a regression relationship in a multi-target scenario (Hothorn et al., 2006).

A di�erent type of the MTR algorithm is the rule-based algorithm called FItted Rule
Ensemble (FIRE) method, proposed by Aho et al. (2009). This is a method for learning
rule ensembles based on representing an ensemble of regression trees as a large collection
of rules. FIRE uses an optimization procedure (minimization) to select the best (much
smaller) set of rules and determine their respective weights. Furthermore, Breskvar et
al. (2018) present an ensemble method with random output selection (ROS). Instead of
using all target attributes, they randomly select subsets of target attributes when learning
the base predictive models of the ensemble. This additional randomization improves the
performance both in terms of time complexity and predictive accuracy.

The most famous non-parametric distance-based method for the regression task is the
k-nearest neighbor method (Altman, 1992). It takes the average of the values of the k
nearest examples as a prediction. K-nearest neighbour is a �exible algorithm, since it
can use any distance function and any number k (nearest neighbours) (Pugelj & D�zeroski,
2011).

Multiple-input multiple-output (MIMO) support vector regression method is a gen-
eralization of support vector machines (SVMs) (Cortes & Vapnik, 1995) for addressing
the MTR task. The generalization is achieved by minimization of a Lagrangian equation
which has multi-dimensional parameters that have to be optimized (Brouwer et al., 2014;
S�anchez-Fern�andez et al., 2004).

Partial Least Squares Regression (PLS-PLSR) and Principal Component Regression
(PLS-PCR) methods are other methods for multi-target regression which are implemented
in the R software package pls (Mevik & Wehrens, 2007). These methods are commonly
used in many natural sciences and are based on the calculation of the scores obtained by
decomposition of the product matrix of orthogonal scores and loadings. Then regression
coe�cients are calculated using the scores.

Multivariate Adaptive Regression Splines (MARS) is a non-parametric regression method
implemented in EARTH package in R. MARS, as a generalization of the step-wise linear
regression, Hastie et al. (2001) constructs the dependencies between input and output
variables by using a data-driven set of base functions and coe�cients.

Another well-known and widely used method for MTR are the arti�cial neural networks
(NN). They are designed based on human brain to recognize patterns in data. They
can automatically model the non-linearity and can deal with multi-input multi-output
problems. The most often used algorithm for training arti�cial neural networks is the
back-propagation algorithm (Riedmiller & Braun, 1993). Back-propagation algorithm is a
recursive and iterative method which e�ciently optimizes the network weights by following
the gradient descent method that exploits the chain rule. Deep neural networks (DNN)
are arti�cial neural networks containing multiple hidden layers. They update the network
weights by establishing the correlation between input (past events) and output (future
events). There are several variants of DNNs designed based on the speci�c domains that
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they are used for. Convolutional deep neural networks (CNNs) (Krizhevsky et al., 2017)
are used in the domain of computer vision. Recurrent neural networks (RNNs) are used in
various cases of language modeling, such as handwriting and speech recognition (Graves
et al., 2009; Sak et al., 2014).

3.1.3 State-of-the-art methods for semi-supervised MTR

Compared to the research interest for classical supervised MTR methods, the interest
for semi-supervised learning methods is scanty. Therefore, in the following part, we will
present the most prominent developed SSL methods for MTR.

One important attempt of introducing the SSL paradigm is in the �eld of multi-task
learning. Multi-task learning di�ers from multi-target learning in the way that it con-
siders many di�erent single-target learning tasks with possibly di�erent training spaces
with di�erent descriptive attributes. Y. Zhang and Yeung (2009) proposed the supervised
multi-task regression method (SMTR) based on the Gaussian process (GP) with common
shared parameters for the task kernels. Moreover, they extended the SMTR towards semi-
supervised SMTR (SSMTR) by handling unlabeled data with data-driven adaptation of
the GP kernel parameters. Next, Cardona et al. (2015) proposed a method which extends
the GP regression in the spirit of SSL by using the process convolution covariance function
combined with graph-based regularization and took an advantage of unlabeled data in or-
der to improve the performance over supervised GP for regression. Another attempt to
extend the Gaussian process towards the task of semi-supervised learning has been made
by Navaratnam et al. (2007) in the �eld of computer vision on high-dimensional spaces
by sampling a large amount of unlabeled data from the marginal distribution that are
improving the model �tting.

G�onen and Kaski (2014) proposed an extended kernel-based matrix factorization (KBMF)
method which includes the Bayesian network approach for selecting the most informative
source from a set of di�erent kernels. The approach is adjusted to work in a semi-supervised
setting in the way that the unlabeled examples are treated as "labeled with the target mean
value". They tested the approach in the �eld of prediction drug-protein interactions in two
di�erent data sets and showed promising results. On the other hand, Brouard et al. (2016)
proposed a non-parametric kernel-based regression method called input output kernel re-
gression (IOKR) for structured output prediction. IOKR method handles unlabeled data
in the output space by considering the output space as a feature space associated to a
chosen output kernel assigning a higher level of supervision to the feature space. Both,
KBMF and IOKR method, are very complex and hard to understand by non-experts, and
are not domain-speci�c since they are not tested on various domains (KBMF is trained
on two datasets in the domain of protein-drug prediction and IOKR on one NCI-cancer
dataset in the domain of e biological activities of molecules).

Next, prominent work in the �eld of semi-supervised learning on discrete outputs has
been done by Brefeld (2008). They used the co-training paradigm in the process of cre-
ation semi-supervised supporting vector (co-SVMs) by maximizing the agreement among
multiple independent hypotheses. Moreover, they presented a transductive semi-supervised
SVMs, as an unsupervised variant of co-SVMs, where the maximization has been performed
on the agreement among the hypotheses on the unlabeled data.

Another very prominent work in the �eld of semi-supervised learning for MTR has been
proposed by Levati�c et al. (2017). They proposed the iterative concept of self-training by
using an ensemble of PCTs for MTR. Namely, the self-learning method uses the most re-
liable prediction from current iteration as additional data, i.e., target labels in the next
iteration. The reliability of prediction is determined by de�ned threshold applied to the
reliability scores. However, the problem of �nding the proper prediction reliability measure
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is still not resolved. However, Levati�c et al. (2017) presented an approach of automatic de-
termination of reliability scores by exploiting out-of-bag error when learning the ensemble.

Motivated by introduced variance/heuristic function on descriptive and predictive space
proposed by Blockeel et al. (1998), Levati�c et al. (2018) proposed SSL for MTR by using
PCTs with an adapted variance function in the PCT algorithm by introducing a parameter
ω for controlling the level of supervision in both, descriptive and predictive space. They
presented an extensive study on several benchmark MTR datasets by using scenarios with
di�erent percentages (5%, 10%, 20% and 30%) of labeled data in the learning set and
showed that even with the 5% of labeled data, the availability of the model is guaranteed,
since the descriptive/ clustering power of the learned model is obtained from the variation
in the descriptive space. The predictive performance of these models is not satisfactory
because of the small information in the predictive space, but possible knowledge discovery
based on �nding groups of data examples could be helpful in order to obtain some insight
into the potential labels of such examples.

3.2 Methods for HMTP

In this section, we present the existing (state-of-the-art) methods, related to the task of
hierarchical multi-target prediction, i.e., for hierarchical multi-label classi�cation (HMLC)
and hierarchical multi-target regression (HMTR), respectively.

3.2.1 State-of-the-art methods for HMLC

Rousu et al. (2006) presented Bayesian and kernel-based methods in the domain of hier-
archical multi-label classi�cation. Their approach is working on the large margin principle
for structured output prediction. The modeling pipeline of this hierarchical approach does
not require additional checking of the hierarchical constraint.

Next, Koller and Sahami (1997) propose a Bayesian classi�er for learning hierarchically
structured text documents, where the text documents are at each leaf of the hierarchy.
The hierarchy constraint is ensured by predicting one topic at each level of the hierarchy
until the documents reach the bottom level and the errors which are made in higher levels
of the hierarchy can not be recovered in the lower levels.

An incremental approach for HMLC is presented by Cesa-Bianchi et al. (2006). They
introduce a novel approach which incrementally learns a linear classi�er for each node of the
taxonomy. By de�ning a new hierarchical loss (H-loss) function, they evaluate classi�ers
for each training node in a top-down fashion.

Kiritchenko et al. (2006) present a method for hierarchical text categorization by en-
larging the label sets of training examples in order to achieve consistency with the given
hierarchy of classes. For learning they applied a multi-class learning algorithm and the
labels that were misclassi�ed were then re-labeled.

In the domain of gene function prediction, given gene ontology (GO), Barutcuoglu et al.
(2006) present a Bayesian network approach for hierarchical classi�cation, learning separate
SVMs models for each class and then combining the predictions in the Bayesian network.
The combination of these two methods (Bayesian network and SVMs) for solving the
hierarchical classi�cation task has proven to be useful because the SVMs margin outputs
can be easily converted into conditional probabilities for the Bayesian network.

Clare and King (2003) present the C4.5H method for HMLC which is a hierarchical
variant of the well-established C4.5 method for MTP (J. R. Quinlan, 1993). Moreover,
Clare (2003) extends the C4.5 decision tree method from Clare and King (2001) toward
hierarchical setting in the context of functional genomics.
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The work of Blockeel et al. (2006) presents a comparative analysis between predictive
clustering trees for HMLC and single-label classi�cation (HSC) approach using tree-shaped
hierarchies. Vens et al. (2008) extend the PCTs for HMLC towards hierarchies represented
in a DAG (directed acyclic graph) format and show that global decision trees, which create
one tree for predicting all classes, are superior than the local decision trees, separate tree
for each class.

The naive Bayes approach was adapted towards hierarchical multi-label classi�cation
in the work presented by Silla Jr. and Freitas (2009). Moreover, Cerri et al. (2012) discover
HMLC rules using a search heuristic. In another research work, Cerri et al. (2014) represent
a label hierarchy as a sequence of chained arti�cial neural networks (ANNs) where the
outcome of the �rst ANN is used as an input of the next network in the sequence.

Alaydie et al. (2012) present HiBLADE (Hierarchical multi-label Boosting with LA-
bel DEpendency) boosting-based algorithm for HMC, where for each classi�er, at each
iteration, the training set is selected in accordance with the given label hierarchy.

In the domain of protein functions prediction, Barros et al. (2012) propose the HMC-
PC algorithm which is based on the probabilistic clustering method adapted for solving
HMLC tasks where the hierarchies can be both, DAG and tree-shaped. In order to generate
the predictions of the class vectors, it uses the probabilities of cluster membership for each
label. Their results show comparable results with the state-of-the-art methods for HMLC.

3.2.2 State-of-the-art methods for HMTR

To begin with, multilevel analysis refers broadly to the methodology of research and data
structures that deal with nested data, i.e., including more than one type of unit. This is
directly related to involving several levels of aggregation. Consider an example from educa-
tional research, where students from di�erent schools are considered, and their performance
(e.g., grades) is being predicted. Then, a separate regression model can be �tted within
each school, and the model parameters from these schools can be modeled as depending
on each school properties (such as the socioeconomic status of the school's neighborhood,
whether the school is public or private, and so on). The student-level regression and the
school-level regression here are the two levels of a multilevel model. The lowest level is
the student-level and each student belonging to this level can be linked with an appropri-
ate class, and then each class to an appropriate school and so on. With this, some sort
of dependency levels (i.e., a hierarchy) are created. Moreover, in the higher levels in the
multilevel model, regression parameters (hyper-parameters) can be �tted for the regression
model. That is the reason why in most of the research, the term "multilevel analysis" is
mostly used interchangeably with "hierarchical linear modeling", although strictly speak-
ing, they are distinct. Another application of the hierarchical linear modeling approach
can be found in Kuo et al. (2000), where a two-level hierarchical linear model with mul-
tiple outputs was employed to analyze information obtained from two di�erent groups of
informants (child and parent participants) in order to assess the demographic risk factors
on children's exposure to violence (ETV) and how these e�ects vary by informants. The
main advantage of multilevel modeling is spreading of a residual components through each
level of a hierarchy, thus the overall variance is partitioned and moreover, the predictors
are included at each level. Hence, with application of multi-target regression at each level,
the model can deal with between-level relations in the hierarchy. The latter makes multi-
level modelling superior than regression modeling with respect to the model performance
(Gelman, 2006). An extensive review for multilevel modeling is given by de Leeuw and
Meijer (2008) and Snijders (2011).

Next, online analytical processing (OLAP) is a method which allows to extract and
analyze data from multiple sources at the same time. The data is multidimensional, hence
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the extracted information can be compared in di�erent ways. For example, a book store
might compare their book sales in September with sales in August, then compare those
results with the sales from another location, which might be stored in a di�erent database.
The OLAP data is stored in multidimensional databases and all attributes are considered as
a separate dimension. Considering the multi-dimensionality, the OLAP data is structured
in a hierarchical form by using some of the OLAP tools: consolidation (roll-up), drill-
down, and slicing and dicing (O'Brien & Marakas, 2010). This structuring and hierarchical
representation enables a complex calculations and manipulation of the data (trend analysis,
data modeling) (Agrawal et al., 1997). The natural relationships in the data by using the
OLAP method are also researched by Nguyen et al. (2000) by using a partially ordered set
of levels (dimension schema).

Predictive clustering trees (PCTs) for the HMTR task were proposed recently by Mileski
et al. (2017). The original PCTs for MTR are extended to the HMTR task with de�ning
the prototype function and variance function. All operations for aggregation can be used as
prototype functions, but keeping in mind that with some of them (for example, minimum
or maximum) after averaging, the hierarchical constraint (parent-child relation within the
hierarchy) can be violated. For the variance function, the weighted Euclidean distance is
used where the weights are de�ned such that they decrease exponentially with the depth
of the node in the hierarchy.

3.3 Methods for Structuring the Output Space in MTP

In contrast to the relevant work exploring local and global models for solving the MTP
task, there are not so many well-established methods that explore the structure of the
output space and possible dependencies in the space of target attributes. In the following
section, we will present some of the few attempts made in that direction.

Tsoumakas and Vlahavas (2008) propose a transformation-based ensemble method for
random k-labelsets (RAkEL) for MLC by using existing algorithms for MLC. The RAkEL
algorithm creates an ensemble by random sampling a small subset with k labels for each
base model. The sampled subsets are structured as a label powerset and a multi-class
classi�er is then used. Di�erently, Tsoumakas et al. (2008) present a data-driven approach
called HOMER (Hierarchy Of Multilabel classi�ERs) for e�ective and computationally
e�cient multi-label learning. The idea behind this approach is to structure the large label
space into a tree-shaped hierarchy of smaller MLC tasks learned on a smaller subset of
labels.

Joly et al. (2014) propose a method for dimensionality reduction of the output space
by random projections of it, mainly focused on the MLC task. The projections are made
in such a way that they preserve distances in the projected space. The reduction of the
variance function is made on the projected space, while the predictions are made directly
in the original output space using a decoding procedure. Similarly, Joly (2017), proposes
a gradient boosting method for MTR which automatically adapts the target correlations
by random projection of the output space.

Madjarov et al. (2016) present a comprehensive study of di�erent data-derived methods
for structuring the label space in the form of hierarchies for MLC. Namely, they use the label
co-occurrence matrix to obtain a hierarchy of labels by using several clustering algorithms
such as: agglomerative clustering with single and complete linkage, balanced k-means and
PCTs. Their results say that divisive clustering methods (balanced k-means and PCTs)
perform the best.

Next, Szymanski et al. (2016) present a study which addressed the question whether
data-driven methods on a graph consisting of label co-occurrences are signi�cantly better
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than a randomly generated graph of labels for MLC. This method is actually a data-driven
version of the RAkEL method (Tsoumakas & Vlahavas, 2008). Their results show that in
general, the data-driven approach is superior to randomly created graphs of labels.

Duivesteijn et al. (2012) propose a method called LeGo for structuring the label space
in MLC by �nding the local patterns (LeGo puzzles) capturing the intrinsic properties in
the label space. The local patterns are represented with binary features which are further
used as an input in the ML classi�er.

S. Wang et al. (2014) propose a method for structuring the label space by representing
the label dependencies in the form of a Bayesian network, where the nodes of the network
are the labels and the edges are conditional probabilities. The proposed method has shown
high �exibility over the existing MLC methods in terms of handling label incompleteness.

Wu et al. (2016) propose an ML-TREE ensemble approach where the actual relevant
labels are kept for a given instance during the model training process. In the learning
process, for each instance with multiple labels, they transfer the hierarchical tree of relevant
labels in order to exploit the intrinsic label dependencies.

Most recently, Zhen et al. (2018) present a deep learning approach for considering
the intra-target dependencies. Namely, they propose a multi-layer multi-target regression
(MMR) method where intra-target dependencies are explicitly encoded by using matrix
elastic nets (MEN) to create the structure of the target space (structure matrix S), which
enables learning of the target correlations by minimization of the rank(S). Then, the
kernel trick is used in order to solve the problem of non-linearity in the representation of
the target dependencies.
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Chapter 4

State-of-the-art Methods for

Modeling Soil Functions

The literature survey emphasizes that earlier modeling activities of soil functions have
been based on classical mathematical models, including physical-based models that repre-
sent underlying soil functions as dynamic systems: DAISY (Abrahamsen & Hansen, 2000),
AGROSIM model family (Mirschel & Wenkel, 2007); mechanistic models: DNDC (Gilh-
espy et al., 2014), STICS (Brisson et al., 2003), CENTURY (Parton & Rasmussen, 1994),
and DayCent (Parton et al., 1998); and large-scale GIS models: EPIC (Balkovi�c et al.,
2013).

The modeling setup in the project LANDMARK (LANDMARK, 2019) was focused on
two concepts such as qualitative multi-criteria decision modeling (MCDM) as a concept of
human intelligence and machine learning (ML) as a concept of arti�cial intelligence (AI).
The former is emphasized as an approach due to the ability to consider expert knowledge
and deliver knowledge-based support for decision-making. The latter, as shown in the
remainder of the section, is able to enrich modeling e�orts and improve overall predictive
and descriptive performance on modeled phenomena. However, a very little e�ort towards
using of ML methods in �tting of the decision support models was made. Motivated by
this, in this dissertation we are more focused on potential ML uptake to the expert-based
models in order to facilitate and improve the decision making process.

The need of backing up decision-making with data-driven approaches is mainly ini-
tialized due to limited performance of knowledge-based models and vast potential of new
discoveries and better understandings, available from data collected recently with advances
of the technology (Debeljak et al., 2007; Kocev et al., 2010; Trajanov et al., 2018). How-
ever, harmonization of data coming from di�erent sources may be a hurdle in acquiring
expert knowledge due to experts' unavailability or opposite understandings and con�ict-
ing opinions (Shaw & Woodward, 1990). Data harmonization and warehousing is beyond
the scope of this thesis, but once the data harmonization is performed, machine learning
gives a great opportunity to facilitate improved understanding of soil functions by either
modeling them individually or simultaneously.

In order to have a clear overview of improvements in our research outcomes, literature
on state-of-the-art methods for modeling soil functions including both, knowledge-based
MCDM with decision support systems (DSS) and ML, is extensively reviewed in the fol-
lowing subsections for each soil function, separately.
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4.1 Primary Productivity

Primary productivity is one of the most important soil functions for the farming commu-
nities, since it represents the capacity of soil to produce nutritional (caloric) biomass such
as fuel, �ber, food and feed. Based on the UN predictions, the global agro-production
must increases by 60% to ful�ll the requirements of the inevitable growth of the world
population by the year 2050 (WWAP, 2015). Therefore, farmers strive to �nd a proper
tool for assessing the primary productivity by using existing attributes that can easily be
measured or estimated.

Motivated by this fact, computer and data scientists attempt to satisfy the farmers'
requirements by either structuring the collected knowledge using the MCDM models or
mining the existing data that experts/farmers have a vast amount of and creating data-
driven models using ML algorithms.

Primary (biomass) productivity is driven by many factors, but with a collection of
proxy-indicators, it can be modeled to an acceptable level of accuracy. As we described
previously, proxy indicators belong to either soil (S), environmental (E) and management
(M) -related indicators. Mueller et al. (2010) and Toth et al. (2013) present the basic E and
M attributes for primary productivity. The land management attributes are land-use types,
pest management and fertilization, and environmental factors are climate (temperature and
precipitation), geographical data (slope degree, altitude, longitude, latitude), etc. However,
there are many other soil- and crop-related attributes that a�ect primary productivity:
crop rotation and stocking rate, as well as other physical (soil structure), chemical (micro,
macro and other soil constituents) and biological activity (pH, soil organic matter, etc.)
attributes.

4.1.1 DSS for modeling primary productivity

The most recent study by Thoumazeau et al. (2019) presents Biofunctool R© framework
for assessing the quality of soil, based on an decision modeling integrative technique that
takes into account physical, chemical and biological activities of soils. The selection of the
12 indicators for determining three soil functions: carbon transformation, nutrient cycling
and structure maintenance, was performed by �eld visits and experiments through a �top
down� approach and expert decisions (Bockstaller & Girardin, 2003; Gri�ths et al., 2016).
Structure maintenance is one of the aggregated proxy-indicators of primary productivity.
The results of this study consist of indicator redundancy analysis and indicator sensitivity
to the land management represented with correlation matrices.

Another multi-criteria decision support tool for qualitative assessment of di�erent crop
protection systems of apple production by aggregation of sustainability attributes is pre-
sented by Mouron et al. (2012). The sustainability is modeled by DEX methodology (Bo-
hanec & Rajkovi�c, 1990) integrated in the DEXi decision support tool (Bohanec, 2014).
In order to increase the e�ciency of the innovation process, Pelzer et al. (2012) developed
the DEXiPM (DEXi Pest Management) tool for ex-ante assessment of the sustainability
of arable cropping systems. It relies on 75 indicators that describe the underlying crop-
ping system. DEXiPM is evaluated on data about winter crop- and maize-based cropping
systems from a French region.

Craheix et al. (2016) propose the MASC R©(Multi-criteria Assessment of the Sustain-
ability of Cropping systems) decision support system for assessing crop sustainability. It
is evaluated on 31 cropping systems from six di�erent regions in France belonging to a
variety of pedoclimatic zones. The MASC model is developed with DEX methodology
(Bohanec, 2014) and conceptualizes the crop sustainability by breaking it down into three
dimensions that de�ne the sustainability: economic, social and environmental dimension.



4.1. Primary Productivity 35

The hierarchical structure of the qualitative multi-criteria decision model consists of 65
aggregated attributes.

Bohanec et al. (2017) propose SIGMO � a DEX model for assessing genetically modi�ed
(GM) crops. SIGMO model is combined with data-driven support for GMO crop species
produced in di�erent countries worldwide. The decisions are based on supply chains for
potential presence of authorized and unauthorized GM organisms (GMOs). This research
was a part of the DECATHLON FP7 EU project (DECATHLON, 2016).

Qualitative multi-criteria decision models on primary productivity, developed within
the project LANDMARK, consists of 25 input attributes including soil properties, cropping
speci�cations, environmental conditions and management practices (Sand�en et al., 2019).
Primary productivity soil function is decomposed into smaller and easier sub-problems:
crop, soil, management and environment proxy-indicators, with quanti�ed e�ect to the
outcome of 20, 22, 28 and 30%, respectively. The model was validated on 399 sites from
two di�erent pedoclimatic zones across France (Metzger et al., 2005), showing overall
accuracy of 40%.

4.1.2 ML for modeling primary productivity

As part of the LANDMARK project, Trajanov et al. (2018) apply classi�cation trees
for modeling primary productivity using data collected in France. The performance has
shown to be signi�cantly better compared to the previously built DEX model (Sand�en et
al., 2019). Upon validation, the aforementioned DEX model has been updated accordingly
and its accuracy improved to 77%.

The rest of the related work in this segment is mainly concentrated on modeling net
primary productivity (NPP), i.e., seasonal or annual yield expressed as a quantity produced
from a particular arable area, as a proxy-value to valuation of primary productivity soil
function. The literature cluster around modeling performed on either structured data
about environmental conditions and agricultural management practices, or unstructured
data, e.g. multi- and hyper-spectral images and remote sensed data.

Marinkovi�c et al. (2009) apply M5 model trees (R. J. Quinlan, 1992; Y. Wang & Wit-
ten, 1997) for predicting annual yield of 3 di�erent crops: soy bean, maize and sugar
beet. Furthermore, they use best-�rst search (Witten & Frank, 2005) and genetic algo-
rithm (GA) for attribute selection (Goldberg & Holland, 1988). The data were collected
in a period from 1999 to 2008, including annual yield in the Serbian province of Vojvod-
ina, provided by the Faculty of Agriculture in Novi Sad, Serbia, and comprised weather
attributes (minimal, maximal, average monthly temperature and precipitation), hydro-
meteorological attributes: evapotranspiration (potential and real) and hydrophitothermic
index. They learn 3 single model trees for each crop and show that the data-driven mod-
els are at least in compliance with the existing crop production models. With attribute
selection using GA they improve the soybean model by 5%, considering the correlation
coe�cient.

A research presented by Arumugam (2017) is based on the application of various data
mining techniques in the prediction of the maximum yield of paddy crops. The dataset
was constructed from 200 di�erent questionnaires distributed to various farmers cultivating
paddy along the Thamirabarani river basin in India, and comprises the following descriptive
variables: soil type, crop variety, seed quality, seed rate, season, fertilizer type, amount
of used fertilizer, amount of used pesticides, rainfall, land preparation method, sowing
procedure, crop rotation, natural manure, soil fertility and temperature. In the study,
the following ML techniques for classi�cation are used: J48 (classi�cation tree) (J. R.
Quinlan, 1993), random forest (Breiman, 2001), decision stump and RepTree by using
WEKA software (Witten & Frank, 2005) and the random forest has proved to be the best
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method with a predictive accuracy of 97.5%.

Ali et al. (2016) present a study for the application of machine learning on Irish grass-
lands data from 2 farms: Moorepark and Grange taken by in-situ measurements. The data
consist of images taken from the following satellite families: ALOS-2, Radarsat2, Sentinel,
TerraSAR-X, TanDEM-X/L. The problem they address is the estimation of grassland pro-
ductivity. They developed multiple linear regression (MLR) (Tabachnick & Fidell, 2001),
arti�cial neural networks (ANNs) (Hop�eld & Tank, 1985) and adaptive neuro-fuzzy in-
terface system (ANFIS) (Jang, 1993) models and showed that the ANFIS model provides
the best estimation of the grassland productivity compared to the MLR and ANNs. Next,
Wolanin et al. (2019) propose a hybrid machine learning approach combining process-based
modeling and soil-canopy energy balance radioactive transfer model (SCOPE) (van der Tol
et al., 2009) on optical data from Sentinel-2 and Landsat 8 satellites in order to predict crop
gross primary productivity (GPP). They show good estimation accuracy of their hybrid
model although they do not use environmental data on climate conditions.

Moreover, Pantazi et al. (2016) use the machine learning on remote sensing high-
resolution data about factors a�ecting the crop growth and yield in UK. They use counter-
propagation arti�cial neural networks (CP-ANNs) (Fjodorova et al., 2010), XY-fused Net-
works (XY-Fs) and Supervised Kohonen Networks (SKNs) (Melssen et al., 2006) as learning
techniques. Their results show that SKNs are the best performing method for predicting
wheat yield in a 22ha �eld in Bedfordshire, UK.

Furthermore, Chlingaryan et al. (2018) presents a review of studies for using machine
learning in the last 15 years for crop yield and nitrogen status estimation. They compare
di�erent ML approaches for modeling productivity phenomena using remotely sensed data
from precision agriculture (PA).

Crane-Droesch (2018) propose a semi-parametric variant of deep neural networks (SNNs)
for prediction of corn yield in US Midwest. The data is temporal (daily basis) from the
period 1979-2016 and consists of the variables including GIS information about the sites
(longitude, latitude and county), minimum and maximum air temperature and relative
humidity, precipitation, incoming shortwave radiation (sunlight), and average wind speed.
They show that their approach outperforms the classical ordinary least squares (OLS)
regression (Goldberger, 1964) and non-parametric deep NNs (Deutsch & Journel, 1998).

Kung et al. (2016) present an ensemble neural network (ENN) approach for predicting
agriculture yield in Taiwan. Data is provided by The Council of Agriculture in Taiwan
and consists of estimations of planted areas and yield produced. The ENN method con-
sists of generating di�erent networks, each with a di�erent number of hidden layers and
neurons. Those who are not satisfying the desired accuracy are discarded and the predic-
tion is calculated by averaging the predictions from the existing networks of the ensemble.
ENN method improves the predictive performance over the classical back-propagation NN
(Riedmiller & Braun, 1993) and multiple regression analysis (MRA) (Aron & Aron, 1999)
by 12.4%.

Ying-xue et al. (2017) propose the support vector machine-based open crop model
(SBOCM) for predicting the rice production in China. The data is obtained from the
Chinese Academy of Science from di�erent weather stations and consists of meteorological
variables and the outputs of rice development and yield records. The SVMs was used to
investigate over four evaluating objectives, optimal kernel function, penalty coe�cients,
hyper-parameters. The most limiting objective for model optimization are the penalty
coe�cient, followed by kernel function and hyper-parameters.
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4.2 Water Regulation and Puri�cation

Water regulation and puri�cation is substantial for providing clean water for drinking that
meets the criteria of environmental pollution set by the EU Water Framework Directive
(Directive 2000/60/EC of the European Parliament and of the Council) (WFD, 2000).
Water regulation and puri�cation is de�ned as the capacity of soil to receive, store and
conduct water for subsequent use while minimizing the e�ects of prolonged droughts, �ood-
ing and erosion (Schr�oder et al., 2016). Water puri�cation is one of the most important
soil processes for reducing the pollution of natural water bodies and minimizing pollution
spread to plants, animals and humans. In agriculture, water transports nutrients and sed-
iments, including nitrogen (N) and phosphorus (P), into receiving water bodies, through
water runo� and leaching pathways, and therefore, causes pernicious e�ects on the aquatic
ecosystem. Agriculture is one of the main sources of nitrate and phosphate pollution of
water bodies (FAO, 2003; OECD, 2001).

The water regulation and puri�cation can be divided into three pathways : (1) water
runo� (horizontal transport of water over soil surface, i.e., the maximal threshold to which
a soil produces overland �ow); (2) water storage (i.e., the capacity of soil to receive and
store a water for reusing) and (3) water percolation (i.e, the degree of soil drainage, i.e., the
extent to which soil pro�le allows the water to drain through it). Water movement is the
main pathway of nitrogen (N) loss to groundwater and phosphorus (P) runo� (Daly et al.,
2018). The pathways 1 and 3 are very critical for increasing of the nutrient transport,
therefore, in the puri�cation process, the erosion and sediments loss must be considered.

4.2.1 DSS for modeling water regulation and puri�cation

Pierce et al. (2016) describe the need of a decision support tool for e�cient groundwa-
ter management and present an overview of decision support systems and processes for
assessing the groundwater regulation.

Le Page et al. (2012) present an integrated DSS for assessing groundwater based on
remote sensing in semi-arid aquifer in Morocco. The DSS consists of two tools, one tool
for the estimation of Agricultural Water Demand (SAMIR) from satellite images and the
other integrates water resources planning (WEAP) including a groundwater model (MOD-
FLOW). After the validation of estimates from the DSS model, satisfactory results are
obtained.

Moura et al. (2011) propose a decision support tool for regulation of storm-water in�l-
tration systems that reduce water �ows in downstream sewers, minimize the over�ows in
surface waters and make it possible to recharge groundwater. Next, Hamouda et al. (2009)
develop a decision support system for selecting the water treatment process and present an
overview of the existing decision support methods which incorporate existing knowledge
about water treatment systems.

Letcher (2005) present a decision support platform called Water Allocation Decision
Support System (WAdss) developed for the management of trade-o�s between stakeholders
and policymakers with interests and concerns. WAdss assesses water storage across three
water systems (unregulated, regulated and groundwater) and is validated on the data from
two NSW catchments (Gwydir and Namoi). The WAdss tool is built on expert knowledge
acquired from a large number of stakeholders.

Recio et al. (2005) propose a decision support tool for managing water resources in
the agricultural environment. Objective of the DSS is to assist Eastern Mancha Central
Irrigation Board representatives to evaluate water use policies in an e�cient way and
maintain the sustainability of natural resources in combination with regional economic
development (primarily based on irrigation farming). The DSS incorporates two models,
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the econometric and the hydro-geological model. The former estimates the evolution of
the regional crops map, the crop yields and the associated regional gross prices. The latter
simulates the River J�ucar basin and its associated aquifer model.

Navarro-Hell��n et al. (2016) develop a soil irrigation decision support system (SIDSS)
for managing irrigation systems in agriculture. Objective of SIDSS is to generate an irriga-
tion plan and to optimize (i.e., minimize) water usage in an accurate way, by using soil and
climate variables. Similarly, Giusti and Marsili-Libelli (2015) describe Fuzzy Decision Sup-
port System (FDSS) for smart irrigation planning and improving irrigation performances
by reducing unnecessary water usages.

LANDMARK team of experts for modeling the soil function water puri�cation and reg-
ulation, decomposes the function into three sub-phenomena: water storage, water runo�
and water percolation � each being a proxy-indicator (Wall et al., 2019). Down the hi-
erarchy, proxy-indicators are estimated with 48 attributes from soil (S), environment (E)
and management (A) groups of attributes, mainly composed by an extensive survey of
farmers' and policy-makers' knowledge (Bampa et al., 2019). The list comprises attributes
on precipitation, evapotranspiration, soil organic matter, texture and dispersion, N and P
surpluses, soil moisture de�cit, water holding capacity, plant rooting depth, etc.

4.2.2 ML for modeling water regulation and puri�cation

Related work on modeling water puri�cation and regulation is mainly focused on modeling
water loss with its pathways, sediment movements and water quality from biological and
physical processes.

Dou and Yang (2018) present di�erent machine learning approaches for modeling evap-
otranspiration (ET) in four main ecosystems on di�erent spatial scales. They used both
extreme learning machine (ELM) (Huang et al., 2012) and adaptive neuro-fuzzy inference
system (ANFIS) (Jang, 1993) and the hybrids of ELM and ANFIS methods to estimate
the daily ET. Three EML hybrids are considered based on the three activation functions.
The hybrids of ANFIS algorithms are generated based on consequent parameter optimiza-
tion with least squares and premise parameters with gradient descent. They achieved a
signi�cant di�erence regarding the modeling performance among four major ecosystem
types.

Liu et al. (2018) present a study for the estimation of water quality dynamics, partic-
ularly by the association between spatial variability and catchment characteristics. They
evaluated machine learning techniques on a dataset of nine water quality constituents col-
lected from 32 monitoring sites for the period 2006 to 2016, across the Great Barrier Reef
catchments (Queensland, Australia). Using dimensionality reduction with Principal Com-
ponent Analysis (PCA) (Jolli�e, 2002) they identi�ed four groups of sites with a similar
spatial pattern, which can determine the key catchment characteristics helping to assess
the water quality.

Soil erosion is a process that a�ects the environment negatively and the ability to model
it increases its understanding. Therefore, Teng et al. (2019) propose the use of machine
learning for modeling soil erosion in China. They use the Random forest algorithm for
estimating soil erosion. The input (descriptive) data are satellite images, from which soil
erodibility and a set of environment factors, were extracted. The results show an average
erosion rate in China of 1.44t/ha/yr. Moreover, Castrillo and Garc��a (2020) propose
a study for the estimation of high frequency nutrient concentrations from water quality
surrogates using the Random forests method for regression. The data were mostly collected
by surrogate measures. They compare their results with the results obtained by linear
regression models and obtain around 60% of improvements in the performance according
to the RMSE measure.
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In their study, Ahmed et al. (2019) predict water quality parameters consisting of pH,
ammoniacal nitrogen (AN) and suspended solid (SS). They collected pretty noisy sensor
data from monitoring stations in the Johor River Basin in Malaysia. They use di�erent
machine learning techniques including: Adaptive Neuro-Fuzzy Inference System (ANFIS)
(Jang, 1993), Radial Basis Function Neural Networks (RBF-ANN) (Faris et al., 2017),
and Multi-Layer Perceptron Neural Networks (MLP-ANN) (Hastie et al., 2009). Due to
the presence of noise in the data, the predictions were unsatisfactory, however, they have
applied an augmented wavelet de-noising variant of ANFIS (WDT-ANFIS) in order to
obtain better predictions. The model was validated with �eld data from 2009-2010 and
achieved a performance with a coe�cient of determination R2 ≥ 0.9.

Furthermore, D. T. Bui et al. (2020) present a study about application of various well-
known standalone machine learning techniques and novel hybrid methods for predicting
water quality indices (WQI). They compiled six years (2012 to 2018) of monthly data
from two water quality monitoring stations within the Talar catchment (Iran). The meth-
ods they used include four standalone methods: random forest (RF) (Breiman, 2001),
M5P (R. J. Quinlan, 1992; Y. Wang & Witten, 1997), random tree (RT), and reduced
error pruning tree (REPTree) (Witten & Frank, 2005), along with 12 novel hybrid meth-
ods as combinations of the standalone methods with bagging (BA) (Breiman, 1996),
CV parameter selection (CVPS) (Kohavi, 1995) and randomizable �ltered classi�cation
(RFC) (Witten & Frank, 2005). Using 10-fold CV and 70/30% division of train/test
dataset, they obtained the best predictive performance with the Hybrid BA-RT method
(R2 = 0.941, RMSE = 2.71,MAE = 1.87, NSE = 0.941).

4.3 Carbon Storage and Climate Regulation

The carbon sequestration and climate regulation plays an important role in regulating
atmospheric greenhouse gases (GHG) such as carbon dioxide (CO2) and nitrous oxide
(N2O). Regulation is achieved by either improved sequestration or limited emission of
particular gasses. Improvement of soil sequestration service relies on the optimization of soil
property to absorb CO2 through pathways naturally designed to convert it to soil organic
carbon. Such improvement can be achieved by intervening on soil physical properties or
adaptation of soil cover, i.e., forestation.

Unlike sequestration, climate regulation soil ecosystem service reacts in the opposite
direction and aims at limiting emission of GHG to the atmosphere. Changes are mainly
dictated by on-surface land management for agricultural purposes. The transformation
of soil organic carbon (SOC) to CO2 in soil ecosystems mainly occurs because of the
conversion of nature (for example forests) to arable land. On the other hand, N2O emission
occurs because of the microbial transformation of applied fertilizer, which contains reactive
nitrogen (N), to the agricultural land. N2O emissions can occur indirectly as well, through
ammonia (NH4) and nitrate (NO−3 ), when reactive N is applied to other ecosystems.

Related work on processes that correspond to carbon sequestration and climate reg-
ulation is mainly framed around the management of SOC storage and its improvement
by modeling e�ects of physical, chemical and biological soil properties on sequestration in
di�erent terrestrial ecosystems.

4.3.1 DSS for modeling carbon storage and climate regulation

Biofunctool R© framework (Thoumazeau et al., 2019) is a decision support integrative tool
for assessing soil quality. This tool includes physical, chemical and biological activities
of soils and consists of three assessing protocols among which carbon transformation can
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be found. The indicators used to assess carbon transformation were: cast density (Cast),
bait lamina (Lamina), Permanganate OXidizable Carbon (POXC), basal soil respiration
(SituResp) and two litter indices (Fragment and Skeleton).

LANDMARK modeling activities on carbon sequestration and climate regulation result
in a DEX model that decomposes the soil function index into three sub-processes (proxy-
indicators): carbon sequestration, reduction of N2O and CH4 emissions (Van de Broek et
al., 2019). The proxy indicators are estimated from the list of basic management and envi-
ronmental attributes. Validation of this model is not completed due to lack of data related
to this soil function in di�erent climate zones. However, partial validation is performed
based on evaluation of the proxy-indicators with data from European long-term experi-
ments. The partial validation shows that the model is generally able to correctly assess
the e�ect of di�erent management practices on carbon sequestration and N2O emissions.

4.3.2 ML for modeling carbon storage and climate regulation

Xu et al. (2018) use the statistical learning method generalized linear model (GLM) (Nelder
&Wedderburn, 1972) for exploring the variance of carbon storage across di�erent terrestrial
ecosystems in China. The spatial patterns and the main drivers of C storage remain
unclear due to the lack of data. However, GLM reveals some insights that climate, soil
texture and nutrients are the main drivers of regulating spatial patterns of carbon storage.
Similarly, Gardi et al. (2016) use GLM in the statistical analysis of their LUKAS data
about determining the High Nature Value Farmland (HNVF), which supply the process of
carbon sequestration. Considering soil organic carbon as a proxy for carbon storage, they
compare HNVFs with soils that endure more conventional land management (nHNVFs)
and study the consequences of diverse land uses and geographic regions as additional
descriptive attributes. Their results show that soil organic carbon is higher in HNVF than
in nHNVF at the European level and the di�erence is mainly a�ected by the geographic
region and land use type.

E. Bui et al. (2009) presented a predictive modeling technique for predicting soil organic
carbon (SOC) in agricultural regions in Australia by using decision trees. As an input,
they use the national database of soil data, soil maps, digital surfaces of climate, elevation,
and terrain variables, Landsat multi-spectral scanner data, lithology and land use. They
found that despite the temperature, soil moisture level seemed to be the most important
driver of SOC at the continental scale. Moreover, Mahmoudzadeh et al. (2020) present a
study for the estimation of SOC for accurate monitoring of carbon sequestration. The data
are collected from western Iran and comprise 865 soil samples and 101 input (descriptive)
variables. They use �ve ML algorithms include: random forests (RF) (Breiman, 2001),
Extreme Gradient Boosting (XGBoost) (T. Chen & Guestrin, 2016), Cubist (CU) (Kuhn
et al., 2014), k-Nearest Neighbor (kNN) (Altman, 1992) and Support Vector Machines
(SVMs) (Cortes & Vapnik, 1995). The best method for predicting the spatial distribution
of SOC was the RF method (RMSE = 0.35% and R2 = 0.60). In addition, the most im-
portant descriptive variables for predicting SOC are: rainfall, valley depth, terrain surface
texture, air temperature, channel network base level and terrain vector roughness.

Schillaci et al. (2017) present a study for modeling topsoil SOC concentration from
remote sensing data collected in a period 1998-2009 from cultivated areas in Sicily (Italy).
The machine learning method they use is boosted regression trees (BRT) (Elith et al.,
2008). Results show content performance, with coe�cient of determination (R2) between
0.61 and 0.69. Driving parameters of the SOC concentration have shown to be soil texture,
land use, rainfall and topographic indices related to erosion and deposition.

Furthermore, Ottoy et al. (2017) applied four machine learning techniques for topsoil
and subsoil SOC modeling on data from nature reserves in Flanders (Belgium). They
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apply multiple linear regression, boosted regression trees (Elith et al., 2008), arti�cial NNs
(Hop�eld & Tank, 1985) and least-squares SVMs (Suykens & Vandewalle, 1999). The best
performing method is boosted regression trees, which has lowest cross-validation error and
provides insight into the relative importance of predictors.

Taki et al. (2018) consider the phenomena of GHG emission as a non-linear process and
perform a study on modeling intrinsic variables of GHG, which directly a�ect the carbon
sequestration. The study comprises di�erent non-linear ML algorithms for multi-target
prediction such as: arti�cial neural networks (ANNs) (Hop�eld & Tank, 1985), multi-layer
perceptron (MLP) (Hastie et al., 2009), radial basis function (RBF) algorithm (Faris et al.,
2017) and support vector machine (SVM) (Cortes & Vapnik, 1995). Modeling is performed
on the remote sensing data from Shahreza city, Isfahan province, Iran, represented with
the following sets of attributes: air, soil and plant temperatures (Ta, Ts, Tp) and energy
exchange in a polyethylene greenhouse. RBF has the lowest predictive error compared to
the rest of built models.

4.4 Provision of Functional and Intrinsic Biodiversity

Functional and intrinsic soil biodiversity enriches the interaction of sediments and minerals
in soil, leading to overall improved soil processes and crop growth support. Consequently,
it provides the society with a rich biodiversity source and contributes to a habitat for
above-ground organisms. Processes that a�ect the development and maintenance of soil
biodiversity are broadly classi�ed as physical and chemical, including soil structure and
hydrology, and nutritional content, respectively.

Gardi et al. (2009) present an overview about the main threats for the soil biodiversity
and describe how the biodiversity indicators are developed and estimated.

4.4.1 DSS for modeling provision of functional and intrinsic biodiversity

Knowledge-based methodology prevails in decision modeling of soil of provision of func-
tional and intrinsic biodiversity with a focus on assessment of abundance and richness of
intrinsic communities across di�erent spatial scales. Extensive work has been performed in
the Netherlands and France along with recent endeavours within the LANDMARK project
(Mulder et al., 2005; Rutgers et al., 2009).

Another research approach is focusing on negative e�ects on soil biota development
and potential threats to soil biodiversity on di�erent spatial scales. Such approach has
recently been applied on a European scale (Orgiazzi et al., 2016).

Rutgers et al. (2009) and Mulder et al. (2005) perform soil biodiversity data monitoring
within Dutch Soil Monitoring Network (NSMN). During the monitoring program in the
period 1999-2003, biological and chemical soil attributes, as well as land use and man-
agement practices, were measured and analyzed. In total, they selected and visited 137
dairy farms because of availability of the data for management practices for those sites.
Next, eight experts in soil biodiversity in the Netherlands were selected independently to
ful�ll a questionnaires and assess the main indicators for determining the soil biodiversity
function. At the end, their ranks for the soil biodiversity indicators were included in the
�nal decision support (i.e., expert assessment) tool in order to assess the �nal aggregated
soil biodiversity estimate (Rutgers et al., 2009).

Similarly, in France, Cluzeau et al. (2012) performed a Soil Biodiversity Monitoring
Network (RMQS-BioDiv), which is part of the French Soil Monitoring Network (RMQS),
and measured and analyzed data from 2200 data sites from French Metropolitan Areas in
Brittany (West France). The RMQS-BioDiv data was linked to the climate data averaged
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from the years 1990-2016. At the end, merged together with measured biological and
other attributes, the �nal data consisted of 52 sites (29 grasslands, 23 croplands) with
fully available values for the input attributes. Finally, the evaluation of biodiversity was
made by expert judgment on those 52 sites using an a priori approach on biological and
management attributes.

As part of LANDMARK modeling activities, van Leeuwen et al. (2019) developed a
DEX model on the valuation of biodiversity soil function, by decomposition of the problem
into a hierarchical model across four proxy-indicators (structure, hydrology, biology and
nutrients). Proxy-indicators are decomposed down to 37 attributes that belong to a group
of soil, management and environment (S ×E ×M) attributes (Schulte et al., 2014; Turb�e
et al., 2010; Vogel et al., 2018). The decision rules in the integration tables were ful�lled
by the experts. In addition, van Leeuwen et al. (2019) performed a comparative analysis of
assessments with aforementioned BioDiv-RMQS and NSMN expert models. Although the
strategies for developing these three expert assessment approaches were di�erent, the re-
sults show that all of them provided very correlated estimates for the valuation of provision
of functional and intrinsic soil biodiversity.

Another knowledge-based assessment of the soil biodiversity function was proposed by
Orgiazzi et al. (2016). They have ranked 13 potential threats to the soil biodiversity by
surveying experts from around Europe. Assessment was based on quanti�cation of three
biodiversity components: soil microorganisms, fauna and biological function. Results imply
that arable soils are exposed to threats, at most. However, despite the limitation of the
proposed knowledge-based ranking, it is insightful for further monitoring and protection
of soil biota.

4.4.2 ML for modeling provision of functional and intrinsic biodiversity

Debeljak et al. (2007) present a study for assessing e�ects of management practices to
soil microorganisms, such as spring-tails and earthworms. The research is conducted on
bi-annual data from Bt maize �elds in Foulum (Denmark). They used regression trees
(M5') (R. J. Quinlan, 1992; Y. Wang & Witten, 1997) for building predictive models.
As input data they considered farming practices, soil parameters, the biological structure
of soil communities, and the type and age of the crop at the time of sampling. Models
were built to predict the abundance of di�erent functional groups of species from both
types, earthworms and spring-tails. They reported regression models for anecic worms and
hemi-epiedaphic spring-tail with a performance of R2 = 0.83 and R2 = 0.59, respectively.
All of the learned models did not �nd e�ects of the Bt maize crop on the speci�c soil
microorganisms.

Another prominent example for predicting the abundance of di�erent species occupying
the same habitat is presented by Dem�sar et al. (2006). The data used comprise descriptors
on agricultural events and soil biological parameters in order to estimate the e�ects of
management practices, especially tillage on the abundance of spring-tails and mites and
their biodiversity. They use regression and model trees for both, single- and multi-target
regression, and obtain tree models with a promising predictive performance that can be
used by decision makers.

Kocev et al. (2010) proposed a study for assessing the in�uence of the environmental
conditions on the Lake Prespa diatom community. The data contain chemical and physical
properties of the environment and the relative abundance of 116 di�erent diatoms. They
used di�erent datasets, one with the whole 116 diatoms and another with the top 10 most
abundant diatom taxa. As a learning algorithm, they used predictive clustering trees for
single- and multi-target regression (Blockeel et al., 1998). The obtained tree models are
consistent and extend the existing expert knowledge.
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A more extensive study was proposed by Levati�c, Kocev, Debeljak, et al. (2015) using
the same data sets from the study of Dem�sar et al. (2006) plus two di�erent data sets,
one about organisms living in Slovenian rivers and another about the vegetation found in
the State of Victoria, Australia. They used the classical methods for single- and multi-
target prediction described before, however, this study also proposes the use of an advanced
machine learning concept, hierarchical multi-label classi�cation, because the species can be
represented by an existing taxonomic hierarchical representation (Kocev et al., 2013; Silla
& Freitas, 2011). Learning hierarchical models, additional information about the diatom's
parent-child relation is considered. The additional information about the parent-child
relations between the diatoms has contributed to improvement of the model performance
of hierarchical over the classical multi-target prediction task.

Additionally, Guo et al. (2020) proposed a study about learning predictive models
using the random forest algorithm (Breiman, 2001) for estimating the spatial distribution
of the soil arthropods on a large scale. The data has been collected from cultivated land
in Changtu County, Northeast China, and consists of the existing and freely available
environmental variables. The resulting predictions calculated by random forest modeling
were with the lower performance (R2 = 0.53) due to data unavailability.

Very recently, Djerdj et al. (2020) proposed the use of deep learning algorithms for
predicting the earthworm behavior, i.e. the activities of soil-dwelling organisms. The
input data consisting image sequences and deep convolution neural networks (Krizhevsky
et al., 2017) were used for learning algorithms. The model was validated by comparison
with results of the standard avoidance test, using H3BO3, a standard pollutant.

4.5 Provision and Cycling of Nutrients

Provision and cycling of nutrients is the last soil ecosystem service conceptualized as a soil
function for extensive management of soil performance in arable ecosystems. It re�ects
a capacity of soil to receive nutrients in the form of by-products, to provide nutrients
from intrinsic resources or to support the acquisition of nutrients from air or water, and
to e�ectively carry over these nutrients to harvested crops (Schr�oder et al., 2016). The
cycling of nutrients is an important natural process in protecting the environment and
organic nature, as well as enhancing the production of nutritional (caloric) commodities.
Lack of nutrient circulation in soil requires manual application of 'new' nutrient that will
compensate the de�cit. Introduced nutrients are sustained by �nite sources such as mined
phosphorus (P) rock, potassium (K), and mineral nitrogen (N). Therefore, in modeling the
nutrient cycling soil function, the dynamic and intrinsic properties of the soil need to be
taken into account.

4.5.1 DSS for modeling provision and cycling of nutrients

Aarts et al. (2015) presented the annual nutrient cycling assessment (ANCA) decision
support tool for quantifying the main performance of nutrient cycling indicators, including:
excretion, use e�ciency of feed by the herd, ammonia loss, crop yields, use e�ciency of
fertilizers by crops, soil and farm surplus, nitrate leaching, losses of GHG and use e�ciency
of farm, as a whole. The tool is developed for the purpose of Dutch dairy farms. The
ANCA model is used as a tool for the calculation of nitrogen or phosphorus excretion.
If the assessed value is below the national standard, authorities accept the farm-speci�c
value, allowing the farmer to reduce the amount of manure previously expected to export.

Turunen et al. (2018) present a Multi-Attribute Value Theory (MAVT)-based decision
support tool (DST) for facilitating sludge treatment decisions by assigning preference scores
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to each sludge treatment. The DST was validated with data from two municipal wastewater
treatment plants (WWTP) in Finland. In the �rst case study, the tool output a preference
score of 0.629 for preferred sludge pyrolysis. The decision support tool, in this study,
proved to be adaptable to decision makers and improved transparency, understandability
and comprehensibility of decision-making processes.

Djodjic et al. (2002) proposed a decision support system for phosphorus management
at a watershed level. This DSS could be used to recommend the most optimal and proper
management practices as well as to identify critical source areas and test the most proper
best management practices. The DSS was developed by using the nutrient attributes
including: Maryland Phosphorus Index (PI), diagnosis expert system (ES), prescription
ES, and a nonpoint-source pollution model, Ground Water Loading E�ects of Agricultural
Management Systems (GLEAMS). The proposed decision support tool was applied to
agricultural watersheds in southern Sweden.

Sulaeman et al. (2012) developed a Phosphorus and Potassium Decision Support Sys-
tem (PPDSS) tool used for determining the fertilizer requirement for speci�c crops based
on soil testing. As input, PKDSS uses 14 soil properties divided into two protocols: �rst
protocol to select the desired recommendation and second protocol to assess the correction
factor. There soil properties are provided by a legacy soil database stored at the Indonesian
Center for Agricultural Land Resource Research and Development (ICALRD) and can be
used for the creation of quantitative soil property maps by using digital soil mapping tech-
niques. The created maps can then be used from PKDSS for making a recommendations
for fertilizer input and can serve to the agriculture policy makers in Indonesia.

Recently, within the project LANDMARK, the soil function on provision and cycling
of nutrients is decomposed down to four proxy-indicators that valuate the cycling of nu-
trients: (1) accommodation value (AV), capacity of soil to receive products that contain
nutrients (for example, manure); (2) nutrient fertilizer replacement value (NFRV), amount
of nutrient availability from those products called manufactured fertilizers; (3) apparent
nutrient recovery (ANR), the amount of nutrient taken up form the crops, and (4) harvest
index (HI), the amount of nutrients taken up by crops, exported in harvests for consump-
tion or upstream processing. These proxy-indicators are derived from a set of 54 basic soil
(S), environment (E) and management (M) attributes (Schr�oder et al., 2016).

4.5.2 ML for modeling provision and cycling of nutrients

Suchithra and Pai (2020) de�ned the problem of soil nutrient classi�cation to a multi-
label classi�cation task and applied a fast classi�cation learning technique called Extreme
Learning Machine (ELM) (Huang et al., 2012) with di�erent activation functions such as:
Gaussian radial basis, sine-squared, hyperbolic tangent, triangular basis and hard limit.
The goal is to optimize fertilizer inputs and improve soil and environmental quality. Input
data consist of soil features like village-wise soil fertility indices of Available Phosphorus
(P), Available Potassium (K), Organic Carbon (OC) and Boron (B), and pH. Best accuracy
of more than 80% is achieved using ELM with the Gaussian radial basis activation function.

Moreover, Ransom et al. (2019) propose a study for corn nitrogen recommendation
using soil (S) and environmental (E) attributes as an input. They use eight well-known
machine learning algorithms: stepwise (Efroymson, 1960), ridge regression (Hoerl & Ken-
nard, 1970), least absolute shrinkage and selection operator (Lasso) (Tibshirani, 1996),
elastic net regression (Zou & Hastie, 2005), principal component regression (PCR) (Jol-
li�e, 1982), partial least squares regression (PLSR) (Wold, 1997), decision trees (Breiman
et al., 1984) and random forest (Breiman, 2001) on data collected from 49 sites in the
U.S. Midwest. The best algorithm for corn N recommendation, in regard to predictive
performance, is random forest (R2 between 0.72 and 0.84). However, decision trees have
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been reported to require a minimal set of input attributes for generating the prediction.
Hosseinzadeh et al. (2020) applied arti�cial neural network (ANN) and multiple linear

regression (MLR) models in predicting nutrient recovery from solid waste under di�erent
vermicompost treatments. The dataset contains 7 biological and chemical indices and as
predictors, total nitrogen (TN) and total phosphorus (TP) recovery. The results show that
the best prediction is obtained by ANN models (Hop�eld & Tank, 1985), i.e., TN and TP
with R2 = 0.9983 and R2 = 0.9991 respectively, compared to MLR models (Tabachnick &
Fidell, 2001) with R2 = 0.834 and R2 = 0.729.

Finally, Dong et al. (2020) presented a new technique for precision fertilization of maize
by applying a combination of wavelet analysis (Akansu & Haddad, 1992) and back propa-
gation neural network (BPNN) (Riedmiller & Braun, 1993) and traditional SVMs (Cortes
& Vapnik, 1995) and Random forests (Breiman, 2001). The data used for modeling came
from the published "3414" experiments. The results showed that the best performance
was achieved using the model that combines wavelet analysis with the BP neural network.
Moreover, Wavelet-BPNN model has important practical signi�cance because it provides
the most optimal recommendation for precision fertilization considering the increase of
maize production, during reduction of production cost and agricultural pollution.
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Chapter 5

Structuring the Output Space in

Multi-Target Prediction

The main advantage of classical algorithms for multi-target prediction (MTP) is that they
can learn one model for predicting multiple output variables simultaneously, instead of
learning many single-target models, one for each target attribute. However, those classical
MTP models do not consider the interconnections among the target attributes of the output
space.

Motivated by this limitation of the classical MTP paradigm, in this chapter, we present
an adaptation of classical MTP algorithms, by using di�erent representations for data-
driven structuring of the original output space, discovering target relationships in the form
of a hierarchy, as shown in Figure 5.1. We describe the methodology by giving the pseudo-
code of the algorithm for structuring the output space in MTP, cf. Algorithm 5.1. The
input to the algorithm is the original (i.e., �at) MTP dataset I. Next, we de�ne the
representation of the output space Os (targets) for structuring: (1) feature ranking rep-
resentation, consisting of feature importance scores for each target/label; (2) target space
representation, consisting of the original values for the output/target variables. Once
we obtain the representation of the output space Os, we cluster this representation of
the targets with an arbitrary hierarchical clustering algorithm and obtain the hierarchy
(i.e., structure) of target attributes. The leaves in the hierarchy contain the original out-
put/target variables. Using the obtained hierarchy, we transform the original MTP dataset
to its hierarchical variant (HMTP) and by using any machine learning method for HMTP,
we will create ModelHMTP . The remaining part of the pipeline consists of calculation of
the predictions related to the targets/labels that are in the hierarchy leaves. Finally, using
those predictions, we evaluate the predictive performance.

The remainder of the chapter contains our work on structuring the output space, both
for the case of multi-label classi�cation and multi-target regression. First, we present our
algorithm for structuring the label space in MLC, using the representation that consists
of the feature importance scores for each label. Next, we present our extensive study for
structuring the output space for the MTR task where we consider both the target repre-
sentation consisting of the original values for the target variables and the representation
of the targets consisting of the feature importance scores for each target. In both studies,
the results show improvements in the predictive performance if the data-derived structure
on the output space is used, especially in the case of large output spaces.
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Figure 5.1: An illustration of the proposed framework for structuring the output space in
MTP. We consider two target representations for clustering: the representation that uses
original output space, i.e., the values of each target/label for each example and the feature
ranking representation. The importance scores for each feature with respect to a given
target/label are used as a representation of the targets. We thus transform the original
MTP tasks into a HMTP task, for which we build a HMTP model.

Algorithm 5.1: The algorithm for structuring the output space in multi-target
prediction (MTP).

Data: I - MTP dataset
Result: ModelHMTP

if case: feature ranking representation then

FimpPath = CreateFimp(I);
Os = CreateFeatureRankingRep(FimpPath);

end

if case: target space representation then

Os = ExtractOutputSpaceRep(I);
end

hierarchy = Clustering(Os);
IH = TransformMTP2HMTP(I, hierarchy);
ModelHMTP = HMTPMethod(IH);

5.1 Structuring the Label Space in Multi-Label Classi�cation
Using a Feature Ranking Representation of the Labels

In this chapter, we present the adaptation of the classical task of MLC by considering
additional information provided by a hierarchy on the label space. Namely, we transform
the original multi-label classi�cation (MLC) task to its hierarchical (HMLC) variant, by
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structuring the label space, we use a representation consisting of the feature importance
scores per label. We perform the structuring by creating a data-derived hierarchy of labels
and using this hierarchy in the HMLC task. The data-derived hierarchy is generated
using existing and commonly used hierarchical clustering techniques such as agglomerative
clustering (single and complete linkage), balanced k-means and clustering with PCTs. The
evaluation has been performed on 8 diverse benchmark datasets using 13 well-known MLC
evaluation metrics.

Related to this topic, Madjarov et al. (2016) have presented an extensive study of
di�erent data-driven methods for generating label hierarchies for MLC by using the la-
bel co-occurrence space. More precisely, the hierarchies were constructed using the four
clustering algorithms that we also used in our study. Next, Szymanski et al. (2016) have
addressed the question whether the data-driven approach of using the label co-occurrence
graph is better than taking random partitions of the label space for MLC as performed
by RAkELd. Their results have shown that in almost all cases, data-driven partitioning
outperforms the baseline RAkELd in all evaluation measures but Hamming loss.

In this section, we present an extension of the study performed by Madjarov et al.
(2016), where the data-derived hierarchies are obtained by clustering the label space using
a label representation consisting of label co-occurrences. We compare the results obtained
by our data-derived hierarchies generated by structuring the label space using the label rep-
resentation consisting of feature importance scores for each label with the results obtained
using the data-derived hierarchies generated by clustering the representation consisting of
label co-occurrences. Improvements are achieved if we use the data-derived hierarchies ob-
tained by clustering the label space representation consisting of feature importance scores
per label. In general, the use of the data-derived hierarchies improves the predictive per-
formance over the �at MLC task. Furthermore, the divisive methods (balanced k-means
and PCTs) generate the most accurate hierarchies, i.e., are the best clustering algorithms
for structuring the label space.

The paper included in this section is:

• NIKOLOSKI, Stevanche, KOCEV, Dragi, D�ZEROSKI, Sa�so. Structuring the out-
put space in multi-label classi�cation by using feature ranking. In: APPICE, Annal-
isa (Ed.). New frontiers in mining complex patterns: 6th International Workshop,
NFMCP 2017, in conjunction with ECML-PKDD 2017, Skopje, Macedonia, Septem-
ber 18-22, 2017: revised selected papers, (Lecture notes in computer science, ISSN
0302-9743, Lecture notes in arti�cial intelligence, LNCS 10785). Cham: Springer.
2018, LNCS 10785, pp. 151-166, doi:"10.1007/978-3-319-78680-3_11.

The contributions of Stevanche Nikoloski to this paper are as follows. SN
contributed to the adaptation of the existing computer code for structuring the output
space in MLC, especially developing computer code for designing a label representation,
consisting of the label's feature importance scores. He also participated in designing the
experiments, carried out the experiments and analyzed their results. He wrote the paper
draft and revised it according to the relevant comments from the co-authors and reviewers.
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Abstract. Motivated by the increasing interest for the task of multi-
label classification (MLC) in recent years, in this study we investigate
a new approach for decomposition of the output space with the goal
to improve the predictive performance. Namely, the structuring of the
output/label space is performed by constructing a label hierarchy and
then approaching the MLC task as a task of hierarchical multi-label
classification (HMLC). Our approach is as follows. We first perform fea-
ture ranking for each of the labels separately and then represent each
of the labels with its corresponding feature ranking. The construction of
the hierarchy is performed by the (hierarchical) clustering of the feature
rankings. To this end, we employ four clustering methods: agglomerative
clustering with single linkage, agglomerative clustering with complete
linkage, balanced k-means and predictive clustering trees. We then use
predictive clustering trees to estimate the influence of the constructed
hierarchies, i.e., we compare the predictive performance of models with-
out exploiting the hierarchy and models using hierarchies constructed
using label co-occurrences or per label feature rankings. Moreover, we
investigate the influence of the hierarchy in the context of single models
and ensembles of models. We evaluate the proposed approach across 8
datasets. The results show that the proposed method can yield predictive
performance boost across several evaluation measures.

Keywords: Multi-label classification · Hierarchy construction
Feature ranking · Structuring of the label space

1 Introduction

Nowadays, the number of new applications of multi-label learning is steadily
increasing, hence, the researchers are very interested to develop novel meth-
ods and new ideas related to multi-label classification and structuring of the

c© Springer International Publishing AG, part of Springer Nature 2018
A. Appice et al. (Eds.): NFMCP 2017, LNAI 10785, pp. 151–166, 2018.
https://doi.org/10.1007/978-3-319-78680-3_11
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label/output space. Multi-label classification (MLC) is the task of learning from
data examples where each example can be associated with multiple labels. MLC
deals with a label dependencies and relations which is orthogonal with existing
traditional methods which take into account label independence and learn inde-
pendent functions from mapping from input space to the output (label) space.
The different application problems include video and image annotations (new
movie clips, genres), predicting genes and proteins (functional genomics), clas-
sification of a tweets and music into emotions, text classification (web-pages,
bookmarks, e-mails,...) and others.

The MLC task is typically approached either by decomposing the MLC prob-
lem into multiple single class classification problems (i.e., problem transforma-
tion methods) or by modifying the algorithms to consider the multiple classes
jointly (i.e., algorithm adaptation methods) [12]. In an extensive experimental
study Madjarov et al. [7] show that the landscape of MLC methods is not sim-
ple: on some datasets problem transformation methods achieve top performance
while on other datasets the algorithm adaptation methods are top performing.
Furthermore, the study recommends the use of two algorithms for benchmarking:
RF-PCT (Random forests of predictive clustering trees, an algorithm adapta-
tion method) [5] and HOMER (Hierarchy Of Multi-label learnERs, a problem
transformation method) [13]. The latter divides the label space into subspaces
and then constructs classifiers for each of the subspace (e.g., label power set
classifiers). This hints that the best performance might be obtained in between
the spectrum of the algorithm adaptation and problem transformation methods.
In other words, state-of-the-art MLC performance might be obtained by trans-
forming the original MLC problem into several MLC problems and then learn
predictive models (preferably using algorithm adaptation methods).

A crucial step in developing methods for output decomposition for MLC is
the creation of the subspaces. More specifically, the goal is to find a dependency
structure and consider jointly the labels that are inter-dependent. The construc-
tion of the output structure of the labels can be very tedious and expensive
process, especially if domain experts are needed to complete the task. Moreover,
selection of the representation language of the dependencies can be complicated
task on its own. Typically, these dependencies are represented as hierarchies of
labels [6]. The hierarchies can then be constructed in a data-driven manner using
the descriptive space and/or the label space. This presents automatic and rela-
tively efficient process to obtain the representation of the potential dependencies
in the label space.

Madjarov et al. [6] present an extensive study of different data-driven meth-
ods for constructing label hierarchies for multi-label classification by using the
label co-occurence matrix. More precisely, the hierarchies are constructed using
four clustering algorithms, agglomerative clustering with single and complete
linkage, balanced k-means and predictive clustering trees applied on the label
co-occurrences (see Fig. 1, left table).

Next, Szymansky et al. [11] address the question whether data-driven app-
roach using label co-occurrence graph is significantly better than a random choice
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in label space division for multi-label classification as performed by RAkELd.
Their results show that in almost all cases data-driven partitioning outperforms
the baseline RAkELd in all evaluation measures, but Hamming loss.

In this study, we build upon the idea of decomposition of the output space
and we present a different approach for data-driven structuring of label space in
multi-label classification. Our approach constructs the label hierarchy by clus-
tering the per label feature rankings. Namely, instead of using the original label
space consisting of label co-occurrences (see Fig. 1, left table), we calculate a
feature importance/ranking scores of the features for each label by using the
GENIE3 method for feature importance calculation coupled with the random
forest ensemble learning method [1,3] (see Fig. 1, right table).

The obtained structure is then used as the label hierarchy and the MLC task
is addressed as hierarchical multi-label classification (HMLC) [5,15]. We thus
evaluate whether considering the dependency in the label space can provide
better predictive performance than addressing MLC as a flat problem. In other
words, we investigate whether considering the MLC task as a hierarchical MLC
task can yield better predictive performance. Our approach is illustrated through
the example in Fig. 1. The table on the left hand-side shows the construction of
the label hierarchy using the label co-occurrence (as performed in [6,11]), while
the table on the right hand-side shows our proposed method for constructing
the label hierarchy.

BH_LowPeakAmp BH_LowPeakBPM BH_HighPeakAmp … λ1 λ2 λ3 λ4 λ5 λ6
FRank 
λ1 

FRank 
λ2

FRank 
λ3

FRank 
λ4

FRank 
λ5

FRank 
λ6

#1 0.036299 -58.962537 4.698083 … 1 0 0 0 0 0 BH_LowPeakAmp 1.369 12.63 22.68 14.06 5.563 1.328
#2 0.161218 -77.425609 3.09809 … 0 0 1 0 1 1 BH_LowPeakBPM 1.588 11.89 26.35 9.177 5.566 0.674
#3 0.115987 -61.893693 4.478436 … 1 1 1 1 0 0 BH_HighPeakAmp 1.433 11.08 44 8.951 19.03 1.479
#4 0.086016 -83.295694 3.786274 … 1 0 1 0 1 1 BH_HighPeakBPM 1.741 7.836 8.206 10.06 8.61 0.561
#5 0.063232 -76.108186 5.911183 … 0 1 0 1 1 1 BH_HighLowRaƟo 2.169 7.267 6.914 9.166 12.16 0.017
#6 0.026461 -74.429498 3.046795 … 0 0 1 0 1 1 BHSUM1 2.246 5.541 5.494 11.19 14.31 1.058
… … … … … … … … … … … … … … … … … …

Structured label/output spaceInput space
Output space of label co-

occurrences

Fig. 1. Excerpt from the original emotions dataset showing the output space consists
of label co-occurrences (left table) and the space consists of ranks of the features for
each of the labels, separately (right table). The former is obtained with structuring the
original label set using feature ranking.

We perform an experimental evaluation using 8 benchmark datasets from
different domains: text, image, music and video classification, and gene function
prediction. The predictive performance of the methods is assessed using 13 dif-
ferent evaluation measures used in the context of MLC (6 threshold dependent
and 7 threshold independent).

The obtained results indicate that using the methods for creating the hier-
archies using feature ranking can yield a better predictive performance as com-
pared to the original flat MLC methods without the hierarchy. Moreover, using
the hierarchy constructed by structuring of the output space using the feature
rankings of the labels gives better predictive performance compared to using the
hierarchy obtained using the label co-occurrences.

52 Chapter 5. Structuring the Output Space in Multi-Target Prediction



154 S. Nikoloski et al.

The reminder of this paper is organized as follows. Section 2 presents the
background work, i.e., discussion on the tasks of multi-label classification and
hierarchical multi-label classification methods. Then, in Sect. 3, we present the
structuring of the output space using feature ranking. In Sect. 4, we show the
experimental design. The results obtained from the experiments are presented
and discussed in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Background

In this section, we first define the task of multi-label classification and then
the task of hierarchical multi-label classification. Multi-label learning considers
learning from examples which are associated to more than one label coming from
a predefined set of labels containing all possible labels. There are two types of
multi-label learning tasks: multi-label classification and multi-label ranking. The
main goal of multi-label classification is to create a predictive model that will
output a set of relevant labels for a given, previously unseen example. Multi-label
ranking, on the other hand, can be understood as learning a model that, for each
unseen examples, associates a list of rankings (preferences) on the labels from a
given set of possible labels and a bipartite partition of this set into relevant and
irrelevant labels. An extensive bibliography of methods for multi-label learning
can be found in [7,14] and the references therein.

The task of multi-label learning can be defined as follows [5]. The input
space X consists of vectors of values of nominal or numeric data types i.e.,
∀xi ∈ X , xi = (xi1, xi2, . . . xiD), where D is a number of descriptive attributes.
The output space Y consists of a subset of a finite set of disjoint labels L =
{λ1, λ2, . . . , λQ} (Q > 1 and Y ⊆ L). Given this, each example is a pair of
a vector and a set from the input and output space, respectively. All of the
examples then form the set of examples (i.e., the dataset) E. The goal is then
to find a function h : X → 2L such that from the input space assigns a set of
labels to each example.

The main difference between multi-label classification and hierarchical multi-
label classification (HMLC) is that in the latter the labels from the label space
are organized into a hierarchy. A given example labeled with a given label it
is also labeled with all its parent labels (known as the hierarchy constraint).
Furthermore, an example can be labeled with multiple labels, simultaneously.
That means a several paths can be followed from the root node in order to
arrive at a given label.

Here, the output space Y is defined with a label hierarchy (L,≤h), where L is
a set of labels and ≤h is a partial order parent-child relationship structured as a
tree (∀λ1, λ2 ∈ L : λ1 ≤h λ2 if and only if λ1 is a parent of λ2) [5]. Each example
from the set of examples E is a pair of a vector and a set from the input and
output space respectively, where the set satisfies the hierarchy constraint, i.e.,
E = {(xi,Yi)|xi ∈ X ,Y ⊆ L, λ ∈ Yi ⇒ ∀λ′ ≤h λ : λ′ ∈ Yi, 1 ≤ i ≤ N}, where
N is a number of examples in E. Same conditions as in multi-label classification
should be satisfied for the quality criterion q (high predictive performance and
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low computational cost). In [9], an extensive bibliography is given, where the
HMLC task is presented across different application domains.

3 Structuring of Label Spaces Using Feature Ranking

In this section, we explain our method for structuring the label space using
feature ranking and we describe the different clustering algorithms used in this
work. Our proposed method for label space structuring is outlined in procedure
StructuringLabelSpaceFR in Table 1. First, we take the original training dataset
Dtrain and using random forest method with GENIE3 feature importance, we
create feature rankings for each label separately. We then construct a dataset
Dranks consisting of the feature rankings. Next, we obtain a hierarchy using one
of the clustering algorithms described bellow. The hierarchy is then used to pre-
process the datasets and obtain their hierarchical variants Dtrain

H and Dtest
H . At

the end, we learn the HMLC predictive models.

Table 1. The algorithm for structuring the label space using feature rankings per label.

In our approach, described in a procedure StructuringLabelSpaceFR
(Table 1), we can see that additional step, compare to the algorithm given by
Madjarov et al. [6], is the function CreateFimp at line 4, which increases the
theoretical complexity of the procedure. According to the dimensionality of the
space which is going to be clustered using the function Clustering at line 5, one
dimension in the space consists of label co-occurrences is the number of examples
(instances) which means that in case of more complex datasets with large num-
ber of examples, the clustering procedure will take more of the time in order to
create a hierarchy. From the other side, the procedure of creating the hierarchy
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using feature rankings has a dimension which depends of the feature space cardi-
nality. Typically, the feature space cardinality is much smaller than the number
of examples. It means that clustering of the rankings will finish faster than clus-
tering of the label co-occurrences for datasets with large number of examples but
small number of features, which is a case in most of the benchmarks datasets
available. Consequently, although we have additional function in our procedure
of structuring of the output space, for more complex datasets with high number
of examples and smaller number of features, the clustering procedure, i.e., the
hierarchy creation will be completed in a reasonable time, thus compensating
for obtaining the feature rankings.

We next describe the procedures for obtaining the feature rankings. Random
forests as ensemble method for predictive modeling are originally proposed by
Breiman [1]. The empirical analysis of their use as feature ranking methods has
been studied by Verikas et al. [16]. The random forests are constructed by first
performing bootstrap sampling on the data and then building a decision tree for
each bootstrap sample. The decision trees are constructed by taking the best
split at each level, from a randomly selected feature subset.

Huynh-Thu et al. [3] propose to use the reduction of the variance in the
output space at each test node in the tree (the resulting algorithm is named
GENIE3). Namely, the variables that reduce the variance of the output more
are, consequently, more important than the ones that reduce the variance less.
Hence, for each descriptive variable we measure the reduction of variance it
produces when selected as splitting variable. If a variable is never selected as
splitting variable then its importance will be 0.

The GENIE3 algorithm has been heavily evaluated for single-target regres-
sion tasks (e.g., for gene regulatory network reconstruction). The basic idea
adopted for future ranking is the same of that proposed in GENIE3, but we
use random forest of predictive clustering trees (PCTs) for building the ensem-
ble. The result is a feature ranking algorithm that works for different types of
structure output prediction tasks (including MLC and HMLC).

Furthermore, we discuss the different clustering methods used to obtain the
hierarchies of the labels. For achieving a good performance of the HMLC meth-
ods, it is critical to generate label hierarchies that more closely capture the
relations among the labels. The only constraint when building the hierarchy is
that we should take care about the leaves of the label hierarchies. They need to
define the original MLC task. In particular, the labels from the original MLC
problem represent the leaves of the label hierarchy, while the labels in inter-
nal nodes of the tree are so-called meta-labels. Meta-labels model the potential
relations among the original labels.

For obtaining the hierarchies, we use four different clustering methods (two
agglomerative and two divisive):

– agglomerative clustering with single linkage;
– agglomerative clustering with complete linkage;
– balanced k-means clustering (divisive) and
– predictive clustering trees (divisive).
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Agglomerative clustering algorithms consider each example as separate clus-
ter at the beginning and then iteratively merge pairs of clusters based on their
distance metric (linkage). If we use the maximal distance of two examples from
the clusters C1 and C2, then this type of agglomerative clustering is using com-
plete linkage, i.e., max{dist(c1, c2) : c1 ∈ C1, c2 ∈ C2}. If we use the minimal
distance between two clusters, then the agglomerative clustering approach is
with single linkage i.e., min{dist(c1, c2) : c1 ∈ C1, c2 ∈ C2}.

Balanced k-means is top-down approach for clustering. First, all labels from
the label space L are in one common cluster at the top node of the hierarchy.
Then, the procedure consecutively divides (splits) this cluster into k disjoint
sub-clusters (k < |Ln|) using k-means clustering. The division also is concerned
with the number of examples in each cluster: the algorithm outputs clusters with
approximately equal size [13]. The procedure recursively is repeated on each sub-
cluster (meta-label) until we have n different clusters consisting of one label from
the label space L. In other words, our label space L is covered by leaves of the
hierarchy obtained by the balanced k-means clustering approach.

We also use predictive clustering trees to construct the label hierarchies. More
specifically, the setting from the predictive clustering framework used in this work
is based on treating the target space as descriptive space, i.e., the target space is
also a descriptive space. Descriptive/target variables are used to provide descrip-
tions for the obtained clusters. Here, the focus is using predictive clustering frame-
work on the task of clustering instead of predictive modelling [2,4]. The obtained
hierarchies using agglomerative clustering (single and complete linkage) and using
predictive clustering trees for emotions dataset are shown in Fig. 2.

We next present the predictive clustering trees (PCTs) - the modelling frame-
work we used throughout this work. PCTs are a generalization of decision trees
towards the tasks of predicting structured outputs, including both MLC and
HMLC. In order to apply PCTs to the task of HMLC, Vens et al. [15] define the
variance and the prototype as follows. First, the set of labels for each example
is represented as a vector of binary components. If the example belongs to the
class ci then the i’th component of the vector is 1 and 0, otherwise. The variance
of a set of examples E is thus defined as follows:

V ar(E) =
1

|E| ·
|E|∑

i=1

dist(Γi, Γ )2 (1)

where Γ = 1
|E| · ∑|E|

i=1 Γi.

In other words, the variance V ar(E) in (1) represents the average squared
distance between each example’s class vector (Γi) and the mean class vector of
the set (Γ ). When we talk about HMC, then the similarity at higher levels of the
hierarchy are more important than the similarity at lower levels. This is reflected
with the distance term used in (1), which is weighted Euclidean distance:

dist(Γ1, Γ2) =

√√√√
|Γ |∑

s=1

θ(cs) · (Γ1,s − Γ2,s)2
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Fig. 2. Hierarchies obtained using agglomerative single (top-left), agglomerative com-
plete (top-right), balanced K-means clustering (bottom - left) and PCTs (bottom -
right) clustering methods for emotions dataset.

where Γi,s is the s’th component of the class vector Γi of the instance Ei, |Γ |
is the size of the class vector, and the class weights θ(c) = θ0· avgj{θ(pj(c))},
where pj(c) is j’th parent of the class c and 0 < θ0 < 1. The class weights θ(c)
decrease with the depth of the class in the hierarchy thus making the differences
in the lower parts of the hierarchy less influential to the overall score.

Random forests of PCTs for HMLC are considered in the same way as the
random forest of PCTs for MLC. In the case of HMLC, the ensemble is a set
of PCTs for HMLC. A new example is classified by taking a majority vote
from the combined predictions of the member classifiers. The prediction of the
random forest ensemble of PCTs for HMLC follows the hierarchy constraint (if
the example is labeled with a given label then is automatically labeled with all
its ancestor-labels).

4 Experimental Design

The aim of our study is to address the following questions:

(i) Whether feature ranking on the label (output) space in the MLC task can
be used to construct good label hierarchies?
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(ii) Which clustering method yields better hierarchy?
(iii) How this scales from single model to ensemble of models?
(iv) Can we achieve better predictive models with using a hierarchies obtained

by structuring the feature ranking or co-occurrences space?

In order to answer the above questions, we use eight multi-label classification
benchmark problems from different domains. We have 3 datasets from text clas-
sification, 4 datasets from multimedia, includes movie clips and genres classifica-
tion and 1 dataset from biology. All datasets are predefined by other researchers
(typically the data owners) and divided into train and test subsets. The basic
information and statistics about these datasets are given in Table 2.

Table 2. Statistics of used benchmark tasks in terms of application domain (domain),
number of training examples (#tr.e), testing examples (#t.e), number of descriptors
(D), total number of labels (L) and number of labels per example.

Dataset Domain #tr.e #t.e D L lc

emotions multimedia 391 202 72 6 1.87

scene multimedia 1211 1159 294 6 1.07

yeast biology 1500 917 103 14 4.24

tmc2007 text 21519 7077 500 22 2.16

medical text 645 333 1449 45 1.25

enron text 1123 579 1001 53 3.38

mediamill multimedia 30993 12914 120 101 4.38

corel5k multimedia 4500 500 499 374 3.52

In our experiments, we use 13 different evaluation measures, as presented in
[7,14]. These are divided into two groups: 6 threshold dependent/example based
measures (hamming loss, accuracy, precision, recall, F1 score) and 7 threshold
independent measures out of which three ranking-based (one-error, coverage and
ranking-loss) and four areas under ROC and PRC curves (AUROC, AUPRC,
wAUPRC and pooledAUPRC ). The threshold independent measures are typi-
cally used in HMLC and they do not require a (pre)selection of thresholds and
calculating a prediction [15]. All of the above measures offer different viewpoints
on the results from the experimental evaluation.

Hamming loss is an example-based evaluation measure that evaluate how
many times a pair of example and its label are misclassified. One-error is a
ranking-based evaluation measure that evaluates how many times the top-ranked
label does not exist in a set of relevant labels of the example. Coverage evaluates
how far, on average, we need to go down the list of label ranks in order to cover
all relevant labels of given example. Ranking loss evaluates the average fraction
of the label pairs that are reversely ordered for the given example. Precision and
recall are very important measures defined for binary classification tasks with
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classes of positive and negative examples. Precision is a proportion of positive
prediction that are correct, and recall is the proportion of positive examples that
correctly predicted as positive. F1 score is the harmonic mean between precision
and recall. Accuracy for each instance is defined as the proportion of correctly
predicted labels over total number of labels for that instance. Overall accuracy
is the average across all instances. A precision-recall curve (PR curve) is a curve
that represent the precision as a function of its recall. AUPRC (area under
the PR curve) is the area between the PR curve and the recall axis. wAUPRC
evaluates the weighted average of the areas under the individual (per class)
PR-curves. If choosing some threshold, we transform the multi-label problem
into binary problems with considering binary classifier as a couple (instance,
class) and predicting whether that instance belongs to that class, we can obtain
PR curves that differ depend of the varying the threshold. The area under the
average PR curve (from all different threshold curves) is called pooledAUPRC.
From the other side, if we consider the space of true positive rates (sensitivity)
versus false positive rates (fall-out) then the curve considers the sensitivity as a
function of the fall-out is called ROC-curve. The are under this ROC-curve is
the evaluation measure called AUROC.

The majority of our experiments are performed using the CLUS software
package (https://sourceforge.net/projects/clus/), which implements the predic-
tive clustering framework, including PCTs, random forests of PCTs and feature
ranking [5,10]. A hierarchical tree defined by the used clustering methods in
HMLC setting are defined as tree shaped hierarchies. We use the same values
for k in balanced k-means clustering algorithm, as suggested in [7].

For obtaining a hierarchy using the agglomerative clustering method
we use the R software package (function agnes() from the cluster pack-
age. For more info, see https://stat.ethz.ch/R-manual/R-devel/library/cluster/
html/agnes.html). We use the MATLAB software package to create hierar-
chies with balanced k-means clustering which is based on Hungarian (Munkres’)
assignment algorithm to assign the examples to the clusters [8]. We use Euclidean
distance metric in all our algorithms that require distance. Moreover, for random
forest for feature ranking we use GENIE3 as a feature importance method based
on variable selection with ensembles of PCTs [3].

In order to make a comparative analysis with the results obtained by the
study by Madjarov et al. [6], we repeated their experiments on the same exper-
imental setting with the experiments we perform for feature ranking.

5 Results

In this section, we present the obtained results from the experiments we per-
formed using our novel proposed method for structuring the output space. In
our study, as an output space, we consider the space consisting of label co-
occurrences (as presented by Madjarov et al. [6]) and the space consisting of
feature ranks for each label, respectively. We compare the following methods for
hierarchy construction:
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– flat MLC problem without considering a hierarchy in the label space
(FlatMLC );

– agglomerative clustering with single linkage (AggSingle);
– agglomerative clustering with complete linkage (AggComplete)
– balanced k-means clustering (BKmeans)
– clustering using predictive clustering trees (ClusPCTs).

Since we have two different models (single PCTs model and random forest
of PCTs) and two different structured output spaces, we show separately the
results for single PCTs (Fig. 3) and random forest of PCTs (Fig. 4). In order to
distinguish between using either single tree or random forest of PCTs and differ-
ent methods of structuring the output space (label co-occurrences and feature
rankings), we use prefixes (PCT- and RF-) and suffixes (-CO and -FR) before
and after the hierarchy construction method name, respectively. For example,
RF-AggComplete-CO refers to the agglomerative clustering method with com-
plete linkage of the output space of label co-occurrences using random forest
of PCTs for model creation. Then, PCT-ClusPCTs-FR refers to the clustering
method with PCTs of the output space consists of feature rankings per label
using single PCTs for model creation, etc.

Observing the results obtained using single PCTs (Fig. 3), we can note that
there is no clear winner across all evaluation measures and datasets. In the case
of threshold independent measures, such as AUPRC, AUROC, wAUPRC and
pooledAUPRC, we can see that hierarchies created using clustering of the out-
put space consisting of feature rankings perform the best for enron, emotions,
mediamill and yeast datasets. Considering the scene and corel5k datasets, we
can observe that they perform the best according to AUROC, AUPRC and
pooledAUPRC, but not for wAUPRC. PCT-BKmeans-FR outperforms the other
algorithms for hierarchy creation in the emotions dataset according to the most
of the evaluation measures but not according to one-error. Moreover, the hier-
archies created clustering the feature rankings outperform the other algorithms
considering the ML performance measures (ML F1 measure, ML accuracy, ML
precision and ML recall) in 5 out of the 8 datasets.

Generally, structuring the output space consisting of feature rankings for
each label yields better predictive performance compared to the structuring the
output space consisting of label co-occurrences considering most of the evaluation
measures in almost all datasets. For the corel5k dataset only, we can see that
both have similar performance. If we consider medical and tmc2007 datasets, we
can see that structuring the output space does not improve the performance as
compared to the flat MLC task, where there is no hierarchy considered. All in
all, we can conclude that using the hierarchies, the predictive performance can
be improved.

The results obtained when random forests are used as predictive models are
given in Fig. 4. These results present a different situation as compared to the
results obtained when single PCTs are used as predictive models. First of all,
the predictive performance is improved as compared to the single PCTs for
large majority of the cases. Most notably, the performance for the threshold
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ENRON
PCT-FlatMLC 0.071 0.538 40.513 0.360 0.467 0.489 0.502 0.444 0.151 0.130 0.585 0.353 0.416

PCT-AggSingle-FR 0.071 0.595 39.630 0.380 0.485 0.503 0.527 0.383 0.104 0.142 0.598 0.367 0.428
PCT-AggComplete-FR 0.072 0.565 39.703 0.371 0.478 0.486 0.530 0.382 0.192 0.148 0.601 0.370 0.433

PCT-BKmeans-FR 0.072 0.466 39.665 0.374 0.480 0.489 0.527 0.501 0.341 0.142 0.593 0.358 0.419
PCT-ClusterPCTs-FR 0.072 0.554 39.472 0.354 0.459 0.471 0.499 0.382 0.194 0.142 0.590 0.354 0.418
PCT-AggSingle-CO 0.067 0.482 36.858 0.374 0.475 0.488 0.520 0.458 0.356 0.137 0.591 0.362 0.421

PCT-AggComplete-CO 0.066 0.471 37.104 0.364 0.463 0.485 0.504 0.453 0.350 0.128 0.580 0.359 0.419
PCT-BKmeans-CO 0.068 0.541 37.879 0.364 0.472 0.493 0.522 0.323 0.222 0.131 0.586 0.357 0.413

PCT-ClusterPCTs-CO 0.072 0.588 40.473 0.374 0.476 0.487 0.517 0.396 0.108 0.142 0.594 0.366 0.424
EMOTIONS

PCT-FlatMLC 0.292 0.669 4.431 0.460 0.541 0.550 0.582 0.450 0.335 0.516 0.680 0.509 0.524
PCT-AggSingle-FR 0.304 0.666 4.569 0.421 0.502 0.514 0.549 0.490 0.317 0.487 0.661 0.480 0.503

PCT-AggComplete-FR 0.296 0.672 4.574 0.442 0.528 0.551 0.559 0.470 0.314 0.507 0.679 0.508 0.517
PCT-BKmeans-FR 0.266 0.717 4.173 0.507 0.589 0.597 0.634 0.401 0.265 0.552 0.714 0.558 0.563

PCT-ClusterPCTs-FR 0.292 0.702 4.569 0.438 0.529 0.554 0.564 0.386 0.291 0.505 0.670 0.509 0.517
PCT-AggSingle-CO 0.307 0.670 4.460 0.439 0.525 0.528 0.576 0.450 0.345 0.496 0.664 0.495 0.510

PCT-AggComplete-CO 0.307 0.670 4.460 0.439 0.525 0.528 0.576 0.450 0.345 0.496 0.664 0.495 0.510
PCT-BKmeans-CO 0.312 0.640 4.698 0.414 0.507 0.541 0.535 0.485 0.357 0.496 0.653 0.491 0.505

PCT-ClusterPCTs-CO 0.297 0.681 4.639 0.440 0.516 0.535 0.535 0.446 0.323 0.489 0.664 0.491 0.502
MEDICAL

PCT-FlatMLC 0.014 0.795 11.447 0.724 0.766 0.759 0.809 0.204 0.104 0.321 0.686 0.672 0.702
PCT-AggSingle-FR 0.015 0.794 12.874 0.706 0.741 0.742 0.771 0.216 0.082 0.320 0.685 0.646 0.682

PCT-AggComplete-FR 0.015 0.785 12.207 0.721 0.759 0.758 0.791 0.222 0.115 0.325 0.690 0.665 0.692
PCT-BKmeans-FR 0.015 0.771 12.616 0.710 0.750 0.751 0.786 0.219 0.125 0.320 0.689 0.648 0.687

PCT-ClusterPCTs-FR 0.015 0.787 11.832 0.727 0.767 0.771 0.803 0.231 0.087 0.314 0.696 0.670 0.699
PCT-AggSingle-CO 0.016 0.761 12.258 0.694 0.733 0.726 0.777 0.264 0.133 0.315 0.684 0.645 0.687

PCT-AggComplete-CO 0.016 0.763 12.640 0.694 0.734 0.733 0.773 0.240 0.141 0.294 0.662 0.638 0.676
PCT-BKmeans-CO 0.015 0.795 12.003 0.716 0.757 0.753 0.797 0.198 0.078 0.340 0.695 0.652 0.691

PCT-ClusterPCTs-CO 0.016 0.795 12.003 0.707 0.747 0.751 0.783 0.228 0.063 0.298 0.678 0.658 0.686
MEDIAMILL

PCT-FlatMLC 0.052 0.472 77.282 0.356 0.476 0.491 0.551 0.445 0.247 0.089 0.571 0.339 0.440
PCT-AggSingle-FR 0.052 0.584 76.868 0.353 0.474 0.495 0.549 0.318 0.105 0.087 0.570 0.350 0.439

PCT-AggComplete-FR 0.052 0.610 76.795 0.358 0.478 0.498 0.553 0.313 0.083 0.089 0.570 0.353 0.443
PCT-BKmeans-FR 0.053 0.509 76.514 0.357 0.477 0.493 0.554 0.394 0.118 0.093 0.575 0.347 0.441

PCT-ClusterPCTs-FR 0.052 0.604 76.004 0.360 0.479 0.499 0.552 0.351 0.071 0.088 0.574 0.352 0.443
PCT-AggSingle-CO 0.053 ? 73.362 0.341 0.452 0.478 0.516 0.440 0.291 0.087 0.562 0.345 0.429

PCT-AggComplete-CO 0.055 ? 72.275 0.339 0.450 0.474 0.513 0.516 0.321 0.081 0.564 0.337 0.428
PCT-BKmeans-CO 0.054 ? 70.465 0.349 0.463 0.479 0.537 0.471 0.273 0.090 0.571 0.339 0.434

PCT-ClusterPCTs-CO 0.051 ? 78.356 0.343 0.455 0.480 0.516 0.267 0.156 0.088 0.569 0.339 0.428
SCENE

PCT-FlatMLC 0.263 0.636 4.537 0.271 0.288 0.289 0.302 0.686 0.183 0.193 0.530 0.255 0.907
PCT-AggSingle-FR 0.251 0.491 4.215 0.311 0.333 0.332 0.360 0.669 0.475 0.183 0.479 0.282 0.903

PCT-AggComplete-FR 0.247 0.658 4.595 0.304 0.333 0.351 0.347 0.628 0.166 0.191 0.494 0.265 0.907
PCT-BKmeans-FR 0.237 0.688 4.157 0.342 0.371 0.372 0.397 0.587 0.151 0.196 0.546 0.291 0.906

PCT-ClusterPCTs-FR 0.247 0.470 4.595 0.304 0.333 0.351 0.347 0.661 0.525 0.191 0.494 0.265 0.907
PCT-AggSingle-CO 0.234 0.557 4.256 0.349 0.376 0.373 0.405 0.579 0.361 0.189 0.516 0.299 0.906

PCT-AggComplete-CO 0.234 0.557 4.256 0.349 0.376 0.373 0.405 0.579 0.361 0.189 0.516 0.299 0.906
PCT-BKmeans-CO 0.229 0.509 4.099 0.355 0.387 0.386 0.421 0.612 0.523 0.186 0.502 0.316 0.904

PCT-ClusterPCTs-CO 0.260 0.658 4.438 0.280 0.309 0.303 0.343 0.636 0.164 0.186 0.517 0.260 0.904
TMC2007

PCT-FlatMLC 0.028 0.957 2.600 0.807 0.866 0.843 0.942 0.044 0.007 0.907 0.994 0.962 0.955
PCT-AggSingle-FR 0.030 0.948 2.712 0.797 0.859 0.835 0.936 0.052 0.009 0.905 0.993 0.955 0.950

PCT-AggComplete-FR 0.030 0.949 2.705 0.802 0.862 0.836 0.940 0.052 0.009 0.903 0.993 0.955 0.950
PCT-BKmeans-FR 0.029 0.950 2.648 0.807 0.867 0.842 0.943 0.053 0.008 0.925 0.993 0.959 0.955

PCT-ClusterPCTs-FR 0.030 0.950 2.684 0.801 0.862 0.837 0.940 0.048 0.009 0.903 0.993 0.956 0.949
PCT-AggSingle-CO 0.031 0.943 2.739 0.794 0.855 0.837 0.928 0.057 0.010 0.861 0.992 0.953 0.939

PCT-AggComplete-CO 0.030 0.946 2.711 0.797 0.859 0.835 0.937 0.056 0.009 0.870 0.992 0.955 0.942
PCT-BKmeans-CO 0.029 0.954 2.640 0.807 0.866 0.840 0.943 0.049 0.008 0.903 0.993 0.960 0.953

PCT-ClusterPCTs-CO 0.030 0.947 2.719 0.800 0.860 0.841 0.932 0.051 0.009 0.884 0.992 0.955 0.945
YEAST

PCT-FlatMLC 0.295 0.630 11.124 0.406 0.514 0.516 0.572 0.430 0.299 0.354 0.558 0.483 0.510
PCT-AggSingle-FR 0.290 0.590 11.122 0.429 0.541 0.545 0.600 0.510 0.367 0.365 0.574 0.500 0.528

PCT-AggComplete-FR 0.289 0.608 11.109 0.417 0.526 0.529 0.584 0.507 0.320 0.368 0.578 0.504 0.527
PCT-BKmeans-FR 0.291 0.645 11.372 0.412 0.523 0.533 0.570 0.430 0.261 0.357 0.565 0.488 0.521

PCT-ClusterPCTs-FR 0.292 0.645 11.298 0.415 0.518 0.531 0.561 0.455 0.257 0.358 0.560 0.491 0.525
PCT-AggSingle-CO 0.298 0.648 11.262 0.408 0.516 0.521 0.573 0.353 0.317 0.356 0.556 0.491 0.517

PCT-AggComplete-CO 0.290 0.676 11.144 0.419 0.528 0.530 0.590 0.328 0.263 0.359 0.570 0.502 0.520
PCT-BKmeans-CO 0.286 0.670 11.352 0.412 0.519 0.530 0.566 0.334 0.275 0.363 0.568 0.498 0.523

PCT-ClusterPCTs-CO 0.296 0.668 11.241 0.412 0.520 0.526 0.575 0.400 0.246 0.355 0.558 0.497 0.518
COREL5K

PCT-FlatMLC 0.015 0.144 352.716 0.091 0.130 0.175 0.125 0.774 0.419 0.027 0.516 0.058 0.114
PCT-AggSingle-FR 0.014 0.187 357.244 0.083 0.124 0.186 0.118 0.752 0.223 0.022 0.514 0.045 0.098

PCT-AggComplete-FR 0.016 0.184 354.216 0.083 0.121 0.142 0.125 0.734 0.409 0.021 0.513 0.055 0.106
PCT-BKmeans-FR 0.016 0.137 360.022 0.092 0.136 0.169 0.142 0.752 0.606 0.031 0.521 0.060 0.115

PCT-ClusterPCTs-FR 0.016 0.217 350.488 0.093 0.134 0.144 0.150 0.716 0.215 0.032 0.523 0.064 0.123
PCT-AggSingle-CO 0.013 0.096 368.088 0.065 0.097 0.169 0.085 0.778 0.712 0.013 0.501 0.037 0.083

PCT-AggComplete-CO 0.013 0.110 367.356 0.073 0.108 0.186 0.095 0.776 0.645 0.020 0.504 0.042 0.092
PCT-BKmeans-CO 0.015 0.181 351.246 0.101 0.147 0.168 0.156 0.700 0.294 0.029 0.518 0.071 0.120

PCT-ClusterPCTs-CO 0.018 0.210 360.764 0.091 0.138 0.145 0.160 0.718 0.149 0.022 0.511 0.051 0.105

Fig. 3. Results with the 13 performance measures for single PCTs from experiments
performed on 8 different datasets. The best results obtained per measure per dataset
are highlighted.
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RF-FlatMLC 0.047 0.698 13.187 0.402 0.509 0.714 0.435 0.200 0.078 0.241 0.709 0.620 0.577

RF-AggSingle-FR 0.047 0.696 13.028 0.396 0.500 0.706 0.425 0.206 0.077 0.235 0.724 0.615 0.574
RF-AggComplete-FR 0.047 0.695 13.347 0.396 0.499 0.703 0.425 0.206 0.078 0.239 0.724 0.618 0.575

RF-BKmeans-FR 0.046 0.697 12.865 0.404 0.509 0.708 0.434 0.211 0.076 0.242 0.745 0.622 0.582
RF-ClusterPCTs-FR 0.046 0.696 13.180 0.402 0.506 0.704 0.431 0.199 0.076 0.244 0.737 0.620 0.582
RF-AggSingle-CO 0.042 0.686 11.784 0.405 0.507 0.726 0.424 0.193 0.079 0.213 0.728 0.598 0.553

RF-AggComplete-CO 0.042 0.692 11.717 0.410 0.511 0.719 0.430 0.202 0.079 0.215 0.730 0.603 0.559
RF-BKmeans-CO 0.043 0.688 12.223 0.399 0.503 0.728 0.420 0.200 0.078 0.225 0.719 0.600 0.554

RF-ClusterPCTs-CO 0.047 0.692 13.100 0.400 0.504 0.706 0.429 0.199 0.078 0.236 0.742 0.616 0.572
EMOTIONS

RF-FlatMLC 0.191 0.813 2.812 0.530 0.605 0.674 0.600 0.267 0.152 0.755 0.851 0.754 0.755
RF-AggSingle-FR 0.201 0.815 2.837 0.500 0.569 0.629 0.567 0.282 0.155 0.749 0.852 0.756 0.753

RF-AggComplete-FR 0.196 0.810 2.817 0.502 0.574 0.643 0.564 0.262 0.151 0.766 0.859 0.762 0.769
RF-BKmeans-FR 0.199 0.810 2.817 0.494 0.563 0.626 0.553 0.277 0.153 0.770 0.863 0.767 0.772

RF-ClusterPCTs-FR 0.205 0.814 2.827 0.487 0.559 0.623 0.550 0.282 0.154 0.754 0.856 0.756 0.754
RF-AggSingle-CO 0.199 0.817 2.812 0.504 0.578 0.645 0.572 0.287 0.150 0.755 0.858 0.758 0.757

RF-AggComplete-CO 0.199 0.817 2.812 0.504 0.578 0.645 0.572 0.287 0.150 0.755 0.858 0.758 0.757
RF-BKmeans-CO 0.193 0.815 2.871 0.510 0.580 0.649 0.569 0.297 0.160 0.759 0.854 0.765 0.762

RF-ClusterPCTs-CO 0.191 0.820 2.787 0.512 0.582 0.648 0.575 0.267 0.148 0.764 0.860 0.766 0.766
MEDICAL

RF-FlatMLC 0.018 0.858 2.571 0.415 0.431 0.462 0.418 0.396 0.023 0.432 0.824 0.787 0.818
RF-AggSingle-FR 0.019 0.856 2.700 0.356 0.371 0.402 0.359 0.459 0.024 0.439 0.812 0.764 0.803

RF-AggComplete-FR 0.018 0.865 2.589 0.417 0.434 0.470 0.418 0.402 0.022 0.458 0.820 0.790 0.828
RF-BKmeans-FR 0.018 0.865 2.589 0.430 0.447 0.479 0.435 0.393 0.023 0.467 0.823 0.795 0.831

RF-ClusterPCTs-FR 0.019 0.849 2.769 0.388 0.405 0.441 0.391 0.411 0.026 0.422 0.805 0.777 0.818
RF-AggSingle-CO 0.019 0.853 2.841 0.366 0.382 0.416 0.367 0.447 0.027 0.437 0.804 0.771 0.813

RF-AggComplete-CO 0.019 0.852 2.727 0.369 0.386 0.420 0.372 0.438 0.025 0.432 0.817 0.764 0.808
RF-BKmeans-CO 0.018 0.853 2.613 0.421 0.440 0.477 0.424 0.372 0.023 0.455 0.822 0.786 0.821

RF-ClusterPCTs-CO 0.019 0.857 2.586 0.376 0.397 0.438 0.379 0.423 0.023 0.441 0.813 0.778 0.818
MEDIAMILL

RF-FlatMLC 0.030 0.735 20.676 0.455 0.573 0.798 0.495 0.124 0.047 0.254 0.762 0.671 0.618
RF-AggSingle-FR 0.030 0.733 20.781 0.451 0.570 0.803 0.489 0.124 0.047 0.249 0.765 0.669 0.617

RF-AggComplete-FR 0.030 0.733 20.727 0.451 0.569 0.802 0.487 0.127 0.047 0.254 0.765 0.668 0.616
RF-BKmeans-FR 0.030 0.735 20.546 0.453 0.571 0.800 0.491 0.124 0.046 0.252 0.773 0.671 0.617

RF-ClusterPCTs-FR 0.030 0.734 20.806 0.451 0.569 0.801 0.488 0.126 0.047 0.248 0.765 0.668 0.616
RF-AggSingle-CO 0.031 ? 19.722 0.438 0.549 0.777 0.470 0.150 0.047 0.242 0.756 0.657 0.607

RF-AggComplete-CO 0.032 ? 19.117 0.440 0.551 0.777 0.471 0.150 0.047 0.249 0.761 0.659 0.610
RF-BKmeans-CO 0.032 ? 18.830 0.440 0.551 0.772 0.474 0.153 0.046 0.249 0.768 0.659 0.609

RF-ClusterPCTs-CO 0.030 ? 20.681 0.434 0.546 0.775 0.465 0.152 0.045 0.248 0.763 0.656 0.607
SCENE

RF-FlatMLC 0.169 0.631 2.405 0.202 0.204 0.207 0.202 0.339 0.247 0.193 0.515 0.457 0.906
RF-AggSingle-FR 0.174 0.608 2.496 0.174 0.174 0.174 0.174 0.347 0.272 0.186 0.495 0.440 0.904

RF-AggComplete-FR 0.174 0.624 2.314 0.174 0.174 0.174 0.174 0.331 0.234 0.189 0.502 0.434 0.905
RF-BKmeans-FR 0.172 0.640 2.298 0.198 0.198 0.198 0.198 0.364 0.231 0.189 0.519 0.456 0.905

RF-ClusterPCTs-FR 0.174 0.624 2.314 0.174 0.174 0.174 0.174 0.331 0.234 0.189 0.502 0.434 0.905
RF-AggSingle-CO 0.174 0.590 2.496 0.140 0.140 0.140 0.140 0.298 0.274 0.187 0.507 0.415 0.904

RF-AggComplete-CO 0.174 0.590 2.496 0.140 0.140 0.140 0.140 0.298 0.274 0.187 0.507 0.415 0.904
RF-BKmeans-CO 0.172 0.589 2.595 0.182 0.182 0.182 0.182 0.306 0.292 0.191 0.512 0.434 0.905

RF-ClusterPCTs-CO 0.169 0.614 2.545 0.182 0.182 0.182 0.182 0.339 0.279 0.190 0.513 0.434 0.905
TMC2007

RF-FlatMLC 0.025 0.976 2.301 0.796 0.848 0.933 0.813 0.039 0.003 0.993 0.999 0.975 0.992
RF-AggSingle-FR 0.025 0.976 2.305 0.796 0.848 0.935 0.812 0.039 0.003 0.993 0.999 0.974 0.992

RF-AggComplete-FR 0.025 0.976 2.305 0.797 0.849 0.933 0.815 0.038 0.003 0.993 0.999 0.974 0.992
RF-BKmeans-FR 0.025 0.977 2.303 0.797 0.849 0.933 0.815 0.039 0.003 0.993 0.999 0.975 0.991

RF-ClusterPCTs-FR 0.026 0.976 2.309 0.789 0.842 0.931 0.805 0.042 0.003 0.992 0.999 0.973 0.992
RF-AggSingle-CO 0.027 0.976 2.309 0.776 0.831 0.928 0.790 0.044 0.004 0.993 0.999 0.973 0.992

RF-AggComplete-CO 0.031 0.947 2.749 0.795 0.857 0.834 0.933 0.052 0.009 0.872 0.992 0.954 0.941
RF-BKmeans-CO 0.025 0.976 2.305 0.791 0.844 0.931 0.808 0.040 0.003 0.993 0.999 0.975 0.992

RF-ClusterPCTs-CO 0.026 0.976 2.308 0.788 0.842 0.933 0.805 0.041 0.003 0.993 0.999 0.974 0.992
YEAST

RF-FlatMLC 0.197 0.759 7.176 0.482 0.587 0.741 0.530 0.241 0.166 0.508 0.710 0.722 0.675
RF-AggSingle-FR 0.199 0.755 7.308 0.471 0.578 0.743 0.514 0.241 0.170 0.501 0.699 0.717 0.669

RF-AggComplete-FR 0.200 0.753 7.269 0.469 0.576 0.740 0.513 0.246 0.172 0.500 0.682 0.713 0.665
RF-BKmeans-FR 0.199 0.755 7.215 0.473 0.580 0.737 0.521 0.248 0.167 0.505 0.704 0.716 0.669

RF-ClusterPCTs-FR 0.198 0.755 7.252 0.477 0.583 0.739 0.524 0.244 0.169 0.504 0.692 0.714 0.669
RF-AggSingle-CO 0.198 0.757 7.201 0.479 0.586 0.742 0.530 0.242 0.168 0.506 0.699 0.719 0.673

RF-AggComplete-CO 0.196 0.759 7.218 0.484 0.591 0.742 0.535 0.240 0.167 0.511 0.707 0.717 0.674
RF-BKmeans-CO 0.196 0.759 7.215 0.483 0.588 0.740 0.529 0.246 0.166 0.508 0.698 0.719 0.674

RF-ClusterPCTs-CO 0.199 0.758 7.217 0.474 0.581 0.738 0.522 0.241 0.168 0.503 0.695 0.716 0.671
COREL5K

RF-FlatMLC 0.009 0.317 103.856 0.016 0.025 0.056 0.016 0.298 0.107 0.068 0.656 0.200 0.230
RF-AggSingle-FR 0.009 0.298 105.210 0.020 0.030 0.069 0.020 0.236 0.109 0.066 0.658 0.185 0.229

RF-AggComplete-FR 0.009 0.319 101.606 0.015 0.023 0.052 0.015 0.306 0.107 0.068 0.660 0.208 0.236
RF-BKmeans-FR 0.009 0.327 102.092 0.012 0.018 0.042 0.012 0.320 0.106 0.067 0.665 0.219 0.236

RF-ClusterPCTs-FR 0.009 0.313 107.224 0.017 0.026 0.058 0.017 0.286 0.110 0.070 0.654 0.201 0.234
RF-AggSingle-CO 0.009 0.266 121.804 0.020 0.031 0.072 0.020 0.206 0.127 0.061 0.636 0.155 0.215

RF-AggComplete-CO 0.009 0.269 120.950 0.021 0.032 0.074 0.021 0.228 0.126 0.064 0.636 0.155 0.218
RF-BKmeans-CO 0.009 0.343 97.858 0.014 0.022 0.047 0.014 0.364 0.101 0.075 0.674 0.227 0.245

RF-ClusterPCTs-CO 0.009 0.301 106.638 0.017 0.027 0.062 0.017 0.264 0.109 0.066 0.654 0.186 0.224

Fig. 4. Results with the 13 performance measures for Random Forest from experiments
performed on 8 different datasets. The best results obtained per measure per dataset
are highlighted.
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independent measures (AUPRC, AUROC, wAUPRC and pooledAUPRC ) for
the mediamill and tmc2007 datsets are improved for almost twice, which is con-
sistent to the notion from the literature that ensembles of PCTs improve the
performance over single predictive models. Hierarchies created with clustering
of the space consisting of feature rankings outperform both hierarchies obtained
using label co-occurrences and flat MLC for the threshold independent mea-
sures on the medical, enron and emotions datasets. RF-BKmeans-FR performs
the best for medical dataset in seven evaluation measures. Considering the hier-
archies obtained with clustering the space of label co-occurrences, we can note
that they outperform the other methods for the corel5k dataset. Using hier-
archies (i.e., label dependences) rather than flat multi-label task improves the
predictive performance generally for most of the evaluation measures, but not
for (ML F1 measure, ML accuracy, ML precision and ML recall) in the emotions
and scene datasets.

Finally, in our study we also considered training errors i.e., the errors made in
the learning phase. There, in a large majority of the cases, the original FlatMLC
method performed the best. This means that other methods we use for construct-
ing the hierarchies do not overfit as the original one. This is another advantage
of methods for construction the hierarchies identified from the obtained results.

6 Conclusions and Further Work

In this work, we have presented an approach for hierarchy construction and
structuring the output (label) space by using feature ranking. More specifically,
we cluster the feature rankings to obtain a hierarchical representation of the
potential relations existing among the different labels. We then address the task
of MLC as a task of HMLC. Moreover, we compare our approach with the
approach of clustering the space consisting of label co-occurrences [6].

We investigated four clustering methods for hierarchy creation, agglomera-
tive clustering with single and complete linkage, balanced k-means and cluster-
ing using predictive clustering trees (PCTs). The resulting problem was then
approached as a HMLC problem using PCTs and random forests of PCTs for
HMLC. We used eight benchmark datasets to evaluate the performance.

The results reveal that the best methods for hierarchy construction are
agglomerative clustering methods and balanced k-means. Compared to the orig-
inal MLC method where there is no hierarchy this improves the performance in
most of the datasets. In four datasets, the hierarchies obtained by clustering the
label space consisting of feature rankings improve the predictive performance
compared to the hierarchies obtained by clustering the space consisting of label
co-occurrences. Similar conclusions, but to a lesser extent, can be made for the
random forests of PCTs for HMLC - in many of the cases (datasets and eval-
uation measures) the predictive models exploiting the hierarchy of labels yield
better predictive performance. Finally, by considering the training error perfor-
mance, we find that original MLC models overfit more than the HMLC models.
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For further work, we plan to make more extensive evaluation on more datasets
with diverse properties and to try more different feature ranking methods. Fur-
thermore, we assume that potential improvement of the performance can be
achieved with cutting the hierarchies based on some conditions such as density,
distribution or distance between nodes. Moreover, we plan to include a compar-
ison to network approaches given by Szymanski et al. [11]. Finally, we plan to
extend this approach to other tasks, such as multi-target regression.
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G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp.
32–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44415-3 4

9. Silla, C.N., Freitas, A.: A survey of hierarchical classification across different appli-
cation domains. Data Min. Knowl. Disc. 22, 31–72 (2011)
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5.2 Structuring the Output Space in Multi-Target Regression
Using Di�erent Representations of the Targets

In this chapter, we present an extension of the classical methods for multi-target regression
(MTR) that considers the interconnections between target attributes, i.e., discovers and
exploits structure on the target space in the form of a hierarchy by using known hierarchical
clustering methods.

As we described in the previous chapter, similar studies have proved to be successful
for the task of multi-label classi�cation (Madjarov et al., 2016; Nikoloski et al., 2018).
Motivated by the improvements achieved for the MLC task, we adapt the methodology
to the task of MTR. We then perform an extensive study on 16 di�erent data sets from
various domains, mostly from the environmental domain (8 out of 16), representative the
task of multi-target regression.

We use two di�erent representations of the targets to structure the output space: the
target representation, consisting of the actual numerical values of the target variables, and
the feature rankings representation, consisting of the feature importance scores for each
target attributes. The modeling techniques we use are predictive clustering trees (PCTs)
and ensembles (i.e., random forests) of PCTs for MTR. We compare the results of the
original �at MTR models, hierarchical MTR (HMTR) models which consider data-derived
hierarchies (from both the target and feature ranking representation) and HMTR models
which consider the already known (i.e., expert created) hierarchies.

We use relative root mean square error (RRMSE) as an evaluation measure, as this
is the most commonly used measure for the multi-target regression task. Depending on
the size of the target space, we present two separate statistical evaluations, one for the
bundle of datasets with small/medium target space (< 100 target attributes) and another
for two datasets with large target spaces (> 100 target attributes). The two datasets
in our collection with large target spaces both belong to the domain of environmental
sciences. For datasets with small target spaces, we use the non-parametric Friedman test
(M. Friedman, 1940) with the correction recommended by Iman and Davenport (1980),
Nemenyi (1963), and for datasets with large target spaces, we use per-target performances.

Our results show that signi�cant improvements in the performance can be achieved
if the data-derived hierarchy of the target attributes is used, especially for datasets with
large target spaces (> 100 targets). Similar, but weaker conclusions can be made by using
ensembles of PCTs, where structuring the output space does not improve the predictive
performance signi�cantly. The best structuring (i.e., clustering) methods are the divisive
methods (balanced k-means and unsupervised PCTs).

Another signi�cant �nding from this study is that the data-derived hierarchies are a
better choice than expert created hierarchies, which implies that we could obtain a good
structure of the target space if we discover the knowledge from the data directly, rather than
using the structure based on some domain expert pre-de�ned relations, i.e., hierarchies.

The paper included in this section is:

• NIKOLOSKI, Stevanche, KOCEV, Dragi, D�ZEROSKI, Sa�so. (2019), Data-driven
structuring of the output space improves the performance of multi-target regressors.
IEEE Access, 7:145177-145198, doi:10.1109/ACCESS.2019.2945084.
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contributed to the implementation/computer code for structuring the output space in
MTR. He also participated in designing the experiments and carried out the experiments,
as well as processed, evaluated and statistically compared their results. He drafted the
paper and revised it based on co-author's and reviewer's feedback.



Received September 12, 2019, accepted September 29, 2019, date of publication October 2, 2019, date of current version October 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2945084

Data-Driven Structuring of the Output
Space Improves the Performance
of Multi-Target Regressors
STEVANCHE NIKOLOSKI 1,3, DRAGI KOCEV1,2, AND SAŠO DŽEROSKI1,2
1Department of Knowledge Technologies, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
2Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
3Environment Soils and Land-use Department, Teagasc, Johnstown Castle, Y35 Y521 Ireland

Corresponding author: Stevanche Nikoloski (stevanche.nikoloski@ijs.si)

This work was supported in part by the European Commission through the project MAESTRA—Learning from Massive, Incompletely
annotated, and Structured Data under Grant ICT-2013-612944, in part by the project LANDMARK—Land management, assessment,
research, knowledge base (H2020) under Grant 635201, and in part by the Teagasc Walsh Fellowship Programme.

ABSTRACT The task ofmulti-target regression (MTR) is concernedwith learning predictivemodels capable
of predicting multiple target variables simultaneously. MTR has attracted an increasing attention within
research community in recent years, yielding a variety of methods. The methods can be divided into two
main groups: problem transformation and problem adaptation. The former transform a MTR problem into
simpler (typically single target) problems and apply known approaches, while the latter adapt the learning
methods to directly handle the multiple target variables and learn better models which simultaneously predict
all of the targets. Studies have identified the latter group of methods as having competitive advantage over
the former, probably due to the fact that it exploits the interrelations of the multiple targets. In the related task
of multi-label classification, it has been recently shown that organizing the multiple labels into a hierarchical
structure can improve predictive performance. In this paper, we investigate whether organizing the targets
into a hierarchical structure can improve the performance for MTR problems. More precisely, we propose
to structure the multiple target variables into a hierarchy of variables, thus translating the task of MTR
into a task of hierarchical multi-target regression (HMTR). We use four data-driven methods for devising
the hierarchical structure that cluster the real values of the targets or the feature importance scores with
respect to the targets. The evaluation of the proposed methodology on 16 benchmark MTR datasets reveals
that structuring the multiple target variables into a hierarchy improves the predictive performance of the
corresponding MTR models. The results also show that data-driven methods produce hierarchies that can
improve the predictive performance even more than expert constructed hierarchies. Finally, the improvement
in predictive performance is more pronounced for the datasets with very large numbers (more than hundred)
of targets.

INDEX TERMS Clustering, feature ranking, hierarchy, multi-target regression, target space.

I. INTRODUCTION
In supervised learning, the main goal is to learn, from a set
of examples with known output (target) values, a function
predicting the target value of a previously unseen example.
The task where the examples refer to one target is called
single target prediction and if the examples refer to more than
one target is called multi-target prediction. In certain studies,

The associate editor coordinating the review of this manuscript and
approving it for publication was Shagufta Henna.

the target components are considered independently and pre-
dictive models are built for each component separately. The
overall prediction is then generated as a combination of all
per-target predictions. In this way, the potential relations
between the target components are not taken into account and
the gap that is left with this is directly related with the quality
of the obtained models.

Considering the t components of the output space, we can
distinguish between single (t = 1) and multi-target
prediction (t > 1). If the target space consists of
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continuous/numeric variables then the task at hand is
multi-target regression (MTR). Likewise, if the target space
consists of discrete/nominal variables then the task is called
multi-target classification. The multi-label classification can
be treated as a special case of multi-target classification [1].
Namely, multi-label classification (MLC) is the task of learn-
ing from data examples where each example can be associ-
ated with multiple labels, which belong to a predefined set of
labels. The point of interest in our study is the multi-target
regression task.

In many real life problems, for instance, in ecology (pre-
dicting the abundance of different species occupying the
same habitat [2], estimating different vegetation quality
indices for the same site [3] and predicting the composi-
tion of a community of organisms [4]), the target space
is structured, meaning that there are some internal rela-
tions and dependencies (e.g., hierarchical structure) among
the targets. Finding those potential dependencies/relations
is one of the most challenging problems in machine
learning [5].

The methods for multi-target prediction can be categorized
into two groups: (1) local methods (problem transforma-
tion methods), that create an individual model per target,
and then combine the separate models in order to obtain
an overall prediction and (2) global methods (known as
big-bang methods or algorithm adaptation methods), that
predict all targets at once [6], [7]. The main advantage of
the global over the local methods is that the latter exploit the
potential dependencies among the targets during the learn-
ing phase to obtain predictive models with better predictive
performance.

A drawback of global models is that they ignore the local
modularity in the connections among the target components
such as parent-child, siblings relationships etc. In order to
address this challenge, we focus on identifying some poten-
tial target relations by structuring the output space using
a data-driven approach. Here, we approach the problem of
structuring the output space by looking into two different
spaces coupled with using different clustering approaches
(balanced k-means, agglomerative and predictive clustering).
First, we cluster the original output space that consists of the
target values for each example. We then cluster the space
consisting of the feature ranks for each component. At the
end, we transform a flat multi-target regression problem into
a hierarchical one using the hierarchy obtained by one of the
cluster-based approaches. In other words, we translate the
MTR task into a hierarchical multi-target regression (HMTR)
task. The main research question is to investigate whether
a predictive model learned on the transformed problem can
achieve better predictive performance compared to a pre-
dictive model learned from the flat multi-target regression
problem.

The predictive models that we use in the study are predic-
tive clustering trees (PCTs). We selected PCTs since they are
global models that can be used for different structured output
prediction tasks (including MTR and HMTR) and they are

constructed very efficiently. They are able to make a predic-
tions for several types of structured outputs such as tuples
of numerical/discrete values, time series, and hierarchies of
variables. More details can be found in [8]–[13]. PCTs can
be considered as a generalization of standard decision trees
towards predicting structured outputs. But the change in just
a few of the training examples can sometimes drastically
change the structure of the tree. To improve their predictive
performance, the predictive models can be combined into an
ensemble [14]. An ensemble is a set of single (base) predictive
models whose predictions are combined. For basic classifica-
tion and regression tasks, it is widely accepted that ensemble
learners improve the predictive performance of single tree
learners [6].

More specifically, we use single PCTs and ensemble of
PCTs for both MTR and HMTR setting. We perform an
extensive empirical evaluation of the proposed methods on
16 MTR benchmark datasets. Most of the datasets (11 out
of 16 datasets) are also used in [15]: The remaining datasets
from [15] have small number of targets (2 or 3) and there is
not much point in learning hierarchies in such small output
spaces. For hierarchy creation, we use agglomerative clus-
tering methods with single and complete linkage, balanced
k-means, and predictive clustering trees (PCTs). In order to
make our study more comprehensive, we perform experi-
ments on two large datasets (with 111 and 492 targets) thus
exploring the effect of including structures in large output
spaces.

The results from the evaluation reveal that better pre-
dictive performance can be achieved by using data-driven
approaches to construct the hierarchies rather than con-
sidering either, the flat multi-target regression task, or the
pre-defined hierarchy created by a domain expert. More-
over, for large datasets, the results are in line with teh
results for MLC [16], [17]: divisive hierarchy creation
algorithms (balanced k-means and PCTs for clustering)
are the best methods for clustering large output spaces.
All in all, constructing a hierarchy of the target vari-
ables improves the predictive performance of the predictive
models.

The reminder of this paper is organized as follows.
In Section 2, we present the related work on the topic of
multi-target regression and hierarchical multi-target regres-
sion. In Section 3, we show the data-driven approaches for
structuring the target space and the space created from feature
ranks of the targets for MTR. Furthermore, in this section we
present the learning methodology used to create predictive
models. Computational complexity is also discussed at this
point. In Section 4, we present the experimental design, where
we describe out data, point out the addressed experimental
questions and instantiate the parameters used in our study,
present the evaluation measures and the used statistical val-
idation as well as the explanation on how the expert hierar-
chies are created for each data set. Experimental results are
given and discussed in Section 5, while Section 6 concludes
this paper.
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II. BACKGROUND AND RELATED WORK
A. FORMAL DEFINITION OF MULTI-TARGET
REGRESSION (MTR)
In our study, we focus on the task of multi-target regression
that can be formally defined as follows [6], [18].

Given is:
• A description (input) space X covered by tuples of
D independent descriptive instances (examples) i.e.,
X = {X1,X2, . . . ,XD};

• A target (output) space Y covered by tuples of T contin-
uous target variables i.e., Y = {Y1,Y2, . . . ,YT };

• Set of examples E consisting of a pairs of elements, one
from input and another from output space, accordingly
i.e., E = {(xi, yi)|xi ∈ X , yi ∈ Y , 1 ≤ i ≤ N }, where N
is a number of examples;

• A quality criterion q, which selects and chooses the
models with the lowest predictive error.

Find:
• A function f : X → Y which maximizes quality
criterion q.

In our study, f is represented with predictive clustering
trees (PCTs) or ensembles thereof.

B. METHODS FOR MULTI-TARGET REGRESSION
As mentioned above, we distinguish two groups of MTR
methods: local (problem transformation) and global (algo-
rithm adaptation) methods [6], [7], [19]. Local methods con-
struct t separate models for the t target variables, which are
combined to give the overall prediction for all the targets.
From the other side, global methods build only one model
for predicting all of the t target variables simultaneously. We
next present the state-of-the-art MTR algorithms from both
groups of methods.

1) LOCAL (PROBLEM TRANSFORMATION) METHODS
Since the local methods transform the problem into t separate
single-target models, any known single target regression
algorithm can be used to learn the single-target mod-
els. Prominent methods addressing the MTR task include:
ridge regression [20], support vector regression machines,
regression trees [14] and stochastic gradient boosting [21].
Reference [20] proposed a separate ridge regression algo-
rithm that deals with MTR problems.

Regressor chain (RC) [22] is another problem transfor-
mation method motivated by the multi-label chain classifier
[23]. During the training process, RC randomly selects a
chain (permutation) of the target space, then builds a sep-
arate regression model for each target in consistence with
the selected chain. Since RC uses the actual values of all
previous targets in a chain, [22], also proposed regressor
chain corrected (RCC) that uses cross-validation estimates
instead of actual values. However, RC and RCC are sen-
sitive to the selected chain ordering. In order to avoid this
problem, [15], proposed an approach called ensemble of
regressor chains (ERC) and ensemble of regression chains

corrected (ERCC), where they randomly select as manymod-
els as the number of distinct label chain if the number of labels
is less than 10. Otherwise, they randomly selected 10 chains
and construct an ensemble of chains.

Multi-target regressor stacking (MTRS) [22] is another
problem transformation method inspired by [24] where
multi-label classification is performed by using stacked gen-
eralization. MTRS training is performed in two stages. First,
t different single-target models are learned and then, instead
of concatenating the t obtained predictions, MTRS includes
additional training stage, where a second collection of t sepa-
rate single target meta-models are learned. At the end, the pre-
dictions are calculated from both stages. The predictions from
the second stage use and adjust the predictions from the first
stage.

Zhang et al.(2012) [25], presented a new problem trans-
formation method based on multi-output support vector
regression approach. Basically, they extend the actual fea-
ture space and represent the multi-output problem as equiv-
alent single-output problems, that are solved using the
single-output least squares SVRs (LS-SVR) algorithm. The
multi-output model takes into account the target correlations
by using the vector virtualization method.

Recently,Wang et al. [26] propose amulti-target regression
method (MTR-TSF) that embeds the intra-target relation-
ships. First, by using hierarchical clustering on the output
space, they reveal the correlation among the targets and create
an additional feature vector Xindex consisting of the indices of
the nodes where specific instances belongs to. Next, they use
a boosting regression algorithm to learn a similaritymatrix for
each target. Finally, by querying and clustering of the similar-
ity matrix, a target specific feature vectorXtsf is created for all
instances and is added to the original feature vector X . At the
end, a prediction model per target is learned by considering
the ’merged’ feature space X ′ = X

⋃
Xindex

⋃
Xtsf .

2) GLOBAL (ALGORITHM ADAPTATION) METHODS
Algorithm adaptation learns a single model for all target
variables and thus take into account the dependencies among
the targets. There are many advantages over the local meth-
ods such as interpretability, better predictive performances,
especially, if the targets are related [6]. Below, we briefly
discuss various algorithm adaptation methods proposed in the
literature.

First attempt to deal with prediction of multiple target
variables are the statistical methods such as reduced-rank
regression [27]. Furthermore, [28] proposed the general ver-
sion of a multivariate regression problem of the James-Stein
estimator, called as filtered canonical y-variate regression.
Next, lasso regression [29] is a popular regression method for
estimation in linear models. It produces interpretable models
while at the same time it is stable. Next, gaussian process for
MTR are based on the algorithm proposed by [30]. The most
prominent statistical approach that deals with multiple targets
is the curds and whey (C & W) method [31].
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Predictive clustering trees (PCTs) are tree-based meth-
ods built within the predictive clustering framework [8].
This framework learns decision trees called predictive clus-
tering trees (PCTs) where the top node contains all of
the training examples and then it recursively splits into
lower partitions (clusters) of the whole train set. PCTs can
be used for classical machine learning tasks (clustering,
classification and regression), but also, can be applied to
multi-target prediction. PCTs can deal with structured out-
puts prediction, such as vectors, time series, sequences or
hierarchies [9]–[13].

In addition, [32] presented an algorithm called multi-target
step-wise model tree induction (MTSMOTI) for generation a
multi-target model tree on a step-wisemanner. The treemodel
is generated similarly as in PCTs, with TDIDT algorithm.
The difference is that each leaf in a tree model is associ-
ated with a set of linear models which generate the final
target predictions. Conditional Inference Trees (CTrees) are
non-parametric regression trees embedding tree-structured
regression models into conditional inference procedures
and estimate a regression relationship in a multi-target
scenario [33].

A different type of MTR algorithm is the rule based algo-
rithm called FItted Rule Ensemble (FIRE) method, proposed
by [34]. This is a method for learning rule ensembles based
on representing an ensemble of regression trees as a large col-
lection of rules. FIRE uses an optimization procedure (min-
imization) to select the best (much smaller) set of rules and
determine their respective weights.

Furthermore, Breskvar et al. [35] present an ensemble
method with random output selection (ROS). Instead of using
all target attributes, they randomly select subsets of target
attributes when learning the base predictive models of the
ensemble. This additional randomization improves the per-
formance both in terms of time complexity and predictive
accuracy.

The most famous non-parametric distance-based method
for regression task is the k-nearest neighbour method. It takes
the average of the values of the k nearest examples as a
prediction. K -nearest neighbour is a flexible algorithm, since
it can use any distance function and any number k (nearest
neighbours) [36].

Multiple-input multiple-output (MIMO) support vector
regression method is a generalization of support vector
machines (SVMs) for addressing the MTR task. The general-
ization is achieved by minimization of a Lagrangian equation
which has multi-dimensional parameters that have to be opti-
mized [37], [38].

Partial Least Squares Regression (PLS-PLSR) and Princi-
pal Component Regression (PLS-PCR) methods are another
methods for multi-target regression which are implemented
in the R software package pls [39]. These methods are com-
monly used in many natural sciences and are based on calcu-
lation of the scores obtained by decomposition of the product
matrix of orthogonal scores and loadings. Then regression
coefficients are calculated using the scores.

Multivariate Adaptive Regression Splines (MARS) is a
non-parametric regression method implemented in EARTH
package in R. MARS, as a generalization of step-wise linear
regression [40] constructs the dependencies between input
and output variables by using a data-driven set of base func-
tions and coefficients.

Another well-known and widely used method for MTR
are the artificial neural networks (NN). They are designed
based on human brain to recognize patterns in data. They
can automatically model the nonlinearity and can deal with
multi-input multi-output problems. The most often used
algorithm for training artificial neural networks is back-
propagation algorithm [41]. Backpropagation algorithm is
recursive and iterative method which efficiently optimize the
network weights by following the gradient descent method
that exploits the chain rule. Deep neural networks (DNN) are
artificial neural networks containing multiple hidden layers.
It update the network weights by establishing the correla-
tion between input (past events) and output (future events).
There are several variants of DNNs designed based on the
specific domains that are used for. Convolutional deep neu-
ral networks (CNNs) are used in the domain of computer
vision. Recurrent neural networks (RNNs) are used in var-
ious cases of language modelling, such as handwriting and
speech recognition [42], [43]. Zhen et al. [44] present a deep
learning approach for considering the intra-target dependen-
cies. Namely, they propose a multi-layer multi-target regres-
sion (MMR) method where intra-target dependencies are
explicitly encoded by using matrix elastic nets (MEN) to cre-
ate the structure of the target space (structurematrix S), which
enables learning of the target correlations by minimization of
the rank(S). Then, the kernel trick is used in order to solve
the problem of non-linearity in the representation of the target
dependencies.

C. FORMAL DEFINITION OF HIERARCHICAL
MULTI-TARGET REGRESSION (HMTR)
We follow similar guidelines as for defining the task of
MTR to formally define the task of hierarchical multi-target
regression [13]:

Given is:
• A description (input) space X covered by tuples of D
independent descriptive instances (examples) i.e., X =
{X1,X2, . . . ,XD};

• A target (output) space Z covered by tuples of T con-
tinuous target variables i.e., Z = {Z1,Z2, . . . ,ZT }.
We define a hierarchy H = (Z,≤p) for the variables
from the output space Z . The relation ‘‘ ≤′′p repre-
sents a parent-child relationship between tree nodes
(∀(Z1,Z2) ∈ H : Z1 ≤p Z2 if and only if Z2 is a parent
(meta-label) ofZ1) and is called hierarchical constraint.
The meta-labels are result of an aggregation function
(for example, sum or average) on their respective chil-
dren i.e Zk = agg{Zi|Zi ≤p Zk};

• Set of examples E consisting of pairs of elements, one
from input and another from output space, accordingly
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i.e., E = {(xi, yi)|xi ∈ X , zi ∈ Z, 1 ≤ i ≤ N }, where
N is a number of examples and where the values of the
target variables satisfy the hierarchical constraint ‘‘ ≤′′p
i.e ∀j : ∃i(Zi ≤p Zj H⇒ zj = agg{zi|Zi ≤p Zj});

• A quality criterion q, which selects and chooses the
models with the lowest predictive error and the highest
accuracy.

Find:

• a function f : X → Y which maximizes the quality
criterion q and all predictions ẑ = f (x) are satisfying the
hierarchical constraint.

The difference to the task of MTR is in the definition of the
output space: for HMTR we have a set of numeric variables
organized in a hierarchy instead of a flat tuple of numeric
variables. The definition of the parent-child relationships
(hierarchy constraint) states that the variable belonging to
a given hierarchy node automatically contributes to all its
parent nodes.

D. METHODS FOR HIERARCHICAL MULTI-TARGET
REGRESSION
In this part, we present the existing (state-of-the-art) methods,
related to the task of hierarchical multi-target regression. To
begin with, multilevel analysis refers broadly to the method-
ology of research and data structures that deal with nested
data, i.e., includingmore than one type of unit. This is directly
related with involving several levels of aggregation. Consider
an example from educational research, where students from
different schools are considered, and their performance (e.g.,
grades) is being predicted.

Then, a separate regression model can be fitted within each
school, and the model parameters from these schools can be
modeled as depending on each school properties (such as
the socioeconomic status of the schoolâĂŹs neighbourhood,
whether the school is public or private, and so on). The
student-level regression and the school-level regression here
are the two levels of a multilevel model. The lowest level
is the student-level and each student belonging to this level
can be linked with appropriate class, and then each class to
appropriate school and so on. With this, a kind of dependency
levels (i.e., a hierarchy) is created. Moreover, in the higher
levels in the multilevel model, regression parameters (hyper-
parameters) can be fitted for the regression model. That is
the reason why in most of the research, the term ‘‘multilevel
analysis’’ is mostly used interchangeably with ‘‘hierarchical
linear modeling’’, although strictly speaking they are distinct.

Another application of the hierarchical linear modeling
approach can be found in [45], where a two-level hierar-
chical linear model with multiple outputs was employed to
analyze an information obtained from two different groups
of informants (child and parents participants) in order to
assess the demographic risk factors on children’s exposure
to violence (ETV) and how these effects vary by informants.

The main advantage of multilevel modeling is spreading
of a residual components through each level of a hierarchy,

thus the overall variance is partitioned and moreover, the pre-
dictors are included at each level. Hence, with application
of multi-target regression at each level, the model can deal
with between-level relations in the hierarchy. Latter makes
multilevel modelling superior than regression modeling with
respect to the model performance [46]. An extensive review
for multilevel modeling is given by [47] and [48].

Next, online analytical processing (OLAP) is a method
which allows to extract and analyze data from multiple
sources at the same time. The data is multidimensional, hence
the extracted information can be compared in different ways.
For example, a book store might compare their book sales in
September with sales in August, then compare those results
with the sales from another location, which might be stored
in a different database. The OLAP data is stored in multi-
dimensional databases and all attributes are considered as
a separate dimension. Considering the multi-dimensionality,
the OLAP data is structured in a hierarchical form by using
some of the OLAP tools: consolidation (roll-up), drill-down,
and slicing and dicing [49]. This structuring and hierarchical
representation enables a complex calculations and manipu-
lation of the data (trend analysis, data modeling) [50]. The
natural relationships in the data by using OLAP method are
also researched by [51] by using a partially ordered set of
levels (dimension schema).

Predictive clustering trees (PCTs) for HMTR task is pro-
posed recently by [13]. The original PCTs for MTR are
extended to HMTR task with defining prototype function and
variance function. All operations for aggregation can be used
as a prototype functions, but keeping in mind that with some
of them (for example, minimum or maximum) after averag-
ing, the hierarchical constraint (parent-child relation within
the hierarchy) can be violated. For the variance function,
theweighted Euclidean distance is usedwhere theweights are
defined such that they decrease exponentially with the depth
of the node in the hierarchy.

E. METHODS FOR STRUCTURING THE OUTPUT SPACE
The main goal in this article is structuring the output space
in MTR. To the best of our knowledge, structuring of the
target space for MTR has not been explored yet. Hence,
we overview the methods for structuring the output space
for the related multi-label classification (MLC) task where
learning hierarchies in the output space has been studied to a
wider extent [16], [17], [52]–[55].

Joly et al. (2014) [52] propose a method for dimensionaltiy
reduction of the output space by random projections of it,
mainly focused on MLC task. The projections are made
in such a way that preserve distances in projected space.
The reduction of the variance function is made on the pro-
jected space, while the predictions are made directly in the
original output space using a decoding procedure. Similarly,
Joly et al. (2017) [56], proposes a gradient boosting method
for MTRwhich automatically adapt the target correlations by
random projection of the output space.
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FIGURE 1. An illustration of the proposed framework for structuring the output space. We consider two spaces i.e., representations to cluster the
targets: the original target space (TS) i.e., the values of a given target for each example and feature ranking space (FR) i.e., the importance scores
for each feature with respect to a given target, for transforming the original MTR task to a HMTR task.

Madjarov et al. (2016) [16] present a comprehensive study
of different data-derived methods for structuring the label
space in the form of hierarchies for MLC. Namely, they use
the label co-occurrence matrix to obtain a hierarchy of labels
by using several clustering algorithms such as: agglomera-
tive clustering with single and complete linkage, balanced
k-means and PCTs. Their results say that divisive clustering
methods (balanced k-means and PCTs) perform the best.

Tsoumakas et al. (2007) [55] propose a transformation-
based ensemble method for random k-labelsets (RAkEL) for
MLC by using existing algorithms for MLC. The RAkEL
algorithm creates an ensemble by random sampling a small
subset with k labels for each basemodel. The sampled subsets
are structured as a label powerset and multi-class classifier is
then used.

Next, Szymanski et al. (2016) [54] present a study which
addressed to the question, whether data-driven methods on
a graph consisting of label co-occurrences is significantly
better than random generated graph of labels for MLC. This
method is actually data-driven version of RAkEL method.
Their results show that in general data-driven approach is
superior to random created graphs of labels.

Nikoloski et al. (2017) [17] propose an algorithm for
structuring the output space using feature ranking in MLC.
They create a hierarchy from a space constructed by feature
rankings for each of the classes. Furthermore, they present
a comparative analysis with the approach from [16], where

hierarchy is created by clustering the space consisting of
label co-occurrences. In both cases, it is shown that some
improvements in predictive performance can be achieved if
data-driven approach for output space structuring is used,
compared to using a flat multi-label classification task,
despite the higher complexity added by additional procedure
for calculating the feature importance and the clustering pro-
cedures.

III. STRUCTURING THE OUTPUT SPACE FOR MTR
The idea for structuring the output space in MLC proposed
by [17] and [16] motivates the exploitation of methods for
structuring the output space inMTR. In this study, we propose
to transform a flat MTR task into a task of hierarchical
multi-target regression (HMTR) [13]. Namely, we use the
hierarchies created with data-driven clustering approaches to
investigate whether the predictive models obtained with the
HMTR task yield better predictive performance than predic-
tive models obtained with the flat MTR task.

A. STRUCTURING THE TARGET SPACE
In our paper, we propose a framework that transforms the
original multi-target regression (MTR) task into a hierar-
chical multi-target regression (HMTR) task, by clustering
the output space. The flowchart of the framework is given
in Figure 1.
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The method for structuring the target space is outlined
in the procedure StructuringTargetSpace from Algorithm 1.
First, we take the original training dataset F train and extract
the target spaceW train from the complete dataset. To obtain a
hierarchy, we cluster the spaceW train by using the procedure
Clustering (it can use any arbitrary algorithm for clustering).
With the function TransformData, we transform the original
datasets F train and F test to new datasets F trainH and F testH by
including the obtained hierarchy and then, we learn a predic-
tive model and generate the predictions. Next, we calculate
the predictions for each node in the hierarchy and extract
only the predictions related to the targets, which are in the
hierarchy leafs. Finally, using those predictions, we evaluate
the predictive performance.

Algorithm 1 The Algorithm for Structuring the Target Space

procedure StructuringTargetSpace(F train, F test )
Input: F train - training dataset
Input: F test - test dataset
Output: Performance
1: W train

= ExtractTargetSpace(F train);
2: hierarchy = Clustering(W train);
3: F trainH = TransformData(F train, hierarchy);
4: F testH = TransformData(F test , hierarchy);
5: HMTR_Model = HMTRMethod(F trainH );
6: predictions = CalculatePredictions(HMTR_Model,
F testH );

7: P = ExtractLeafsPredictions(predictions);
8: Performance = Evaluate(P);
9: return Performance

B. STRUCTURING THE SPACE OF FEATURE RANKS
OF THE TARGETS
The method for structuring the feature importance scores of
the targets is outlined in procedure StructuringFRSpace from
Algorithm 2. First, we take the original training dataset F train

and by using an arbitrary feature ranking approach (function
CreateFimp), we create feature importance scores for each
target separately. Then, the F ranks dataset is constructed from
the feature importance scores. Next, we obtain a hierarchy
with clustering the F ranks space, using an arbitrary clustering
algorithm. Same as the previous Algorithm 1, we transform
the original datasets F train and F test to new datasets F trainH and
F testH by including the obtained hierarchy and then, we learn
a predictive model, generate the predictions and evaluate the
predictive performance.

From the abovementioned procedures for structuring
the output space, we can notice that in the procedure
StructuringFRSpace (Algorithm 2), there is an additional
step, compared to the procedure StructuringTargetSpace
(Algorithm 1). The additional step is the functionCreateFimp
at line 1 (Algorithm 2), which increases the theoretical com-
plexity of the algorithm StructuringFRSpace.

Algorithm 2 The Algorithm for Structuring the Target Space
Using Feature Importance Scores per Target

procedure StructuringFRSpace(F train, F test )
Input: F train - training dataset
Input: F test - test dataset
Output: Performance
1: FimpPath = CreateFimp(F train);
2: F ranks = CreateArffFromFimp(FimpPath);
3: hierarchy = Clustering(F ranks);
4: F trainH = TransformData(F train, hierarchy);
5: F testH = TransformData(F test , hierarchy);
6: HMTR_Model = HMTRMethod(F trainH );
7: predictions = CalculatePredictions(HMTR_Model,
F testH );

8: P = ExtractLeafsPredictions(predictions);
9: Performance = Evaluate(P);

10: return Performance

Next, we describe the feature ranking approach for calcu-
lating the importance of the descriptive variables. Random
forests are constructed by using the algorithm for learning
PCTs in CLUS, modified according to the original random
forest method proposed by [57]. Their use as feature ranking
methods has been well studies in the literature (cf. [58]). First,
random forests perform bootstrap sampling on the data and
then build a decision tree for each bootstrap sample. Next,
at each node of the tree, the best test is taken from a randomly
selected feature subset.

Huynh-Thu et al. (2010) [59], proposed the GENIE3
algorithm for feature ranking. It uses reduction of the vari-
ance (of the target variables) at each node in the tree. The
algorithm is checking which of the input variables reduce
the variance more, and then, those which reduce more, are
more important. Consequently, the ones which reduce the
variance less, are less important. For each selected descriptive
variable as a splitting variable, the produced reduction of
the variance is being measured. The importance will be 0 if
the descriptive variable is never been selected as a splitting
variable (for any tree in the ensemble), meaning that it was
not deemed important enough. The GENIE3 algorithm has
been vastly evaluated for single-target regression tasks, for
instance, in the domains of gene reconstruction. The random
forest algorithm used for feature ranking is adapted with the
idea proposed in the GENIE3 algorithm. For building the
ensemble, the random forests of PCTs are used. The outcome
is a feature ranking algorithm which is adapted to be used for
various types of tasks for structure output prediction [60].

C. HIERARCHY CREATION (CLUSTERING) ALGORITHMS
In this part, we overview the clustering methods used to
create the hierarchies of the target space. For achieving a
good performance of the HMTR methods, it is necessary
to construct target hierarchies that are capturing the rela-
tions (dependencies) among the target attributes. The main
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constraint in hierarchy creation is that the original MTR task
should be defined by the leafs of the hierarchy. Specifically,
each leaf in the hierarchy represents a set of targets from the
original MTR problem. At the end, the number of targets in
the hierarchy leafs must be the same as the number of targets
from the original MTR problem. Furthermore, the internal
nodes of the hierarchy (so called meta-labels) represent the
potential relations among the original targets.

For creating the hierarchies, we use four different cluster-
ing methods (two divisive and two agglomerative):
• balanced k-means clustering (divisive);
• predictive clustering trees (divisive);
• agglomerative clustering with complete linkage and
• agglomerative clustering with single linkage.
Agglomerative clustering algorithms are bottom-up algo-

rithms for clustering, where in the first iteration, each exam-
ple is consider as a separate cluster. In the next iterations,
the pairs of clusters are merged based on their linkage (dis-
tance metric). There are several possibilities for linkage of the
examples. Namely, if the maximal distance of two examples
from the clustersC1 andC2 is used, then this type of linkage is
called complete linkage, i.e., max{dist(c1, c2) : c1 ∈ C1, c2 ∈
C2}. Then, if the minimal distance between two examples for
two different clusters is used, then we have an agglomerative
clustering with single linkage i.e., min{dist(c1, c2) : c1 ∈
C1, c2 ∈ C2}.

Balanced k-means is divisive top-down approach for clus-
tering. First, root node of the hierarchy represents the one
common cluster, consisting of all targets from the target space
T . Then, consecutively, this cluster is divided into k disjoint
sub-clusters (meta-labels) (k < |T |) using the k-means clus-
tering algorithm. The number of cluster divisions k is an input
to this algorithm, hence the algorithm output clusters with
approximately equal size [61]. The procedure recursively is
repeated on each sub-cluster until the number t of targets in
each sub-cluster is smaller than k − 1. In other words, our
target space T is covered by leafs of the hierarchy obtained
by the balanced k-means clustering approach.

We also use predictive clustering trees (PCTs), which can
be used as another divisive hierarchical clustering method,
to build up the target hierarchies. More specifically, we treat
the target space as descriptive space. Descriptive and tar-
get variables, all together, are used to provide descriptions
for the obtained clusters. To calculate the heuristic score,
a variance function is used during the learning process until
some stopping criterion is met. This means that there is no
need for using predefined number of clusters, as required
by traditional clustering methods. The focus of using PCTs
for clustering is on using predictive clustering framework in
unsupervised manner i.e., on the task of clustering instead of
predictive modelling [62], [63].

D. LEARNING METHODOLOGIES
1) PREDICTIVE CLUSTERING TREES (PCTS)
The PCT framework views a decision tree as a hierar-
chy of clusters, where the top-node corresponds to one

cluster containing all the data. While moving downwards
the tree, this top-cluster is sub-divided into smaller clus-
ters recursively. The PCT framework is implemented in
the CLUS software package (https://sourceforge.net/projects/
clus/) [6], [9].

PCTs are obtained with a standard top-down induction of
decision trees (TDIDT) algorithm [64]. As an input, TDIDT
takes a set of examples to produce a tree as an output.
By using a heuristic function, computed on the training
instances, the TDIDT procedure selects a test for the root
node. The heuristic aims to select a test which maximizes the
variance reduction caused by the partitioning of the examples
into subsets according to the test outcome. Recursive proce-
dure of partitioning the examples continues until a stopping
criterion is satisfied. Further partitioning of examples yields a
tree with a lower quality. In this case, we store the prediction
(output value of a prototype function) in the corresponding
leaf of the tree.

Blockeel (1998) [8], proposed the predictive clustering
framework, while predictive clustering trees (PCTs) for
multi- target regression (MTR) were proposed by [9]. In
PCTs for MTR, the prototype function calculates the mean
vector of all target variables Y for the training examples
that belong to the leaf. In the prediction phase, for each
new example, the algorithm identifies the leaf it belongs to
and returns the value predicted by the prototype function
associated to that leaf. The PCTs can be instantiated for a
specific given learning task by considering specific variance
(for split selection) and prototype function (for calculating the
predictions in each leaf). Actually, that is the main difference
with standard decision tree learning.

The PCTs are developed to work for the task of multi-target
regression (MTR) [65], multi-label classification (MLC)
[66], prediction of time series [12], hierarchical multi-label
classification (HMLC) [11] and recently, for hierarchical
multi-target regression (HMTR) [13]. We will now describe
how PCTs from hierarchical multi-target regression are build.
In order to extend the PCTs for the HMTR task, we need to
define variance and prototype functions.

The variance is calculated by applying a distance function
on the values of the variables in analogy of the distances for
HMLC and the implementation of that task, i.e., the variance
is calculated as the average squared distance between each
node 5i of the examples and the mean node vector5:

Var(E) =
1
|E|
·

|E|∑
i=1

dist(5i,5)2 (1)

where 5 = 1
|E| ·

∑|E|
i=15i.

Any distance d can be used as a distance function in
Eq (1). [13] proposes for the task of HMTR to use a weighted
Euclidean distance:

dist(51,52) =

√√√√ |5|∑
s=1

θ (cs) · (51,s −52,s)2 (2)

145184 VOLUME 7, 2019

74 Chapter 5. Structuring the Output Space in Multi-Target Prediction



S. Nikoloski et al.: Data-Driven Structuring of the Output Space Improves the Performance of Multi-Target Regressors

where5i,s is the s’th component of the class vector5i of the
instance Ei, |5| is the size of the class vector, and the class
weights θ (c) = θ

depth(c)
0 . The class weights θ (c) decrease

exponentially with the depth of the node in the hierarchy thus
making the differences in the lower parts of the hierarchy less
influential to the overall score.

The prototype function used is averaging the values of the
examples belong to a given leaf.

2) RANDOM FORESTS OF PCTS
Random forests of PCTs are implemented in the CLUS sys-
tem [6] following the same method as for the simpler tasks of
classification and regreesion [57]. A random forest represents
an ensemble of trees where the diversity among the trees is
achieved by bootstrap replicates and for each tree node in
the learning phase, a randomly selected subset of descriptive
attributes is considered for split selection. Bootstrap repli-
cates are generated by random sampling of instances from
the training set, with replacements, until the same number of
instances as in the original training set is reached.

The difference between the PCT procedure for tree con-
struction in random forest algorithm and the standard PCT
procedure is in the selection of descriptive attributes. In the
former, selection of the descriptive attributes is randomized.
Namely, at each node in the decision tree, a random subset
of attributes is taken from the descriptive space and the best
attribute is chosen from this subset. There are different ways
of retaining the number of attributes from descriptive space.
The number of attributes that are chosen from descriptive
space is given by function f of the total number of descriptive
attributes D (e.g. f (D) = 1, f (D) = [

√
D + 1], f (D) =

[log2 D+1] etc.). This randomness is chosen in order to avoid
the correlation between the bootstrap samples. For example,
if there are only few relevant descriptive attributes that are
important for prediction of the target variables, these will
be selected many times in the bootstrap replicates, hence
providing more correlated trees.

Prediction of new instances in random forest algorithm
for PCTs are made by combining the prediction of all base
predictive models. For both MTR and HMTR, the prediction
of each target is defined as an average of the predictions
obtained from each predictive tree.

E. COMPUTATIONAL COMPLEXITY
1) SINGLE PCTS FOR MTR/HMTR
In this part, we analyze the computational complexity of
PCTs for HMTR and compare it with the computational com-
plexity of PCTs for MTR.We discuss the order of complexity
for both single PCTs and ensembles of PCTs for HMTR. Let
us assume that the size of the training set, i.e., the number of
examples, is e, the number of descriptive attributes is d out
of which c are continuous, the number of target attributes is t
and the number of meta-labels is m.

The top-down induction algorithm of PCTs requires sort-
ing of the the c numeric attributes, and it has a cost of

O(c · e · log e) and c = O(d). Calculating the best split for
multiple variables has the complexity order ofO(t · d · e) and
applying the split to the examples has a linear complexity,
i.e., O(e). We assume that the tree is balanced, which means
that the depth of the tree is log e. With these calculations,
the computational cost of inducing a single MTR tree is:

O(MTRtree) = O(d · e log2 e

+t · d · e · log e+ e · log e) (3)

For the HMTR algorithm, we also have the meta-labes
(intermediate nodes), which in this case act like targets. This
affects the computational cost only when the best split is
calculated. More specifically, this costs is given by O((t +
m) · d · e log e) compare to the O(t · d · e log e) for PCTs for
MTR. Given this, we can calculate the order of complexity
for a HMTR tree, which is very similar to the one for a MTR
tree:

O(HMTRtree) = O(d · e log2 e

+(t + m) · d · e · log e+ e · log e) (4)

2) RANDOM FOREST OF PCTS
The order of complexity of constructing ensembles depends
on the complexity of the base predictive models and their
number b. The random forest performs sampling of the
instances and sampling of the features. This random sampling
reduces the computational complexity of the ensemble and
is lower than the intuitive O(b · MTRtree). Let the number
of examples used to train the base predictive model with
sampling of the examples be e′ and the number of descriptive
attributes considered in random forests d ′, where e′ < e and
d ′ < d . The computational complexity of the creation of
the bootstrap replicates of the training set for random forests
is O(e) and the complexity of the random sampling of the
features at each node for random forests is O(d ′ · log e′).

Hence, the computational costs random forest PCT ensem-
bles for MTR is the following:

O(Rforest_MTR) = O(b · d ′ · e′ log2 e′

+b · t · d ′ · e′ · log e′

+b · e′ · log e′ + b · e+ b · d ′ · log e′)

(5)

The computational complexity of the HMTR counterparts
of the random forest PCT ensembles for HMTR is the
following:

O(Rforest_HMTR) = O(b · d ′ · e′ log2 e′

+b · (t + m) · d ′ · e′ · log e′

+b · e′ · log e′ + b · e+ b · d ′ · log e′)

(6)

In Eq.(6) we can see a linear increasing in complexity with
respect to targets with introducing the meta-labels (interme-
diate nodes). The same translation we already considered for
the single PCTs for HMTR (see Eq. (4)).
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For all methods (PCTs and ensembles of PCTs for both
MTR andHMTR), from their complexity cost, we can see that
the dominant elements in the equations are the one containing
the second logarithmic power of the number of examples,
and the one that is multiplied with the number of targets.
For single PCTs, the first element is O(d · e log2 e), and
the second is O(t · d · e · log e) or O((t + m) · d · e · log e)
for MTR and HMTR, respectively. If we compare the two
terms, we can see that the first term is greater than the second
when log e > t for MTR and log e > t + m for HMTR.
Let us explore the first case where the first term is smaller.
This means that when comparing MTR and HMTR, HMTR
will have higher computational cost, due to the addition ofm.
Let us now explore the second case where log e is higher.
In this case, the computational cost is affected only with
the first term, hence the linear increase in the second term
(i.e., (i.e., the addition of s in O((t + m) · d · e · log e))
will be insignificant, resulting in comparable performance
between MTR and HMTR for all methods on a datasets with
a sufficiently large number of examples.

3) ALGORITHMS FOR STRUCTURING THE OUTPUT SPACE
We discuss the computational complexity of the procedures
for structuring the output space given in Algorithm 1 and
Algorithm 2. In the procedure for structuring the feature
ranking space, there is an additional function CreateFimp for
calculating the feature importance for each target. Since it
is done by random forest method with GENIE3, the order
of complexity of this procedure is O(CreateFimp) ≈
O(Rforest_MTR).

The most important cost for the clustering procedure is the
number of examples e – in the case of datasets with large
number of examples, the clustering procedure will take more
time to create the hierarchy. When balanced k-means is used
as a clustering procedure, the time complexitywill beO(e·t3).
Moreover, if the agglomerative clustering methods are used,
the time complexity will be O(e · t3) and memory consump-
tionO(e · t2), which makes it too slow for even medium data
sets. Time complexity of PCTs used as a clustering method is
the same as in Eq (3).

Alternatively, the procedure for creating the hierarchy
(Clustering at line 5 in procedure in Algorithm 2) using
feature rankings has a dimension which depends of the car-
dinality of the feature space F ranks, denoted as d . The feature
space cardinality is typically much smaller than the number
of examples (i.e., |F ranks| � |W train

|, i.e., d � e), meaning
that clustering of the rankings will finish faster than clustering
of the original target space. Using balanced k-means, it will
be O(d · t3), where d � e, then, by using agglomerative it
will be O(d · t3), and memory consumption O(d · t2), where
d � e. Finally, the time complexity of PCTs algorithm used
for clustering will be the same as in Eq (3) when we cluster
the feature rankings space, considering that d � e. All in all,
the clustering procedure is much more efficient when feature
ranking space is considered, since the number of features and

number of targets, in most of our datasets are significantly
smaller than number of instances.

IV. EXPERIMENTAL DESIGN
A. EXPERIMENTAL QUESTIONS
We set the experimental design focusing on the following
research questions:
(1.) Does structuring the output space (using a hierarchies)

improves the predictive performance compared to the
original flat MTR task?

(2.) Which clustering method yields better hierarchy?
(2.1.) Can we achieve better predictive models by using

the hierarchies obtained by structuring the feature
ranking or target space?

(3.) Are the data-driven hierarchies better than the hierar-
chies created by a domain expert?

(4.) How the structuring of the output space scales from
small to large output spaces?

(5.) How the performance difference translates from single
model to ensemble of models?

In order to answer the above questions, we perform an
extensive evaluation on a diverse datasets from the environ-
mental and socio-economic domain. In the following part,
we will describe the data we use.

B. DATA DESCRIPTION
We use 16 datasets for multi-target regression benchmark
problems from 2 different domains (8 from the domain of
socio-economic sciences and 8 from the domain of environ-
mental sciences, from which 14 with small and 2 with large
number of targets). The number of targets in the datasets
range from 6 to 492 and the number of descriptive attributes
from 16 to 576. The datasets with large number of targets
(> 100) are inspected separately. The number of instances is
also diverse ranging from 42 to 16976. The basic information
and statistics about these datasets are given in Table 1.

The Andromeda (andro) dataset is for prediction of 6
water quality variables in Thermaikos Gulf of Thessaloniki,
Greece [67]. The Airline Ticket Price datasets are used to
infer the minimal price of an airline ticket for the next day
(atp1d) i.e., next 7 days (atp7d) [68]. Metal data (mdv2)
is the data for meta-learning of an automated assistant sys-
tem for choosing appropriate machine learning algorithms
for a specific data mining process [69]. The Occupational
Employment Survey datasets are from theUSBureau of Labor
Statistics for the years 1997 (oes97) and 2010 (oes10) [15].
The Online sales (osales) dataset deals with the prediction
of online sales of products described with various product
features. The dataset is from the Kaggle’s Online Product
Sales competition in 2012 [70]. Prespa Diatoms Lake (pd)
and Prespa Diatoms Lake top 10 (pdt) datasets investigate
the effect of the environmental conditions of Lake Prespa
in the Republic of Macedonia on diatom communities [71].
The former (pd) is the complete data set with all 111 targets
and examples, while the latter (pdt) consists of only top
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TABLE 1. Properties of the used benchmark datasets in terms of number
of instances (#inst), number of descriptive attributes (D), number of
targets (T), percentage of missing values (MissVal) and sorted by number
of instances. The datasets with ∗ as superscript will be considered
separately, since they have large number of targets.

10 the most abundant diatoms. River Flows (rf1 and rf2)
are datasets for prediction of the river network flows in the
Mississippi river in the United States obtained from the US
National Weather Service consists of 8 sites, with 8 attributes
from each site [15]. The difference between rf1 and rf2 is
that the latter includes the forecast information about the
precipitation. The SCM datasets are from the 2010 Trading
Agent Competition in the Supply Chain Management tour-
nament (TAC SCM). It consists of 4-time delayed observa-
tions for traded prices of various computing equipment for
the specific day (i.e., prices from 1, 2, 4 and 8 days ago
vs. the price today) and trying to predict the forward trend
of the next tournament day price (scm1d), i.e., the mean
price of the next 20 tournament days (scm20d) [72]. The

Vegetation condition(vgc) dataset concerns the prediction of
the vegetation condition for the Victoria State in Australia
and provided by the Arthur Rylah Institute for Environ-
mental Research, Department of Sustainability and Environ-
ment (DSE) [3]. Water quality (wq) and Slovenian Rivers
(SloRiv) are two datasets for predicting species abundance
in water in Slovenian rivers using 16 chemical parameters
as a descriptors. The wq data set consists of only 14 the
most abundant species, while the SloRiv dataset consists
of 492 different species which occur more than 5 times in
the samples [65], [73].

C. EVALUATION MEASURES
We follow the literature recommendations regarding the eval-
uation measures [19]. We present the values of the average
relative root mean squared error (aRRMSE) (Eq 7) for perfor-
mance of the tested methods. To perform a fair comparison,
we calculate these errors only for the target variables at the
leafs of the hierarchy.

Let us assume that t is the number of target variables and
Ntest is the size of the test set. The actual value of a target
variable of an example is Y , and Ŷ is the predicted value using
the model for that example. Similarly, Ȳ is the average of the
actual values for that target variable. The aRRMSE can be
define as follows:

aRRMSE =
1
t

t∑
i=1

RRMSEi

=
1
t

t∑
i=1

√√√√∑Ntest
k=1 (Y

(k)
i − Ŷ

(k)
i )2∑Ntest

k=1 (Y
(k)
i − Ȳi)

2
(7)

If aRRMSE ≈ 0, then we have much better performance,
but if aRRMSE ≈ 1, we have a closer value to the default
prediction that predicts the average value for each target.

D. PARAMETER INSTANTIATION
The majority of our experiments are performed using the
CLUS software package (https://sourceforge.net/projects/
clus/), where the predictive clustering framework for MTR
and HMTR tasks, including PCTs for MTR/HMTR, random
forests of PCTs for MTR/HMTR and feature ranking [6], [9]
are implemented. The algorithms are developed to natively
handle missing values.

A hierarchical tree defined by the used clustering methods
in HMTR are defined as tree shaped hierarchies. For obtain-
ing a hierarchy using the agglomerative clustering method,
we use the non-commercial version of OCTAVE software
package (functions pdist(), linkage() and dendrogram()). Fur-
thermore, in OCTAVE, we used balanced k-means clustering
for numerical type values, which is based on Hungarian
(Munkres’) assignment algorithm to assign the examples to
the clusters [74]. Since most of the datasets have a relatively
small number of targets (except the two with more than 100),
we selected the value k = 2 for balanced k-means in order to
obtain more branched hierarchies.
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FIGURE 2. Results for the predictive performance of single PCTs from experiments per dataset represented by aRRMSE. Green bars represent
hierarchies created by an expert and orange bars represent the flat MTR results.

We use Euclidean distance metric in all our algorithms that
require distance. In HMTR, as defined in previous sections,
we use weighted Euclidean distance. Moreover, for random
forest for feature ranking, we use GENIE3 as a feature impor-
tance method based on variable selection with ensembles of
PCTs [59], [60]. We use 100 base ppredictive models for the
random forests in all tasks (MTR, HMTR and feature rank-
ing). For PCTs for HMTR task, we use sum as an aggregation
function with the weight set to 0.75 [13].

E. HIERARCHIES CREATED BY A DOMAIN EXPERT
In our analysis, we also use hierarchies created by the domain
experts, defined as a class ontology or domain-specific class
structure. In the following part, we explain the creation of the
hierarchies for each dataset.

The hierarchy inmdv2 (Metal data) dataset is created based
on a type of machine learning algorithm in three hierarchy
levels. For andro (Andromeda) dataset is created based on
correlation matrix given in [67]. For pdt (Prespa Lake Top 10)
data set, the top 10 most abundant diatoms are grouped into a
hierarchy based on their taxonomic rank. For atp1d and atp7d
(Airline ticket prices) datasets, the target classes are grouped
based on the type of the flight, either non-stop flight or with
any number of stops. For oes97 and oes10 (Occupational
Employment Survey 1997 and 2010), the target classes are
organized into a hierarchy based on the type of the occupation
and specific job position. For osales (Online Sales) data set,
the hierarchies are created based on sales products in first
and the second half of the year. For wq (Water Quality) and
SloRiv (Slovenian Rivers) datasets the hierarchies are created
based on the taxonomic tanks of the species. The expert
hierarchy for rf1 and rf2 (River Flows) datasets is constructed

based on three different river network flows (Illionis, Iowa
and Missouri). The hierarchy for scm1d and scm20d (Supply
ChainManagement) datasets is created based on the grouping
the 16 PC configurations (targets) on 3 main market segments
(low, medium and high) consisting of a combination of 10 dif-
ferent components, as it is given in Table 5 in the report [75].
Finally, the hierarchy for the vgc (Vegetation conditions) data
set in created based on grouping of the target classes, either
to tree related scores or other type of scores [3].

F. STATISTICAL EVALUATION
To validate our predictive models, we use 10-fold cross vali-
dation in all settings. More specifically, the whole dataset is
first randomly split into 10 folds. Next, 9 folds are used for
training, and the remaining one for testing. The procedure is
repeated 10 times so that each fold is used exactly once as test
set. The reported results represent an average of all 10 runs.

For statistical evaluation of the results, we adhered to
the recommendations by [76]. For assessing the statistical
significance of the differences, we used the non-parametric
Friedman test [77] with the correction recommended by [78].
In order to compare the methods and to check the statistical
significance among them, we used the Nemenyi post-hoc
test [79]. The result from Nemenyi post-hoc test is pre-
sented with an average ranks diagram [76]. For statistical
comparison between two algorithms, we used the Wilcoxon
signed-rank non-parametric statistical hypothesis test [80].

V. RESULTS
In this section, we present the obtained results from the per-
formed experiments using the procedures for structuring the
output space. In our study, as output spaces, we consider the
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FIGURE 3. Average rank diagrams for algorithms that cluster the target space (left) and feature ranking space (right) using single
PCTs.

space consisting of the target values or the space consisting
of feature ranks for each target. We compare the following
methods for hierarchy construction:

• flat MTR problem (no hierarchy) (MTR);
• agglomerative clustering with single linkage (AggS);
• agglomerative clustering with complete linkage (AggC)
• balanced k-means clustering (BkM)
• clustering using predictive clustering trees (PCT).
• hierarchy created by an expert (Expert)

Since we have two different models (single PCTs model
and random forest of PCTs) and two different structured
output spaces, we show separately the results for single PCTs
(Fig 2) and random forest of PCTs (Fig 7). To clarify the nota-
tion, we need to distinguish between using either single tree
or random forest of PCTs and different methods of structuring
the output space (target space and feature ranking space).
To achieve this, we use prefixes (PCT- and RF-) and suffixes
(-TS and -FR) before and after the hierarchy construction
method name, accordingly. For example, RF-BkM-TS refers
to the balanced k-means method used on the original target
space using random forest of PCTs for model creation. Then,
PCT-PCT-FR refers to the clustering method with PCTs of
the output space consisting of feature rankings using single
PCTs for building the model, etc.

Fig 2 visually presents the results of the predictive perfor-
mance of single PCTs for each dataset. Examining the figure,
it is clear that data-driven hierarchies, generally, improve the
predictive performance over the flat MTR task, except on
five datasets (andro, pdt, atp1d, scm1d and scm20d). It is
interesting to notice that, for most of the datasets with more
than 12 targets (oes97, oes10, osales, wq), using hierarchies
noticeably improve the performance over flat MTR (with no
hierarchies). Those results give an insight that, for the datasets
with large number of targets, there is an improvement of the
performance if the hierarchies obtained by structuring the
target space, are used.

In order to figure out which data-driven clustering method
for hierarchy creation performed the best, we created an
average rank diagrams for aRRMSE values per output space
for p−value = 0.05. More specifically, Fig 3 (left) illustrates
the average diagram for clustering methods over the target

FIGURE 4. Average rank diagrams for the best algorithms from Fig. 3
compared to the flat MTR task and the use of an expert created hierarchy
on the target space.

space and Fig 3 (right) gives the average rank diagram for
clusteringmethods over the feature ranking space.We can see
that the best method for hierarchy creation over target space is
PCT-BkM-TS, and it is only significantly better than PCT-
AggS-TS. From the other side, in the average rank diagrams
for the clustering methods over the feature ranking space,
we can see that PCT-BkM-FR is the best performing method
and it is significantly better than all others. Therefore, for
task of MTR with single PCTs, we can easily recommend
using balanced k-means clustering method for creation of
hierarchies from the output space (either target or feature
rankings space).

In order to check the significance of the performance
between the two best approaches for hierarchy creation (con-
sidering the two target spaces), we perform non-parametric
Wilcoxon hypothesis test for p-value = 0.05 for the PCT-
BkM-FR and PCT-BkM-TS algorithms. The results show that
PCT-BkM-FR > PCT-BkM-TS; p-value = 0.0325 < 0.05,
which means that PCT-BkM-FR is statistically significantly
better method than PCT-BkM-TS.

Considering this, we have that the hierarchies constructed
over the space consisting of feature importances are superior
to the hierarchies constructed over the target space, both using
balanced k-means method for clustering.

For a clearer picture over the best clustering method per-
formance and the performance of the flat MTR method and
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FIGURE 5. 1RRMSE values for Prespa Diatom Lake dataset pd using single PCTs and using expert created hierarchy (PCT-Expert), balanced
k-means on a feature ranking space (PCT-BkM-FR) and predictive clustering trees for clustering the target space (PCT-PCT-TS). The arrows
represent the chosen examples with good/bad performance.

using the hierarchy created by an expert in HMTR task,
we took the best performing methods for structuring the
output space (PCT-BkM-TS and PCT-BkM-FR) and compare
together with flat MTR task performance (MTR-PCT) and
the performance of the hierarchy created by an expert (PCT-
Expert). The average rank diagram from statistical evaluation
is given in Fig 4. We can see that PCT-BkM-FR is the supe-
rior algorithm, and significantly better than MTR-PCT and
PCT-Expert. All in all, data-driven hierarchies improve the
predictive performance in multi-target regression problems.

If we consider the performances for aRRMSE using ran-
dom forest of PCT algorithm, we can see that in all data sets,
the aRRMSE is reduced, which is in accordance with the gen-
eral rule-of-thumb for the random forest. In the Appendix part
of the paper, the results for aRRMSE using random forest of
PCTs per dataset are given in Fig 7.

To investigate the translation of predictive performance
from single PCTs to ensemble of PCTs, we performed the
same experimental analysis and statistical evaluation. Similar
conclusions can be made as for the single PCTs. Generally,
hierarchies improve the predictive performance over the flat
MTR or expert created hierarchies (in eleven out of sixteen

datasets). But, there is no statistically significant difference
between the performances of used clustering algorithms and
the flat MTR algorithm. The average rank diagrams for
aRRMSE using random forest are given in Fig 8 and Fig 9
in the Appendix.

The detailed results of the predictive performance
(aRRMSE) for each dataset that were used to draw the graphs
in Figure 2 for single PCTs, i.e., in Figure 7 for random forests
of PCTs, are given in Figure 12 in the Appendix.

We must note here that we exclude both large datasets
(PD and SLORIV) from the statistical analysis, because the
high number of targets will influence the overall per-target
evaluation and will guide us towards the statistically incorrect
conclusions. For that reason, we consider those two datasets
separately in the next subsection.

A. STRUCTURING LARGE OUTPUT SPACES
In this subsection, we present the results from the experiments
performed on the two datasets with large number of targets:
Prespa Diatoms Lake (pd) with 111 targets and Slovenian
rivers (SloRiv) with 492 targets. Themain goal here is tomake
a more comprehensive and sustainable study which will take
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FIGURE 6. 1RRMSE values for Prespa Diatom Lake dataset pd using random forest of PCTs and using expert created hierarchy (RF-Expert),
balanced k-means on a feature ranking space (RF-BkM-FR) and predictive clustering trees for clustering the target space (RF-PCT-TS). The arrows
represent the chosen examples with good/bad performance.

into consideration the size of the output space, i.e., the target
space cardinality.

The balance k-means clustering algorithm for hierarchy
creation, especially on the space consisting of feature rank-
ings, is the best performing method based on above results.
Furthermore, in the study of [66], they recommend to use the
divisive methods for hierarchy creation and to some extend
this relates with our results from the statistical evaluation. For
that reason, we use the divisive methods (balanced k-means
and predictive clustering trees) for clustering the output
spaces for the two big datasets. More precisely, we show
the results for clustering the target space using predictive
clustering trees (PCT-PCT-TS and RF-PCT-TS) and for clus-
tering the feature rankings space using balanced k-means
(PCT-BkM-FR and RF-BkM-FR). The results are analysed as
per target performance of the data-driven hierarchy creation
methods and expert constructed hierarchy compared to the
performance of the flat MTR task.

To better illustrate the results, we calculate the difference
1RRMSE , which is the difference between RRMSE value of
flat MTR and the RRMSE from the appropriate method for
hierarchy creation. The results for the pd dataset using single

PCTs are shown in Fig 5. The green bars present the per target
RRMSE values that denote that HMTRmodels are better than
flat MTR models (positive value for 1RRMSE), while the
red bars present the per target RRMSE values where MTR
models are better than HMTR models (negative values for
1RRMSE). Examining the results, we can see that using the
PCT-BkM-FR method, we obtain the best per-target perfor-
mance. Specifically, by using PCT-Expert compared to PCT-
MTR in the pd dataset, we have 60 out of 111 targets where
PCT-Expert>PCT-MTR, then using PCT-BkM-FR compared
to PCT-MTR, we have 76 out of 111 (68.5%) targets, where
PCT-BkM-FR > PCT-MTR and finally, using PCT-PCT-TS
v.s PCT-MTR, we have 72 out of 111 target, where PCT-PCT-
TS > PCT-MTR.

The results from the SloRiv dataset are shown in Fig 10
(in Appendix). Here, by visual inspection of the results,
we can see that using the hierarchy created by PCT-PCT-TS
algorithm we obtain a better performance on the most of the
targets compared to the PCT-MTR algorithm, i.e., PCT-PCT-
TS > PCT-MTR in 325 out of 492 (66%) targets.

Furthermore, using random forest of PCTs yields quite
similar situation. The difference here with single PCTs is
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FIGURE 7. Results for the predictive performance of Random forest of PCTs from experiments per dataset represented by aRRMSE. Green bars
represent hierarchies created by an expert and orange bars represent the flat MTR results.

FIGURE 8. Average rank diagrams for algorithms cluster the target space (left) and feature ranking space (right) using
random forest of PCTs.

FIGURE 9. Average rank diagrams for the best algorithms from Fig.8
compared to the flat MTR task and the use of an expert created hierarchy
on the target space.

that RF-PCT-TS clustering method gives the best results on
the pd dataset. Specifically, we have RF-PCT-TS > RF-MTR
in 89 out of 111 (80%) targets. This is a very good improve-
ment compared to the other clustering methods for hierarchy

creation. The results for the pd dataset are shown in Fig 6.
Examining the results for the SloRiv dataset, again, same as
single PCTs, we can see that by using RF-PCT-TSmethod we
can obtain the best per-target performances i.e., RF-PCT-TS
> RF-MTR in 287 out of 492 (59.5%) targets. The results for
the SloRiv dataset are shown in Fig 11 from the Appendix.

Generally, on the larger datasets, there is an improvement
of the performance, when the hierarchies are used. More
precisely, divisive methods for clustering (hierarchy creation)
are the best methods for structuring the output space, which is
in accordance with the conclusions from the recent literature
[17], [66]. Furthermore, data-driven hierarchies are generally
better than the hierarchies created by an domain expert. It is
confirmed by our results as well.

Examining the arrows in Fig 10 and Fig 11 (in Appendix)
shown for Slovenian Rivers (SloRiv) dataset, we can see that
for example, considering the target number 170 (which is taxa
Euglena viridis from taxonomic group EUGLENOPHYTA),
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FIGURE 10. 1RRMSE values for Slovenian rivers SloRiv dataset using single PCTs and using expert created hierarchy
(PCT-Expert), balanced k-means on a feature ranking space (PCT-BkM-FR) and predictive clustering trees for clustering the target
space (PCT-PCT-TS). The arrows represent the chosen examples where we have good/bad performance.
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FIGURE 11. 1RRMSE values for Slovenian rivers dataset SloRiv using random forest of PCTs and using expert created hierarchy
(PCT-Expert), balanced k-means on a feature ranking space (PCT-BkM-FR) and predictive clustering trees for clustering the target
space (PCT-PCT-TS). The arrows represent the chosen examples where we have good/bad performance.
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FIGURE 12. Detailed results for the predictive performance (aRRMSE) per dataset
corresponding to the graphical results in Figure 2 for single PCTs i.e., in Figure 7 for
random forests of PCTs.
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there is a significant improvement in the performance, if the
hierarchies are used rather than they are not used. The average
abundance of all species in the examples is 71.8. The target
170 occurs 13 times in the examples, which is quite below the
average. This confirms the fact that with small occurrence
of the target in the examples, the model performance will
be lower than considering a whole hierarchy (target depen-
dence), where the target will be included. This is in accor-
dance with the fact that, if we build a model with structuring
of the output space (HMTR task), we can improve the predic-
tive performance compared to the models built on a flat MTR
task. Alternatively, if we want to check why the hierarchies
do not help on some of the targets, as an example, we can
select the target 353, which represents the taxa Heptagenia
sulphurea from the EPHEMEROPTERA taxonomic group.

Similarly, examining the arrows in Fig 5 and Fig 6 for
Prespa Diatoms dataset pd with 111 targets, we can make
similar conclusions as for the previous dataset. For example,
if we select the target number 14, on which we have the
best performance by using hierarchies compared to the flat
MTR task, the occurrence of this target in the examples is
5 times, but the average occurrence of the targets is 33.5.
Therefore, as less the target occur in the examples, as much
better performance can be achieved by using the structure of
the output space (hierarchy) rather than using a flatMTR task,
where no hierarchy is considered.

VI. CONCLUSION
In this paper, we present two data-driven approaches for
structuring the output space. Namely, we present an algo-
rithm for clustering the targets and the algorithm for clus-
tering the targets according to the importance scores of each
feature per target. Our research is focused on the ques-
tion whether the two data-driven methods for structuring
the output space can improve the predictive performance on
the original flat multi-target regression task, and, moreover,
whether data-driven hierarchies are better than expert created
hierarchies.

For constructing the hierarchies, we investigate the use
of agglomerative clustering method with single and com-
plete linkage, balanced k-means clustering and clustering
using PCTs. The resulting problem is then transformed into
a HMTR problem, and finally addressed by using PCTs
and random forests of PCTs for HMTR. We use 16 bench-
mark datasets to evaluate the performance of all methods.
Two datasets have a large number of targets ( > 100 tar-
gets). After obtaining the results for the average RMMSE
(aRRMSE), we perform a statistical evaluation by using
Friedman non-parametric test with Nemenyi post-hoc testing
and Wilcoxon statistical test for testing the two best methods
for structuring the output space.

The results show that for single PCTs, the data-driven
approach for structuring (clustering) the output space signifi-
cantly increases the predictive performance over the original
MTR task and over the performance obtained by using an
expert created hierarchy. A recommendation that comes out

from the statistical evaluation is that balanced k-means algo-
rithm can be used for clustering the output space. Moreover,
by using hierarchies created over the feature ranking space
there is an improvement in the performance. The same, but to
a lesser extent, conclusions can be made by using ensembles
of PCTs, since they are not improving the predictive perfor-
mance significantly.

For large output spaces, datasets with a large number of
targets (greater than 100), the results show that hierarchies
improve the performance compared to using the flat MTR
task, where no hierarchy is considered. For structuring the
large output spaces, the divisive methods for hierarchy cre-
ation are the best choice, since they are constructing good
hierarchies that improve the predictive performance. More-
over, data-driven hierarchies are a better choice than expert
created hierarchies, which implies that we could obtain good
structure of the target space if we discover the knowledge
from the data directly rather than using the structure based
on some pre-defined relations defined by a domain expert.

For further work, we plan to make more extensive evalua-
tion on more datasets with a larger number of targets and to
investigate different feature ranking methods (for example,
RReliefF and attention mechanism based feature ranking
with NNs). There are some insights that there might be poten-
tial improvements of the performance that can be achieved
with cutting the obtained hierarchies based on data density,
distance between the nodes etc. and addressing the task of
MTR as multiple smaller MTR tasks.

APPENDIX
See Figs. 7–12.
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Chapter 6

Multi-Target Prediction for

Modeling Soil Functions

In this chapter, we present two case studies of applying multi-target prediction (Chapter 2)
approaches to two di�erent tasks of modeling soil functions. The �rst is related to modeling
primary productivity, while the other is related to modeling a combination of the functions
water puri�cation and regulation and regulation and provision of nutrients (Chapter 4).
The multi-target prediction approaches applied are those of trees and tree ensembles for
multi-target regression, introduced in Chapter 3. The �rst case study uses the standard,
fully supervised version of trees and tree-ensembles for multi-target regression. The second
case study uses the semi-supervised variant of trees and tree-ensembles for multi-target
regression.

An important property of trees and tree-ensembles for MTR is the interpretability
of the produced models. In the case of individual trees, the models themselves can be
inspected by domain experts and compared to existing domain knowledge. In the case of
tree ensembles, feature rankings, based on the ensembles can be produced and inspected
to obtain insight into the relative importance of the features for predicting the targets.

These two types of methods follow the new/emerging paradigm of explainable arti�cial
intelligence. Explainable AI (XAI) (Edwards & Veale, 2017; Gunning et al., 2019; Samek
et al., 2019) refers to the arti�cial intelligence methods and techniques that are producing
explainable and interpretable solutions that can be understood by human experts. The XAI
concept is in contrast with the existing 'black-box' concepts in machine learning where even
the designers of the methods have di�culties to understand how the algorithms arrived at
the speci�c solution. Thus, the domain experts have doubts about using such a solution in
their decision-making process. XAI programs aim to produce models that are explainable
to human experts, without signi�cantly sacri�cing the performance of the solution.

In both case studies presented in this chapter, we use data provided by Environment,
Soils & Land-Use Department at TEAGASC, Ireland. Our �rst case study is related to
the estimation of total grass yield potential and nutrient uptake in Irish dairy farms using
soil (S), environmental (E) and management (M) data. Here, we use supervised PCTs for
multi-target regression since all data is complete, i.e., all the values of the target variables
are known. The second case study is related to predicting water quality parameters such as:
biological water quality (Q-value), phosphorus (P) and nitrogen (N) concentration from
existing pressure-pathway descriptive attributes. The main characteristic of this study,
except the explainable modeling approach, is that we learn from 'incomplete' (i.e., partially-
labeled) data, i.e., not all of the values for target attributes were measured (known) for
each data instance. Unlike in the �rst case study, here, we use semi-supervised PCTs
for multi-target regression, adapted for the semi-supervised learning task that can handle
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partially-labeled data. Moreover, in the second case study, we used supervised and semi-
supervised ensembles of PCTs for MTR in order to create very accurate maps and improve
upon the predictive performance of the single tree MTR models.

Our results, represented by explainable PCT models, are consistent with current �nd-
ings in the application domain. Moreover, they show some insights and demonstrate po-
tential �ndings of new knowledge from data.

6.1 Estimation of Herbage Production and Nutrient Uptake
on Irish Dairy Farms

Maintaining productivity levels in grasslands is very important, since grass is one of the
most important and cheapest feedstu�s for ruminants. The latter support high quality
meat and milk production. Therefore, modeling nutrient management and grass yield
production, to better understand the most important controllable (and non-controllable)
factors in grazing grasslands, is one of the most important questions for the farming com-
munity.

An attempt towards modeling primary productivity has recently been made by Tra-
janov et al. (2018) within the LANDMARK H2020 project (LANDMARK, 2019), using
data from Austrian �elds. In this study, decision rules in the decision support (DS) model
of primary productivity used in the Soil Navigator (Debeljak et al., 2019) were replaced
with predictive rules derived from single-target regression models learned using data-driven
methods. After the support that the DS model obtained from the data-driven tree models,
some improvements in the estimation accuracy of the DS model were noted. However,
in the above study of Trajanov et al. (2018), single-target models for predicting primary
productivity were presented, since only one target variable was predicted.

In our study, we move beyond the existing studies of modeling primary productivity
with single-target models and propose the use of machine learning modeling techniques for
simultaneous prediction of multiple outputs, representing di�erent aspects and outcomes
of the primary productivity soil function. In particular, our derived multi-target models
estimate nutrient (N, P, K) uptake and total herbage production using existing data from
15 commercial Irish dairy farms. The data consist of soil, environmental and management
factors and measured data for P, N and K uptake by grass herbage as well as total herbage
production.

The predictive modeling experiments were performed on four datasets (un)strati�ed
by soil drainage factor. We learn PCT models on all �elds taken together as well as on
well-drained, somewhat-poorly, and poorly drained �elds. As learning techniques, we use
single PCTs and ensembles (random forests) of PCTs for multi-target regression.

Our results show that PCTs are accurate and easily explainable, provide enough infor-
mation about the interactions between descriptive factors and are found to embody the
existing understanding of the task at hand. If we combine more PCTs into an ensemble
of PCTs (random forest of PCTs), we can achieve improved accuracy of the predictions.
However, the ensembles can be used only for accurate predictions and for creating accurate
maps, rather than to understand the interconnections between the descriptive attributes,
because ensembles are non-interpretable. Moreover, in practical terms, one of the most
important moderating factors that drives the total herbage production and nutrient uptake
is the number of grazing events, which is closely related to the soil drainage class. Further-
more, we found that in the �elds with medium yield potential, the nutrient (N, P, and K)
uptake and herbage nutrient concentration are conservative, but nutrient uptake was more
variable and potentially limiting in �elds that had higher and lower herbage production.
Our models also show that phosphorus is the most limiting nutrient for herbage production
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across the �elds on these Irish dairy farms, followed by nitrogen and potassium.
The paper included in this section is:

• NIKOLOSKI, Stevanche, MURPHY, Philip, KOCEV, Dragi, D�ZEROSKI, Sa�so,
WALL, David, P. (2019), Using machine learning to estimate herbage production
and nutrient uptake on Irish dairy farms. Journal of Dairy Science, 102 (11): 10639-
10656, doi:10.3168/jds.2019-16575.

The contributions of Stevanche Nikoloski to this paper are as follows. SN
contributed to designing the experimental setting based on the experimental scenarios
de�ned by DW and PM. He carried out the experiments and evaluated their results. He
drafted the paper and revised it according to the co-authors and reviewers feedback to the
paper.
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ABSTRACT

Nutrient management on grazed grasslands is of criti-
cal importance to maintain productivity levels, as grass 
is the cheapest feed for ruminants and underpins these 
meat and milk production systems. Many attempts 
have been made to model the relationships between 
controllable (crop and soil fertility management) and 
noncontrollable influencing factors (weather, soil drain-
age) and nutrient/productivity levels. However, to the 
best of our knowledge not much research has been per-
formed on modeling the interconnections between the 
influencing factors on one hand and nutrient uptake/
herbage production on the other hand, by using data-
driven modeling techniques. Our paper proposes to use 
predictive clustering trees (PCT) learned for building 
models on data from dairy farms in the Republic of Ire-
land. The PCT models show good accuracy in estimat-
ing herbage production and nutrient uptake. They are 
also interpretable and are found to embody knowledge 
that is in accordance with existing theoretical under-
standing of the task at hand. Moreover, if we combine 
more PCT into an ensemble of PCT (random forest 
of PCT), we can achieve improved accuracy of the 
estimates. In practical terms, the number of grazings, 
which is related proportionally with soil drainage class, 
is one of the most important factors that moderates the 
herbage production potential and nutrient uptake. Fur-
thermore, we found the nutrient (N, P, and K) uptake 
and herbage nutrient concentration to be conservative 
in fields that had medium yield potential (11 t of dry 
matter per hectare on average), whereas nutrient uptake 
was more variable and potentially limiting in fields that 
had higher and lower herbage production. Our models 
also show that phosphorus is the most limiting nutrient 

for herbage production across the fields on these Irish 
dairy farms, followed by nitrogen and potassium.
Key words: nutrient uptake, herbage production, 
predictive clustering trees, random forest

INTRODUCTION

Grasslands make a significant contribution to food 
security through providing part of the feed require-
ments of ruminants used for meat and milk produc-
tion. There is a renewed interest in grazing systems in 
many temperate and subtropical regions of the world. 
In Ireland, more than 90% of the agricultural area con-
sists of pasture, grass silage or hay, and rough grazing 
(O’Mara, 2008). The utilization of grass by grazing 
should provide a sustainable basis for livestock produc-
tion systems, as grazed grass is the cheapest source 
of nutrients for ruminants (O’Donovan et al., 2011). 
With feed cost accounting for more than 75% of the 
total variable costs on these livestock farms (Connolly 
et al., 2010), the production of sufficient grass for the 
grazing herd has a significant effect on farm profitabil-
ity (Shalloo et al., 2004; Finneran et al., 2010). From 
2013 to 2015, average levels of grass DM production on 
intensive dairy farms measuring grass in Ireland ranged 
from 8.0 to 18.5 t/ha (O’Leary et al., 2016). Grass 
production between and within farms can vary widely 
depending on several soil-, climate-, and management-
related factors.

Potential herbage production on a farm system is the 
result of management practices in a given environment. 
Management practices are controllable factors and 
include crop management, soil fertility management, 
and sward composition. Environmental conditions are 
noncontrollable factors and include soil type/drainage 
and weather.

Most agricultural soils are treated periodically with 
fertilizers or organic manures and lime to correct min-
eral element deficiencies or toxicities and subsequently 
promote growth of grass. The nutrient management 
strategy practiced on grassland farms in Ireland is 
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usually based on soil nutrient leaves and the stocking 
rate of the farm (Wall and Plunkett, 2016). Managing 
soil fertility levels closely, especially soil pH, can ensure 
that potential herbage production is not being limited 
by nutrient availability in the soil. Nitrogen is often a 
main limiting nutrient in temperate soils. Intensively 
managed grazed grasslands generally receive multiple 
applications of fertilizer N during the growing season to 
increase the forage available to grazing animals. Losses 
of N and P from such intensively managed systems 
have also come under scrutiny due to their effect on 
water quality, air quality, acidification, and anthropo-
genic climate change (Dillon and Delaby, 2009). As a 
result of such concerns, restrictions on fertilizer use for 
grasslands were implemented in many parts of Europe 
under the European Union Nitrate Directive (Nitrate 
Directive, 1991). This combination of economic and 
environmental factors makes improved efficiency of 
fertilizer N use central to any strategy for sustainable 
grassland production systems.

Fertilizer input in grazed grasslands is usually linked 
to the grazing schedule, with fertilizer N in particular 
applied after each grazing. Recovery of N, P, and K 
in grass herbage can be highly variable depending on 
the date and rate of application (Vellinga et al., 2010). 
In Ireland, swards are typically grazed at intervals of 
between 21 and 28 d during most of the grazing sea-
son and there may be a carry-over effect of nutrient 
applications and deposition by the grazing animals to 
the following growth interval. Herbage production and 
nutrient recovery are also affected by site factors such 
as soil type. Soil N mineralization rates can vary con-
siderably, both seasonally and between soils (Herlihy, 
1979; Nunan et al., 2000), and contribute a significant 
proportion of N to grass growth on farms (Humphreys 
et al., 2008).

However, emphasis is currently being put on achiev-
ing a high number of grazings per field, as this is closely 
correlated with herbage production (Hanrahan et al., 
2017). The rate of reseeding currently practiced in 
Ireland is low (Creighton et al., 2011). Sward composi-
tion is an important contributor to potential yield also. 
A perennial ryegrass (Lolium perenne L.) dominated 
sward is likely to produce higher yield than mixed grass 
species swards (Smith and Allcock, 1985; Ergon et al., 
2016). A sward that incorporates white clover (Trifo-
lium repens L.) can be managed to offset N fertilizer 
inputs due to its N fixing capacity.

Soil type and soil drainage class refers to the physi-
cal, chemical, and biological soil characteristics. The 
sum of these properties is a very important factor that 
contributes to the potential herbage production, but is 
commonly overlooked. Weather, specifically rainfall, is 

a major limiting factor in the implementation of any 
agronomic strategy.

Modeling herbage production, as well as nutrient 
uptake, is difficult because of the number of environ-
mental and management factors that affect the final 
result. The farm system is made up of multiple moving 
parts. It can be very difficult to implement a practice 
change and expect to achieve an isolated and easily 
measurable difference. The model can consider multiple 
factors acting together (i.e., multiple moving parts). 
Potential yield depends on factors associated with the 
site in question. It is better to consider all the factors 
together, or as many of them as possible, although this 
could be impractical because of economic and time 
constraints.

This complexity of the farm system is the reason why 
research often uses component type studies. Schils et al. 
(2007) developed a whole-farm dairy simulation model, 
called DairyWise, which simulates some environmental, 
technical, and economic processes on a dairy farm. The 
DairyWise model is evaluated using 2 data sets consist-
ing of 29 dairy farms. As output, this model provides 
a farm plan describing all nutrient flows, as well as 
the consequences to the environment and economy. The 
outputs of DairyWise model components are further 
used as inputs in other environmental, economic, or 
technical sub-models.

Plot-, field-, or farmlet-scale studies provide the in-
sight needed to address a problem, but they does not 
give the real picture of possible trade-offs and syner-
gies between the controlling factors at hand. For that 
reason, in this study, we rely on a data-driven approach 
to modeling. We use predictive clustering trees (PCT; 
Blockeel et al., 1998), which are a generalization of de-
cision trees, adapted for structured output prediction 
tasks. So far, PCT have been applied in many differ-
ent environmental domains, for instance, for predicting 
the abundance of different species occupying the same 
habitat (Demšar et al., 2006), estimating different veg-
etation quality indices for the same site (Kocev et al., 
2009), or predicting the composition of a community of 
organisms (Levatić et al., 2015a).

Predictive clustering trees can consider multiple 
factors acting together (i.e., multiple moving parts) 
and can also deal with multiple targets (responses), 
where the task at hand is called multi-target regres-
sion (MTR). The MTR task is to predict/estimate 
the values of multiple targets simultaneously and PCT 
solve this task by building one predictive model for all 
of the targets. Recent research shows that PCT are su-
perior to most of the state-of-the-art machine learning 
algorithms for MTR (Kocev et al., 2009). Furthermore, 
trying to improve the predictive performance of a single 
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PCT, Kocev et al. (2013) proposed to combine a set of 
single (base) predictive models into an ensemble of tree 
models. For basic regression tasks, it is widely accepted 
that ensemble model learners improve over the predic-
tive performance of single-tree learners (Kocev et al., 
2013).

In this study, we use PCT for MTR, as well as en-
sembles (random forests) of PCT to estimate herbage 
production potential and N, P, and K uptake by us-
ing soil, environmental, and management attributes. 
Individual PCT are interpretable and can be used for 
the visualization of input variable interactions and the 
dependency of the target thereof. The lack of inter-
pretability is the main drawback of ensemble learners 
because overall predictions of ensemble are the aver-
age of the predictions from each tree in the ensemble. 
We use the PCT to obtain insight into the domain 
of study and ensemble of PCT to obtain estimates of 
herbage production and nutrient uptake. The latter can 
be used, for example, to create accurate maps for the 
response(s) of interest.

This study aims to address the question of why herb-
age production potential can differ greatly between 
regions and even farms. We have a data set for 15 dairy 
farms in Ireland, where a range of soil (S), environmen-
tal and weather (E), and management (M) variables 
has been measured (see Appendix Table A1).

The goal of this study was to address the following 
research questions related to herbage production and 
nutrient uptake on grazed grassland-based dairy farms 
in temperate regions:

• What are the main drivers of herbage production 
on grassland-based dairy farming systems?

• How do nutrient supply and nutrient (N, P, and 
K) uptake affect herbage production?

• How do S, E, and M variables interact within a 
grazed grassland farming system to affect herbage 
production and herbage nutrient uptake?

The remainder of this paper is organized into the fol-
lowing sections. The Materials and Methods section 
describes the data we used in our experiments, as well 
as the way in which it was collected. In this section, we 
also present the machine learning methodology we used 
for building the models and specify the design of the 
machine learning experiments. The Results and Discus-
sion section presents and discusses the obtained models 
(trees and ensembles) in terms of their predictive per-
formance and interpretability. Finally, we present the 
conclusions of this work and outline its implications 
and potential outcomes for advisory services and grass-
land management on dairy farms.

MATERIALS AND METHODS

Data Description and Collection

A scoping process was carried out with several advi-
sors across 3 counties (Wexford, Cork, and Tipperary), 
which led to the selection of 15 commercial Irish dairy 
farms.

All of these farms are specialized dairy farms and 
were selected based on farmer willingness to adopt new 
practices and have good record-keeping skills. The final 
selection included production intensity and soil drain-
age differences so that a range in each category would 
be captured. It must be noted that this approach to 
selection may bias the results toward more progressive 
farmers who farm in the south and south-east of Ire-
land.

In terms of milk delivered and concentrate per cow, 
this cohort was slightly above the national average of 
861 kg per cow in 2015 (Hennessy and Moran, 2015). 
However, this selected group of farms is representative 
of main intensive dairy regions of Ireland. It was ex-
pected that many dairy farms would expand or inten-
sify post milk quota abolition in March 2015. In 2015, 
11 out of the 15 farms had a derogation to farm more 
intensively (i.e., stocking rates between 170 and up to 
a maximum of 250 kg of organic N/ha) and in 2016 
all 15 farms were in this more intensive stocking rate 
category.

General Farm System and Soil Data Collection

Management (controllable factors) and environmen-
tal (noncontrollable factors) data were collected for 804 
fields on the 15 farms for 2 yr (2015 and 2016). A de-
tailed description for each factor is given in Apppendix 
Table A1. Information on how the data were collected 
is given below.

General biophysical, farm system, and management 
activity data were collected by visiting each farm 3 
times per year. During these visits, information such as 
the number of fields and paddocks, area of individual 
fields, area used for grazing the dairy herd, duration of 
periods that the livestock are grazing versus indoors, 
slurry production system and quantity, and grazing 
infrastructure and grassland management (i.e., areas 
used for grazing vs. silage) were recorded and further 
verified by repeating pertinent questions during subse-
quent visits. A survey of the soils (general soil classifi-
cation using the Irish Soil Information System (Simo et 
al., 2008) and ground-truthing using soil auguring, field 
orography (aspect, topography), and sward composi-
tion on each farm was conducted during 2015.
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Nutrient and Management Activity Data Collection

The farms in the study recorded nutrient use and 
grassland management at the field or paddock scale 
using an online software package PastureBase Ireland 
(Hanrahan et al., 2017; Teagasc, 2019). Some farmers 
choose to keep written records of fertilizer and manure 
applications and other field management information, 
such as reseeding and grazing events. The accuracy of 
record keeping was improved by sending monthly text 
message reminders to each farmer participant over the 
2-yr period to visit the farms quarterly to record any 
missing information. For all farms, at least the follow-
ing details were collected: field name and area, fertil-
izer type (chemical fertilizer type, organic manure type, 
soiled water, lime, or other), quantity applied (kg or t/
ha) and date of application, and number of grazings per 
field or paddock area. Total concentrates imported and 
organic N stocking rate data were collected from the 
fertilizer plans developed by the advisor and farmer for 
each individual farm. These records were collected an-
nually on site or downloaded from the online software 
package used by the farmer. To maintain consistency, 
all records were downloaded or transcribed individually 
and structured before analysis. Total milk sold from the 
farm and cow herd size data were collected online from 
the Irish Cattle Breeding Federation website (ICBF, 
2018).

Herbage Production and Accumulation

Total herbage production and annual herbage ac-
cumulation was recorded by the farmer on a per field 
basis throughout the growing season using a sward cut 
and weigh technique or a calibrated falling plate meter 
(Li et al., 1998; Smit et al., 2005). Farmers were asked 
to carry out weekly pasture measurements on each field 
or paddock on the main grazing area used for the dairy 
herd. These measurements were entered into the Pas-
tureBase Ireland software, which calculated a grass feed 
budget and the total quantity of grass grown and accu-
mulated annually. At the end of each year, the annual 
herbage accumulation (kg of DM/ha) corresponding to 
each field or paddock on each farm was downloaded 
from the PastureBase Ireland software.

Herbage Nutrient Concentration

On each farm, herbage samples were taken from all 
fields/paddocks at 3 times over the growing season, 
corresponding to spring, summer, and autumn, to de-
termine macro- and micro-nutrient concentrations in 
the herbage DM. On each sampling occasion, a 0.5 m × 

0.5 m area was randomly selected at 3 locations moving 
down the long axis of each field, an adaptation of the 
approach of Sheridan et al., (2008). The herbage was 
sampled from all 3 areas, using electronic grass shears 
to a height of 4 cm, as would be typical of grazing 
conditions. The samples from the 3 areas were bulked 
and a subsample was taken for nutrient testing in the 
laboratory. The subsample was oven-dried for 48 h at 
40°C and following this was ground to pass through a 
1-mm mesh in preparation for chemical analysis.

Herbage nutrient concentrations (g/kg of DM) were 
determined in the laboratory as follows: herbage N con-
centration was determined by C & N analyzer (Leco 
Corporation, St. Joseph, MI). Major nutrients (g/kg 
of DM) such as P, K, and Mg were determined by in-
ductively coupled plasma atomic emission spectroscopy 
following hot acid (HNO3) digestion and following the 
method by Byrne (1979). Pasture nutrient uptake was 
calculated for each field during the spring, summer, 
and autumn periods of 2015 and 2016 by multiplying 
the herbage DM produced (kg of DM/ha) during each 
period by the measured herbage nutrient concentration 
(g/kg of DM) for the period. Total annual herbage 
nutrient uptake was expressed as kg N, P, or K per 
hectare by summing the nutrient uptake values for each 
of the 3 periods in 2015 and 2016.

Machine Learning Methods

To estimate herbage production and nutrient uptake 
from soil, environmental, and management variables, 
we applied machine learning methods to the data de-
scribed above. In particular, we used PCT to capture 
and visually represent the dependencies between the 
input variables and the response variables, where the 
latter are considered both individually (single-target 
PCT) or jointly (multi-target PCT). Moreover, to get 
more accurate estimates, we used ensemble of PCT 
(i.e., random forests of PCT). In this subsection, we 
will present in detail the methodology used for building 
the PCT models.

Predictive Clustering Trees. Predictive clustering 
trees are obtained by using the well-known top-down 
induction of decision trees (TDIDT) algorithm (Block-
eel et al., 1998). The TDIDT takes a set of examples 
as input and produces a tree model as output. At 
the beginning, the TDITD procedure selects test on 
an attribute (independent variable) for the top node, 
by using a heuristic function computed on the train-
ing examples. The heuristic function favors tests that 
partition the data so that the examples that go to one 
branch/cluster (tree node) are as similar as possible. To 
increase cluster homogeneity, heuristic function chooses 
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the partition that maximally reduces the inhomogeneity, 
as measured by the variance function. The partitioning 
procedure continues to recursively split the examples 
in each subset of resulting partition until a stopping 
criterion is satisfied. The stopping criterion prevents 
the tree from overfitting to the training data at hand. 
When the stopping criterion is met, examples are not 
split further. A representative value (i.e., prototype) is 
calculated for the response variables is are stored in the 
corresponding leaf of the tree (as a prediction).

Two main functions define the algorithm for learning 
PCT, the variance function, and the prototype func-
tion, which computes a representative prediction value 
for each leaf.

In PCT, both functions can handle multiple response 
variables, as is required in MTR. This is the main dif-
ference between PCT and standard decision trees. The 
PCT are implemented in the CLUS system (https: / 
/ sourceforge .net/ projects/ clus/ ). For further informa-
tion on PCT, we refer the reader to Kocev et al. (2013).

Several known tree pruning (stopping) criteria are 
known that can be used to prevent overfitting, such as 
specifying the minimal number of examples that must 
be present in each leaf of a tree and performing F-test 
pruning, which checks whether a given split yields a 
significant reduction of its variance. The use of pruning 
methods typically increases a tree’s interpretability and 
improves its predictive performance (accuracy).

The advantageous properties of PCT are inherited 
from standard decision trees. In PCT, no assumptions 
are made on the probability distributions of the inde-
pendent and response variables. The PCT can handle 
missing values in both the independent and the response 
variables and are tolerant to noisy and redundant vari-
ables as well. Moreover, PCT work with different type 
of both input and response variables, such as discrete 
or continuous. Furthermore, they are computation-
ally inexpensive to learn and very easy to interpret. 
While constructing clusters, PCT also produce cluster 
descriptions. Hence, PCT are readily interpretable, 
efficient and robust, and have satisfactory predictive 
performance.

Random Forests of PCT. Random forests of PCT 
(Kocev et al., 2013) is an ensemble learning method 
also implemented in the CLUS system. They are con-
structed by using the PCT learning algorithm in CLUS, 
modified to follow the random forest method proposed 
by Breiman (2001). The forest of trees is built by using 
different bootstrap replicates of the training data and 
by using a randomized version of the PCT learning 
algorithm that changes the space of input variables dy-
namically during the learning process. Bootstrap rep-
licates are generated by random sampling of examples 
from the training set with replacement, until the same 

number of examples as in the original training set is 
sampled. In the random forest algorithm, there is a 
random selection of input variables (attributes); that 
is, at each node, a random subset of attributes is taken 
from the descriptive space D and the best split selected 
among those is used at the given node. There are dif-
ferent ways of setting the number of randomly selected 
descriptive attributes {f(D) = 1, f(D) = [sqrt(D)] + 1, 
f(D) = [log2(D)] + 1, and so on}. The response value 
predictions for a new instance in a random forest of 
PCT are calculated by combining the predictions from 
all base predictive models. In the MTR task, the pre-
diction for each target is defined as the average of the 
predictions obtained from each PCT.

Design of Machine Learning Experiments

To obtain insights into the most influential factors 
driving the herbage production potential of grasslands 
on dairy farms and finding some potentially new knowl-
edge from data collected from such farms, we investi-
gate 4 different scenarios. Over time the interaction of 
intrinsic soil factors and environment factors creates 
stable soil environments that can be categorized by 
soil drainage class. To further explore the influence of 
field management on herbage production, we split the 
original data set into 3 data sets based on a different 
drainage class to further isolate these management ef-
fects in the model analysis. Hence, we used 4 data sets 
for analysis:

• complete data set (CD): consists of all 804 ex-
amples, CD = WD ∪ SPD ∪ PD;

• well-drained data set (WD): consists of 606 ex-
amples that belong to well-drained soil samples;

• somewhat poorly drained data set (SPD): con-
sists of 122 examples that belong to somewhat 
poorly drained soil samples; and

• poorly drained data set (PD): consists of 76 ex-
amples that belong to poorly drained soil samples.

In our machine learning experiments, we learned PCT 
and random forests of PCT from the above data sets. 
In particular, we learned single-target PCT to estimate 
herbage production from S, E, and M variables and 
from nutrient uptake. We also learned multi-target 
trees to estimate the 4 response variables (herbage pro-
duction and N/P/K uptake) for each of the 4 data sets.

When learning single PCT, we used the F-test prun-
ing algorithm with 8 significance levels: 0.001, 0.005, 
0.01, 0.05, 0.1, 0.125, 0.25, and 1.0. By using internal 
3-fold cross validation, the optimal significance level 
was chosen that minimizes the evaluation measure. Be-
sides F-test pruning, we also used different values for 
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the parameter minimum number of instances per leaf 
in all different scenarios. Namely, in CD and WD, we 
specified 32 as the minimum number of instances in a 
leaf, since we have a larger number of instances. Then, 
in SPD and PD data sets we specified 8 as the mini-
mum number of instances in a leaf, since SPD and PD 
are data sets with a smaller number of examples. To 
obtain the tree where N, P, and K uptake are used as 
descriptors to estimate herbage production potential, 
we used single PCT with a minimum of 64 examples in 
a leaf with F-test pruning with a 1.0 significance level 
(default setting).

In the ensemble setting, that is, when using random 
forests of PCT, we set f(D) = [sqrt(D)] + 1 as the num-
ber of randomly chosen attributes from the descriptive 
space D. Moreover, we set 100 as the number of base-
level models (PCT) in the ensemble.

We evaluated the models by using 10-fold cross vali-
dation. More specifically, the whole data set was first 
randomly split into 10 folds. Next, 9 folds were used 
for training, and the remaining one for testing. The 
second step in the procedure was repeated 10 times, so 
that each fold is used exactly once as a test set. The 
reported results represent the average of all 10 runs.

For assessing the performance of machine learning 
algorithms, several empirical evaluation measures can 
be used. In our experiments, we employ 2 well-known 
measures: the Pearson correlation coefficient (r2) and 
relative root mean square error (RRMSE). The values 
of r2 range between 0 and 1. Perfect correlation is ob-
tained when r2 = 1. Therefore, the closer to 1 the value 
of r2 is, the better performance is achieved (higher r2 
is better). The RRMSE relates the average magnitude 
of the error (differences between predictions and actual 
observations) to the error made by the default predic-

tive model, predicting the mean of the observed values. 
The best performance in terms of RRMSE is obtained 
if the value of RRMSE is 0 (lower RRMSE values are 
better).

Our experiments were performed in the PCT frame-
work. The PCT framework is implemented in the CLUS 
system (Blockeel and Struyf, 2002), which is written in 
Java and is open source software licensed under the 
GNU General Public License. The CLUS system is 
available for download at http: / / clus .sourceforge .net/ 
projects/ clus/ .

RESULTS AND DISCUSSION

In this section, we provide interpretations of the 
obtained trees and discuss them in the context of the 
research questions defined in the introductory section.

What Are the Main Drivers of Herbage Production  
on Grassland-Based Dairy Farming Systems?

We used single-target regression PCT to estimate 
herbage production using the available S, E, and M 
variables to investigate the main drivers of herbage 
production on Irish dairy farms. We started with an 
interpretation of the tree that estimates the herbage 
production potential given the S, E, and M attributes, 
[i.e., herbage production = f (S, E, M), which means 
that the created trees construct the f function that out-
puts the predictions for herbage production and uses 
the S, E, and M attributes as an input] learned from 
the entire data set (Figure 1).

The model in Figure 1 selects the number of grazings 
(NoGrazings) as the top descriptor related to the total 
annual herbage accumulation (grazing and silage). It 

Figure 1. Single-target regression tree for estimating herbage production [i.e., herbage production = f (S, E, M)]. S = soil; E = environment 
and weather; and M = management. Colored nodes are related to 3 different categories: category 1 (red): high herbage production potential; 
category 2 (blue): medium herbage production potential; and category 3 (green): low herbage production potential.
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is logical that nutrient uptake and herbage accumula-
tion will increase with the number of grazing events 
(NoGrazings). Where herbage production is higher, 
there is more biomass for the grazing animals to eat 
and to support grazing events more frequently over 
the growing season. The majority of grazing events 
were preceded by an application of chemical fertilizer, 
mainly N, which is a farm management factor promot-
ing increased herbage production. Additionally, during 
every grazing, some of the nutrients in the herbage 
consumed were recycled back to the soil in the form of 
nutrient excretion and deposition (dung and urine) by 
the grazing livestock, which is not a farm management 
factor, but a natural process. Overall, the organic and 
inorganic nutrient inputs, coupled with plant growth 
stimulation (tillering) through grazing events, led to 
increased herbage production and nutrient uptake.

Table 1 shows the proportion of well-drained fields 
in each NoGrazings category identified by the model. 
Table 1 indicates that the number of grazing events 
per field is also related to the soil drainage class. The 
number of fields in the well-drained class decreased as 
the number of grazings decreased (see Table 1 and Fig-
ure 1). The proportion of well-drained fields (WD/Σ) 
decreases with NoGrazings, as we examine the model 
(PCT) from the left to the right. We have 82.4% of 
well-drained sites for NoGrazings > 7 and only 36.8% 
for NoGrazings < 3.

Therefore, the model also captures to some degree the 
biophysical constraints on grazing events and separates 
the explanation of total annual herbage accumulation 
into 3 main categories: high (14,300 kg of DM/ha on av-
erage), medium (11,600 kg of DM/ha on average), and 
low (6,300 kg of DM/ha on average), strongly related 
to drainage class differences. In general, the model in-
dicates high annual herbage accumulation potential on 
well-drained soils, medium accumulation potential on 
somewhat poorly drained soils, and low accumulation 
potential on poorly drained soils.

Next we interpret the parts of the model (PCT in 
Figure 1) that correspond to each of the 3 categories 

(i.e., to fields with different herbage accumulation po-
tential).

Category 1: Fields with High Herbage Accumu-
lation Potential. At the main node of this component, 
we find the test Meat_offtake >645.63 kg/ha. Meat off-
take is directly related to the stocking rate per hectare, 
as each cow produces a calf and will gain BW as they 
mature. In addition, the greater the stocking rate, the 
greater the nutrient recycling under grazing manage-
ment as the excess N and K, in particular, are excreted 
in dung and urine. However, increased nutrient offtake 
in meat may also affect the nutrient balance and can 
typically lead to deficits in P where fertilizer P inputs 
are low (Buckley et al., 2016). For these fields with 
high herbage accumulation potential, the model shows 
that larger Meat_offtake is positively related to higher 
herbage accumulation. Fields with high stocking rates 
typically receive high inputs of inorganic and organic 
fertilizer inputs seasonally to boost herbage production 
rates. This Meat_offtake >645.63 kg/ha threshold is 
very high and indicates fields with very high stocking 
rate, much higher than the average for this study group 
of farms.

Next, the model splits the fields samples based on 
the attribute Soil_K_Morgan >125.88 mg/L. In this 
case, the model chooses soil K fertility to discriminate 
between the herbage accumulation potential of differ-
ent fields. We found that, in general, Soil_K_Morgan 
was positively related to soil P and Mg fertility and 
can be viewed as a proxy for soil fertility levels. When 
Soil_K_Morgan >125.88 mg/L, then, on average, P 
and Mg were higher too (i.e., average soil fertility was 
higher). When Soil_K_Morgan ≤125.88 mg/L, the 
average P and Mg were lower (i.e., the average soil 
fertility was lower). Lower soil fertility results in lower 
herbage production (Wall and Plunkett, 2016), which 
is also indicated by the model. The Mg, K, and P are 
all essential nutrients for optimum soil fertility for grass 
production. Each of them is determined by taking a 
soil sample from the field and chemically testing them 
for their nutrient concentration. According to the soil 

Table 1. The percentage of samples in different drainage classes calculated according to the intervals of 
number of grazings that appear in the predictive clustering tree model in Figure 1 (from left to right)

Item1

Drainage class

∑  
(%)

WD/∑  
(%)

SPD/∑  
(%)

PD/∑  
(%)

Well-  
drained 
(WD)

Somewhat 
poorly drained 

(SPD)

Poorly  
drained 
(PD)

X > 7 266 41 16 323 82.4 12.7 5.0
5 < X < 7 216 24 2 242 89.3 9.9 0.8
3 < X < 5 76 22 21 119 63.9 18.5 17.6
X < 3 42 35 37 114 36.8 30.7 32.5
1X = no. of grazings.
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index system for K in mineral soils in Ireland, a value 
above 100 mg/L is considered agronomically optimal for 
grass production (Wall and Plunkett, 2016). The model 
identified a Soil_K_Morgan ≤125.88 mg/L threshold, 
slightly above the level deemed to be optimal by Wall 
and Plunkett (2016). However, on very high yielding 
pastures, the K requirement is also high, and under 
such circumstances, the short-term K supply capacity 
for plant uptake may be limited in soils with high levels 
of K fertility.

Next, the model splits fields based on the test 
Chem_P_input >12.2 kg/ha. Fields with higher chemi-
cal P inputs had higher herbage accumulation over the 
growing season. Chemical fertilizer P is readily avail-
able for plant uptake and is typically applied in several 
fertilizer applications during the growing season to meet 
the seasonal growth requirements of the grass. Chemi-
cal fertilizer P inputs were proportionally the largest 
of total P inputs on these dairy farms. The majority 
of the remaining P inputs came from organic manure 
P inputs, with some concentrate feed-derived P inputs 
entering the grazing system through parlor feeding at 
milking time. The model selected a Chem_P_input 
threshold of 12.2 kg/ha to discriminate between fields 
of different herbage production potential. This thresh-
old P input value is slightly less than the chemical P 
input requirements for soil P fertility maintenance for 
grazing only fields on dairy farms (14–19 kg of P/ha; 
Wall and Plunkett, 2016) and indicates that fields with 
Chem_P_inputs lower that the threshold of 12.2 kg/
ha were likely to be in P deficit (i.e., mining P from 
the soil over time). This situation is likely to affect soil 
P fertility and negatively affect herbage production as 
indicated by the model.

Category 2: Fields with Medium Herbage Ac-
cumulation Potential. For this component of the 
model tree, N_recycled_per_field >5.43 kg of organic 
N/ha was selected as the test for selecting fields, with 
higher N recycling, having a higher average herbage 
accumulation as compared with to those with less N 
recycled. Nitrogen recycled refers to the quantities of 
N excretion (dung and urine) the cow recycles back to 
the field during grazing throughout the year. The nu-
trients available for recycling are left over after the cow 
metabolizes nutrients for milk and meat production 
first. In a grazed grassland farming system, dung and 
urine patches contain very high concentrations of N. 
While the patches are not distributed evenly across the 
field and lead to heterogeneous soil mineral N levels, if 
the fields are grazed more often or the stocking rate is 
relatively high, it is likely that the density of urine and 
dung patches per unit area grazed will be higher, thus 
contributing more nutrients across the area to drive 
grass production. On closer investigation, the fields 

identified by the model with N_recycled_per_field 
>5.43 kg of organic N/ha corresponded to farms with 
an average dairy grazing platform stocking rate greater 
than 170 kg of organic N/ha (i.e., 2 livestock units/
ha) and were predominantly grazed. This indicates 
that fields with N_recycled_per_field >5.43 kg of or-
ganic N/ha are associated with higher stocking rates, 
are predominantly grazed, and have more N excretion 
compared with fields with very low N recycled (<5.43 
kg of organic N/ha).

At the next level of the tree, the test selected was 
LandUseCropping = GrassOneCutPlusGrazing. While 
taking a cut of silage removes nutrients in the har-
vested grass, increased fertilizer applications are used 
on fields selected for grass silage production and may 
drive increased herbage production. Typically, 2 fertil-
izing scenarios arise: (1) Fertilizer added pre-harvest: 
the field was managed to provide sufficient fertilizer 
inputs to produce enough herbage biomass for a silage 
cut. During this period of the year, typically early sum-
mer, higher qualities of fertilizer were applied to these 
fields compared with fields that are used for grazing 
only. (2) Fertilizer added post-silage harvest: after the 
herbage biomass has been harvested for silage, fertil-
izer was added to the system to ensure the grassland 
was adequately supplied with nutrients to recover after 
the cutting and harvesting event. In addition, grass-
land that is managed for silage production has higher 
yield potential as the plants grow to a more mature 
stage up to harvesting time, where they can intercept 
more light for photosynthesis and the total herbage 
biomass is greater compared with typical cumulative 
grazing biomass yield for the same period. As a result, 
the herbage biomass used for silage had higher nutrient 
concentration and total nutrient removal from the soil.

Next the Milk_offtake >24,493 L/ha, which was the 
total amount of produced milk for each field, was used 
to split the herbage accumulation of the fields into 2 
groups. Those with higher milk offtake had a mean 
herbage accumulation of 14,906 kg of DM/ha and those 
with lower milk offtake had a mean of 12,974 kg of DM/
ha. This splitting condition Milk_offtake distinguishes 
between higher and lower stocking rates. The average 
milk yield per cow in Ireland was 5,036 kg of milk per 
cow between 2013 and 2015 (Teagasc, 2016) and this 
threshold of Milk_offtake >24,493 L/ha indicates that, 
on average, the stocking rate on the dairy grazing plat-
form fields above this milk offtake threshold was 4.75 
cows per ha.

At the bottom level of the tree, the test W_Clover-
Class = Low best discriminated herbage production 
across the remaining fields that had the lowest herbage 
production in the medium herbage production category. 
The presence of white clover is expected to contribute a 
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source of N for grass uptake. However, in this case, the 
model identifies high levels of white clover as an herb-
age production limiting factor (i.e., fields with white 
clover had lower overall annual herbage accumulation). 
According to Murphy et al. (2018), fields with high 
levels of white clover present also received high levels of 
fertilizer N inputs. Under such practice these fields with 
white clover present will not efficiently use the fixing 
capacity of the white clover for total herbage produc-
tion. Fields with a high sward composition for clover 
received the highest average chemical N input (236 
kg of N/ha). However, these fields had lower annual 
herbage accumulation (11,200 kg of DM/ha) compared 
with fields with low sward clover composition (12,800 
kg of DM/ha) with slightly lower average chemical N 
input (228 kg of N/ha). This may be a result of too 
much clover in the grass sward having a negative effect 
on perennial ryegrass growth because of shading and 
competition for nutrients and water, thus reducing the 
total annual herbage accumulation.

Category 3: Fields with Low Herbage Accu-
mulation Potential. Examining the fields with lower 
overall herbage production potential in the tree (on the 
right side of Figure 1), we can see that only 2 attributes 
are used for splitting: NoGrazings and LandUseCrop-
ping. The number of grazings on this side of the tree is 
very low (<3) and the fields within this node had a very 
high proportion of low drained sites. This indicates that 
soil drainage was an overriding factor limiting grass-
land management and herbage production, which was 
on average 6,264 kg of DM/ha for all the fields in this 
category.

Next, we discuss the descriptive and predictive 
performance of the models. We consider the descrip-
tive (training) and predictive (testing) performance 
of single PCT and ensemble of PCT (random forest) 
for single-target regression and MTR tasks. All results 
considering the model performances for all possible 
scenarios, based on the CD, are shown in Table 2. The 
results consist of per target values and averaged values 
for r2 and RRMSE.

We can see that the (pruned) model (i.e., single 
PCT), shown in Figure 1 and obtained using F-test 
pruning, has a descriptive performance of r2 = 0.766 
and RRMSE = 0.484. We show the descriptive perfor-
mance of the original nonpruned model as well (r2 = 
0.777 and RRMSE = 0.472) to compare how good the 
F-test pruning method is. We can see that the descrip-
tive performances are very similar (i.e., the difference is 
only 1%). This is an advantage of this pruning method 
because we do not use the original model and avoid the 
possibility of overfitting.

The predictive performance estimate obtained using 
by 10-fold cross validation is r2 = 0.715 and RRMSE T
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= 0.5346. This is a quite good predictive performance, 
considering the problem complexity and domain di-
verseness. Observing the results obtained by using 
ensembles of PCT (i.e., random forests of PCT), as 
expected, we can see an improvement (approximately 
8%) for the predictive performance (r2 = 0.798 and 
RRMSE = 0.477). The problem with ensembles from 
a domain expert point of view is their interpretability. 
The random forests cannot be interpreted, but can be 
easily used if the domain expert is only interested in the 
accurate predictions (for example, for drawing an ac-
curate map). In our case, we are also interested in elu-
cidating the interactions and interconnections among 
the variables (attributes).

How Do Nutrient Supply and Nutrient (N, P, and K) 
Uptake Affect Herbage Production?

To investigate this question, we model herbage accu-
mulation as a response variable, using nutrient uptake 
for each field as an independent variable, to investigate 
how the herbage production is driven by soil fertility 
and nutrient supply. The nutrient uptake value rep-
resents the nutrients that the grassland herbage has 
removed from the soil and will be consumed and uti-
lized by the cow. The cow requires these nutrients to 
produce milk and meat. After this, the cow excretes the 
residual nutrients, not used for production, in dung and 
urine. While we expect nutrient uptake to be closely 
related to the annual herbage production, we propose 
this modeling analysis to identify the most limiting nu-
trient influence on herbage production. In Figure 2, we 
examine how the herbage production levels across the 
grassland dairy fields were categorized based on their 

nutrient (N, P, and K) uptake. The purpose of Figure 
2 is to present how herbage production is driven by 
nutrient uptake rather to make predictions. Nutrient 
uptake variables are considered to be response variables 
in the remaining analyses.

The tree clearly indicates that Total_Herbage_P_
uptake is the most limiting nutrient driving herbage 
production, since it appears in the top levels of the 
tree. The tree is generated by using the PCT algorithm, 
where the descriptors (independent variables) are total 
herbage N, P, and K uptake and annual herbage ac-
cumulation is the response. The next most important 
driver was Total_Herbage_N_uptake that appears 
in the third level of the tree and is followed by To-
tal_Herbage_K_uptake in the fourth level. This model 
provides new insight into the obvious interconnection 
between these nutrients and how they relate at differ-
ent herbage production levels, where the supply and 
uptake for these nutrients vary.

We further investigated the nutrient (N, P, and K) 
uptake levels in the herbage produced as per the group-
ings (leaf nodes) of fields identified by the PCT in 
Figure 1 and their relation to the N:P ratio, as shown 
in Figure 3. Each panel depicts on the y-axis one of the 
4 response variables, whereas the N:P ratio is shown on 
the x-axis. Each point corresponds to one of the leaves 
of the PCT in Figure 1.

Figure 3A shows a weak positive relationship (r2 = 
0.197) between the herbage accumulation and the N:P 
ratio for these field groupings. For the majority of these 
field groupings, N, P, and K appear to be sufficiently 
supplied. However, variability exists between them and 
when the average nutrient concentrations in the herb-
age measure in the herbage form fields within these 

Figure 2. Estimating herbage production by using N, P, and K uptake as descriptors [i.e., herbage production = f (N, P, K)].
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groupings is evaluated, indications of nutrient limita-
tions for achieving maximum herbage production arise. 
Figure 3B indicates that N may be somewhat limiting 
in field groups with N:P ratio <9 as the N concen-
trations dropped below 30 g/kg of DM, and similarly 
Figure 3C indicates that P may be somewhat limiting 
on field groups with a N:P ratio > 11, as the herbage 
P concentration drops to ~3 g/kg of DM. Figure 3D 
shows that other field groups had low K concentrations 
(<25 g/kg) even when the N and P appeared to be 
optimal. This multi-target modeling approach shows 
utility for assessing and identifying what nutrients may 
be limiting herbage production across a range of field 
sites with different S, E, and M conditions. It could also 
be used to assess the robustness of nutrient manage-
ment programs where multiple nutrient input practices 
interact with varying soil and soil fertility levels both 
within and between farms.

How Do S, E, and M Variables Interact Within  
a Grazed Grassland Farming System to Affect 
Herbage Production and Herbage Nutrient Uptake?

The above discussion provides insight into the effects 
of nutrient uptake on herbage production. However, 
many factors affect both soil nutrient supply and plant 
uptake of nutrients beyond fertilization and general 
nutrient management practices. To further elucidate 
which factors may be most important in this respect, 

we introduce a third research question: How do S, E, 
and M variables interact within a grazed grassland 
farming system to affect herbage production and herb-
age nutrient uptake? To answer this question, we evalu-
ated if our models could simultaneously predict N, P, 
and K uptake and herbage production using various 
S, E, and M attributes collected at each field site [i.e., 
(N, P, K, herbage production) = f (S, E, M)]. The tree 
shown in Figure 4 is pruned by using the F-test pruning 
procedure, which selected the optimal significance level 
of 0.005.

First, we examine the MTR model performance 
(descriptive and predictive), shown in Table 2. The 
descriptive (training) performance of the pruned tree, 
averaged across the 4 targets, is r2 = 0.733 and RRMSE 
= 0.516, which does not differ significantly from the 
descriptive performance of the original unpruned tree. 
This fact confirms that the pruning method performed 
well. The predictive (testing) performance of the pruned 
tree is r2 = 0.684 and RRMSE = 0.562, which is quite 
good for this specific domain, considering the problem 
complexity. Furthermore, if we compare the perfor-
mances of the single-target tree that predicts herbage 
production potential and the multi-target tree that 
predicts herbage production potential plus N, P, and 
K uptake, simultaneously, using the same descriptive 
variables, we can see that the difference is only 1% (the 
average performance of single-target trees is 1% better 
than that of the MTR tree). This is an insignificant dif-

Figure 3. Relationships between (A) herbage accumulation, (B) nitrogen, (C) phosphorus, and (D) potassium concentrations and mass N:P 
ratio of herbage produced within the groups of different field sites identified by the model (Figure 2).
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ference in performance, but a strong advantage of using 
MTR modeling because instead of looking separately at 
4 different single-target models for N, P, and K uptake 
and herbage production, we look at and use only one 
tree that predicts all 4 values at the same time. Hence, 
using MTR has practical advantages. As expected, the 
predictive performance is improved by approximately 
10%, if we use an ensemble of PCT for MTR (in our 
case a random forest). We have r2 = 0.777 and RRMSE 
= 0.498.

Next, we continue with an interpretation of the MTR 
tree model given in Figure 4. The top descriptive attri-
bute was the number of grazings (NoGrazings), where 
sites with higher numbers of grazings had higher annual 
herbage accumulation as compared with those which 
were grazed less frequently over the year. Similar to 
the discussion of Figure 1 previously, the NoGrazings 
variable was closely linked with herbage production 
and utilization, with nutrient inputs and recycling and 
also with the drainage class of the soils within each 
grouping of fields (Table 1). Hence, the NoGrazings 
variable divides the sites into the same herbage pro-
duction potential categories (high, medium, and low 
annual herbage production potential). Examining the 
differences between the trees produced by the single-
target and MTR tree models (Figure 1 versus Figure 
4), we can see that there are differences in the nutrients 
used to split the groups. For example, in Figure 1, the 
attribute used to split the fields is Soil_K_Morgan, but 
in Figure 4, the Soil_Mg_Morgan attribute appears. In 
many parts, the discussion of the attributes used for 
splitting the tree of Figure 1 are the same for Figure 4. 
In the following part, we only discuss the new tests that 
appear in this MTR tree, but not in the single-target 
tree in Figure 1. Specifically, we interpret the tests: 

WeatherStation = [Moorepark, Gurteen, Castledocker-
ell], FieldArea >1.84 ha (in high herbage production 
potential fields) and AirTemp >9.9 (in medium herb-
age production potential fields).

The weather stations Moorepark, Gurteen, and 
Castledockerell have similar low rainfall and air tem-
peratures in contrast to the other weather stations 
(Johnstown, Ballycanew, and Timoleague). In Ireland, 
the amount of rainfall is often a limiting factor on the 
times when grazing animals can enter a field for graz-
ing events, because when the soils are too wet severe 
poaching of the soil can occur, which has negative 
consequences for subsequent herbage production and 
utilization. An area with low rainfall would suggest 
that there are more opportunities (days available) to 
graze a field, compared with an area with high rainfall 
(less days available). Note that rainfall will affect the 
trafficability of the soil, where poor trafficability due 
to high rainfall means animals will not be able to graze 
because the soil is too soft and the animals would only 
damage it. Good trafficability during dry spells means 
animals can graze without damaging the soil.

Next, we move to the test FieldArea >1.84 ha. This 
side of the branch was not distinguishable specifically 
by the field area, drainage class, or slope, but was re-
lated back to the weather station difference. This side 
of the branch represents the weather stations that are 
nearer the coast (Johnstown, Ballycanew, and Timole-
ague). Farms on the coast are generally slightly warmer 
and are not as severely affected by frost, which can af-
fect herbage production levels. Based on the evidence, 
we found for the sites that belong to this branch of the 
tree, we see that these farms (and associated weather 
stations) have a lower number of degree days (days 
below 15°C), which gives them a longer growing/graz-

Figure 4. Multi-target regression tree learned on the complete data set. Colored nodes are related on 3 different categories: category 1 (red): 
high herbage production potential; category 2 (blue): medium herbage production potential; and category 3 (green): low herbage production 
potential.
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ing season. It is likely that field area and number of 
grazings are linked. A high stocking rate and small field 
area could result in more grazings. A high stocking rate 
on a large field would take more days to graze out as 
compared with a small field. With a limited amount of 
time during the grazing season, a smaller field may be 
grazed out more times than a larger field. For this data 
set, the average field size was 1.37 ha, with field sizes 
ranging from 1.74 to 0.82 ha, excluding outliers.

The next new condition in the tree given in Figure 
4 is AirTemp >9.9. Air temperature may be a proxy 
for weather differences per region. This proxy is also 
connected to rainfall, solar radiation, and degree days. 
Air temperature may indicate a longer growing/grazing 
season. A longer growing season allows more time to 
apply fertilizers and increase the pasture production 
(i.e., more grazings and higher herbage production). 
Moreover, air temperature is an indicator of growing 
season length and can be connected to the number of 
growing days (i.e., degree days below 15°C). A higher 
number of degree days with temperatures below 15°C 
(i.e., a colder growing season) versus a lower number of 
degree days, which means a lower number of days below 
15°C (i.e., a warmer growing season). Air temperature 
and soil temperature (to 10 cm depth) are very closely 
linked. Nitrogen uptake begins around 5°C and grass 
growth around 6°C. An average air temperature above 
9.9°C would indicate the soil conditions were suitable 
for pasture production for a longer time period. This 
enables fields or farms with air temperatures greater 
than 9.9°C to experience a longer growing season.

Additionally, we split the CD into 3 drainage classes: 
well-drained, somewhat poorly drained, and poorly 
drained sites. We perform the same analysis on those 
3 different data sets to see if some new insights and 
knowledge can be extracted considering the tree models 
learned from each data set. Although the distinguishing 
based on drainage class is made by the number of graz-
ings on the CD, we tried to find additional information 
in the models for each drainage class. For example, 
considering the low herbage production potential fields 
(green subtree) in the tree (Figure 4), we can see that 
for this subtree, there are no other splitting attributes 
but NoGrazing and LandUseCropping that we already 
discussed before. Following the fact that most of the 
examples belonging to this subtree are poorly drained, 
the idea of considering the tree obtained on the PD is 
justified.

If we look in the tree obtained from the PD (see 
Figure 5), we can see that there is additional important 
information that complements the green subtree given 
in Figure 4. Namely, if NoGrazings > 2 or ≤2, the next 
attribute used is N_recycled_per_field, which indicates 
the fact that the reason of higher or lower annual herb-

age accumulation is the amount of nutrients recycled 
(dung and urine) by the cows at grazing.

The predictive performance of the tree built on the 
PD is the highest (r2 = 0.761 and RRMSE = 0.489). 
The ensembles, again, as expected, improve the predic-
tive performance (r2 = 0.830 and RRMSE = 0.438).

The predictive and descriptive performances for all 3 
scenarios (well-drained, somewhat poorly drained, and 
poorly drained) are given in Appendix Tables A2, A3, 
and A4, respectively.

Summary and Discussion

The technical results show that performance of a 
MTR tree is not significantly different from that of the 
4 single-target models. The predictive performance of 
r2 = 0.684 shows that we have a quite good predic-
tive model, despite the complexity of the task at hand. 
Practically, the MTR tree is more efficient, since we 
have to interpret only one tree instead of looking at 4 
different trees, one for each response variable. As we 
discussed, a MTR tree can be easily interpreted by a 
domain expert (e.g., agronomist). As expected, we get 
improved predictive performance if we use ensembles of 
PCT (random forest of PCT) in all scenarios in both 
single- and MTR tasks, but we lose interpretability.

Using this modeling approach, we found that the N, 
P, and K uptake is not always proportional relative 
to herbage accumulation levels. We could explore this 
variability by interpreting the learned models to bet-
ter understand which nutrient may be limiting herbage 
production. Variability in herbage nutrient concentra-
tions across dairy farms could lead to significant vari-
ability in nutrient use efficiency for a given level of 
production. Across these dairy grassland fields used 
for dairy production, we found the strength of limita-
tion to herbage production based on nutrient uptake 
to follow this order P > N > K. This finding indicates 
that grassland swards are undersupplied with P from 

Figure 5. Multi-target regression tree learned on the poorly 
drained data.
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either soil reserves or fertilizer P input to maximize 
herbage production potential. Uptake of N and K is less 
limiting; however, given the P limitations, their uptake 
would be less efficiently used by the grassland.

In this study, we identified several important S, E, 
and M variables driving grass production in Ireland. 
Out of these factors, the number of grazing events was 
the most significant factor related to annual herbage 
accumulation. Across the large number of fields used in 
this study, the number of grazing events was also linked 
with soil drainage class, which indicates that soil type 
moderates/controls herbage production potential and 
also herbage utilization under grazing management. 
On high herbage production potential grassland, the 
regional weather has the biggest effect, whereas on me-
dium and low herbage production potential grassland, 
the factors grassland land use (grazing vs. silage) and 
fertilizer P input have the largest effects.

Overall, the MTR tree provided the most useful in-
formation in terms of explaining herbage production 
potential and nutrient uptake across these grassland 
sites. Although this modeling approach could be used 
to identify herbage production potential with high ac-
curacy, it can also inform the most influential dynamic 
factors that could be managed to increase herbage 
production in the future. These models could be also 
used as a basis for integrated soil fertility management, 
where other factors, such as soil type and environment 
factors, constrain optimum N, P, and K recommenda-
tions.

CONCLUSIONS

Our research study combined machine learning (i.e., 
data-driven modeling techniques) with practices and 
knowledge based on various soil, environmental, and 
management indicators, which describe interactions 
between nutrient uptake and herbage production. This 
approach has several technical advantages and impli-
cation for future nutrient management and advice for 
farmers to increase herbage production on dairy farms. 
The implications of this work for Irish grass-based 
dairy farms are as follows: (1) the models we have 
learned from data can be used to identify fields with 
poorer herbage production performance and to direct 
on-site investigation to ascertain the problem or the 
constraints. (2) This data-driven modeling approach 
suggests that (1) guiding a more balanced approach to 
fertilizer inputs, including P and also K, is required, in 
addition to high quantities of N fertilizer input; (2) to 
improve environmental sustainability, explicit geo and 
climatic recommendations for fertilization are required; 
and (3) to monitor and assess grassland productivity, 
only a few variables are required, including soil drain-

age class (grazing events), grassland management, soil 
nutrient status, production intensity, as well as region 
and local weather. Further work could be conducted 
to evaluate other farm production and environmental 
sustainability targets, as well as trade-offs and syner-
gies between the underlying factors by using different 
modeling approaches for solving the MTR task.
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APPENDIX

Table A1. Descriptions of the soil (S), environment/weather (E), and management (M) factors (variables) and response variables (annual 
herbage accumulation and nutrient herbage uptake – N, P, and K uptake)

Model category  Data type/category  Data heading  Data description

Metadata Identification Field code Individual fields (paddocks), experimental units
 M Field details Land use-cropping 2 types (grazing only and grazing + 1 cut of silage)

Field area (ha) Area of the experimental unit
 M Production level Total no. of cows Total number within the herd on each farm

Average stocking rate (LU/ha) Average live units per milking platform (1 mature cow/
ha = 1 LU/ha)

 M Milk offtakes Milk offtake (L/ha) Milk produced/ha for each field
Milk N offtake (kg/ha) N in milk removed/ha for each field
Milk P offtake (kg/ha) P in milk removed/ha for each field
Milk K offtake (kg/ha) K in milk removed/ha for each field

 M Meat offtakes Meat offtake (kg/ha) Meat produced/ha for each field
Meat N offtake (kg/ha) N in meat removed/ha for each field
Meat P offtake (kg/ha) P in meat removed/ha for each field
Meat K offtake (kg/ha) K in meat removed/ha for each field

 E Weather (annual) Weather station Name of the weather station
Rainfall (mm)  
Radiation (J/cm2)  
Air temperature (°C)  
Degree days below 15°C Cumulative degrees below a base temperature of 15°C 

(linked with reduced grass growth)
 S Soil characteristics SIS1 class Soil classification

Drainage class 4 classes
Slope Y/N Yes or no
Slope class 3 classes
Soil pH Measured soil pH (acidity) in top 10 cm of soil
Soil LR (t/ha) Calculated lime required to neutralize soil acidity and 

correct pH to target of 6.3
Soil P_Morgan (mg/L) Measured soil P concentration in top 10 cm of soil
Soil K_Morgan (mg/L) Measured soil K concentration in top 10 cm of soil
Soil Mg_Morgan (mg/L) Measured soil Mg concentration in top 10 cm of soil

 M Pasture management PRGrass class Perennial ryegrass (Lolium perenne) class
W. clover class White clover class
No. of harvests No. of silage harvesting events per year
No. of grazings No. of grazing events by cows per year

 M Lime management Lime type Type of lime (2 types: granulated and ground limestone)
Lime (kg/ha) Lime input level

 M Nutrient management Org N input (kg/ha) N input level in the form of organic manure
Org P input (kg/ha) P input level in the form of organic manure
Org K input (kg/ha) K input level in the form of organic manure
Chem. N input (kg/ha) N input level in the form of chemical fertilizer
Chem. P input (kg/ha) P input level in the form of chemical fertilizer
Chem. K input (kg/ha) K input level in the form of chemical fertilizer
Conc. N input (kg/ha) N input level in the form of concentrated feed
Conc. P input (kg/ha) P input level in the form of concentrated feed
Total Fert N input (kg/ha) Total N input level in the form of fertilizer (organic + 

chemical)
Total Fert P input (kg/ha) Total P input level in the form of fertilizer (organic + 

chemical)
Total Fert K input (kg/ha) Total N input level in the form of fertilizer (organic + 

chemical)
 M Nutrients recycled Average N recycled (kg of Org N/ha) Average N recycled by grazing animals (N excretion rate 

per cows) over the milking platform
Average P recycled (kg of Org N/ha) Average P recycled by grazing animals (P excretion rate 

per cows) over the milking platform
N recycled/field (kg of Org N/ha) N recycled by grazing animals (N excretion rate per 

cows) per field
P recycled/field (kg of Org N/ha) P recycled by grazing animals (N excretion rate per 

cows) per field
Response Herbage uptake Total herbage N uptake (kg/ha) Total N uptake by herbage (grazed grass and silage)

Total herbage P uptake (kg/ha) Total P uptake by herbage (grazed grass and silage)
Total herbage K uptake (kg/ha) Total K uptake by herbage (grazed grass and silage)

Response Herbage production Total herbage accumulation (kg/ha) Total annual herbage biomass production
1SIS (2017). 
2Org = organic.
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6.2 Exploiting Partially-Labeled Data for Learning Water
Quality Models in Irish Agricultural Catchments

Environmental scientists, during monitoring programs, generate vast amounts of data by
measuring the main environmental indicators related to the monitoring purpose. In this
vein, within the national water quality monitoring program in the Republic of Ireland,
thousands of water and soil samples are collected all across the country, recording the
source- and transport-related indicators, as well as water quality indicators, such as bio-
logical water quality (Q-value), nitrogen (N) and phosphorus (P) concentration, the main
factors driving the process of eutrophication. Despite the fact that thousands of samples
are collected, there is a large number of samples where the measurements are not complete
(Schulte et al., 2006).

The data from national monitoring programs typically consists of database tables for
each water quality indicator separately. In order to construct representative and structured
learning data, data analysts pre-process these thousands of examples and join databases
to take only those which are complete in the descriptive (i.e., input) space. In particular,
there are di�erent descriptive (i.e., source- and transport-related) indicators for each water
quality indicator. However, the �nal harmonized data consist of only those examples with
known values for the descriptive indicators. The 'data incompleteness' we consider in this
chapter is related to the target space i.e., the water quality indicators (Q-value, N and P
concentrations).

In classical, i.e., supervised machine learning algorithms, these 'incomplete' samples
are excluded from the learning process, which is performed only on complete, i.e., fully-
labeled examples. Semi-supervised algorithms for SOP can handle (fully-) unlabeled in
addition to (fully-) labeled examples. Moreover, in the case of SOP, if an example is
partially-labeled, it is considered as unlabeled, i.e., the known values for some of the
targets are entirely removed and the experiments, as usual, are performed on labeled and
unlabeled examples (K. Chen et al., 2020; Chou et al., 2018; Giri et al., 2019). However,
with purposely removing the known labels, i.e., delabeling incompletely labeled examples,
potential information that can a�ect the quality of the obtained models can be overlooked.
Semi-supervised predictive clustering trees (PCTs) have been shown to yield both more
accurate and more succinct (and hence interpretable) models as compared to their fully
supervised counterparts that use only the labeled part of the same SSL datasets. Therefore,
they are an ideal choice as a methodology that can be improved in order to handle partially-
labeled examples rather than to discard or delabel them.

In this chapter, we propose such adapted semi-supervised PCTs for multi-target regres-
sion, which can handle partially-labeled examples. To the best of our knowledge, this semi-
supervised modeling approach is a novel approach in the domain of environmental (soil)
sciences. There are only several studies applying semi-supervised learning in environmental
sciences, but they focus on single-target predictive modeling, i.e., SSL for classi�cation and
regression (cf. (Abraham & Tan, 2009; Herrera et al., 2010)). The adapted semi-supervised
PCTs for MTR learning from partially-labeled examples are deliberately chosen as the most
proper learning method, since our dataset consisting of 708 pre-processed data samples,
collected within the national water quality monitoring program (2001-2003), has almost
50% of 'incomplete' (i.e., partially-labeled) examples. Namely, we use predictive clustering
trees (PCTs) and ensembles (random forests) of PCTs for multi-target regression and we
build single-target (i.e., local) PCT models for each target separately and a multi-target
(i.e., global) PCT model which predicts all targets simultaneously. Our results have shown
that the best models in terms of predictive performance (i.e., RRMSE) are semi-supervised
models which can handle incompletely- (i.e., partially-) labeled data and the best models



6.2. Exploiting Partially-Labeled Data for Learning Water Quality Models 111

in terms of complexity (i.e., model size) are multi-target regression (i.e., global) models.
Moreover, the predictive clustering paradigm in itself uni�es the approaches of predic-
tive modeling and clustering and with that ideally shows the interactions between input
variables and targets which are consistent with existing �ndings.

The paper included in this section is:

• NIKOLOSKI, Stevanche, KOCEV, Dragi, LEVATI�C, Jurica, WALL, David, P. and
D�ZEROSKI, Sa�so. (2020), Exploiting partially-labeled data in learning predictive
clustering trees for multi-target regression: A case study of water quality assessment
in Ireland, Ecological Informatics, 2020, doi:10.1016/j.ecoinf.2020.101161.

The contributions of Stevanche Nikoloski to this paper are as follows. SN
adapted the existing computer code in order to handle partially-labeled examples. He
contributed to the design and execution of the machine learning experiments. He evaluated
their results and presented the model predictions in the form of maps. He drafted the paper
and revised it according to the co-author's and reviewer's feedback.
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Džeroskib,a,5
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Abstract

Many environmental problems give rise to predictive modeling tasks where several

dependent variables need to be predicted simultaneousy from a given set of independent

variables. When the target variables are numeric, the task at hand is called multi-

target regression (MTR). An example task of this type is the assessment of quality of

agricultural waters in Ireland according to three indicators: biological water quality,

nitrogen concentration and phosphorus concentration.

Multi-target regression models are typically learnt from labeled training examples,

where the values of both the dependent variables (labels) and the independent variables

are provided, in a setting known as supervised learning. Many different approaches to

supervised multi-target regression have been developed, among which predictive clus-

tering trees and ensembles thereof stand out due to their effectiveness and efficiency.

Recently, these approaches have been extended to exploit not only labeled examples,

but also unlabeled examples, where only the values of the independent variables are

provided, a setting known as semi-supervised learning.

In practice, training data can also contain partially labeled examples, where the val-

ues of some of the dependent variables are provided and others are missing (in addition
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to fully labeled examples where all target values are provided and completely unlabeled

examples where no target values are provided). For the task of water quality assess-

ment in Ireland, we encounter this kind of partially labeled data. Existing supervised

and semi-supervised MTR approaches typically ignore partially labelled data.

In this paper, we propose the use of semi-supervised predictive clustering trees for

MTR that can handle partially labeled examples. We apply these to the task of as-

sessment of water quality in Ireland, showing that better performance can be achieved

if partially labeled examples are exploited, rather than discarded. We build both lo-

cal models (collections of single-target models predicting each target separately) and

global models (multi-target models simultaneously predicting all targets), showing that

global models are both smaller and easier to interpret, and also overfit less (and have

better performance) as compared to local models.

Keywords: Multi-target regression, random forests, predictive clustering trees,

partially-labeled data, semi-supervised learning, water quality

1. Introduction

This paper is situated at the intersection between machine learning, on one hand,

and environmental modeling, on the other hand. On the machine learning side, it deals

with the task of multi-target regression (MTR), where models need to be learned to

predict several dependent variables simultaneously. These are learned from training

data that consists of pairs of input/ output vectors, in the setting of semi-supervised

learning, where some of the values of the output/ target variables may be missing in

some of the training data. Here, it considers cutting edge methods for MTR, which can

deal with data points that are fully labeled, unlabeled, or partially labeled with values

of the target variables. On the environmental modeling side, the paper considers the

task of relating pressure-pathway data to three different indicators of water quality in

agricultural fields in Ireland. This case study nicely fits the machine learning methods

considered, as multiple (three) targets need to be predicted and MTR models need to

be learned. In addition, the data from which MTR models need to be learned has many

missing values for the target variables.

2
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1.1. Multi-target regression

In the last decades, machine learning [1] has gained significant prominence and

is now used in many domains, including the domains of agriculture, ecology and soil

science. Data mining [2] typically uses tools from machine learning or statistics to

find patterns in and extract knowledge from the data. The predominant paradigm in

machine learning, called supervised learning, is concerned with learning predictive

models learning from data. In this paradigm, a dataset consists of pairs of values of in-

put/ descriptive/ independent variables and an output/ target/ dependent variable. In the

classical machine learning tasks of classification and regression, the output variables is

discrete, resp. continuous.

Recent research has studied predictive modeling tasks where the output can be a

complex data structure, such as a tuple/ vector of values, sequence (such as a time

series) and a hierarchy [3, 4, 5]. The task of learning models that predict structured

outputs is called structured output prediction.

In this work, we are concerned with the task of multi-target regression (MTR)—

a type of structured output prediction task where the goal is to simultaneously predict

multiple continuous target variables. Structured outputs are encountered in many real

world problems. Prominent examples can be found in ecology, for example, predicting

the abundance of different species occupying the same habitat [6] or estimating dif-

ferent vegetation quality indices for the same site [7], predicting the composition of a

community of organisms [8] or predicting the nutrient uptake and herbage production

in grassland soils [9].

Table 1: A multi-target regression (MTR) dataset.

ID Description Space Target Space

#
Hi drain

q1

drainage

factor

Total N

input
... Q P N

Example

type

#1 3 0.35 121.26 ... 3.86 0.04 0.47
Labeled

examples

#2 2 0.25 119.86 ... 4.28 0.34 20.71
#3 2 0 120.4749 ... 4.35 0.024 0.43
#4 2 0.24 120.95 ... 3.47 0.155 0.15

3
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In our case study in this paper, we address the MTR task of three different indica-

tors of water quality in agricultural fields in Ireland from pressure-pathway data. The

descriptive variables include, for example, a drainage factor and total nitrogen input.

The three target variables are biological water quality, nitrogen concentration and phos-

phorus concentration. The dataset we use comes from a study by Schulte et al. [10].

An excerpt from this MTR dataset is given in Table 1.

Models for MTR can be learned locally, i.e., as collections of single-target models,

learning one model for each target variable at a time. MTR models can also be learned

globally to simultaneously predict all targets. An example of a global model is a deci-

sion tree for multi-target regression, such as a predictive clustering tree (PCT) for MTR

[11]: Such a tree has the same structure as a regression tree, but predicts vectors of real

values (one for each target) in the leaves, rather than a single real value (for a single

target). An example PCT for MTR can be seen in Figure 10. Unlike local models,

global models (such as PCTs for MTR) exploit the potential dependencies that might

exist among the target variables to learn models with better predictive performance (as

compared to local models) and provide a global and comprehensive overview on the

modelled system.

Among the best approaches for MTR are predictive clustering trees (PCTs) for

MTR and ensembles thereof [11, 12, 13]. PCTs are readily interpretable, while en-

sembles of PCTs provide excellent predictive performance. In addition, PCTs inherit

several desirable properties of regular decision trees: (1) they do not make assumptions

on the probability distributions of the descriptive and target variables, (2) they can han-

dle both discrete/nominal and real/numeric descriptive variables and missing values,

(3) they have low computational cost for learning. Finally, PCTs are very general and

can handle a number of structured output prediction tasks: So far, PCTs have been

employed for the tasks of multi-target prediction (which includes multi-label classifi-

cation and MTR) [11], hierarchical multi-target prediction [14, 15, 16], and prediction

of time-series [17, 18].

4
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1.2. Semi-supervised multi-target regression

In the classical supervised machine learning tasks with structured outputs, the ex-

amples (i.e., instances) are labeled, i.e., the values for the target/class attributes are

known. However, the labels, i.e., values of the target variable(s) are typically not easy

to come by, as significant time and effort are needed to acquire their values. This is the

case even for a single target variable, and even more so when several target variables

are considered. On the other hand, unlabeled examples, without the value(s) of the

target variable(s) are much easier to come by. This has been a major motivation for the

development of the paradigm of semi-supervised learning (SSL)[19].

Table 2: A multi-target regression (MTR) dataset in the semi-supervised learning (SSL) setting. ’?’ denotes

a missing value.

ID Description Space Target Space

#
Hi drain

q1

drainage

factor

Total N

input
... Q P N

Example

type

#1 3 0.35 121.26 ... 3.86 0.04 0.47
Labeled

examples

#2 2 0.25 119.86 ... 4.28 0.34 20.71
#3 2 0 120.4749 ... 4.35 0.024 0.43
#4 2 0.24 120.95 ... 3.47 0.155 0.15
#5 2 0.15 119.2568 ... ? ? ?

Unlabeled

examples

#6 3 0 121.0236 ... ? ? ?
#7 2 0.86 119.3698 ... ? ? ?
#8 2 0 115.3987 ... ? ? ?

Semi-supervised learning can exploit both labeled examples, for which the value(s)

of the target variable(s) are known, and unlabeled examples, where the target values

are missing. As such, it is situated on the spectrum between fully supervised learning

(where all the target values are present and the task is to learn a predictive model) and

fully unsupervised learning (where no target values are present and the task is to find a

clustering). An example excerpt from a dataset for SSL in the context of multi-target

regression is given in Table 2, where the two types of examples are clearly indicated.

Just as the majority of methods for fully supervised learning deal with the tasks

of classification and regression, the majority of methods for SSL deal with semi-

5
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supervised classification and semi-supervised regression. Very few methods exist for

SSL in the context of structured-output prediction (SOP), especially for multi-target

regression. Example methods for semi-supervised learning in SOP include Gaussian

process models for MTR [20] and multi-task classification by adapting kernel parame-

ters in Gaussian processes for regression to handle unlabeled data [21, 22]. They also

include SVMs using the co-training paradigm accompanied by using the joint input-

output spaces and an arbitrary loss [23]. These approaches do not produce interpretable

models.

Recently, the approach of learning predictive clustering trees for MTR has been ex-

tended to the semi-supervised learning setting [13]. The predictive clustering paradigm

in itself unifies the approaches of predictive modeling and clustering and is an ideal

match for the task of SSL. PCTs for SSL have been shown to yield both more accurate

and more succint (and hence interpretable) models as compared to their fully super-

vised counterparts using only the labeled part of the same SSL datasets. Ensembles of

PCTs have also been adapted to the SSL paradigm. PCTs and PCT ensembles for SSL

are described in detail in Section 2.2.1.

1.3. Learning MTR models from partially labeled data

In SSL for (single-target) classification and regression, label values can either be

present or absent, giving rise to labeled and unlabeled examples. In multi-target re-

gression (and SOP in general), we can also have incomplete labels. For example, if we

have three target variables, the values for one or two of them can be present/ missing,

in contrast to the case where all three are present/ absent.

An example excerpt from a SSL dataset with partially labelled examples is given

in Table 3. It contains all three possible kinds of examples: unlabeled, partially labeled

and (fully) labelled examples. The partially labeled examples include all six possible

combinations of known and missing values of the three targets: three examples have

only one target value known and three examples have only one target value unknown.

On the methodological side, the task of SSL from fully labeled and fully unlabeled

data in structured output prediction has been studied to some extent, as described above.

However, the task of learning from partially labeled data has not received much interest

6
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Table 3: A MTR dataset with partially labeled examples. ’?’ denotes a missing value.

ID Description Space Target Space

#
Hi drain

q1

drainage

factor

Total N

input
... Q P N

Example

type

#1 3 0.35 121.26 ... 3.86 0.04 0.47
Labeled

examples

#2 2 0.25 119.86 ... 4.28 0.34 20.71
#3 2 0 120.4749 ... 4.35 0.024 0.43
#4 2 0.24 120.95 ... 3.47 0.155 0.15
#5 2 0 120.26 ... 3.7 ? ?

Partially

labeled

examples

#6 3 0.75 121.26 ... 2.95 ? 5.71
#7 2 0.565 120.47 ... 4.4 0.026 ?
#8 3 0 116.86 ... ? 0.68 ?
#9 3 0.547 116.56 ... ? ? 0.21

#10 2 0.65 118.36 ... ? 0.13 0.11
#11 2 0.15 119.2568 ... ? ? ?

Unlabeled

examples

#12 3 0 121.0236 ... ? ? ?
#13 2 0.86 119.3698 ... ? ? ?
#14 2 0 115.3987 ... ? ? ?

by the research community, even though it can be regarded as a special case of the

semi-supervised learning task, where, besides fully labeled examples and completely

unlabeled examples, there are also incompletely labeled examples. The majority of the

approaches of SSL for SOP mentioned in the above subsection cannot handle partially

labelled data. Fortunately, the approach of semi-supervised learning with predictive

clustering is capable of also handling incompletely labeled examples, as described in

Section 2.2.1.

On the applied side, in the domain of environmental sciences, there is not much

research on using ML for predictive modeling in the context of partially labeled data.

The need for using such methods, however, is strong as in most of the national moni-

toring programs, a vast amount of incomplete data is collected [10]. The few examples

of applying semi-supervised learning in environmental sciences focus on single-target

predictive modeling, i.e., SSL for classification and regression (cf. [24, 25]).

7
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1.4. An application of MTR with partially labelled data in water quality assessment

To illustrate the use of SSL methods for MTR with partially labelled data, we con-

sider an application in the assessment of water quality. This application domain is of

high importance, as one of the most basic and important human needs is quality drink-

ing water. The risk of water pollution is increasing as population growth and urban-

ization increase waste production and intensification of agricultural land management

increases to meet food production demand.

Due to anthropogenic uses of land and management of nutrient resources and con-

stant changes in weather and climate, aquatic ecosystems are affected continuously by

eutrophication - a process caused by nutrient enrichment, which is the most significant

environmental issue for surface waters [26, 27, 28, 29, 30, 31]. In the Republic of Ire-

land, because of the high rainfall environment, nutrient losses from agriculture fields

can flow directly to ground and surface water bodies if correct management is not im-

plemented and can cause a significant environmental risks for water quality [32, 33].

The studies that predict biological water quality, as well as nutrient loss to surface wa-

ters, use the available (mostly incomplete) pressure-pathway related data from national

water quality monitoring networks [10, 34].

The water quality data in our study includes three continuous dependent/ target

variables: biological quality of water, phosphorus concentration and nitrate concentra-

tion in water. The independent (descriptive) variables include environmental pressure

(source) variables, such as different kinds of nutrient inputs (e.g., nitrogen input from

fertilizer). They also include pathway (transport) variables, such as the net rainfall. A

detailed description of the dataset can be found in Section 3 and Appendix A.

A key property of this dataset is that approximately 50% of the spatial units of

analysis (i.e., examples) are only partially labeled, i.e., have missing values for some

of the target variables. Therefore, this dataset is appropriate to demonstrate the util-

ity of the advanced machine learning algorithms for semi-supervised learning which

can handle partially-labeled data. The majority of methods for MTR cannot handle

partially-labeled data and has to discard such partially-labeled examples from the learn-

ing process [35, 36, 37]. In our study, this would mean that almost a half of the dataset

cannot be used, thus, a lot of potentially useful information would be lost. By using
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SSL methods for MTR that can handle incompletely labeled examples, the discarding

of partially-labeled examples can be avoided.

1.5. An outline of the paper

Having introduced the tasks of fully supervised MTR, semi-supervised MTR, and

MTR from partially labeled examples, we now proceed to describe the recently intro-

duced approach of predictive clustering trees (PCTs) for SSL in the context of MTR

[13]. While not yet used to handle partially labeled examples, SSL PCTs for MTR

can indeed handle all three types of examples in MTR: fully labeled, unlabeled and

partially labeled ones. This holds for both individual PCTs for MTR and ensembles

thereof: We explain how they handle all three types of examples in Section 2.2.1.

We demonstrate the utility of the methodology on the real-world problem of qual-

ity assessment for agricultural waters in Ireland: The dataset at hand indeed contains

a large number of partially labeled examples. To the best of our knowledge, this is a

rare example of applying SSL for MTR on a practically relevant problem. In the pub-

lished literature on the subject, the advantages of SSL are demonstrated on benchmark

datasets consisting of fully labelled examples, where labels are artificially removed to

simulate missing labels.

In our experiments, we use supervised and semi-supervised variants of single PCTs

and ensembles of PCTs for regression [11, 12, 13]. We build both multi-target (i.e.,

global) regression models, where all of the target variables are simultaneously pre-

dicted by a single model, and single target (i.e., local) regression models, where a

separate predictive model is built for each target variable. We compare the predictive

performance of the semi-supervised PCTs models learned from partially-labeled ex-

amples with the performance of standard supervised PCTs that use only labeled data

instances. Moreover, in order to aid the global decision-making process, we gener-

ate predictive water quality maps for the Republic of Ireland from the obtained PCT

models and discuss their predictive accuracy.

We address the following research questions:

• How the incomplete examples influence the predictive performance in addition

to complete examples?

9
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• Whether better models (in terms of interpretability, model size and predictive

performance) can be obtained by using single- or multi-target regression?

• How these modelling methodologies scale from single models to ensemble of

models?

The reminder of the paper is structured as follows. Section 2 describes the pro-

posed machine learning methodology we use. Section 3 describes the case study i.e.,

the problem and the data used. In Section 4, we specify the experimental setup (param-

eter settings and model evaluation criteria etc.). Next, Section 5 presents the experi-

mental results with interpretation and discussion on the optimal model, as well as maps

depicting the original and predicted values for each target. Finally, Section 6 concludes

the paper.

2. Machine learning methods

2.1. The machine learning task

In this section, we present the machine learning methodology that was used to ob-

tain the predictive models. To begin with, we formalize the semi-supervised learning

task of multi-target regression with both unlabeled and partially labeled examples. We

then describe predictive clustering trees (PCTs) for MTR. Next, we present the adap-

tation of the variance function in PCTs to consider labeled, unlabeled and partially-

labeled instances. Finally, we present ensembles of predictive clustering trees for MTR.

Machine learning methods that can handle labeled examples are known as super-

vised learning methods. On the other hand, methods which use unlabeled examples

in addition to labeled ones with the aim to improve the performance of supervised

learning methods are called semi-supervised learning (SSL) methods [19, 13]. Note

that learning from partially-labeled data can be considered as a generalization of semi-

supervised learning. Usually, in SSL, the class information for unlabeled examples is

entirely missing.

Partially-labeled examples can be considered an additional source of information

in the spirit of SSL. Namely, the known information of the descriptive attributes for

10
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unlabeled examples and the known information of the targets for partially-labeled ex-

amples can be exploited. This would improve the predictive performance of the model

and the model itself.

The formal definition of the semi-supervised multi-target regression task learning

with partially-labeled examples is as follows.

Given:

• A description (input) space XD spanning D descriptive variables, i.e.,

XD = X1 × X2 × · · · × XD,

where Xi is the set of possible values of the i − th descriptive variable;

• A target (output) space YT spanning T target variables, i.e.,

YT = (Y1 ∪ {?}) × (Y2 ∪ {?}) × · · · × (YT ∪ {?}),

where Y j is the set of possible values of the j − th target variable, extended with

potentially missing value (denoted as ?);

• A set I of N examples (x, y) where x ∈ XD and y ∈ YT and an example (x, y) is



fully- labeled, if ∀i ∈ {1, 2, . . . ,T } : yi ∈ Yi

unlabeled, if ∀i ∈ {1, 2, . . . ,T } : yi = ?

partially- labeled, otherwise

.

• A quality criterion q, which rewards the models with the lowest predictive error.

Find:

• a function f : XD → YT by using the set of examples I, such that f maximizes

the quality criterion q.

Depending on the example set I, changing with respect to the output (target) space

YT , we can distinguish between different MTR tasks. If there are labeled examples

11
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only in I, then we have the classical supervised multi-target regression task (MTR).

We define the task of semi-supervised learning for multi-target regression (SSL for

MTR) if we have only fully labeled and unlabeled examples in I in addition. [13].

In our study, f is represented with predictive clustering trees or ensembles thereof

[12], which we will present in the following subsection.

2.2. Learning predictive clustering trees (PCTs) for MTR from partially-labeled data

2.2.1. Semi-supervised PCTs for multi-target regression

Blockeel [38] proposed the predictive clustering framework, while predictive clus-

tering trees (PCTs) for multi-target regression (MTR) were proposed by Struyf and

Džeroski [11]. The PCT framework views a decision tree as a hierarchy of clusters,

where the top-node corresponds to one cluster containing all the data. While moving

down the tree, clusters are recursively sub-divided into smaller clusters, aiming to min-

imize the intra-cluster variances. The PCT framework is implemented in the CLUS

software toolbox (http://source.ijs.si/ktclus/clus-public/) [12, 11].

PCTs are learned with a standard top-down induction of decision trees (TDIDT)

algorithm (see Algorithm 1) [39]. which takes a set of examples I as input, to produce

a tree as output. The procedure starts by selecting a test (t) for the root node by using a

heuristic function (h) computed on the training examples. The goal of the heuristic (h)

is to select the test (t) that maximizes the variance reduction caused by the partition-

ing (P) of the examples into subsets according to the test outcome (see the BestTest

procedure in Algorithm 1).

The recursive procedure for partitioning the examples continues until a stopping

criterion is satisfied. Further partitioning of the examples yield a tree with lower qual-

ity. In this case, the prediction (output value, calculated by applying a prototype func-

tion) is stored in the corresponding leaf of the tree. Satisfying the stopping criteria

means pre-pruning of the tree in order to avoid overfitting and provide a more inter-

pretable tree.

In PCTs for MTR, the prototype function calculates the mean values of all target

variables Y for the training examples belonging to that leaf. In the prediction phase, for

each new example, the algorithm identifies the leaf the example belongs to and returns

12
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the value predicted by the prototype function associated to that leaf (see Algorithm 1,

procedure PCT , line 8).

The most significant feature of the algorithm for learning PCTs and its main dif-

ference from a standard decision tree learner, is that it considers the variance function

and the prototype function as parameters that can be instantiated for a specific learning

task.

Algorithm 1 The top-down induction algorithm for PCTs

procedure PCT

Input: A dataset I

Output: A predictive clustering tree

1: (t∗, h∗,P∗) =BestTest(I)

2: if t∗ , none then

3: for each Ii ∈ P∗ do

4: treei =PCT(Ii)

5: end for

6: return node(t∗,
⋃

i{treei})
7: else

8: return leaf(Prototype(I)))

9: end if

procedure BestTest

Input: A dataset I

Output: the best test (t∗), its heuristic score

(h∗) and the partition (P∗) induced on I by

(t∗)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each possible test t do

3: P = partition induced by t on I

4: h = Var(I) −∑Ii∈P
|Ii |
|I| Var(Ii)

5: if (h > h∗)∧ Acceptable (t,P) then

6: (t∗, h∗,P∗) = (t, h,P)

7: end if

8: end for

9: return (t∗, h∗,P∗)

For the semi-supervised task of MTR, PCTs are learned by using a modified version

of variance reduction, where variance is calculated as an aggregation of the variances

of both the target attributes and descriptive attributes (see Algorithm 1, procedure

BestTest, line 4). For each set of instances I, the variance function is calculated as a

weighted sum of the variance functions over both the target (VarY
f ) and the descriptive

space (VarX
f ), by using the following formula:

Var f (I) = w · VarY
f (I) + (1 − w) · VarX

f (I) (1)

13
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where the weight parameter w controls the level of supervision employed during the

tree learning phase. It ranges from 0 (no supervision) to 1 (full supervision). The

ability to control the amount of supervision during the tree learning phase by using w

parameter is important, because there are different types of datasets from different do-

mains with different numbers of labeled examples, which may require different amount

of supervision.

The variance of the ith target attribute, that takes into account also ’incomplete’

examples is calculated as follows:

Vari(I) =

∑Ki
j=1 (yi, j)2 − 1

Ki
(
∑Ki

j=1 yi, j)2

Ki
(2)

where yi, j, is the value of the ith target variable for the jth example and Ki is the

number of examples with non-missing (known) values of the ith target variable [13].

The variance function over the descriptive space (VarX
f (I)) is defined with respect

to the different types of descriptive attribute values. They can be either nominal or

numerical. Therefore, VarX
f (I) is a sum of variance scores of the numerical variables

and Gini scores of the nominal variables, i.e.,

Var f (I, X) =
1
D


∑

Xi is numeric

Vari(I) +
∑

X j is nominal

Gini j(I)

 (3)

Vari is calculated as in Eq 2, whereas Gini j is calculated as follows:

Gini j(I) = 1 −
C j∑

k=1

p̃k (4)

where C j is the number of categorical values of the descriptive attribute X j and p̃k is the

empirical probability of the value ck, calculated by considering only the Ki examples

with known/partially-known values [13].

Note that, when inducing a semi-supervised regression tree, some extreme cases

may occur. First, a leaf of a tree may contain only examples with unknown values

for some target attribute. In that case, the prototype function calculates the prediction

by returning the prototype function value from the first parent node of such a leaf that

contains labeled instances. The extreme can occur in the procedure BestTest, i.e, when

the candidate split has to be evaluated and all examples from one of the branches of
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that test have missing values for a target attribute. This is handled by estimating the

variance in the current node with the variance of the parent node.

2.2.2. Ensembles of PCTs for MTR

Random forests of PCTs, proposed by Kocev et al. [12], are constructed following

the standard random forest algorithm (Algorithm 2) proposed by Breiman [40]. A

random forest (Algorithm 2) represents an ensemble of trees in which the diversity

between trees is achieved by using bootstrap replicates of the training dataset and also

by taking a random subset of descriptive attributes at each node of the tree during the

learning process. Bootstrap replicates are obtained by randomly sampling instances

from the training set, with replacements, until the same number of examples as in the

original training set is obtained.

Algorithm 2 The learning algorithms for random forests of PCTs (RForest) Here, I is the set

of training examples, k is the number of trees in the forest, f (D) is the size of the subset of the

descriptive space considered at each node during tree construction.
procedure RForest(I, k, f (D))

returns Forest

1: F = ∅
2: for i = 1 to k do

3: Ii = bootstrap(I)

4: Ti = PCT rnd(Ii, f (D))

5: F = F
⋃

Ti

6: end for

7: return F

The difference between the PCT procedure for tree construction in the random for-

est algorithm Algorithm 2 and the PCT procedure in the TDIDT Algorithm 1 is in the

selection of attributes. In Algorithm 2 selection of the attributes is randomized, i.e.,

the classical PCT procedure is replaced by PCT rnd(). Namely, at each node in the

decision tree, a random subset of attributes is taken from the descriptive space and the

best test is selected using this attribute subset. There are various ways of choosing the
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number of randomly selected attributes, given the total number of descriptive attributes

D, e.g., f (D) = [
√

D + 1], f (D) = [log2 D + 1], etc.

The prediction for a new instance in the random forest algorithm of PCTs is made

by combining the predictions of all base predictive models. In the multi-target regres-

sion (MTR) task, the prediction of each target is defined as an average of the predic-

tions obtained from each predictive tree. The prediction for all targets is a vector of

such predictions.

3. The case study

3.1. Motivation and problem description

One of the main debates about use and management of Ireland’s rural environment

is based around the impact of agriculture on water quality. According to the European

Protection Agency [41], 69% of Irish rivers are classified as ’unpolluted’ by European

standards, which makes quality of water reasonably good. Nutrient enrichment (by

nitrogen and phosphorus), which may lead to eutrophication processes, is the main

threat to the water quality directly affecting the aquatic ecosystem [42]. Although the

average concentration of nitrogen (N) is typically below the maximum limit value for

drinking water (mg · l−1), the potential impact of N loss on eutrophication cannot be ig-

nored. The average molybdate reactive phosphorus (P) concentration more frequently

violates the maximum limit threshold for eutrophication, mg · l−1 [43]. According to

the Environmental Protection Agency [44], there is evidence of an increasing trend of

P concentration in rivers, in recent years.

To the best of our knowledge, there are only few studies that use the pressure and

pathway variables in order to manage the nutrient loads produced by agricultural man-

agement practices. None of them uses advanced machine learning techniques that pro-

vide explainable models for predicting potential nutrient loss by using the existing data

that comprises the most important pressure-pathway factors. Schulte et al. [10] present

a pressure-pathway model for control of nutrient enrichment. They quantify and map

the agro-meteorological (pressure and pathway) indicators by controlling and evalu-

ating the effect of nutrient input to Irish water bodies. Daly et al. [34] develop an
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empirical model for predicting only molybdate reactive phosphorus (MRP) by using

data collected from 35 different water catchments in Ireland. The data in their study

are clustered into two different groups based on soil type. FThe frst group consists

of predominantly poorly-drained soil samples and has higher water phosphorus con-

centrations, while the second group has predominantly well-drained soil samples and

slightly lower water phosphorus concentrations. At the end, different models for each

group are developed with explained variability in data, i.e., coefficient of determination

(R2), of 62% and 68%, respectively.

Recently, some efforts have been made in using machine learning methods in order

to assess water quality. For example, Giri et al. [35] evaluated the impact of land uses

on stream integrity by applying several known ensemble techniques (random forests,

boosted regression trees, etc.) for learning models from land use and land cover change

data from aerial photography. Chen et al. [36] proposed a comparative analysis for as-

sessing the performance of tree learning techniques (decision trees, random forests,

deep cascade forest, etc.) for predicting surface water quality. Their data consisted of

30.000 examples taken from 10 national large rivers and lakes in China, where chemi-

cal water quality indicators were measured. Furthermore, Sheng-chou et al. [37] pro-

posed a study for predicting water quality in reservoirs. Water quality data collected

at stations of 20 reservoirs in Taiwan were used by machine learning algorithms, i.e.,

artificial neural networks (ANNs) and support vector machines (SVMs) for supervised

classification and regression, and basic linear regression in both baseline and ensemble

scenarios.

All of the above studies exclude ’incomplete’ examples with missing values for the

target variables in the learning process.

3.2. Data description

In our study, we use predictive clustering trees (PCTs), an advanced machine learn-

ing technique that simultaneously generates a prediction for the response variables (tar-

gets) for new examples and groups the existing examples based on values of the impor-

tant controlling factors (in this case nutrient pressure and/or pathway for loss to water

variables). The trees were constructed based on water quality monitoring data collected
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of the national level in Ireland, generated by the Environment Protection Agency in the

period, 2001– 2003, comprised 708 observations corresponding to different parts of

Ireland, with associated nutrient pressure and pathway for loss to water variables. The

data were provided by the Spatial Analysis Group at TEAGASC, the Irish Agriculture

and Food Development Authority in Ireland. These data were harmonized and adjusted

for the need of a study by Schulte et al. [10]. The land area of Ireland was divided into

grid cells of 10x10km. All target and descriptive variables were expressed as mean

values within each grid cell.

These data consist of 3 continuous target (response) variables and 26 continuous

descriptive (pressure-pathway) variables. The target (response) variables are the fol-

lowing:

1. Biological water quality, expressed by a Q-value, which ranges from 1 (very

poor) to 5 (very high quality). The Q-value is based on biological observations;

2. Phosphorus concentration, expressed as “Molybdate Reactive P” or P, which is

application of phosphorus to the land measured in mg per liter (mg · l−1).

3. Nitrate concentration, expressed as ”NO3” or N, which is application of nitrogen

to the land, measured in mg per liter (mg · l−1);

We deal with these 3 targets either independently, i.e., in a separate per-target anal-

yses (one model per target), or simultaneously, predicting all of them (one model for all

targets). Not all of the three targets were measured at every observation point. Three

different types of examples are presented in the dataset based on the missing values in

their target space.

The Q-value was measured in 706 grid cells, the phosphorus concentration, i.e., P

value in 529 grid cells, and the nitrogen concentrations, i.e., N value in 352 grid cells.

For 351 examples, the values of all target variables (Q, P, and N) were available. The

distributions of the original (measured) values for the target (response) variables are

shown in Figure 1.

Conceptually, we link water quality to agro-meteorological data and nutrient pres-

sures through a which are controlled of by pressure-pathway variables. In short, this

means that the risk of nutrients to water is was highest when the nutrient source pres-
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sure of nutrients and the pathways to transport it, are were both present at the same

place at the same time. Based on the findings in [10], for N, both the pressures and

the pathways are generally highest in the east and south-east of the country, so it is

not surprising that the highest nitrate concentrations in water are found here (see Fig-

ure 1c). For P, the situation is less clear: the pathways for P loss are were of potentially

higher, but source pressure may be lower, intensity in the west and north-west parts of

the country. However, the P-pressure follows a pattern similar to the N-pressure, i.e., it

is highest in the east and south-east. Apparently, while P source pressures are likely to

be higher, the loss pathways for P seem to be adequate also in the east and south- east

to transport part of this pressure to water bodies, resulting in highest P concentrations

in water in these regions of Ireland, because the highest P concentration, like N, are

found in the east and south-east part (see Figure 1b). Thus, as expected, the higher

concentration of nutrients (phosphorus and nitrogen) in east and south-east leads to

lower biological water quality of the water, i.e. the Q-value, as compared to the west

and south-west regions, where the nutrient enrichment is much lower (Figure 1a).

Descriptions of the individual descriptive pressure-pathway variables can be found

in the Appendix.

4. Experimental design

4.1. Evaluation Framework: Tasks and algorithms

In this section, we explain the design of the mschine learning experiments per-

formed on the dataset at hand, consisting of ’complete’ (i.e., labeled) and ’incomplete’

(i.e., unlabeled and/or partially-labeled) examples. In order to distinguish between

the different learning tasks considered, we use the prefixes SL- (supervised learning),

SSLPL- (semi-supervised learning with partially-labeled examples) and SSL- (semi-

supervised learning with unlabeled examples) before the name of the learning task, for

both single-target (ST) and multi-target (MT) regression. The difference in SSLPL and

SSL is that, in the former, we consider the MTR task with partially-labeled and fully-

labeled examples, and in the latter, we consider the single-target regression task where

unlabeled and labeled examples, are used. Furthermore, we use the suffixes -PCT and
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Figure 1: Distribution of the original (measured) data examples for the target values (Q-value, P and N

concentration), including ’incomplete’ examples with missing (unknown) values for the target variable.

-RF after the learning task to denote the use of a single PCT or a random forest of PCTs

to solve the task.
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The overall evaluation framework we adopt is depicted in Figure 2.

In the SSL and SSLPL scenarios, we first optimize the weight parameter w in the

CLUS algorithm (which controls the level of supervision) by internal 3-fold cross val-

idation on the training set. The final model is then built by using the entire training set

and the selected w parameter.

We learn the following four types of individual PCTs: SL-ST-PCT, SL-MT-PCT,

SSL-ST-PCT and SSLPL-MT-PCT.

Analogously, we build four types of random forest models, denoted as follows:

SL-ST-RF, SL-MT-RF, SSL-ST-RF and SSLPL-MT-RF.

We consider the following values for w: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

and 1.0.

When learning individual trees, we specify the minimal number of examples per

leaf in a PCT to be 16, in order to produce smaller, more general trees, where only the

most important set of descriptive attributes are in the tree nodes. We construct random

forests consisting of 100 predictive clustering trees. Trees in the random forests are not

pruned, and the number of selected random features for consideration at each internal

node is set to [log2(D) + 1], where D is the total number of descriptive attributes [40].

4.2. Evaluating performance: Procedure and metrics

We estimate the predictive performance of the learned models by 10-fold cross

validation, where 9 folds are used for training and the remaining one for testing it. The

procedure is repeated 10 times so that each fold is used exactly once as a test set. The

reported results represent the average performance across all 10 runs.

In order to obtain comparable results, we adjust the folds as followasfor SL-MT-

PCT, SL-ST-PCT, as well as their respective counterparts in the ensemble setting SL-

MT-RF, SL-ST-RF, we use only labeled instances, i.e., the folds with only labeled

examples per se. For SSLPL-MT-PCT and SSLPL-MT-RF, we remove ’incomplete’

instances (with missing values) for each target from the test sets for each fold, accord-

ingly. For SSL-ST-PCT and SSL-ST-RF we enrich the train sets with the unlabeled

examples from the test sets and evaluate only on labeled examples. Note that the same
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Figure 2: Experimental evaluation framework. The different types of data subsets and corresponding learning

tasks are shown in the grey coloured rectangles. The different types of examples in the dataset with respect

to their labeling are shown in the table in the center. The data distribution in terms of labeling is depicted in

the Venn diagram in the bottom center.
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labeled examples are used in the training folds in each scenario (SL-MT-PCT, SL-ST-

PCT, SSL-ST-PCT and SSLPL-MT-PCT).

We assess the predictive performance of the algorithms by using the metric of av-

erage relative root-mean-square-error (RRMSE), defined as follows:

RRMS E =
1
T

T∑

i=1

RRMS Ei.

T is the number of target variables and RRMS Ei is the relative root-mean-square-

error of the ith target variable, defined as follows:

RRMS Ei =

√√√∑Ntest
j=1 (y j,i − ŷ j,i)
∑Ntest

j=1 (y j,i − ȳi)

where Ntest is the number of examples in the test set, ŷ j,i is the predicted value of the

jth example, y j,i is the actual value of the ith target variable for the jth example of the

test set and ȳi is the mean of the ith target variable on the training set.

We use the model size as a measure of interpretability efficiency of pruned single

tree models. For the multi-target PCTs, model size is the total number of nodes (internal

nodes and leaves) and for the single-target PCTs, the model size is the sum of the total

number of nodes across the individual trees for the three target variables.

5. Results and discussion

5.1. Predictive performance and model complexity

The predictive performance of the models is shown in Figure 3 (single PCTs) and

Figure 4 (random forests). We can observe that the models able to exploit ’incomplete’

examples achieve better average predictive performance than the models that discard

them and use only complete (fully-labeled) examples. This observation can be made for

both local and global single PCTs and local and global random forest of PCTs. Over-

all, the semi-supervised methods (SSL-ST-PCT and SSLPL-MT-PCT) perform better

than the supervised methods, with the best performance/lowest RRMSE achieved by

SSLPL-MT-PCT (RRMSE = 0.8085) for single PCTs and SSLPL-MT-RF (RRMSE =

0.7558) for random forests of PCTs.
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For single PCTs, local and global methods perform almost the same overall, there-

fore. There is no clear conclusion whether single-target (i.e., local) or multi-target (i.e.,

global) PCTs perform better. For random forests of PCTs, global models (SL-MT-RF

and SSLPL-MT-RF) perform slightly better than local models (SL-ST-RF and SSLPL-

MT-RF).

Q P N Overall

SL-MT-PCT 0.9505 0.9726 0.6485 0.8572

SL-ST-PCT 0.9872 1.0010 0.5841 0.8574

SSLPL-MT-PCT 0.9202 0.8884 0.6169 0.8085

SSL-ST-PCT 0.9136 0.9102 0.6037 0.8092

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
R

M
SE

Single PCTs (pruned tree)

SL-MT-PCT SL-ST-PCT SSLPL-MT-PCT SSL-ST-PCT

Figure 3: Predictive performance (RRMSE) of single pruned PCTs, presented separately for each of the

target variables Q, P and N, and as an overall value calculated as the average RRMSE over the 3 targets.

Comparing supervised single models obtained from the fully-labeled dataset (SL-

MT-PCT and SL-ST-PCT), we observe that the fully labeled multi-target (i.e., global)

model achieves slightly better performance than the fully labeled single-target (i.e.,

local) models when predicting the Q-value and P concentration and slightly worse

when predicting the N concentration. Considering the overall performance, there is

no clear conclusion about the best performing supervised model, i.e., both global and

local models perform similarly. A similar situation is observed for supervised ensem-

ble models. Semi-supervised local and global single tree models performed similarly,

while for semi-supervised ensemble models (i.e., random forests of PCTs), the global

model (SSLPL-MT-RF) performed better than the local model (SSL-ST-RF). Overall,

random forests achieve better predictive performance than individual trees.
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The main advantage of SSL methods that handle ‘incomplete’ data lies in the fact

that they are the most efficient in label frugal conditions where the amount of available

labels is much less than 50% (e.g., 5%, 10%). For the SSL task (where the exam-

ples can be either completely labeled or completely unlabeled), Levatić et al. [13]

performed an extensive experimental evaluation on different benchmark MTR datasets

from various domains under different scenarios based on percent of labeled examples

in the learning process (5%,10%,20% and 30% of labeled examples). The study re-

vealed that better SSL models can be learned as compared to the supervised models in

terms of both predictive performance and model size: The advantage in performance

of SSL is the largest, when only a a smaller (e.g., 5%) percent of labeled examples are

present in the training data. But even for relatively large proportions of labeled data,

SSL still performs better, which is also clearly the case for our case study.

In domains such as environmental sciences, model interpretation plays an impor-

tant role in identifying the main drivers of the response variables. In order to decide

which model is the optimal, we consider a two-dimensional representation of the re-

sults, comparing the models by both their predictive performance and model complex-

Q P N Overall

SL-MT-RF 0.9086 0.9576 0.5343 0.8001

SL-ST-RF 0.8959 0.9625 0.5302 0.7962

SSLPL-MT-RF 0.8574 0.8841 0.5259 0.7558

SSL-ST-RF 0.8677 0.9065 0.5388 0.7710

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
R

M
SE

Random Forests of PCTs

SL-MT-RF SL-ST-RF SSLPL-MT-RF SSL-ST-RF

Figure 4: Predictive performance (RRMSE) of random forests of PCTs, presented separately for each of the

target variables Q, P and N, and as an overall value calculated as the average RRMSE over the 3 targets.
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Figure 5: Comparison of single tree models along two criteria. The x-axis ahows the RRMSE values (i.e.,

predictive performance), while the y-axis shows model size values (i.e., model complexity).

ity (Figure 5). The obtained values for model sizes are taken as per-fold averages. We

can see that when exploiting the partially-labeled examples, the obtained multi-target

regression model has a per-fold average size of 24. The obtained multi-target regres-

sion model that only uses fully-labeled data (supervised model), i.e., SL-MT-PCT has

an average size of 8. The reason for such a smaller tree is the number of learning ex-

amples - the latter approach uses only 50% of all examples. Considering model sizes

obtained in the single target (i.e., local) cases, we can see that there are 32 nodes in

SL-ST-PCT tree and 69 nodes in SSL-ST-PCT tree. The main observation here is the

difference in model sizes between local and global models: The complexity of the

global PCT models in terms of model size is significantly lower.

Moreover, in Figure 5, we observe that global and local models have similar pre-

dictive performance in both the supervised and the semi-supervised setting. However,

the global model obtained in the semi-supervised setting (SSLPL-MT-PCT) is superior

in terms of predictive performance as compared to the global model obtained in the
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supervised setting (SSLPL-MT-PCT). However, the multi-target tree learned from the

fully-labeled dataset (SL-MT-PCT) with 8 nodes is smaller than the tree learned from

partially-labeled dataset (SSLPL-MT-PCT) with 24 nodes. The latter tree used more

data, is larger, and has better predictive performance in terms of RRMSE.

Altogether, the semi-supervised models (SSL-ST-PCT and SSLPL-MT-PCT) are su-

perior in term of predictive performance. Global models (SSLPL-MT-PCT and SL-MT-

PCT) are superior in terms of model complexity (i.e., model size).

5.2. Interpretation of the predictions through maps

From the application domain perspective, the global models are more practical,

since they predict all of the target attributes simultaneously and achieve better predic-

tive performance (i.e., generalize better). Here, we examine the water quality maps

of Ireland generated by using the supervised (SL-MT-PCT) and semi-supervised SSPL-

MT-PCT global models to predict the missing values. These maps are shown in Figures

6, 7 and 8. Figures 6A, 7A and 8A show the original/measured values of the water qual-

ity variables, with missing values shown in black. It is these missing values than are

predicted by the two models, with predictions of SL-MT-PCT shown in Figures 6B, 7B

and 8B and predictions of SSLPL-MT-PCT shown in Figures 6C, 7C and 8C, resp.

For biological water quality (Q-value), we only had two incomplete examples and

therefore both models make similar predictions (see Figure 6). As a result, we focus

on the maps for P and N concentrations where the differences between the predictions

of the models are more notable. Figure 7 shows the maps with original (measured)

and predicted values for P concentration (with the SL-MT-PCT and SSLPL-MT-PCT

models). Next, Figure 8 shows the maps with original (measured) and predicted values

for N concentration (with the SL-MT-PCT and SSLPL-MT-PCT models).

Schulte et al. [10] found that the pressure and pathway variables were lowest for

the west and north-west sites, therefore, we expect the lowest values for P and N con-

centration in water in these regions. Examining the left most P concentration map (Fig-

ure 7A), there are several neighbouring unmeasured sites at the northernmost, western-

most and south-westernmost parts of Ireland. Examining the maps with the predictions,

the expectations are that the unmeasured sites, which are covered/bounded by unpol-
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Figure 6: Maps with: (A) The original Q-values; (B) Q-values predicted by the SL-MT-PCT model and (C)

Q-values predicted by the SSLPL-MT-PCT model 28
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Figure 7: Maps with: (A) The original P concentration values; (B) P concentration values predicted by the

SL-MT-PCT model and (C) P concentration values predicted by the SSLPL-MT-PCT model29
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Figure 8: Maps with: (A) The original N concentration values; (B) N concentration values predicted by the

SL-MT-PCT model and (C) N concentration values predicted by the SSLPL-MT-PCT modeln
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luted sites, should be also unpolluted, because of the natural neighbourhood influence

on water pollution. Examining the Figure 7B map, with predictions obtained by the

supervised SL-MT-PCT model, we see that unmeasured sites are predicted as more

polluted than the measured sites in the neighbourhood, which is not the case in the Fig-

ure 7C map, generated by using the predictions of the SSLPL-MT-PCT model, where

the unmeasured sites are predicted as expected, i.e., to have similar P concentration as

the measured neighbouring sites.

We have an even clearer situation in the map with predictions for the N concentra-

tion (Figure 8), where almost all sites in the south-western part of Ireland do not have

measured values. Again, the SSLPL-MT-PCT model (Figure 8C) predicts these sites as

less polluted as compared to the predictions generated by using the SL-MT-PCT model

(Figure 8B). The unmeasured group of sites in the eastern part are expected to have

higher P concentration and both maps confirm these expectations, with the difference

that the SSLPL-MT-PCT model (Figure 8C) predicts those values more in line with

the expectations as compared to the SL-MT-PCT model (Figure 8B). This confirms the

validity of the global SSLPL-MT-PCT model, learned from partially-labeled examples.

5.3. Model interpretation

The multi-target (i.e., global) regression trees provide domain information about

attribute connections and the main drivers of the processes regulating the water quality

in receiving waters in Ireland. The semi-supervised multi-target regression PCT model

was the most accurate interpretable model obtained, therefore, we will interpret only

the SSLPL-MT-PCT model. The supervised multi-target regression model (SL-MT-

PCT) is provided in Figure 10 in the Appendix for reference.

Figure 9 shows the multi-target regression tree for predicting the mean biological

water quality (Q), phosphorus concentration (P) and nitrogen concentration (N) in re-

ceiving water bodies. This tree model was learned by using pressure-pathway variables

consisting of soil, weather and managements factors from the partially- labeled dataset

(scenario SSLPL-MT-PCT). By examining the tree, we can see that the data samples,

i.e., river water quality monitoring points, were initially split according to the condition

sumPinput ha total > 14.5kg/ha.
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Figure 9: Multi-target regression tree learned by exploiting the partially-labeled examples in addition to the

fully-labeled examples in the S S LPL − MT − PCT scenario.
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In general, the group of monitoring points that had lower total P input per ha (No

branch) had higher water quality, as indicated by their Q values and average P and

N concentrations. When we consider the eutrophication indicator based on the MRP

threshold (0.035mg/l) [43, 42], the 284 sites with P inputs ≤ 14.5kg/ha had a mean

water P concentration below this threshold (MRP = 0.0317mg/l), while the 424 sites

with P inputs > 14.5kg/ha had a mean water P concentration greater than the MRP

threshold (MRP = 0.0534mg/l).

At the node in the left branch of the tree, the areas associated with water qual-

ity monitoring points with higher fertilizer inputs (sumPinput ha total > 14.5kg/ha,

were further divided based on a SMDmax threshold of 46.91, related to sites with high

or lower soil moisture deficit (SMD) during the summer period. High SMD during

summer has been shown to contribute to increased N-losses during the subsequent

winter period from managed soils [45], with higher fertilizer inputs. The monitoring

points corresponding to SMDmax>46.91 had higher overall N concentrations. More-

over, according to the next splitting node, growth season > 285 days, the land, cor-

responding to the monitoring points that follow the left (Yes) branch, are intensively

managed (high fertilizer inputs), have relatively lower rainfall, and are likely to have

a high proportion of freely draining soils conductive to a long growing season. The

final splitting node for these monitoring points (for left), shows that areas with higher

fertilization (P f ert ha total > 10.88kg/ha had higher average water N and P concen-

trations (P = 0.0585mg/l; N = 20.2mg/l) but similar average Q value of 3.9 as com-

pared to sites with somewhat lower fertilization (P f ert ha total ≤ 10.88kg/ha; Q =

3.9, P = 0.0493mg/l,N = 12.96mg/l). Both of these kinds of areas had much higher

associated average water N concentrations than areas with shorter growing season

(growth season ≤ 285 days). At the monitoring points corresponding to areas with

shorter growing season, the final split shows that higher rainfall (net rain f all > 375)

leads to lower water N concentration, possibly due to dilution, slightly higher average P

concentration, and overall higher average Q value (3.97), as compared to similar areas

where the net rainfall is lower (net rain f all ≤ 375).

Exploring the tree for areas with lower SMD (SMDmax ≤ 46.91), i.e., areas with

wetter soil conditions, we find changes in water P concentrations and Q-values dom-
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inate. Lower SMD in these areas is possibly due to a combination of poorly drained

soils, higher water holding capacity of the soils and more frequent or higher rainfall

levels in these areas. The predictions of water N concentrations show lower aver-

age values (less than 5mg/l) compared to dryer areas that go to the left side of the

tree, discussed previously (SMDmax > 46.91). At the next node on this branch of

the tree, the monitoring points are split based on the organic N input (organic ma-

nure) from pig and poultry (N p and p ha f armed) and threshold of 31.67kgN/ha).

As expected, where there is higher average N input from pig and poultry manure

(> 31.7kgN/ha) the average water quality was lower in terms of Q-value and P con-

centration (Q = 3.5892; P = 0.0819mg/l) compared to where N input from pig and

poultry manure was lower (≤ 31.67kgN/ha).

The areas receiving lower pig and poultry inputs (N p and p ha f armed ≤ 31.67

kgN/ha) are further split, by the number of intensive soil drainage events (> 15mm per

day) occurring (sum hi drain > 9). The soil drainage events indicator has been closely

related to P loss, and could account for up to 90% of the total annual P loss within 4 or

5 events ([10]). For sites with few intensive soil drainage events (sum hi drain ≤ 9),

the average water P concentration was relatively high of P = 0.0514mg/l (n = 134

monitoring points), when compared to the MRP threshold of 0.035mg/l. In general,

these sites had lower average Q-values (Q = 3.72) compared to sites with higher

number of intensive drainage events. The sites with many intensive drainage events,

where a higher proportion of these intensive drainage events took place in the spring

(hi drain q2 > 1) had lower N nutrient concentrations and higher biological water

quality (Q = 4.1835; P = 0.0261mg/l; N = 1.04mg/l). Among the sites with a lower

proportion of these events in the spring period (sum hi drain > 9 and hi drain q2 ≤ 1),

those which received high levels of fertilizer (sumPinput ha f armed > 27.73kgP/ha)

had concentrations of both P and N that were much higher (n = 37; Q = 3.93; P =

0.0717mg/l; N = 4.74mg/l) as compared to sites where fertilizer levels were lower

(n = 25; Q = 4.1426; P = 0.0383mg/l; N = 0.63mg/l).

Examining the right side of the tree, where the sites received lower overall fertil-

izer inputs (n = 294; sumPinput ha total < 14.445kgP/ha) indicating less intensive

agricultural management, shows that these sites had generally lower N and P con-
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centration in water and higher Q-values. At the first node on this branch, the mon-

itoring points are split based on the number of tra f f icable days with threshold of

92.9 days. Trafficable days is an indicator of wetness of the soil in the landscape:

A higher number of trafficable days enables more intensive farm machinery oper-

ations and/or grazing by animals. The monitoring sites associated with areas that

have higher number of trafficable days (> 92.9) are further split by soil drainage

(drainage f actor) with a threshold of 0.363. Areas with higher proportion of well-

drained soils (drainage f actor > 0.363) had higher water P and N concentrations

(n = 61; P = 0.0669mg/l; N = 3.35mg/l) as compared to the areas with higher propor-

tion of poorly-drained soils (drainage f actor ≤ 0.363; n = 22; P = 0.0213mg/l; N =

0.98mg/l). Additional analysis of the 61 areas with higher proportion of well-drained

soils showed that these areas had received relatively high N inputs by animals, i.e., ex-

creted N and also P loading typically directly deposited when animals are grazing (av-

erage N c and s ha f armed = 94kgN/ha and P c and s ha f armed = 14.2kgP/ha).

While these areas have lower overall intensity relative to the areas described by the

main left branch of the tree, this analysis indicates that soils that are dryer for longer pe-

riods and that have better drainage properties are more likely to be farmed with higher

management intensity and therefore have higher nutrient source pressures. The more

poorly-drained areas (drainage f actor ≤ 0.363), had much lower total nutrient input

pressure (sumNinput ha total = 74kgN/ha and sumPinput ha total = 9.75kgP/ha)

and hence had higher water quality (Q = 4.5738; P = 0.0213mg/l; N = 0.9793mg/l).

For the areas with lower number of trafficable days (i.e., trafficable days ≤ 92.88

in general, the concentrations of N and P in water at the monitoring points were low

and water quality was high (Q > 4.18). Areas with wetter soil are typically much

less intensively farmed due to soil type, high rainfall and drainage limitations. Where

net rain f all > 834mm, in the absence of high nutrient source pressure, further di-

lution of nutrient concentration in receiving water is likely and we have relatively

high water quality (n = 42; Q > 4.3). However, the model further splits these sites

based on N fertilizer inputs (N f ert ha total) with the threshold of 48.46kg/ha. Al-

though this threshold represents a relatively low annual N fertilizer rate, the moni-

toring points associated with higher N fertilizer inputs (> 48.46kg/ha) showed sim-
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ilar N concentrations, higher P concentrations and lower Q values (n = 18; P =

0.0171mg/l; N = 0.30mg/l) as compared to the areas receiving lower N fertilizer inputs

(n = 24; P = 0.0006mg/l; N = 0.30mg/l). The slightly elevated water P concentrations

indicate that increased grazing animal production, as a result of the N fertilizer applica-

tions for grass production, may be leading to mobilization of soil P, or P from grazing

animal feces or particulate P in sediments disturbed by these animals. Finally, when

net rain f all ≤ 834mm, the 159 monitoring points remaining are split based on the to-

tal amount of P input (sumPinput ha f armed). As expected, higher P fertilizer input

(sumPinput ha f armed > 16.9kgP/ha) resulted in slightly higher P loss (79 sites with

P = 0.0363mg/l) and lower Q-values (Q = 4.1) as compared to areas with lower P in-

puts (sumPinput ha f armed ≤ 16.9kgP/ha) (80 sites with P = 0.014mg/l; Q = 4.5).

Overall, the predictive clustering tree generated from the data collected for the

national water quality monitoring network points was in accordance with existing find-

ings. It confirms and extends the knowledge of the domain experts on the influence

of agricultural water quality in different parts of Ireland. The PCT model can also

be used to identify and support recommendations for appropriate management prac-

tices on farms to help improve water quality and limit diffuse pollution (due to nutrient

losses) in the future.

6. Conclusions

Multi-target regression (MTR) is a structured output prediction task where multiple

continuous target variables are predicted simultaneously. In the context of this task,

parts of the data can often have missing values for some variables, i.e., the data can

be ’incomplete’ (unlabeled or partially-labeled). Most machine learning methods for

multi-target regression are not able to handle such incomplete data at all, let alone

exploit it to the full extent possible.

In this paper, we use the predictive clustering trees (PCTs) approach to address

the task of MTR on partially-labeled data. We use PCTs to predict three continuous

variables related to water quality in Ireland. Approximately 50% of examples in this

dataset are ’incomplete’. We compare the performance of semi-supervised predictive
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clustering trees, which are able to exploit ’incomplete’ data, to the performance of

standard supervised predictive clustering trees, which can use only complete (fully-

labeled) data. We consider single trees and random forests as well as single-target (i.e.,

local) and multi-target (i.e., global) regression models. The results of the experimental

evaluation in different scenarios clearly show that better predictive performance can be

achieved if ’incomplete’ data are exploited by PCTs, rather than discarded. Further-

more, we can conclude that ensemble methods (random forests of PCTs), give the best

predictive performance.

Moreover, in our study, we also show that the multi-target regression tree can be

easily interpreted not only because of the compact size of the model, but also because it

provides a joint prediction of multiple targets simultaneously. Namely, one tree predicts

all of the targets at the same time. In the singe-target regression case, we have to

interpret as many trees as we have targets.

From the domain perspective, this approach has a number of advantages and im-

plications for future water quality mitigation and advice for farmers. It has helped to

identify the most important attributes which drive the process of controlling the wa-

ter quality. These are: chemical and organic (N and P) fertilizer input, the (duration of

the) grass growing season, as well as almost all of the pathway attributes i.e., trafficable

days, soil moisture deficit, drainage factor and net rainfall. The implications resulting

from the SSLPL-MT-PCT tree (learned from partially-labeled data) are in accordance

with known findings on this topic. Namely, the process of eutrophication is mostly

controlled by N and P loss and the risk of potential water pollution is higher if the

nutrient input (chemical and organic) is higher. Nutrient input could be caused either

by pathway variables or by some management practices with controlled fertilization or

manure input. For example, wet poorly drained soil has a higher runoff potential, i.e.,

carries higher risk for potential water pollution, while the application of chemical and

organic fertilizers under these conditions also plays a key role in water pollution.

For further work, the models and maps produced in our study could be further

updated by using the most recent water quality data from the national monitoring pro-

gram. Various additional machine learning methods for predictive modeling (bagging

of PCTs, deep neural networks etc.) could also be applied, especially for creating even
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more accurate maps. Furthermore, it would be interesting to apply existing methods

for feature importance estimation (ranking) in order to check whether the features that

appear in the tree nodes have high feature importance scores, i.e., are highly ranked.
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Appendix. Supplementary material

A. Description of the pressure-pathway controlling factors

The input (descriptive) space comprises 26 numeric continuous variables, which

are described below:

• Environmental pressures (source) variables:

1. Growth season (days): Length of the growth season. As long as the grass

grows, nutrients are taken up by the grass crop and hence protected from

loss. Therefore, shorter grass growth seasons increase N and P pressures

[46].

2. N c&s / ha farmed (kg/ha): N input from the excreta of cattle and sheep,

expressed as average kg N per hectare farmed within the grid cell.

3. N p&p / ha farmed (kg/ha): N input from the excreta of pig and poultry,

expressed as average kg N per hectare farmed within the grid cell.

4. N fert / ha farmed (kg/ha): N fertilizer input, expressed as average kg N per

hectare farmed within the grid cell.

5. P c&s / ha farmed (kg/ha): P input from the excreta of cattle and sheep,

expressed as average kg P per hectare farmed within the grid cell.

6. P p&p / ha farmed (kg/ha): P input from the excreta of pig and poultry,

expressed as average kg P per hectare farmed within the grid cell.

7. P fert / ha farmed (kg/ha): P fertilizer input, expressed as average kg P per

hectare farmed within the grid cell.

8. Sum N-input / hectare farmed (kg/ha) = N c&s + N p&p + N fert / ha farmed

9. Sum P-input / hectare farmed (kg/ha) = P c&s + P p&p + P fert / ha farmed

10. N c&s / ha total (kg/ha): N input from the excreta of cattle and sheep,

expressed as average kg N per hectare farmed and non-farmed within the

grid cell.

11. N p&p / ha total (kg/ha): N input from the excreta of pig and poultry,

expressed as average kg N per hectare farmed and non-farmed within the

grid cell.
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12. N fert / ha total (kg/ha): N fertilizer input, expressed as average kg N per

hectare farmed and unfarmed within the grid cell;

13. P c&s / ha total (kg/ha): P input from the excreta of cattle and sheep, ex-

pressed as average kg P per hectare farmed and unfarmed within the grid

cell.

14. P p&p / ha total (kg/ha): P input from the excreta of pig and poultry, ex-

pressed as average kg P per hectare farmed and unfarmed within the grid

cell.

15. P fert / ha total (kg/ha): P fertilizer input, expressed as average kg P per

hectare farmed and unfarmed within the grid cell.

16. Sum N-input / hectare total (kg/ha) = N c&s + N p&p + N fert / ha total

17. Sum P-input / hectare total (kg/ha) = P c&s + P p&p + P fert / ha total

• Pathway (transport) variables:

1. Drainage factor: Describes the average infiltration capacity of the soil,

ranging from 0 (entire grid cell is poorly-drained) to 1 (entire grid cell

is well-drained). Poorly drained soils (low drainage factor) are prone to

overland flow and hence prone to P-loss. Well-drained soil (high drainage

factor) are prone to leaching of N [47, 48].

2. SMDmax: Soil moisture deficit is calculated from the hybrid SMD model

given by Schulte et al. [45], as a cumulative balance from precipitation,

evapotranspiration and drainage. High SMDmax, i.e., maximum soil mois-

ture deficit, during summer is related to N-loss in the subsequent winter:

the higher the SMD in summer, the higher the N concentrations in au-

tumn/winter [45].

3. Net rainfall, is calculated as rainfall minus evapotranspiration. Net rainfall

is relatively high everywhere to ensure full recharge in winter, and to trans-

port residual nitrates in soils below the rooting zone. Therefore the main

effect of net rainfall is to dilute nitrate concentrations. For P, it may lead to

higher losses of P through overland flow [49, 50].
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4. Hi drain q1, q2, q3, q4, sum: The number of intense drainage events

(>15mm per day) in the 1st, 2nd, 3rd and 4th quarter of the year, or (sum)

the total number of intense drainage events per year. Intense drainage

events are the main pathway of P-loss (90% of P is lost in 4-5 drainage

events) [10]

5. Trafficable days: The number of days on which the soil conditions allow

traffic by animal and/or machinery. Trafficking of soils when soil moisture

deficits is lower than 10mm greatly increase the risk of nutrient-loss[51].

Note that the N and P in animal excreta (c&s and p&p) are both derived from the

same animal numbers and therefore show almost perfect correlation. It will be difficult

to discriminate between these two descriptive variables.

B. Supervised multi-target regression PCT model: SL-MT-PCT

In Figure 10, we show the SL-MT-PCT tree learned from the fully-labeled data with

supervised PCTs for MTR. The SL-MT-PCT model is obtained by learning from 50%

of the available data, therefore, the tree is smaller. The predictive performance of the

PCT model is worse than the SSLPL-MT-PCT model learned from the partially-labeled

data.

Biological water quality - Q-value 
 Phosphorus concentration P (mg/l) 

 Nitrogen concentration N (mg/l) 
N_fert_ha_farmed > 98.173972

growth_season > 285.215628

Yes

sum_P_input_ha_farmed > 24.637331

No

[Q = 3.8911,
P = 0.0506,

N = 15.5731]: 59

Yes

[Q = 3.8934,
P = 0.0748,

N = 8.8851]: 38

No

trafficable_days > 123.0

Yes

[Q = 4.332,
P = 24.9169,

N = 0.5553]: 96

No

[Q = 4.1236,
P = 0.0459,

N = 6.9319]: 45

Yes

[Q = 3.8934,
P = 0.0484,

N = 2.1268]: 113

No

Figure 10: Multi-target regression tree learned from the fully-labeled examples in the SL-MT-PCT scenario.
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Chapter 7

Conclusions

In this thesis, we have presented a method for structured output prediction that �nds the
dependencies in the output space and structures the target attributes into a hierarchy.
We have also applied machine learning methods for structured output prediction (SOP) in
two case studies in the domain of dairy and soil science. We have improved upon existing
methods for SOP by identifying hierarchical target space representations. In the case
studies, we have exploited the new human-centered paradigm called explainable arti�cial
intelligence (XAI), by focusing on the understandability and interpretability of the learned
predictive models that will facilitate their use by decision makers.

From a machine learning point of view, we have proposed a novel method for data-driven
structuring of the output space in multi-target prediction (MTP). For the structuring pro-
cess, we have used two di�erent representations of the output space, one consisting of the
values of the target attributes themselves and another consisting of the feature importance
scores for each target attribute. We address the limitations of the existing methods for
multi-target prediction that do not take into account similarities among the target at-
tributes. Our proposed algorithm transforms the classical MTP tasks to hierarchical MTP
tasks by using the structure (i.e., hierarchy) of the target attributes reconstructed in a
data-driven manner. Our results show improvement in the predictive performance when
this structure is used on a target space, especially for problems with a large number of
target attributes.

From the perspective of environmental sciences and modeling of soil ecosystem services,
we have introduced two novel case studies. We have applied supervised and semi-supervised
predictive clustering trees (PCTs) for multi-target regression on data related to modeling
speci�c aspects and outcomes for three soil functions. These functions are (1) primary
productivity (as referred by total grass yield and nutrient uptake) on Irish dairy farms; and
a combination of (2) water puri�cation and regulation and (3) regulation and provision
of nutrients (biological water quality and nitrogen/ phosphorus concentration) in Irish
agricultural catchments.

In our �rst case study, concerned with estimating total grass yield and nutrient uptake,
we have presented the advantages of using PCTs for MTR as a prominent and well-known
representative of explainable AI. The trees learned from the data provided useful infor-
mation in terms of explaining herbage production potential and nutrient uptake across a
large number of sites from 16 Irish dairy farms. The training data consisted of many soil,
environmental and management data variables and four target variables (total herbage pro-
duction, N, P and K uptake), all measured at each sample point, i.e. data example. Our
results show that the performance of the single MTR tree is essentially the same as that
of the four models for predicting each target separately, while the single MTR model can
be more easily interpreted by the domain experts. We have also improved the predictive
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performance of individual PCT models by using ensembles of PCTs, i.e., random forests
of PCTs, but at the cost of losing interpretability. Furthermore, the obtained tree models
have shown signi�cant practical implications for the domain of use, such as: (1) guiding
towards a more balanced fertilizer input; (2) identifying poorer herbage potential in spe-
ci�c �elds/regions of the country; and (3) monitoring and assessing grassland productivity
with only a few most important input variables which appear in the tree model.

In our second case study, we have addressed the limitations of existing MTR methods
related to data availability. Namely, the data for this study is incomplete, i.e., not all
of the target variables have been measured/assessed during data collection. Supervised
machine learning methods, which cannot handle incomplete data, discard this data, and
learn models from the small amount of complete (i.e, fully-labeled) data. In order to ad-
dress this limitation, we have proposed the use of semi-supervised PCTs for MTR, with
the incomplete (i.e., partially-labeled and unlabeled) data, where not all of the target at-
tributes have been measured for each data example. Our results have shown improvement
in the predictive performance of the learned PCTs. The obtained PCT models were also
understandable/explainable to the domain experts, con�rmed the existing domain knowl-
edge and suggested new recommendations with practical implications for the domain. We
achieved even larger improvements in predictive performance, when learning ensembles of
semi-supervised PCTs for MTR.

7.1 Summary of Contributions

In this dissertation, we have made the following contributions to science:

• In the context of multi-target prediction (MTP), we have introduced novel methods
for data-driven exploitation of the structure of the output space which discover a
target/label hierarchy during the learning process. We transform the problem of
MTP to the problem of hierarchical MTP. In particular, we transform MLC tasks to
HMLC tasks (Chapter 5.1) and MTR tasks to HMTR tasks (Chapter 5.2).

We evaluate our approach on various benchmark datasets of both MLC and MTR
tasks and in both cases show improvements as compared to the classical MTP ap-
proaches, where no target relations and dependencies are considered. The improve-
ment is noticeable for tasks with large output spaces (more than 100 target at-
tributes). We thus con�rm both parts of Hypothesis 1, with MLC models and ex-
periments referring to Hypothesis 1a and MTR methods and experiments referring
to Hypothesis 1b.

• We have used ML methods for MTR on a case study of modeling primary produc-
tivity soil function, speci�cally, for estimating total herbage production and nutrient
uptake in Irish dairy farms. We have used the existing soil, environment and man-
agement data to learn models interpretable by human experts and contribute to the
domain of dairy science (Chapter 6.1). We have used PCTs for multi-target regres-
sion which predict multiple targets simultaneously, as well as single target PCTs. Our
results show that PCTs for MTR are better in terms of both predictive power and
interpretability: Instead of interpreting and understanding of three (one for each tar-
get variable) di�erent single-target (STR) trees, the domain expert has to interpret
and explain only one MTR tree. They con�rm Hypothesis 2.

• We have applied semi-supervised learning to model several aspects and outcomes of
two soil functions, i.e., water regulation and puri�cation, and regulation and provision
of nutrients. Speci�cally, we have modeled water quality in agricultural catchments
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in Ireland by using existing partially-labeled data from the Irish national monitoring
program, moving beyond classical supervised learning methods that learn from com-
plete, i.e., fully-labeled data (Chapter 6.2). We have proposed the use of a variant
of semi-supervised learning that uses incomplete, i.e., partially-labeled data, where
not all of the target attributes are measured at every observation point; all, none, or
several of the targets can be measured for each data point. On the considered case
study, we have obtained better predictive performance and maintained interpretabil-
ity of the learned models from partially-labeled data as compared to learning from
fully-labeled data only. We have thus completely con�rmed Hypothesis 3.

7.2 Further Work

An immediate possibility for the extension of the proposed methodology for structuring the
output space would consider the use of di�erent feature ranking methods for MLC/MTR
for creating the space of feature importance scores used to describe the targets. These
descriptions would be then used to hierarchically structure the target space. There are
several well-known feature ranking methods that could be used for this purpose, such as:
the ReliefF method (Kononenko et al., 1997; Robnik-Sikonja & Kononenko, 1997) and
feature ranking by using generalized genetic programming with symbolic regression for
high-dimensional spaces (Q. Chen et al., 2017). Moreover, we can consider di�erent repre-
sentations of the output space such as reduced dimensionality versions of the target space
produced by existing algorithms for dimensionality reduction, such as matrix factorization
with principal component analysis (PCA)(Jolli�e, 2002), non-negative matrix factoriza-
tion (NMF) (Sra & Dhillon, 2006; Tandon & Sra, 2010) and singular value decomposition
(SVD) (Stewart, 1993) as well as their evaluation/ application to MTP problems with large
output spaces.

In this dissertation, we have presented two case studies, one related to modeling the
primary productivity soil function, i.e., estimation of total herbage potential and nutrient
uptake, and another related to modeling water quality in agricultural catchments in the
Republic of Ireland, covering some aspects of two di�erent soil functions: water puri�ca-
tion and regulation, and regulation and provision of nutrients. The data provider in both
case studies was TEAGASC, Environment Soils and Land-use Department from Ireland.
For further work, there is a possibility to apply similar machine learning approaches to
di�erent datasets for the same soil functions, as well as to data for the remaining three soil
functions: soil biodiversity, nutrient cycling and climate regulation, and carbon sequestra-
tion. Moreover, we can apply our proposed modeling approach, either on each soil function
separately or for two and more soil functions simultaneously, once the data are available.
In this way, we can consider the interactions among the di�erent soil functions.

In addition to the aforementioned possibilities for further work, we could extend the
existing decision support tool for modeling soil functions, called the Soil Navigator (Debel-
jak et al., 2019). This tool simultaneously assesses several soil functions as was developed
within the LANDMARK EU H2020 project (LANDMARK, 2019). In the data-driven ex-
tension of the Soil navigator, we would replace the decision rules from human-made DEXi
models for each soil function by predictive rules derived from the interpretable models
learned from data by PCTs in the appropriate decision tables.

Finally, we can envisage the application of the methods and approaches proposed in
this thesis to other domains, not only the domain of soil sciences. For example, other
problems from the area of sustainable food production and environmental sciences can be
considered. In this context, we expect the ability of learning explainable models in the
spirit of explainable AI.





163

References

Aarts, H., de Haan, M., Schroder, J., Holster, H., de Boer, J., Reijs, J., Oenema, J.,
Hilhorst, G., Sebek, L., Verhoeven, F., & Meerkerk, B. (2015). Quantifying the
environmental performance of individual dairy farms - the annual nutrient cycling
assessment (anca). In Grassland and forages in high output dairy farming systems
(pp. 377�380). Wageningen Academic Publishers.

Abraham, Z., & Tan, P. (2009). A semi-supervised framework for simultaneous classi�cation
and regression of zero-in�ated time series data with application to precipitation
prediction, In 2009 IEEE International Conference on Data Mining Workshops.

Abrahamsen, P., & Hansen, S. (2000). Daisy: An open soil-crop-atmosphere system model.
Environmental Modelling and Software, 15 (3), 313�330.

Agrawal, R., Gupta, A., & Sarawagi, S. (1997). Modeling multidimensional databases.
In Proceedings of the 13th International Conference on Data Engineering (IEEE
Computer Society), 232�243.

Ahmed, A. N., Othman, F. B., Afan, H. A., Ibrahim, R. K., Fai, C. M., Hossain, M. S.,
Ehteram, M., & Elsha�e, A. (2019). Machine learning methods for better water
quality prediction. Journal of Hydrology, 578, 124084.

Aho, T., �Zenko, B., & D�zeroski, S. (2009). Rule ensembles for multi-target regression, In
In Proc. of Ninth IEEE International Conference on Data Mining, IEEE Press.

Akansu, A. N., & Haddad, R. A. (1992). Multiresolution signal decomposition: Transforms,
subbands, wavelets. San Diego: Academic Press.

Alali, A., & Kubat, M. (2015). Prudent: A pruned and con�dent stacking approach for
multi-label classi�cation. IEEE Transactions on Knowledge and Data Engineering,
27 (9), 2480�2493.

Alaydie, N., Reddy, C. K., & Fotouhi, F. (2012). Exploiting label dependency for hier-
archical multi-label classi�cation., In Advances in Knowledge Discovery and Data
Mining. PAKDD 2012. Lecture Notes in Computer Science, vol 7301. Springer,
Berlin, Heidelberg.

Ali, I., Cawkwell, F., Dwyer, E., & Green, S. (2016). Modeling managed grassland biomass
estimation by using multitemporal remote sensing data�a machine learning ap-
proach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 10 (7), 3254�3264.

Allison, L. (2003). Types and classes of machine learning and data mining, In 26th Aus-
tralasian Computer Science Conference (ACSC), Adelaide, ACS Series Conferences
in Research and Practice in Information Technology V16.

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric re-
gression. The American Statistician, 46 (3), 175�185.

Appice, A., & D�zeroski, S. (2007). Stepwise induction of multi-target model trees, In Pro-
ceedings of 18th ECML 2007, Warsaw, Poland.

Aron, A., & Aron, E. (1999). Statistics for psychology. Prentice Hall, Upper Saddle River,
NJ.



164 References

Arumugam, A. (2017). A predictive modeling approach for improving paddy crop produc-
tivity using data mining techniques. Turkish Journal of Electrical Engineering and
Computer Sciences, 25, 4777�4787.

Bak�r, G. H., Hofmann, T., Sch�olkopf, B., Smola, A. J., Taskar, B., & Vishwanathan,
S. V. N. (2007). Predicting structured data. Neural Information Processing. The
MIT Press.

Balkovi�c, J., van der Velde, M., Schmid, E., Skalsk�y, R., Khabarov, N., Obersteiner, M.,
St�urmer, B., & Xiong, W. (2013). Pan-european crop modelling with epic: Imple-
mentation, up-scaling and regional crop yield validation. Agricultural Systems, 120,
61�75.

Bampa, F., O'Sullivan, L., Madena, K., Sand�en, T., Spiegel, H., Henriksen, C. B., Ghaley,
B. B., Jones, A., Staes, J., Sturel, S., Trajanov, A., Creamer, R. E., & Debeljak,
M. (2019). Harvesting european knowledge on soil functions and land management
using multi-criteria decision analysis. Soil Use and Management, 35 (1), 6�20.

Barros, R. C., Cerri, R., Freitas, A. A., & de Carvalho, A. C. P. L. F. (2012). Proba-
bilistic clustering for hierarchical multi-label classi�cation of protein functions., In
Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2013.
Lecture Notes in Computer Science, vol 8189, Springer, Berlin, Heidelberg.

Barutcuoglu, Z., Schapire, R. E., & Troyanskaya, O. G. (2006). Hierarchical multi-label
prediction of gene function. Bioinformatics, 22 (7), 830�836.

Blockeel, H., Raedt, L. D., & Ramon, J. (1998). Top-down induction of clustering trees,
In Proc. of the 15th International Conference on Machine Learning.

Blockeel, H., Schietgat, L., Struyf, J., D�zeroski, S., & Clare, A. (2006). Decision trees
for hierarchical multilabel classi�cation: A case study in functional genomics., In
Knowledge Discovery in Databases: PKDD 2006. PKDD 2006. Lecture Notes in
Computer Science, vol 4213. Springer, Berlin, Heidelberg.

Bockstaller, C., & Girardin, P. (2003). How to validate environmental indicators. Agricul-
tural Systems, 76 (2), 639�653.

Bohanec, M. (2014). Dexi: Program for multi-attribute decision making, user's manual,
version 4.01. IJS Report DP-11739 (Ljubljana: Jo�zef Stefan Institute).

Bohanec, M. (2017). Multi-criteria dex models: An overview and analysis.
Bohanec, M., Boshkoska, B. M., Prins, T. W., & Kok, E. J. (2017). Sigmo: A decision

support system for identi�cation of genetically modi�ed food or feed products.
Food Control, 71, 168�177.

Bohanec, M., & Rajkovi�c, V. (1990). Dex: An expert system shell for decision support.
Sistemica, 145�157.

Bondi, G., Creamer, R., Ferrari, A., Fenton, O., & Wall, D. (2018). Using machine learning
to predict soil bulk density on the basis of visual parameters: Tools for in-�eld and
post-�eld evaluation. Geoderma, 318, 137�147.

Borchani, H., Varando, G., Bielza, C., & Larra�naga, P. (2015). A survey on multi-output
regression. WIREs Data Mining and Knowledge Discovery, 5 (5), 216�233.

Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene
classi�cation. Pattern Recognition, 37 (9), 1757�1771.

Brefeld, U. (2008). Semi-supervised structured prediction models (Doctoral dissertation).
Humboldt-Universit�at zu Berlin, Mathematisch-Naturwissenschaftliche Fakult�at II.

Breiman, L., & Friedman, J. H. (1997). Predicting multivariate responses in multiple linear
regression. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 59 (1), 3�54.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24 (1), 123�140.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5�32.



References 165

Breiman, L., Friedman, J., Olshen, R., & Stone, C. J. (1984). Classi�cation and regression
trees. Chapman & Hall/CRC.

Breskvar, M., Kocev, D., & D�zeroski, S. (2018). Ensembles for multi-target regression with
random output selections. Machine Learning, 107, 1673�1709.

Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra,
J., Bertuzzi, P., Burger, P., Bussi�ere, F., Cabidoche, Y., Cellier, P., Debaeke, P.,
Gaudill�ere, J., H�enault, C., Maraux, F., Seguin, B., & Sinoquet, H. (2003). An
overview of the crop model STICS. European Journal of Agronomy, 18 (3), 309�
332.

Brouard, C., Szafranski, M., & d'Alch�e-Buc, F. (2016). Input output kernel regression:
Supervised and semi-supervised structured output prediction with operator-valued
kernels. Journal of Machine Learning Research, 17 (176), 1�48.

Brouwer, W. J., Kubicki, J. D., Sofo, J. O., & Gilesd, C. L. (2014). An investigation of
machine learning methods applied to structure prediction in condensed matter.
arXiv preprint arXiv:1405.3564.

Bui, D. T., Khosravi, K., Tiefenbacher, J., Nguyen, H., & Kazakis, N. (2020). Improving
prediction of water quality indices using novel hybrid machine-learning algorithms.
Science of The Total Environment, 721, 137612.

Bui, E., Henderson, B., & Viergever, K. (2009). Using knowledge discovery with data
mining from the australian soil resource information system database to inform
soil carbon mapping in australia. Global Biogeochemical Cycles, 23 (4).

Cardona, H. D. V., �Alvarez, M. A., & Orozco, �A. A. (2015). Convolved multi-output
gaussian processes for semi-supervised learning (V. Murino & E. Puppo, Eds.).
In V. Murino & E. Puppo (Eds.), Image Analysis and Processing � ICIAP 2015,
Cham, Springer International Publishing.

Castrillo, M., & Garc��a, �A. L. (2020). Estimation of high frequency nutrient concentrations
from water quality surrogates using machine learning methods. Water Research,
172, 115490.

Cerri, R., Barros, R. C., & [de Carvalho], A. C. P. L. F. (2012). A genetic algorithm
for hierarchical multi-label classi�cation, In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, Trento, Italy, Association for Computing Ma-
chinery.

Cerri, R., Barros, R. C., & Carvalho], A. C. [ (2014). Hierarchical multi-label classi�cation
using local neural networks. Journal of Computer and System Sciences, 80 (1), 39�
56.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006). Incremental algorithms for hierarchi-
cal classi�cation. The Journal of Machine Learning Research, 7, 31�54.

Chapelle, O., Schoelkopf, B., & Zien, A. (2006). Semi-supervised learning. MIT Press,
Cambridge, MA, 2.

Chen, B., Li, W., Zhang, Y., & Hu, J. (2016). Enhancing multi-label classi�cation based on
local label constraints and classi�er chains, In 2016 International Joint Conference
on Neural Networks (IJCNN), IEEE.

Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo, M., Zou, X.,
Wang, J., Zhang, Y., Chen, D., Chen, X., Deng, Y., & Ren, H. (2020). Comparative
analysis of surface water quality prediction performance and identi�cation of key
water parameters using di�erent machine learning models based on big data.Water
Research, 171, 115454.

Chen, Q., Zhang, M., & Xue, B. (2017). Feature selection to improve generalization of
genetic programming for high-dimensional symbolic regression. IEEE Transactions
on Evolutionary Computation, 21 (5), 792�806.



166 References

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. CoRR, arXiv.
Chen, W.-J., Shao, Y.-H., Li, C.-N., & Deng, N.-Y. (2016). Mltsvm: A novel twin support

vector machine to multi-label learning. Pattern Recognition, 52, 61�74.
Cheng, W., & H�ullermeier, E. (2009). Combining instance-based learning and logistic re-

gression for multilabel classi�cation. Machine Learning, 76, 211�225.
Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop

yield prediction and nitrogen status estimation in precision agriculture: A review.
Computers and Electronics in Agriculture, 151, 61�69.

Chou, J.-S., Ho, C.-C., & Hoang, H.-S. (2018). Determining quality of water in reservoir
using machine learning. Ecological Informatics, 44, 57�75.

Clare, A., & King, R. D. (2003). Predicting gene function in saccharomyces cerevisiae.
Bioinformatics, 19, ii42�ii49.

Clare, A. (2003). Machine learning and data mining for yeast functional genomics. (Doc-
toral dissertation). University of Wales, Aberystwyth. CA.

Clare, A., & King, R. D. (2001). Knowledge discovery in multi-label phenotype data., In
De Raedt L., Siebes A. (eds) Principles of Data Mining and Knowledge Discovery.
PKDD 2001. Lecture Notes in Computer Science, vol 2168.

Cluzeau, D., Guernion, M., Chaussod, R., Martin-Laurent, F., Villenave, C., Cortet, J.,
Ruiz-Camacho, N., Pernin, C., Mateille, T., Philippot, L., Bellido, A., Roug�e, L.,
Arrouays, D., Bispo, A., & P�er�es, G. (2012). Integration of biodiversity in soil
quality monitoring: Baselines for microbial and soil fauna parameters for di�erent
land-use types. European Journal of Soil Biology, 49, 63�72.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273�297.
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classi�cation. IEEE Transactions

on Information Theory, 13 (1), 21�27.
Craheix, D., Angevin, F., Dor�e, T., & de Tourdonnet, S. (2016). Using a multicriteria

assessment model to evaluate the sustainability of conservation agriculture at the
cropping system level in france. European Journal of Agronomy, 76, 75�86.

Crane-Droesch, A. (2018). Machine learning methods for crop yield prediction and climate
change impact assessment in agriculture. Environmental Research Letters, 13 (11),
114003.

Daly, K., Richards, K., Mellander, P.-E., Jordan, P., hUallach�ain, D. �O., Sheri�, S., Vero,
S. E., & Fenton, O. (2018). Soils and water quality. In R. Creamer & L. O'Sullivan
(Eds.), The soils of ireland. world soils book series (pp. 235�243). Cham, Springer.

de Leeuw, J., & Meijer, E. (2008). Handbook of multilevel analysis. Springer, New York,
NY.

Debeljak, M., Cortet, J., Dem�sar, D., Krogh, P. H., & D�zeroski, S. (2007). Hierarchical
classi�cation of environmental factors and agricultural practices a�ecting soil fauna
under cropping systems using bt maize. Pedobiologia, 51 (3), 229�238.

Debeljak, M., Squire, G. R., Kocev, D., Hawes, C., Young, M. W., & D�zeroski, S. (2011).
Analysis of time series data on agroecosystem vegetation using predictive clustering
trees. Ecological Modelling, 222 (14), 2524�2529.

Debeljak, M., Trajanov, A., Kuzmanovski, V., Schr�oder, J., Sand�en, T., Spiegel, H., Wall,
D. P., Van de Broek, M., Rutgers, M., Bampa, F., Creamer, R. E., & Henriksen,
C. B. (2019). A �eld-scale decision support system for assessment and management
of soil functions. Frontiers in Environmental Science, 7, 115.

DECATHLON. (2016). Development of Cost e�cient Advanced DNA-based methods for
speci�c Traceability issues and High Level On-site applicatioNs [Online; accessed
25.03.2020].



References 167

Dem�sar, D., D�zeroski, S., Larsen, T., Struyf, J., Axelsen, J., Pedersen, M., & Krogh, P.
(2006). Using multi-objective classi�cation to model communities of soil. Ecological
Modelling, 191, 131�143.

Deutsch, C., & Journel, A. (1998). GSLIB: Geostatistical Software Library and User's
Guide. 2nd Edition. Oxford University Press, New York.

Djerdj, T., Hackenberger, D. K., Hackenberger, D. K., & Hackenberger, B. K. (2020).
Observing earthworm behavior using deep learning. Geoderma, 358, 113977.

Djodjic, F., Montas, H., Shirmohammadi, A., Bergstr�om, L., & Ul�en, B. (2002). A deci-
sion support system for phosphorus management at a watershed scale. Journal of
Environmental Quality, 31 (3), 937�945.

Dong, Y., Fu, Z., Peng, Y., Zheng, Y., Yan, H., & Li, X. (2020). Precision fertilization
method of �eld crops based on the wavelet-bp neural network in china. Journal of
Cleaner Production, 246, 118735.

Dou, X., & Yang, Y. (2018). Evapotranspiration estimation using four di�erent machine
learning approaches in di�erent terrestrial ecosystems. Computers and Electronics
in Agriculture, 148, 95�106.

Duivesteijn, W., Menc��a, E. L., F�urnkranz, J., & Knobbe, A. (2012). Multi-label lego �
enhancing multi-label classi�ers with local patterns., In Advances in Intelligent
Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619.

D�zeroski, S. (2006). Towards a general framework for data mining, In Proceedings of the 5th
International Conference on Knowledge Discovery in Inductive Databases, Berlin,
Germany, Springer-Verlag.

Edwards, L., & Veale, M. (2017). Slave to the algorithm? why a 'right to an explanation'
is probably not the remedy you are looking for. Duke Law and Technology Review,
16 (1), 1�65.

Efroymson, M. A. (1960). Multiple regression analysis. mathematical methods for digital
computers, ralston a. and wilf,h. s., (eds.) Wiley, New York.

Elissee�, A., & Weston, J. (2001). A kernel method for multi-labelled classi�cation, In
Proceedings of the 14th International Conference on Neural Information Processing
Systems: Natural and Synthetic, Vancouver, British Columbia, Canada, MIT Press.

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression
trees. Journal of Animal Ecology, 77 (4), 802�813.

Enrique Sucar, L., Bielza, C., Morales, E. F., Hernandez-Leal, P., Zaragoza, J. H., &
Larra�naga, P. (2014). Multi-label classi�cation with bayesian network-based chain
classi�ers. Pattern Recognition Letters, 41, 14�22.

FAO. (2003). Food and Agriculture Organization of the United Nations (FAO), World
agriculture: towards 2015/2030. An FAO Perspective. J. Bruinsma (Ed.), London:
Earthscan Publications Ltd.

Faris, H., Aljarah, I., & Mirjalili, S. (2017). Chapter 28 - Evolving Radial Basis Function
Networks Using Moth�Flame Optimizer. In P. Samui, S. Sekhar, & V. E. Balas
(Eds.), Handbook of neural computation (pp. 537�550). Academic Press.

Fjodorova, N., Vra�cko, M., Jezierska, A., & Novi�c, M. (2010). Counter propagation arti-
�cial neural network categorical models for prediction of carcinogenicity for non-
congeneric chemicals. SAR and QSAR in Environmental Research, 21 (1-2), 57�
75.

Friedman, J. (2002). Stochastic gradient boosting. Computational Statistical Data Analysis,
38 (4), 367�378.

Friedman, M. (1940). A comparison of alternative tests of signi�cance for the problem of
m rankings. Annals of Mathematical Statistics, 11, 86�92.



168 References

F�urnkranz, J., H�ullermeier, E., Menc��a, E. L., & Brinker, K. (2008). Multilabel classi�cation
via calibrated label ranking. Machine learning, 73, 133�153.

Gardi, C., Montanarella, L., Arrouays, D., Bispo, A., Lemanceau, P., Jolivet, C., Mulder,
C., Ranjard, L., R�ombke, J., Rutgers, M., & Menta, C. (2009). Soil biodiversity
monitoring in europe: Ongoing activities and challenges. European Journal of Soil
Science, 60 (5), 807�819.

Gardi, C., Visioli, G., Conti, F. D., Scotti, M., Menta, C., & Bodini, A. (2016). High
nature value farmland: Assessment of soil organic carbon in europe. Frontiers in
Environmental Science, 4, 47.

Gelman, A. (2006). Multilevel (hierarchical) modeling: What it can and cannot do. Tech-
nometrics, 48, 432�435.

Gilhespy, S. L., Anthony, S., Cardenas, L., Chadwick, D., del Prado, A., Li, C., Misselbrook,
T., Rees, R. M., Salas, W., Sanz-Cobena, A., Smith, P., Tilston, E. L., Topp, C. F.,
Vetter, S., & Yeluripati, J. B. (2014). First 20 years of DNDC (DeNitri�cation
DeComposition): Model evolution. Ecological Modelling, 292, 51�62.

Giri, S., Zhang, Z., Krasnuk, D., & Lathrop, R. G. (2019). Evaluating the impact of land
uses on stream integrity using machine learning algorithms. Science of The Total
Environment, 696, 133858.

Giusti, E., & Marsili-Libelli, S. (2015). A fuzzy decision support system for irrigation and
water conservation in agriculture. Environmental Modelling and Software, 63, 73�
86.

Gjorgjevic, D., Madjarov, G., & D�zeroski, S. (2013). Hybrid decision tree architecture uti-
lizing local svms for e�cient multi-label learning. International Journal of Pattern
Recognition and Arti�cial Intelligence, 27, 1351004.

Godbole, S., & Sarawagi, S. (2004). Discriminative methods for multi-labeled classi�cation.
In Advances in knowledge discovery and data mining (pp. 22�30). Springer Berlin,
Heidelberg.

Goldberg, D., & Holland, J. (1988). Genetic algorithms and machine learning. Machine
Learning, 3, 95�99.

Goldberger, A. S. (1964). Classical linear regression. econometric theory. John Wiley; Sons,
New York.

Gon�calves, E. C., Plastino, A., & Freitas, A. A. (2013). A genetic algorithm for optimizing
the label ordering in multi-label classi�er chains, In 2013 IEEE 25th International
Conference on Tools with Arti�cial Intelligence.

Gon�calves, T., & Quaresma, P. (2004). Using ir techniques to improve automated text
classi�cation., In Meziane F., M�etais E. (eds) Natural Language Processing and
Information Systems. NLDB 2004. Lecture Notes in Computer Science, vol 3136,
Springer, Berlin, Heidelberg.

G�onen, M., & Kaski, S. (2014). Kernelized bayesian matrix factorization. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 36 (10), 2047�2060.

Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009).
A novel connectionist system for improved unconstrained handwriting recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 855�868.

Gri�ths, B., Rombke, J., Schmelz, R., Sche�czyk, A., Faber, J., Bloem, J., P�er�es, G.,
Cluzeau, D., Chabbi, A., Suhadolc, M., Sousa, J., da Silva, P. M., Carvalho, F.,
Mendes, S., Morais, P., Francisco, R., Pereira, C., Bonkowski, M., Geisen, S., . . .
Stone, D. (2016). Selecting cost e�ective and policy-relevant biological indicators
for european monitoring of soil biodiversity and ecosystem function. Ecological
Indicators, 69, 213�223.



References 169

Gunning, D., Ste�k, M., Choi, J., Miller, T., Stumpf, S., & Yang, G.-Z. (2019). XAI
explainable arti�cial intelligence. Science Robotics, 4 (37).

Guo, X., Bian, Z., Wang, S., Wang, Q., Zhang, Y., Zhou, J., & Lin, L. (2020). Prediction of
the spatial distribution of soil arthropods using a random forest model: A case study
in changtu county, northeast china. Agriculture, Ecosystems and Environment, 292,
106818.

Hamouda, M. A., Anderson, W. B., & Huck, P. M. (2009). Decision support systems
in water and wastewater treatment process selection and design: a review. Water
Science and Technology, 60 (7), 1757�1770.

Hastie, T., Friedman, J., & Tibshirani, R. (2001). Additive models, trees, and related
methods. In The Elements of Statistical Learning (Springer), 321�329.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data
mining, inference, and prediction. Springer, NY.

Herrera, M., Canu, S., Karatzoglou, A., P�erez-Garc��a, R., & Izquierdo, J. (2010). An ap-
proach to water supply clusters by semisupervised learning. International Congress
on Environmental Modelling and Software, 496.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthog-
onal problems. Technometrics, 12 (1), 55�67.

Hofmann, T., Sch�olkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning.
The Annals of Statistics, 36, 1171�1220.

Hop�eld, J., & Tank, D. (1985). 'neural' computation of decisions in optimization problems.
Biological Cybernetics, 52, 141�152.

Hosseinzadeh, A., Baziar, M., Alidadi, H., Zhou, J. L., Altaee, A., Najafpoor, A. A., &
Jafarpour, S. (2020). Application of arti�cial neural network and multiple linear re-
gression in modeling nutrient recovery in vermicompost under di�erent conditions.
Bioresource Technology, 303, 122926.

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A condi-
tional inference framework. Journal of Computational and Graphical statistics, 15,
651�674.

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for
regression and multiclass classi�cation. IEEE Transactions on Systems, Man, and
Cybernetics - Part B: Cybernetics, 42 (2), 513�529.

Huynh-Thu, V. A., Irrthum, L., Wehenkel, & Geurts, P. (2010). Inferring regulatory net-
works from expression data using tree-based methods. PLos One, 5 (9), 1�10.

Iman, R. L., & Davenport, J. M. (1980). Approximations of the critical region of the
friedman statistic. Communications in Statistics - Theory and Methods, 9, 571�
595.

Izenman, A. (1975). Reduced-rank regression for the multivariate linear model. Journal of
Multivariate Analysis, 5, 248�264.

Jang, J. .-.-R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans-
actions on Systems, Man, and Cybernetics, 23 (3), 665�685.

Jayadeva, Khemchandani, R., & Chandra, S. (2007). Twin support vector machines for
pattern classi�cation. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 29 (5), 905�910.

Joachims, T. (1998). Text categorization with support vector machines: Learning with
many relevant features., In N�edellec C., Rouveirol C. (eds) Machine Learning:
ECML-98. ECML 1998. Lecture Notes in Computer Science (Lecture Notes in Ar-
ti�cial Intelligence), vol 1398. Springer, Berlin, Heidelberg.

Jolli�e, I. T. (1982). A note on the use of principal components in regression. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 31 (3), 300�303.



170 References

Jolli�e, I. T. (2002). Principal Component Analysis, Series: Springer Series in Statistics,
2nd ed. Springer, NY.

Joly, A. (2017). Exploiting random projections and sparsity with random forests and
gradient boosting methods�application to multi-label and multi-output learning,
random forest model compression and leveraging input sparsity. arXiv preprint
arXiv:1704.08067.

Joly, A., Geurts, P., & Wehenkel, L. (2014). Random forests with random projections of
the output space for high dimensional multi-label classi�cation. In Joint European
conference on machine learning and knowledge discovery in databases, 607�622.

J�onsson, J. �O. G., & Dav��dsd�ottir, B. (2016). Classi�cation and valuation of soil ecosystem
services. Agricultural Systems, 145, 24�38.

Kiritchenko, S., Matwin, S., Nock, R., & Famili, A. F. (2006). Learning and evaluation in
the presence of class hierarchies: Application to text categorization., In Advances
in Arti�cial Intelligence. Canadian AI 2006. Lecture Notes in Computer Science,
vol 4013. Springer, Berlin, Heidelberg.

Kocev, D., D�zeroski, S., White, M. D., Newell, G. R., & Gri�oen, P. (2009). Using single-
and multi-target regression trees and ensembles to model a compound index of
vegetation condition. Ecological Modelling, 220 (8), 1159�1168.

Kocev, D., Naumoski, A., Mitreski, K., Krsti�c, S., & D�zeroski, S. (2010). Learning habitat
models for the diatom community in lake prespa. Ecological Modelling, 221 (2),
330�337.

Kocev, D., Vens, C., Struyf, J., & D�zeroski, S. (2013). Tree ensembles for predicting struc-
tured outputs. Pattern Recognition, 46 (3), 817�833.

Kohavi, R. (1995). Wrappers for performance enhancement and oblivious decision graphs.
(Doctoral dissertation). Department of Computer Science, Stanford University. CA.

Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words,
In Proceedings of the Fourteenth International Conference on Machine Learning,
San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.

Kononenko, I., Simec, E., & Sikonja, M. R. (1997). Overcoming the myopia of inductive
learning algorithms with relie�. Applied Intelligence, 7, 39�55.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classi�cation with deep
convolutional neural networks. Commun. ACM, 60, 84�90.

Kuhn, M., Weston, S., Keefer, C., Coulter, N., & Quinlan, R. (2014). Cubist: Rule-and
instance-based regression modeling [R package version 0.0.18;CRAN: Vienna, Aus-
tria].

Kung, H.-Y., Kuo, T.-H., Chen, C.-H., & Tsai, P.-Y. (2016). Accuracy analysis mechanism
for agriculture data using the ensemble neural network method. Sustainability, 8 (8).

Kuo, M., Mohler, B., Raudenbush, S. L., & Earls, F. J. (2000). Assessing exposure to vio-
lence using multiple informants: Application of hierarchical linear model. Journal
of Child Psychology and Psychiatry, 41 (8), 1049�1056.

LANDMARK. (2019). LAND, Management, Assessment, Research, Knowledge base [[On-
line; accessed 25.03.2020]].

Le Page, M., Berjamy, B., Fakir, Y., Bourgin, R., Jarlan, L., Abourida, A., Benrhanem,
M., Jacob, G., Huber, M., Sghrer, F., Simonneaux, V., & Chehbouni, G. (2012).
An integrated dss for groundwater management based on remote sensing. the case
of a semi-arid aquifer in morocco. Water Resources Management, 26, 3209�3230.

Letcher, R. (2005). Implementation of a water allocation decision support system in the
namoi and gwydir valleys.



References 171

Levati�c, J., Kocev, D., Debeljak, M., & D�zeroski, S. (2015). Community structure models
are improved by exploiting taxonomic rank with predictive clustering trees. Eco-
logical Modelling, 306, 294�304.

Levati�c, J., Kocev, D., & D�zeroski, S. (2015). The importance of the label hierarchy in
hierarchical multi-label classi�cation. Journal of Intelligent Information Systems,
45, 247�271.

Levati�c, J., Ceci, M., Kocev, D., & D�zeroski, S. (2017). Self-training for multi-target re-
gression with tree ensembles. Knowledge-Based Systems, 123, 41�60.

Levati�c, J., Kocev, D., Ceci, M., & D�zeroski, S. (2018). Semi-supervised trees for multi-
target regression. Information Sciences, 450, 109�127.

Liu, S., Ryu, D., Webb, J., Lintern, A., Waters, D., Guo, D., & Western, A. (2018).
Characterisation of spatial variability in water quality in the great barrier reef
catchments using multivariate statistical analysis. Marine Pollution Bulletin, 137,
137�151.

Madjarov, G., & Gjorgjevikj, D. (2011). Hybrid decision tree architecture utilizing local
svms for multi-label classi�cation., In Hybrid Arti�cial Intelligent Systems. HAIS
2012. Lecture Notes in Computer Science, vol 7209.

Madjarov, G., Gjorgjevikj, D., Dimitrovski, I., & D�zeroski, S. (2016). The use of data-
derived label hierarchies in multi-label classi�cation. Journal of Intelligent Infor-
mation Systems, 47 (1), 57�90.

Madjarov, G., Gjorgjevikj, D., & D�zeroski, S. (2012). Two stage architecture for multi-label
learning. Pattern Recognition, 45 (3), 1019�1034.

Madjarov, G., Vidulin, V., Dimitrovski, I., & Kocev, D. (2019). Web genre classi�cation
with methods for structured output prediction. Information Sciences, 503, 551�573.

Mahmoudzadeh, H., Matinfar, H. R., Taghizadeh-Mehrjardi, R., & Kerry, R. (2020). Spa-
tial prediction of soil organic carbon using machine learning techniques in western
iran. Geoderma Regional, 21, e00260.

Marinkovi�c, B., Crnobarac, J., Brdar, S., Anti�c, B., Ja�cimovi�c, G., & Crnojevi�c, V. (2009).
Data mining approach for predictive modeling of agricultural yield data., In First
Int Workshop on Sensing Technologies in Agriculture, Forestry and Environment
(BioSense09).

Melssen, W., Wehrens, R., & Buydens, L. (2006). Supervised kohonen networks for clas-
si�cation problems. Chemometrics and Intelligent Laboratory Systems, 83 (2), 99�
113.

Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., M�ucher, C. A., & Watkins, J. W.
(2005). A climatic strati�cation of the environment of europe. Global Ecology and
Biogeography, 14 (6), 549�563.

Mevik, B.-H., & Wehrens, R. (2007). The pls package: Principal component and partial
least squares regression in r. Journal of Statistical Software, 18 (2), 1�24.

Mileski, V., D�zeroski, S., & Kocev, D. (2017). Predictive clustering trees for hierarchical
multi-target regression (N. Adams, A. Tucker, & D. Weston, Eds.). In N. Adams, A.
Tucker, & D. Weston (Eds.), Advances in Intelligent Data Analysis XVI, Springer
International Publishing.

Mirschel, W., & Wenkel, K. (2007). Modelling soil�crop interactions with agrosim model
family., In Modelling water and nutrient dynamics in soil�crop systems. Springer,
Dordrecht.

Mitchell, T. (1997). Machine learning (1 ed.). McGraw-Hill, Inc., New York, NY, USA.
Moura, P., Barraud, S., Baptista, M. B., & Malard, F. (2011). Multicriteria decision-aid

method to evaluate the performance of stormwater in�ltration systems over the
time. Water Science and Technology, 64 (10), 1993�2000.



172 References

Mouron, P., Aubert, U., Heijne, B., Naef, A., Strassemeyer, J., Hayer, F., Gaillard, G.,
Mack, G., Hernandez, J., Avilla, J., Sole, J., Sauphanor, B., Alaphilippe, A., Pa-
tocchi, A., Samietz, J., Hohn, H., Bravin, E., Lavigne, C., Bohanec, M., & Bigler,
F. (2012). A multi-attribute decision method assessing the overall sustainability of
crop protection strategies: A case on apple production in europe. In Methods and
procedures for building sustainable farming systems (280 p.). Editions Springer.

Mueller, L., Schindler, U., Mirschel, W., Shepherd, T. G., Ball, B. C., Helming, K., Rogasik,
J., Eulenstein, F., & Wiggering, H. (2010). Assessing the productivity function of
soils. a review. Agronomy for Sustainable Development, 30, 601�614.

Mulder, C., Cohen, J. E., Set�al�a, H., Bloem, J., & Breure, A. M. (2005). Bacterial traits,
organism mass, and numerical abundance in the detrital soil food web of dutch
agricultural grasslands. Ecology Letters, 8 (1), 80�90.

Navaratnam, R., Fitzgibbon, A. W., & Cipolla, R. (2007). The joint manifold model for
semi-supervised multi-valued regression, In 2007 IEEE 11th International Confer-
ence on Computer Vision.

Navarro-Hell��n, H., Mart��nez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-
S�anchez, R. (2016). A decision support system for managing irrigation in agricul-
ture. Computers and Electronics in Agriculture, 124, 121�131.

Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the
Royal Statistical Society. Series A (General), 135 (3), 370�384.

Nemenyi, P. B. (1963). Distribution-free multiple comparisons (Doctoral dissertation).
Princeton University, Princeton, NY, USA.

Nguyen, T., Tjoa, A. M., & Wagner, R. (2000). An object oriented multidimensional data
model for olap. In Proceedings of the 1st International Conference on Web-Age
Information Management (WAIM) in LNCS (Springer-Verlag), 1846, 69�69.

Nikoloski, S., Kocev, D., & D�zeroski, S. (2018). Structuring the output space in multi-
label classi�cation using feature ranking, In New Frontiers in Mining Complex
Patterns, 6th International Workshop, NFMCP 2017 Held in Conjunction with
ECML-PKDD 2017 Skopje, Macedonia, September 18�22, 2017, Springer LNAI
10785. https://doi.org/10.1007/978-3-319-78680-3_11

Nikoloski, S., Kocev, D., & D�zeroski, S. (2019). Data-Driven Structuring of the Output
Space Improves the Performance of Multi-Target Regressors [JCR IF = 4.098].
IEEE Access, 7, 145177�145198. https://doi.org/10.1109/ACCESS.2019.2945084

Nikoloski, S., Kocev, D., Levati�c, J., Wall, D. P., & D�zeroski, S. (2020). Exploiting partially-
labeled data in learning predictive clustering trees for multi-target regression: A
case study of water quality assessment in ireland. [JCR IF = 2.31]. Ecological
Informatics. https://doi.org/10.1016/j.ecoinf.2020.101161

Nikoloski, S., Murphy, P., Kocev, D., D�zeroski, S., & Wall, D. P. (2019). Using machine
learning to estimate herbage production and nutrient uptake on Irish dairy farms
[JCR IF = 3.082]. Journal of Dairy Science, 102, 10639�10656. https://doi.org/
10.3168/jds.2019-16575

O'Brien, A., James, & Marakas, M., George. (2010). Management information systems.
McGraw-Hill/Irwin.

OECD. (2001). Environmental Indicators for Agriculture; Methods and Results. Paris,
France: OECD.

Okujeni, A., Canters, F., Cooper, S. D., Degerickx, J., Heiden, U., Hostert, P., Priem, F.,
Roberts, D. A., Somers, B., & der Linden], S. [ (2018). Generalizing machine learn-
ing regression models using multi-site spectral libraries for mapping vegetation-
impervious-soil fractions across multiple cities. Remote Sensing of Environment,
216, 482�496.

https://doi.org/10.1007/978-3-319-78680-3_11
https://doi.org/10.1109/ACCESS.2019.2945084
https://doi.org/10.1016/j.ecoinf.2020.101161
https://doi.org/10.3168/jds.2019-16575
https://doi.org/10.3168/jds.2019-16575


References 173

Orgiazzi, A., Panagos, P., Yigini, Y., Dunbar, M. B., Gardi, C., Montanarella, L., & Bal-
labio, C. (2016). A knowledge-based approach to estimating the magnitude and
spatial patterns of potential threats to soil biodiversity. Science of The Total En-
vironment, 545-546, 11�20.

Ottoy, S., Meerbeek, K. V., Sindayihebura, A., Hermy, M., & Orshoven, J. V. (2017).
Assessing top- and subsoil organic carbon stocks of low-input high-diversity systems
using soil and vegetation characteristics. Science of The Total Environment, 589,
153�164.

Panov, P., Soldatova, L. N., & D�zeroski, S. (2014). Ontology of core data mining entities.
Data Mining and Knowledge Discovery, 28, 1222�1256.

Panov, P., Soldatova, L. N., & D�zeroski, S. (2016). Generic ontology of datatypes. Infor-
mation Sciences, 329, 900�920.

Pantazi, X., Moshou, D., Alexandridis, T., Whetton, R., & Mouazen, A. (2016). Wheat
yield prediction using machine learning and advanced sensing techniques. Comput-
ers and Electronics in Agriculture, 121, 57�65.

Parton, W. J., & Rasmussen, P. E. (1994). Long-term e�ects of crop management in wheat-
fallow: II. CENTURY model simulations. Soil Science Society of America Journal,
58, 530�536.

Parton, W. J., Hartman, M., Ojima, D., & Schimel, D. (1998). Daycent and its land surface
submodel: Description and testing. Global and Planetary Change, 19 (1), 35�48.

Pelzer, E., Fortino, G., Bockstaller, C., Angevin, F., Lamine, C., Moonen, C., Vasileiadis,
V., Gu�erin, D., Guichard, L., Reau, R., & Mess�ean, A. (2012). Assessing innovative
cropping systems with dexipm, a qualitative multi-criteria assessment tool derived
from dexi. Ecological Indicators, 18, 171�182.

Pereira, P., Bogunovic, I., Mu�noz-Rojas, M., & Brevik, E. C. (2018). Soil ecosystem ser-
vices, sustainability, valuation and management. Current Opinion in Environmen-
tal Science & Health, 5, 7�13.

Pierce, S. A., Sharp, J. M., & Eaton, D. J. (2016). Decision support systems and processes
for groundwater. In A. J. Jakeman, O. Barreteau, R. J. Hunt, J.-D. Rinaudo, &
A. Ross (Eds.), Integrated groundwater management: Concepts, approaches and
challenges (pp. 639�665). Cham, Springer International Publishing.

Pugelj, M., & D�zeroski, S. (2011). Predicting structured outputs k-nearest neighbours
method, In Discovery Science, LNCS vol. 6926.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Francisco, CA, USA,
Morgan Kaufmann Publishers Inc.

Quinlan, R. J. (1992). Learning with continuous classes., In 5th Australian Joint Conference
on Arti�cial Intelligence, Singapore, World Scienti�c, Singapore.

Ransom, C. J., Kitchen, N. R., Camberato, J. J., Carter, P. R., Ferguson, R. B., Fern�andez,
F. G., Franzen, D. W., Laboski, C. A., Myers, D. B., Nafziger, E. D., Sawyer, J. E.,
& Shanahan, J. F. (2019). Statistical and machine learning methods evaluated for
incorporating soil and weather into corn nitrogen recommendations. Computers
and Electronics in Agriculture, 164, 104872.

Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine learning. The
MIT Press, Cambridge, MA, USA, 38, 715�719.

Read, J., Pfahringer, B., & Holmes, G. (2008). Multi-label classi�cation using ensembles
of pruned sets, In 2008 Eighth IEEE International Conference on Data Mining.

Read, J., Martino, L., Olmos, P. M., & Luengo, D. (2015). Scalable multi-output label
prediction: From classi�er chains to classi�er trellises. Pattern Recognition, 48 (6),
2096�2109.



174 References

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classi�er chains for multi-label
classi�cation. Machine learning, 85, 333.

Recio, B., Ib�a�nez, J., Rubio, F., & Criado, J. (2005). A decision support system for
analysing the impact of water restriction policies. Decision Support Systems, 39 (3),
385�402.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropaga-
tion learning: The rprop algorithm. In IEEE International Conference on Neural
Networks (IEEE), 586�591.

Robnik-Sikonja, M., & Kononenko, I. (1997). An adaptation of relief for attribute estima-
tion in regression.

Rosenberg, C., Hebert, M., & Schneiderman, H. (2005). Semi-supervised self-training of
object detection models, In Proceedings of the Seventh IEEE Workshops on Appli-
cation of Computer Vision - Volume 01, USA, IEEE Computer Society.

Rousu, J., Saunders, C., Szedmak, S., & Shawe-Taylor, J. (2006). Kernel-based learning of
hierarchical multilabel classi�cation models. Journal of Machine Learning Research,
7, 1601�1626.

Russell, S., & Norvig, P. (2009). Arti�cial intelligence: A modern approach (3rd). USA,
Prentice Hall Press.

Rutgers, M., Schouten, A. J., Bloem, J., Van Eekeren, N., De Goede, R. G. M., Jagersop
Akkerhuis, G. A. J. M., Van der Wal, A., Mulder, C., Brussaard, L., & Breure,
A. M. (2009). Biological measurements in a nationwide soil monitoring network.
European Journal of Soil Science, 60 (5), 820�832.

Sak, H., Senior, A. W., & Beaufays, F. (2014). Long short-term memory based recur-
rent neural network architectures for large vocabulary speech recognition. CoRR,
abs/1402.1128arXiv.

Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., & R., M. K. (2019). Xplainable ai:
Interpreting, explaining and visualizing deep learning. Switzerland AG., Springer
Nature.

S�anchez-Fern�andez, M., de-Prado-Cumplido, M., Arenas-Garc��a, J., & P�erez-Cruz, F. (2004).
Svm multiregression for nonlinear channel estimation in multiple-input multiple
output systems. IEEE Transactions on Signal Processing, 52 (8), 2298�2307.

Sand�en, T., Trajanov, A., Spiegel, H., Kuzmanovski, V., Saby, N. P. A., Picaud, C., Henrik-
sen, C. B., & Debeljak, M. (2019). Development of an agricultural primary produc-
tivity decision support model: A case study in france. Frontiers in Environmental
Science, 7, 58.

Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappi�e, M., M�arker, M., & Saia,
S. (2017). Spatio-temporal topsoil organic carbon mapping of a semi-arid mediter-
ranean region: The role of land use, soil texture, topographic indices and the in-
�uence of remote sensing data to modelling. Science of The Total Environment,
601-602, 821�832.

Schr�oder, J. J., Schulte, R. P. O., Creamer, R. E., Delgado, A., van Leeuwen, J., Lehtinen,
T., Rutgers, M., Spiegel, H., Staes, J., T�oth, G., & Wall, D. P. (2016). The elusive
role of soil quality in nutrient cycling: A review. Soil Use and Management, 32 (4),
476�486.

Schulte, R., Creamer, R. E., Donnellan, T., Farrelly, N., Fealy, R., ODonoghue, C., &
OhUallachain, D. (2014). Functional land management: A framework for manag-
ing soil-based ecosystem services for the sustainable intensi�cation of agriculture.
Environmental Science and Policy, 38, 45�58.

Schulte, R., Richards, K., Daly, K., Kurz, I., McDonald, E., & Holden, N. (2006). Agricul-
ture, meteorology and water quality in Ireland: A regional evaluation of pressures



References 175

and pathways of nutrient loss to water. Biology and Environment: Proceedings of
the Royal Irish Academy, 106B, 117�133.

Shaw, M. L., & Woodward, J. B. (1990). Modeling expert knowledge. Knowledge Acquisi-
tion, 2 (3), 179�206.

Silla Jr., C. N., & Freitas, A. A. (2009). A global-model naive bayes approach to the
hierarchical prediction of protein functions, In Proceedings of the 2009 Ninth IEEE
International Conference on Data Mining, USA, IEEE Computer Society.

Silla, C. N., & Freitas, A. (2011). A survey of hierarchical classi�cation across di�erent
application domains. Data Mining and Knowledge Discovery, 22, 31�72.

Snijders, T. A. B. (2011). Multilevel analysis. In M. Lovric (Ed.), International encyclopedia
of statistical science (pp. 879�882). Berlin, Heidelberg, Springer Berlin Heidelberg.

Spyromitros-Xiou�s, E., G., T., & I., V. (2008). An empirical study of lazy multilabel
classi�cation algorithms., In Darzentas J., Vouros G.A., Vosinakis S., Arnellos
A. (eds) Arti�cial Intelligence: Theories, Models and Applications. SETN 2008.
Lecture Notes in Computer Science, vol 5138.

Spyromitros-Xiou�s, E., Groves, W., Tsoumakas, G., & Vlahavas, I. (2012). Multi-label
classi�cation methods for multi-target regression. arXiv preprint arXiv:1211.6581
Cornall University Library, 1159�1168.

Spyromitros-Xiou�s, E., Tsoumakas, G., Groves, W., & Vlahavas, I. (2016). Multi-target
regression via input space expansion: Treating targets as inputs.Machine Learning,
104 (1), 55�98.

Sra, S., & Dhillon, I. S. (2006). Generalized nonnegative matrix approximations with breg-
man divergences. In Y. Weiss, B. Sch�olkopf, & J. C. Platt (Eds.), Advances in
neural information processing systems 18 (pp. 283�290). MIT Press.

Stewart, G. W. (1993). On the early history of the singular value decomposition. SIAM
Review, 35 (4), 551�566.

Struyf, J., & D�zeroski, S. (2006). Constraint based induction of multi-objective regres-
sion trees, In Proc. of the 4th International Workshop on Knowledge Discovery in
Inductive Databases KDID - LNCS 3933, Springer.

Suchithra, M., & Pai, M. L. (2020). Improving the prediction accuracy of soil nutrient
classi�cation by optimizing extreme learning machine parameters. Information Pro-
cessing in Agriculture, 7 (1), 72�82.

Sulaeman, Y., Nursyamsi, D., Widowati, L., Husnaen, & Sarwani, M. (2012). Phosphorus
and potassium decision support system: Bridging soil database and fertilizer appli-
cation., In Proceedings of the International Workshop on Soil Information System-
oriented Nutrient Management for Major Asian Crops, Science City of Munoz,
Nueva Ecija, Philippines.

Suykens, J., & Vandewalle, J. (1999). Least squares support vector machine classi�ers.
Neural Processing Letters, 9, 293�300.

Szymanski, P., Kajdanowicz, T., & Kersting, K. (2016). How is a data-driven approach
better than random choice in label space division for multi-label classi�cation?
Entropy, 18, 282.

Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics. (4th edition). Need-
ham Heights, MA: Allyn; Bacon.

Taki, M., Mehdizadeh, S. A., Rohani, A., Rahnama, M., & Rahmati-Joneidabad, M. (2018).
Applied machine learning in greenhouse simulation; new application and analysis.
Information Processing in Agriculture, 5 (2), 253�268.

Tandon, R., & Sra, S. (2010). Sparse nonnegative matrix approximation: New formulations
and algorithms (tech. rep. No. 193). Max Planck Institute for Biological Cybernet-
ics, T�ubingen, Germany.



176 References

Teng, H.-f., Hu, J., Zhou, Y., Zhou, L.-q., & Shi, Z. (2019). Modelling and mapping soil
erosion potential in china. Journal of Integrative Agriculture, 18 (2), 251�264.

Thoumazeau, A., Bessou, C., Renevier, M.-S., Trap, J., Marichal, R., Mareschal, L., Deca�ens,
T., Bottinelli, N., Jaillard, B., Chevallier, T., Suvannang, N., Sajjaphan, K., Thaler,
P., Gay, F., & Brauman, A. (2019). Biofunctool R©: A new framework to assess the
impact of land management on soil quality. part a: Concept and validation of the
set of indicators. Ecological Indicators, 97, 100�110.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58 (1), 267�288.

Toth, G., Gardi, C., Bodis, K., Ivits, E., Aksoy, E., Jones, A., Je�rey, S., Petursdottir,
T., & Montanarella, L. (2013). Continental-scale assessment of provisioning soil
function in europe. Ecological Processes, 2, 1�18.

Trajanov, A., Spiegel, H., Debeljak, M., & Sand�en, T. (2018). Using data mining techniques
to model primary productivity from international long-term ecological research (il-
ter) agricultural experiments in austria. Regional Environmental Change, 19, 325�
337.

Tsoumakas, G., & Katakis, I. (2007). Multi-label classi�cation: An overview. International
Journal of Data Warehousing and Mining (IJDWM), 3 (3), 1�13.

Tsoumakas, G., Katakis, I., & Vlahavas, I. P. (2008). E�ective and e�cient multilabel clas-
si�cation in domains with large number of labels, In Proceedings of the ecml/pkdd
workshop on mining multidimensional data.

Tsoumakas, G., & Vlahavas, I. (2008). Random k-labelsets: An ensemble method for
multilabel classi�cation., In Kok J.N., Koronacki J., Mantaras R.L.., Matwin S.,
Mladeni�c D., Skowron A. (eds) Machine Learning: ECML 2007. ECML 2007. Lec-
ture Notes in Computer Science.

Turb�e, A., De Toni, A., Benito, P., Lavelle, P., Lavelle, P., Ruiz, N., Van der Putten, W.,
Labouze, E., & Mudgal, S. (2010). Soil biodiversity: Functions threats and tools for
policy makers. bio intelligence service, ird and nioo, report for european commission
(DG Environment). European Commission, Brussels.

Turunen, V., Sorvari, J., & Mikola, A. (2018). A decision support tool for selecting the
optimal sewage sludge treatment. Chemosphere, 193, 521�529.

Van de Broek, M., Henriksen, C. B., Ghaley, B. B., Lugato, E., Kuzmanovski, V., Tra-
janov, A., Debeljak, M., Sand�en, T., Spiegel, H., Decock, C., Creamer, R., & Six,
J. (2019). Assessing the climate regulation potential of agricultural soils using a
decision support tool adapted to stakeholders' needs and possibilities. Frontiers in
Environmental Science, 7, 131.

van der Merwe, A., & Zidek, J. V. (1980). Multivariate regression analysis and canonical
variates. Canadian Journal of Statistics, 8, 27�39.

van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., & Su, Z. (2009). An integrated
model of soil-canopy spectral radiances, photosynthesis, �uorescence, temperature
and energy balance. Biogeosciences, 6, 3109�3129.

van Leeuwen, J. P., Creamer, R. E., Cluzeau, D., Debeljak, M., Gatti, F., Henriksen, C. B.,
Kuzmanovski, V., Menta, C., P�er�es, G., Picaud, C., Saby, N. P. A., Trajanov, A.,
Trinsoutrot-Gattin, I., Visioli, G., & Rutgers, M. (2019). Modeling of soil functions
for assessing soil quality: Soil biodiversity and habitat provisioning. Frontiers in
Environmental Science, 7, 113.

Vens, C., Struyf, J., Schietgat, L., D�zeroski, S., & Blockeel, H. (2008). Decision trees for
hierarchical multi-label classi�cation. Machine Learning, 73 (2), 185�214.



References 177

Vogel, H.-J., Bartke, S., Daedlow, K., Helming, K., K�ogel-Knabner, I., Lang, B., Rabot,
E., Russell, D., St�oßel, B., Weller, U., Wiesmeier, M., & Wollschl�ager, U. (2018).
A systemic approach for modeling soil functions. SOIL, 4 (1), 83�92.

Wall, D., O'Sullivan, L., Debeljak, M., Trajanov, A., Schroder, J., Henriksen, C. B.,
Creamer, R. E., Cacovean, H., & Delgado, A. (2019). Key indicators and man-
agement strategies for water puri�cation and regulation. LANDMARK: Land Man-
agement Assessment Research Knowledge base ( EU H2020 project).

Wang, J., Chen, Z., Sun, K., Li, H., & Deng, X. (2019). Multi-target regression via target
speci�c features. Knowledge-Based Systems, 170, 70�78.

Wang, S., Wang, J., Wang, Z., & Ji, Q. (2014). Enhancing multi-label classi�cation by
modeling dependencies among labels. Pattern Recognition, 47, 3405�3413.

Wang, Y., & Witten, I. H. (1997). Induction of model trees for predicting continuous
classes., In Poster papers of the 9th european conference on machine learning, 1997.
ECML97, Prague, Czech Republic.

WFD. (2000). Council directive of 23 october 2000 establishing a framework for commu-
nity action in the �eld of water policy, 2000/60/ec. Water Framework Directive,
Brussels, European Commission.

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and
techniques. Morgan Kaufmann.

Wolanin, A., Camps-Valls, G., G�omez-Chova, L., Mateo-Garc��a, G., van der Tol, C., Zhang,
Y., & Guanter, L. (2019). Estimating crop primary productivity with sentinel-
2 and landsat 8 using machine learning methods trained with radiative transfer
simulations. Remote Sensing of Environment, 225, 441�457.

Wold, H. (1997). Estimation of principal components and related models by iterative least
squares., In In Multivariate Analysis. Proceedings of an International Symposium
held in Dayton, Ohio, June 14-19, 1965, edited by P. R. Krishnaiah. Academic
Press.

Wu, Q., Tan, M., Song, H., Chen, J., & Ng, M. K. (2016). Ml-forest: A multi-label tree
ensemble method for multi-label classi�cation. IEEE Transactions on Knowledge
and Data Engineering, 28 (10), 2665�2680.

Wu, Q., Ye, Y., Zhang, H., Chow, T. W. S., & Ho, S. (2015). Ml-tree: A tree-structure-
based approach to multilabel learning. IEEE Transactions on Neural Networks and
Learning Systems, 26 (3), 430�443.

WWAP. (2015). The United Nations World Water Development Report 2015: Water for a
Sustainable World. UNESCO, Paris.

Xu, L., Yu, G., He, N., Wang, Q., Gao, Y., Wen, D., Li, S., Niu, S., & Ge, J. (2018).
Carbon storage in china's terrestrial ecosystems: A synthesis. Scienti�c Reports, 8,
2806.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised meth-
ods, In Proceedings of the 33rd Annual Meeting on Association for Computational
Linguistics, Cambridge, Massachusetts, Association for Computational Linguistics.

Ying-xue, S., Huan, X., & Li-jiao, Y. (2017). Support vector machine-based open crop
model (SBOCM): Case of rice production in china [Computational Intelligence
Research and Approaches in Bioinformatics and Biocomputing]. Saudi Journal of
Biological Sciences, 24 (3), 537�547.

Zhang, M.-L. (2009). Ml-rbf: Rbf neural networks for multi-label learning. Neural Process-
ing Letters volume, 29, 61�74.

Zhang, M.-L., Li, Y.-K., Liu, X.-Y., & Geng, X. (2018). Binary relevance for multi-label
learning: An overview. Frontiers of Computer Science, 12, 191�202.



178 References

Zhang, M.-L., & Zhou, Z.-H. (2006). Multilabel neural networks with applications to func-
tional genomics and text categorization. IEEE Transactions on Knowledge and
Data Engineering, 18 (10), 1338�1351.

Zhang, M.-L., & Zhou, Z.-H. (2007). Ml-knn: A lazy learning approach to multi-label
learning. Pattern Recognition, 40, 2038�2048.

Zhang, W., Liu, X., Ding, Y., & Shi, D. (2012). Multi-output ls-svr machine in extended
feature space., In Proc. of the 2012 IEEE International Conference on Computa-
tional Intelligence for Measurement Systems and Applications.

Zhang, Y., & Yeung, D.-Y. (2009). Semi-supervised multi-task regression (W. Buntine, M.
Grobelnik, D. Mladeni�c, & J. Shawe-Taylor, Eds.). In W. Buntine, M. Grobelnik, D.
Mladeni�c, & J. Shawe-Taylor (Eds.), Machine Learning and Knowledge Discovery
in Databases, Berlin, Heidelberg, Springer Berlin Heidelberg.

Zhen, X., Yu, M., He, X., & Li, S. (2018). Multi-target regression via robust low-rank
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (2),
497�504.

Zhou, T., Tao, D., & Wu, X. (2012). Compressed labeling on distilled labelsets for multi-
label learning. Machine learning, 88, 69�126.

Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis
Lectures on Arti�cial Intelligence and Machine Learning, 3 (1), 1�130.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67 (2),
301�320.



179

Bibliography

Publications Related to the Thesis

Journal Articles

Nikoloski, S., Kocev, D., & D�zeroski, S. (2019). Data-Driven Structuring of the Output
Space Improves the Performance of Multi-Target Regressors [JCR IF = 4.098].
IEEE Access, 7, 145177�145198. https://doi.org/10.1109/ACCESS.2019.2945084

Nikoloski, S., Kocev, D., Levati�c, J., Wall, D. P., & D�zeroski, S. (2020). Exploiting partially-
labeled data in learning predictive clustering trees for multi-target regression: A
case study of water quality assessment in ireland. [JCR IF = 2.31]. Ecological
Informatics. https://doi.org/10.1016/j.ecoinf.2020.101161

Nikoloski, S., Murphy, P., Kocev, D., D�zeroski, S., & Wall, D. P. (2019). Using machine
learning to estimate herbage production and nutrient uptake on Irish dairy farms
[JCR IF = 3.082]. Journal of Dairy Science, 102, 10639�10656. https://doi.org/
10.3168/jds.2019-16575

Conference Paper

Nikoloski, S., Kocev, D., & D�zeroski, S. (2018). Structuring the output space in multi-
label classi�cation using feature ranking, In New Frontiers in Mining Complex
Patterns, 6th International Workshop, NFMCP 2017 Held in Conjunction with
ECML-PKDD 2017 Skopje, Macedonia, September 18�22, 2017, Springer LNAI
10785. https://doi.org/10.1007/978-3-319-78680-3_11

Other Publications:

Conference Abstracts

Nikoloski, S., Debeljak, M., Creamer, R., Wall, D. P., D�zeroski, S., & Trajanov, A. (2017).
Prediction of mineralizable nitrogen (N) in soils using ensembles of regression mod-
els, In Abstract book Pedometrics 2017, Wageningen, 26 June - 1 July 2017, Wa-
geningen. https://static1.squarespace.com/static/5653202ee4b037d305e7fd3e/t/
594a53f7e4fcb553cd43b9c0/1498043388899/Abstract+Book+Pedometrics+2017.
pdf

https://doi.org/10.1109/ACCESS.2019.2945084
https://doi.org/10.1016/j.ecoinf.2020.101161
https://doi.org/10.3168/jds.2019-16575
https://doi.org/10.3168/jds.2019-16575
https://doi.org/10.1007/978-3-319-78680-3_11
https://static1.squarespace.com/static/5653202ee4b037d305e7fd3e/t/594a53f7e4fcb553cd43b9c0/1498043388899/Abstract+Book+Pedometrics+2017.pdf
https://static1.squarespace.com/static/5653202ee4b037d305e7fd3e/t/594a53f7e4fcb553cd43b9c0/1498043388899/Abstract+Book+Pedometrics+2017.pdf
https://static1.squarespace.com/static/5653202ee4b037d305e7fd3e/t/594a53f7e4fcb553cd43b9c0/1498043388899/Abstract+Book+Pedometrics+2017.pdf




181

Biography

Stevanche Nikoloski was born on 9 January 1987 in Prilep, Macedonia, where he �nished
elementary and secondary school. In 2005, he enrolled in the undergraduate studies of
mathematics at the Institute of Mathematics, Faculty of Natural Sciences and Mathematics
at the �Ss. Cyril and Methodius� University in Skopje. During his studies, he received
a scholarship for talented students from the Ministry of Education of Macedonia. He
graduated on 28 October 2009. His diploma thesis was entitled �An overview of the Riesz's
representation theorem�.

In 2010, he enrolled in the postgraduate study program of Applied Mathematics at the
Institute of Mathematics, as a part of the Faculty of Natural Sciences and Mathematics
at the �Ss. Cyril and Methodius� University in Skopje. On 4 July 2012, he defended
his master thesis entitled �Sequential quadratic programming (SQP). An application of
SQP in approximation and design of spline curves� thus obtained the degree �Master of
mathematical sciences and their applications�.

Since 2015, he has been a PhD student at the Jo�zef Stefan International Postgraduate
School (MP�S), enrolled in the program of Information and Communication Technologies.
In the period October 2015 � September 2019, Nikoloski held a scholarship from the MP�S,
as a part of the TEAGASCWalsh Fellowship program within the LANDMARK EU project.
Since September 2019, he has been employed at the Department of Knowledge Technologies
at the Jo�zef Stefan Institute. His research is mostly in the �eld of machine learning, and
its applications in the domain of environmental and soil sciences. More speci�cally, his
research topic is based on structuring the output space in multi-target prediction tasks
(multi-label classi�cation and multi-target regression) and application of the methods for
structured output prediction in the environmental domain.

During his PhD studies, he has participated in several workshops and conferences, such
as PEDOMETRICS 2017 and ECML PKDD 2017. His work has been published in several
journal and conference/workshop papers. These covers both the areas of computer science
and environmental sciences.




	Title
	Acknowledgments
	Abstract
	Povzetek
	Contents
	List of Figures
	List of Algorithms
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Goals, Hypotheses and Methodology
	1.3 Contributions
	1.4 Organization of the Thesis

	2 Background
	2.1 Structured Output Prediction (SOP)
	2.2 Multi-Target Prediction (MTP)
	2.3 Hierarchical Multi-Target Prediction (HMTP)
	2.4 Semi-Supervised Learning for SOP
	2.4.1 Semi-supervised learning (SSL) with labeled and unlabeled data
	2.4.2 Semi-supervised learning (SSL) with partially-labeled data

	2.5 Modeling Soil Functions

	3 Related Work
	3.1 Methods for Multi-Target Prediction
	3.1.1 State-of-the-art methods for multi-label classification
	3.1.2 State-of-the-art methods for multi-target regression
	3.1.3 State-of-the-art methods for semi-supervised MTR

	3.2 Methods for HMTP
	3.2.1 State-of-the-art methods for HMLC
	3.2.2 State-of-the-art methods for HMTR

	3.3 Methods for Structuring the Output Space in MTP

	4 State-of-the-art Methods for Modeling Soil Functions
	4.1 Primary Productivity
	4.1.1 DSS for modeling primary productivity
	4.1.2 ML for modeling primary productivity

	4.2 Water Regulation and Purification
	4.2.1 DSS for modeling water regulation and purification
	4.2.2 ML for modeling water regulation and purification

	4.3 Carbon Storage and Climate Regulation
	4.3.1 DSS for modeling carbon storage and climate regulation
	4.3.2 ML for modeling carbon storage and climate regulation

	4.4 Provision of Functional and Intrinsic Biodiversity
	4.4.1 DSS for modeling provision of functional and intrinsic biodiversity
	4.4.2 ML for modeling provision of functional and intrinsic biodiversity

	4.5 Provision and Cycling of Nutrients
	4.5.1 DSS for modeling provision and cycling of nutrients
	4.5.2 ML for modeling provision and cycling of nutrients


	5 Structuring the Output Space in Multi-Target Prediction
	5.1 Structuring the Label Space in Multi-Label Classification Using a Feature Ranking Representation of the Labels
	5.2 Structuring the Output Space in Multi-Target Regression Using Different Representations of the Targets

	6 Multi-Target Prediction for Modeling Soil Functions
	6.1 Estimation of Herbage Production and Nutrient Uptake on Irish Dairy Farms
	6.2 Exploiting Partially-Labeled Data for Learning Water Quality Models in Irish Agricultural Catchments

	7 Conclusions
	7.1 Summary of Contributions
	7.2 Further Work

	References
	Bibliography
	Biography

