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Abstract

In this thesis, we propose a novel methodology for learning ensembles of process-based mod-
els, which addresses the task of automated modeling of dynamic systems. Mathematical
modeling is at the heart of science and engineering and is often employed for represent-
ing and reasoning about the complex reality. Scientists and engineers construct complex
mathematical models to study, control and/or predict the behavior of real-world systems
under various conditions. Constructing mathematical models, however, is a nontrivial and
demanding task that requires an extensive expert knowledge and empirical observations of
the system at hand.

There are two main paradigms for modeling dynamic systems: theoretical (knowledge-
driven) modeling and empirical (data-driven) modeling. In the former, a domain expert
�rst derives a proper structure of the model, based on extensive knowledge about the sys-
tem at hand. Measured data can then be used to estimate the (constant) parameters in the
model, which, however, can also be set manually based on domain knowledge. The latter
uses measured data in a trial and error process to search for such a combination of model
structure/and parameters that best �ts the observed behavior. Process-based modeling
aims at integrating the theoretical and the empirical paradigms for modeling dynamic sys-
tems. More speci�cally, it aims at combining high-level process-based modeling knowledge
and observed data from the system at hand. These are used for learning process-based
models (PBMs) � where a PBM is a detailed, interpretable and modular representation
of a dynamic system. The state-of-the-art process-based modeling approaches have been
successfully applied to a variety of modeling tasks in a number of real-world domains. They
have been predominantly used for describing the observed behavior of the modeled sys-
tem. While focusing on the provision of detailed and accurate descriptions of the observed
system, these approaches have only shown limited predictive power when applied to tasks
of forecasting future system behavior.

To address this limitation of the process-based modeling paradigm, we focus on a well
established approach for improving the predictive performance of models in machine learn-
ing � the paradigm of ensemble learning. Ensembles are a machine learning paradigm
leading to accurate and robust models and are predominantly applied to predictive mod-
eling tasks. Ensemble models comprise a �nite set of predictive models, whose combined
output is expected to yield an improved predictive performance as compared to the pre-
dictive performance of an individual process-based model.

The proposed methodology for learning ensembles of process-based models � the main
contribution of this thesis � combines two lines of research. First, it extends the scope of
existing approaches to learning process-based models of dynamic systems, predominantly
employed in a descriptive modeling setting, towards predictive modeling. Second, it follows
the basic principles of ensemble learning, as is common in machine learning, and translates
them into a methodology for modeling dynamic systems. More speci�cally, we focus on a
methodology for learning homogeneous ensembles of process-based models, which consist
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of models constructed by using the same machine learning algorithm on di�erent samples
of the training data and/or knowledge.

The proposed methodology includes algorithms for learning ensembles of process-based
models by (1) bagging, i.e., learning from bootstrap samples of the data, (2) boosting,
i.e., learning from error-weighted samples of the data, (3) learning from random library
subsamples and (4) a combination of bagging and learning from random library subsamples.
Furthermore, the methodology includes methods for simulating ensembles of process-based
models that adapt the standard methods for combining predictions of ensemble constituents
in machine learning. Overall, the proposed methodology provides a general and modular
framework that allows for adapting other ensemble methods from machine learning to the
particular context of learning process-based models.

We conduct an extensive experimental evaluation based on a novel empirical evalua-
tion framework for process-based models of dynamic systems proposed in this thesis. This
framework is employed for estimating the predictive performance of process-based models
and ensembles thereof. This evaluation framework also identi�es the optimal design choices
within the proposed di�erent ensemble methods. Furthermore, it allows for investigating
whether the diversity among the individual ensemble constituents is related to the predic-
tive performance of the ensemble. Finally, we analyze the computational e�ciency of the
proposed methods. These analyses relate to both the empirical evidence gathered from
the performed experiments, as well as a theoretical study of the individual components in
each of the proposed ensemble methods.

We apply the proposed methodology and evaluate its performance on a set of problems
of automated predictive modeling of population dynamics in real-world aquatic ecosystems.
The experimental results provide important evidence that ensembles of process-based mod-
els, in general, yield signi�cantly better predictive performance compared to an individual
process-based model. While the di�erent proposed ensemble methods have similar pre-
dictive performance, the analysis of their computational e�ciency reveals that ensembles
learned from random library subsamples are the most e�cient to learn. They are con-
structed using time comparable to the time needed to learn a single process-based model.
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Povzetek

V doktorski disertaciji predstavljamo novo metodologijo za u£enje ansamblov procesnih
modelov, ki obravnava nalogo avtomatiziranega modeliranja dinami£nih sistemov. Matem-
ati£no modeliranje je v samem jedru znanosti in inºenirstva, kjer se spopada z nalogo opiso-
vanja in razlage razli£nih resni£nih sistemov. Znanstveniki in inºenirji gradijo zapletene
matemati£ne modele z namenom, da preu£ijo, nadzorujejo in/ali napovedujejo odzive
resni£nih sistemov pod razli£nimi pogoji. Gradnja matemati£nega modela je zahtevna
naloga, ki mora upo²tevati obseºno domensko znanje ter empiri£ne ugotovitve o obravna-
vanem sistemu.

Obstajata dva poglavitna pristopa k modeliranju dinami£nih sistemov: teoreti£no mod-
eliranje (na podlagi znanja) in empiri£no modeliranje (na podlagi podatkov). Pri prvem,
domenski strokovnjak poda ustrezno sestavo modela, ki temelji na obseºnem znanju o
obravnavanem sistemu. Za oceno (konstantnih) parametrov v modelu se kasneje lahko
uporabijo meritve, parametre pa se lahko nastavi tudi ro£no, na osnovi predznanja. Pri
empiri£nem pristopu, izmerjene podatke uporabimo za to, da z izkustveno metodo (ang.
trial and error) poi²£emo tak²no kombinacijo sestave in parametrov modela, ki se kar se da
dobro prilega opazovanemu sistemu. Cilj procesnega modeliranja je zdruºitev teoreti£nega
in empiri£nega pristopa, pri £emer kombiniramo visokonivojsko predznanje in meritve za
u£enje procesnega modela, ki je podrobna, razloºljiva in modularna predstavitev obravna-
vanega dinami£nega sistema. Trenutno najbolj²e metode za procesno modeliranje so bile
uspe²no uporabljene v mnogih prakti£no relevantnih domenah za u£enje opisnih modelov
razli£nih sistemov. Kljub temu, da obstoje£e metode preko modelov dajejo natan£ne opise
obravnavanih sistemov, je napovedna mo£ doti£nih modelov ²ibka, kar negativno vpliva na
zmoºnost modela za napovedovanje obna²anja sistema.

Za premagovanje omenjene omejitve se pri£ujo£e delo posluºi uveljavljenega pristopa v
strojnem u£enju - pristopa ansambelskega u£enja. Ansambelski pristop vodi k natan£nim in
odpornim modelom, ki so predvsem uporabljeni pri nalogah napovedovanja. Ansambelski
modeli sestojijo iz kon£nega ²tevila napovednih modelov. Pri£akovati je, da bo zdruºitev
napovedi razli£nih modelov ustvarila bolj²e napovedi kot posamezni procesni modeli.

Predlagana metodologija za u£enje ansamblov procesnih modelov, kar je tudi glavni
prispevek te disertacije, zdruºuje dva tira raziskav. Prvi nadgradi obstoje£e pristope za
u£enje procesnih modelov dinami£nih sistemov, ki so najve£krat uporabljeni v kontekstu
opisnega modeliranja, v smer napovednega modeliranja. Drugi tir raziskav sledi osnovnim
principom ansambelskega u£enja in jih priredi v metodologijo za modeliranje dinami£nih
sistemov. Osredoto£imo se na metodologijo za u£enje homogenih ansamblov procesnih
modelov, ki sestojijo iz modelov, zgrajenih s pomo£jo istega algoritma, iz razli£nih vzorcev
podatkov v u£ni mnoºici in/ali predznanju.

Metodologija vklju£uje algoritme za u£enje ansamblov procesnih modelov z metodami
(1) bagging, tj. u£enje iz naklju£nih vzorcev podatkov, (2) boosting, tj. u£enje iz z napako
uteºenih podatkov, (3) naklju£ni knjiºnji£ni vzorci in (4) kombinacija metode bagging z
u£enjem iz naklju£nih knjiºni£nih vzorcev. Nadalje, metodologija vklju£uje metode za
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simulacijo ansamblov procesnih modelov, ki uporabljajo obi£ajne metode za zdruºevanje
napovedi posameznih pripadnikov ansambla. Predlagana metodologija predstavlja splo²no
in modularno ogrodje, ki omogo£a uporabo ansambelskih metod iz strojnega u£enja v
kontekstu u£enja procesnih modelov.

Opravili smo obseºno eksperimentalno primerjavo, ki je osnovana na novem empir-
i£nem ogrodju za ovrednotenje procesnih modelov dinami£nih sistemov, ki je ravno tako
predlagano v tej disertaciji. To ogrodje je uporabljeno za ocenjevanje napovedne mo£i pro-
cesnih modelov in ansamblov le-teh. Ogrodje za ovrednotenje ravno tako poda usmeritve
za optimalno izbiro izmed predlaganih ansambelskih metod. Ogrodje dodatno omogo£a
tudi raziskovanje v smeri raznovrstnosti posameznih £lanov v ansamblu, kar pripomore k
razumevanju o tem, kako posamezen £lan ansambla vpliva na napovedno mo£ celotnega
ansambla. Za konec smo analizirali ra£unsko u£inkovitost predlaganih metod za u£enje
ansamblov. Omenjene analize se nana²ajo tako na empiri£ne meritve, pridobljene iz eksper-
imentov, kot tudi teoreti£ne izra£une kompleksnosti posameznih gradnikov v predlaganih
ansambelskih metodah.

Predlagano metodologijo smo uporabili in ovrednotili na problemih avtomatskega napoved-
nega modeliranja populacijske dinamike v vodnih ekosistemih. Eksperimentalni rezultati
kaºejo, da ansambli procesnih modelov v splo²nem dajejo signi�kantno ve£jo napovedno
mo£ v primerjavi s posameznimi procesnimi modeli. Predlagane ansambelske metode imajo
med sabo podobno napovedno mo£, analiza ra£unske u£inkovitosti pa pokaºe, da so ansam-
bli nau£eni iz naklju£nih knjiºni£nih vzorcev najbolj u£inkoviti. �as, ki je potreben za
u£enje tak²nega ansambla, je primerljiv s £asom u£enja enega procesnega modela.
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Chapter 1

Introduction

Machine learning is an area in the realm of arti�cial intelligence (McCarthy, Minsky,
Rochester, & Shannon, 1955), which studies algorithms with the ability to learn, i.e.,
algorithms that improve their performance through knowledge gathered from experience
(Langley, 1996; Mitchell, 1997). Applications of machine learning algorithms can now be
found in many di�erent areas. These range from computational tasks in life sciences and
earth sciences to social and behavioral sciences.

As in any algorithm there are two important ingredients necessary for its positive out-
come: an input and an output. In the typical machine learning setting, i.e. inductive
learning (Bratko, 2000), the input in a learning algorithm is (training) data which embod-
ies the experience. The data consists of training examples (also referred to as instances or
measurements) and their properties (also referred to as features or attributes). The prop-
erties can either describe the data or specify the desired output of the algorithm. Based on
this, we can distinguish between descriptive properties and target properties, respectively.

On the other end, the output is de�ned by three components of the learning algorithm
(Domingos, 2012): (1) task, (2) evaluation framework and (3) optimization criteria. The
�rst component speci�es the goal of the algorithm based on the provided data, where the
second estimates its performance on the given task. Note, however, machine learning is an
ill-posed problem. This means that there is no unique solution (model) as an output of a
learning algorithm. Most often, the output consists of many solutions, and the purpose of
the last component is selecting the proper one. Simply put, the output is a model which
estimates the performance of a learning algorithm on a speci�c task.

In the general layout of machine learning tasks we can divide them based on their
purpose and based on available data provided, i.e., output and input. Based on their pur-
pose (output) we can clearly distinct between descriptive and predictive tasks. The former
group includes tasks that aim at learning a model for identifying patterns and obtaining
general descriptions of the training data. In contrast, the latter group is comprised of tasks
the goal of which, is to obtain a model that can predict properties of new instances based
on an experience obtained in the training process.

Machine learning tasks can also be roughly grouped based on the type of available data
(input) provided. Here we can distinguish between supervised and unsupervised learning
tasks. If the data provided at input consists of training examples and both their descriptive
and target properties, supervised learning tasks aim at obtaining a model which is a general
rule associating the input to the desired output. On the other hand, unsupervised learning
involves a class of tasks which tackle the problem of �nding general rules and descriptions
of the provided data where the target properties of the training examples are not provided.

Literature on machine learning (Langley, 1996; Mitchell, 1997; Bishop, 2007) often
aligns the classes of unsupervised and supervised tasks with the classes of descriptive and
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predictive tasks, respectively. However, these two classi�cations are orthogonal (Flach,
2012). There are: (1) descriptive unsupervised learning tasks eg. (descriptive) cluster-
ing (Kaufman & Rousseeuw, 1990), principal component analysis (Jolli�e, 2006) and as-
sociation rule learning (Agrawal, Mannila, Srikant, Toivonenu, & Verkamo, 1996), (2)
descriptive supervised learning tasks eg. subgroup discovery (Lavra£, Kav²ek, Flach, &
Todorovski, 2004) and equation discovery (Langley, Simon, Bradshaw, & Zytkow, 1987;
Bridewell, Langley, Todorovski, & Dºeroski, 2008), (3) predictive unsupervised learning
tasks eg. predictive clustering (Blockeel, Raedt, & Ramon, 1998; Kocev, Vens, Struyf, &
Dºeroski, 2013) and (4) predictive supervised learning tasks eg. classi�cation and regres-
sion (Breiman, Friedman, Stone, & Olshen, 1984).

This thesis addresses the task of predictive supervised learning. In machine learning
there is an ample amount of methods successfully employed for predicting purposes in a
number of real life domains (Breiman et al., 1984; Witten & Frank, 2005). They have
been applied for predicting discrete output values (classi�cation), continuous output val-
ues (regression), even structured outputs as in gene networks, image classi�cation, text
categorization etc. (Bak�r et al., 2007). A small subset of such methods includes decision
and regression trees (Breiman et al., 1984), neural networks (Bishop, 1995), support vector
machines (Cortes & Vapnik, 1995) etc. Naturally, the question here is choosing the most
suitable method. The straightforward approach is choosing a method which produces a
model with a good generalization power. Generalization power or predictive performance
is the ability of the learned model to accurately predict the property of a new (unseen)
instance beyond the data used in the training process. However, as simple as this may
seem, many machine learning methods are prone to over�tting, struggling with obtaining
a suitable predictive model. Over�tting occurs when a method learns a model with a good
performance on the provided training data, subsequently limiting its generalization power.

Machine learning approaches address the problem of over�tting typically as a part of
the optimization criteria component of the learning algorithm. Such approaches include:
cross-validation, regularization and various statistical tests (Kohavi, 1995). Among them,
there is also a long tradition of developing methods for learning multiple models and com-
bining their outputs instead of just learning a single model. These methods are referred to
as ensemble methods or ensembles. Ensembles are a well-accepted formula for improving
the predictive performance of models in machine learning (Dietterich, 2000b). An ensemble
is a set of models that is expected to lead to predictive performance gain over an individ-
ual model, by combining the predictions of the ensemble constituents (Dietterich, 2000a;
Breiman, 2001; Freund & Schapire, 1999; Maclin & Opitz, 1999; Bauer & Kohavi, 1999). It
is important to stress out that ensembles tend to alleviate the over�tting not eliminate it.
There are many theoretical and empirical studies that demonstrate their predictive abil-
ity and superiority over single models on a plethora of predictive tasks (Kuncheva, 2014;
Seni & Elder, 2009; Ban�eld, Hall, Bowyer, & Kegelmeyer, 2007; Levati¢, Ceci, Kocev, &
Dºeroski, 2015).

The work presented in this thesis combines two di�erent lines of research. First, it
follows the basic principles of ensemble learning, and translates them into a methodology
for modeling dynamic systems. Second, it extends the state-of-the-art paradigm of equa-
tion discovery, which is predominately employed in descriptive setting towards predictive
modeling. More speci�cally, we illustrate the utility of learning ensembles of process-based
models for long-term prediction of the behavior of dynamic systems. The general perspec-
tive of the research presented in this thesis is depicted in Figure 1.1.
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Figure 1.1: General perspective of the research presented in this thesis.

1.1 Motivation

Mathematical models of dynamic systems are constructed and employed to provide an
understanding of the nature laws that govern the behavior of the system at hand. More
speci�cally, such models are being utilized to recreate or simulate the behavior of dynamic
systems under various conditions (Ljung, 1999; Strogatz, 1994). There are two main pillars
of every approach to modeling a real dynamic phenomena: (1) structure identi�cation and
(2) parameter estimation. The former, address the task of establishing a suitable structure
(commonly an equation) of the model in terms of de�ning the components that are involved
in the system and how they interact. The latter, deals with approximation of the constant
parameters and the initial values of the variables in the model for the given structure.

In general, there are two main paradigms for modeling dynamic systems. The major
paradigm used when modeling dynamic systems is the approach of theoretical (knowledge-
driven) modeling. Here, a domain expert �rst derives a proper structure of the model based
on an extensive knowledge about the system at hand. Measured data are then used to
estimate the (constant) parameters in the model. The alternative paradigm, i.e. empirical
(data-driven) modeling, uses measured data in a trial-error process to search for such a
combination of model structure/parameters that best �t the measurements.

Equation discovery (Langley et al., 1987), a sub-�eld of machine learning, joins the
previous two paradigms of modeling, by studying methods for learning both model struc-
ture and parameter values from observations (Dºeroski & Todorovski, 1993; Todorovski &
Dºeroski, 2007). These methods simultaneously tackle the tasks of structure identi�cation
and parameter estimation. The most recent approach, referred to as process-based model-
ing, combines heuristic search methods with parameter estimation techniques. While the
search methods explore the space of candidate model structures, the parameter estimation
techniques �nd optimal values of the parameters of each candidate structure and evaluate
its �t against the measured data.

The resulting process-based models provide a high-level explanatory structure and a
low-level mathematical formulation which allows for simulation of the model under various
conditions (Dºeroski & Todorovski, 2002; Bridewell et al., 2008; Todorovski, Bridewell,
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Shiran, & Langley, 2005). The former is a direct result from employing modeling knowl-
edge, formulated in a process-based domain library, which describes the basic types of
components that can occur in the modeled system and additionally provides alternative
modeling recipes for each of them. The latter relates to incorporating ordinary di�er-
ential equations (ODEs). ODEs are a widely accepted formalism for modeling dynamic
systems, which de�ne the rate of (typically temporal) change of the system variables in a
dynamic system. All in all, process-based models bridge and build upon purely empirical
and purely theoretical approaches to modeling, and strive at explaining how and why the
dynamic system behaves under various conditions.

The utility of the process-based modeling approach has been demonstrated in a vari-
ety of modeling tasks addressing population dynamics in lake (Atanasova, Todorovski,
Dºeroski, Remec, et al., 2006; Atanasova, Recknagel, Todorovski, Dºeroski, & Kom-
pare, 2006; �erepnalkoski, Ta²kova, Todorovski, Atanasova, & Dºeroski, 2012; Ta²kova,
�ilc, Atanasova, & Dºeroski, 2012) and marine (Bridewell, Asadi, Langley, & Todor-
ovski, 2005; Bridewell et al., 2008) ecosystems, watershed modeling (�kerjanec, Atanasova,
�erepnalkoski, Dºeroski, & Kompare, 2014), modeling endocytosis (Tanevski, Todorovski,
Kalaidzidis, & Dºeroski, 2015; Ta²kova, Koro²ec, �ilc, Todorovski, & Dºeroski, 2011), gene
regulatory networks, epidemiological dynamics (Tanevski, Todorovski, & Dºeroski, 2016)
and dynamics of biological networks (Dºeroski & Todorovski, 2010). However, these ap-
plications focus primarily on establishing explanatory models of the system at hand. Typ-
ically, the obtained models are simulated and analyzed on the same data used for learning
them, thus their ability to predict the systems' behavior is limited, i.e., their generaliza-
tion error has not even been considered nor evaluated. Moreover, the results of several
preliminary experiments indicate that process-based models in the respective studies have
a tendency to over�t: Their ability to accurately describe the observed behavior of the
modeled system limits their generalization power, subsequently impairing their potential
to accurately predict future system behavior.
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Figure 1.2: Decomposition of the generalization error of (A) a single process-based model
and (B) an ensemble of process-based models.1

Figure 1.2A illustrates this problem by decomposing the generalization error (red
dashed line) between a process-based model (red point) and the ground truth (black point).
In the space of possible structures and parameters, suppose we learn a model that accu-
rately describes the observed behavior of a dynamic system. This model, however, may

1The concept of the illustration is borrowed from Kuncheva (2014) and appropriately adapted for the
purpose of the thesis.
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still be far from the optimal model (gray point) in the same model space (green stroke),
determined by the training data and domain knowledge provided as input. This is re-
ferred to as a variance error. In general, such error usually can occur from the inability
of the learning algorithm (limited by the training data) to converge towards a global opti-
mal solution in terms of best structure-parameters combination. For the task of learning
process-based models, this is even more ampli�ed, given that such models rely on a large
number of parameters and generally are highly unstable (their output can signi�cantly
vary with small variations in the input) (Breiman, 1996a).

However, the potentially optimal model that can be learned may still be far from the
best possible solution (white point) of the modeling task at hand, which in practice is
hard to achieve. This discrepancy is referred to as an estimation bias error, and is an
artifact from the amount of data used in the process of learning a process-based model.
Looking at the bigger picture, there is a discrepancy between the best possible solution
and the truth. This is referred to as model bias error, and is determined by the amount of
modeling knowledge (modeling components) used in the process creating the model space.
Finally, the last part of the generalization error (depicted with crosses) is the irreducible
error. This error, however, is a result of a fundamental limitation of the whole concept of
modeling a real system, which occurs even if (ideally) in�nite amount of data is provided:
In other words, there is no perfect model.

The research presented in this thesis addresses the afore-mentioned limitation of the
process-based modeling paradigm in terms of generalization error by extending its scope
towards learning ensembles of process-based models. More speci�cally, we propose a novel
methodology for learning ensembles of process-based models employed for predictive mod-
eling of dynamic systems. Figure 1.2B illustrates the aim of this thesis. As we stated
earlier, the intuition behind constructing an ensemble is to alleviate the generalization
error by combing the predictions of individual base models (orange points), subsequently
yielding a better predictive performance. These base models, however, should at least be
moderately accurate (at least perform better than random guessing) and diverse (should
err di�erently and independently).

Ensembles of models of dynamic systems, have been previously considered in two di�er-
ent fashions. First, the approach presented by Bridewell et al. (2005) considers ensembles
of process-based models, where the structures of the ensemble constituents are integrated
into a single meta-level model. The ensemble constituents are learned from di�erent ran-
dom training data samples. The single meta-level model is built in such a way that it
includes the most frequent structure fragments (processes) in the base-level models. The
results show that the resulting meta-level model still provides a process-based explanation
of the observed system structure, while being more robust in terms of over-�tting. Note,
however, that the authors estimate the out-of-sample error of the models by taking random
sub-samples of the observed time-series data and removing them from the training data.
Thus, the ability of the meta-level model to generalize outside the time span of the training
data has not been considered nor evaluated.

Second, Aleksovski, Kocijan, and Dºeroski (2015) address the tasks of predictive mod-
eling of discrete non-linear dynamic systems. Here, using external dynamic approach, the
modeling problem is �rst transformed into a non-linear regression approximation problem.
The system then is modeled by learning fuzzy linear model trees and ensembles of fuzzy
linear model trees. The results show that ensembles of fuzzy linear model trees can be
employed for the task of modeling dynamic systems and , more importantly, improve the
predictive performance over the single fuzzy linear trees. Note that, this study focuses on
short-term (one-step-ahead) prediction of discrete-time dynamic systems, where the value
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of a time series in the next time-point is predicted, and then the predicted value is fed
back to the model for predicting the next one.

Finally, in a broader sense, ensemble predictions of dynamic systems are achieved by
combining diverse predictions from an individual model. These predictions are obtained
either by perturbing the initial states of the model or varying (some of) the constant
parameters in the model. A related recent development is the paradigm of supermodeling
(Van den Berge, Selten, Wiegerinck, & Duane, 2011; Mirchev, Duane, Tang, & Kocarev,
2012). A supermodel is comprised from a set of interconnected (coupled) models, which
are integrated simultaneously and exchange information among themselves on a time-step
basis. The supermodels, albeit fairly complex and consisting of typically small number
of constituents (which are provided by a domain expert rather than being learned), have
been successfully employed in the context of climate modeling for addressing the task of
long-term climate projections.

The proposed methodology in this thesis borrows some ideas from well-established en-
semble methods in machine learning, however it distinctively di�ers in several important
aspects. First, it di�ers in the composition of the obtained ensembles. Such ensembles
are comprised from process-based models learned either from di�erent samples of the mea-
sured data, samples of the library of domain knowledge or both. We conjecture that this
will improve the generalization ability of ensembles of process-based models, subsequently
leading to improved predictive performance. Second, it di�ers in the output obtained from
the ensembles of process-based models: While traditional ensembles, applied in the context
of time-series, are typically used for short-term prediction of the state at the next time
point, based on the observed values of the current and previous states � the ensembles of
process-based models can provide long-term predictions over many following time points,
relaying only on the initial values of the state variables.

All things considered, the problem that we propose to investigate in this thesis is:
Can we employ the ensemble methodology from traditional machine learning for modeling
dynamic systems, and more importantly, does it yield an improved predictive performance
over the state-of-the-art process-based modeling methods?

1.2 Hypotheses and Goals

This dissertation will tackle the task of predictive modeling of dynamic systems by learning
ensembles of process-based models. Our hypotheses are formulated as follows:

Hypothesis 1. Traditional machine learning ensemble methods can be adapted to the task
of learning process-based models.

Hypothesis 2. Ensembles of process-based models yield improved predictive performance
compared to a single process-based model.

Hypothesis 3. The diversity between ensemble constituents is highly correlated with the
predictive performance of an ensemble.

In order to properly prove the afore-stated hypotheses, we set a number of more speci�c
goals which address three key aspects of the task of learning ensembles of process-based
models: design, implementation and evaluation. The goals are de�ned as follows:

Goal 1. Design � Design a methodology for simulating ensembles of process-based
models.
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Goal 2. Design � Design a process-based modeling methodology for generating a diverse
set of ensemble constituents.

Goal 3. Design � Develop an evaluation framework for testing the utility of the proposed
approaches to learning ensembles of process-based models.

Goal 4. Implementation � Implement a methodology for constructing and simulating
ensembles of process-based models and an evaluation framework for testing their pre-
dictive performance.

Goal 5. Evaluation � Perform extensive empirical analyses to obtain optimal design
choices for each of the proposed methods for constructing ensembles of process-based
models.

Goal 6. Evaluation � Conduct a thorough and fair empirical evaluation of the predictive
performance of the di�erent proposed ensemble methods.

Goal 7. Evaluation � Measure the in�uence of the intra-ensemble diversity on the
predictive performance of the ensemble.

The speci�c details of the goals outlined above are summarized in the following
subsections.

Design a methodology for simulating ensembles of process-based models

When designing a method for learning an ensemble of process-based models, or ensembles
in general, there are two important questions that should be addressed: (1) how the output
of the ensemble will be generated and (2) how the individual ensemble constituents will
be constructed. The �rst milestone when constructing ensembles is choosing the most
appropriate technique for combining predictive models. There are two general approaches
for generating the output of the ensemble: model combination (or fusion) and model
selection (Dºeroski, Panov, & �enko, 2009). In the latter approach, each base model is �rst
evaluated and the prediction of the best performing one is used as the overall ensemble
prediction. The ensembles combined with this approach are interpretable and usually
computationally e�cient for learning, however their predictive performance is limited by
the performance of the selected model.

In contrast, the former and more sophisticated approach uses di�erent combining
schemes for aggregating the predictions of all ensemble constituents into an ensemble pre-
diction. Based on how these combining schemes are employed for generating the ensemble
output, we can further distinguish between dynamic and �xed combining schemes. The
former includes learning the scheme of how the ensemble constituents will be aggregated
(Wolpert, 1992). The latter, �xed (a posteriori) combining scheme, relates to �rst learning
the base models, and then employing some combination rule for aggregating the individual
predictions. For the task of predicting numeric values, the most widely (and simplest)
�xed scheme used is averaging: The mean value of every base-model prediction represents
the overall ensemble output. Moreover, a weighted variant can be used, where the assigned
weights correspond to the performance (MSE, RMSE, ReRMSE, model con�dence) of each
of the base models (Drucker, 1997).

In this thesis, for simulating an ensemble of process-models, we will employ standard
�xed combination approaches used in machine learning for constructing ensembles. More
speci�cally, when designing the simulation methodology we will take note of the similarity
between the task of process-based modeling and time-series regression and focus on ap-
proaches such as: averaging, median and their weighted variants. However, in contrast to
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the task of obtaining an output from a regression model, where the resulting prediction
is a single point for a given input, the task of predicting with process-based models is far
more challenging. The simulation of a process-based model takes a minimal input consist-
ing of the initial values of the state variables and the complete trajectories of the forcing
variables. As output, it produces complete (long-term) trajectories of the state variables.
In a predictive scenario, this can often lead to divergent trajectories and disastrous predic-
tive misperformance. To alleviate this, we will also aim at investigating ensemble pruning
techniques, which will potentially improve the robustness of the ensemble, subsequently
leading to more stable and accurate predictions.

Design a process-based modeling methodology for generating a diverse

set of ensemble constituents

The second milestone in constructing ensembles is designing the algorithm(s) for learning
the ensemble constituents. Based on how the constituents are learned, the ensembles can
be heterogeneous or homogeneous. In heterogeneous ensembles, the candidate base models
are learned using di�erent learning algorithms (Wolpert, 1992). In contrast, homogeneous
ensembles consider base models that are learned with the same learning algorithm, but from
di�erent training samples generated by manipulating the training data. These manipula-
tions of the training data include (1) sampling of data instances (as in bagging (Breiman,
1996a) and boosting (Schapire & Freund, 2012)), (2) sampling of data features/attributes
(as in random subspaces (Ho, 1998)) or (3) both (as in random forests (Breiman, 2001)
and bagging of random subspaces (Panov & Dºeroski, 2007)).

Given that in this thesis we rely on one algorithm for learning process-based models,
the aim is investigating and designing methods for learning homogeneous ensembles of
process-based models. Bagging (bootstrap aggregation) refers to the approach, developed
by Breiman (1996a), for constructing ensembles via bootstrap sampling with aggregation.
This is one of the �rst and simplest ensemble learning methods, where data instances are
uniformly sampled with replacements to generate random samples (bootstrap replicates)
of the training data, consequently used for learning the ensemble constituents from these
replicates.

Boosting refers to a general approach for obtaining an accurate prediction by combining
several less accurate ones learned on di�erent distributions of the training data. The Ad-
aBoost algorithm, proposed by Freund and Schapire (1997), is one of the most employed
boosting approaches. AdaBoost works iteratively; it uses di�erent distributions of the
training data for learning the base models at each iteration. Depending on the outcome of
the past iteration this method decreases (for correct classi�cation)/increases (for incorrect
classi�cation) the weights of every instance, thus changing the distribution for the subse-
quent iteration of training the model. In this way, the individual weak predictors focus
on di�erent instances, and their combination is more accurate. In a similar fashion, the
implementation of Drucker (1997) successfully tackles the problem of combining regressors
using AdaBoost. Several studies show that homogeneous ensembles, such as bagging and
boosting, perform well for regression problems (Bauer & Kohavi, 1999; Breiman et al.,
1984; Freund & Schapire, 1999; Dietterich, 2000a). However, these methods, that sample
data instances, can often be ine�ective when the training data is relatively homogeneous.
Moreover, when the dimensionality of the data (the feature space) is very high, learning
such ensembles can be very ine�ective and computationally complex.

The random subspace method (RSM) is a homogeneous ensemble method developed by
Ho (1998), which constructs di�erent variants of the training data by sampling the feature
space. Each ensemble constituent is learned on all data instances and a subspace of the
original feature space. The RSM has been reported to perform well for problems where
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the data dimensionality is very high or when there is a certain redundancy in the feature
space (Ho, 2000). Finally, a study performed by Panov and Dºeroski (2007) indicates
that combining two types of homogeneous ensembles, i.e. bagging and RSM, can lead
to ensembles with even better predictive performance compared to each of the methods
separately, while still being very e�cient to construct.

All things considered, in this thesis, we propose four methods for learning ensembles of
process-based models. The �rst two methods will focus on learning ensembles by sampling
the data instances. More speci�cally, we intend to develop methods which will follow
the key principles of bagging and boosting (more speci�cally Adaboost) in the context of
time-series regression. The third method will consider learning ensembles of process-based
models by sampling data features. In this context, we can think of the feature space as
being de�ned by the components instantiated from the process templates. This space of
components is determined by the number of process alternatives de�ned in the library of
domain knowledge. Therefore, the task of generating random samples of the feature space
from the traditional RSM, has as an analog to the task of generating random subsamples of
the library of domain knowledge. We refer to this method as the random library subsamples
(RLS) method. Finally, given the nature of the ensembles of process-based models learned
with random library subsamples and bagging (i.e., sampling the feature space and sampling
the data instances), we plan to develop a method which combines them, thus constructs
ensembles from di�erent samples of the data and the library. We refer to this method as
bagging of random library subsamples (BRLS).

Develop an evaluation framework for testing the utility of the proposed

approaches to learning ensembles of process-based models

To test the validity of our ensemble methodology, we intend to perform extensive empirical
analyses of the implemented methods on the task of modeling and predicting population
dynamics in aquatic ecosystems. The experiment evaluation will involve a series of tasks
of modeling dynamics in real-world ecosystems. It includes three real-world lakes: Lake
Bled in Slovenia, Lake Kasumigaura in Japan and Lake Zurich in Switzerland. For all the
real-world ecosystems we intend to use the same structure of population dynamics model.
It includes a single equation (ODE) for a system variable representing the phytoplankton
biomass, and several exogenous variables that represent other populations in the ecosystems
(zooplankton), inorganic nutrients and environmental in�uences.

The aim of such an evaluation framework is two-fold. First, it will allow us to identify
the optimal design properties of the di�erent ensemble methods we propose in this thesis.
Second, it will provide us a thorough and fair evaluation of the predictive performance
of the proposed methods. The second aspect of such an evaluation framework directly
relates to addressing the �rst two hypotheses proposed in this thesis. More speci�cally,
besides comparing every proposed ensemble method to a single model in terms of long-term
predictive performance, we also seek for the most appropriate ensemble method applied
in the context of process-based modeling. Finally, to tackle the last proposed hypothesis,
we will investigate whether the diversity among the individual ensemble constituents is
related to the predictive performance of the ensemble.

Implement a methodology for constructing and simulating ensembles of

process-based models and an evaluation framework for testing their

predictive performance

The state-of-the-art implementation of the process-based modeling paradigm is the Process-
Based Modeling Tool (ProBMoT) (�erepnalkoski, 2013), a software platform for construc-
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tion, parameter estimation, and simulation of process-based models. ProBMoT follows the
process-based modeling principles in terms of addressing the two main tasks of modeling
dynamic systems2: (1) structure identi�cation and (2) parameter estimation. It employs
domain-speci�c modeling knowledge represented in a library and introduces incomplete
conceptual models as modeling assumptions, in order to constrain the space of model al-
ternatives in terms of model structures and parameter constraints. Using the library of
domain knowledge and modeling assumptions, ProBMoT �rst enumerates all plausible
model structures, subsequently estimating the parameters of each of them using measured
data of the modeled system. To this end, ProBMoT implements the state-of-the-art global
optimization methods for parameter estimation and allows for the use of a variety of dif-
ferent objective functions. The output consists of a list of complete process-based models,
ranked according to their performance measured on the training data.

In this thesis, we will extend the ProBMoT towards constructing, simulating and eval-
uating ensembles of process-based models. These extensions directly relate to the design
goals outlined previously. First, in terms of a methodology for simulating ensembles of
process-based models, the ProBMoT extensions include implementation of di�erent tech-
niques for combining simulations of multiple process-based models. Given that a simulation
of process-based model consists of numeric values, the techniques we will focus on include:
average, median, weighted average and weighted median. The numeric-valued predictions
of the constituent models will be combined per time-point, for each time-point separately.
To account for the divergent trajectories that may occur when simulating the individual
base models, we intend to implement a knowledge-driven pruning technique that takes into
account the constraints provided in the library of domain-knowledge.

Second, the implementation of the proposed four di�erent ensemble methods includes
extending ProBMoT in two directions, i.e. extending the methods that tackle structure
identi�cation and parameter estimation. More speci�cally, the method for bagging process-
based models includes implementing new objective function (Weighted Root Mean Square
Error) which will be able to handle learning di�erent models from di�erent (randomly
generated) bootstrap replicates of the training data. In the case of boosting of process-based
models, we will use the same objective function, however in a slightly di�erent fashion.
Instead of learning the ensemble constituents from random samples with replacements
of the training data, here each model will be learned on a sample of the training data
generated based on the performance of the preceding model in the sequence. This involves
implementing a con�dence function, which will be applied to every ensemble constituent in
the ensemble. Moreover, we will use this same function when combining the base models
using the weighted combining schemes.

Implementation of the method for learning ensembles by sampling the library of domain-
knowledge, i.e., the random library subsamples (RLS) method, involves extending the ProB-
MoT's methods that address the structure identi�cation task. Earlier we mentioned that
the task of generating random samples of the feature space has as an analog to the task of
sampling the space of model components determined by the number of process alternatives.
Therefore we intend to implement a sampling algorithm which will generate libraries with
di�erent sizes (i.e, libraries which can lead to a di�erent number of learned models) that
will be used in the process of learning the individual ensemble constituents. For the last
method, i.e., bagging of random library subsamples (BRLS), we intend to combine all the
previous implementations, and construct ensembles from di�erent samples of the training
data and the library of domain knowledge.

Finally, considering the empirical evaluation framework of the proposed ensemble method-
ology, we plan two important extensions to ProBMoT. In the current implementation,

2A more detailed overview of the process-based modeling paradigm is given in Section 2.1 of Chapter 2
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ProBMoT supports only one (the same) dataset for learning and evaluating the learned
process-based models. The �rst extension includes adding a multi-dataset support to
ProBMoT, which will give us the ability to train,validate and test the ensembles on di�er-
ent datasets, thus thoroughly evaluate their performance. The second extension involves
employing the performance measures. To this end, we plan to observe and compare the
predictive performance in terms of relative root mean squared error (ReRMSE) (Breiman
et al., 1984), of the ensembles learned using di�erent methods. To properly assess the
signi�cance of the di�erences between these performances, we will follow a standard statis-
tical procedure recommended by Dem²ar (Dem²ar, 2006). More speci�cally, we employ the
corrected (Iman & Davenport, 1980) Friedman test (M. Friedman, 1940), followed by two
post-hoc tests: the Nemenyi test (Nemenyi, 1963) and the Bonferroni-Dunn test (Dunn,
1961).

Perform extensive empirical analyses to obtain optimal design choices for

each of the proposed methods for constructing ensembles of process-based

models

In order to obtain the best performance of the proposed ensemble methods, we will perform
extensive analyses in order to seek for the their optimal design properties. More speci�cally,
we will �rst investigate what is the best approach to selecting the ensemble constituents.
This includes testing whether it is better to �ll the ensemble constituent set with process-
based models with good performance measured on the training dataset or on a separate
validation set. Next we will analyze how many constituents are su�cient for optimal
performance. Finally, we intend to evaluate which of the proposed combination schemes
yields better predictive performance.

Conduct a thorough and fair empirical evaluation of the predictive

performance of the di�erent proposed ensemble methods

The main contribution of this thesis is the novel methodology for learning ensembles of
process-based models. In this context, we aim at fair and thorough empirical evaluation
of the proposed methodology which will adequately address the �rst two hypotheses we
conjectured previously. To this end, our �rst objective will be validating the output of the
proposed ensemble methods in terms of their reasonability when employed in the context of
modeling dynamic systems. This will include visual inspection of the obtained trajectories
addressing the question of whether they resemble the measured behavior in the modeled
system.

The second objective will consider comparison of the long-term predictive performance
obtained by the proposed ensembles to the state-of-the art single process-based models.
More speci�cally, our aim here is two-fold. On one hand, we address the question of whether
this ensemble methodology, in general, can yield improved predictive performance when
compared to a single model. In order to properly address this, the empirical comparison
will include comparing the performance of every proposed method for learning ensembles
of PBMs to a single process-based model on predictive modeling tasks in real-world aquatic
ecodomains.

On the other hand, we aim at identifying the most appropriate process-based ensemble
method for the task of modeling dynamic systems. To this end, we will consider two crite-
ria. The �rst criterion will consider the predictive performance of each ensemble method.
The second criterion will address the computational complexity of di�erent methods for
constructing ensembles of PBMs. Here, besides measuring the time needed for learning
an ensemble, we will also investigate the methods in terms of architecture (whether they
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can be optimized or parallelized) and applicability (whether they are �exible and general
enough for tackling modeling tasks in di�erent domains).

Measure the in�uence of the intra-ensemble diversity on the predictive

performance of the ensemble

In machine learning there is no accepted theory which formalizes how ensembles should
be constructed in order to constantly yield improved predictive performance. The general
consensus (Kuncheva, 2014; Ho, 2000; Hansen & Salamon, 1990; Hastie & Tibshirani,
1990), though, is that an ensemble should be constructed with accurate and diverse base
models. In terms of accuracy, the base models should at least perform better than random
guessing.

In terms of diversity, the base models should be independent in making prediction, i.e.,
they should err di�erently when new (unseen) test data is presented to them. While, intu-
itively these two requirements are su�cient for a good-performing ensemble, the �ndings of
Kuncheva and Whitaker (2003) show that there is not always a strong correlation between
them and the question of accuracy�diversity trade-o� is more problem/task dependent
than general. In this context, we intend to investigate whether the diversity between en-
semble constituents in�uences the overall performance of process-based ensemble models,
thus addressing our last hypothesis.

1.3 Contributions

This thesis contributes to several important aspects of both classical ensemble learning,
and more importantly, to the process-based modeling paradigm applied to to the task of
predictive modeling of real-world dynamic systems. The novel methodology presented in
this thesis is partially published in several journal publications (Simidjievski, Todorovski,
& Dºeroski, 2015a, 2015b, 2016). The complete list of papers related to this thesis is given
in the chapter titled "Bibliography". The main contributions of the work presented in this
thesis are summarized as follows:

Contribution 1 A novel methodology for learning ensembles of process-based models.

In this thesis we address the task of learning ensembles of process-based models by design-
ing, implementing and evaluating the appropriate methodology. The developed method-
ology is general and modular which allows for adapting di�erent ensemble methods to
the particular context of learning process-based models. This methodology is the main
contribution of this thesis, since it extends the scope of current process-based modeling
approaches to the task of learning ensembles of process-based models. To this end, the
proposed ensemble methodology consists of four di�erent algorithms for learning homo-
geneous ensembles of process-based models, as well as an algorithm for simulating them.

This contribution is also important in the wider context of the ensemble learning paradigm,
applied in the context of time-series predictive tasks. While such ensembles have a nar-
row focus on short-term prediction tasks, where the value of the time series at the next
time point is predicted, ensembles of process-based models provide accurate long-term
predictions over many future time points.

Contribution 2 A general evaluation framework for evaluating the predictive performance
of the ensembles of process-based models.

The second contribution is the design and execution of the extensive empirical evalua-
tion for estimating the predictive performance of the proposed ensemble methodology.
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Moreover, it enables the identi�cation of the optimal design properties of the di�erent en-
semble methods proposed in this thesis. To this end, the experimental evaluation involves
a series of predictive tasks of modeling dynamics in real-world ecosystems, which allows
for thorough and fair evaluation of the predictive performance of the proposed methods.

Note, that this contribution is also important in the wider context of the process-based
modeling paradigm. While the state-of-the-art approaches focus mainly on measuring
the descriptive performance of the obtained process-based models or perform a cross-
validation, here we propose a standardized procedure for measuring performance of models
when applied to tasks of modeling future behaviors, i.e., beyond the time-period captured
in training data. Namely, we consider this as a tractable framework for formal analysis
of methods developed and applied within the process-based modeling paradigm.

Contribution 3 Improvement of the long-term predictive performance over the state-of-
the-art approaches to process-based modeling of dynamic systems.

In this context, we compare the predictive performance of di�erent ensembles of process-
based models to the performance of a single process-based model. We conduct the empir-
ical evaluation on the task of modeling population dynamics in aquatic ecosystems. The
case studies considered concern modeling phytoplankton growth, a complex non-linear
dynamic process, in three di�erent real-life aquatic ecosystem domains. Based on the
performed empirical evaluation, we also identi�ed the main design decisions that need to
be made when learning ensembles of process-based models. In general, all proposed en-
semble methods, following the respective designs, improve the predictive performance of
single process-based models. More importantly, when learning ensembles of process-based
models by bagging and random library subsamples methods, this performance improve-
ment is statistically signi�cant.

This contribution is also important in the wider context of ensembles for time-series
forecasting. While forecasting ensembles have a narrow focus on short-term prediction
tasks, where the value of the time series at the next time point is predicted, ensembles
of process-based models provide accurate long-term predictions over many future time
points.

Contribution 4 Case studies of predictive modeling of population dynamics in aquatic
ecosystems.

Finally, the thesis contributes to the realm of ecological modeling. The results of the
performed experimental evaluation con�rm our �rst two hypotheses that ensembles of
process-based models, in general, provide logically plausible and, even more, accurate
predictions of concentrations of species in an aquatic ecosystems than a single process-
based model. This is a signi�cant improvement in predictive performance over the state-
of-the-art models of population dynamics, which, while focusing on providing an accurate
explanation of the behavior of the observed system, struggle to achieve a satisfactory per-
formance at predicting population dynamics over long periods (Atanasova, Todorovski,
Dºeroski, Remec, et al., 2006; Atanasova, Recknagel, et al., 2006). Note, however, while
the proposed methodology has been only used in the limited context in the domain of eco-
logical modeling, it is easily applicable and extendible towards other application domains
(such as other aquatic domains, systems neuroscience and systems biology).
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1.4 Organization

In order to improve the readability, this thesis is organized in four parts : Introduction &
Background ; Methodology & Experimental Design; Results and Conclusion. More speci�-
cally, the manuscript is structured as follows:

Part I Introduction & Background

This chapter, Chapter 1, introduces the research questions and the topics of interests
presented in this thesis. It also provides the motivation for performing the presented
research and sets it in the context of formulated hypotheses and speci�c set of goals for
addressing them. Finally, it summarizes the main original scienti�c contributions.

Chapter 2 presents a relevant background to the work in this thesis. In the �rst part of
the chapter we �rst give an overview of the process-based modeling paradigm in terms of
related work, and then describe the task of learning process-based models. In the second
part, we mainly focus on the ensemble learning paradigm. We �rst give an outline of the
related work in this �eld and de�ne the key ingredients for learning ensemble models in
general.

Part II Methodology & Experimental Design

Chapter 3 gives a detailed description of the developed methods for learning and simulat-
ing ensembles of process-based models, which are the main contribution of this thesis. We
�rst investigate the algorithm for simulating ensembles of process-based models. Next,
we provide the necessary details for the four ensemble methods that combine process-
based models in the constituent set. Finally, we analyze the computational complexity
for learning ensembles with the proposed methods.

In Chapter 4, we present the experimental setup of the empirical framework for evalu-
ating the developed ensemble methods on �ve tasks of modeling population dynamics in
aquatic ecosystems. More speci�cally, we test the utility of ensembles of process-based
models in the context of modeling three real-life ecosystems: Lake Bled in Slovenia, Lake
Kasumigaura in Japan, and Lake Zurich in Switzerland. Additionally, we describe the
necessary settings of the algorithms employed and give an overview of the performance
metrics and statistical test used for assessing the performance of the ensembles.

Part III Results

In this part we present the results of the empirical analyses of the methodology for learning
ensembles of process-based models, which serve both to �nd the optimal design choices
and to illustrate the utility of the di�erent algorithms for learning ensembles of process-
based models. Chapter 5 presents the results of the empirical evaluation of ensembles
of process-based models learned by sampling data instances. Next, Chapter 6 depicts
the results of the analyses of ensembles learned with random sampling of the library of
domain knowledge. The results of the evaluation of the method for learning ensembles
with bagging of random library subsamples are presented in Chapter 7. Finally, the
�ndings about the in�uence of intra-ensemble diversity on the predictive performance of
the ensembles of process-based models are also presented in Chapter 7.

Note that some of the results in this thesis were already published in peer-reviewed jour-
nals, hence we present them as they appeared in the respective journal.
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Part IV Conclusions

Part IV consists of a single Chapter 8 that concludes the thesis. It presents an overall
summary of the thesis, summarizes the �ndings of the experiments and discusses them
in the context of related research. Moreover, it lists the original contributions and gives
directions for further work.
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Chapter 2

Background

The research presented in this thesis lies in the intersection between two well established
paradigms of machine learning, i.e. process-based modeling and ensemble learning. In
this chapter we give a brief synopsis of both of these paradigms, which presents a relevant
background to the work in this thesis. In the �rst part of this chapter, we �rst give an
overview of the process-based modeling paradigm in terms of related work, then describe
the task of learning process-based models. In the second part, we mainly focus on the
ensemble learning paradigm. We �rst give an outline of the related work in this �eld and
de�ne the key ingredients for learning ensemble models in general.

Note that the research related to both process-based modeling and (especially) ensemble
learning is extensive and present in a plethora of di�erent scienti�c domains. It is beyond
the scope of this thesis to give a complete and extensive overview on all related work,
therefore we focus here on the most necessary details of both paradigms that are the basis
of the work presented in this thesis.

2.1 Process-Based Modeling

Mathematical modeling is a widely used formalism in science and engineering employed for
representation and reasoning about the complex reality. Scientists and engineers construct
complex mathematical models with the purpose to study, control or predict the behavior of
real-world systems under various conditions. In turn, they perform a variety of numerical
and theoretical analyses to these models, aiming to reveal important insights into the
system being observed and its domain in general. Constructing mathematical models
however, is a nontrivial and demanding task, which involves an extensive expert knowledge
and empirical observations (measurements) of the system at hand.

2.1.1 Modeling dynamic systems � concepts

In essence, mathematical models are complex rules which provide mapping of the in-
puts/signals, derived from knowledge and measurements of the system, into outputs/feedbacks
which quantitatively represent the resulting (desired) behavior of the system. Formally,
these complex rules are represented as a set of equations which are comprised of variables
(the internal state and the input of the system) and the constants/parameters related to
the components of the modeled system.

In the process of constructing a mathematical model of a real-world system, the �rst
milestone is determining the underlying modeling formalism. The formalism, however, can
vary based on the nature of the system and how the system is being modeled. At top-
level we can distinguish between static models and dynamic models. The former class, also
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referred to as steady-state models, assumes that all variables in the system are constant.
In contrast, dynamic models are employed for representing continuously evolving dynamic
systems. This modeling framework can be further re�ned based on the amount of states
the system can change into. Here we can distinguish between discrete and continuous
models. Discrete models are comprised of di�erence equation, employed for modeling
systems with �nite (countable) number of states, as opposed to continuous models which
comprise di�erential equations and focus on modeling continuous changes of the system at
hand.

Ordinary Di�erential Equations (ODEs) are one of the most widely used mathematical
formalism for modeling continuous dynamic systems. Here a model is represented as a set
of di�erential functions, each of them consisting of one state variables and its derivatives.
ODEs, however, are used in the limited context of modeling continuously evolving dynamic
systems over one dimension (typically temporal). Partially Di�erential Equations (PDEs),
extend this scope to modeling changes of a continuous dynamic system over potentially
in�nite dimensions (typically two � spacial and temporal).

Note that, both modeling formalisms of ODEs and PDEs are purely deterministic,
i.e. such models always produce an exact output of the behavior of the system uniquely
determined by the initial conditions of the model. In reality however, the behavior of many
systems is uncertain. These systems are modeled with stochastic models, which employ
either probability density functions or stochastic di�erential equations to account for the
uncertainty of the modeled behavior.

In this thesis, our aim is modeling continuous dynamic systems. More speci�cally,
we focus on constructing deterministic dynamic models which change over time, thus the
modeling formalism employed is ODEs. In this context, we can formalize a temporal change
of a set of system variables X (also referred to as endogenous variables), as a function of
its derivatives x and a set of forcing variables E (also referred to as exogenous variables).
The exogenous variables are input/independents variables which drive the dynamics of the
system, whereas the endogenous variables are dependent and formalize the behavior of the
system being modeled. Typically, an ODE model of dynamic system has the form:

dX

dt
= F (X(t), E(t), I, P ),

where
dX

dt
denotes time derivatives of the endogenous variables X over time t. In the

function F , that denotes the structure of the ODE model, E represents the exogenous
variables, I denotes a set of initial values of the exogenous variables (the values of the
variables X in time t0) and P represents the set of constant parameters of the model.
Such a structure of ODEs with proper parameters, given initial values of the endogenous
variables and the exogenous variables, can be employed for long-term simulation of the
dynamic system's behavior, also known as initial-value problem.

Simulation of ODEs is an integration problem which relies on numerical approximation
methods for nonlinear sti� (that consist of variables with both rapid and slow dynamics)
ODEs. This however is a non-trivial and very time consuming task. There are several
approaches which tackle numerical integration such as teacher-forcing simulation (Williams
& Zipser, 1989) and full simulation (Gershenfeld, 1999). Full simulation, employed in this
thesis, refers to a standard approach for solving numerical integration problems using only
the initial state and input variables of the system. The derivatives of the state variables in
every time point are approximated using changes in one (Euler or Runge-Kuta methods)
or several (Adams-Moulton methods) of the previous time points. An example of full
simulation, performed over a period of approximately one year, is presented in Figure 2.3
in Section 2.1.4.
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Once a modeling framework has been determined, the next step in establishing an ac-
ceptable mathematical model is the procedure of model construction. Procedurally, model
construction relates to two tasks of: (1) inferring the proper structure of equations �
structure identi�cation task and (2) determining acceptable values of parameters in the
equations � parameter estimation task. The procedure of model construction, however, is
typically an ill-posed problem and thus is often performed in conjunction with model vali-
dation. Model validation is the procedure of assessing the performance of the model. The
procedures of model construction and model validation both relay on the measured data
and/or the domain knowledge provided at input. While the model construction procedure
uses this input to properly determine the structure and approximate the parameters of the
model, the model validation procedure evaluates the goodness of the model both how it
quantitatively matches the measured data and how it qualitatively resembles the provided
knowledge.

2.1.2 Automated modeling of dynamic systems

In traditional system modeling, both model construction and model validation are per-
formed by a (human) domain expert. However, there are a variety of more sophisticated
methods, developed in di�erent research areas, that employ automated approaches for es-
tablishing models of dynamic systems from knowledge and measured data. These methods
mostly di�er in the amount of knowledge and data used in the process of model con-
struction, i.e. structure identi�cation and parameter estimation. Based on the amount
(and type) of knowledge used in generating models of dynamic systems, we can lay out a
spectrum of automated modeling methods. On one end of this spectrum, we have purely
(1) empirical (also referred to as data-driven or statistical) modeling methods which use
only measurements in the process of establishing a model. On the other end, we have (2)
theoretical (also referred to as knowledge-driven or mechanistic) modeling methods which
aim at constructing understandable models using domain knowledge.

Considering data-driven approaches to modeling dynamic systems, research in the area
of system identi�cation (Ljung, 1999) mostly focuses on developing purely empirical meth-
ods for solving the task of parameter estimation. These methods rely on a data-driven
trial-and-error cycle of trying out alternative structures, for each of them performing pa-
rameter estimation which relies on the model �t against measured data for the provided
model structure. These structures typically belong to a well-de�ned class of models, such
as linear regression, neural networks, fuzzy models and trees.

In the context of mathematical modeling of linear dynamic systems, typical system
identi�cation approaches relate to time-series regression methods such as linear regression,
autoregressive-integrated-moving-average (ARIMA) modeling (Box, Jenkins, & Reinsel,
1994) or �nite impulse response (FIR) system modeling. On the other hand, for modeling
non-linear dynamics there are two approaches. The former considers techniques of lineariz-
ing the modeling problem before tackling it with standard techniques for modeling linear
dynamic system. The latter, i.e. non-linear system identi�cation (Nedellec, Rouveirol,
Ade, Bergadano, & Tausend, 1996), includes more sophisticated techniques such as neural
networks, fuzzy models and fuzzy linear model trees (Aleksovski et al., 2015). Note that
the area of system identi�cation also extends towards incorporating knowledge into the
process of constructing models, where the structure identi�cation problem is solved either
by a human expert or provided at input based on a minimal a priori knowledge about
the processes involved in the system. Such an approach is employed by Barzel, Liu, and
Barabási (2015), where the authors reconstruct minimal models of microscopic dynamics in
complex dynamic networks by employing background knowledge, subsequently estimating
the constant parameters using empirical data.
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Within the area of evolutionary computing, the approach of genetic programming
(Koza, 1992, 1994) has been successfully applied to the task of identifying non-linear alge-
braic structures of dynamic systems from observed data (Gray, Murray-Smith, Li, Shar-
man, & Weinbrenner, 1998). Schmidt and Lipson (2009) use a similar approach to discover
physical laws from measured data without employing background knowledge, where the
task of structure identi�cation relates to symbolic regression which relies on combining
di�erent segments of mathematical functions and operators using genetic programming.
In a similar context, Schmidt et al. (2011) employ symbolic regression based on genetic
programming for automated construction of metabolic networks. These methods su�er
the same shortcomings as any data-driven approach to modeling, i.e., they are limited by
the amount of knowledge provided at input. Given that the model validation is performed
quantitatively, the inferred models can often be implausible. To address this limitation,
Daniels and Nemenman (2015) induce phenomenological models by employing Bayesian In-
formation Criterion for selecting a models from a hierarchy of models that captures typical
behavior of the modeled system.

On the other end of the spectrum, within the domain of arti�cial intelligence, the area
of qualitative reasoning (QR) (Kuipers, 1994) addresses the task of establishing qualitative
representations of dynamic systems and reasoning about them. Qualitative Process Theory
(QPT) formulates a framework for constructing qualitative models (Forbus, 1984), where
a model relates to a physical process in the system at hand. Such models are speci�ed by
the components and parameters in the system which interact with the process and inter-
nal/external activities that a�ect the process. This framework is further extended in the
automated approach of compositional modeling (Falkenhainer & Forbus, 1991) which relies
on formalizing the conceptual knowledge of the system into libraries of model fragments
that specify the system structure, its states and state transitions, causality and behav-
ior. In turn, compositional modeling methods combine these modeling fragments into a
qualitative model which most adequately resembles the system at hand.

In context of mathematical modeling, the QPC (Farquhar, 1993) automated mod-
eling framework follows the compositional modeling paradigm and additionally employs
Qualitative Di�erential Equations (QDEs), an abstract representation of ODEs used as
mathematical qualitative modeling formalism, which can be simulated using the QSIM
simulator (Kuipers, 1994). Another notable method, in this class of modeling approaches,
is the PRET reasoning system (Bradley, Easley, & Stolle, 2001) which tackles the task of
automated modeling of dynamic systems by incorporating a two-level structure of mod-
eling knowledge. PRET uses the �rst level for inducing the model structures from the
observed behavior, subsequently employing the second level of knowledge based on ODEs,
which constraint the space of plausible model candidates. Recently, the Garp3 (Bredeweg,
Linnebank, Bouwer, & Liem, 2009) o�ers a graphical interface for generating and simulat-
ing qualitative models represented as graphs, useful in situations when measured data is
not available.

Di�erent approaches to modeling, however, have direct in�uence on the resulting model.
Models obtained with the data-driven approaches are often purely quantitative and consid-
ered as black-box models: While they are being easily constructible, require less recourses
and are very accurate at predicting the systems' behavior, they do not necessarily reveal
qualitative information about the interactions in the system in general. On the other hand,
the knowledge-driven models have qualitative properties, thus are considered as white-box,
i.e., they are comprehensible enough and allow for better understanding of the system's
structure and performance. However, their construction demands an extensive knowledge
about the system at hand and is very time-demanding especially for modeling complex
dynamic systems.
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Equation discovery (Langley et al., 1987), an area within machine learning, joins the
two ends of the modeling spectra by studying methods for learning both model structure
and parameter values from knowledge and observations (Dºeroski & Todorovski, 1993;
Todorovski & Dºeroski, 2007). Early approaches to equation discovery strongly relate to
system identi�cation methods, however di�er at a very important aspect. Most system
identi�cation methods emphasize the task of parameter estimation and circumvent the
task of structure identi�cation when modeling a real system. Conversely, equation dis-
covery methods besides tackling the task of parameter estimation, they strongly focus on
identifying the mechanistic structure of the modeled system from observations. In the de-
velopment of equation discovery methods through the years, the focus has shifted towards
incorporating knowledge into the process of establishing a model. In the next section, we
will review the development of the equation discovery paradigm from the �rst proposed
approach for equation rediscovery till the state-of-the art process-based modeling paradigm
employed in this thesis.

2.1.3 From equation rediscovery to process-based modeling

The early approaches to equation discovery mainly focused on rediscovering scienti�c
laws of physical systems from observations. The results of preliminary experiments have
indicated that many complex processes, previously described in the literature, can be
(re)discovered/reconstructed by employing machine learning algorithms. The pioneering
method in the area of equation discovery, BACON (Langley et al., 1987), incorporates
a set of data-driven heuristics for discovering patterns (trends) in the measured data,
subsequently formulating hypotheses about them. It starts by exhaustively generating hy-
potheses involving every two variables in the system, subsequently estimating parameters
of each of these interactions (much like in system identi�cation). The several successful
applications of this method (Langley et al., 1987) set in motion the research in machine
learning for discovering quantitative/qualitative laws of real-world systems. Modeling of
real-world systems, however, requires utilizing background knowledge in the process of
modeling. To this end, equation discovery methods incorporate background knowledge in
the learning process (Lavra£ & Dºeroski, 1994) as an inductive bias (Nedellec et al., 1996).

Inductive bias refers to any set of assumptions used by the learning algorithm for
obtaining a (general enough) output from a speci�c input. Inductive machine learning
algorithms allow for di�erent types of inductive bias such as: language bias (constraints
of the hypotheses space), search bias (de�ning what part of the hypotheses space is being
searched) and validation bias (de�ning stopping criteria). The majority of the developed
equation discovery methods incorporate language bias in the learning process, which is
used to constraint the space of plausible candidate modeling components that can be com-
bined. Here additionally we can distinguish between di�erent equation discovery methods
based on how the language bias is speci�ed. This includes methods that employ: non-
declarative (�xed space of modeling components, determined by parameters speci�ed at
input), parametrized (�xed space of modeling components, determined by parameters spec-
i�ed by the user), or declarative (user customized space of modeling components based on
background knowledge) language bias.

E* (Scha�er, 1993) is one of the earliest equation discovery methods which incorporates
non-declarative language bias. It uses a reasonably small set of prede�ned class of equation
components which relate to only two variables. More sophisticated methods including
COPER (Kokar, 1986), ABACUS (Falkenhainer & Michalski, 1986), EF (Zembowicz &
Zytkow, 1992), LAGRANGE (Dºeroski & Todorovski, 1995) and SDS (Washio & Motoda,
1997), extend this scope towards di�erent equation structures such as polynomials and
trigonometric functions. Additionally they allow for some degree of user intervention in
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the learning process such as degree of induced polynomials or number of induced equation
terms. These methods however, have two major limitations: they use limited (domain-
independent) background knowledge and are employed primarily for inducing algebraic
equations (except LAGRANGE) not suitable for modeling dynamic systems.

Considering the former limitation, the background knowledge usually includes informa-
tion about the measurements and units of the observed variables. Considering the latter,
even though LAGRANGE has the ability to induce components in the form of ordinary
di�erential equations, the derivatives are computed beforehand and such di�erentiation
introduces a large numerical complexity. GOLDHORN (Kriºman, Dºeroski, & Kompare,
1995) is an extension of LAGRANGE which addresses the numerical overhead by substitut-
ing the di�erentiation with numerical integration thus improving the overall performance
of the algorithm.

To address both of the afore-mentioned limitations, Todorovski and Dzeroski proposed
LAGRAMGE (Todorovski & Dºeroski, 1997), which employs sophisticated declarative lan-
guage bias in a form of context-free grammars for de�ning the space of possible equation
structures. LAGRAMGE also allows parametrization in terms of stopping criteria and
search heuristics. This method is capable of discovering ODEs using the same method
for numerical integration previously proposed in GOLDOHORN. While the grammars are
a very elegant solution for expressing a variety of di�erent domain-speci�c components,
they are fairly complex for construction and are task speci�c (grammar constructed for
one modeling task cannot be reused for another). Additionally, several experiments proved
that context-free grammars are not the most suitable formalism for encoding background
knowledge, in terms of comprehensibility, when used by a domain expert.

Process-based modeling (PBM), refers to a modeling paradigm within equation discov-
ery, which includes a subset of methods that combine both the empirical and theoretical
approaches to modeling. These PBM methods employ process-based domain-speci�c back-
ground knowledge as declarative language bias, that in conjunction with observed data,
can address the task of modeling real-world dynamic systems both in terms of structure
identi�cation and parameter estimation. LAGRAMGE2.0 (Todorovski, 2003; Todorovski
& Dºeroski, 2007) is the pioneering PBM method, which is an extension to LAGRAMGE
in terms of process-based modeling knowledge. The background knowledge is organized
around the central notion of entities and processes (similar as in QPT), which in turn
is translated to context-dependent grammar. LAGRAMGE2.0 uses LAGRAMGE as an
underlying method to heuristically induce candidate models and �t their parameters using
the measured data. However, LAGRAMGE2.0 has the same limitation as its predecessor,
which relates to the complexity of the modeling formalism and the applicability to di�er-
ent modeling tasks. CIPER (Pe£kov, Dºeroski, & Todorovski, 2008) employs background
knowledge in a form of subsumption constraints to heuristically search for polynomial al-
gebraic equations, however it does not support discovery of ordinary di�erential equations.

Inductive Process Modeling (IPM) refers to a method proposed by Bridewell et al.
(2008), which formalizes the background knowledge as a process-based library where the
components are speci�ed as generic processes. These generic processes serve as general
placeholders of di�erent variables and constants together with their constraints which relate
to the modeling task at hand, such as types and value ranges. In turn, by employing
heuristic search for instantiating these generic process into speci�c ones and combining
them, IPM constructs process-based models (PBMs) � an accurate, understandable and
modular representation of the observed system.

Process-based models have several characteristics which make them very e�cient for
modeling dynamic systems. First, they provide a conceptual representation of the structure
of the modeled system, depicting the high-level relations (processes) between the system
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components (entities). Second, this high-level process-based representation is translated
into a low-level mathematical formalism depicted as a set of di�erential and/or algebraic
equations, which in turn are employed for simulation of the systems behavior. Finally,
the library of domain-speci�c knowledge allows for instantiation of a number of di�erent
building blocks for generating process-based models, which is particularly relevant for
algorithms tackling the task of automated learning of process-based models from data.

Procedurally, IPM facilitates the additive combination of any set of generic processes
into a model structure. This, however, can lead to large unconstrained space of possible
model structures, which �rst can limit the method in terms of increased computational
overhead and second can result into logically implausible models. The Hierarchical IPM
(Todorovski et al., 2005) addresses these limitations by organizing the background knowl-
edge into hierarchies of generic processes and generic entities. This hierarchical structure
allows for the inducing method to search through reduced space of model components,
subserviently resulting in more reasonable model structures. SCIPM (Bridewell & Lan-
gley, 2010), on the other hand, tackles the model enumeration task by using constraint
satisfaction methods which relate to explicitly encoded constraints. Finally, Bridewell et
al. (2005) propose FUSE, an extension to HIPM, which improves the generalization abil-
ity of the process-based models by combining them into an ensemble. We further discuss
the relation of FUSE to our approach to learning ensembles of process-based models in
Section 2.2.5.

The utility of the process-based modeling approach has been shown in a variety of mod-
eling tasks in di�erent domains including modeling atmospheric cycles (Todorovski, 2003),
ecological modeling (Dºeroski & Todorovski, 2003; Atanasova, Todorovski, Dºeroski, Re-
mec, et al., 2006; Atanasova, Recknagel, et al., 2006; Bridewell et al., 2008; Simidjievski
et al., 2015a), mechanics and hydrodynamics (Dºeroski & Todorovski, 1995; Bridewell et
al., 2008), and systems biology (Langley, Shiran, Shrager, Todorovski, & Pohorille, 2004;
Ta²kova et al., 2011; Tanevski et al., 2015). The state-of-the-art implementation of the
process-based modeling paradigm is the Process-Based Modeling Tool (ProBMoT) (�erep-
nalkoski, 2013), a software platform for complete modeling, parameter estimation, and
simulation of process-based models. It extends HIPM with explicit constraints (assump-
tions) for a particular domain at hand and employs a variety of meta-heuristic optimization
methods. In this thesis, we use ProBMoT 1 as the base learning algorithm for learning
constituents of ensembles of process-based models. For that reason, ProBMoT will stand
as a proxy for describing the most important details of the task for learning process-based
models, presented in the next section.

2.1.4 Process-based models

The process-based modeling paradigm addresses the task of constructing process-based
models of a dynamic system. In essence, process-based models provide a conceptualization
of the structure of the observed system, accompanied by modeling details that allow for
their transformation to equations and therefore simulation. More speci�cally, they tackle
the task of representing dynamic systems from two aspects: qualitative and quantitative.
From a qualitative aspect, a process-based model is a set of entities and processes. The
entities represent the components of the observed system, which are involved in activities
represented by the processes. From a quantitative aspect, a process-based model is inter-
preted as a set of ordinary di�erential and/or algebraic equations which are employed for

1Available at http://probmot.ijs.si
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simulating the behavior of the observed dynamic system. In essence, process-based mod-
els encode both the low-level quantitative mathematical formalism and add a high-level
qualitative description of the system.

To properly assess the relevant details of the process-based modeling paradigm, we
are going to illustrate its use on a simple example of modeling population dynamics in
an aquatic ecosystem. Models of aquatic ecosystems are required for better understand-
ing, prediction and management of such systems (Jørgensen & Bendoricchio, 2001). These
models target the relations between entities, i.e., nutrients, primary producers, animals and
environmental changes that typically occur in aquatic ecosystems (Luenberger, 1979). Fig-
ure 2.1 depicts a cyclic relationship involving a primary producer (phytoplankton, abbrev.
phyto) that grows by feeding on nutrients (nitrogen and phosphorous), the concentrations
of which are in�uenced by the environment and the process of respiration (Atanasova,
Todorovski, Dºeroski, & Kompare, 2006).

In order to model such a system using the process-based paradigm modeling, we �rst
need to formalize the modeling knowledge. Process-based modeling allows for a high-level
representation of knowledge, cataloged in a domain-speci�c library of entity and process
templates. The templates embody general properties of the interactions that govern the
dynamics in the domain at hand and serve as recipes for establishing speci�c entities and
processes observed in a given system.

Entities comprise variables and constants related to the components of the observed
system. For example, an entity representing phytoplankton in an aquatic ecosystem would
include a variable corresponding to its concentration that changes through time, and a con-
stant corresponding to its maximal growth rate. Each entity variable has three important
properties: the role in the model, the initial value and the aggregation function. The role
of the variable in the model can be endogenous, i.e., representing internal system state,
or exogenous, i.e., representing an input external to the system (not modeled within the
system). An example of an endogenous variable in an aquatic ecosystem is the concentra-
tion of phytoplankton, while the environmental temperature is often treated as exogenous.
Initial values of endogenous variables are necessary for model simulation. Moreover, each
endogenous variable has its constraints de�ned, which limit the set of feasible values of
the variable (for example, the concentration of the phytoplankton cannot be negative nor
can exceed 100 gWM/m3 ). Finally the aggregation function for a variable speci�es how
in�uences from multiple processes on the speci�c variable are need to be combined, e.g.,
additively or multiplicatively.

phosphorus  Limitation

phytoplankton

Primary 
Producer Nutrient

Environment

phosphorus

nitrogen

nitrogen  Limitation

growth

respiration

temerature  respiration

Figure 2.1: Graphical representation of the relations (arrows and black boxes) between the
entities (oval transparent boxes) in a simple lake ecosystem.
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The processes include speci�cations of the entities that interact, equations, and sub-
processes. Consider the process of growth. It involves the phytoplankton as well as the
growth limiting factors of nutrients and the environment. Equations provide the model of
the interaction represented by the process and contains variables and constants from the
entities involved in the corresponding interaction. In the phytoplankton growth example,
an equation would de�ne the mathematical model for calculating the growth rate. Finally,
each process can include a number of sub-processes related to di�erent aspects of the
interaction. For example, the term of nutrient limitation of growth (or nitrogen/nutrient)
can be speci�ed in an appropriate nitrogen/phosphorous limitation sub-process of the
growth process. Sub-processes improve both the interpretability and the modularity of
process-based models (Bridewell et al., 2008).

Table 2.1 depicts an example of a simple library for modeling population dynamics in
aquatic ecosystems. The �rst four declarations correspond to template entities organized
in a hierarchy. The template entities of EcosystemEntity and Environment are at the top
of the hierarchy; the �rst corresponds to the entities of the aquatic ecosystem, while the
second to its environment. Down the hierarchy, the EcosystemEntity is then specialized
into the two template entities of PrimaryProducer and Nutrient .

Each entity template may include constant and variable properties, which are inherited
down the hierarchy. The variable properties (denoted vars) are those which change over
time: The EcosystemEntity has as variable property specifying its current concentration
(denoted conc). Similarly, the Environment entity includes the temperature variable.
The constant properties that do not change are denoted with consts, e.g., the template
entity PrimaryProducer has the constant property maxGrowthRate . Finally, note the
speci�cation of an aggregation function for each variable (denoted aggregation) which
speci�es that the in�uences on the conc variable of EcosystemEntity are summed up,
while the in�uences on the nutrientLim variable are multiplied.

The template processes are also organized in a hierarchy and specify which entities
can interact and how these interactions govern the dynamics of entity variables. High-
est in the hierarchy of this aquatic ecosystem are the template processes of Growth and
Respiration. The Respiration template process speci�es the in�uence of the tempera-
ture in the process of respiration on the concentrations of the primary producer and the
nutrients involved in the system. Note that the Respiration template has two alterna-
tives of LinearTempRespiration and ExpTempRespiration which further specify whether
the temperature in�uence is modeled linearly or exponentially, respectively. Similarly,
the Growth template encodes the in�uences of growth on the same concentrations. Ad-
ditionally, Growth involves a subprocess GrowthRate, which implies that a GrowthRate

must be speci�ed for each nutrient involved in the process of growth. The hierarchy
also speci�es two instances of the template process GrowhRate, MonodGrowthRate and
ExpSaturatedGrowthRate, that correspond to two alternative models of growth limitation
due to limited nutrient supply. Note therefore, the hierarchical structure of the process
templates allows for the speci�cation of modeling alternatives for an observed interaction
between entities.

Given the library of model fragments (template entities and processes), we can now
formulate the task of learning process-based models from knowledge and data as a search
task. Namely, given the speci�c entities in the observed system at hand, one can instantiate
the template processes from the library into a set of speci�c processes that can be considered
for inclusion in the model of the observed system. In turn, based on this set of speci�c
model components, we can specify the search space of combinations thereof. Some of the
combinations can be rejected as implausible, due to further modeling assumptions made
by the user, such as the presence or absence of certain processes in the model.
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Table 2.1: Template entities and processes for modeling population dynamics in aquatic
ecosystems. Here td(x) denotes the time derivative of x.

template entity EcosystemEntity{

vars: conc {aggregation:sum;} }

template entity PrimaryProducer:EcosystemEntity{

vars: nutrientLim{aggregation:product}, growthRate;

consts: maxGrowthRate; }

template entity Nutrient:EcosystemEntity { }

template entity Environment { vars: temperature; }

template process Growth(pp: PrimaryProducer, ns: Nutrients) {

processes: GrowthRate(pp, ns);

equations:

td(pp.conc) = pp.maxGrowthRate ∗ pp.growthRate ∗ pp.conc,

td(ns.conc) = −n.alpha ∗ pp.maxGrowthRate ∗ pp.growthRate ∗ pp.conc; }

template process GrowthRate(pp: PrimaryProducer, n: Nutrient) {}

template process MonodGrowthRate:GrowthRate {

consts: halfSaturation;

equations:

pp.growthRate = n.conc/(n.conc + halfSaturation);}

template process ExpSaturatedGrowthRate:GrowthRate {

consts: saturationRate;

equations:

pp.growthRate = 1 − exp(−saturationRate ∗ n.conc);}

template process Respiration(

pp: PrimaryProducer, ns: Nutrients, env: Environment) {}

template process LinearTempRespiration:Respiration {

consts: respRate,refTemp,minTemp;

equations:

td(pp.conc) = −respRate ∗ pp.conc ∗ pp.conc

∗(env.temperature − minTemp)/(refTemp − minTemp),

td(ns.conc) = respRate ∗ pp.conc ∗ pp.conc

∗(env.temperature − minTemp)/(refTemp − minTemp); }

template process ExpTempRespiration:Respiration {

consts: respRate,refTemp,theta;

equations:

td(pp.conc) = −respRate ∗ pp.conc ∗ pp.conc

∗pow(theta, env.temperature − refTemp),

td(ns.conc) = respRate ∗ pp.conc ∗ pp.conc

∗pow(theta, env.temperature − refTemp); }

Figure 2.2 represents the architecture of the ProBMoT software platform for process-
based modeling. ProBMoT supports simulation, parameter estimation and automated
learning of process-based models. The process-based learning algorithm, employed in ProB-
MoT, is outlined in Algorithm 2.1. It �rst takes as input library of domain-speci�c modeling
knowledge, followed by data in the form of time-series measurements of the observed dy-
namic system. Since process-based modeling aims at modeling the behavior of a dynamic
system over time, measured values are continuous, contiguous and may be non-uniformly
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Figure 2.2: Graphical representation of the algorithm for learning process-based models
from knowledge and data

distributed. The last input to the algorithm is an incompleteModel which speci�es the ex-
pected logical structure of the expected model in terms of entities and processes observed
in the system at hand that relate to the modeling assumptions made by the modeler.

First, the algorithm assembles all theoretically plausible model components by binding
the entities of the observed system to the template processes from the library. Next, based
on the incomplete model (taking into account the assumptions), the algorithm enumerates
all the plausible candidate model structures. Each of these high-level structures is then
compiled into a system of equations eligible for simulation. Before simulation, however, a
parameter estimation task is being solved for the model structure at hand to obtain values
of the model parameters that best �t the observed data.

To this end, the parameter estimation process is based on the meta-heuristic optimiza-
tion framework jMetal 4.5 (Durillo & Nebro, 2011) that implements a number of global op-
timization algorithms. In particular, ProBMoT uses the Di�erential Evolution (DE) (Storn
& Price, 1997) optimization algorithm. For simulation purposes, each process-based model
is �rst transformed to a system of ODEs. ProBMoT allows for full simulation of dynamic
systems, which is performed with the CVODE package. CVODE (C-package for Variable-
Coe�cient ODE), a solver from the SUNDIALS suite (Cohen & Hindmarsh, 1996), is a
general-purpose ODE solver that uses linear multistep variable-coe�cient methods for inte-
gration, i.e., Adams-Moulton method (for non-sti� problems) and backward di�erentiation
formula (for sti� problems). More precisely, ProBMoT employs the Backward Di�erentia-

Algorithm 2.1: Outline of the generic algorithm for learning process-based models
from knowledge and data.
Input: library, data, incompleteModel
Output: modelList

1 components← instantiate(library, incompleteModel)
2 foreach structure ∈ enunmerate(components, incompleteModel) do
3 modelEq ← compileToEquation(structure)
4 {model, error} ← parameterEstimation(modelEq, data)
5 modelList← modelList

⋃
{model, error}

end

6 modelList←rank(modelList, error)
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tion Formula (BDF) in combination with modi�ed Newton's iterative method (for solving
the non-linear equations at each step) and a preconditioned Krylov method (for solving
the linear equations at each step) that is suitable enough for large sti� ODE models.

Moreover, ProBMoT implements a number of measures of model performance: the
sum of square errors (SSE) between the simulated and observed behaviour, and several
variants thereof. The latter include mean squared error (MSE), root mean squared error
(RMSE), relative root mean squared error (ReRMSE) and weighted root mean squared
error (WRMSE). After estimating the parameters for all candidate model structures, the
algorithm outputs a sorted list of process-based models according to their validation error,
i.e., the discrepancy between the model simulation and the observed system behavior.

After estimating the parameters for all candidate model structures, the algorithm out-
puts a sorted list of process-based models according to their error on training data, i.e.,
the discrepancy between the model simulation and the observed system behavior. Ta-
ble 2.2 (top) presents a process-based model of the system depicted in Figure 2.1: note the
one-to-one correspondence between entities and process depicted in the system graphical
presentation and the process-based model. Each entity and process instance incorporate
the variables and the constants related to the corresponding template.

Considering the mathematical formulation of the processes embodied in the library,
the high-level representation of the interactions in the system is compiled into a system of
algebraic and ordinary di�erential equations adequate for simulation. Table 2.2 (bottom)
provides the quantitative formulation of the process-based model presented above, where
pc(t), phc(t) and nc(t) denote the concentrations of phytoplankton, phosphorous and nitro-
gen, respectively. The environmental temperature is denoted with T , and the growth rate
of the phytoplankton with gRate. Since we are modeling only the concentration of phy-
toplankton (which is denoted as endogenous in Table 2.2 (top)), the system of equations
consists of a single ordinary di�erential equation.

These equations can then be fully simulated, which results in a trajectory which is
utilized for further analyses of the modeled system. Figure 2.3 presents the simulation
of phytoplankton concentration obtained by using the learned process-based model. Here
we used real data from Lake Bled (Atanasova, Todorovski, Dºeroski, Remec, et al., 2006)
for the exogenous variables involved in the system (nutrients and temperature) and for
estimating the parameters of the system. The resulting simulation spans the time period
of approximately one year, excluding the period when real measurements were not available
due to freezing of the lake. The DATA trajectory (represented by a dashed line) represents
real measurements that can be used for a visual assessment of the process-based model
performance.
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Table 2.2: A process-based model (top) of phytoplankton dynamics compiled to ODE
(bottom), in the simple lake ecosystem from Figure 2.1, based on the template entities and
processes from the library presented in Table 2.1.

//Entities

entity phyto : PrimaryProducer {

vars: conc { role: endogenous; initial: 1.665;};

consts: maxGrowthRate = 0.88; }

entity phos : Nutrient {

vars: conc { role: exogenous;};

entity nitro : Nutrient {

vars: conc { role: exogenous;};

entity env : Environment {

vars: temp { role: exogenous;}; }

//Processes

process growth(phyto, [phos, nitro]): Growth

{ processes: growthRate;}

process nitrogenLim(phyto, nitro): ExpSaturatedGrowthRate

{ consts: saturationRate =14.9;}

process phosophorousLim(phyto, phos): ExpSaturatedGrowthRate

{ consts: saturationRate =8.08;}

process respiration(phyto, [phos, nitro], env): LinearTempRespiration

{ consts: respRate=0.036, minTemp=0.542, refTemp=17.4;}

dpc

dt
= pc(t) · gRate(t)− 0.036 · T(t)− 0.542

T(t)− 17.4
· p2

c

gRate(t) = 0.88 · (1− e−8.08·phc(t)) · (1− e−14.9·nc(t))

pc(t0) = 1.665
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Figure 2.3: Simulation of phytoplankton concentration dynamics (solid line) as modeled
with the process-based model from Table 2.2 and its comparison to observed phytoplankton
concentration (dashed line).
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2.2 Ensemble Learning

Ensembles are a well established machine learning paradigm, leading to accurate and robust
models predominantly applied to predictive modeling tasks. Ensemble models comprise
a �nite set of diverse predictive models whose combined output is expected to yield an
improved predictive performance as compared to an individual model.

In the literature, there is an ample amount of work dedicated to ensemble learning.
This includes studying/developing of a variety of methods for constructing ensembles and
application of ensembles to a plethora of predictive tasks (Okun, Valentini, & Re, 2011;
Rokach, 2010). Considering the latter, in this section, we will focus on ensembles applied to
the most common predictive tasks, i.e., the tasks of classi�cation and regression, which will
stand as a proxy for illustrating the concept behind ensembles in general. Regarding the
former, several studies (Rokach, 2009; Kuncheva, 2014; Valentini & Masulli, 2002; Sharkey,
2002) focus on the architecture of an ensemble constructing method. Each of these studies
proposes di�erent taxonomies (at di�erent levels and directions of detail) which serve as
a blueprint for learning ensembles. However, the general consensus is that an ensemble
method consists of two components: (1) technique/rule (referred to as a combining scheme
or aggregation method) for combining the outputs of the multiple base models in a single
prediction and (2) algorithm(s) for learning the ensemble constituents (referred to as base
learners).

Considering how the constituents are combined into an ensemble output, there are two
general approaches: model selection and models combination/fusion (Dºeroski et al., 2009;
Kuncheva, 2002). The former approach simply selects the best performing base model
as the �nal ensemble output. The latter approach, incorporates di�erent techniques for
aggregating the outputs of the individual base models into an ensemble prediction.

The predictive power of ensembles, at least intuitively, lies in the diversity among the
base models. While, in principle, any combined set of predictive models can be considered
as an ensemble; in practice, more sophisticated ensemble learning methods are developed
which tend to actively imply diversity in the constituents set that consequently improves
the overall predictive accuracy. The second component of an ensemble method aims at
designing/learning the base models. Here we can distinguish between homogeneous and
heterogeneous techniques for constructing an ensemble. The former includes base mod-
els that are learned with the same learning algorithm, but from di�erent samples of the
training data. In the latter, the ensemble constituents are learned using di�erent learning
algorithms.

Today, ensemble learning and its applications hold a prominent place in the �eld of
machine learning (Dietterich, 2000b; Kuncheva, 2014; Valentini, 2003; Seni & Elder, 2009;
Rokach, 2010). However, it is nontrivial to trace-back to the origin of the ensembles, at
least in the form that is employed nowadays. Probably, one of the most employed "many
model" approaches is a key concept in the Monte Carlo methods, widely used in domains
of life and earth sciences for stochastic simulations and numerical optimization.

In the context of learning theory, however, the concept of combining (and learning)
multiple models, according to Kuncheva (2014), is �rst mentioned by Sebestyen (1962),
where the author proposes a multi-level sequence of classi�cation models, where the output
of one model is used as an input for learning the next model in the sequence. In 1979,
Dasarathy and Sheela (1979) proposed a two-model setup (one linear classi�er and one
kNN classi�er), where the �nal prediction is selected from one of the models based on
their accuracy in di�erent partitions of the feature space. Zuev (1986) reported on learn-
ing probabilistic model of committee (ensemble) of classi�ers. In the early 90's, several
studies empirically showed that learning multiple models and combining their output can
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substantially reduce the predictive error as compared to learning a single model. These
studies addressed a variety of predictive tasks by constructing ensembles using decision
trees (Kwok & Carter, 1988), rules (P. B. Brazdil & Torgo, 1990; Kononenko & Kova£ic,
1992), arti�cial networks (Hansen & Salamon, 1990; Baxt, 1992; Perrone & Cooper, 1993)
for the task of classi�cation, as well as regression tasks (Wolpert, 1992; Perrone, 1993).

In contrast, theoretically-wise, (Schapire, 1990) discussed the question of learnability
and generalization power of a probably approximately correct (PAC) model. He suggested
that instead of learning one (approximately) highly accurate model (ref. to as a strong
learner), a weak learner (slightly better than random) can be learned and boosted to
a better performance by several iterations of error penalization, subsequently performing
equally or better than a single strong learner. The same year, Hansen and Salamon (1990),
which focused more on the diversity between the base models, stated that if multiple N
models have the sample probability of making errors and they err independently, the error
of their combination will decrease monotonously as a function of N . These two studies
together with the afore-mentioned empirical studies marked the conception of "modern"
ensemble learning.

Since then, many studies have been published, both which empirically report on the pre-
dictive achievements of ensembles (Ban�eld et al., 2007; Bauer & Kohavi, 1999; Breiman,
1996a; Maclin & Opitz, 1999), as well as theoretically justifying their performance (All-
wein, Schapire, & Singer, 2000; Breiman, 1996; Domingos, 2000; Geman, Bienenstock,
& Doursat, 1992; Kong & Dietterich, 1995; Mason, Bartlett, & Baxter, 2000; Schapire,
Freund, Bartlett, & Lee, 1997). Moreover, popular applications of ensembles include the
winning solutions of the Net�ix Competition (Bell, Koren, & Chris, 2008), The Higgs Bo-
son Challenge (Melis, 2014), the Dream Challenges (Huynh-Thu, Irrthum, Wehenkel, &
Geurts, 2010) etc.

In the remainder of the section, in Section 2.2.1, we will �rst focus on methods for
constructing ensembles, followed by methods for learning the ensemble constituents in Sec-
tion 2.2.2. Next, in Section 2.2.3, we will shift our focus towards techniques for obtaining
interpretable ensembles. In Section 2.2.4, we will discuss the question of the performance
of the ensembles in general, more speci�cally why do ensembles have good predictive per-
formance. Finally, in Section 2.2.5 we are going to discuss the ensemble learning paradigm
in the context of modeling dynamic systems in terms of related approaches to learning
such ensembles.

2.2.1 Ensemble combining schemes

The �rst milestone when constructing ensembles is choosing the most appropriate tech-
nique for combining predictive models. As we mentioned previously, there are two general
approaches for generating the output of the ensemble: model combination (or fusion) and
model selection (Dºeroski et al., 2009; Kuncheva, 2002). In the latter approach, each base
model is �rst evaluated and the prediction of the best performing one is used as the overall
ensemble prediction. The ensembles combined with this approach are better interpretable
and usually computationally e�cient for learning, however their predictive performance
is limited by the performance of the selected model. In contrast, the former and more
sophisticated approach, uses di�erent combining schemes for aggregating the predictions
of all ensemble constituents into an ensemble prediction. Here we can distinguish between
(1)dynamic and (2)�xed combination schemes.

Dynamic combining schemes involve learning at di�erent stages in the process of creat-
ing the ensemble; either learning how the base models are to be combined or even learning
the base models. Stack generalization or simply � stacking (Wolpert, 1992), depicted
in Figure 2.4, is the most popular ensemble method which includes dynamic combining
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scheme. Here, a predictive meta-model is learned from the combined predictions of the
individual ensemble constituents. The ensemble constituents are �rst learned from dif-
ferent parts of the training data (and evaluated on the remaining parts) with (mostly
often) di�erent learning algorithms. In turn, their predictions are combined and used as
an input to a new meta-learning algorithm. The prediction of the resulting meta-model is
considered as the prediction of the ensemble. Stacking has been shown to be an e�cient
algorithm, however it is limited to the performance of the algorithm chosen for learning
the meta-model.
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Figure 2.4: Illustration of the Stack generalization (Stacking) method for creating hetero-
geneous ensembles.

Another example of such scheme is employed in the so-called "architecture of classi-
�ers" type of ensembles (Sebestyen, 1962; Ianakiev & Govindaraju, 2000). Such ensemble
methods involve a daisy chain of predictive models, where each base model is learned using
the prediction of its predecessor as a training dataset. The �nal ensemble prediction is then
either taken from the last predictive model in the chain or all the predictions from the base
models in the process are once more combined at the end. This method can also result in
interpretable ensemble, however it is prone to over�tting and can be computationally very
expensive. The �nal example of dynamic combining includes fusing structure fragments
from the base models instead of their predictions (Bridewell et al., 2005). The resulting
ensemble is fairly robust and interpretable, however this method usually involves additional
user intervention and can be used with a limited set of types of predictive models.

In practice, though, the majority of ensemble methods employ a �xed (a posteriori)
combining scheme. This involves �rst learning the base models, and then employing some
combination rule for aggregating the individual predictions. There is a range of di�erent
�xed combining schemes varying based on the predictive task at hand and the desired
output of the ensemble. In this section we will focus on the most popular ones which
address classi�cation and regression tasks: voting and averaging. For classi�cation task,
the most straightforward approach is uniform (majority) voting. Here, each base model �rst
predicts a class value, and the class predicted by the majority of the base models becomes
the output of the ensemble. Another alternative to voting is probability distribution voting
(Kononenko & Kova£ic, 1992). Each base model, instead of predicting the class value as in
the previous case, predicts the probability of an example being in each class. The class that
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has the highest sum of probabilities is considered the output of the ensemble. For both
alternatives of voting, there are also weighted variants. While in the uniform variants the
vote of each base model is equal, here a weight is assigned to the constituents based on their
performance (eg., accuracy, F-measure or even more complex measurements (Kuncheva,
2014)). More complex voting alternatives include Likelihood Combination (Ali & Pazzani,
1996), Bayesian Combination (Buntane, 1990; Ali & Pazzani, 1996; Domingos & Pazzani,
1997), probabilistic approximation (Kuncheva, 2014), singular value decomposition (Merz,
1999) etc.

For the task of predicting numeric values, i.e. regression, the most widely used (and
simplest) �xed scheme is averaging: The mean value of every base-model prediction rep-
resents the overall ensemble output. Similarly to classi�cation, a weighted variant can be
used, where the assigned weights correspond to the performance (MSE, RMSE, ReRMSE,
con�dence) of the base models (Drucker, 1997). More complex �xed combine schemes for
regression include (weighted) median, geometric and generalized mean, decision templates
etc.

Note that there are also techniques which combine the two approaches of model selection
and model combination. The one thing that is common to these techniques is that they
focus on selecting a subset of base models to be combined (by one of the above-mentioned
schemes) in an ensemble, thus additionally improving the overall predictive performance.
The improvement of hybrid approach is a consequence of the omission of poor performing
base models, though it adds another level of complexity to the ensemble construction
method and can be limited by the size of the available training data. A subset of such
techniques include validate-and-select (Opitz & Shavlik, 1996), dynamic selection (Giacinto
& Roli, 2000) and cascading classi�ers (Gama & Brazdil, 2000).

2.2.2 Learning ensemble constituents

The second milestone in constructing ensembles is the algorithm(s) for learning the en-
semble constituents. Based on how the constituents are learned, the ensembles can be cat-
egorized into two general categories: heterogeneous and homogeneous. In heterogeneous
ensembles, the candidate base models are learned using di�erent learning algorithms. In
contrast, homogeneous ensembles is a category of ensembles where the base models are
learned with the same learning algorithm, but from di�erent training samples generated
by manipulating the training data. Note, however, that on the intersection between het-
erogeneous and homogeneous ensemble methods lies one category which includes learning
ensemble constituents by manipulating the parameters of the same learning algorithm
(and manipulating the training data). In the remainder, we will give an overview of these
categories of ensembles and describe some notable representative methods used in practice.

Procedurally, heterogeneous ensembles include base models learned by a variate of dif-
ferent learning algorithms (eg. decisions trees, SVMs, kNNs, arti�cial neural networks
etc.), whose predictions are subsequently combined, resulting in an ensemble output. One
of the popular methods in this category is stacking, which we covered in the previous
section. Other notable methods for constructing heterogeneous ensembles include sta-
tistical ensembles (Tsoumakas, Katakis, & Vlahavas, 2004), catalog of models (Caruana,
Niculescu-Mizil, Crew, & Ksikes, 2004) and cascade classi�ers (Gama & Brazdil, 2000).
These methods focus on selecting and combining base models, rather than learning the
base models.

In contrast, homogeneous ensembles aggregate diverse and potentially unstable predic-
tive models learned with the same learning algorithm (such as decision trees or arti�cial
neural networks), that is, predictive models whose predictions vary su�ciently with small
variations in the training data set. These variations in the training data set are generally
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obtained either by (1) manipulating the data instances, (2) manipulating the data features
or (3) both.

Bagging (bootstrap aggregation) refers to one of the �rst and simplest methods, devel-
oped by Breiman (1996a), for constructing ensembles by manipulating the data instances.
This method, depicted in Figure 2.5, employs bootstrap sampling with aggregation, where
data instances are uniformly sampled with replacements to generate random samples (boot-
strap replicates) of the training data, consequently used to learn a set of base models
(ensemble constituents) from these replicates. The learned models are then combined by
averaging their output (in the case of regression) or by voting (in the case of classi�cation).
Wagging is a variant of the bagging method, where the data instances are non-uniformly
sampled, that is, a weight is stochastically assigned to each data instance which determines
the probability of that instance to be included in the �nal bootstrap-replica.
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Figure 2.5: Illustration of the Bootstrap aggregation (Bagging) method for creating homo-
geneous ensembles by sampling data instances.

Another popular method which implements manipulation of the data instances is boost-
ing. Boosting, introduced by Schapire (1990), refers to a general approach for obtaining an
accurate prediction by combining several weak ones on a di�erent distributions of the train-
ing data. The AdaBoost algorithm (Freund & Schapire, 1997), illustrated in Figure 2.6,
is an implementation of the boosting approach for the task of classi�cation. AdaBoost
works iteratively; it uses di�erent weighted distributions of the training data for learn-
ing the base models at each iteration. Depending on the outcome of past iteration this
method decreases (for correct classi�cation)/increases (for false classi�cation) the weight
value of every instance for the subsequent iteration of training the model. This process can
assure that the weak predictors can focus on di�erent instances, and thus creating more
robust ones. Variants of AdaBoost include: BrownBoost (Freund, 1999), AdaBoost with
con�dence-rated predictions and arching. Moreover, LogiBoost (J. H. Friedman, Hastie, &
Tibshirani, 1998) and the implementation of (Drucker, 1997) successfully tackles the prob-
lem of combining logistic and liner regressors, respectively, using the AdaBoost framework.

The methods that manipulate the data instances can often be ine�ective when the
training data contains few data instances or is relatively homogeneous. Moreover, con-
structing such ensembles can be very ine�ective and computationally complex when the
data dimensionality (the feature space) is high. The second type of homogeneous ensem-
bles tackles these issues and incorporates predictive models learned from di�erent subsets
of the data features. The most notable method here is the random subspace method (RSM)
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Figure 2.6: Illustration of the boosting (AdaBoost) method for creating homogeneous
ensembles by sampling data instances.

(illustrated in Figure 2.7), developed by Ho (1998), which constructs ensembles of samples
of the training data by sampling the feature space. Each ensemble constituent is learned
on all data instances and a subspace of the original feature space. The predictions of the
learned base models are then combined via standard combining schemes for classi�cation
or regression, i.e., voting schemes or averaging techniques, respectively. The RSM has
been reported to perform well for problems where the data dimensionality is very high or
when there is a certain redundancy in the feature space (Ho, 2000). The Rotation Forest
method proposed by (Rodríguez, Kuncheva, & Alonso, 2006) also relies on feature sam-
pling: It takes a subset of features at the beginning and applies PCA (Principle Component
Analysis) on it, rotating the rest of the feature subsets before learning the next ensem-
ble constituent. In contrast, instead of sampling features at random, more sophisticated
methods are devolved for generating subsets of features based on evolutionary and genetic
algorithms (Maclin & Opitz, 1999; Rokach, 2008).
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Some methods exploit both dimensions of training data manipulation, and construct en-
sembles from samples of both data instances and data features. Panov and Dºeroski (2007)
propose the method Bagging of subspaces, where each ensemble constituent is learned si-
multaneously from a bootstrap replicate and a feature subset of the training data. This
method, while being general in terms that it can handle any type of predictive model as
a base model, it also leads to ensembles which are e�cient to construct and have good
predictive performance. The most popular method in this category (and probably overall),
however, is random forests (RF)(Breiman, 2001).

Procedurally, the random forests ensembles consist of decision trees as base models,
which are learned from di�erent bootstrap replicas of the training data. However, in the
process of growing the decision-tree constituents, this method at each node considers di�er-
ent (randomly drawn) subset of features from which the split is determined. The random
forests ensembles have been proven to be both e�ective and computationally e�cient,
especially in cases when learned from high-dimensional training data (Fodor, 2002).

The �nal group of ensemble methods considers learning the base predictive models with
the same algorithm, but with di�erent parameters for each of them. The above-mentioned
random forests method can also fall in this group, if a di�erent random seed is used when
constructing the base decision trees. Dietterich (2000a) proposes a similar method to the
random forest called randomized C4.5. However, instead of choosing random subset of
features (as in RF) for splitting the nodes in each tree, it �rst generates all possible splits
at each node and randomly chooses one out of N top-ranked splits (in the original paper N is
20). Other notable methods in this group include Randomized FOIL (Ali & Pazzani, 1996)
which employs rules as base models and ensemble of neural networks (Hansen & Salamon,
1990) where each base model is a neural network constructed with di�erent parameters.

2.2.3 Interpretability of ensembles

For many real-world predictive tasks, a necessary requirement for a predictive model,
in addition to its accuracy, is its interpretability. Understandable predictive models can
provide a signi�cant insight both into the learning process and into the domain at hand. In
general, interpretability is an inherent de�ciency of ensembles, given that they aggregate
a set of models. However, several attempts are made that tackle this challenge which can
be grouped in three general methodologies ,i.e. , (1) learning a meta-model , (2)selecting
a model representative and (3) general explanation methodology.

The �rst methodology focuses on learning a complex meta-model while the ensemble
is constructed as in the study of (Bridewell et al., 2005), where the authors propose a
method which integrates the model structures of the ensemble constituents into a single
model. Alternatively, meta-models can be learned a posteriori using the predictions of
the ensemble constituents as a training data, as in stacking (Wolpert, 1992). The second
methodology involves either selecting one of the base models to be a representative of
the ensemble based on di�erent criteria (accuracy, complexity or both) (Ferri-Ramírez,
Flach, & Hernandez-Orallo, 2002); or learning a model representative from arti�cial data
generated by the ensemble constituents (Craven, 1996; Domingos, 1998; Van Assche, 2008).
The last methodology o�ers comprehensibility by computing and visualizing each features's
contribution in the model's prediction (�trumbelj & Kononenko, 2010). This contribution
relates to the discrepancy (information di�erence, log-odds ratio or probabilities di�erence)
between the initial model prediction and the average of di�erent predictions with omitted
subsets of features. This methodology has been successfully employed for interpreting
"black-box" single models and ensembles applied to both classi�cation tasks (Robnik-
�ikonja & Kononenko, 2008) and regression tasks (�trumbelj & Kononenko, 2011).
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In contrast, Breiman (2001) further exploits the random forests method for feature
ranking. However, while this approach provides additional insight into the problem at
hand, it does not result in an interpretable ensemble. Moreover, the visualization tool
RAFT (RAndom Forest Tool) (A. Cutler & Breiman, 2001), o�ers graphical aid for in-
terpreting random forests analyses, albeit only for classi�cation, by visualizing feature
importance, outliers and di�erent votes for each class using the proximity matrix obtained
from the forest.

2.2.4 Ensemble performance

There is no generally accepted theory that uni�es the concept of ensemble learning, which
is not surprising given the variety of ensemble methods developed and their applications in
a plethora of domains. Therefore this is still an open and active direction of research in the
machine learning community. Strictly speaking, there are several theoretically sound expla-
nations of the performance of the ensembles, however either they are assumption-bounded
or focus on a narrow class of ensemble methods (Kuncheva, 2014; Ho, 2000; Hansen &
Salamon, 1990; Hastie & Tibshirani, 1990). The general consensus, though, is that an
ensemble should be constructed with accurate and diverse base models. In terms of accu-
racy, the base models should (at least) perform better than random guessing. In terms of
diversity, the base models should be independent in making prediction, i.e., they should err
di�erently when new (unseen) test data is presented to them. While intuitively these two
requirements are su�cient for a well-performing ensemble, the �ndings of Kuncheva and
Whitaker (2003) show that there is not always a strong correlation between them and the
question of accuracy-diversity trade-o� is more problem/task dependent than general. In
contrast, Ali (1996) empirically shows that ensemble constituents should err dependently,
however this diversity is negatively correlated to the overall ensemble performance. So
then . . .Why do ensembles perform well? And more importantly: Why should ensembles
be learned and applied to predictive tasks?

There are two theories proposed which aim to answer the former question. The �rst
theory (Vapnik, 1998; Schapire, 1990; Schapire et al., 1997; Allwein et al., 2000), formulates
the task of ensemble learning in the framework of large margin classi�ers. More speci�cally,
it states that ensembles (especially boosting-alike ensembles) tend to expand the classi�-
cation margins in the hypothesis space, thus enhancing their generalization capabilities.
The second theory views the task of ensemble learning from a perspective of bias-variance
decomposition of error (Geman et al., 1992; Kong & Dietterich, 1995; Breiman, 1996).
Here, the performance of the ensembles is justi�ed by their capability to reduce the vari-
ance or to reduce both bias and variance. However, Domingos (2000) joins these two
theories by proving that they are equivalent: the notion of large margin classi�ers can be
expressed in the form of bias-variance and vice-versa. Following this insight, we will adopt
the bias-variance decomposition theory as a framework for explaining the performance of
the ensembles presented in this thesis.

Several studies (Dietterich, 2000b; Valentini, 2003; Dºeroski et al., 2009) provide a few
fundamental answers to the latter question. First, ensemble learning o�ers a very elegant
solution to the model selection problem (Guyon, Sa�ari, Dror, & Cawley, 2010). While for
learning a single predictive model the underlying learning algorithm solves an additional
nontrivial task of model selection (the learned predictive model, besides having a good
predictive performance, should also avoid under/over-�tting to the training data), ensemble
learning methods tend to circumvent this task by combining a set of predictive models, thus
minimizing the probability of a good performing predictive model being overlooked. The
second reason for learning ensembles arises from the problem of limited coverage capabilities
in the hypothesis space of learning algorithms. Namely, ensembles tend to expand the space
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of possible models learned, thus maximizing the chance for attaining optimal predictive
base models. The result is improved generalization power of the ensemble, which provides
a good approximation of the true solution.

Next, the learning algorithms, if viewed as search algorithms, often tend to end-up in
a local optima which results in sub-optimal predictive models. Ensembles tend to lower
this bias by boosting the algorithm towards the optimal solution and aggregating di�erent
sub-optimal predictive models. Last but not least, from practical point of view, learning
ensembles tend to lower the computational complexity by decomposing the learning prob-
lem, i.e., ensembles can be learned from di�erent samples of the training data, and even
training data composed from subsets gathered from di�erent places at di�erent times.

Ensemble models have been successfully applied in many domains for tackling a variety
of predictive tasks. A small subset of such applications includes applications in astronomy
(Bazell & Aha, 2001), medicine (Steidl et al., 2010; Polikar et al., 2008), bioinformatics
(Schietgat et al., 2010), ecology (D. R. Cutler et al., 2007; Kocev et al., 2013) etc. Ensem-
bles have also been employed in the context of modeling dynamic systems, covered in the
following section.

2.2.5 Ensembles of models of dynamic systems

Ensembles of models of dynamic systems have been previously considered in two di�erent
fashions. First, from machine learning perspective, the approach presented by Bridewell et
al. (2005) considers ensembles of process-based models, where the structures of the ensem-
ble constituents are integrated into a single meta-level model. The ensemble constituents
are learned from di�erent random training data samples. The single meta-level model is
built in such a way that it includes the most frequent structure fragments (processes) in
the base-level models. The results show that the resulting meta-level model still provides
a process-based explanation of the observed system structure, while being more robust in
terms of over-�tting. Note, however, that authors estimate the out-of-sample error of the
models, by taking random sub-samples of the observed time-series data and removing them
from the training data. Thus, the ability of the meta-level model to generalize outside the
time span of the training data has not been considered nor evaluated.

In a similar context, Aleksovski et al. (2015) address the tasks of predictive model-
ing of discrete non-linear dynamic systems. Here, using external dynamic approach, the
modeling problem is �rst transformed into a non-linear regression approximation problem
subsequently tackled by learning fuzzy linear model trees and ensembles of fuzzy linear
model trees. The results show that the ensembles improve the performance over the single
fuzzy linear trees. Note that, this study focuses on short-term (one-step ahead) prediction
of discrete-time dynamic systems, where the value of the time series in the next time-point
is predicted, as opposed to long-term prediction of continuous non-linear dynamic systems.

Second, in a broader sense, ensemble predictions of dynamic systems are obtained by
combining diverse predictions from an individual model, obtained either by perturbing the
initial state of the model or varying (some of) the constant parameters. A proof of concept
to such an approach is found in the practice of data assimilation (Kalnay, 2003). It is shown
that using carefully chosen small amounts of information can recover the complete state
of the system. Theory of synchronization in chaotic systems provides explanation to such
approach, since linking chaotic systems with a single parameter can lead to synchronization
of their states. A related recent development is the paradigm of supermodeling (Van den
Berge et al., 2011; Mirchev et al., 2012).

A supermodel, or an ensemble of "imperfect" models, is comprised from a set of inter-
connected (coupled) models, which are integrated simultaneously and exchange information
among themselves on a time-step basis. The idea of supermodeling comes from non-linear



2.2. Ensemble Learning 41

dynamics and the concept of attractor synchronization, where synchronized variations (in
terms of constant parameters) of an individual model can substantially improve the model's
stability. The supermodels, albeit fairly complex and consisting of typically small num-
ber of constituents (which are provided by a domain expert rather than learned), have
been successfully employed in the context of climate modeling for addressing the task of
long-term climate projections.
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Chapter 3

Ensembles of Process-Based Models

In this chapter, we present the methodology for simulating and learning ensembles of
process-based models, which is the main contribution of this thesis. We �rst present how
ensembles of process-based models are simulated. Next, we present four di�erent methods
for learning a diverse set of ensemble constituents. Finally, we present the computational
complexity of the proposed ensemble methods.

In order to simulate an ensemble, each base model needs to be simulated. The result-
ing ensemble output is a combination of the predictions of all individual base models. For
obtaining a prediction for ensembles of process-based models, we use average, weighted
average and weighted median as combining schemes, commonly used for regression tasks
(Drucker, 1997). Section 3.1, presents an overview of the algorithm for obtaining predic-
tions from ensembles of process-based models.

Next we describe the methodology for learning ensembles of process-based models, that
is, learning diverse set of ensemble constituents. The underlying algorithm for learning
process-based models employed in this thesis is ProBMoT, thus the proposed methodology
aims at constructing homogeneous ensembles of process-based models. Recall from Sec-
tion 2.2.2 from the previous chapter, homogeneous ensembles consist of base models that
are learned with the same learning algorithm, but from di�erent samples of the training
data. The sampling approaches include: sampling of data instances, sampling of data
features/attributes or both instances and features. The proposed methodology utilizes
these sampling approaches, which results in four di�erent methods for learning ensem-
bles of process-based models. The �rst two methods of bagging and boosting, presented in
Section 3.2 and Section 3.3, respectively, refer to learning ensembles from sampling data in-
stance. More speci�cally, the proposed methods follow the key ideas of bagging (Breiman,
1996a) and Adaboost (Freund, 1999) in the context of time-series regression, and extend
towards the process-based modeling paradigm.

The third method considers learning ensembles of process-based models by sampling
data features. In this context, the task of generating random samples of the feature space
from the traditional RSM (Ho, 1998) is implemented as a task of generating random sub-
samples of the library of domain knowledge. The algorithm of the random library subsam-
ples method (RLS) is presented in Section 3.4. Finally, the last method that we propose
deals with learning ensembles from both samples of data instances and data features.
Section 3.5 presents an overview of the algorithm for bagging random library subsamples
(BRLS) for learning diverse ensemble constituents from di�erent samples of the data in-
stances and di�erent samples of the library of domain knowledge that is inspired by the
work of Panov and Dºeroski (2007).
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3.1 Simulating Ensembles of Process-Based Models

In all cases, the real-valued predictions of the constituent models are combined per time-
point, for each time-point separately. In the case of average, all base models participate in
the resulting simulation equivalently. For weighted average and weighted median schemes,
a con�dence β is calculated for each of the base models based on their performance error.
The base models with higher con�dence will contribute more in the resulting ensemble
simulation. The method for simulating an ensemble of PBMs is depicted in Algorithm 3.1.

Algorithm 3.1: Simulating ensembles of process-based models.
Input: ensemble, lib,D, scheme
Result: ŷe

1 Simulations← ∅ /* simulations from ensemble constituents */

2 ŷe ← ∅ /* ŷe: the resulting ensemble simulation */

3 forall {model, β} ∈ ensemble do
4 ŷ ← simulate(model,D)

5 if inrange(ŷ, lib) then
6 Simulations← Simulations

⋃
{ŷ, β}

end

7 else continue;
end

8 switch scheme do
case average do

ŷe ← average(Simulations)
end

case weighted average do
ŷe ← weightedAverage(Simulations)

end

case median do
ŷe ← median(Simulations)

end

case weighted median do
ŷe ← weightedMedian(Simulations)

end

end

It takes as input: a set of process-based models denoted with ensemble, the library
of domain knowledge lib, a data set D and a label scheme selecting the combination
scheme used. The resulting prediction of the ensemble is a trajectory denoted with ŷe.
First, each model from the set is simulated. The result of the prediction of an individual
model for a data set D is a trajectory ŷ. Each model is accompanied with a con�dence β,
calculated based on the performance on a validation data set. We use this coe�cient β in
the weighted combining schemes. The pairs of trajectories and con�dences {ŷ, β} resulting
from the simulation of the constituents in the ensemble is collected in the set Simulations.

In contrast to the task of obtaining an output from a regression model, where the
resulting prediction is a single point for a given input, the task of predicting with process-
based models is far more challenging. The simulation of a process-based model takes
as input the initial values of the endogenous variables and the complete trajectories of
the exogenous (forcing) variables. As output, it produces complete trajectories of the
endogenous variables. In a predictive scenario, this can often lead to divergent trajectories
and disastrous predictive misperformance. For this reason, we examine the simulated values
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of each prediction ŷ whether they satisfy the range of constraints given in the library of
background knowledge (line 5 in Algorithm 3.1). If a value from a prediction is outside the
range speci�ed in the library, the whole trajectory of that particular model is discarded,
i.e., is not taken into account when calculating the resulting ensemble prediction. In
this thesis, we use this kind of dynamic ensemble pruning as a standard technique when
selecting the ensemble constituents and simulating the ensemble prediction. Finally, the
valid simulations (denoted with Simulations) along with the respective con�dence βv are
combined in the resulting ensemble prediction.

3.2 Bagging of Process-Based Models

The method for bagging process-based models is presented in Algorithm 3.2. The method
takes four inputs: a library of domain knowledge lib, data consisting of training data DT

and validation data DV , an incomplete model incompleteModel, and an integer k denoting
how many base models are to be generated. The output is a set of process-based models
denoted with Ensemble. Using probmot(line 4 in Algorithm 3.2), we learn a set candidate
base models from di�erent random samples DS of the training data DT . The probmot

procedure follows the algorithm design principles of the process-based modeling paradigm,
and resembles Algorithm 2.1 in terms of inputs, outputs and �ow.

Algorithm 3.2: Constructing ensemble of process-based models with bagging.
Input: lib, {DT , DV }, incompleteModel, k
Output: Ensemble

1 Ensemble← ∅ /* set of base models */

2 for i = 1 to k do
3 DS ← sampleData(DT) /* randomly sample the training set DT */

4 modelListi ← probmot(lib,DS , incompleteModel)
5 bestModeli ← rank(modelListi, DV )

6 βi ←confidence(bestModeli, DV )

7 Ensemble← Ensemble
⋃
{bestModeli, βi}

end

The notable di�erence from bagging in the context of regression is that in this case the
data instances have a temporal ordering, which has to be retained in each data sample. To
achieve this, we implement sampling by retaining the order of the instances by introducing
a weight for each instance (time-point) that is provided as part of the data. The weight
corresponds to the number of times the instance has been selected in the process of sampling
with replacement (sample procedure). Instances that have not been selected (the ones with
weight 0) are simply omitted from the sample.

To take into account the weights when learning a model from the sample, we implement
the weighted root mean squared error (WRMSE) as an objective function in the process
of parameter estimation:

WRMSE(m) =

√∑N
t=0 ωt(yt − ŷt)2∑n

t=0 ωt
,

where yt and ŷt correspond to the measured and simulated values (simulating the base
model m) of the system variable y at time point t, N denotes the number of instances in
the data sample, and ωt denote the weight of the data instance at time point t.
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Algorithm 3.3: Procedure for calculating the con�dence of individual ensemble
constituents.
Input: model,D
Output: β

1 let ŷ /* simulated system variable y */

2 let y /* measured system variable y */

3 ŷ ←simulate(model,D)

4 MD ← sup(|yt − ŷt|)2, t = 0..N /* calculate maximum

discrepancy between

measurements y and

simulation ŷ, where N is

number of time-points in D

*/

5 Lt ←
|yt − ŷt|2

MD
, t = 0..N /* calculate square loss at time point t */

6 L̄← 1

N

N∑

t=0

Lt /* calculate average loss */

7 β ← L̄

1− L̄
/* calculate average confidence */

The output of a modeling task, when using ProBMoT, is a list of process-based models,
which is a posteriori sorted according to their performance (line 5 in Algorithm 3.2).
Depending on the input in the method, this ranking can be based either on the performance
on a separate validation data set DV , or on the training sample (if DV == DT ). The
highest ranked model from each modeling task i (out of k) denoted as bestModeli, is
selected to be an ensemble constituent in the output Ensemble.

Note that each ensemble constituent is paired with its own con�dence β. The procedure
for calculating the con�dence, presented in Algorithm 3.3, takes 2 inputs: the highest
ranked model returned by ProBMoT and a data set D. Fist the model is simulated on
the data set D resulting in a trajectory ŷ. Based on the error at each time point in the
trajectory an average loss L̄ is calculated for the model (6 in Algorithm 3.2). From this
loss, a con�dence measure β is derived, where low values of β denote high con�dence.
The β coe�cient is an indicator of the performance of the base model and is used in the
process of simulating the ensemble, i.e., combining the simulations of the constituents into
an overall ensemble prediction.

3.3 Boosting of Process-Based Models

The method for boosting of process-based models is presented in Algorithm 3.4. In analogy
to the previous method for bagging process-based models, it takes the same four inputs:
a library of domain knowledge lib, data consisting of training data DT and validation
data DV , incomplete model incompleteModel, and an integer k denoting how many base
models are to be generated. In contrast to bagging, however, here we start with the
complete training data set instead of a random bootstrap sample. To account for the
(re)sampling of the dataset for each succeeding boosting iteration, we use the same concept
of weighting each data/time-point. However here, instead of uniformly random choosing
the weights as in bagging, the weights are (re)calculated after every boosting iteration
(line 8 in Algorithm 3.4). The value of the weights directly relates to the error made by
the best performing model (measured on the training data) from the preceding iteration
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at the respective time point. In the learning phase, we also use the WRMSE objective
function, presented in Eq. 7.

Algorithm 3.4: Constructing ensemble of process-based models with boosting.
Input: lib, {DT , DV }, incompleteModel, k
Output: Ensemble

1 Ensemble← ∅ /* set of base models */

2 ωt ← 1, t = 0..N /* ωt is the weight of time

point t, where t = 0..N and

N is the number of

measurements in DT

*/

3 for i = 1 to k do
4 modelListi ← probmot(lib,DS , incompleteModel, ω)
5 bestModeli ← rank(modelListi, DV )

6 βi ←confidence(bestModeli, DV )

7 Ensemble← Ensemble
⋃
{bestModeli, βi}

8 ω ←reweight(modeli, DT , ω)

end

Algorithm 3.5: Procedure for calculating the training sample of the boosting iter-
ation.
Input: model,D, ω
Output: ω

1 let ŷ /* simulated system variable y */

2 let y /* measured system variable y */

3 ŷ ←simulate(model,D)

4 MD ← sup(|yt − ŷt|)2, t = 0..N /* calculate maximum

discrepancy between

measurements y and

simulation ŷ, where N is

number of time-points in D

*/

5 Lt ←
|yt − ŷt|2

MD
, t = 0..N /* calculate square loss at time point t */

6 L̄←
∑N

t=0 Lt
ωt∑N
t=0 ωt

/* calculate weighted average loss */

7 β ← L̄

1− L̄
/* calculate average confidence */

8 ωt ← ωtβ
1−Lt , t = 0..N /* update weights */

9 ω ←normalize(ω,N) /* normalize weights to N */

More speci�cally, the weighting procedure, presented in Algorithm 3.5, takes 3 inputs:
the highest ranked model (denoted with model) from the previous iteration, a data set D,
and the respective set of weights ω. While this function resembles the confidence function,
there are important di�erences: Here we consider a set of time-point wise weights and loss
(rather than a single overall loss), and we calculate this on the training data (in contrast
to validation data). First, the model is simulated on the data set D. Next, based on the
error at each time point in the trajectory and the set of weights ω, the weighted average
loss L̄ is calculated. Finally, the set of weights is updated: the smaller the loss, the more
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the weight is reduced � focusing on harder parts of the data set in the future iterations of
the algorithm.

The output of the boosting method is also a set of pairs (process-based models and
their respective con�dences) denoted with Ensemble. The highest ranked process-based
model from each boosting iteration is considered as an ensemble constituent, for which a
con�dence is calculated. As in bagging, the ranking can be based on the performance of
the process-based model on a separate validation data set DV , or on the training sample
(if DV == DT ).

3.4 Learning Process-Based Model Ensembles via Random

Library Subsamples

The method for learning ensembles of process-based models from random library subsam-
ples (RLS) is presented in Algorithm 3.6. The method takes �ve inputs: a library of
domain knowledge (lib), a dataset consisting of training data (DT ) and validation data
(DV ), an incomplete model (incompleteModel), a boolean variable (allowDuplicates),
and an integer k denoting how many base models are to be generated. The output is a set
of process-based models denoted with Ensemble.

For the task of sampling the library (line 3 in Algorithm 3.6), the process alternatives
are randomly sampled (excluded) from the original library. The sampling algorithm takes
as input the complete library and enlists all the process templates de�ning more than one
modeling choice. In turn, for each process template on the list, it takes a random sample of
the available modeling choices to be included in the sampled library. Note that the library
sampling does not assume a uniform distribution of samples: the probability of a library
sample is proportional to the size of the induced space of candidate models. In particular,
the probability of a library sample libS of the whole library lib equals

P (libS) =
|LS |∑

Li∈P(L)

|Li|
,

where L and LS ⊆ L correspond to the sets of candidate models induced by lib and
libS (for a given incomplete model speci�cation), respectively. Moreover, | · | denotes set
cardinality and P(L) denotes the powerset of L, i.e., the set of all the possible subsets of
L. For example, suppose we learn an ensemble by sampling the library from Table 2.1
from Section 2.1.4. This library has two template processes with process-alternatives,
i.e., the template processes GrowthRate and Respiration. Therefore, this library can
be sampled into nine di�erent valid sub-libraries: one (the original) from which eight
candidate models are induced, two libraries (by omitting one of the two alternatives of
Respiration) which result in four candidate models each, two (by omitting one of the two
alternatives of GrowthRate) which result in two candidate models each, and the remaining
four resulting in one candidate model each. The last four sub-libraries which employ one
process alternative (out of the two possible) are less likely to to be selected/generated
(1/24 each) than the rest sub-libraries where the probability is 1/3 for the �rst one, 1/6
for the next two, and 1/12 for the last remaining two.

Given that the method always takes as input the same original library, there is a high
probability of learning and choosing identical models from di�erent library samples, thus
�lling the ensemble constituent set with multiple copies of the same model. To account
for this, the method incorporates two di�erent alternatives for generating the ensemble
constituent set, i.e., with and without duplicates. For the former, duplicates are allowed



3.5. Learning Process-Based Model Ensembles via Bagging of Random Library Subsamples 51

Algorithm 3.6: Constructing ensemble of process-based models with random library
subsamples
Input: lib, {DT , DV }, incompleteModel, allowDuplicates, k
Output: Ensemble

1 Ensemble← ∅ /* set of base models */

2 repeat

3 libS ← sampleLib(lib) /* randomly sample the library lib */

4 modelListi ← probmot(libS , DT , incompleteModel)
5 bestModeli ← rank(modelListi, DV )

6 βi ←confidence(bestModeli, DV )

7 if allowDuplicates then
8 Ensemble← Ensemble

⋃
{bestModeli, βi}

end

9 else if bestModeli 6∈ Ensemble then
10 Ensemble← Ensemble

⋃
{bestModeli, βi}

end

until size(Ensemble) 6= k;

in the constituent set (line 7 in Algorithm 3.6). k library samples are generated (with k
denoting number of ensemble iterations), and the best model out of each modeling task
is chosen to be an ensemble constituent, regardless of whether that particular model was
already in the constituent set or not. For the latter, to incorporate more diversity in
the ensemble, the method generates library samples (and performs modeling tasks) until
the resulting ensemble contains k distinct constituents. Here, at line 9 in Algorithm 3.6
the method �rst checks whether the best learned model has already been included in the
ensemble.

Analogously to the previous methods, the output of the RLS method is a set of
pairs model-con�dence denoted with Ensemble. The highest ranked process-based model
learned from each subsample of the library is considered as an ensemble constituent, for
which a con�dence is calculated. Similarly, the ranking evaluation can be performed on a
separate validation data set DV , or on the whole training data set (if DV == DT ).

3.5 Learning Process-Based Model Ensembles via Bagging of

Random Library Subsamples

The last method that we propose combines the methods of bagging and random library sub-
samples. The algorithm for learning ensembles of process-based models with the bagging
random library subsamples (BRLS) method is presented in Algorithm 3.7. The method
takes four inputs: a library of domain knowledge (lib), a dataset consisting of training data
(DT ) and validation data (DV ), an incomplete model (incompleteModel) and an integer
k denoting how many base models are to be generated.

At each iteration, the BRLS algorithm learns a process-based model from di�erent
samples of the training data and the library. For the task of randomly sampling the data
instances, we use the same procedure as in bagging. Analogously, generating di�erent
subsamples of the library of domain knowledge, we reuse the probability sampling proce-
dure developed for the RLS method. BRLS is in the same framework with the previous
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Algorithm 3.7: Constructing ensemble of process-based models with bagging of
random library subsamples
Input: lib, {DT , DV }, incompleteModel, k
Output: Ensemble

1 Ensemble← ∅ /* set of base models */

2 for i = 1 to k do
3 libS ← sampleLib(lib) /* randomly sample the library lib */

4 DS ← sampleData(DT) /* randomly sample the training set DT */

5 modelListi ← probmot(libS , DS , incompleteModel)
6 bestModeli ← rank(modelListi, DV )

7 βi ←confidence(bestModeli, DV )

8 Ensemble← Ensemble
⋃
{bestModeli, βi}

end

three algorithms, thus the output, denoted with Ensemble, consists of pairs of process-
based models and their respected con�dences that are either calculated using a separate
validation data set DV , or on the training sample (if DV == DT ).

3.6 Complexity of Constructing Ensembles of Process-Based

Models

In order to properly assess the computational complexity of learning ensembles of process-
based model, we �rst need to establish the complexity of learning a single model that
will serve as a base line for comparison. Recall from Section 2.1.4 that the algorithm for
learning process-based models consists of two main sub-tasks: enumerating all possible
model structures, and estimating the parameters of each of them.

Fig 3.1 A presents a diagram of relative execution times for each of the tasks through
the prism of learning an example population dynamics model as described in Section 2.1.4.
The �rst task, the structure enumeration process (red box), is a traversal algorithm through
the space of model components, which is linear to the resulting number candidate modelsN
(�erepnalkoski, 2013). In this example, it results in 8 candidate models. Second, for each
of these candidates, a parameter estimation task is performed (blue box), the e�ciency of
which is related to the number of parameters each candidate model has and the number
of observed time points. Note that, even though the overall complexity of the parameter
estimation task is O(N), in most practical cases more than 99% of the computational time
is spent in this phase. At the end of each modeling task, we additionally rank (yellow
box) the learned models based on their performance on training/validation dataset. The
ranking task is performed by an insertion sort algorithm based on the models' performances
and has a complexity of O(N logN) (given that sorted list is maintained after every model
generation), where N is the number of candidate models. In this thesis we de�ne the
complexity of one iteration of ProBMoT, i.e. obtaining one process-based model as the
benchmark unit for assessing the complexity of learning di�erent ensembles of process-
based models.

Now, for analyzing the computational complexity of the di�erent methods for learning
ensembles of process-based models, suppose we learn ensembles with �ve constituents for
the same modeling task of population dynamics. Fig 3.1 B presents the computational time
needed for learning an ensemble using the bagging method. It is essentially a repetition
of the tasks needed for learning a single model for every ensemble constituent (separated
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by dashed line), with the exception of two additional tasks: one for sampling the training
data (gray box) at the beginning of each ensemble iteration, and one for simulating the
ensemble at the end (green box).

Even though the �gure depicts the serial implementation of bagging, this algorithm
handles the processes of learning di�erent base models completely independently. There-
fore, it can be parallelized to handle di�erent tasks with di�erent bootstrap replicates
on di�erent CPUs, which is very useful, performance-wise, for computationally intensive
learning tasks such as process-based modeling. The complexity of learning an ensemble
with boosting (Fig 3.1 C) resembles the one of bagging, though, the boosting algorithm
cannot be parallelized, as each new boosting iteration depends on the outcome of the pre-
vious one. This makes such ensembles ine�cient to learn, which is strongly felt when large
libraries are considered or/and the tasks involve learning many constituents.

The next method that we investigate is learning ensembles with the random library
subsamples method (Fig 3.1 D). While the algorithm (as presented in Algorithm 3.6)
is iterative, we can implement it much more e�ciently. Instead of sampling the space
of components (i.e., sampling the domain knowledge) and running ProBMoT with each
sample of the library, we can sample the generated search space and choose from the
candidate models. First we generate all the models from the original library and �t their
parameters. Next, we generate all the necessary library samples (orange box), and perform
the task of searching and sorting models which are determined by the particular subsample
of the library.

By transforming the sampling problem from sampling domain knowledge to sampling
the model structures from the complete search space, we minimize the number of ProBMoT
runs (to one), consequently substantially gaining computational e�ciency, as compared to
the other three ensemble methods using ProBMoT. Recall that selecting the constituent
set for such ensembles can be performed in two ways: with and without duplicates. For
the former, the execution time is correlated to the number of iterations needed (for this
example is �ve). For the latter, the execution time depends on the random generator: It
will either learn the constituents (in the best case) from as much libraries as iteration or
(in the worst case) it will �nally populate the constituent set with the last possible library.
For this example, it can take from a minimum of �ve (yellow boxes) to a maximum of
nine iterations (additional four opaque-yellow boxes). Finally, at the end an ensemble
simulation task is performed.

The last method proposed in this thesis is learning ensembles by bagging of random
library subsamples (Fig 3.1 E). This method in addition to learning the base models from
di�erent library subsamples, it also learns them from di�erent samples of the training data.
Here, �rst all the possible model structures are enumerated, followed by the procedure for
constructing di�erent library subsamples. Each of these subsamples is then given as an
input to the PBM algorithm, which also takes as input a sample of the training data.
Even though the BRLS cannot be as e�ciently implemented as the RLS method, it can
be parallelized, that is, every ensemble constituents can be learned on di�erent CPU. This
ability, coupled with the (smaller) subsamples of the library, which yields smaller sets of
candidate models, gives the BRLS method a signi�cant computational advantage over both
the methods of bagging and boosting.
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Chapter 4

Experimental Design

In this chapter, we present the setup of experiments used to evaluate the predictive per-
formance of the ensembles of process-based models. In the following sections, we �rst
introduce the data sets to be used in the experiments, then brie�y describe the two other
ProBMoT inputs, i.e., the library of modeling knowledge and incomplete models, and �-
nally de�ne the performance metrics used to assess the process-based models and ensembles
thereof.

4.1 The Data

The real-world data used in this study originates from three aquatic ecosystems: Lake Bled
in Slovenia, Lake Kasumigaura in Japan and Lake Zurich in Switzerland.

Lake Bled is located in the Julian Alps in north-western Slovenia and occupies an area
of 1.4 km2, with a volume of 0.0257 km3, a maximum depth of 30.1 m and an average
depth of 17.9 m. The measurements, performed by the Slovenian Environment Agency,
consist of physical, chemical and biological data for the period from 1996 to 2002. All the
measurements were performed once a month and depth-averaged for the upper 10 m of
the lake. To obtain daily approximations, the data was interpolated with a cubic spline
algorithm and daily samples were taken from the interpolation (Atanasova, Todorovski,
Dºeroski, Remec, et al., 2006).

Lake Kasumigaura is located 60 km to the north-east of Tokyo, Japan (36.0403◦N ,
140.3942◦E). It has an average depth of 4 m, a volume of 662 million cubic meters, and a
surface area of 220 km2. The data set comprises monthly measurements in the period from
1986 to 1992. Again, to obtain daily approximations, the measurements were interpolated
using linear interpolation and daily samples were taken from the interpolation (Atanasova,
Recknagel, et al., 2006).

Lake Zurich is located in the south-western part of the canton of Zurich in Switzerland
(42.1970◦N, 88.0934◦W ). It has an average depth of 49 m, volume of 3.9 km3 and a surface
area of 88.66 km2. The data comprises measurements performed by the Water Supply
Authority of Zurich in the period from 1996 to 2002. The measurements, taken once a
month, include pro�les of physical, chemical and biological variables from 19 di�erent sites.
They were weight averaged to the respective epilimnion (upper ten meters) and hypilimnion
(bottom ten meters) depths. The data was interpolated with a cubic spline algorithm and
daily samples were taken from the interpolation (Dietzel, Mieleitner, Kardaetz, & Reichert,
2013).

We use the same structure of population dynamics model in all three aquatic ecosys-
tems. It includes a single equation (ODE) for a system variable representing the phy-
toplankton biomass (measured as chlorophyll-a in Lake Kasumigaura). The exogenous
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variables include the concentration of zooplankton Daphnia hyalina (available only for
Bled and Zurich), dissolved inorganic nutrients of nitrogen, phosphorus, and silica (ammo-
nia in Lake Kasumigaura), as well as two input variables representing the environmental
in�uence of water temperature and global solar radiation (light).

Table 4.1: Overview of the data used for modeling population dynamics in the three lakes:
Lake Bled, Lake Kasumigaura and Lake Zurich.

Bled Kasumigaura Zurich

Environmental in�uence
Temperature Temperature Temperature

Light Light Light

Nutrients
Phosphorus Phosphorus Phosphorus

Nitrogen Nitrogen Nitrogen
Silica Ammonia Silica

Primary producer Phytoplankton Phytoplankton Phytoplankton

Zooplankton D. hyalina None D. hyalina

Training data (labels)
1996-2000 1986-1990 1996-2000
(B1�B5) (K1�K5) (Z1�Z5)

Validation data 2001 1991 2001

Test data 2002 1992 2002

Table 4.1 provides a summary of the data sets we used in the experiments. For each
aquatic ecosystem, we used seven data sets corresponding to the last seven years of available
measurements. Five of these were used (one at a time) for training the base-models, one
was used for validating the models in the process of selecting the ensemble constituents, and
one was used to measure the predictive performance of the learned models and ensembles.

In each learning experiment, we take a single (year) training data set, learn a single
model or an ensemble using the training and the validation data set, and test the pre-
dictive performance of the learned models on the test data set. We therefore perform 15
experiments. In the tables, we label them by the label of the training set used, which is
comprised of the initial letter of the lake name, followed by a digit for 1 to 5 correspond-
ing to each of the 5 consecutive years of measurements. The labels are therefore B1�B5,
K1�K5 and Z1�Z5, and B5, for example, denotes the measurements for Lake Bled taken
in the �fth year, i.e., the year 2000.

4.2 Modeling Knowledge

In the experiments performed, we use the library of domain knowledge for modeling pop-
ulation dynamics in aquatic ecosystems, presented by �erepnalkoski et al. (2012), �erep-
nalkoski (2013). This library is based on the previous work of Atanasova, Todorovski,
Dºeroski, and Kompare (2006). The library of domain knowledge, combined with the
modeling assumptions, results in 18144 candidate models for Lake Kasumigaura and 27216
candidates for the other two lakes.

Figure 4.1 illustrates a high-level overview of the library for modeling population dy-
namics in aquatic ecosystems. The library organizes the templates in hierarchies. The
hierarchy of entity templates (represented by thick horizontal lines in Figure 4.1) in aquatic
ecosystems includes the Ecosystem entity and the Environment entity templates at the
highest level. The Ecosystem entity template instantiates further on into Population
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and Nutrient entity templates, the �rst being further specialized into Zooplankton and
Primary producer entity templates.

Similarly, the process templates (represented by dashed lines, connecting the entity
templates) are also organized into a hierarchy. This hierarchy de�nes the space of modeling
alternatives. For example, the process Growth which de�nes the interaction of growth
of the PrimaryProducer in�uenced by the Nutrient and the Environment , is high in
the hierarchy of process templates. This process template can be further instantiated
to one of the possible alternatives of Logistic, Exponential or Limited which de�ne
the rate of growth. It is similar with the process template for the "inverse" interaction of
Respiration , which can be in�uenced by Metabolism or Temperature or can even have an
Exponential trend. The complete library of domain knowledge for modeling population
dynamics in aquatic ecosystems, presented in the process-based modeling formalism, is
given in Appendix A.

Note, however, an important di�erence between the setup of the bagging and boosting
experiments and the experiments performed with the methods of random library subssam-
ples and bagging of random library subsamples. In the last two, we use the whole library of
domain knowledge as described previously. The use of such library is prohibitive for bag-
ging and boosting, due to the high computational complexity considering the large space
of candidate models in each learning iteration. To address this issue, we use a simpli�ed
version of the original library that results in 320 candidate model structures for the two
Lake Kasumigaura and Arti�cial Lake Kasumugaura; and 128 candidates for the rest of
the lakes. We carefully prepared the simpli�ed library, omitting only modeling alterna-
tives (process templates) that are rarely observed to be among the top-ranked models in
the single-model experiments with ProBMoT. The issue of computational complexity of
learning ensembles of PBMs was already discussed in Section 3.6 in the previous chapter.

4.3 ProBMoT Settings

ProBMoT implements the Di�erential Evolution (DE) (Storn & Price, 1997) method for
parameter estimation. For the experiments performed in this paper, the DE parameters
were set as follows: a population size of 50, strategy rand/1/bin, di�erential weight (F )
and the crossover probability (Cr) of 0.6. The limit on the number of evaluations of the
objective function is one thousand per parameter. For simulating the ODEs, we used the
CVODE simulator (Cohen & Hindmarsh, 1996) with absolute and relative tolerances set
to 10−3.

4.4 Performance Evaluation Metrics

To evaluate the predictive performance of a given model m, we use the measure of relative
root mean squared error (ReRMSE) (Breiman et al., 1984), de�ned as:

ReRMSE (m) =

√∑n
t=0(yt − ŷt)2∑n
t=0(ȳ − ŷt)2

,

where n denotes the number of measurements in the test data set, yt and ŷt correspond
to the measured and predicted1 value of the system variable y at time point t, and ȳ
denotes the mean value of y in the test data set. Note that the usual root mean squared
error is observed here relative to the standard deviation of the system variable in the test

1Predictions are obtained by simulating the model m on the test set.
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data, hence allowing us to compare the errors of models for di�erent system variables with
measured values on di�erent scales (e.g., phytoplankton in di�erent lakes).

4.4.1 Evaluating diversity

To evaluate the conjecture that the power of ensembles is based on the exploitation of
the diversity of the ensemble constituents, we measure the diversity of the ensemble con-
stituents and correlate it to the performance improvement of ensembles over single models.
To measure the diversity of the base-models in the ensemble e, we measure the average
pairwise di�erence of the base model simulations

Diversity(e) =
1(|e|
2

)
∑

{m1,m2}⊂e

√∑n
t=0(y1,t − y2,t)2

n
,

where |e| denotes the number of base-models in the ensemble e, n the number of measure-
ments in the data set, m1 and m2 two models from e, and y1,t and y2,t the simulated values
of these models at time point t. To assess the performance improvement of the ensemble
e over a single model m, we calculate

Improvement(e,m) = −ReRMSE (e)− ReRMSE (m)

ReRMSE (m)
,

where the model m is learned from the complete training set, and the base-models from
the ensemble e are learned on di�erent bootstrap samples of the training set. We draw
a scatter plot that depicts the correlation between ensemble diversity and performance
improvement. Also we calculate both the Pearson Correlation Coe�cient and Spearman's
Rank Correlation Coe�cient between them, where the former indicates whether there is a
linear relation and the latter whether the relation between the performance improvement
and the intra-ensemble diversity has a monotonic trend.

4.4.2 Statistical comparison of performance

We observe and compare the predictive performance (in terms of ReRMSE) of the models
learned using di�erent algorithms on the 15 experiments. To properly assess the signi�cance
of the di�erences between the performances of models obtained with di�erent algorithms,
we follow the standard statistical procedure recommended by Dem²ar (2006). We use
the corrected (Iman & Davenport, 1980) Friedman test (M. Friedman, 1940), followed
by two post-hoc tests: the Nemenyi test (Nemenyi, 1963) and the Bonferroni-Dunn test
(Dunn, 1961). A positive outcome of the Friedman test indicates di�erence between the
performances of the di�erent algorithms considered. After the completion of the Friedman
test, we proceed with performing post-hoc tests to identify which di�erences are statistically
signi�cant.

The �rst post-hoc test, i.e, the Nemenyi post-hoc test, computes the critical distance
between the algorithm ranks at a given level of statistical signi�cance (in our case, we set
the signi�cance level threshold at 95%, p = 0.05). Only di�erences of the average ranks
larger than the critical distance are considered signi�cant; for those, we can claim that
one algorithm outperforms (i.e., performs signi�cantly better than) the other. This test is
performed to obtain an assessment of the relative performance of the methods considered.
In this paper, we perform this test to compare di�erent design decisions for the newly
proposed method. The results of the Friedman-Nemenyi tests are depicted by average
rank diagrams, where the critical distance is shown as a solid red line.
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The second post-hoc test, i.e., the Bonferroni-Dunn post-hoc test, is performed to
test how a proposed method performs in a comparison to other methods. This test is
similar to the Nemenyi test, where a critical distance between the algorithm ranks is
computed at a given level of signi�cance (in this paper the signi�cance level threshold is at
95%, p = 0.05), which denotes how one method (i.e, an ensemble learned using the library
sampling method) compares to the other existing methods for constructing ensembles of
process-based models (i.e., bagging, boosting) and a single model, in terms of predictive
performance. The results of the Friedman-Bonferroni-Dunn test are depicted by average
rank diagrams, where the critical distance is shown as a dashed blue line.
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In this part we present the results of the empirical analysis of the methodology for learn-
ing ensembles of process-based models. The evaluation follows the experimental design
presented in the previous chapter. In general, it serves both to �nd the optimal design
choices and to illustrate the utility of the di�erent algorithms for learning ensembles of
process-based models.

In order to provide a detailed evaluation we perform two series of experiments for each
algorithm of learning ensembles. In the former, we perform a comparative analysis of using
(1) di�erent methods for selecting the ensemble constituents that will be included in the
ensemble, (2) di�erent methods for combining the simulations of the ensemble constituents
in the ensemble, and (3) di�erent number of constituents in the ensemble. Based on
the results of this comparative analysis, we make a set of (optimal) choices that we use
for learning ensembles of process-based models. In the latter, we aim at analyzing the
predictive performance of ensembles of process-based models. In particular, we test the
central hypothesis of this thesis that ensembles of process-based models yield a predictive
improvement compared to a single process-based model.

The ensemble framework is evaluated on predictive tasks of modeling population dy-
namics in aquatic ecosystems. The tasks include predictive modeling of phytoplankton
concentration in three real-world lake domains of Lake Bled in Slovenia, Lake Kasumi-
gaura in Japan and Lake Zurich in Switzerland. An overview of the real-world data is
outlined in Chapter 4, whereas the complete library used for modeling aquatic ecosystems
is given in Appendix A.

Given the fact that in this thesis we devolved several algorithms for learning homoge-
neous ensembles of process-based models, in the following sections we present the results
based on the type of the ensembles learned. Chapter 5 presents the results of the em-
pirical evaluation performed with ensembles learned with sampling data instances. Next,
Chapter 6 outlines the results of the analysis performed for ensembles learned by sampling
the library of domain knowledge. The results of the experiments performed with ensem-
bles which are learned both by sampling the data and sampling the library of domain
knowledge are presented in Chapter 7. In the last series of experiments, i.e. Chapter 7.3,
we investigate whether the performance improvement is correlated to the diversity of the
predictions of the ensemble constituents.

Note that some of the results in this thesis were already published in peer-reviewed
journals. For that reason, this chapter embodies verbatim copies of the studies:

Simidjievski, N., Todorovski, L., & Dºeroski, S. (2015a). Learning ensembles of population
dynamics models and their application to modelling aquatic ecosystems. Ecological
Modelling, 306, 305�317.

Simidjievski, N., Todorovski, L., & Dºeroski, S. (2015b). Predicting long-term population
dynamics with bagging and boosting of process-based models. Expert Systems with
Applications, 42 (22), 8484�8496.
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Simidjievski, N., Todorovski, L., & Dºeroski, S. (2016). Modeling dynamic systems with
e�cient ensembles of process-based models. PLoS ONE, 11 (4), 1�27.

More speci�cally, the proof-of-concept study about the validity of the ensembles of
process-based models, in particular bagging of process-based models, is presented in the
paper titled "Learning ensembles of population dynamics models and their application to
modelling aquatic ecosystems" in Chapter 5. Next, the details of both bagging and boosting
algorithms in terms of their methodology are presented in the paper, provided also in
Chapter 5, titled "Predicting long-term population dynamics with bagging and boosting of
process-based models". Finally, the method for learning ensembles from random library
subsamples together with the complete empirical analysis is presented in Chapter 6, in
the publication titled "Modeling dynamic systems with e�cient ensembles of process-based
models".

Summary of the Results

The results of the experiments can be summarized as follows. When learning ensembles
of process-based models, one should use a separate validation data set in addition to
the training one when learning the base-models included in the ensemble. This yields
more robust ensembles, which in turn substantially improve the predictive performance.
For combining the simulation of constituent process-based models, one should use the
simplest combining scheme, i.e., averaging. The optimal ensembles of PBMs consist of
a relatively small number of constituent models, ranging from 10 for the RLS method
to 25 for the rest of the ensemble methods: bagging, boosting and BRLS. The process-
based models, when simulated in a predictive setting, often produce divergent simulations,
i.e., simulations where the systems variables leave their plausible ranges. Therefore, when
simulating ensembles of PBMs, one should explicitly handle this kind of behavior of the
base models. The proposed method in this thesis uses the provided domain knowledge
on system variable ranges to discard the invalid behaviors from the resulting ensemble
prediction. This can be viewed as a dynamic form of ensemble simulation.

The evaluation of the predictive performances of the single models and the four ensem-
bles of PBMs learned is performed on predictive modeling tasks of modeling population
dynamics in three real-world lakes. The results con�rm the superiority of ensembles to
a single model. The ensemble methods are far more robust than single models, which
severely under-perform in several cases. In cases where single models outperform ensem-
bles, the di�erence in performance when compared with the top-ranked ensemble method
for the particular case is minor. On the other hand, the proposed ensemble methods can-
not be distinguished in terms of performance. The di�erences in performances between
the models obtained with the di�erent ensemble methods are often minor and negligible.

In order to compare the proposed ensemble methods, we need to relate them to three
criteria: average predictive performance, robustness and computational e�ciency. Based
on the �rst criterion, the winner is the BRLS method. The results of the average ranks
show that the BRLS overall outperforms the other three methods, more speci�cally in 6
out of 15 cases. However, the BRLS method also severely underperforms compared to the
single model in one case. Based on the second criterion, the boosting method is the most
robust. Overall, boosting ensembles exhibit a stable behavior, which translates to predic-
tive improvement in performance over the single model in cases when the other ensemble
methods fail. Finally, the comparative analysis of the computational performances reveals
that RLS ensembles are learned in a time comparable to the time needed to learn a sin-
gle model. This is orders of magnitude faster when compared to bagging (nearly 25 times
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slower), boosting (nearly 25 times slower), and BRLS (nearly 15 slower) counterparts. This
is a non-trivial advantage in computational e�ciency as compared to the other methods
for learning ensembles of process-based models.

Finally, we observed a varying degree of diversity between ensemble constituents for
di�erent data sets. Moreover, the measured correlation coe�cients did not show any
signi�cant linear and/or monotonic relationship between the predictive improvement in
performance and the intra-ensemble diversity.
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Chapter 5

Learning Ensembles via Sampling

Data Instances

In this chapter, we present the results of the empirical evaluation concerned with learning
ensembles by sampling the data instances. We �rst explore the results obtained by predic-
tive modeling phytoplankton concentration in real-world lakes. These results are already
published in two journal publications, attached in the remainder of this chapter.

The �rst study in this chapter titled "Learning ensembles of population dynamics and
their application to modelling aquatic ecosystems", addresses the question whether ensem-
bles of process-based models can be employed for predictive modeling tasks of dynamic
systems. More speci�cally, this proof-of-principle study proposes that an ensemble method
such as bagging, when applied in the context of process-based modeling for tasks of mod-
eling dynamic systems, can yield to improved long-term predictive performance.

The ensemble method is evaluated on a set of predictive tasks of modeling population
dynamics in aquatic ecosystems. Data on three lake ecosystems are used, together with
a library of process-based knowledge on modeling population dynamics. Based on the
evaluation results, the aim is to identify the optimal settings of the method for learning
ensembles of process-based models, i.e., the optimal number of ensemble constituents, as
well as the optimal way to select and combine them. Moreover, the aim is to investigate
whether the ensembles of process-based models can accurately simulate the current and
predict the future behavior of the three aquatic ecosystems.

The results of the experiments can be summarized as follows. When learning ensembles
of process-based models using bagging, one should use a separate validation data set in
addition to the training one when learning the base-models included in the ensemble.
For combining the simulation of constituent process-based models, one should use the
simplest combining scheme, i.e., averaging. The optimal ensembles of PBMs consist of a
relatively low number of constituent models, ranging between 10 and 25. The process-based
models, when simulated in a predictive setting, can often produce divergent simulations,
i.e., simulations where the systems variables leave their plausible ranges. Therefore, when
simulating ensembles of PBMs, one should explicitly handle this kind of behavior of the
base models. To this end, we use the provided domain knowledge on system variable ranges
to discard the invalid behaviors from the resulting ensemble prediction. This can be viewed
as a dynamic (domain-knowledge based) form of ensemble pruning.

Next, the ensembles of 25 base-models selected using a validation data set and combined
with the average combining scheme signi�cantly outperform single models of population
dynamics in aquatic ecosystems. The improvement of performance between the ensembles
and the single models is positively related to the diversity of the ensemble constituents �
the higher the diversity, the greater the improvement. However, the correlation between
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the diversity and the performance gain is weak and negligible, as a consequence of modest
diversity between the ensemble constituents. Finally, the simulations of the ensembles
show that ensembles are applicable for both predictive modeling tasks, where prediction
of the future system behavior (test data error estimates) is of central interest, as well as
descriptive modeling tasks, where the focus is on explaining the observed behavior (training
data error estimates).

The second study titled "Predicting long-term dynamics with bagging and boosting of
process-based models", extends the limited proof-of-principle scope of the previous study,
where a single ensemble method of bagging process-based models is employed, towards
proposing a general methodology for learning ensembles of process-based models by sam-
pling the data instances. Motivated by the already presented limitations of the state-of-
the-art paradigm of process-based modeling, that is, process-based models have a limited
ability to accurately predict the future behavior of an observed system, we implement two
approaches of learning ensembles, i.e, bagging and boosting of process-based models. In
this study, we perform an empirical evaluation of the implemented methods on three real-
world modeling problems from the domain of population dynamics in aquatic ecosystems.
The results of the empirical evaluation again con�rms that ensembles of process-based mod-
els can lead to long-term predictions of the population dynamics that are more accurate
than the ones obtained with a single process-based model.

More speci�cally, the results presented in this study empirically con�rm that ensembles
of process-based models yield a signi�cant gain in predictive performance when compared to
single models. Based on the empirical evaluation, we identi�ed the main design decisions
that need to be made when learning such ensembles by using bagging and boosting as
underlying methods. In this context, it is important that one uses a separate validation
data set in addition to the training one when learning the base models included in the
ensemble. The optimal ensembles of PBMs consist of relatively low numbers of constituent
models, ranging between 10 and 25 for bagging and 25 to 50 for boosting (for both methods,
the best performing ensembles comprised 25 constituents). For combining the simulation
of the constituent process-based models, the results showed that the simplest combining
scheme, i.e averaging, provides the most satisfying results both in terms of predictive
accuracy and computational complexity. Note that these �ndings are in line with our
previous conclusions derived from the previous study.

Finally, our major conclusion is that both methods for learning ensembles of process-
based models, following the optimal design decisions outlined above, outperform single
process-based models. More importantly, bagged process-based models provide a signi�-
cant performance gain over a single model.
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a b s t r a c t

Ensemble methods are machine learning methods that construct a set of models and combine their
outputs into a single prediction. The models within an ensemble can have different structure and param-
eters and make diverse predictions. Ensembles achieve high predictive performance, benefiting from the
diversity of the individual models and outperforming them.

In this paper, we develop a novel method for learning ensembles of process-based models. We build
upon existing approaches to learning process-based models of dynamic systems from observational data,
which integrates the theoretical and empirical paradigms for modelling dynamic systems. In addition to
observed data, process-based modelling takes into account domain-specific modelling knowledge.

We apply the newly developed method and evaluate its utility on a set of problems of modelling
population dynamics in aquatic ecosystems. Data on three lake ecosystems are used, together with a
library of process-based knowledge on modelling population dynamics. Based on the evaluation results,
we identify the optimal settings of the method for learning ensembles of process-based models, i.e., the
optimal number of ensemble constituents (25) as well as the optimal way to select (using a separate
validation set) and combine them (using simple average). Furthermore, the evaluation results show
that ensemble models have significantly better predictive performance than single models. Finally, the
ensembles of process-based models accurately simulate the current and predict the future behaviour of
the three aquatic ecosystems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical models are widely used to describe the struc-
ture and predict the behaviour of dynamic systems under various
conditions. Constructing such a model is a process that uses both
expert knowledge and measured data about the observed system.
The main challenge is integrating these two into an understandable
model within the laws of nature.

Two major paradigms for constructing models of dynamic
systems exist: theoretical (knowledge-driven) and empirical (data-
driven) modelling. Following the first paradigm, domain experts
establish an appropriate structure of the model and calibrate its
parameters in an automatic fashion using measured data. The sec-
ond approach uses measured data to search for such a combination

∗ Corresponding author at: Department of Knowledge Technologies, Jožef Stefan
Institute, Ljubljana, Slovenia. Tel.: +386 1 477 3635.

E-mail addresses: nikola.simidjievski@ijs.si (N. Simidjievski),
ljupco.todorovski@fu.uni-lj.si (L. Todorovski), saso.dzeroski@ijs.si (S. Džeroski).

of model structure and parameter values that leads to simulated
behaviour that fits the measurements well. In both approaches,
the models are often formulated as ordinary differential equations
(ODEs).

Within the area of computational scientific discovery (Langley
et al., 1987), a sub-field of equation discovery has emerged that
studies methods for learning the model structure and parame-
ter values of dynamic systems from observations (Džeroski and
Todorovski, 2003; Bridewell et al., 2008). The state-of-the-art
approaches in this area, referred to as process-based modelling
(Bridewell et al., 2008; Čerepnalkoski et al., 2012), integrate the
theoretical and the empirical paradigm to modelling dynamic sys-
tems. A process-based model (PBM) provides an abstraction of the
observed system at two levels: qualitative and quantitative.

At the qualitative level, a process-based model comprises enti-
ties and processes. Entities correspond to agents involved in the
modelled system, whereas processes represent the relations and
interactions between the entities. This results in an interpretable
model of a system, explaining the structure of the observed system.
On the other hand, at the quantitative level, the entities define a set

http://dx.doi.org/10.1016/j.ecolmodel.2014.08.019
0304-3800/© 2014 Elsevier B.V. All rights reserved.
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Fig. 1. The internal structure of entities and processes in process-based models.

of variables and constants, and the processes are annotated with
equations modelling the underlying relations and interactions. At
this level, we can transform a process-based model to a system of
ODEs and simulate its behaviour.

Following the process-based modelling approach, we can gen-
eralize specific entities and processes into template entities and
processes in a given modelling domain. A collection of such tem-
plate entities and processes is called a library of process-based
domain-specific knowledge. In modelling aquatic ecosystems, such
a library of model components has been proposed by Atanasova
et al. (2006b). The library defines a set of template entities, i.e.,
nutrients, primary producers, animals and environment, that typi-
cally occur in aquatic ecosystems (Luenberger, 1979). These entity
templates are used to define template processes that provide
recipes for modelling food-web interactions between the aquatic
ecosystem entities. The knowledge encoded within the template
entities and processes allow for automated modelling of popula-
tion dynamics in aquatic ecosystems from measurements of system
states (e.g., nutrients and species concentrations) through time.
Process-based modelling software can then integrate the encoded
knowledge with the measured system behaviour into a PBM of the
observed system.

In our previous work, we have shown the utility of the process-
based modelling approach for modelling population dynamics in
a number of natural lakes (Čerepnalkoski et al., 2012) and marine
ecosystems (Bridewell et al., 2008). Note however, that these stud-
ies focused on establishing descriptive, explanatory models of the
population dynamics in aquatic ecosystems and the obtained mod-
els were analyzed and simulated on the same data that were
used for learning them. In particular, they aimed to identify the
limiting factors of the phytoplankton growth in the observed sys-
tems that are evident from the qualitative level of the learned
process-based models. The generalization power of the obtained
process-based models in terms of their ability to predict the future
behaviour of the observed systems was not investigated in these
studies.

In this study, we shift our focus towards the predictive per-
formance of process-based models. The results of the preliminary
experiments indicate the tendency of process-based models to
overfit: While focusing on the provision of detailed and accu-
rate descriptions of the observed systems, PBMs fail to accurately
predict future system behaviour. To address this limitation of
process-based models, we propose here a standard method for
improving the predictive performance of models in machine learn-
ing, the use of ensembles. The idea of ensembles is to learn a set of
predictive models (instead of a single one) and then combine their
predictions. The prediction obtained with the ensemble is expected
to be more accurate than the one obtained with a single model
(Maclin and Opitz, 1999; Rokach, 2010).

The main contribution of this paper is a novel method for learn-
ing ensembles of process-based models. For tasks such as modelling

the behaviour of ecosystems, the ensembles are usually employed
in the context of learning tasks for classification and regression
(Crisci et al., 2012; Knudby et al., 2010). However, to the best of our
knowledge ensembles of process-based models have not yet been
addressed in this context, and considered for tasks for modelling
ecosystems.

We test the utility of the newly developed method for predic-
tive modelling of population dynamics in lakes. To this end, we
conjecture that ensembles of PBMs, similarly to other types of
ensembles in machine learning, will improve the predictive per-
formance of single models and lead to satisfactory prediction of
future behaviour of the observed aquatic ecosystems. To test this
hypothesis, we experiment on a series of tasks of modelling pop-
ulation dynamics in three lakes: Lake Bled, Lake Kasumigaura and
Lake Zurich. From each lake we use seven yearly data sets, using six
for learning and one for testing the predictive performance of the
learned models. The aim of the experiments is two fold: Beside
validating our central hypothesis (that ensembles perform bet-
ter than single models), we also seek appropriate design choices
related to our method for building ensembles of process-based
models.

The remainder of this paper is organized as follows. Section 2
introduces the novel approach to learning ensembles of process-
based models by discussing the task of automated modelling of
dynamic systems – the process-based modelling approach, and
focuses on a recent contribution to the area of automated pro-
cess modelling, i.e., the ProBMoT tool. Section 3 describes ensemble
methods in general and their adaptation for process-based mod-
elling in particular. The design of the experiments, the evaluation
measures and the data sets used are described in Section 4. Section 5
presents the results obtained the experimental evaluation. In Sec-
tion 6, we discuss the contributions of this paper and overview the
related work. Finally, Section 7 summarizes the work presented in
this paper and discusses directions for further work.

2. Process-based modelling and ProBMoT

Equation discovery is the area of machine learning that aims at
developing methods for learning quantitative laws, expressed in
the form of equations, from collections of observed data. Recently,
equation discovery methods have been used in the context of
learning models of dynamic systems (Todorovski and Džeroski,
2007; Džeroski and Todorovski, 1993). The state-of-the-art equa-
tion discovery methods for modelling dynamic systems, referred
to as process-based modelling (Bridewell et al., 2008; Džeroski and
Todorovski, 2003) integrate domain-specific modelling knowledge
and data into explanatory models of the observed systems. In the
rest of this section, we briefly introduce the process-based mod-
elling approach and then describe its particular implementation
within the ProBMoT software platform.
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Fig. 2. The library of modelling knowledge comprising template entities (thick horizontal lines) and processes (dashed lines connecting the entities) for modelling population
dynamics in aquatic ecosystems.

2.1. Process-based modelling

Process-based models provide a description of the observed sys-
tem at two levels of abstraction. At the upper, a qualitative level,
process-based model consists of entities and processes. The entities
represent the main components of the observed system, whereas
the processes correspond to the interactions between the system
components. At the qualitative level, process-based models provide
insight into the high-level conceptual structure of the system. How-
ever, this high-level description does not provide enough details
that would allow for simulation of the system behaviour.

On the other hand, at the quantitative level, entities and
processes provide further modelling details that allow for the trans-
formation of PBMs to ODEs and therefore simulation of the system.
Fig. 1 depicts the internal structure of entities and processes, which
defines a number of properties as follows.

Entities comprise variables and constants related to the compo-
nents of the observed system. For example, an entity representing
phytoplankton in an aquatic ecosystem would include a variable
corresponding to its concentration, that changes through time, and
a constant, corresponding to its maximal growth rate. Each entity
variable has three important properties: the role in the model, the
initial value and the aggregation function. The role of the vari-
able in the model can be endogenous, i.e., representing internal
system state, or exogenous, i.e., representing an input external to
the system (not modelled within the system). An example of an
endogenous variable in an aquatic ecosystem is the concentration
of phytoplankton, while the water temperature is often treated
as exogenous. Initial values of endogenous variables are necessary
for model simulation. Moreover, each endogenous variable has its

constraints defined, which limit the set of feasible values of the
variable (for example, the concentration of the phytoplankton can
neither be negative nor exceed 100 gWM/m3). Finally the aggrega-
tion function for a variable specifies how influences from multiple
processes on the specific variable are need to be combined, e.g.,
additively or multiplicatively.

The processes include specifications of the entities that interact,
equations, and sub-processes. Consider the process of phytoplank-
ton growth. It involves the phytoplankton as well as the growth
limiting factors of nutrients and the environment. Equations pro-
vide the model of the interaction represented by the process and
contains variables and constants from the entities involved in the
corresponding interaction. In the phytoplankton growth example,
an equation would define the mathematical model for calculat-
ing the growth rate. Finally, each process can include a number
of sub-processes related to different aspects of the interaction.
For example, the mathematical term of temperature limitation of
growth (or nitrogen/nutrient), can be specified in an appropriate
temperature (or nitrogen) limitation sub-process of the growth
process. Sub-processes improve both the interpretability and the
modularity of process-based models (Bridewell et al., 2008).

The entities and processes represent specific components and
interactions observed in the particular system at hand. The process-
based modelling approach allows for a higher-level representation
of domain-specific modelling knowledge, employing the concepts
of entity and process templates. They both provide general mod-
elling recipes that can be instantiated to any specific components
or interactions in the system. The phytoplankton entity from the
example above is an instance of the general template entity of
primary producer. Similarly, particular model of phytoplankton
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Fig. 3. The architecture of the ProBMoT platform for process-based modelling.

growth used in the above example process, is an instance of the
more general growth process template. The template entities and
processes are collected together into a library of components for
modelling systems in a given domain of use.

Fig. 2 represents a high-level overview of the library for mod-
elling population dynamics in aquatic ecosystems proposed by
Atanasova et al. (2006b). The library organizes the templates in
hierarchies. The hierarchy of entity templates (represented by thick
horizontal lines in Fig. 2) in aquatic ecosystems includes the ecosys-
tem entity and the environment entity templates at the highest
level. The ecosystem entity template instantiates further on into
population and nutrient entity templates, the first being further
specialized into zooplankton and primary producer entity tem-
plates. Similarly, the process templates (represented by dashed
lines, connecting involved entity templates) are organized into
a hierarchy that defines the space of modelling alternatives. For
example, the growth of a primary producer can be logistic, expo-
nential or limited.

When learning process-based models, the entity and process
templates from the library are instantiated to specific entities and
processes corresponding to the observed system. These specific
entities and processes represent model components that can be
in turn used to define the set of candidate model structures. The
algorithm for learning models employs knowledge-based meth-
ods from artificial intelligence to enumerate all candidate model
structures. To evaluate a structure, the learning algorithm performs
parameter estimations fitting the values of the constant model
parameters that minimize the model error, i.e., the discrepancy
between the model simulation and the observed system behaviour.
The parameter estimation employs non-linear optimization to min-
imize the model error. Finally, the obtained models are sorted by
decreasing model error and the best-ranked model is considered to
be the result of the learning process.

Basic automated modelling algorithms perform exhaustive
search through a constrained space of candidate process-based
models, limiting the number of processes in the model (Bridewell
et al., 2008). Advanced learning algorithms, such as Lagramge2.0
(Todorovski and Džeroski, 2007) and HIPM (Hierarchical Induc-
tive Process Modelling) (Todorovski et al., 2005), perform heuristic
search and allow for more sophisticated hierarchical constraints
on the plausible process combinations. In the remainder of this
section we will briefly describe the most recent implementation of
the PBM approach, called ProBMoT, which stands for Process-Based
Modelling Tool (Čerepnalkoski et al., 2012).

2.2. ProBMoT

Fig. 3 represents the architecture of the ProBMoT soft-
ware platform for process-based modelling. ProBMoT supports
the simulation, parameter estimation and automated learning

of process-based models. ProBMoT follows the PBM approach
described above.

The first input to ProBMoT is the conceptual model of the
observed system. The conceptual model specifies the expected
logical structure of the expected model in terms of entities and
processes that we observe in the system at hand. ProBMoT com-
bines the conceptual model with the library of modelling choices
to obtain a list of candidate model structures. For each model
structure, the parameter values are estimated to fit the observed
behaviour of the modelled system.

The parameter estimation process is based on the meta-
heuristic optimization framework jMetal 4.4 (Durillo and Nebro,
2011) that implements a number of global optimization algo-
rithms. In particular, ProBMoT uses the Differential Evolution (DE)
(Storn and Price, 1997) optimization algorithm. For simulation pur-
poses, each process-based model is first transformed to a system
of ODEs. In turn, ProBMoT employs the CVODE (C-package for
Variable-Coefficient ODE) solver from the SUNDIALS suite (Cohen
and Hindmarsh, 1996).

ProBMoT implements a number of measures of model perfor-
mance: the sum of square errors (SSE) between the simulated
and observed behaviour, and several variants thereof. The lat-
ter include mean squared error (MSE), root mean squared error
(RMSE), relative root mean squared error (ReRMSE) and weighted
root mean squared error (WRMSE). The last two are used in the
experiments presented here, and will be explained in greater detail
later, together with the particular ProBMoT parameter settings.

3. Ensemble methods and ensembles of process-based
models

Learning ensembles is an established method for improving the
predictive performance of models in machine learning (Okun et al.,
2011), however learning ensembles of process-based models has
not been considered so far. In this section, we define ensembles
of process-based models and corresponding methods for learn-
ing them. First, however, we provide a brief overview of classical
ensemble methods in machine learning.

An ensemble is a set of models (referred to as base-models or
ensemble constituents) that is expected to lead to predictive per-
formance gain over a single model. The idea behind ensembles is to
improve the overall predictive power by combing the predictions
of individual base-models. An ensemble method consists of three
main components: a technique for learning/generating a set of can-
didate base-models, a technique for selecting the base-models that
constitute the ensemble, and a combining scheme specifying how
the base-model predictions are aggregated into an ensemble pre-
diction.

Based on how the candidate base-models are learned, the
ensembles can be homogeneous or heterogeneous. In homoge-
neous ensembles, the base-models are learned with the same
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learning algorithm, but from different samples of the training
data. Commonly used sampling variants include: sampling of data
instances (bagging Breiman, 1996a, boosting Freud and Schapire,
1999), sampling of data features/attributes (random subspaces Ho,
1998) or both (random forests Breiman, 2001). On the other hand, in
heterogeneous ensembles, the candidate base-models are learned
using different learning algorithms (e.g., stacking Wolpert, 1992).

After we have generated the candidate base-models, we have
to select the ones to be included in the ensemble. Most classical
ensemble methods would typically use all the candidate models as
ensemble constituents. In contrast, ensemble pruning techniques
can be used to learn small-size ensembles (thus reducing the com-
putational complexity) and improve ensemble robustness, e.g., in
the case of bagging (Zhou et al., 2002).

Finally, the combining scheme depends on the type of the base-
models. In the case of classification models that predict qualitative
values, different voting scheme are employed. In the case of regres-
sion models that predict numeric values, the alternatives include
average, weighted average and weighted median (Drucker, 1997).

In this paper, we adapt the well-known bagging method for
learning homogeneous ensembles where the training data is
modified by sampling the data instances. The bagging method,
introduced by Breiman (1996a), is one of the earliest and sim-
plest ensemble learning methods. It first randomly samples data
instances, with replacement, to obtain several bootstrap replicates
of the training data. Next, a candidate base model is learned from
each of the different bootstrap replicates. An important property
of bagging is that it can be implemented as a parallel algorithm,
which is due to the fact that it handles each bootstrap sample
independently.

In the continuation of this section, we introduce a novel
approach to learning ensembles of process-based models. This
approach follows the bagging idea introduced above. We are going
to introduce it following the three-components structure of ensem-
ble methods as outlined above.

3.1. Learning individual process-based models

Using ProBMoT, we learn the individual candidate base-models
from different samples of the observed behaviour at hand. The
notable difference from bagging in the context of regression is that,
in our case, the data instances have temporal ordering that has to
be preserved in each data sample. To achieve this, we implement
the sampling by introducing weights for each instance. The weight
corresponds to the number of times the instance has been selected
in the process of sampling with replacement. Instances that have
not been selected (the ones with weight 0) are simply omitted from
the sample. From each sample, a PBM is learned with ProBMoT.

To account for the instance weights when learning a model from
the sample, we employ the weighted root mean squared error in
ProBMoT:

WRMSE(m) =

√∑n
t=0ωt ∗ (yt − ŷt)

2

∑n
t=0 ωt

. (1)

Here yt and ŷt correspond to the measured and simulated values
(simulating the base model m) of the system variable y at time
point t. n denotes the total number of instances in the data sample
and ωt denotes the weight of the data instance at time point t.

3.2. Selecting and combining process-based models into an
ensemble

When learning a PBM from each data sample, ProBMoT selects
the top-ranked model as a result. However, we can use two alter-
native data sets to calculate the error used to rank the models in

Table 1
Predictive performance (ReRMSE on the testing data) errors of the complete and
pruned ensembles and the number of base-models pruned from the 100 model
ensembles learned on 15 data sets, described in see Section 4.3.

Case Complete Pruned # base-models pruned

B1 1.8E+03 1.055 53
B2 1.243 1.243 0
B3 17.037 1.046 11
B4 0.737 0.737 1
B5 0.625 0.625 0
K1 9.2E+01 0.927 19
K2 4.482 1.840 98
K3 4.0E+04 0.907 17
K4 0.823 0.988 9
K5 0.978 0.978 0
Z1 1.105 1.028 2
Z2 1.187 1.077 3
Z3 8.579 1.212 6
Z4 0.972 0.972 0
Z5 2.8E+01 1.390 24

ProBMoT. By default, ProBMoT ranks the models using the error on
the training data sample; we refer to this selection method as regu-
lar. In contrast, the validation selection method employs a separate
validation data set to calculate the error used for model ranking in
ProBMoT.

In order to simulate an ensemble, we need to simulate every
candidate base model. The resulting ensemble simulation is a
combination of the predictions of all individual base-models in
the respective time point. In our case, we use average, weighted
average and weighted median as combining schemes: These are
commonly used for tasks such as regression (Drucker, 1997). In the
case of average, all base-models participate in the resulting simula-
tion equivalently. For the weighted average and weighted median
schemes a confidence is calculated for each of the base-models with
respect to their performance error. The base-models with higher
confidence will dominate in the resulting ensemble simulation.

However, some of these simulations may not be valid, i.e., may
not satisfy the constraints given in the library of background knowl-
edge. In this case, we perform ensemble pruning, i.e, we discard
these base-models from the resulting ensemble. Bellow, we illus-
trate the necessity of using ensemble pruning by comparing two
ensembles with 100 base-models.

Table 1 presents the results of the comparison of two ensembles,
complete and pruned, and the number of candidate base-models
discarded, in terms of performance error on the test data sample
(see Section Section 4.3) for 15 different cases. From the table, we
can see that in all but one experimental data set (K4), the pruned
ensemble outperforms (or is equal in performance to) the complete
ensemble. Note also that, in several cases (B1, B3, K1, K3, Z5) the
performance of the ensemble is significantly improved. By discard-
ing the base-models with unstable simulations from the ensemble,
we can ensure valid ensemble prediction and a stable simulation. In
this paper, we use ensemble pruning of this kind as a standard tech-
nique when selecting the ensemble constituents and simulating the
ensemble prediction.

4. Experimental setup

In this section, we present the setup of the experiments we per-
formed to empirically evaluate the performance of the method for
learning ensembles of process-based models. We perform the eval-
uation on tasks of modelling population dynamics in three aquatic
ecosystems: Lake Bled in Slovenia, Lake Kasumigaura in Japan, and
Lake Zurich in Switzerland. The goal of our empirical evaluation is
twofold.

First, we are looking for a set of optimal design decisions related
to the algorithm for learning ensembles. In particular, we want
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Table 2
Overview of the data used for modelling population dynamics in the three lakes: Lake Bled, Lake Kasumigaura and Lake Zurich.

Bled Kasumigaura Zurich

Environmental
influence

Temperature Temperature Temperature
Light Light Light

Nutrients
Phosphorus Phosphorus Phosphorus
Nitrogen Nitrogen Nitrogen
Silica Ammonia Silica

Primary producer Phytoplankton Phytoplankton Phytoplankton

Zooplankton D. hyalina None D. hyalina

Training data (labels) 1996–2000 (B1–B5) 1986–1990 (K1–K5) 1996–2000 (Z1–Z5)
Validation data 2001 1991 2001
Test data 2002 1992 2002

to perform a comparative analysis of using different methods for
learning and the base-models to be included in the ensemble, differ-
ent methods for combining the simulations of the base-models in
the ensemble, and different numbers of based models in the ensem-
ble. Based on the results of this comparative analysis, we make a
set of choices that we use for learning ensembles of process-based
models of aquatic ecosystems.

Second, we aim at analysing the predictive performance of
ensembles of process-based models. In particular, we test the
central hypothesis of this paper that ensembles of process-based
models improve the predictive power of a single process-based
model for a given aquatic ecosystem. Furthermore, we want to
investigate whether the performance improvement is related to the
diversity of the predictions of the ensemble constituents. Finally, in
the last series of experiments, we visually compare the predictions
of ensembles to those of single models in each of the three aquatic
ecosystems.

4.1. Library of domain-specific knowledge and task of modelling
aquatic ecosystems

In our experiments, we use the library of domain-specific
knowledge for process-based modelling of aquatic ecosystems pre-
sented by Čerepnalkoski et al. (2012). Note that the library is based
on the previous work presented by Atanasova et al. (2006b). The
library, presented in Fig. 2, formalizes modelling knowledge in
terms of a set of template entities and processes for modelling
population dynamics in an arbitrary lake ecosystem. To reduce the
computational complexity of the experiments performed in this
paper, we used a simplified version of the library, where we omit-
ted some of the alternatives for modelling individual processes. The
simplified version of the library and the conceptual model, lead
to 320 candidate model structure for Lake Kasumigarua and 128
candidates for the other two aquatic ecosystems used.

ProBMoT employs the Differential Evolution (DE, Storn and
Price, 1997) method for parameter estimation with the following
settings: population size of 50, rand/1/bin strategy, and the differ-
ential weight (F) and the crossover probability (Cr) both set to 0.6.
The limit on the number of evaluations of the objective function
is one thousand per parameter. For simulating the ODEs we used
the CVODE simulator with absolute and relative tolerances set to
10−3. The particular choice of parameters setting of DE is based on
previous studies of the sensitivity of DE for estimating parameters
of ODE models, which includes also modelling of the population
dynamics in Lake Bled (Taškova et al., 2011, 2012).

4.2. Data

The data used in this study originates from three aquatic ecosys-
tems: Lake Bled, Lake Kasumigaura and Lake Zurich.

Lake Bled is of glacial-tectonic origin, located in the Julian Alps
in north-western Slovenia (46.3644◦ N, 14.0947◦ E). It occupies an
area of 1.4 km2, with a maximum depth of 30.1 m and an average
depth of 17.9 m. The measurements, performed by the Slovenian
Environment Agency, consist of physical, chemical and biological
data for the period from 1996 to 2002. All the measurements were
performed once a month and depth-averaged for the upper 10 m of
the lake. To obtain daily approximations, the data was interpolated
with a cubic spline algorithm and daily samples were taken from
the interpolation (Atanasova et al., 2006c).

Lake Kasumigaura, is located 60 km to the north-east of Tokyo,
Japan (36.0403◦ N, 140.3942◦ E). It has an average depth of 4 m, a
volume of 662 million cubic metres, and a surface area of 220 km2.
The data set comprises monthly measurements in the period from
1986 to 1992. Again, to obtain daily approximations, the measure-
ments were interpolated using linear interpolation and daily sam-
ples were taken from the interpolation (Atanasova et al., 2006a).

Lake Zurich is located in the south-western part of the canton of
Zurich in Switzerland (42.1970◦ N, 88.0934◦ W). It has an average
depth of 49 m, volume of 3.9 km3 and a surface area of 88.66 km2.
The data comprises measurements performed by the Water Supply
Authority of Zurich in the period from 1996 to 2002. The measure-
ments, taken once a month, include profiles of physical, chemical
and biological variables from 19 different sites. They were weight
averaged to the respective epilimnion (upper ten metres) and hyp-
ilimnion (bottom ten metres) depths. The data was interpolated
with a cubic spline algorithm and daily samples were taken from
the interpolation (Dietzel et al., 2013).

We use the same structure of population dynamics model in
all three aquatic ecosystems. It includes a single equation (ODE)
for a system variable representing the phytoplankton biomass
(measured as chlorophyll-a in Lake Kasumigaura). The exogenous
variables include the concentration of zooplankton Daphnia hyalina
(available only for Bled and Zurich), dissolved inorganic nutrients of
nitrogen, phosphorus, and silica (ammonia in Lake Kasumigaura),
as well as two input variables representing the environmental influ-
ence of water temperature and global solar radiation (light).

Table 2 provides a summary of the data sets we used in the
experiments. For each aquatic ecosystem, we used seven data sets
corresponding to the last seven years of available measurements.
Five of these were used (one at a time) for training the base-models,
one was used for validating the models in the process of select-
ing the ensemble constituents, and one was used to measure the
predictive performance of the learned models and ensembles.

In each learning experiment, we take a single (year) training
data set, learn a single model or an ensemble using the training
and the validation data set, and test the predictive performance
of the learned models on the test data set. We therefore perform
15 experiments. In the tables, we label them by the label of the
training set used, which is comprised of the initial letter of the lake
name, followed by a digit for 1 to 5 corresponding to each of the

74 Chapter 5. Learning Ensembles via Sampling Data Instances



N. Simidjievski et al. / Ecological Modelling 306 (2015) 305–317 311

Table 3
Comparison of the predictive performance (ReRMSE on test data) of the different combinations of methods for selecting (Validation and Regular) and methods for combining
(Average, Weighted Average and Weighted Median) ensemble constituents applied to the 15 data sets. The numbers in bold are the best performance figures for the given
data set.

Validation Regular

Average Weighted average Weighted median Average Weighted average Weighted median

B1 1.08 1.09 1.08 1.06 1.09 1.06
B2 1.10 1.10 1.12 1.24 1.24 1.27
B3 0.97 0.97 0.96 1.05 1.04 1.05
B4 0.78 0.78 0.76 0.74 0.74 0.74
B5 0.87 0.88 0.87 0.63 0.63 0.61
K1 0.73 0.74 0.80 0.93 0.92 0.93
K2 1.64 1.63 1.64 1.84 1.80 1.60
K3 0.87 0.87 0.89 0.91 0.93 0.94
K4 0.78 0.78 0.79 0.99 0.99 0.98
K5 0.74 0.73 0.73 0.98 0.99 1.00
Z1 0.78 0.78 0.79 1.03 1.03 0.99
Z2 0.88 0.88 0.90 1.08 1.09 1.01
Z3 0.95 0.99 0.91 1.21 1.22 1.19
Z4 0.96 0.97 0.97 0.97 0.97 0.98
Z5 1.32 1.38 1.26 1.39 1.45 1.40

Table 4
Comparison of the descriptive performance (ReRMSE on training data) of the different combinations of methods for selecting (Validation and Regular) and methods for
combining (Average, Weighted Average and Weighted Median) ensemble constituents applied to the 15 data sets. The numbers in bold are the best performance figures for
the given data set.

Case Validation Regular

Average Weighted average Weighted median Average Weighted average Weighted median

B1 0.27 0.36 0.27 0.20 0.29 0.21
B2 0.58 0.58 0.60 0.24 0.24 0.24
B3 0.37 0.40 0.41 0.29 0.29 0.29
B4 0.34 0.34 0.33 0.26 0.25 0.26
B5 0.56 0.56 0.56 0.14 0.14 0.14
K1 1.07 1.06 1.13 0.69 0.68 0.72
K2 0.83 0.84 0.84 0.76 0.76 0.76
K3 0.68 0.66 0.87 0.54 0.56 0.55
K4 0.68 0.74 0.84 0.40 0.40 0.40
K5 0.46 0.49 0.53 0.37 0.37 0.38
Z1 0.88 0.87 0.90 0.53 0.52 0.55
Z2 0.85 0.87 0.92 0.54 0.53 0.54
Z3 0.82 0.82 0.84 0.69 0.68 0.70
Z4 0.79 0.79 0.79 0.77 0.77 0.77
Z5 0.61 0.61 0.60 0.51 0.51 0.53
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Fig. 4. Comparison of the average ranks of different combinations of methods for
selecting and methods for combining ensemble constituents in terms of predictive
performance (ReRMSE on test data) averaged over 15 data sets.

5 consecutive years of measurements. The labels are thus B1–B5,
K1–K5 and Z1–Z5 and B5, for example, denotes the measurements
for Lake Bled taken in the fifth year, i.e., the year 2000.

4.3. Evaluation methodology

To apprise the predictive performance of a given model m, we
use the relative root mean squared error (ReRMSE) (Breiman, 1984),
defined as:

ReRMSE(m) =
√∑n

t=0(yt − ŷt)
2

∑n
t=0(y − ŷt)

2
, (2)

where n denotes the number of measurements in the test data set,
yt and ŷt correspond to the measured and predicted value (obtained
by simulating the model m) of the system variable y at time point
t, and ȳ denotes the mean value of the system variable y in the test
data set. Note that the usual root mean squared error is normalized
here with the standard deviation of the system variable in the test
data, thus allowing us to compare the errors of models for system
variables measured on different scales. The other interpretation of
the normalization term is that it represents the error of a base-line
model that predicts the average value of y at each time point t. Thus,
the model with ReRMSE of 1 has performance equal to that of the
base-line “average” predictor. Smaller values of ReRMSE indicate
better predictive performance.

We observe the performance of different learning algorithms
in terms of the predictive performance (ReRMSE) of the models
learned on each of the 15 data sets. To assess the significance
of the differences in performance between different learning
algorithms, we use the corrected (Iman and Davenport, 1980)
Friedman test (Friedman, 1940) and the post-hoc Nemenyi test
(Nemenyi, 1963). This is a standard framework for comparing the
predictive performance of different learning algorithms, superior to
alternative frameworks as argued by Demšar (2006). The Friedman
non-parametric test for multiple hypotheses testing first ranks the
algorithms according to their performance (i.e., predictive perfor-
mance of the trained models) on each combination of train/test
data set, and then averages these ranks across all the data set
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Fig. 5. Comparison of the average ranks of different combinations of methods for
selecting and methods for combining ensemble constituents in terms of descriptive
performance (ReRMSE on training data) averaged over 15 data sets.
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Fig. 6. Comparison of the average ranks of the three schemes for combining base-
model simulations (Average, Weighted Average, and Weighted Median) in terms of
predictive performance (averaged over 15 data sets). We compare the test errors of
the ensembles with 100 base-models, selected by using a separate validation data
set.

combinations. If the Friedman test indicates a statistically signif-
icant difference, we proceed with performing a Nemenyi test to
identify which differences are significant.

The Nemenyi test computes the critical distance between the
algorithm ranks at a given level of statistical significance (in our
case, we set the significance level threshold at 95 % , p = 0.05). Only
differences in the average ranks larger than the critical distance are
considered significant; for those we can claim that one algorithm
outperforms (i.e., performs significantly better than) the other. The
results of the Friedman–Nemenyi tests are depicted by using aver-
age rank diagrams (Figs. 4–7). In these diagrams, we can see the
name of each of the compared algorithms along with its average
rank.

Finally, to test the conjecture that the power of ensembles is
based on the exploitation of the diversity of the ensemble con-
stituents, we measure the diversity of the ensemble constituents
and correlate it to the performance improvement of ensembles over

single models. To measure the diversity of the base-models in the
ensemble e, we measure the average pairwise difference of the base
model simulations

Diversity(e) = 1(
|e|
2

)
∑

{m1,m2}⊂e

√∑n
t=0(y1,t − y2,t)

2

n
, (3)

where |e| denotes the number of base-models in the ensemble e, n
the number of measurements in the data set, m1 and m2 two models
from e, and y1,t and y2,t the simulated values of these models at time
point t. To assess the performance improvement of the ensemble e
over a single model m, we calculate

Improvement(e, m) = −ReRMSE(e) − ReRMSE(m)
ReRMSE(m)

, (4)

where the model m is learned from the complete training set,
and the base-models from the ensemble e are learned on dif-
ferent bootstrap samples of the training set. We draw a scatter
plot that depicts the correlation between ensemble diversity and
performance improvement and calculate the Pearson Correlation
Coefficient between them.

5. Results

In this section, we present and discuss the results of the empiri-
cal evaluation. We first explore some design decisions employed in
the ensemble learning algorithm. We then analyze the improve-
ment of performance obtained by replacing single models with
ensembles and investigate the relation between the diversity of the
ensemble constituents and the performance improvement. Finally,
we visually compare the simulations of ensembles with the simu-
lations of single models on both training and test data.

5.1. Selecting and combining ensemble constituents

One of the important decision when designing an algorithm for
learning ensembles is how to select the models to be included in the
ensemble. The base-line method (labelled regular in the tables and
figures below) often employed in ensemble learning algorithms, is
to select the models performing best on the bootstrap samples of
the training data on which they were learned. Here, to avoid over-
fitting of the training data, we also consider an alternative method,
labelled validation in the tables and figures below. We still build
models on different bootstrap samples of the training data, but
we evaluate their performance on a single separate validation set.
In this first series of experiments, we construct ensembles of 100
base-models.

Table 5
Comparison of the predictive performance (ReRMSE on test data) of the single model and bagging ensembles that include 5, 10, 25, 50, and 100 base-models on the 15 data
sets. The numbers in bold are the best performance figures for the given data set.

Case single model Ensemble 5 Ensemble 10 Ensemble 25 Ensemble 50 Ensemble 100

B1 1.22 1.06 1.06 1.07 1.09 1.08
B2 1.14 1.24 1.14 1.09 1.09 1.10
B3 1.07 1.03 0.99 0.97 0.97 0.97
B4 0.92 0.75 0.75 0.76 0.77 0.78
B5 0.92 0.87 0.89 0.86 0.87 0.87
K1 0.74 0.75 0.73 0.74 0.74 0.73
K2 2.20 1.50 1.38 1.43 1.52 1.64
K3 0.96 0.86 0.86 0.87 0.87 0.87
K4 0.78 0.77 0.76 0.77 0.78 0.78
K5 0.72 0.85 0.79 0.73 0.74 0.74
Z1 0.78 0.77 0.77 0.78 0.78 0.78
Z2 0.95 0.89 0.94 0.88 0.87 0.88
Z3 0.99 0.92 0.96 0.93 0.92 0.95
Z4 0.94 0.99 0.98 0.96 0.97 0.96
Z5 1.65 1.30 1.11 1.11 1.22 1.32
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Fig. 7. Comparison of the average ranks of the single model and bagging ensem-
bles that include 5, 10, 25, 50, and 100 base-models in terms of their predictive
performance (ReRMSE on test data) averaged over the fifteen data sets.

Table 3 and Fig. 4 summarize the results of the comparison
between the regular and the validation methods. From the table,
we can see that for all but three data sets (B1, B4 and B5), the selec-
tion method based on a separate validation data set outperforms
the regular base-line method. For four data sets (B3 and Z1–Z3),
the use of validation lowered the ensemble ReRMSE below the
value of 1, improving over the base-line “average” predictor. The
Friedman–Nemenyi test (and the corresponding diagram in Fig. 4)
confirms the significance of the observed superiority of the valida-
tion method: All methods that use validation are ranked better than
those that use the training set, where the best method (validation
used together with the average combining scheme) significantly
outperforms the worst method (regular selection used with the
weighted average combining scheme).

Note that we made the implicit conjecture that the regular selec-
tion method overfits the training data. The results presented in
Table 4 and Fig. 5 confirm the validity of this conjecture. From the
table, we can see that the regular method consistently leads to sig-
nificantly smaller errors on the training data. Together with the
results in Table 3/Fig. 4 these show a clear case of overfitting —
while being superior on the training data, regular selection leads to
inferior predictive performance as compared to validation-based
selection.

Taken together, the above results show that the selection
method based on validation is the right choice when learning
ensembles of process-based models.

We next consider the choice of an appropriate method for com-
bining the simulations/predictions of the models in the ensemble.
Here, we choose among the three methods commonly used in
learning ensembles of regression models: average, weighted aver-
age, and weighted median (Breiman, 1984; Drucker, 1997). Above,
we considered these in combination with the regular and the vali-
dation selection methods: Here, we consider them in combination
with the validation selection method only.

The results of the Friedman–Nemenyi test depicted in Fig. 6
show the lack of significant difference among the average ranks
of the three combination schemes. However, the simplest among
them, i.e., the ‘average’ method has also the best rank. Therefore,
despite the lack of significant difference, we can make the decision
to use ‘average’ as the most appropriate method for combining the
predictions of the base-models in ensembles of PBMs.

In all the experiment performed so far, we learned ensembles
of 100 base-models. However, the optimal number of base-models
can depend on the type of the base-models in the ensemble. In
the next series of experiments, we aim at identifying an opti-
mal number of base-models to be included in the ensembles of
PBMs for modelling aquatic ecosystems. To this end, we com-
pare the predictive performance of ensembles consisting of 5,
10, 25, 50, and 100 models (learned on bootstrap samples) with

Table 6
Diversity of the base-models and the relative improvement of the ensemble error
over the error of the single model (given as percentage) for the fifteen data sets.

Case Diversity Relative improvement (%)

B1 0.354 12.27
B2 0.561 4.48
B3 0.230 9.24
B4 0.617 17.45
B5 0.270 6.81
K1 1.010 1.04
K2 1.030 35.06
K3 0.543 9.45
K4 0.598 1.02
K5 0.605 −1.53
Z1 0.089 0.69
Z2 0.234 7.23
Z3 0.223 5.72
Z4 0.125 −2.33
Z5 0.285 32.69

Pearson r – 0.274

the performance of a single model (learned on the complete data
set).

Table 5 and Fig. 7 summarize the results of these experiments.
Comparing the predictive performance of thr different ensembles,
we can see that for eight (out of fifteen) data sets, the ensemble
of 10 base-models performs best, followed by the ensemble of 25
base-models, performing best for five data sets. The corresponding
Friedman–Nemenyi diagram shows that the ensemble of 25 base-
models is ranked best among all the ensembles. Note, however, that
the critical distance on the same diagram shows that there is no
significant difference in performance between any pair of ensem-
bles with different numbers of constituents. Despite the lack of a
significant difference, we are going to choose the ensembles with
25 base-models, which are ranked best, to be the subject of the
further experiments.

When it comes to comparing the performance of the ensembles
to that of a single model, the Friedman–Nemenyi test shows that the
ensembles consisting of 10 and 25 models significantly outperform
the single models. The tabular comparison of the predictive perfor-
mance (Table 5) shows that, for all but two data sets (K5 and Z4), a
single model performs worse than an ensemble. However, for these
two data sets, the difference in the performance between the single
model and an ensemble of 25 base-models is almost imperceptible.

These results clearly confirm the central hypothesis of this paper
that the ensembles of PBMs significantly outperform a single PBM
model. The optimal design choices to be used for learning ensem-
bles are as follows: perform 25 iterations, in each of them select
the best model with respect to the error measured on a separate
validation set, and combine the ensemble constituents using the
average combining scheme.

5.2. Ensemble diversity and performance improvement

The experimental results presented above show that ensembles
of PBMs outperform single PBM models. Here, we further analyze
the improvement and its relation to the diversity of the simula-
tions of the ensemble constituents. To this end, we first measure
the relative improvement of the performance obtained by using an
ensemble as compared to using a single model. Then, we measure
the diversity of base-models in the ensemble. Finally, we analyze
the correlation between the two.

Table 6 and Fig. 8 summarize the results of these experiment.
First, Table 6 confirm our previous finding: ensembles outperform
single models in all but two data sets (K5 and Z4). Note that the loss
of performance of the ensemble is minor (below 3%) for these two
data sets. On the other hand, the gain in performance (performance
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improvement) can be substantial and reach up to 17% for Lake Bled
(B4), 35% for Lake Kasumigaura (K2) and 33% for Lake Zurich (Z5).

Furthermore, we observe a varying degree of diversity between
ensemble constituents for different data sets – diversity varies from
0.125 to 1.030. The scatter plot in Fig. 8 shows weak positive cor-
relation between ensemble diversity and relative improvement
of performance. The measured Pearson correlation coefficient of
0.274 is certainly neither high nor significant. Still, the positive
correlation is in line with the ensemble literature assumption that
ensembles perform well by exploiting the diversity of their con-
stituents (Kuncheva and Whitaker, 2003).

5.3. Simulating ensembles

Finally, in the last series of experiments, we visually inspect the
difference between the simulations of ensembles and simulation
of single models. We selected one data set for each of the three
aquatic ecosystems considered in the experiments and simulated
the ensemble and the single model on both training and test data.
The simulation on test data is in line with the predictive modelling
setting used throughout the experiments presented in this paper.
The simulation on the training data is in line with the previous
work on building descriptive models of aquatic ecosystems, where
only the performance on training data is considered (Čerepnalkoski
et al., 2012; Taškova et al., 2012; Atanasova et al., 2006c).

In Fig. 9, we present the simulations of ensembles and single
models in both the predictive (graphs on the left-hand side) and
the descriptive scenario (graphs on right-hand side), for each of
the three lakes. The first row presents the simulations for Lake
Bled, the second for Lake Kasumigaura and the last for Lake Zurich.
The visual comparison confirms the superiority of the ensembles in
the predictive scenario. Note that only ensembles lead to accept-
able reconstruction of the population dynamics for the test data
sets. But more importantly, given the nature of the ensembles
(that avoid overfitting), they do not seem to have lower descrip-
tive performance; they still capture the population dynamics of
the phytoplankton on training data. Thus, we can conclude that

Fig. 8. Scatter plot depicting the correlation between the diversity of the base-model
predictions and the relative improvement of error between an ensemble and a single
model for the 15 data sets.

the ensembles can be applied in both predictive and descriptive
scenarios.

One interesting case is Lake Zurich (Fig. 9e and f), where despite
the high relative error (above 1), we can see that the ensemble accu-
rately captures the phytoplankton dynamics with a slight phase
shift.

5.4. Summary

We can summarize the results of our experiments as follows.
When learning ensembles of PBMs, one should use a separate val-
idation data set in addition to the training one when learning the
base-models included in the ensemble. For combining the simu-
lation of constituent process-based models, one should use the
simplest combining scheme, i.e., averaging. The optimal ensembles
of PBMs consist of a relatively low number of constituent models,
ranging between 10 and 25.

Furthermore, the ensembles of 25 base-models selected using
a validation data set and combined with the average combin-
ing scheme significantly outperform single models of population
dynamics in aquatic ecosystems. The improvement of performance
between an ensemble and a single model is positively related to the
diversity of the ensemble constituents – the higher the diversity,
the greater the improvement. However, the correlation between
the diversity and the performance gain is weak, as a consequence
of the modest diversity between the base-models. Finally, the sim-
ulations show that ensembles are applicable for both predictive
modelling tasks, where prediction of the future system behaviour
(test data error estimates) is of central interest, as well as descrip-
tive modelling tasks, where the focus is on explaining the observed
behaviour (training data error estimates).

6. Discussion

In this section, we discuss the method we propose and its results,
and put them in the context of related work.

The work presented in this paper follows two different lines
of research. First, it extends the state-of-the-art in the paradigm
of equation discovery. More specifically, we build upon previ-
ous methods for learning process-based models, that have proven
successful for automated modelling of population dynamics in a
number of aquatic ecosystems (Todorovski and Džeroski, 2007;
Čerepnalkoski et al., 2012; Bridewell et al., 2008). Second, it fol-
lows the basic principles of ensemble learning, and translates them
into a methodology for modelling dynamic systems. Our work
is closely related to that of Bridewell et al. (2005), where the
authors use ensemble methods to establish better descriptive mod-
els by tackling the over-fitting problem. Their approach is based on
integrating the model structures of ensemble constituents into a
single model. This model still provides a process-based explana-
tion of the observed system structure, while being more robust in
terms of over-fitting observed data. The evaluation of overfitting
is performed by a variant of the general cross-validation method,
where samples of data are kept out of the training set and are
used to estimate the model error. While this method provides
estimates of model error on unseen data, these estimates are not
related to the predictive performance of the model, i.e., its ability to
predict future system behaviour beyond the time-period captured
in training data.

The studies of Whigham and Recknagel (2001) and Cao et al.
(2008) are also related to our work, as they use differential equa-
tions to model the dynamics of lake ecosystems. However, they
start from a modelling assumption that includes a fixed structure
of model equations and employ genetic algorithms to estimate the
values of the model parameters. While Whigham and Recknagel
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Fig. 9. Simulations of single models and ensembles compared to the measured data, for three pairs of test and training data sets.

(2001) also consider the use of genetic programming to explore
a number of different model structures, the obtained equations
are not cast in the form of process-based models and therefore do
not provide insight into the processes and entities that govern the
dynamics of the observed systems.

Muttil and Chau (2006) also use genetic programming and arti-
ficial neural networks to model algal blooms in coastal marine
ecosystems. While their aim is similar to ours, i.e., to obtain pre-
dictive models of algal biomass dynamics, they focus exclusively
on black-box models of population dynamics. The models they
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consider are based on equations and neural networks and fail to
provide insight into the structure of the observed system. They
also consider a different time scale for predicting the future system
behaviour: While we focus in our experiments on a whole-year pre-
diction the population dynamics, Muttil and Chau (2006) use their
models for making one-week-ahead predictions of algal blooms.

The ensemble method proposed in this paper aims at improv-
ing the generalization power of process-based models, in terms
of achieving predictive performance gain over the state-of-the-
art process-based modelling approaches. However, when learning
ensembles of process-based models, there is a trade-off between
two conflicting requirements: predictive performance and inter-
pretability. The increase of predictive accuracy comes at the cost
of losing the interpretability of the learned ensemble model.
Moreover, Breiman (1996a) states that bagging can improve
the predictive performance when the ensemble is comprised of
unstable base-models, such as decision trees, whose predictions
sufficiently vary with small variations in the training set. In this
case, high diversity of the ensemble constituents can be easily
achieved. Our empirical evaluation shows that the ensemble con-
stituents have only modest diversity: This may limit the potential
for performance gain, even though the diversity is only weakly
correlated with predictive performance.

7. Conclusion

7.1. Summary

In this paper, we address the task of learning ensembles of
process-based models of dynamic systems and develop a method-
ology to solve it. Note that the task of learning ensembles of
process-based models is a novel task, and has not been considered
so far. For this purpose, we extend the state-of-the-art approaches
to process-based modelling: We take the notion of ensembles –
a collection of base-models, whose predictions are combined to
improve the collective performance. In traditional machine learn-
ing, this has proved to be an effective method for gaining predictive
power.

More specifically, we propose a methodology that adapts the
key design principles from learning ensembles for classical machine
learning tasks to tasks of modelling dynamic systems. Our approach
constructs homogeneous ensembles of process-based models,
using bagging as an underlying ensemble method. We identify
the main components of the method for learning an ensemble of
PBMs (a technique for learning a set of candidate base-models, a
technique for selecting the base-models, and a combining scheme
specifying how the base-model predictions are combined) and the
related design choices.

We conduct an extensive experimental evaluation to identify
the appropriate design choices for the proposed ensemble learn-
ing method and to test its utility for modelling dynamic systems.
We analyze the improvement of performance obtained by ensem-
bles relative to single models on 15 different data sets. Moreover,
we investigate the relation between the diversity of the ensemble
constituents and the performance improvement. Finally, we visu-
ally compare the simulations of ensembles with the simulations of
single models in both descriptive and predictive scenarios.

We conduct the empirical evaluation on the task of mod-
elling population dynamics in aquatic ecosystems. The case studies
considered concern modelling phytoplankton growth, a complex
non-linear dynamic process, in three different aquatic ecosystem
domains. These include: Lake Bled in Slovenia, Lake Kasumigaura
in Japan and Lake Zurich in Switzerland.

The results of the empirical evaluation confirm our central
hypothesis. For predictive modelling tasks, ensembles of process-
based models perform better than a single model. More precisely,

ensembles with a relatively low number of constituents (10–25),
chosen on a separate validation data set and combined by averag-
ing, outperform the single model. Moreover, the diversity of the
constituents in the ensemble is positively (weakly) correlated with
the performance improvement. Finally, after visual inspection of
the simulations, we found that the ensembles are applicable to both
predictive and descriptive modelling tasks.

7.2. Future work

We have identified a number of limitations of our approach
that can be addressed in further work. First, the diversity of
the ensemble constituents is modest. One reason for this might
be the fact that we use a library with a limited number of
modelling alternatives. An extended library of domain-specific
knowledge should be used in future experiments in order to reach
higher diversity and further study the relation between the diver-
sity and predictive performance in ensembles of process-based
models.

Future work can also include the development of alternative
methods for data and knowledge sampling that would lead to
higher diversity. These include sampling the data variables (in addi-
tion to sampling the data instances considered in this paper) and
sampling the alternative modelling choices included in the library
of domain-specific modelling knowledge. While we limited our
focus in this paper on adapting the method of bagging, further
work should adapt other ensemble methods to the task of learn-
ing process-based models: Methods to be adapted include boosting
(Drucker, 1997; Freund, 1999; Schapire, 2003) and random sub-
spaces (Ho, 1998).

Finally, the experiments performed in this paper were lim-
ited to modelling population dynamics in lake ecosystems from
historical data. Future experiments can be based on more recent
data of the same ecosystems. Also, future work should confirm
the results presented in this paper by learning ensembles of
process-based models of population dynamics in other aquatic
environments, such as marine ecosystems or water-treatments
plants (Škerjanec et al., 2014). Other application domains (such
as systems neuroscience and systems biology) should also be
considered.
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Atanasova, N., Todorovski, L., Džeroski, S., Kompare, B., 2006b. Constructing a library
of domain knowledge for automated modelling of aquatic ecosystems. Ecol.
Model. 194 (1–3), 14–36.
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modeling. Mach. Learn. 71, 1–32.

Cao, H., Recknagel, F., Cetin, L., Zhang, B., 2008. Process-based simulation library
SALMO-OO for lake ecosystems. Part 2: Multi-objective parameter optimization
by evolutionary algorithms. Ecol. Inform. 3 (2), 181–190.

Cohen, S.D., Hindmarsh, A.C., 1996. CVODE, a stiff/nonstiff ODE solver in C. Comput.
Phys. 10 (March (2)), 138–143.

Crisci, C., Ghattas, B., Perera, G., 2012. A review of supervised machine learning
algorithms and their applications to ecological data. Ecol. Model. 240, 113–122.
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a b s t r a c t

Process-based modeling is an approach to learning understandable, explanatory models of dynamic systems

from domain knowledge and data. Although their utility has been proven on many tasks of modeling dy-

namic systems in various domains, their ability to accurately predict the future behavior of an observed

system is limited. To address this limitation, we propose the use of a standard approach to improving the

predictive performance of machine learning methods, i.e., the approach of learning ensemble models. Previ-

ous work on ensembles of process-based models has been limited to proof-of-principle experiments with a

single ensemble method (bagging) and in the limited perspective of explaining the currently observed system

behavior v.s. predicting future system behavior. In this paper, we design a general methodology for adapting

ensemble methods to the context of process-based modeling. Using the methodology, we implement the

two approaches bagging and boosting of process-based models. We perform an empirical evaluation of the

implemented methods on three real-world modeling problems from the domain of population dynamics in

aquatic ecosystems. The results of the empirical evaluation show that ensembles of process-based models

can lead to long-term predictions of the population dynamics that are more accurate than the ones obtained

with a single process-based model.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models are employed to provide an understanding

of the laws that govern the behavior of dynamic systems. More specif-

ically, such models are being utilized to recreate or simulate the be-

havior of dynamic systems under various conditions. This paper ad-

dresses the task of automated modeling of dynamic systems from

time-series data and domain-specific modeling knowledge. The re-

sult of which is a process-based model that both explains the struc-

ture of the modeled system and allows for simulation of its behavior

(Todorovski & Džeroski, 2007). For simulation, process-based models

are transformed to systems of ordinary differential equations (ODEs),

a widely accepted formalism for modeling dynamic systems. ODEs

allow for long-term simulation of the system behavior given only

its state at the initial time point and the time series corresponding

to the input control variables. Models that allow for accurate long-

term prediction of system behavior are typically hand-crafted by en-
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gineers and experts in the domain at hand. The process-based model-

ing approach allows for automated learning of such models in differ-

ent domains (Atanasova, Recknagel, Todorovski, Džeroski, & Kompare,

2006a; Atanasova et al., 2006c; Taškova, Šilc, Atanasova, & Džeroski,

2012).

However, existing approaches to process-based modeling mostly

focus on building descriptive models that explain the observed be-

havior of the system, however do not generalize well enough to pre-

dict future system behavior (Simidjievski, Todorovski, & Džeroski,

2015). Improving the predictive performance of process-based mod-

els is still a challenge. In this paper, we address this challenge by

proposing ensembles of such models. This is a standard approach for

improving the predictive performance of models in machine learning

Dietterich (2000). An ensemble is a set of models, referred to as base

models or ensemble constituents; its prediction is a combination of

the predictions obtained with the individual ensemble constituents.

They are usually employed in the context of supervised learning tasks

of classification (Smith et al., 2015) and regression (King, Abrahams,

& Ragsdale, 2014; Tay, Chui, Ong, & Ng, 2013) to address the prob-

lems of over-fitting, high dimensionality, or missing features in the

training data, resulting in predictive performance gain as compared

to that of a single model. While regression ensembles can be also used

as models for time-series forecasting (Ma, Dai, & Liu, 2015), they have

http://dx.doi.org/10.1016/j.eswa.2015.07.004

0957-4174/© 2015 Elsevier Ltd. All rights reserved.
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so far been used to make short-term predictions, i.e., predict only the

values of the system variables in immediate future and not the long-

term system behavior.

The main motivation for the work presented in this paper is to im-

prove the accuracy of long-term predictions of process-based mod-

els. To this end, our specific objective is to design and implement

methods for learning ensembles of process-based models from data

and knowledge. We conjecture that ensembles learned using the im-

plemented methods will outperform single process-based models in

terms of their accuracy/error of long-term prediction of system be-

havior. To test the validity of this conjecture, we perform an extensive

evaluation of the implemented methods on the task of modeling and

predicting population dynamics in aquatic ecosystems. The empiri-

cal evaluation allows us to decide between the ensemble methods of

bagging (Breiman, 1996a) and boosting (Drucker, 1997; Freund, 1999)

as well as design alternatives considered within this methods.

The remainder of the paper is organized as follows. In Section 2,

we put our work in the context of related work on process-based

modeling and ensemble learning. Section 3 provides an introduction

to the process-based modeling paradigm and its specific implemen-

tation PRoBMoT (Čerepnalkoski, Taškova, Todorovski, Atanasova, &

Džeroski, 2012) through an example modeling task from the domain

of population dynamics in aquatic ecosystems. Section 4 presents

the two methods we propose and their implementation as an exten-

sion to PRoBMoT for learning ensembles of process-based models. In

Section 5, we present the experimental setup of the empirical frame-

work for evaluating the developed methods on three tasks of model-

ing population dynamics in aquatic ecosystems. More specifically, we

test the utility of ensembles of process-based models in the context of

modeling three ecosystems: Lake Bled in Slovenia, Lake Kasumigaura

in Japan, and Lake Zurich in Switzerland. Section 6 presents the re-

sults of the empirical evaluation and discusses them in the context of

related research. Finally, Section 7 concludes this paper and suggests

directions for further work.

2. Related work

The work presented in this paper extends the state-of-the-art of

process-based modeling (Bridewell, Langley, Todorovski, & Džeroski,

2008; Todorovski & Džeroski, 2007). More specifically, it relates to

previous work on process-based modeling that has proven success-

ful for building descriptive models of population dynamics in a num-

ber of real-world aquatic ecosystems (Atanasova et al., 2006a, 2006c;

Džeroski & Todorovski, 2003). These studies focus on descriptive

models used to explain the observed behavior of the system at hand

and not (so far) employed for predicting future (unobserved) system

behavior. Simidjievski et al. (2015) present a proof-of-principle ex-

periment and show that bagging process-based models can improve

their predictive performance. However, this experiment is of limited

scope since it does not consider alternative ensemble methods, such

as boosting, which is considered here. The study presented there is

purely empirical and does not tackle the methodological issues of

learning ensembles that are being addressed in this paper.

The task of learning ensembles of process-based models has been

also addressed by Bridewell, Asadi, Langley, and Todorovski (2005),

who aim at integrating the ensemble constituents into a single (meta-

level) process-based model that includes the structure fragments

most frequently present in the constituents. The results show that

the resulting meta-level model is more robust in terms of over-fitting

to the observed data. Note however, that in the evaluation their pro-

posed approach, the authors estimate the out-of-sample error by tak-

ing random sub-samples of the observed (training) time-series data.

The ability of the meta-level model to predict system behavior out-

side the observed time span of the training data (i.e., future system

behavior), which we focus on in this paper, has not been considered,

far less evaluated.

On the other hand, our work is related to the long tradition

of applying methods for learning ensembles to various predictive

modeling tasks in different scientific and engineering domains.

The ensemble methods that tackle the problem of time-series

forecasting are most closely related. (Ma et al., 2015) present a

method for pruning the set of ensemble constituents, in particular

support-vector regression models, for the purpose of optimizing the

size of an ensemble and its predictive performance. They apply the

developed method to four tasks of forecasting financial time-series

(stock indices) and show that the approach can reduce ensemble size

while retaining reasonable levels of predictive accuracy. Similarly,

Kourentzes, Barrow, and Crone (2014) also aim at short-term fore-

casting of financial time series using ensembles of neural networks.

Their main contribution is the identification of the most suitable

operator for aggregating the predictions of individual ensemble

constituents. Note that all the forecasting tasks, considered in these

two papers, are short-term since they aim at forecasting the next-

time-point values of stock indices or retail prices. In contrast, our

process-based models aim at long-term (typically one year) predic-

tion that concern periods with potentially indefinite ranges of time

points.

Finally, process-based modeling is a term frequently used in the

realm of system analytics and modeling business processes. Recently,

there has been interest in automatic building of enactment plans re-

lated to the same declarative specification of a given business process

(Jiménez, Barba, del Valle, & Weber, 2013). Business process model-

ing formalisms follow the standard specification languages, such as

BPMN (White, 2004), designed for the specific purpose of specify-

ing declarative models of business processes that can be used for un-

derstanding, simulating and optimizing business processes. However,

the business process models are quite different from the process-

based models considered here that provide means for a mathemat-

ical formalization of the quantitative change of the observed sys-

tem state through time. Our process-based models are thus based

on an entirely different formalism that we will introduce in the next

section.

3. Process-based modeling

Complex models are derived with the express purpose to recreate

the observed behavior or simulate the subsequent states of a dynamic

system under various conditions. Scientist and engineers often relate

such models to the processes that govern the dynamics of the mod-

eled system, and to the entities involved. These relations are com-

monly construed with equation-based specifications of the dynam-

ics, and compiled into a set of ordinary differential and/or algebraic

equations. The set of equations describes the change of the system’s

state over time and therefore is used to simulate past, present and

future behavior of the system at hand. However, while equations of-

fer a quantitative way of expressing models, they lack the ability to

qualitatively express the structure of the modeled system in terms of

interacting entities and processes.

The approach of process-based modeling of dynamic systems

aims at constructing models which contain a high-level explanatory

structure and a low-level mathematical formulation which allow-

ing for making predictions. Process-based models integrate domain-

specific modeling knowledge and data into explanatory models of the

observed systems. A process-based model consists of two basic types

of elements: entities and processes. Entities represent the state of the

system. They incorporate the input variables (forcing terms of the sys-

tem), state variables (the internal state of the system) and the con-

stants related to the components of the modeled system. The entities

are involved in complex interactions represented by the processes.

The processes include specific details of how the entities interact in

terms of equations and sub-processes.
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Fig. 1. Graphical representation of the relations (arrows and black boxes) between the

entities (oval transparent boxes) in a simple lake ecosystem.

The task of process-based modeling, or learning process-based

models from knowledge and data, can be specified, in terms of its

inputs and outputs, as follows:

Input

– Measured data of the variables in the observed system.

– Domain-specific modeling knowledge.

Output

– Process-based model of the observed system.

The measured values of the observed variables are continuous, con-

tiguous and may be non-uniformly distributed. We are interested in

models that can predict the behavior of the system, i.e., how its state

changes over time. Since, the state is represented by continuous vari-

ables, the task at hand resembles the task of regression.

Regression models, applied in the context of time-series data,

are typically used for short-term prediction of the state at the next

time point, based on the observed values of the current and previ-

ous states. In contrast, differential equations provide long-term pre-

dictions over many following time points, based only on the initial

values of the target variables; no observations are necessary at the

intermediate time points. Note also, that the use of modeling knowl-

edge is an advantage of the process-based modeling approach over

regression approaches since it improves model interpretability. The

process-based models upgrade the purely empirical approaches, and

strive at explaining how and why the dynamic system behaves under

various conditions as opposed to just explaining/predicting how the

measurements vary.

In the continuation of this section we are going to explain in more

detail the process-based modeling paradigm through the prism of

process-based models and the process of their learning from knowl-

edge and data. To properly asses the relevant details of the paradigm,

we are going to illustrate its use on a simple example of modeling

population dynamics in an aquatic ecosystems.

3.1. Process-based models and modeling knowledge

Models of aquatic ecosystems are required for better under-

standing, prediction and management of such systems (Jørgensen

& Bendoricchio, 2001). These models target the relations between

entities, i.e., nutrients, primary producers, animals and environmen-

tal changes, that typically occur in aquatic ecosystems (Luenberger,

1979). Fig. 1 depicts a cyclic relationship involving a primary pro-

ducer (phytoplankton, abbreviated as phyto) that grows by feeding on

nutrients (nitrogen and phosphorous), the concentrations of which

are influenced by the environment and the process of phytoplankton

respiration (Atanasova, Todorovski, Džeroski, & Kompare, 2006b).

In order to model such a system using the process-based

paradigm, we first need to formalize the modeling knowledge.

Process-based modeling allows for a high-level representation of

knowledge, cataloged in a domain-specific library of entity and pro-

cess templates. The templates embody general properties of the in-

teractions that govern the dynamics in the domain at hand and serve

as recipes for establishing specific entities and processes observed in

a given system.

Table 1 depicts an example of a simple library for modeling popu-

lation dynamics in aquatic ecosystems. The first four declarations cor-

respond to template entities organized in a hierarchy. The template

entities of EcosystemEntity and Environment are at the top

of the hierarchy; the first corresponds to the entities of the aquatic

ecosystem, while the second to its environment. Down the hierarchy,

the EcosystemEntity is then specialized into the two template

entities of PrimaryProducer and Nutrient.

Each entity template may include constant and variable prop-

erties, which are inherited down the hierarchy. The variable prop-

erties (denoted vars) are those which change over time: the

EcosystemEntity has as variable property its current concen-

tration (denoted conc). Similarly, the Environment entity in-

cludes the temperature variable. The constant properties that

do not change are denoted with consts, e.g., the template entity

PrimaryProducer has the constant property maxGrowthRate.

Finally, note that each variable property can have an aggregation

function (denoted aggregation) that specifies how multiple influ-

ences on the variable (originating from different processes) are com-

bined: the influences on the conc variable of EcosystemEntity
are summed up, while the influences on the growthRate variable

are multiplied.

The template processes are also organized in a hierarchy and

specify which entities can interact and how these interactions

govern the dynamics of entity variables. Highest in the hierarchy

of aquatic ecosystem processes are the templates of Growth,

Respiration and GrowthRate. The Respiration template

specifies two differential equations that model the influence of the

respiration process on the concentrations of the primary producer

and the nutrients involved. Similarly, the Growth template encodes

the influences of growth on the same concentrations. Addition-

ally, Growth involves a subprocess GrowthRate, which implies

that a GrowthRate must be specified for each nutrient involved

in the process of growth. The hierarchy specifies two instances

of the template process GrowhRate, MonodGrowthRate and

ExpSaturatedGrowthRate, that correspond to two alternative

models of growth limitation due to limited nutrient supply. Note

therefore, the hierarchical structure of the process templates al-

lows for the specification of modeling alternatives for an observed

interaction between entities.

Once we have a library of process and entity templates, we can

formulate a process-based model as a set of instances of the tem-

plates in the library. Table 2 presents a process-based model of the

system depicted in Fig. 1: note the one-to-one correspondence be-

tween entities and process depicted in the system graphical pre-

sentation and the process-based model. Each entity and process in-

stance incorporate the variables and the constants related to the

corresponding template. For each variable property, its role in the

observed system is specified. Exogenous variables represent input

system variables that are not the subject of modeling (e.g., the en-

vironment temperature), while endogenous variable represent sys-

tem state variables that are subject to modeling (e.g., the concen-

tration of phytoplankton). For each endogenous variable, we have

to provide its value at the initial time point. Finally, for the con-

stant properties of the entities and processes, we have to specify their

values.

Considering the mathematical formulation of the processes em-

bodied in the library, we can compile this high-level representa-

tion of the interactions in the system into a system of algebraic

and differential equations adequate for simulation. Table 3 provides

the quantitative formulation of the process-based model presented
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Table 1

Template entities and processes for modeling population dynamics in aquatic ecosystems. Here

td(x) denotes the time derivative of x.

template entity EcosystemEntity {
vars:conc {aggregation:sum ;}}

template entity PrimaryProducer :EcosystemEntity {
vars:growthRate {aggregation:product };
consts:maxGrowthRate ; }

template entity Nutrient :EcosystemEntity {consts:alpha;}
template entity Environment {vars:temperature ;}
template process Growth(pp :PrimaryProducer ,ns :Nutrients ){

processes:GrowthRate(pp ,ns );
equations:

td(pp.conc) = pp.maxGrowthRate ∗ pp.growthRate ∗ pp.conc,

td(ns.conc) = −n.alpha ∗ pp.maxGrowthRate ∗ pp.growthRate ∗ pp.conc; }

template process Respiration(
pp :PrimaryProducer ,ns :Nutrients ,env :Environment ){

consts:respRate ,refTemp ,minTemp ;
equations:

td(pp.conc) = −respRate ∗ pp.conc ∗ pp.conc

∗(env.temperature-minTemp)/(refTemp-minTemp),

td(ns.conc) = respRate ∗ pp.conc ∗ pp.conc

∗(env.temperature-minTemp)/(refTemp-minTemp); }

template process GrowthRate(pp :PrimaryProducer ,n :Nutrient ){}
template process MonodGrowthRate:GrowthRate{

consts:halfSaturation ;
equations:

pp.growthRate = n.conc/(n.conc + halfSaturation);}

template process ExpSaturatedGrowthRate:GrowthRate{
consts:saturationRate ;
equations:

pp.growthRate = 1 − exp( − saturationRate ∗ n.conc);}

Table 2

A process-based model of phytoplankton dynamics in the simple a lake ecosystem from

Fig. 1, based on the template entities and processes from the library in Table 1.

//Entities
entity phyto :PrimaryProducer {

vars:conc {role:endogenous ; initial: 1.665;};
consts:maxGrowthRate= 0.88;}

entity phos :Nutrient {
vars:conc {role:exogenous ;};}

entity nitro :Nutrient {
vars:conc {role:exogenous ;};}

entity env :Environment {
vars:temp {role:exogenous ;};}

//Processes
process growth(phyto, [phos, nitro]):Growth

{ processes:growthRate;}
process nitrogenLim(phyto ,nitro ):ExpSaturatedGrowthRate

{ consts:saturationRate=14.9;}
process phosophorousLim(phyto ,phos ):ExpSaturatedGrowthRate

{ consts:saturationRate=8.08;}
process respiration(phyto , [phos ,nitro ],env ):Respiration

{ consts:respRate=0.036,minTemp=0.542,refTemp=17.4;}

Table 3

Ordinary differential equations obtained from the process-based model of phytoplankton dynamics pre-

sented in Table 2. Here td(x) denotes the time derivative of x.

phyto.growthRate = [1 − exp ( − 8.08 ∗ phos.conc)] ∗ [1 − exp ( − 14.9 ∗ nitro.conc)]

td(phyto.conc) = 0.88 ∗ phyto.conc ∗ phyto.growthRate − phyto.conc2 ∗ 0.036 ∗ env.temp − 0.542
env.temp − 17.4

phyto.conc(t0) = 1.665

above. Since we are modeling just the concentration of phytoplank-

ton (which is denoted as endogenous in Table 2) the system of equa-

tions consists of a single differential equation. This equation can

be then simulated, thus generating a trajectory and utilizing it for

further analysis. Fig. 2 shows the simulation of phytoplankton con-

centration obtained by using the process-based model. The data tra-

jectory (represented by a dashed line) represents real measurements

that can be used for a visual assessment of the process-based model

performance.

In summary, process-based models have several characteristics

which make them very efficient for tasks of modeling dynamic sys-

tems. First, they provide a conceptual representation of the structure

of the modeled system, depicting the high-level relations (processes)

between the system components (entities). Second, they allow for

the high-level process-based representation to be translated into a

low-level mathematical formalism depicted as a set of differential

and/or algebraic equations, facilitating simulation of the systems

behavior. Finally, the library of domain-specific knowledge allows for
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Fig. 2. Simulation of phytoplankton concentration dynamics (solid line) as modeled

with the process-based model from Table 2 and its comparison to observed phyto-

plankton concentration (dashed line).

Algorithm 1 Outline of the generic algorithm for learning process-

based models from knowledge and data.

1: function PBM(library, data, incompleteModel)

2: components ← instantiate(library, incompleteModel)

3: for each (structure ∈ enumerate(components,

incompleteModel)

do

4: modelEq ← compileToEquation(strucutre)

5: (model, error) ← parameterEstimation(modelEq, data)

6: modelList ← modelList
⋃

(model, error)
7: end for

8: return sort(modelList, error)

9: end function

instantiation of a number of different building blocks for generating

process-based models (Bridewell et al., 2008), which is particularly

relevant for algorithms tackling the task of automated learning of

process-based models from data.

3.2. Learning process-based models

Given the library of model fragments (template entities and pro-

cesses), we can now formulate the task of learning process-based

models from knowledge and data as a search task. Namely, given the

specific entities in the observed system at hand, one can instantiate

the template processes from the library into a set of specific processes

that can be considered for inclusion in the model of the observed sys-

tem. In turn, based on this set of specific model components, we can

specify the search space of combinations thereof. Some of the com-

binations can be rejected as implausible, due to further modeling as-

sumptions made by the user, such as the presence or absence of cer-

tain processes in the model.

The process-based modeling (PBM) algorithm, outlined in

Algorithm 1, first takes as input library of domain-specific modeling

knowledge, followed by data in form of time-series measurements

of the observed dynamic system. The last input to the algorithm is

an incompleteModel representing the modeling assumptions made

by the modeler. First, the algorithm assembles all theoretically

plausible model components by binding the entities of the observed

system to the template processes from the library. Next, based on

the incomplete model (taking into account the assumptions), the

algorithm enumerates all the plausible candidate model structures.

Each of these high-level structures is then compiled into a system

of equations eligible for simulation. Before simulation, however, a

parameter estimation task is being solved for the model structure at

hand, to obtain values of the model parameters that best fit the ob-

served data. After estimating the parameters for all candidate model

structures, the algorithm outputs a sorted list of process-based

models according to their error on training data, i.e., the discrepancy

between the model simulation and the observed system behavior.

Most process-based modeling algorithms perform exhaustive

search through a constrained space of candidate process-based struc-

tures, limiting the number of processes in the model (Bridewell

et al., 2008). The more advanced approaches, such as Lagramge2.0

(Todorovski & Džeroski, 2007), combine the library of knowledge

and the constraints into a grammar for enumerating plausible model

structures. HIPM (Todorovski, Bridewell, Shiran, & Langley, 2005) al-

lows for more sophisticated hierarchical constraints on the legal pro-

cess combinations and tackles enumeration of model structures as a

combinatorial problem. Last, ProBMoT (Čerepnalkoski et al., 2012) is a

software platform for complete modeling, parameter estimation, and

simulation of process-based models. It extends HIPM with explicit

constraints (assumptions) for a particular domain at hand and em-

ploys a variety of meta-heuristic optimization methods. In this study,

we use ProBMoT1 as the base learning algorithm for learning con-

stituents of ensembles of process-based models.

4. Ensembles of process-based models

Ensembles are commonly used for machine learning tasks, such

as classification and regression (Maclin & Opitz, 1999; Rokach, 2010).

However, a detailed layout of a methodology for learning ensembles

of process-based models for predictive tasks has not been consid-

ered so far. Here we take note of the similarity between the tasks

of process-based modeling and time-series regression, and we apply

the idea of learning ensembles of regression models in the context of

models of dynamic systems, that is, developing appropriate methods

for learning ensembles of process-based models.

An ensemble is a set of models (referred to as base models or en-

semble constituents) that is expected to have improved predictive

performance compared to a single model. The idea behind ensembles

is to maximize the overall predictive power by combing the predic-

tions of the individual base models. The simplest form of an ensemble

is a black-box. For a given “bag” of individual models, the resulting

output is a combination of the individual predictions. For this rea-

son, we first explore how an ensemble of process-based models can

be simulated and how the resulting prediction can be interpreted.

Next, we “open” the black-box, and investigate the different methods

for learning the constituents of an ensemble, where we introduce a

novel approach of learning ensembles of process-based models.

4.1. Simulating ensembles of PBMs

In order to simulate an ensemble, each base model needs to be

simulated. The resulting ensemble output is a combination of the pre-

dictions of all individual base models. For obtaining a prediction for

ensembles of process-based models, we use average, weighted aver-

age and weighted median as combining schemes, commonly used for

regression tasks (Drucker, 1997).

In all cases, the real-valued predictions of the constituent models

are combined per time-point, for each time-point separately. In the

case of average, all base models participate in the resulting simulation

equivalently. For weighted average and weighted median schemes,

a confidence β is calculated for each of the base models based on

their performance error. The base models with higher confidence will

contribute more in the resulting ensemble simulation. The procedure

for simulating an ensemble of PBMs is depicted in Algorithm 2.

The simulateEnsemble() procedure takes as input: a set of

process-based models denoted with ensemble, the library of domain

1 Available at http://probmot.ijs.si.
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Algorithm 2 Simulating ensembles of process-based models.

1: function simulateEnsemble(ensemble, lib, D, scheme) returns

ŷe

2: Simulations ← ∅ � simulations from ensemble constituents

3: ŷe ← ∅ � ŷe: the resulting ensemble simulation

4: for each {model, β} ∈ ensemble do

5: ŷ ← simulate(model, D)

6: if inrange(ŷ, lib) then

7: Simulations ← Simulations
⋃{ŷ, β}

8: else continue

9: end if

10: end for

11: if scheme = average then

12: ŷe ← average(Simulations)

13: else if scheme = weightedAverage then

14: ŷe ← weightedAverage(Simulations)

15: else

16: ŷe ← weightedMedian(Simulations)

17: end if

18: end function

knowledge lib, a data set D and a label scheme selecting the combina-

tion scheme used. The resulting prediction of the ensemble is a tra-

jectory denoted with ŷe. First, each model from the set is simulated.

The result of the prediction of a individual model for a data set D is a

trajectory ŷ. Each model is accompanied with a confidence β , calcu-

lated based on the performance on a validation data set. We use this

coefficient β in the weighted combining schemes. The pairs of tra-

jectories and confidences {ŷ, β} resulting from the simulation of the

constituents in the ensemble is collected in the set Simulations.

In contrast to the task of obtaining an output from a regression

model, where the resulting prediction is a single point for a given

input, the task of predicting with process-based models is far more

challenging. The simulation of a process-based model takes as

input the initial values of the endogenous variables and the com-

plete trajectories of the exogenous (forcing) variables. As output,

it produces complete trajectories of the endogenous variables. In a

predictive scenario, this can often lead to divergent trajectories and

disastrous predictive misperformance. For this reason, we examine

the simulated values of each prediction ŷ whether they satisfy the

range of constraints given in the library of background know-

ledge (line 6 in Algorithm 2). If a value from a prediction is outside

the range specified in the library, the whole trajectory of that particu-

lar model is discarded, i.e., is not taken into account when calculating

the resulting ensemble prediction. In this paper, we use this kind of

dynamic ensemble pruning as a standard technique when selecting

the ensemble constituents and simulating the ensemble prediction.

Finally, the valid simulations (Simulations) along with the respective

confidence βv are combined in the resulting ensemble prediction.

4.2. Learning the constituents of an ensemble of PBMs

Theoretically, ensemble methods consist of two main compo-

nents: a technique for learning a set of candidate base models, and

a combining scheme specifying how the base model predictions are

being aggregated into an ensemble prediction. Previously, we demon-

strated how the base models are combined into an ensemble of

process-based models. Here we focus on the methods for learning

the ensemble constituents.

Based on how the constituents are learned, the ensembles can

be homogeneous or heterogeneous. In homogeneous ensembles, the

base models are learned with the same learning algorithm, but using

different samples of the training data, where the sampling variants

include: sampling of data instances as in bagging (Breiman, 1996a)

Algorithm 3 Bagging process-based models.

1: procedure Bagging(lib, {DT , DV }, incompleteModel, k)

2: returns Ensemble

3: Ensemble ← ∅ � set of base models

4: for i = 1 to k do

5: DS ← sample(DT ) � randomly sample the training set DT

6: modelListi ← probmot(lib, DS, incompleteModel)

7: bestModeli ← rank(modelListi, DV )

8: βi ←confidence(bestModeli, DV )

9: Ensemble ← Ensemble
⋃

(bestModeli, βi)
10: end for

11: end procedure

12:

13: function confidence(model, D) returns β
14: let ŷ � simulated system variable y

15: let y � measured system variable y

16: ŷ ←simulate(model, D)

17: maxDisc ← sup (|yt − ŷt |)2 � calculate max discrep-

ancy between measure-

ments y and simulation

ŷ, where t = 0..N and N is

number of time-points in

D

18: L̄ ←
N∑

t=0

|yt − ŷt |2

maxDisc
� calculate average loss

19: β ← L̄

1 − L̄
� calculate confidence

20: end function

and boosting (Freund, 1999); sampling of data features/attributes

as in random subspaces (Ho, 1998); or both as in random forests

(Breiman, 2001). On the other hand, in heterogeneous ensembles,

the candidate base models are learned using different learning algo-

rithms, possibly together with a combination function as in stacking

(Wolpert, 1992).

Bagging (Bootstrap aggregation), developed by Breiman (1996a),

is one of the first and simplest ensemble learning methods. This

method uses bootstrap sampling with aggregation. First, randomly

sampled data instances, with replacements, from the training set are

used to obtain bootstrap replicates. Next, each base model is learned

from a different bootstrap replicate.

Boosting refers to a general approach for obtaining an accurate

prediction by combining several less accurate ones learned on a dif-

ferent distributions of the training data. The AdaBoost algorithm, pro-

posed by Freund and Schapire (1997), is an implementation of the

boosting approach for the task of classification. AdaBoost works iter-

atively; it uses different distributions of the training data for learn-

ing the base models at each iteration. Depending on the outcome

of the past iteration this method decreases (for correct classifica-

tion)/increases (for incorrect classification) the weights of every in-

stance, thus changing the distribution for the subsequent iteration of

training the model. In this way, the individual weak predictors fo-

cus on different instances, and their combination is more robust. In

a similar fashion, the implementation of Drucker (1997) successfully

tackles the problem of combining regressors using AdaBoost.

In the reminder of this section, we will describe the process of

generating ensembles of PBMs, and identify the key design princi-

ples for extending the two methods outlined above (bagging and Ad-

aboost) to learn ensembles of PBMs.

4.2.1. Bagging of PBMs

The procedure for bagging process-based models is presented in

Algorithm 3. The procedure Bagging() takes four inputs: a library

of domain knowledge lib, data consisting of training data DT and

87



8490 N. Simidjievski et al. / Expert Systems With Applications 42 (2015) 8484–8496

validation data DV, an incomplete model incompleteModel, and an

integer k denoting how many base models are to be generated. The

output is a set of process-based models denoted with Ensemble.

Using probmot()(line 6), we learn a set candidate base models from

different random samples DS of the training data DT . The probmot()

procedure follows the algorithm design principles of the process-

based modeling paradigm, and resembles Algorithm 1 in terms of

inputs, outputs and flow.

The notable difference from bagging in the context of regression is

that in our case the data instances have a temporal ordering, that has

to be retained in each data sample. To achieve this, we implement

sampling by retaining the order of the instances and introducing a

weight for each instance (time-point), and provide it as part of the

data. The weight corresponds to the number of times the instance

has been selected in the process of sampling with replacement (sam-

ple() procedure). Instances that have not been selected (the ones with

weight 0) are simply omitted from the sample.

To take into account the weights when learning a model from the

sample, we employ the weighted root mean squared error (WRMSE)

implemented in ProBMoT:

WRMSE(m) =
√∑N

t=0 ωt ∗ (yt − ŷt)2∑n
t=0 ωt

, (1)

where yt and ŷt correspond to the measured and simulated values

(simulating the base model m) of the system variable y at time point t,

N denotes the number of instances in the data sample, and ωt denote

the weight of the data instance at time point t.

The output of a modeling task, when using ProBMoT, is a list of

process-based models, which is afterwards sorted according to their

performance (line 7 in Algorithm 3). Depending on the input in the

procedure, the ranking can be based on the performance on a sepa-

rate validation data set DV, or on the training sample (if DV == DT).

The highest ranked model from each modeling task i (out of k) de-

noted as bestModeli , becomes an ensemble constituent in the output

Ensemble.

Each ensemble constituent is paired with its own confidence β .

The condifence() function takes 2 inputs: the highest ranked model

returned by ProBMoT and a data set D. Fist the model is simulated

on the data set D resulting in a trajectory ŷ. Based on the error at

each time point in the trajectory an average loss L̄ is calculated for the

model (line 18 in Algorithm 3). From this loss, a confidence measure

β is calculated, where low values of β denote high confidence. The β
coefficient is an indicator of the performance of the base model and

is used in the process of simulating the ensemble, i.e., combining the

simulations of the constituents into an overall ensemble prediction.

4.2.2. Boosting of PBMs

The procedure for boosting of process-based models is presented

in Algorithm 4. In analogy with bagging, the Boosting() procedure,

takes the same four inputs: a library of domain knowledge lib, data

consisting of training data DT and validation data DV, incomplete

model incompleteModel, and an integer k denoting how many base

models are to be generated. In contrast to bagging, here we start with

the complete training data set (instead of a sample). In addition we

introduce the concept of weights for each data/time-point, which are

recalculated after every boosting iteration, (line 10 in Algorithm 4)

according to the error made by the model from the previous itera-

tion at the respective time point. In the learning phase, we use the

WRMSE objective function, presented in Eq. (1).

The reweight() function takes 3 inputs: the highest ranked model

(denoted with model) from the previous iteration, a data set D, and

the respective set of weights ω. While this function resembles the

confidence() function, there are important differences: here we con-

sider a set of time-point wise weights and loss (rather than a single

overall loss), and we calculate this on the training data (in contrast to

Algorithm 4 Boosting process-based models.

1: procedure Boosting(lib, {DT , DV }, incompleteModel, k)

2: returns Ensemble

3: Ensemble ← ∅ � set of base models

4: ωt ← 1 � ωt is the weight of time

point t , where t = 0..N

and N is the number of

measurements in DT
5: for i = 1 to k do

6: modelListi ← probmot(lib, {DT ,ω}, incompleteModel)

7: bestModeli ← rank(modelListi, DV )

8: βi ←confidence(bestModeli, DV )

9: Ensemble ← Ensemble
⋃

(bestModeli, βi)
10: ω ← reweight(modeli, DT ,ω)

11: end for

12: end procedure

13:

14: function reweight(model, D,ω) returns ω
15: let ŷ � simulated system variable y

16: let y � measured system variable y

17: ŷ ←simulate(model, D)

18: maxDisc ← sup (|yt − ŷt |)2 � calculate max discrep-

ancy between measure-

ments y and simulation

ŷ, where t = 0..N and N is

number of time-points in

D

19: Lt ← |yt − ŷt |2

maxDisc
� calculate square loss at each

time point t , where t = 0..N

20: L̄ ← ∑N
t=0 Lt ∗ ωt∑N

t=0 ωt

� calculate weighted average loss,

according to the weights
21:

22: ωt ← ωt ∗
[

L̄

1 − L̄

]1−Lt

, t = 0..N � update weights

23: ω ← normalize(ω, N) � normalize weights to N

24: end function

validation data). First, the model is simulated on the data set D. Next,

based on the error at each time point in the trajectory and the set

of weights ω, the weighted average loss L̄ is calculation. Finally, the

set of weights is updated: the smaller the loss the more the weight

is reduced – focusing on harder parts of the data set in the future

iterations of the algorithm.

The output of the Boosting() procedure is a set of pairs (process-

based models and their respective confidences) denoted with

Ensemble. The highest ranked process-based model from each boost-

ing iteration is considered as an ensemble constituent, for which a

confidence is calculated. As in bagging, the ranking can be based on

the performance of the process-based model on a separate validation

data set DV, or on the training sample (if DV == DT ).

5. Experimental setup

In this section, we present the setup of the experiments used to

evaluate the predictive performance of the ensembles of process-

based models. The aim of the evaluation presented is three-tiered.

First, we want to identify the ensemble method that leads to best

long-term predictions of process-based models. In particular, we

perform a comparative analysis of the predictive accuracies of the

models obtained with bagging and boosting to the predictive accu-

racy of a single model. These experiments will confirm our hypothesis

that ensembles of process-based models improve over the predictive

performance of single models. Second, for each of the methods con-

sidered, we identify the optimal design decisions in terms of choosing
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the ensemble constituents, combining their predictions and choosing

the ensemble size. In the following sections, we first introduce the

data sets to be used in the experiments, then briefly describe the two

other ProBMoT inputs, i.e., the library of modeling knowledge and

incomplete models, and finally define the performance metrics used

to asses the process-based models and ensembles thereof.

5.1. Data sets

In the experiments, we use fifteen data sets from the domain of

aquatic ecosystems, in particular, modeling food-web dynamics in

the three lakes of Bled in Slovenia, Kasumigaura in Japan, and Zurich

in Switzerland. The original data sets comprise monthly measure-

ments in the seven year periods from 1986 to 1992 for the Lake Ka-

sumigaura (Atanasova et al., 2006a) and in the period from 1996 to

2002 for Lake Bled (Atanasova et al., 2006c) and Lake Zurich (Dietzel,

Mieleitner, Kardaetz, & Reichert, 2013). To obtain daily values, the

measurements were interpolated and daily samples were taken from

the interpolation.

For each aquatic ecosystem, we split the original multi-year data

sets into seven single-year data sets. Five of these were used (one at a

time) for training the base-level models, one was used for validating

the models in the process of selecting the ensemble constituents, and

one was used to measure the predictive performance of the learned

process-based models and ensembles thereof. Thus, we perform fif-

teen learning experiments; in each, we take a single-year training

data set, learn a model using the train and the validation data sets,

and test its predictive performance on the test data set. In the tables

reporting the experimental results, we label the experiments with

the labels B1–B5, K1–K5 and Z1–Z5 corresponding to the training

data set using in the experiment, where, e.g., K3 denotes the Lake

Kasumigaura data set for the third year (i.e., 1988).

5.2. ProBMoT inputs and parameter settings

In our experiments, we use the library of domain-specific knowl-

edge for modeling population dynamics in aquatic ecosystems, based

on the previous work by Atanasova et al. (2006b). To reduce the com-

putational complexity of the experiments performed in this paper,

we used a simplified version of the library, where we omitted some

of the alternatives for modeling individual processes. The simplified

version of the library and the incomplete models, lead to 320 candi-

date model structures (as opposed to 18144 with the whole library)

for Lake Kasumigarua and 128 candidates (as opposed to 27216 with

the whole library) for the other two lakes.

We use the same structure of the population dynamics model for

all three aquatic ecosystems. It includes a single ordinary differen-

tial equation for a system variable representing the phytoplankton

biomass (measured as chlorophyll-a in Lake Kasumigaura). The ex-

ogenous variables include the concentration of zooplankton Daphnia

hyalina (where available, i.e., for Bled and Zurich only), the dissolved

inorganic nutrients of nitrogen, phosphorus, and silica (ammonia in

Kasumigaura), as well as two input variables representing the envi-

ronmental influence of water temperature and global solar radiation

(light).

ProBMoT uses the Differential Evolution (Storn & Price, 1997)

method for parameter estimation with population size 50, strategy

rand/1/bin, differential weight (F) and crossover probability (Cr) of 0.6.

The limit on the number of evaluations of the objective function is

one thousand per parameter. For simulating the ODEs, we used the

CVODE simulator with absolute and relative tolerances set to 10−3.

5.3. Evaluation metrics

To evaluate the predictive performance of a given model m, we

use the relative root mean squared error (ReRMSE) (Breiman, 1984),

defined as:

ReRMSE(m) =
√∑N

t=0 (yt − ŷt)2∑N
t=0 (ȳ − ŷt)2

, (2)

where N denotes the number of measurements in the test data set, yt

and ŷt correspond to the measured and predicted2 value of the system

variable y at time point t, and ȳ denotes the mean value of y in the test

data set. Note that the usual root mean squared error is considered

here relative to the standard deviation of the system variable in the

test data, thus allowing us to compare the errors of models for system

variables measured on different scales.

We observe and compare the predictive performance (ReRMSE) of

the models learned using different algorithms on the 15 data sets. To

assess the statistical significance of the differences in performances

among models obtained with different algorithms, we follow the rec-

ommendation by Demšar (2006) and use the corrected (Iman & Dav-

enport, 1980) Friedman test (Friedman, 1940), followed by the post-

hoc Nemenyi test (Nemenyi, 1963). The Nemenyi test is used to ex-

plain where the significant differences come from (from which pairs

of algorithms) by computing the critical distance between the al-

gorithm ranks at a given significance level; in our case, we set the

significance level threshold at 95% (i.e., p = 0.05). The results of the

Friedman–Nemenyi tests are depicted in average rank diagrams, such

as the ones in Fig. 3.

Finally, to explore the correlation between ensemble performance

and the diversity of the ensemble constituents, we measure the di-

versity of the constituents of the ensemble e as the average pairwise

distance between the simulations of the constituents:

Diversity(e) = 1

(|e|2 )

∑
{m1,m2}⊂e

√∑N
t=0 (y1,t − y2,t)2

N
, (3)

where |e| denotes the number of models in the ensemble, N the num-

ber of measurements in the data set, m1 and m2 two models from

e, and y1, t and y2, t the simulated states of these two models at time

point t. To assess the performance improvement of the ensemble e

over a single model m, we calculate:

Improvement(e, m) = −ReRMSE(e) − ReRMSE(m)

ReRMSE(m)
. (4)

We draw a scatter plot that depicts the correlation between ensemble

diversity and performance improvement and calculate the Pearson

correlation coefficient between them.

6. Results

In this section, we present and discuss the results of the empiri-

cal evaluation. In particular, we first identify the most suitable design

decisions for individual ensemble methods. Then, we test the valid-

ity of our central hypothesis that ensembles of process-based models

outperform the single process-based models. Finally, we investigate

whether the performance improvement is related to the diversity of

the predictions obtained with the ensemble constituents. Finally, we

discuss the results in the context of the related machine learning re-

search on ensembles.

6.1. Learning ensembles of process-based models

The first design decision in an algorithm for learning ensembles of

PBMs is related to the way of choosing the ensemble constituents. In

each iteration of learning an ensemble, we select a single ensemble

constituent, i.e., the highest ranked model from the ProBMoT output.

Note that the latter represents a list of models, ranked with respect

2 Predictions are obtained by simulating the model m on a test set.
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Fig. 3. Comparison of the average ranks of different methods for selecting (and combining) ensemble constituents in terms of the predictive model performance averaged over the

fifteen data sets in the case of bagging (top) and boosting (bottom). The labels describe the methods and give their average ranks.

to their performance on the training set. We refer to this base-line

method for choosing ensemble constituents as regular. Alternatively,

to avoid overfiting, we can re-rank the ProBMoT output, i.e., list of

models, according to their performance on a separate validation data

set. We refer to this selecting method as validation.

Fig. 3 summarizes the comparison between the performance of

the regular and the validation method for choosing the base models

to be included in the ensemble built in 50 iterations. The upper di-

agram depicts the results of the Friedman-Nemenyi test in the case

of bagging, while the lower diagram depicts the results for the case

of boosting. In both cases, choosing the base models based on their

ranking on a separate validation set leads to superior ensemble per-

formance. In the case of bagging, the superiority is statistically sig-

nificant (note that the critical distance is smaller than the difference

between the best validation rank and the best regular rank), while in

the case of boosting it is not statistically significant.

We conjectured earlier that choosing ensemble constituents

based on their performance on the training data set leads to ensem-

bles that overfit the training data. Fig. 4 confirms the validity of this

conjecture: in both cases (bagging and boosting), ensembles built us-

ing the regular selection method outperform the ones built with the

validation selection method. This demonstrates a clear case of overfit-

ting — while being superior on the training data, the regular selection

method leads to ensembles with poor predictive performance.

Next, we focus on the design decision concerning the most ap-

propriate method for combining the simulations of the base mod-

els in the ensemble. We compare the performance of three methods

commonly used in learning ensembles of regression models: average,

weighted average, and weighted median (Breiman, 1984; Drucker,

1997). Fig. 5 depicts the comparison of the average ranks of the three

methods for combining the base-model simulations in the case of

bagging and boosting with 50 iterations in each case. In both cases,

the simplest method, i.e. average, outperforms the other two. In the

case of bagging, the observed difference between the average and the

weighted average methods is statistically significant, while the other

differences are not significant. Given this, and following the parsi-

mony principle, we can conclude that the most appropriate method

for combining the simulations of the ensemble constituents is the

simple average.

For all experiments so far, we learned ensembles of fixed size,

always consisting of 50 base models. In the last series of experiments,

we aim at making a decision on the optimal number of iterations

for learning ensembles of process-based models. To this end, we

compare the predictive performance of ensembles consisting of 5,

10, 25 and 50 base models. Fig. 6 summarizes the results of the

comparison for both bagging and boosting. The Friedman-Nemenyi

diagram shows that the ensemble built in 25 iterations leads to the

best performance in both cases. Note however, that the observed

differences in performance are not statistically significant.

In summary, based on the presented results we make the follow-

ing design decisions related to learning ensembles of process-based

models: We choose the ensemble constituents based on their perfor-

mance on a separate validation data set, we combine the base-model

predictions (simulations) using simple, unweighted, average and per-

form 25 iterations of adding base-models to the ensemble. In all the

further experiments, we used these algorithm settings for learning

ensembles.

6.2. Ensemble performance and diversity

Having made the design decisions for learning ensembles of

process-based models, we necessary now focus on testing our cen-

tral hypothesis that ensembles improve the predictive performance

of process-based models. To this end, we compare the predictive per-

formance of the ensembles with the one of a single process-based

model learned on the whole training data set and chosen based on

its performance on the separate validation data set. Fig. 7 depicts the
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Fig. 4. Comparison of the average ranks of different methods for selecting (and combining) ensemble constituents in terms of the descriptive model performance averaged over

the fifteen data sets in the case of bagging (top) and boosting (bottom). The labels describe the methods and give their average ranks.

Fig. 5. Comparison of the average ranks of the three methods for combining the simulations of base models (average, weighted average, and weighted median) in terms of

predictive performance averaged over the fifteen data sets in the case of bagging (left-hand side) and boosting (right-hand side).

Fig. 6. Comparison of the average ranks of ensembles that include 5, 10, 25, and 50 base models in terms of predictive performance averaged over the fifteen experimental data

sets.

comparison of the average ranks of a single model as well as the bag-

ging and boosting ensembles, averaged over fifteen data sets.

The results of the Friedman-Nemenyi test show that both ensem-

ble methods outperform the single process-based models. More im-

portantly, the bagged ensembles significantly outperform the single

models. These results support the central hypothesis of our paper

that the ensembles improve the predictive performance of process-

based models.

In our last set of experiments, we explore the relation of the ob-

served significant improvement to the diversity of the simulations of

the ensemble constituents. We first measure the relative improve-

ment of the performance obtained by using an ensemble instead of a

91



8494 N. Simidjievski et al. / Expert Systems With Applications 42 (2015) 8484–8496

3 2 1

Critical Distance = 0.855543

Fig. 7. Comparison of the average ranks of the single model and the ensembles

(learned by using bagging and boosting) in terms of predictive performance averaged

over the fifteen data sets.

Table 4

Diversity of the base models and the percentage of the relative im-

provement of the ensemble error over the error of the single model

for the fifteen data sets. The Pearson correlation coefficient r between

the improvement and the diversity is also given.

Case Bagging Boosting

Diversity Improvement Diversity Improvement

B1 0.354 12.27% 0.342 12.97%

B2 0.561 4.48% 0.729 16.69%

B3 0.230 9.24% 0.477 11.77%

B4 0.617 17.45% 0.919 14.12%

B5 0.270 6.81% 0.408 24.29%

K1 1.010 1.04% 0.827 −24.32%

K2 1.030 35.06% 1.319 25.38%

K3 0.543 9.45% 0.656 3.59%

K4 0.598 1.02% 0.759 9.64%

K5 0.605 −1.53% 0.737 −7.97%

Z1 0.089 0.69% 0.411 −13.70%

Z2 0.234 7.23% 0.585 6.25%

Z3 0.223 5.72% 0.317 −1.01%

Z4 0.125 −2.33% 0.157 −4.21%

Z5 0.285 32.69% 0.702 15.16%

r 0.274 0.261

single model. Then, we measure the diversity of base models in the

ensemble. Finally, we analyze the correlation between the two.

Table 4 and Fig. 8 summarize the results of these experiments. The

results presented in Table 4 confirm our previous finding: bagging

outperforms single models in all but two data sets, K5 and Z4. Note

that the loss of performance for these two data sets is minor (below

3%). On the other hand, the gain in performance can be substantial

and reach up to 17% for Lake Bled, 35% for Lake Kasumigaura and 33%

for Lake Zurich.

In the case of boosting, the improvement over the single model is

less substantial, and more importantly, less consistent. The boosting

method outperforms the single model for the majority of the training

data sets (up to 25% for the case of Lake Bled; up to 26% for Lake Ka-

sumigaura; and 16% for Lake Zurich). However for the remaining five

data sets (K1, K5, Z1, Z3 and Z4) it under-performs. Note that two of

these (K5 and Z4) are the same as the ones where bagging under-

performs. For the remaining three cases, bagging makes a modest

(up to 6%) improvement over the single model. This confirms that

bagging is a better method for learning ensembles of process-based

models.

Finally, we observe a varying degree of diversity between ensem-

ble constituents for different data sets—diversity varies from 0.125 to

1.030. The scatter plots in Fig. 8 show weak positive correlation be-

tween ensemble diversity and relative improvement of performance.

While measured Pearson correlation coefficient of 0.274 for bagging,

and 0.261 for boosting, is neither high nor significant, the positive

correlation is in line with the implicit assumption that ensembles

improve predictive performance by exploiting the diversity of their

constituents (Kuncheva & Whitaker, 2003).

6.3. Discussion

The results presented in this paper confirm our main hypothesis

that ensembles of process-based models yield a significant gain in

predictive performance when compared to a single model. Based on

the performed empirical evaluation, we identified the main design

decisions that need to be made when learning such ensembles by us-

ing bagging and boosting as underlying methods. In this context, it is

very important that one uses a separate validation data set in addition

to the training one when learning the base models included in the

ensemble. The optimal ensembles of PBMs consist of relatively low

numbers of constituent models, ranging between 10 and 25 for bag-

ging and 25–50 for boosting (for both methods, the best performing

ensembles comprised 25 constituents). For combining the simulation

of the constituent process-based models, the results showed that the

simplest combining scheme, i.e averaging, provides the most satis-

fying results both in terms of predictive accuracy and computational

complexity.

The process-based models, when simulated in a predictive set-

ting, can often produce divergent simulations, i.e., simulations where

the systems variables leave their plausible ranges. Therefore, when

simulating ensembles of PBMs, we explicitly handle this kind of be-

havior of the base models. We use the provided domain knowledge

on system variable ranges to discard the invalid behaviors from the

Fig. 8. Scatter plots depicting the correlation between the diversity of the base-model predictions and the relative error improvement between a single model and an ensemble

for fifteen data sets.
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resulting ensemble prediction. This can be viewed as a dynamic form

of ensemble pruning.

Finally, our major conclusion is that both methods for learn-

ing ensembles of process-based models, following the design out-

lined above, outperform single models. More importantly, bagged

process-based models provide a significant performance gain over

a single model. Note that the improvement of performance over

the single model is positively related to the diversity of the en-

semble constituents — the higher the diversity, the greater the

improvement.

However, in our case, the correlation between the diversity and

the performance gain is very weak. Breiman (1996a) states that bag-

ging can improve predictive performance when the ensemble is com-

posed of models whose predictions vary sufficiently. The base mod-

els obtained in our approach have only modest diversity, which may

limit the full predictive potential of the ensembles. One reason for

this may be the lower number of model structures considered by

ProBMoT, which used a simplified library of domain knowledge. This

can be overcome by using the original library, which leads to tens of

thousands of model structures.

In addition, the study of Joshi, Agarwal, and Kumar (2002) points

out that the performance of boosting is correlated with the perfor-

mance of the base learner, in our case, ProBMoT. This means that,

when a single model obtained with ProBMoT, exhibits very good pre-

dictive performance, the ensembles exhibit similar or worse perfor-

mance. This may be one reason for the behavior seen in Table 4 for

the five highlighted experimental data sets (K1, K5, Z1, Z3 and Z4).

Further investigations are required to determine whether increased

diversity could lead to better performance.

7. Conclusion

In this paper, we address the task of learning ensembles of

process-based models by designing, implementing and evaluating

appropriate methodology. The developed methodology is general

enough to allow for adapting different ensemble methods to the par-

ticular context of learning process-based models. This methodology

is the main contribution of our paper, since it extends the scope

of current process-based modeling approaches to the task of learn-

ing ensembles of process-based models. While the methodology has

been only used in the limited context of adapting bagging and boost-

ing, we can easily extend it towards other methods for learning ho-

mogeneous ensembles.

The second contribution of our paper is the extension of the

scope of ensemble methods to process-based modeling. While pre-

vious proof-of-concept experiments have been performed for spe-

cific types of ensembles (Simidjievski et al., 2015), this is the first

paper to provide a detailed layout of a methodology for building var-

ious types of ensembles of process-based models. This contribution

is also important in the wider context of ensembles for time-series

forecasting (Kourentzes et al., 2014; Ma et al., 2015; Tay et al., 2013).

While forecasting ensembles have a narrow focus on short-term pre-

diction tasks, where the value of the time series at the next time

point is predicted, ensembles of process-based models provide ac-

curate long-term predictions over many future time points. In con-

trast to Bridewell et al. (2005), who build ensembles that explain

observed (albeit long-term) system behavior, the methods presented

here provide accurate predictions of the unobserved future system

behavior.

Note also that the results of the performed experimental evalu-

ation confirm our central conjecture that ensembles provide much

more accurate predictions of future concentrations of species in an

aquatic ecosystems than a single process-based model. While single

models struggle with achieving the performance of the baseline pre-

dictor (that predicts constant species concentrations at the level of

their average), the ensembles of process-based models lead to accu-

rate predictions of population dynamics over a long prediction peri-

ods, e.g., one season (year) in advance. When compared to previous

results obtained in the domain of population dynamics (Atanasova

et al., 2006a, 2006c), this is also a non-trivial improvement of predic-

tive performance over the state-of-the-art models of population dy-

namics. These results are consistent over experiments with data from

three real-world aquatic ecosystems: Lake Bled in Slovenia, Lake Ka-

sumigaura in Japan, and Lake Zurich in Switzerland. This is the third

important contribution of our paper, which mainly contributes to the

domain of ecological modeling.

Several directions for further work can be followed. First, note

that the validity of the results presented in this paper is limited to

the particular domain of modeling population dynamics in aquatic

ecosystems. An immediate continuation of the work presented here

is to investigate the generality of the results across various domains

and modeling tasks: both the superior performance of ensembles of

process-based models (as compared to individual models) and the

optimal settings and design decisions for the algorithms for learning

them need to be verified for other domains and datasets. Next, fol-

lowing ideas from Bridewell et al. (2005), we intend to explore meth-

ods for incorporating the structure of the ensemble constituents into

a single process-based model with good predictive performance.

Here we limit our attention to a single type of ensembles, where

the diversity in the ensemble is obtained by learning ensemble con-

stituents from different samples of the training data. In future, we can

extend this narrow scope by considering other methods for generat-

ing ensemble constituents that rely on sampling the model variables

or sampling the model components/templates in the library of mod-

eling knowledge. The first method directly relates to the standard en-

semble method of random subspaces (Ho, 1998). The second method

would take different samples of entity and process templates from

the library when learning individual models with the extra benefit

of reducing the computational complexity of the individual learning

tasks due to the reduced complexity of the search space.

Finally, we intend to extend our methodology towards learning

interactive ensembles of models of dynamic systems, referred to as

super-models (Mirchev, Duane, Tang, & Kocarev, 2012; van den Berge,

Selten, Wiegerinck, & Duane, 2011). In contrast to ensembles, where

the base models are learned and simulated independently and com-

bined afterwards, within super-models, the base models can share

and interchange information both during the learning and the sim-

ulation phase. In this context, one can learn the constituent models,

their interconnections or both.
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Chapter 6

Learning Ensembles via Sampling

the Library of Domain Knowledge

In this chapter, we present the results of the empirical evaluation concerned with learning
ensembles by sampling the library of domain knowledge, i.e., learning ensembles with the
random library subsamples (RLS) method.

The experiment evaluation presented in the previous chapter showed that ensembles
of process-based models obtained by using di�erent samples of the measured data, i.e.,
bagging and boosting, yield signi�cantly improved predictive performance. However, this
improvement comes at the cost of a substantial increase in the computational complexity
of learning the predictive ensemble model. To tackle this problem, the ensemble method
proposed in this chapter, titled "Modeling dynamic systems with e�cient ensembles of
process-based models", aims at e�ciently learning ensembles of process-based models while
maintaining their accurate long-term predictive performance.

More speci�cally, here we propose a process-based ensemble method which extends the
existing equation discovery approaches for learning ensembles of processes-based models
towards sub-sampling domain knowledge instead of the measurements. Similarly to the
previous studies, we apply the proposed method and evaluate its performance on a set of
problems of automated modeling of population dynamics in three real-life aquatic ecosys-
tems. We �rst identify the most appropriate design decisions within the algorithm for
learning such ensembles. We then compare their predictive performance to that of other
ensembles of process-based models learned on di�erent subsamples of the measurements
as well as to the performance of an individual process-based model.

Based on the results of the empirical evaluation presented, we identi�ed the most ap-
propriate design choices when constructing ensembles by sampling the library of domain
knowledge. First, when selecting the ensemble constituents, it is necessary to use separate
validation data, in addition to the training data used for learning the models. This yields
more robust ensembles, which in turn substantially improve the predictive performance.
Second, the ensembles should consist of a relatively small number of base models (i.e.,
10) and should use standard unweighted averaging for combining the predictions of the
individual base models. Note that these �ndings support the optimal design decisions for
learning ensembles of process-based models via bagging and boosting, i.e., learning ensem-
bles with a relatively small number of constituents, chosen by using a separate validation
set, and combined by averaging, yield the best performance.

To properly address all aspects of the RLS method, we propose two di�erent alterna-
tives, i.e., sampling the library with and without duplicates. The results of the experimental
evaluation showed that ensembles constructed by sampling the library with duplicates have
(not signi�cantly) better predictive performance as compared to their counterpart without
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duplicates. Additionally, these two alternative types of ensembles showed better predictive
performance as compared to both types of baseline ensembles, i.e, the one comprised of the
highest-ranking models and the one comprised of random models. Given that, here we aim
at e�cient learning of ensembles and following the parsimony principle we conclude that
ensembles constructed by RLS, which allow duplicates are computationally more e�cient,
while maintaining good predictive performance.

More importantly, the results presented in this study recon�rm our hypothesis that
ensembles of process-based models, learned by sampling the library of domain knowledge,
signi�cantly outperform single models in terms of predictive performance. In comparison
to ensembles of process-based models constructed with bagging and boosting, the RLS
ensembles performed slightly worse and slightly better, respectively, but the di�erences
in performance are not signi�cant. On the other hand, the computational performance
analysis showed that the library sampling learning method is 25 times faster compared to
its bagging and boosting learning counterparts (with equal number of bagging/boosting
iterations). This is a non-trivial improvement in computational e�ciency as compared to
the state-of-the art methods for learning ensembles of process-based models.

All things considered, the experiments show that the RLS ensembles yield to signi�-
cantly more accurate predictions of population dynamics as compared to a single process-
based models, while being substantially more e�cient than the other methods for learning
ensembles of process-based models.
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Abstract
Ensembles are a well established machine learning paradigm, leading to accurate and

robust models, predominantly applied to predictive modeling tasks. Ensemble models com-

prise a finite set of diverse predictive models whose combined output is expected to yield an

improved predictive performance as compared to an individual model. In this paper, we pro-

pose a new method for learning ensembles of process-based models of dynamic systems.

The process-based modeling paradigm employs domain-specific knowledge to automati-

cally learn models of dynamic systems from time-series observational data. Previous work

has shown that ensembles based on sampling observational data (i.e., bagging and boost-

ing), significantly improve predictive performance of process-based models. However, this

improvement comes at the cost of a substantial increase of the computational time needed

for learning. To address this problem, the paper proposes a method that aims at efficiently

learning ensembles of process-based models, while maintaining their accurate long-term

predictive performance. This is achieved by constructing ensembles with sampling domain-

specific knowledge instead of sampling data. We apply the proposed method to and evalu-

ate its performance on a set of problems of automated predictive modeling in three lake eco-

systems using a library of process-based knowledge for modeling population dynamics.

The experimental results identify the optimal design decisions regarding the learning algo-

rithm. The results also show that the proposed ensembles yield significantly more accurate

predictions of population dynamics as compared to individual process-based models.

Finally, while their predictive performance is comparable to the one of ensembles obtained

with the state-of-the-art methods of bagging and boosting, they are substantially more

efficient.

Introduction
Models are vital instruments for investigating how constitutive elements interact in the com-
plex dynamic systems observed in nature. Scientists incorporate expert knowledge and statisti-
cal methods to recreate the observed behavior and find patterns in the measured data, which in

PLOSONE | DOI:10.1371/journal.pone.0153507 April 14, 2016 1 / 27

a11111

OPEN ACCESS

Citation: Simidjievski N, Todorovski L, Džeroski S
(2016) Modeling Dynamic Systems with Efficient
Ensembles of Process-Based Models. PLoS ONE 11
(4): e0153507. doi:10.1371/journal.pone.0153507

Editor: Bin Liu, Harbin Institute of Technology
Shenzhen Graduate School, CHINA

Received: November 3, 2015

Accepted: March 30, 2016

Published: April 14, 2016

Copyright: © 2016 Simidjievski et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Third party data are
available from the original authors of the respective
studies: Lake Bled-Data are from the [Atanasova N,
Todorovski L, Džeroski S, Remec R, Recknagel F,
Kompare B. Automated modelling of a food web in
Lake Bled using measured data and a library of
domain knowledge. Ecological Modelling. 2006;194
(1-3):37–48. DOI:10.1016/j.ecolmodel.2005.10.029]
study whose authors may be contacted at: Nataša
Atanasova -http://www.fgg.uni-lj.si/izh/atanasova;
Špela Remec-Rekar -http://www.arso.gov.si/en Lake
Kasumigaura- Data are from the [Atanasova N,
Recknagel F, Todorovski L, Džeroski S, Kompare B.
Computational Assemblage of Ordinary Differential

97



turn results in a model of a dynamic system. The model can be simulated- both to describe and
to predict its states under various conditions.

The process-based modeling paradigm, employed in this paper, follows the above principles
by automatically modeling the behavior of dynamic systems using time-series measurements
and domain-specific modeling knowledge. The resulting process-based models offer both an
understandable formalism of the system’s structure and a mathematical formulation allowing
for its simulation. The former provides a high-level representation of the modeled system in
terms of entities and processes, i.e., the elements in the system and their interactions, respec-
tively. The latter, transforms these entity/process components into a system of ordinary differ-
ential equations (ODEs). ODEs are a widely accepted modeling formalism. They allow for
long-term simulation of dynamic systems, which requires a minimal input consisting the initial
value of the system’s state and data corresponding to the system’s exogenous variables.

Often, establishing models that provide an accurate prediction of the behavior of a dynamic
system, require an expert intervention, which is time consuming and expansive. In contrast,
the process-based modeling paradigm allows for automated construction of such models [1–4].
While these automatically constructed models can be employed for long-term prediction, the
respective studies mostly focus on constructing models that provide a detailed and precise
description of the observed behavior. Unfortunately, the resulting models often fail to accu-
rately predict the subsequent states of the system. In this paper, we focus on the task of improv-
ing the predictive performance of process-based models by constructing ensembles.

An ensemble model is a combination of predictive models, which is expected to lead to
more accurate prediction than the one obtained with a individual model [5]. Ensembles are a
standard approach in machine learning for improving the predictive performance of models.
They are usually employed in the context of the learning tasks of classification and regression
[6, 7] to address the problems of over-fitting, high dimensionality, or missing features in the
training data. Recent studies by Simidjievski et al. [8, 9] have introduced ensembles in the con-
text of process-based models. This has allowed more accurate long-term prediction of the
behavior of dynamic systems. The ensembles yield a significant gain in predictive performance
over the individual process-based models. However, this performance gain comes at the cost of
increased computational complexity.

The main contribution of this paper is a novel efficient method for learning ensembles of
process-based models, that still accurately predict long-term behavior of dynamic systems. The
method learns ensembles by sampling the library of domain-knowledge in a manner similar to
the standard ensemble learning method of random subspaces [10]. We conjecture that such
ensembles will outperform individual process-based models in terms of their accuracy of long-
term predicting the system’s behavior, and will overcome the computational limitations of the
existing methods for learning ensembles of process-based models based on data sampling. To
test the validity of this conjecture, we perform an extensive empirical evaluation of the imple-
mented method on the task of modeling and predicting population dynamics in aquatic ecosys-
tems. This empirical evaluation will allow us to identify the most appropriate design decisions
within the algorithm for learning such ensembles of process-based models. It will also allow us
to compare the predictive performance of the new method to the performance of the existing
methods of bagging and boosting of process-based models.

The remainder of the paper is organized as follows. In the next section, we provide an over-
view of the related work from the areas of process-based modeling and ensemble learning. Sec-
tion Process-based models introduces the process-based modeling paradigm and its latest
implementation ProBMoT (Process-Based Modeling Tool), by illustrating its use on a simple
modeling task from the domain of population dynamics. Section Ensembles of process-based
models presents the extension of ProBMoT for learning ensembles of process-based models,
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focusing on learning ensembles by sampling the library of domain knowledge. Next, we present
the experimental setup for evaluating the developed methods on three tasks of predictive
modeling of population dynamics in aquatic ecosystems, i.e., the ecosystems of Lake Bled in
Slovenia, Lake Kasumigaura in Japan and Lake Zurich in Switzerland. Section Results presents
the findings of the empirical evaluation and gives a complexity analysis for learning ensembles
of PBMs. In the next section, we discusses the results in the context of related research. Finally,
the last section concludes the paper and suggests directions for further work.

Related research
The work presented in this paper builds upon our previous research on ensembles of pro-
cesses-based models [8, 9]. These studies tackle the challenge of learning ensembles by sam-
pling the training data. However, while the empirical evaluations in the respective studies have
shown that ensembles of process-based models lead to significant gains in predictive perfor-
mance, the process of learning such ensemble models is very computationally demanding.

In contrast, here we introduce a novel approach which will learn ensembles by sampling the
library of domain knowledge. The work presented in this study, is closely related to the work
performed by Bridewell et al. [11], where the authors report on generating an ensemble of
PBMs by fusing the structures of the individual constituents. The empirical evaluation of the
respective study shows that such ensembles have improved performance in a descriptive set-
ting, i.e., in explaining the observed behavior, whereas their ability for long-term prediction
(i.e., outside the scope of the training data time intervals) are not reported.

In a broader sense, this paper extends the scope of the state-of-the-art in equation discovery
[12, 13], related to automatically obtaining descriptive models from domain knowledge. Our
work comes closer to the inductive process modeling paradigm [14, 15] which mainly tackles
the problem of automatically obtaining explanatory models of a dynamic system in a process-
based representation. This paradigm has proven to be successful for a variety of modeling tasks
of population dynamics in a number of real-world domains for explaining the observed behav-
ior of the modeled system [1–4]. However, focusing on the provision of detailed and accurate
descriptions of the observed systems, the models in the respective studies, have limited predic-
tive abilities when applied to tasks of predicting subsequent system behavior.

Finally, this work is related to the long tradition of learning ensembles for tackling various
predictive modeling tasks in different ecological domains. Kocev and Džeroski et al. [16] pres-
ent an ensemble method for learning habitat models of communities of organisms under dif-
ferent environmental conditions, using predictive clustering trees [17]. However, the ensemble
methods presented in this paper are most closely related to those that tackle the problem of
time-series forecasting. Knudby et al. [18] present novel approaches for modeling fish-habitat
relationships using support-vector machines and tree ensembles for regression, where they aim
at predicting fish species richness, biomass, and diversity from a range of habitat variables.
Their main contribution is the extensive empirical study which identifies the most suitable
machine learning method for short-term prediction since it aims at forecasting the next-time-
point of fish-community concentrations. In contrast, our process-based ensembles aim at
long-term (typically one year) prediction of systems behavior that concern periods with poten-
tially indefinite ranges of time points.

Materials and Methods

Process-based models
The models of dynamic systems aim to describe the activities of the system components and
the change of the system states over time. Mathematical equations serve as a powerful tool for
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achieving this aim, where the variables in the equations represent the state of the system com-
ponents and the operators the interactions among components. Although this framework
allows for adequate representation of dynamic systems, it forfeits the high-level information
about the whys and hows of the modeled system’s behavior.

In essence, process-based models provide a conceptualization of the structure of the
observed system, accompanied by modeling details that allow for their transformation to equa-
tions and therefore simulation. They tackle the task of describing dynamic systems from two
aspects: qualitative and quantitative. From a qualitative aspect, a process-based model is a set
of entities and processes. The entities represent the components of the observed system, which
are involved in activities represented by the processes. From a quantitative aspect, a process-
based model is interpreted as a set of differential and/or algebraic equations which can be used
to simulate the behavior of the observed dynamic system. Process-based models encode both
this low-level quantitative mathematical formalism, and a high-level qualitative description of
the system.

Fig 1 gives both a graphical representation (Fig 1A) and a qualitative process-based repre-
sentation (Fig 1B) of an example Lotka—Volterra Predator–Prey model. Notice how the PBM
formalism represents the different processes/relations and entities/components involved in the
model. For example, the PREDATOR_PREY interaction is modeled as UNSATURATEDPP and involves
two entities predator and prey which are both part of the Population involved in the
modeled system. Moreover, the growth and the decay of the predator and prey are mod-
eled as EXPONENTIALGROWTH and DECAY, respectively.

Fig 1. A simple Predator-Prey model and its process-basedmodeling representation. (A) A graphical
representation of the entities (white boxes) and processes (black arrows) in a simple Predator-Prey model
and (B) its process-based modeling representation.

doi:10.1371/journal.pone.0153507.g001
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The entities and processes in Fig 1B represent the specific structure and dynamics of the
particular system at hand. To elucidate such specific entities and processes, the process-based
modeling approach uses entity and process templates, which serve as general placeholders for
properties and definitions. The templates provide general modeling specifications for any
instantiation to specific components or interactions, which in turn allows for a high-level quali-
tative conceptualization of a model to be translated into a low-level quantitative mathematical
formalization which can be simulated.

Table 1, depicts the library of domain knowledge used to instantiate the Predator-Prey
model from Fig 1B. The library organizes the templates in hierarchies. The predator and
prey entities from the example are instances of the general template entity of Population.
The entity templates incorporate group properties of the components of the modeled system.
These properties include the variables (which change over time) and the constants related to
the components of the modeled system, and their respective value constraints. For the vari-
ables, an aggregation function specifies how different process influences are combined for a
particular entity. Take for example the Population template entity: it has one variable d
which denotes density, and an aggregation function defined as summation, which means that,
for the case of prey, the influences of both processes GROWTH and PREDATOR_PREY on the variable
d will be summed.

The processes templates include specifications of the entity templates that interact, in terms
of constants, algebraic and ordinary differential equations. The process templates are organized
also into a hierarchy that defines the space of modeling alternatives. The particular process
GROWTH, used in Fig 1B, is an instance of a more general process template GROWTH (Table 1),
which is further instantiated to the process alternative— EXPONENTIALGROWTH (out of the two
possible, i.e. EXPONENTIALGROWTH and LOGISTICGROWTH).

Given such a library of domain knowledge, the task of learning process-based models takes
two additional inputs, i.e., an incomplete model and measured data. Learning PBMs then

Table 1. Library of domain knowledge for modeling Predator-Prey dynamics.

template entity Population{
vars: d {aggregation:sum, unit:“kg/m3”; range:<0,500>};\\density

template process GROWTH(pop: Population) {
consts: gR {range:<0,5>}};

template process EXPONENTIALGROWTH:GROWTH {
equations: td(pop.d) = gR � pop.d;}

template process LOGISTICGROWTH:GROWTH {
equations: td(pop.d) = gR � pop.d/(1 − pop.d/gR);}

template process DECAY(pop: Population) {
consts: dR{range:<0,2>};
equations: td(pop.d) = −dR � pop.d; }

template process INTERACTION(pop1:Population, pop2:Population){
consts: iR {range: <0,2>}, eF {range: <0,1>};}

template process UNSATURATEDPP:INTERACTION{
equations: td(pop.d) = iR � eF � pop1.d � pop2.d,

td(pop.d) = −iR � pop1.d � pop2.d; }

template process SATURATEDPP:INTERACTION{
consts: sR{range: <0,10>};
equations: td(pop.d) = iR � eF � pop1.d � pop2.d/(pop2.d+sR),

td(pop.d) = −iR � pop1.d � pop2.d/(pop2.d+sR); }

doi:10.1371/journal.pone.0153507.t001
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proceeds in two phases: (1) instantiating the library of entity and process templates by using
the incomplete model and (2) estimating the parameters in the resulting model structures to fit
the measured data. Given the library of model fragments the former phase is formulated as a
combinatorial search problem. Taking the incomplete model into account, one can instantiate
the template entities and processes from the library into a set of specific components (entities
and processes) to be included in the process-based model. The incomplete model represents
modeling assumptions in terms of expected logical structure of the model, which limit the
search space of the possible model structures, i.e., the combinations of model structures. Some
of the combinations can be rejected as implausible, due to their inconsistency with the incom-
plete model in terms of presence or absence of certain processes. For example, an incomplete
model of Predator-Prey dynamics can be obtained by removing the specific EXPONENTIALGROWTH

and UNSATURATEDPP processes and keeping their respective general templates. Together with the
library presented in Table 1, this incomplete model results in 4 candidate model structures.

The latter task, i.e., estimating the model’s parameters is formulated as an optimization task.
Each of the candidate model structures considered during the search task is compiled into a
system of equations, for which a parameter estimation task is solved to obtain values of the
model parameters that best fit the observed data. The objective function usually considered for
such problems is minimizing the discrepancy between the model simulation and the observed
system behavior.

The basic inductive process-based modeling algorithm, performs exhaustive search through
a constrained space of candidate process-based models, limiting the number of processes in the
model [14]. More advanced approaches, such as Lagramge2.0 [15] and HIPM [19], allow for
more sophisticated hierarchical constraints on the allowed process combinations. The most
recent PBM tool, the ProBMoT [2], allows for complete modeling, parameter estimation, and
simulation of process-based models.

The first input to ProBMoT is a library of domain knowledge. The next input consists of the
modeling assumptions formalized as an incomplete model of the observed system. The third
and final input is a set of measured data. Based on the incomplete model and the library of
domain knowledge, ProBMoT generates a set of model structures. For each of these structures,
parameter estimation is performed so that they best fit the measurements. The parameter esti-
mation process is based on the meta-heuristic optimization framework jMetal 4.5 [20] that
implements a number of global optimization algorithms. For this purpose, ProBMoT imple-
ments a variety of error functions such as root mean squared error (RMSE), root relative
squared error (RRSE) and weighted root mean squared error (WRMSE). Parameter estimation
relies on model simulation, for which ProBMoT employs the CVODE ODE solver from the
SUNDIALS suite [21].

Finally, the output of ProBMoT is a set of complete models sorted according to their perfor-
mance, i.e., the difference error between the simulation and the measured data. In this study,
we use ProBMoT as the learning algorithm for inducing process-based models, i.e., learning
the constituents of the process-based ensemble models, which will be introduced in the next
section.

Ensembles of process-based models
Ensembles are an established method for improving the predictive performance of models in
machine learning [5, 22]. An ensemble is a set of models (referred to as base models or ensem-
ble constituents), that is expected to lead to a predictive performance gain over an individual
model. In principle, any set of predictive models can be considered as an ensemble.
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Once we have a set of predictive models, the question then arises as to how the individual
predictions are to be combined into a single prediction. In traditional machine learning, this
problem is tackled by using different combining schemes depending on the type of the base-
models being aggregated. In the case of classification models that predict qualitative values,
most often the predictions are combined by using different voting schemes.

The output of regression models that predict a single numeric value for a given input, can
be combined by using the aggregation functions of average, weighted average and weighted
median [23]. In this context, the output of an ensemble of process-based models resembles the
one of time-series regression ensembles. However, in contrast to classical regression ensembles,
the result of simulating an ensemble of process-based models is a whole trajectory instead of a
single numeric value. Obtaining such a trajectory implies simulating each of the base models.
This requires an initial value of the exogenous (state) variables and the trajectory of the exoge-
nous (forcing) variables, which are then combined into an ensemble prediction. The different
model simulations are combined time-point-wise: The combination is performed by well
known methods usually applied in the case of numeric values, such as averaging, median,
weighted average and weighted median [9].

When learning ensembles, the other important question is how to learn the constituent
models of the ensemble. Methods for learning ensembles implicitly aim for diversity when
learning the set of constituent models before aggregating their predictions. Based on how this
diversity is achieved, we can distinguish two types of ensembles: heterogeneous and homoge-
neous. For learning heterogeneous ensembles, each of the base models is learned using a differ-
ent learning algorithm (stacking [24]). On the other hand, in homogeneous ensembles, the
individual base models are learned with the same learning algorithm, but from different sam-
ples of the training data, where the sampling variants include: sampling of the data instances
(bagging [25], boosting [26]), sampling of the data features/attributes (random subspaces [10])
or both (bagging random subspaces [27], random forests [28]).

It has been theoretically and empirically shown that homogeneous ensembles, such as bag-
ging and boosting, perform well for classification and regression problems [5, 28–30]. How-
ever, these methods, that sample data instances, can often be ineffective when the training data
is relatively homogeneous. Additionally, when the dimensionality of the data (the feature
space) is very high, learning such ensembles can be very ineffective and computationally
complex.

The base level learning algorithm in this study is ProBMoT, and here we aim at learning
homogeneous ensembles of process-based models. In the realm of process-based models,
ensembles learned by sampling data instance, i.e., bagging and boosting, have demonstrated
improved performance over individual models [8, 9], at the cost of increased computational
complexity. In the continuation of this section, we outline the methods for sampling data
instances in the context of process-based modeling. We then shift our focus to a method for
learning ensembles of process-based models via sampling data features, i.e., sampling domain
knowledge.

Sampling data instances for learning ensembles of process-based models. Bagging
(bootstrap aggregation) refers to an approach, developed by Breiman [25], for constructing
ensembles via bootstrap sampling with aggregation. This is one of the first and simplest ensem-
ble learning methods, where data instances are uniformly sampled with-replacements to gener-
ate random samples (bootstrap replicates) of the training data, consequently used to learn a set
of ensemble constituents. The learned base models are then combined by averaging their out-
put (in the case of regression) or by voting (in the case of classification). Bagging ensembles
successfully overcome the over-fitting problem most often when constitute instable models, i.e.

Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models

PLOS ONE | DOI:10.1371/journal.pone.0153507 April 14, 2016 7 / 27

103



models that can change dramatically even for small changes in the training data. However,
they are not that accurate when are constructed with stable models.

More sophisticated ensemble methods, such as boosting, obtain ensemble predictions by
combing “imperfect” predictions made by base models learned on different distributions of the
training data. The most notable implementation of boosting is the AdaBoost algorithm, proposed
by Freund and Schapire [31], originally developed for tackling classification tasks, and later
adapted by Drucker [23] for combining regressors. Like bagging, AdaBoost also re-samples the
training data: However, instead of treating all instances equally (as in bagging), it prioritizes the
more informative ones (i.e., those where large errors are currently made) for each subsequent
iteration. Even though AdaBoost is very successful in tackling the over-fitting problem on a vari-
ety of tasks, its performance is prone to noise in the training data which can lead to lower perfor-
mance as compared to single models and to other ensemble methods such as bagging [5].

For the task of bagging and boosting ensembles of process-based models, the candidate base
models are learned from different samples of the measured data. The notable difference from
bagging and boosting in the context of regression is that, in our case, the data instances have a
temporal ordering, that has to be retained in each sample of the data. A detailed specification
of how bagging and boosting are implemented in the context of process-based modeling can be
found in the study by Simidjievski et al. [9].

Sampling domain knowledge for learning ensembles of process-based models. The ran-
dom subspace method (RSM) is a homogeneous ensemble method developed by Ho [10],
which constructs different variants of the training data by sampling the feature space. Each
ensemble constituent is learned on all data instances and a subspace of the original feature
space. The predictions of the learned base models are then combined via standard combining
schemes for classification and regression, i.e., voting schemes and averaging techniques, respec-
tively. The RSM has been reported to perform well for problems where the data dimensionality
is very high or when there is a certain redundancy in the feature space [32].

In the context of learning ensembles of process based models, we can think of the feature
space as being defined by the model components instantiated from the process templates. This
space of components is determined by the number of process alternatives defined in the library
of domain knowledge. Therefore, generating random samples of the feature space used in the
traditional RSM, is analogous to generating random samples of the library of domain knowl-
edge. The approach presented in this paper learns ensemble constituents from the whole data
set using samples of the knowledge library. This is in contrast with bagging and boosting,
where ensemble constituents are being learned on data samples using the same knowledge
library or feature space.

The procedure for learning ensembles of process-based models via library sampling is pre-
sented in Algorithm 1. The procedure LS() takes five inputs: a library of domain knowledge (lib),
a dataset consisting of training data (DT) and validation data (DV), an incomplete model (incom-
pleteModel), a boolean variable (allowDuplicates), and an integer k denoting how many base
models are to be generated. The output is a set of process-based models denoted with Ensemble.

Algorithm 1 Learn ensembles of process-based models via library sampling

1: procedure LS(lib, {DT, DV}, incompleteModel, allowDuplicates, k)
2: returns Ensemble
3: Ensemble Ø . set of base models
4: do
5: libS SAMPLE(lib) . randomly sample the library lib
6: modelListi PROBMOT(libS, DT, incompleteModel)
7: bestModeli RANK(modelListi, DV)
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8: βi CONFIDENCE(bestModeli, DV) . presented in Algorithm 2
9: if allowDuplicates then
10: Ensemble Ensemble

S
(bestModeli, βi)

11: else if bestModeli =2 Ensemble then
12: Ensemble Ensemble

S
(bestModeli, βi)

13: end if
14: While SIZE(Ensemble) 6¼k
15: end procedure

Algorithm 2 Calculating confidence

1: function confidence(model, D) returns β

2: let ŷ . simulated system variable y
3: let y . measured system variable y
4: ŷ  SIMULATE(model, D)

5: maxDisc supðjyt � ŷ tjÞ2 . calculate max discrepancy between mea-
surements y and simulation ŷ, where t = 0..N and N is number of time-points in
D

6: �L  
XN
t¼0

jyt � ŷ t j2
maxDisc

. calculate average loss

7: b 
�L

1� �L
. calculate confidence

8: end function

For the task of sampling the library (SAMPLE(lib), line 5 in Algorithm 1) the process alter-
natives are randomly sampled (included or excluded) from the original library. The sampling
algorithm takes as input the complete library and considers all the process templates defining
more than one modeling choice. In turn, for each process template considered, it takes a ran-
dom sample of the available modeling choices to be included in the sampled library. Note that
the library sampling does not assume a uniform distribution of samples: the probability of a
library sample is proportional to the size of the induced space of candidate models. In particu-
lar, the probability of a library sample libS of the whole library lib equals

PðlibSÞ ¼
jLSjX

Li2PðLÞ
jLij ;

where L and LS� L correspond to the sets of candidate models induced by lib and libS (for a
given incomplete model specification), respectively. Moreover, |�| denotes set cardinality and
PðLÞ denotes the powerset of L, i.e., the set of all the possible subsets of L. For example, there
are nine samples of the library from Table 1: one that generates four candidate models, four
that induce two candidate models each, and four resulting in one candidate model each. The
last four library samples are less likely selected (the probability of selecting each is 1/16) than
the other five samples (1/4 for the first one, and 1/8 for each of the remaining four).

The process-based modeling algorithm PROBMOT(), (line 6 in Algorithm 1), takes as input
the sample of the library of domain knowledge libS, time-series measurements of the observed
dynamic system DT, and an incompleteModel representing the modeling assumptions made by
the modeler. The output of PROBMOT() is a list of process-based models, which is afterwards
sorted according to their performance (line 7 in Algorithm 1). The output of the function
RANK() (line 7 in Algorithm 1), i.e., the highest ranked model from each modeling task i (out
of k) denoted as bestModeli, becomes an ensemble constituent in the output Ensemble. The
ranking can be based on the performance on a separate validation data set DV or on the train-
ing sample (if DV = = DT).
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Each ensemble constituent is paired with its own confidence β. The calculation of the CON-
FIDENCE() (Algorithm 2) function takes 2 inputs: the highest ranked model returned by
ProBMoT and a data set D. First, themodel is simulated on the data set D resulting in a trajec-
tory ŷ . Based on the error at each time point in the trajectory, an average loss �L is calculated for
themodel (line 6 in Algorithm 2). From this loss, a confidence measure β is calculated, where
low values of β denote high confidence. The β coefficient is an indicator of the performance of
the base model and is used in the process of simulating the ensemble, i.e., combining the simu-
lations of the constituent models into an overall ensemble prediction when weighted combin-
ing schemes are considered (i.e., Weighted Average and Weighted Median).

Given the fact that the method always takes as input the same original library, there is a
high probability of learning and choosing identical models from different library samples, thus
filling the ensemble constituent set with multiple copies of the same model. To account for
this, the method incorporates two different alternatives for generating the ensemble constituent
set, i.e., with and without duplicates. For the former, referred to as Library Sampling with
Duplicates, duplicates are allowed in the constituent set (line 9 in Algorithm 1). k library sam-
ples are generated (with k denoting number of ensemble iterations), and the best model out of
each modeling task is chosen to be an ensemble constituent, regardless of whether that particu-
lar model was already in the constituent set or not. For the latter, referred to as Library Sam-
pling without Duplicates, to incorporate more diversity in the ensemble, the method generates
library samples (and performs modeling tasks) until the resulting ensemble contains k distinct
constituents (line 11 in Algorithm 1).

Experimental Setup
In this section, we present the setup of the experiments used to evaluate the predictive perfor-
mance of the ensembles of process-based models. We first introduce the data sets to be used in
the experiments, then we briefly describe the two other ProBMoT inputs, the library of domain
knowledge and the modeling assumptions. Next, we give an overview of the parameters of the
algorithm for learning ensembles with bagging and boosting, used in the last set of experi-
ments. Finally, we finish the section with the metrics used to measure the performance of pro-
cess-based models and ensembles thereof.

The data. The performance of the proposed method for learning ensemble is evaluated on
several tasks of modeling population dynamics in three aquatic ecosystems: Lake Bled in Slove-
nia, Lake Zurich in Switzerland and Lake Kasumigaura in Japan.

Lake Bled is located in the Julian Alps in north-western Slovenia and occupies an area of 1.4
km2, with a volume of 0.0257 km3, a maximum depth of 30.1m and an average depth of 17.9
m. The measurements, performed by the Slovenian Environment Agency, consist of physical,
chemical and biological data for the period from 1996 to 2002. All the measurements were per-
formed once a month and depth-averaged for the upper 10m of the lake.

Lake Zurich is located in the south-western part of the canton of Zurich in Switzerland. It
has an average depth of 49 m, a volume of 3.9 km3 and a surface area of 88.66 km2. The data
comprise measurements, performed by the Water Supply Authority of Zurich in the period
from 1996 to 2002. They include profiles of physical, chemical and biological variables from 19
different sites, weight averaged to the respective epilimnion (top 10m) and hypilimnion (bot-
tom 10m) depths. To obtain daily approximations, the data for both lakes were interpolated
with a cubic spline algorithm and daily samples were taken from the interpolation [4, 33].

Lake Kasumigaura, located 60 km to the north-east of Tokyo, Japan, has an average depth of
4m, a volume of 0.848km3, and a surface area of 220km2. The dataset comprises monthly mea-
surements, taken in the period from 1986 to 1992. Similarly, to obtain daily approximations,
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the measurements were interpolated using linear interpolation and daily samples were taken
from the interpolation [34].

In this paper, the same structure of a population dynamics model is used in all three aquatic
ecosystems. It includes a single equation (ODE) for a system variable representing the phyto-
plankton biomass (measured as chlorophyll-a in Kasumigaura). The exogenous variables
include the concentration of the zooplankton Daphnia hyalina (where available, i.e., for Bled
and Zurich only), dissolved inorganic nutrients of nitrogen, phosphorus, and silica (measured
as ammonia in Kasumigaura), as well as two input variables representing the environmental
influence of water temperature and global solar radiation (light).

In the experiments, we use fifteen data sets, which are subsets of the above-mentioned mea-
sured data from the aquatic ecosystems in the three lakes. For each aquatic ecosystem, the orig-
inal data set is split into seven single-year data sets. Five of these are used (one at a time) for
training the ensemble constituents. From the remaining two, one is used for validating the
models in the process of selecting the ensemble constituents, and one to measure the predictive
performance of the learned process-based models and ensembles thereof. Therefore, fifteen
learning experiments are performed; in each, we take a single-year training data set, learn a
model using the train and the validation data sets, and test the predictive performance of the
learned model on the test data set. In Table 2, which reports the experimental results, the
experiments are labeled with the labels B1–B5, K1–K5 and Z1–Z5 corresponding to the train-
ing data set using in the experiment, where, e.g., K3 denotes the Lake Kasumigaura data set for
the third year (i.e., 1988).

Note that, we follow the traditional experimental setup used in ecological modeling, where
predictive models for a particular aquatic ecosystem are learned and tested on data from that
same ecosystem. This is due to the fact that many environmental variables, corresponding to
overall properties of the observed system (such as depth, volume and terrain configuration),
are assumed to be constant in the modeling process. Additionally, some of the entities (vari-
ables) and ecological processes typically differ between ecosystems. Thus, models learned
under this assumption can not be directly used in the context of other ecosystems.

Table 2. Comparison of the predictive performance of a single model with that of ensembles of PBMs
learned with library sampling, bagging and boosting.

Case SingleModel Library Sampling Bagging Boosting

B1 5.184 (4) 1.103 (3) 1.073 (2) 1.065 (1)

B2 0.938 (1) 1.143 (4) 1.085 (3) 0.947 (2)

B3 1.042 (4) 0.794 (1) 0.968 (3) 0.941 (2)

B4 2.840 (4) 0.750 (1) 0.760 (3) 0.791 (2)

B5 0.842 (2) 0.858 (3) 0.859 (4) 0.698 (1)

K1 7.730 (4) 0.756 (2) 0.736 (1) 0.925 (3)

K2 328.138 (4) 0.878 (1) 1.429 (2) 1.642 (3)

K3 0.932 (4) 0.827 (1) 0.867 (2) 0.923 (3)

K4 0.777 (3) 0.800 (4) 0.772 (2) 0.705 (1)

K5 0.792 (4) 0.732 (1) 0.734 (2) 0.781 (3)

Z1 0.744 (1) 0.797 (3) 0.777 (2) 0.890 (4)

Z2 1.323 (4) 0.948 (3) 0.883 (1) 0.893 (2)

Z3 29.463 (4) 0.881 (1) 0.934 (2) 1.001 (3)

Z4 27.593 (4) 1.011 (3) 0.964 (1) 0.982 (2)

Z5 1.489 (4) 1.130 (2) 1.113 (1) 1.403 (3)

doi:10.1371/journal.pone.0153507.t002
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The library of domain knowledge. In the performed experiments, we use the library of
domain knowledge for modeling population dynamics in aquatic ecosystems, presented in čer-
epnalkoski et al. [2]. This library is based on the previous work of Atanasova et al. [35]. The
library of domain knowledge, combined with the modeling assumptions, results in 18144 can-
didate models for Lake Kasumigaura and 27216 candidates for the other two lakes.

ProBMoT parameter settings. ProBMoT implements the Differential Evolution (DE)
[36] method for parameter estimation. For the experiments performed in this paper, the DE
parameters were set as follows: a population size of 50, strategy rand/1/bin, differential weight
(F) and the crossover probability (Cr) of 0.6. The limit on the number of evaluations of the
objective function is one thousand per parameter. For simulating the ODEs, the CVODE simu-
lator is used with absolute and relative tolerances set to 10−3.

Learning ensembles of process-based models with bagging and boosting. To properly
assess the predictive performance of the proposed method for learning ensembles of process-
based models, in our last set of experiments we compare it to the state-of-the-art methods for
learning ensembles, i.e., bagging and boosting. Following the finding of Simidjievski et al. [9]
the ensembles are learned with both bagging and boosting include 25 constituents, which are
chosen based on their performance on a separate validation set and combined by averaging
their predictions. These settings were chosen by following the same experimental setup that we
use in this paper to select the appropriate design choices for learning ensembles with library
sampling.

Note, however, an important difference between the setup of the bagging and boosting
experiments and the experiments with library sampling. In the latter, we use the whole library
of domain knowledge as described previously in subsection The library of domain knowledge.
The use of this library is prohibitive for bagging and boosting, due to the high computational
complexity considering the large space of candidate models in each learning iteration. To
address this issue, we use a simplified version of the original library that results in 320 candi-
date model structures for Lake Kasumigaura and 128 candidates for the other two lakes. We
have prepared the simplified library carefully, omitting only modeling alternatives (process
templates) that are rarely observed to be among the top-ranked models in the single-model
experiments with ProBMoT. The issue of computational complexity of learning ensembles of
PBMs is further discussed in the subsection The computational complexity of learning ensem-
bles of PBMs of the section Results.

Performance evaluation metrics. To evaluate the predictive performance of a given
modelm, we use the measure of relative root mean squared error (ReRMSE) [28], defined as:

ReRMSEðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼0 ðyt � ŷt Þ2Pn
t¼0 ð�y � ŷt Þ2

s
; ð1Þ

where n denotes the number of measurements in the test data set, yt and ŷt correspond to the
measured and predicted (predictions are obtained by simulating the modelm on the test set)
value of the system variable y at time point t, and �y denotes the mean value of y in the test data
set. Note that the usual root mean squared error observed here, is relative to the standard devi-
ation of the system variable in the test data, thus allowing us to compare the errors of models
for different system variables with measured values on different scales (e.g., phytoplankton in
different lakes).

Statistical comparison of performance. We observe and compare the predictive perfor-
mance (in terms of ReRMSE) of the models learned using different algorithms on the 15 data
sets. To properly assess the significance of the differences between the performances of models
obtained with different algorithms, we follow the standard statistical procedure recommended
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by Demšar [37]. We use the corrected [38] Friedman test [39], followed by two post-hoc tests:
the Nemenyi test [40] and the Bonferroni-Dunn test [41]. A positive outcome of the Friedman
test indicates difference between the performances of the different algorithms considered. After
the completion of the Fridman test, we proceed with performing post-hoc tests to identify
which differences are statistically significant.

The first post-hoc test, i.e, the Nemenyi post-hoc test, computes the critical distance
between the algorithm ranks at a given level of statistical significance (in this paper, the signifi-
cance level threshold is set at 95%, p = 0.05). Only differences of the average ranks larger than
the critical distance are considered significant; for those, we can claim that one algorithm out-
performs (i.e., performs significantly better than) the other. This test is performed to obtain an
assessment of the relative performance of the methods considered. In this paper, the Nemenyi
post-hoc test is employed for comparison of different design decisions for the newly proposed
method. The results of the Friedman-Nemenyi tests are depicted by average rank diagrams (as
in Figs 2–6), where the critical distance is shown as a solid red line.

The second post-hoc test, i.e., the Bonferroni-Dunn post-hoc test, is performed to test how
a proposed method performs in a comparison to other methods. This test is similar to the
Nemenyi test, where a critical distance between the algorithm ranks is computed at a given
level of significance (in this paper the significance level threshold is at 95%, p = 0.05), denotes
how one method (i.e, an ensemble learned using the library sampling method) compares to the
other existing methods for constructing ensembles of process-based models (i.e., bagging,
boosting) and a single model, in terms of predictive performance. The results of the Friedman-
Bonferroni-Dunn test is depicted by the average rank diagram (as in Fig 7), where the critical
distance is shown as a dashed blue line.

Results
In this section, we present and discuss the results of the empirical evaluation. Given the fact
that the method for learning ensembles with library sampling is novel, we first identify the
most suitable design choices within the algorithm. We investigate what are the optimal choices
of method for selecting the ensemble constituents, number of ensemble constituents, and com-
bining method. The optimal choices are identified for both library sampling alternatives (with
and without duplicates).

After making the design choices, we compare the predictive performance of the library-sam-
pling ensembles with the performance of baseline ensembles, state-of-the-art bagging and
boosting ensembles, and single models. The two baseline ensembles consist of the top-ten and
ten randomly selected process-based models. Finally, we perform a comparative analysis of the
computational complexities of different methods for learning ensembles of process-based
models.

Design choices for the algorithm for learning library-sampling ensembles
The first design choice in an algorithm for learning ensembles of PBMs is related to the way of
choosing the ensemble constituents. As previously outlined, the highest ranked model of each
ensemble iteration is selected to be an ensemble constituent. The standard approach of ProB-
MoT to ranking candidate models is with respect to their performance on the training set.
However, to avoid overfitting, these models can be re-ranked according to their performance
on a separate validation data set. These experiments are performed using ensembles with 10,
25 and 50 constituents whose predictions are combined by averaging.

Fig 2 summarizes the performance comparison of the methods for choosing the base models
to be included in the ensembles. The upper diagram (Fig 2A) depicts the results of the
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Friedman-Nemenyi test for library sampling with duplicates, and the lower diagram (Fig 2B)
for library sampling without duplicates. In both cases, choosing the base models based on their
ranking on a separate validation set leads to better ensemble performance. However, in both
cases, this improvement is not significant.

Earlier we conjectured that choosing ensemble constituents based on their performance on
the training data might lead to overfitting. Fig 3 confirms this conjecture: In both cases (Fig 3A
and 3B), ensembles comprising base models selected based on the performance on the training
data exhibit significantly better descriptive/training performance than the ones selected based
on their performance on a separate validation dataset. This is in-line with our previous findings

Fig 2. Comparison of the predictive performance in terms of average ranks of the two library
samplingmethods with different methods for choosing ensemble constituents. Average ranks of
ensembles with 10, 25 and 50 constituents combined by averaging and selected differently (based on their
train (subscript T) or validation (subscript V) performance). The average ranks refer to the predictive (testing)
model performance averaged over the 15 experimental data sets, separately for the case of Library sampling
(A) with and (B) without duplicates.

doi:10.1371/journal.pone.0153507.g002
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for bagging and boosting [9], where the ensembles with constituents chosen on the bases of
their training performance demonstrate a clear case of overfitting—while having significantly
better performance on the training data these ensembles have worse predictive performance on
unseen data.

Next, we focus on choosing the optimal number of base models in the ensembles of process-
based models. To this end, we compare the predictive performance of ensembles consisting of
10, 25 and 50 base models, whose predictions are combined by averaging. The Friedman-
Nemenyi diagram, presented in Fig 4, shows that the ensembles containing 10 ensemble con-
stituents, for both types of ensembles (Fig 4A and 4B), lead to the best performance. Note how-
ever, that the observed difference in performance is not statistically significant.

Fig 3. Comparison of the average ranks for descriptive performance (on training data) of the two
library samplingmethods with different methods for choosing ensemble constituents. Average ranks
of ensembles with 10, 25 and 50 constituents combined by averaging and selected differently (based on their
train (subscript T) or validation (subscript V) performance). The average ranks refer to the descriptive model
(training) performance averaged over the 15 experimental data sets, separately for the case of Library
sampling (A) with and (B) without duplicates.

doi:10.1371/journal.pone.0153507.g003
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Finally, we focus on choosing the most appropriate method for combining the simulations
of the base models in the ensemble. We compare the performance aggregations of four meth-
ods that are often used in ensembles of regression models: the average, weighted average,
median and weighted median methods. Fig 5 depicts the comparison of the average ranks for
these methods both for library sampling with and without duplicates (Fig 5A and 5B, respec-
tively), containing 10 constituents. It can be observed that in both cases the simple average
method for aggregation performs (not significantly) best.

In summary, based on the performed experiments we make the following design decisions
related to learning ensembles of process-based models with library sampling. First, the ensem-
ble constituents are chosen based on their performance on a separate validation set, as they
exhibit better performance than the ones chosen based on their performance on the original
training data set. Second, the ensembles should consist of relatively small number(10) of base

Fig 4. Comparison of the average ranks for predictive performance of the two library sampling
methods with different ensemble sizes. Average ranks of ensembles that include 10, 25, and 50 base
models in terms of predictive performance averaged over the 15 experimental data sets for Library sampling
(A) with and (B) without duplicates.

doi:10.1371/journal.pone.0153507.g004
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models whose predictions should be combined by using the simple average method. Although
the latter conclusion is based on results which are not statistically significant, it can be justified
by following the parsimony principle. In all further experiments, we used these algorithm set-
tings for learning ensembles for library sampling with and without duplicates.

Predictive performance of the library-sampling ensembles
Here we focus on testing our central hypothesis that the ensembles learned with library sam-
pling improve the predictive performance of process-based models. However, to properly
assess the performance of such ensembles, and whether/how it is related to the sampling of the
library, we first compare the performance of both alternatives of library sampling to two

Fig 5. Comparison of the average ranks for predictive performance of the two library sampling
methods with four combining methods. Average ranks of the four methods for combining the simulations
of base models (average, weighted average, median and weighted median) in terms of predictive
performance averaged over the 15 experimental data sets for Library sampling (A) with and (B) without
duplicates.

doi:10.1371/journal.pone.0153507.g005
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baseline types of ensembles. The first baseline ensemble is comprised of the 10 best performing
models learned using the complete library, combined by averaging. We refer to this ensemble
as Best10. The second baseline ensemble is comprised of 10 randomly chosen models, also
learned on the complete library and combined by averaging. We refer to this ensemble as
Random10.

Fig 6 depicts the Friedman-Nemenyi comparison of the average ranks of the two library-
sampling ensembles and the two baseline ensembles. It can be seen that the ensemble with
library sampling with duplicates performs best, followed by the one which uses library

Fig 6. Comparison of the average ranks for predictive performance of the two library sampling
methods to two alternative ensemble approaches. Average ranks of four different types of ensembles
with 10 constituents combined by averaging. The constituents are: constructed via library sampling with and
without duplicates, the 10 best models learned from the complete library, and 10 randommodels learned
from the complete library. The average ranks of predictive performance are computed over the 15 data sets.

doi:10.1371/journal.pone.0153507.g006

Fig 7. Comparison of the average ranks for predictive performance of the library samplingmethod to
learning single models, bagging and boosting. Average ranks of the ensembles constructed by library
sampling with 10 constituents combined by averaging to the performance of: a single model and two types of
ensembles combined by averaging constructed by bagging and boosting (with 25 constituents). The ranks of
the models in terms of their predictive performance and the average CPU times for learning them are
averaged over the 15 data sets.

doi:10.1371/journal.pone.0153507.g007
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sampling without duplicates. Note, however, that the test shows no significant difference in
performance among the four approaches.

Given that the experiments performed so far did not show any substantial difference in the
performance between the two alternatives for library sampling, we further investigated their
structure. We found that the constituent set with 10 elements of the ensemble learned by
library sampling with duplicates has on average 85% unique base models. Moreover, the
method which samples the library without duplicates required on average 4 more iterations
(per dataset) for learning an ensemble with 10 constituents. Given the results in Fig 6, and this
insight into the structure of the ensembles, we follow the parsimony principle once again, and
consider the method of library sampling with duplicates to be the more efficient and effective
alternative when learning such ensembles.

In our last set of experiments, we assess the predictive performance of the method for learn-
ing ensembles via library sampling with the optimal design choices determined above. We
compare its performance to the performance of a single model learned on the complete library,
and ensembles learned using a reduced version of the library by the two state-of-the-art meth-
ods in process-based modeling, i.e., bagging and boosting with 25 constituents each and com-
bined by averaging.

Fig 7 depicts the Friedman-Bonferroni-Dunn comparisons of the average ranks across the
fifteen data sets. The results of the test show that the proposed ensembles with library sampling
significantly outperform single process-based models. This result supports the central hypothe-
sis of our paper that such ensembles improve the predictive performance over single process-
based models. Note, however, that their predictive performance is slightly (not significantly)
worse than bagging ensembles, and slightly (not significantly) better than boosting ensembles.

Fig 7 also presents the CPU time needed for learning all the ensembles and the single model.
On average, learning ensembles with the library sampling method takes as much time as learn-
ing a single process-based model (�400 h). Note, however, that even though the remaining
two methods of bagging and boosting take far less time than the previous methods, (�115 h
and�125 h, respectively), they are learned from a reduced library. After a further investigation,
which involved learning a single model on the smaller library (that took 4.5 to 5h), we estimate
that it would take�9200 h and�10000 h, for bagging and boosting of process-based models
using the original libraries, respectively. This would result in substantially (by a factor of�25)
worse computational efficiency as compared to learning library-sampling ensembles.

So far, our comparison of the methods focused on their average ranks, which do not reveal
the actual performance of the models obtained with the different methods. Table 2 reports
these performances of the single process-based models and the three ensembles of PBMs
learned with library sampling, bagging and boosting. Note that the results reported in the table
confirm the superiority of ensembles to a single model. The ensemble methods are far more
robust than single models, which severely under-perform in 6 out of the 15 cases: in these 6
cases, the single models have a ReRMSE of over 2. In the two cases where the single models
outperforms the ensembles (B2 and Z1), the difference in performance when compared with
the top-ranked ensemble method for the particular case is minor. On the other hand, ensemble
methods can not be differentiated in terms of robustness: all three methods for learning ensem-
bles of PBMs are equally robust. The differences in performances among the models obtained
with the different ensemble methods are minor and often negligible. The relative winner is the
proposed algorithm for library sampling, that outperforms the other two methods in 6 out of
15 cases. In terms of predictive performance, the method of library sampling is competitive
and even slightly better than the state-of-the-art ensemble methods of bagging and boosting
PBMs, leading to more accurate predictive models.

Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models

PLOS ONE | DOI:10.1371/journal.pone.0153507 April 14, 2016 19 / 27

115



Computational complexity of learning ensembles of PBMs
Since the main focus of this study is the efficient learning of ensembles of process-based mod-
els, we first need to establish the complexity of learning a single model. Recall from Section Pro-
cess-based models, that the algorithm for learning process-based models consists of two main
sub-tasks: enumerating all possible model structures, and estimating the parameters of each of
them. Fig 8A presents a diagram of relative execution times for each of the tasks through the
prism of learning an example Predator-Prey model as described in Section Process-based mod-
els. The first task, structure enumeration (red box), uses a traversal algorithm through the

Fig 8. Comparison of the computational complexity of learning a single model and three methods for learning ensembles. A graphical
representation of the time complexity of learning a (A) single process-based model and ensembles of process-based models with five constituents with (B)
bagging, (C) boosting and (D) library sampling, using the library presented in Table 1.

doi:10.1371/journal.pone.0153507.g008
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space of model components, which is linear in the resulting number candidate models N [42].
In this example, it results in 4 candidate models. Second, for each of these candidates, a param-
eter estimation task is performed (blue box), the efficiency of which is related to the number of
parameters each candidate model has and the number of observed time points. Note that, even
though the overall complexity of the parameter estimation task isOðNÞ, in most cases more
than 99% of the computational time is spent in this phase. At the end of each modeling task,
the learned models are ranked (yellow box) based on their performance on the training/valida-
tion dataset. The ranking task is performed by an insertion sort algorithm, based on the mod-
els’ performances and has a complexity ofOðNlogNÞ (given that a sorted list of models is
maintained after every model construction), where N is the number of candidate models. For
this paper we define the complexity of one iteration of ProBMoT, i.e. obtaining one process-
based model as the benchmark unit for assessing the complexity of learning different ensem-
bles of process-based models.

For analyzing the computational complexity of the different methods for learning
ensembles of process-based models, we demonstrate learning Predator-Prey ensemble
models with five constituents. Fig 8B presents the time needed for learning an ensemble
using the bagging method. It is essentially a repetition of the tasks needed for learning a
single model for every ensemble constituent (dashed line), with the exception of two addi-
tional tasks: one for sampling the training data (gray box) at the beginning of each ensem-
ble iteration, and one for simulating the ensemble at the end (green box). Even though Fig
8B depicts the serial implementation of bagging, this algorithm handles the processes of
learning different base models completely independently. Thus, it can be parallelized to
handle different tasks with different bootstrap replicates on different CPUs, which perfor-
mance-wise is very useful for computationally intensive learning tasks such as process-
based modeling. The complexity of learning an ensemble with boosting (Fig 8C) resembles
the one of bagging. However, the boosting algorithm cannot be parallelized, as each new
boosting iteration depends on the outcome of the previous one. This makes such ensembles
the most inefficient to learn, which is most strongly felt when large libraries and many con-
stituents are considered.

The last method that we investigate is learning ensembles by sampling the library of
domain knowledge (Fig 8D). While the algorithm (as presented in Algorithm 1) is iterative,
it can be implemented much more efficiently. Instead of sampling the space of components
(i.e., sampling the domain knowledge) and running ProBMoT with each sample of the
library, we can sample the generated search space and choose from the candidate models.
First, all the models from the original library are generated, and their parameters are esti-
mated accordingly. Next, we generate all the necessary library samples (orange box), and per-
form the task of searching and sorting models which are determined by the particular
subsample of the library. By transforming the sampling problem from sampling domain
knowledge to sampling the model structures from the complete search space, the number of
ProBMoT runs is minimized (to 1), consequently substantially gaining computational effi-
ciency, as compared to the other ensemble methods using ProBMoT, i.e., bagging and boost-
ing. Earlier it was stated that selecting the constituent set for such ensembles can be
performed in two ways: with and without duplicates. For the former, the execution time is
correlated to the number of iterations needed (which for this example is 5). For the latter, the
execution time depends on the random generator, and for this example it can take from a
minimum 5 (yellow boxes) to a maximum 9 iterations (additional 4 opaque-yellow boxes).
Finally, at the end, similarly to the previous approaches, an ensemble simulation task is
performed.
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Summary
The results of the experiments show the following.

• The optimal design choices for the algorithm for learning library-sampling ensembles of pro-
cess-based models are as follows. First, it is better to select the ensemble constituents using a
separate validation dataset that has not been used to learn them (Figs 2 and 3). Second, the
optimal number of constituent models is small (Fig 4). Finally, the simple average is the opti-
mal method for combining the simulations/predictions of the ensemble constituents (Fig 5).
Note that these design choices are virtually identical to the ones made for the bagging and
boosting ensembles of process-based models [9].

• Library-sampling ensembles outperform the two baseline ensembles consisting of top-ten
and ten randomly selected models (Fig 6). Moreover, despite the additional computational
effort, removing duplicates in the set of ensemble constituents does not improve their predic-
tive performance. Most notably, library-sampling ensembles significantly outperform single
models and have comparable predictive performance to bagging (insignificantly worse aver-
age rank and slightly higher number of wins), the best performing state-of-the-art ensemble
method for process-based modeling (Fig 7 and Table 2).

• The comparative analysis of the computational performances reveals that library-sampling
ensembles are learned in a time comparable to the time needed to learn a single model (Figs
7 and 8). This is orders of magnitude faster when compared to its bagging and boosting
counterparts, where the time needed equals the number of ensemble constituents multiplied
by the time needed to learn a single model. In particular, the speed-up factor equals the num-
ber of bagged/boosted process-based models.

In sum, the library-sampling ensembles represent an important advance over the state-of-
the-art methods (bagging and boosting) for learning ensembles of process-based models: They
provide orders-of-magnitude improvement in computational efficiency of ensembles without
impairing their predictive performance.

Discussion
The machine learning literature provides various frameworks for explaining the performance
improvement gained by using ensemble methods. While the results on the positive influence of
ensemble constituents’ diversity on the performance are inconsistent [43], there is a general
consensus that the bias-variance decomposition of the predictive error allows for a plausible
explanation. Ensembles tend to reduce the variance component of the predictive error, while
not increasing the bias component at the same time [44]. This is what happens in the case of
learning ensembles of process-based models: by averaging the predictions of several models
learned on the same dataset, we reduce the variance component of the predictive error. More-
over, we conjecture that ensembles of process-based models also reduce their bias. This is due
to the fact that averaged process-model simulations can lead to predictions that are out of the
scope of a single process-based model. Therefore, ensembles of process-based models (and
models of dynamic systems in general) have the potential to extend the original space of indi-
vidual models leading to a reduction of the bias component of the predictive error. Validating
this hypothesis is beyond the scope of this paper, but will be considered in further work.

This paper builds upon previous work on learning ensembles for modeling dynamic sys-
tems. More specifically, it extends the scope of learning ensembles of process-based models for
long-term predictive tasks, i.e., bagging and boosting [9], by introducing a novel approach for
constructing efficient ensembles with satisfactory predictive performance. Second, the methods
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presented in this paper provide accurate predictions of the unobserved future system behavior,
in contrast to Bridewell et al. [11], who build ensembles that provide accurate description of
the observed system behavior.

In a broader sense, the work on library-sampling ensembles extends the state-of-the art
methods for process-based modeling of population dynamics in ecology [2, 3, 14]. However,
while these studies successfully for modeled the observed behavior of real-world aquatic eco-
systems, the prediction of future system behavior is out of their scope. In similar context, the
studies of Whigham and Recknagel [45] and Cao et al. [46] discuss the predictive performance
of process-based models in a lake ecosystem. However, they assume a given model structure
and by employing genetic algorithms mainly focus on the task of parameter identification of
different model structures.

The novel ensemble method proposed in this paper aims at improving the generalization
power of the process-based modeling approach while having reasonable computational com-
plexity for modeling tasks with relatively large candidate model space. However, when learning
such ensembles, there is a trade-off between the predictive performance of the ensemble and its
understandability. Here, the gain in predictive accuracy comes at the cost of losing the under-
standability of the learned ensembles. Nonetheless, methods for improving the comprehensi-
bility of ensembles can be developed, similar to the methods for integrating ensemble
constituents in a single model proposed by Bridewell et al [11].

Conclusion
In this paper, we address the task of learning ensembles of process-based models. We design,
implement and evaluate a novel methodology for learning ensembles by sampling the library
of domain knowledge. This methodology for learning ensembles of process-based models is
the major contribution of our paper, since it improves the state-of-the-art of learning process-
based models in two directions: efficiency and performance.

First, it improves the state-of-the art of learning ensembles of process-based models with a
new, computationally efficient ensemble method based on library sampling. The computa-
tional efficiency of the method allows for applications to domains where a rich library of
domain knowledge is available leading to a large space of candidate models. In such cases, the
standard, iterative methods of bagging and boosting are not applicable due to the prohibitively
high computational costs. To apply them, we need to handcraft the library of domain knowl-
edge, omit modeling alternatives, and thus simplify the space of candidate model structures. In
addition to being more efficient, the proposed method most often leads to models with better
predictive performance as compared to the models obtained with the state-of-the-art ensemble
methods of bagging and boosting.

Second, it improves the predictive performance of the constructed ensembles, which mainly
contributes to the realm of ecological modeling. The results of the performed experimental evalu-
ation confirm our central hypothesis that ensembles constructed via sampling the library of
domain knowledge provide more accurate predictions of concentrations of species in an aquatic
ecosystems than a single process-based model. This is a significant improvement of predictive
performance over the state-of-the-art models of population dynamics, which, while focusing on
providing an accurate explanation of the behavior of the observed system, struggle to achieve a
satisfactory performance at predicting population dynamics over a long periods [4, 34]. Note that
these results are consistent over experiments with data from three real-world aquatic ecosystems:
Lake Bled in Slovenia, Lake Kasumigaura in Japan, and Lake Zurich in Switzerland.

While our comparative empirical study is limited to the domain of modeling population
dynamics, the proposed approach to learning ensembles of process-based models is general
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enough to be applied to any other domain and to any other type of models of dynamic systems.
To proceed with process-based modeling in other domains, one has to encode a library of
domain-specific modeling knowledge. Such knowledge is available for various domains includ-
ing epidemiology and modeling gene regulatory networks [47], net carbon production [48]
and protein interactions [49, 50]. Some of these applications of process-based modeling show
the applicability of the proposed approach to the very active fields of systems biology and bio-
informatics that deal with numerous system identification problems. The efficiency and predic-
tive performance of the library-sampling ensembles bears a promise for further applications,
since combining predictive models into ensembles has been proved to work well for various
computational biology problems [51–53].

We have identified several limitations of our approach that can be addressed in further
work. First, note that the experiments performed in this paper are limited to modeling popula-
tion dynamics in three lake ecosystems. We intend to investigate the generality of our approach
and extend the scope of learning ensembles of process-based models of population dynamics
to other aquatic environments, such as marine ecosystems [14] and river ecosystems [54].
Next, considering the understandability of these ensembles, we plan to follow ideas from [11]
and improve our methodology by incorporating understandable structure into the resulting
ensemble. Also, investigating the hypotheses about the source of the predictive performance
improvement in terms of bias-variance decomposition of the predictive error, requires careful
and extensive empirical analysis using the setup of Brown et al [44]. Finally, given the nature of
the ensembles of process-based models learned with library sampling and bagging (i.e., sam-
pling the feature space and sampling the data instances), and their superior performance over
the individual process-based model in a predictive setting, we intend to combine these two
methods. A study performed by Panov and Džeroski [27] indicates that combining two types
of homogeneous ensembles, i.e. bagging and RSM, can lead to ensembles with even better pre-
dictive performance compared to each of the methods separately, while still being very efficient
to construct.
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Chapter 7

Learning Ensembles via Sampling

Both Data Instances and the Library

of Domain Knowledge

In this chapter, we present the results of the empirical evaluation of the bagging of random
library subsamples (BRLS) method for learning ensembles of process-based models. In
particular, we �rst identify the most suitable design choices for the method. These include
the approach to selecting the ensemble constituents, the number of ensemble constituents,
and how they should be combined for optimal performance. Next, we analyze the pre-
dictive performance of such ensembles of process-based models in terms of whether they
outperform individual process-based models. In addition, we compare their performance
to ensembles of process-based models learned with bagging, boosting and random library
subsampling.

7.1 Design Choices

The �rst design choice in an algorithm for learning ensembles of PBMs is related to the way
of choosing the ensemble constituents. As previously outlined, the highest ranked model of
each ensemble iteration is selected to be an ensemble constituent. The standard approach of
ProBMoT to ranking candidate models is to rank them with respect to their performance on
the training set. However, to avoid over�tting, these models can be re-ranked according to
their performance on a separate validation data set. These experiments are performed using
ensembles with 10, 25 and 50 constituents whose predictions are combined by averaging.

Table 7.1 and Figure 7.1 summarize the results of the comparison of the methods
for choosing the base models to be included in the ensembles. From the table, we can
see that for all but three data sets (B1, B3 and B5), the selection method based on a
separate validation data set outperforms the regular method based on the training data.
The Friedman-Nemenyi test (and the corresponding diagram in Figure 7.1) con�rms the
observed superiority of the validation method: All methods that use validation are ranked
better than those that use the training set. However, this improvement is not statistically
signi�cant.

Note that we made the implicit conjecture that choosing ensemble constituents based
on their performance on the training data might lead to over�tting. The results presented
in Table 7.2 and Figure 7.2 con�rm the validity of this conjecture. From the table, we
can see that the method for selecting constituents based on the training data consistently
leads to signi�cantly lower errors on the training data: ensembles using selection based on



126
Chapter 7. Learning Ensembles via Sampling Both Data Instances and the Library of Domain

Knowledge

Table 7.1: Comparison of the predictive performance (RRMSE on the testing set) of the
two methods for choosing ensemble constituents (V=validation, T=training).

Case Ens.10V Ens.25V Ens.50V Ens.10T Ens.25T Ens.50T

B1 1.113 1.102 1.128 1.045 1.071 1.077
B2 1.238 1.237 1.214 1.248 1.268 1.259
B3 0.912 0.946 0.898 0.706 0.750 0.766
B4 0.811 0.767 0.804 0.809 0.737 0.757
B5 0.628 0.627 0.667 0.579 0.601 0.618
K1 0.749 0.639 0.634 1.484 1.310 1.308
K2 0.860 0.830 0.890 0.874 0.955 1.090
K3 0.701 0.735 0.733 NaN 0.954 0.859
K4 0.768 0.764 0.751 0.782 0.746 0.771
K5 1.004 0.889 0.851 0.781 0.674 0.668
Z1 1.004 1.461 1.218 1.130 1.087 1.133
Z2 0.825 0.844 0.885 1.074 0.946 1.234
Z3 0.934 0.901 0.897 1.611 1.183 1.073
Z4 1.034 1.005 1.007 1.054 1.074 1.058
Z5 1.009 0.999 0.999 1.389 1.271 1.216

6 5 4 3 2 1

Critical Distance = 1.94692

Ensemble10T@4

Ensemble10V@3.53

Ensemble25T@3.93

Ensemble25V@3.03

Ensemble50T@3.53

Ensemble50V@3.1

Nemenyi

Figure 7.1: Average ranks of ensembles with 10, 25 and 50 constituents combined by aver-
aging and selected di�erently (based on their train (subscript T) or validation (subscript
V) performance). The average ranks refer to the predictive (testing) model performance
averaged over the 15 experimental data sets.

training data exhibit signi�cantly better descriptive/training performance than the ones
using a separate validation dataset to select ensemble constituents. Together with the
results in Figure 7.2 these show a clear case of over�tting � while being superior on the
training data, regular selection leads to inferior predictive performance as compared to
validation-based selection. This is in line with our previous �ndings for bagging, boosting
and RLS (Simidjievski et al., 2015b, 2016), where the ensembles with constituents chosen
on the basis of their training performance clearly over�t � while having signi�cantly better
performance on the training data, these ensembles have worse predictive performance on
unseen data.

Next, we focus on choosing the optimal number of base models in the ensembles of
process-based models. To this end, we compare the predictive performance of ensembles
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Table 7.2: Comparison of the descriptive performance (RRMSE on the testing set) of the
two methods for choosing ensemble constituents (V=validation, T=training).

Case Ens.10V Ens.25V Ens.50V Ens.10T Ens.25T Ens.50T

B1 0.257 0.262 0.262 0.177 0.174 0.177
B2 0.302 0.268 0.279 0.153 0.150 0.156
B3 0.374 0.362 0.371 0.260 0.258 0.274
B4 0.402 0.359 0.374 0.273 0.256 0.263
B5 0.341 0.321 0.314 0.166 0.150 0.152
K1 0.948 0.963 0.981 0.390 0.387 0.393
K2 0.815 0.788 0.785 0.673 0.678 0.683
K3 0.435 0.447 0.427 0.340 0.339 0.333

K4 0.671 0.684 0.677 0.263 0.271 0.265
K5 0.440 0.460 0.452 0.304 0.301 0.295

Z1 0.502 0.562 0.543 0.373 0.343 0.345
Z2 0.581 0.594 0.587 0.468 0.448 0.454
Z3 0.790 0.806 0.807 0.672 0.636 0.645
Z4 0.776 0.777 0.779 0.718 0.702 0.710
Z5 0.763 0.759 0.758 0.501 0.491 0.493

6 5 4 3 2 1

Critical Distance = 1.94692

Ensemble10T@2.5Ensemble10V@4.86

Ensemble25T@1.33Ensemble25V@5.16

Ensemble50T@2.16Ensemble50V@4.96

Nemenyi

Figure 7.2: Average ranks of ensembles with 10, 25 and 50 constituents combined by aver-
aging and selected di�erently (based on their train (subscript T) or validation (subscript
V) performance). The average ranks refer to the descriptive (training) model performance
averaged over the 15 experimental data sets.

consisting of 10, 25 and 50 base models, whose predictions are combined by averaging.
The Friedman-Nemenyi diagram, presented in Fig 7.3 together with the results previously
presented in Table 7.1, shows that the ensembles containing 25 ensemble constituents lead
to the best performance. Note, however, that the observed di�erence in performance among
ensembles with di�erent numbers of base models is not statistically signi�cant.

Finally, we focus on the design decision concerning the most appropriate method for
combining the simulations of the base models in the ensemble. We compare the perfor-
mance of four methods commonly used in learning ensembles of regression models: average,
weighted average, median and weighted median. Table 7.3 and Figure 7.4 present the re-
sults of the comparison of the actual predictive performance and the respective average
ranks of the four methods for combining ensemble simulations with 25 constituents.
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3 2 1

Nemenyi
Critical Distance = 0.855543

Ensemble10 @2.33

Ensemble25 @1.83

Ensemble50 @1.83

Figure 7.3: Comparison of the average ranks for predictive performance with di�erent
ensemble sizes. Average ranks of ensembles that include 10, 25, and 50 base models in
terms of predictive performance averaged over the 15 experimental data sets.

In most cases, the simplest method, i.e. average, outperforms the other three. However,
the di�erences in performance among all the methods are not signi�cant. Given this, and
following the parsimony principle, we can conclude that the most appropriate method for
combining the simulations of the ensemble constituents is the simple average.

Table 7.3: Comparison of the predictive performance of the BRLS method with 25 con-
stituents combined by four di�erent methods.

Case Average Weighted Average Median Weighted Median

B1 1.102 1.095 1.091 1.089

B2 1.237 1.241 1.262 1.262
B3 0.946 0.901 0.995 0.985
B4 0.767 0.746 0.728 0.731
B5 0.627 0.621 0.604 0.606
K1 0.639 0.639 0.664 0.667
K2 0.830 0.973 1.021 0.905
K3 0.735 0.740 0.816 0.817
K4 0.764 0.765 0.767 0.768
K5 0.889 0.862 0.835 0.830

Z1 1.461 1.422 0.889 0.898
Z2 0.844 0.833 0.800 0.792
Z3 0.901 0.898 0.913 0.922
Z4 1.005 1.005 1.021 1.021
Z5 0.999 1.011 1.004 1.006

In summary, based on the performed experiments, we make the following design deci-
sions related to learning ensembles of process-based models with bagging of random library
subsamples. First, the ensemble constituents are chosen based on their performance on a
separate validation set, as they exhibit better performance than the ones chosen based on
their performance on the original training data set. Second, the ensembles should consist
of a relatively small number (25) of base models whose predictions should be combined
by using the simple average method. Although the latter conclusion is based on results
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4 3 2 1

= 1.21104Critical Distance
Nemenyi

Weighted Median @ 2.66 Average @ 2.4

Weighted Average @ 2.4Median @ 2.53

Figure 7.4: Average ranks of the four methods for combining the simulations of base
models (average, weighted average, median and weighted median) in terms of predictive
performance averaged over the 15 experimental data sets.

which are not statistically signi�cant, we follow the parsimony principle. In the remaining
experiments, we use these algorithm settings to learn ensembles with the BRLS method.

7.2 The Performance of Ensembles of Process-Based Models

Learned with the Bagging of Random Library Subsam-

ples Method

In our last set of experiments, we assess the predictive performance of the ensembles learned
with the bagging of random library subsamples method with the optimal design choices
determined above. We compare their performance to the performance of an individual
models, and ensembles learned with the RLS method with 10 constituents, bagging and
boosting with 25 constituents, all combined with the averaging method.

5 4 3 2 1

BRLS25 @2.46

Bagging25 @2.6

RLS10 @2.8

Boosting25 @2.93SingleModel @4.2

Bonferonni-Dunn
Critical Distance = 1.44222 

Figure 7.5: Average ranks of ensembles constructed by BRLS to the performance of: a
single model and three types of ensembles constructed by bagging, boosting and RLS. The
ranks of the models in terms of their predictive performance are averaged over the 15 data
sets.
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Fig 7.5 depicts the Friedman-Bonferonni-Dunn comparisons of the average ranks across
the �fteen data sets. The results of the test show that the BRLS ensembles signi�cantly
outperform single models. This result once more con�rms the central hypothesis of this
thesis that ensembles of process-based models improve the predictive performance over
single process-based models. Note, however, that their predictive performance is slightly
(not signi�cantly) better than the performance of the other three proposed methods for
learning ensembles of PBMs.

While Fig 7.5 depicts the comparison of the methods in terms of their average ranks,
Table 7.4 reports the actual performances of the single models and the four proposed
ensembles of PBMs. Note that the results reported in the table con�rm the superiority of
BRLS ensembles over a single model: The BRLS method outperforms the single model in
12 cases out of 15. Moreover, in 6 out of these 12, BRLS is the best performing algorithm,
overall. However, in the remaining three cases (B2, K5 and Z1) it underperforms. Note that
in two of these cases (B2 and Z1), all four algorithms have worse predictive performance
than the performance of a single model, whereas in the remaining case (K5) the di�erence
in performance between the single model and BRLS is minor. All things considered, in
terms of predictive performance, the BRLS ensembles signi�cantly improve the predictive
performance over single models, and are (not signi�cantly) better than the ensembles of
process-based models learned with the remaining three methods.

Table 7.4: Comparison of the predictive performance of a single model with that of ensem-
bles of PBMs learned with BRLS, bagging, boosting and RLS.

Case SingleModel Bagging Boosting RLS BRLS
B1 5.184 (5) 1.073 (2) 1.065 (1) 1.103 (4) 1.1 (3)
B2 0.938 (1) 1.085 (3) 0.947 (2) 1.143 (4) 1.237 (5)
B3 1.042 (5) 0.968 (4) 0.941 (2) 0.794 (1) 0.946 (3)
B4 2.84 (5) 0.76 (2) 0.791 (4) 0.75 (1) 0.767 (3)
B5 0.842 (3) 0.859 (5) 0.698 (2) 0.858 (4) 0.627 (1)
K1 7.73 (5) 0.736 (2) 0.925 (4) 0.756 (3) 0.639 (1)
K2 328.138 (5) 1.429 (3) 1.642 (4) 0.878 (2) 0.83 (1)
K3 0.932 (5) 0.867 (3) 0.923 (4) 0.827 (2) 0.735 (1)
K4 0.777 (4) 0.772 (3) 0.705(1) 0.8 (5) 0.764 (2)
K5 0.792 (4) 0.734 (2) 0.781 (3) 0.732 (1) 0.889 (5)
Z1 0.744 (1) 0.777 (2) 0.89 (4) 0.797 (3) 1.461 (5)
Z2 1.323 (5) 0.883 (2) 0.893 (3) 0.948 (4) 0.844 (1)
Z3 29.463 (5) 0.934 (3) 1.001 (4) 0.881 (1) 0.901 (2)
Z4 27.593 (5) 0.964 (1) 0.982 (2) 1.011 (4) 1.005 (3)
Z5 1.489 (5) 1.113 (2) 1.403 (4) 1.130 (3) 0.999 (1)

7.3 Predictive Performance and its Relation to Diversity

In this section, we present the analyses of the last set of experiments performed for this
thesis. Here, we explore the relation of the observed improvement in predictive perfor-
mance of the ensembles of process-based models to the diversity of the simulations of their
constituents. We �rst measure the relative improvement of the performance obtained by
using an ensemble instead of a single process-based model. Then, we measure the diversity
of base models in the ensemble. Finally, we try to correlate these two.
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Table 7.5 and Figure 7.6 summarize the results of these experiments. First, the re-
sults presented in Table 7.5 recon�rm our previous �nding that bagging outperforms single
models in all but three data sets, B2, B5 and Z1. The gain in performance can be sub-
stantial and reach up to 73% for Lake Bled, 90% for Lake Kasumigaura and 96% for Lake
Zurich. In the case of boosting, the improvement over a single model is also substantial.
The boosting method outperforms single models in the majority of the cases, i.e., in all
but two (B2 and Z1). The improvement reaches up to 72% for the case of Lake Bled,
up to 88% for Lake Kasumigaura and 96% for Lake Zurich. Similar behavior is observed
also for the RLS method. It outperforms the single model in most of the experiments (up
to 73% for the case of Lake Bled, up to 99% for Lake Kasumigaura and up to 28% for
Lake Zurich). However it also underperforms in 4 cases (B2, B5, K4 and Z1). Finally,
the BRLS method, which is also on average the best performing method, outperforms the
single model in 12 out of 15 cases (except for B2, K5 and Z1). Here the improvement
of predictive performance goes up to 73% for Lake Bled, 99% for Lake Kasumigaura and
up to 96% for Lake Zurich. However, in the two cases of B2 and Z1, the single model
outperforms every ensemble method proposed. Note that the improvements highlighted
above relate to the cases when the ensembles also outperform the average predictor, i.e.,
have ReRMSE bellow 1.

Finally, we observe a varying degree of diversity between ensemble constituents for
di�erent data sets�diversity varies from 0.112 to 1.816. The scatter plots in Figure 7.6,
for the methods of bagging, RLS and BRLS show weak positive correlation between the
ensemble diversity and relative improvement of performance, whereas for the method of
boosting there is no correlation. First, the measured Pearson correlation coe�cient of
0.266 for bagging, 0.248 for RLS, 0.136 for BRLS and 0.064 for boosting is neither high
nor signi�cant. Additionally, neither the measured Spearman's correlation coe�cient of
0.168 for bagging, 0.161 for RLS, 0.103 for BRLS and -0.064 for boosting showed sig-
ni�cant monotone relation between the ensemble diversity and relative improvement of
performance.
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Figure 7.6: Scatter plots depicting the correlation between the diversity of the base-model
predictions and the relative error improvement between a single model and an ensemble
for �fteen data sets. The points colored in red denote the cases where ensembles perform
worse than the average predictor (ReRMSE above 1).
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Chapter 8

Conclusions

In this thesis, we have developed and empirically evaluated a novel methodology for learn-
ing ensembles of process-based models. The proposed methodology extends the state-of-
the-art paradigm of equation discovery, which is predominately employed in a descriptive
setting, towards predictive modeling. The state-of-the-art approaches to automated model-
ing of dynamic systems, developed within the area of equation discovery, focus primarily on
establishing explanatory models of the observed system. In this context, the obtained mod-
els are employed for analysis of behaviors encapsulated in the data used for learning them.
However, their ability to predict the systems' behavior beyond the time-period captured
in the training data is poor. This directly relates to a well known phenomena in machine
learning referred to as over�tting: While process-based models are very successful at accu-
rately explaining the observed behavior of the modeled system, they have limited potential
for accurate long-term predictions. Considering these shortcomings of the state-of-the art
process-based modeling approaches, we propose a novel methodology which follows the ba-
sic principles of ensemble learning, and translates them into a methodology for modeling
dynamic systems. We illustrate the utility of learning ensembles of process-based models
on several tasks of long-term predictive modeling of dynamic systems.

The proposed methodology extends the scope of the traditional ensemble learning
paradigm towards modeling dynamic systems. It also extends the state-of-the-art equation
discovery methods towards improving their generalization power, subsequently providing
accurate simulation of the future behavior of the modeled dynamic systems. To this end,
the proposed methodology employs four di�erent methods for constructing ensembles of
process-based models.

More speci�cally, the implementation involves adapting four well-established methods
for constructing homogeneous ensembles. Homogeneous ensembles consist of models con-
structed using the same machine learning algorithm on di�erent samples of the training
data and/or knowledge. These methods include learning ensembles of process-based models
by (1) bagging, (2) boosting, (3) learning from random library subsamples (RLS) and (4)
bagging of random library subsamples (BRLS). Furthermore, we propose a novel method
for simulating (combining) such ensembles, robust enough to handle sensitive and diver-
gent trajectories resulting from long-term simulations of process-based models. Finally, to
properly evaluate the predictive performance of the proposed methods, and process-based
models in general, we have developed an extensive empirical evaluation framework. For
the purpose of this dissertation, the experimental analyses within this framework involve
a series of predictive tasks of modeling dynamics in real-world aquatic ecosystems.

The results of the performed experimental evaluation provide important evidence that
ensembles of process-based models, with the optimal design properties identi�ed, provide
much more accurate predictions of concentrations of species in aquatic ecosystems than a
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single process-based model. These results con�rm the �rst two hypotheses of this disserta-
tion: Traditional machine learning ensemble methods can be adapted to the task of learning
process-based models for modeling dynamic systems. The resulting methods yield improved
predictive performance as compared to a single process-based model.

These results are consistent over experiments with data from three real-world aquatic
ecosystems: Lake Bled in Slovenia, Lake Kasumigaura in Japan, and Lake Zurich in
Switzerland. While single models struggle with achieving the performance of the base-
line predictor (that predicts constant species concentrations at the level of their average),
the ensembles of process-based models lead to accurate predictions of population dynam-
ics over long prediction periods, e.g., one season (year) in advance. When compared to
previous results obtained in the domain of population dynamics (Atanasova, Todorovski,
Dºeroski, Remec, et al., 2006; Atanasova, Recknagel, et al., 2006), this is a non-trivial
improvement of predictive performance over the state-of-the-art models of population dy-
namics.

We observed a varying degree of diversity between ensemble constituents for di�erent
data sets. Moreover, the measured correlation coe�cients did not show a signi�cant linear
and/or monotonic relationship between the improvement in predictive performance and
the intra-ensemble diversity. Based on these results, we do not have enough evidence to
con�rm the last stated hypothesis of this thesis, that is, the diversity between ensemble
constituents is highly correlated with the predictive performance of an ensemble.

In the remainder of this section, we will �rst discuss the �ndings of the presented study
in both the context of related research and the limitations of the proposed methodology.
Next, we will outline the important contributions of this thesis. Finally, we suggest possible
directions for further work.

8.1 Discussion

8.1.1 On the performance of ensembles

Based on the results of the empirical evaluation, we identi�ed the optimal design decisions
for learning ensembles of process-based models for the task of predicting population con-
centration in aquatic ecosystems. First, when learning such ensembles, one should use a
separate validation data set in addition to the training one when learning the base-models
included in the ensemble. This yields more robust ensembles, which in turn substantially
improve the predictive performance. For combining the simulation of constituent process-
based models, one should use the simplest combining scheme, i.e., averaging.

The optimal ensembles of PBMs consist of a relatively small number of constituent
models, ranging from 10 for the RLS method to 25 for both bagging and boosting. How-
ever, the process-based models, when simulated in a predictive setting, often produce
divergent simulations, i.e., simulations where the systems variables leave their plausible
ranges. Therefore, when simulating ensembles of PBMs, one should explicitly handle this
kind of behavior of the base models. The proposed method in this thesis uses the provided
domain knowledge on system variable ranges to discard the invalid behaviors from the re-
sulting ensemble prediction. This can be viewed as a dynamic (domain-knowledge based)
approach to ensemble simulation.

Figure 8.1 presents a summary of the empirical results from the experimental evalua-
tion performed in this thesis in terms of predictive performance of the proposed ensemble
methods and a single process-based model. Di�erent methods on the x-axis are sorted
with respect to increasing e�ciency of the learning algorithms. From this Figure, and
the actual predictive performances presented in Table 7.4, we can con�rm the superiority
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Figure 8.1: An overview of the proposed ensemble methods (red) for learning ensembles
of process-based models and a single process-based model (blue) in terms of predictive
performance (ReRMSE obtained from the experimental evaluation) sorted with respect
to increasing e�ciency of the learning algorithms. The labels on the x-axis relate to relative
computational time.

of ensembles to a single model. The ensemble methods are far more robust than single
models, which severely under-perform in several cases.

However, choosing between the proposed ensemble methods is a non-trivial task. There-
fore, we need to decompose this task based on three criteria: average predictive perfor-
mance, robustness and computational e�ciency. Based on the �rst criterion, the ensem-
bles learned with BRLS provide the best results. The several statistical tests performed
throughout this manuscript, which consider average ranks, indicate that the BRLS method,
besides signi�cantly improving the predictive performance compared to a single model, out-
performs also the rest of the ensemble methods although not signi�cantly. Notice that even
though in the majority of the experiments this method considerably outperforms the single
model (in 8 cases this improvement is even greater than 30%), in 3 cases the single model
performs better. This method however is closely followed by bagging, which also in the
majority of cases signi�cantly outperforms the single models.

Next, based on the second criterion, boosting is the most robust method. Overall,
boosting ensembles exhibit a stable behavior, which translates to predictive improvement
in performance over the single model in cases when the other ensemble methods fail.
The two cases when the single process-based models performs better, in one case (B2)
this di�erence is less than 1%. For these two cases, both in terms of boosting process-
based models and ensembles of process-based models in general, we relate to the studies
of Joshi, Agarwal, and Kumar (2002) and Breiman (1996a). In the former, the authors
point out that the performance of boosting is correlated with the performance of the base
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learners. This means that when a single model obtained exhibits very good predictive
performance, the boosting weak models can lead only to similar or worse performance.
Similarly, this phenomenon is also pointed out in the latter study for the case of bagging.
More speci�cally, if the single model is close to the limits of a attainable accuracy for a
speci�c learning problem, the ensembles rarely yield improved predictive performance.

Computational e�ciency, beside predictive performance and robustness, is an impor-
tant criterion for selecting the most suitable ensemble methods. In this context, when
choosing among the proposed ensemble methods based on computational e�ciency and
predictive performance, the method for learning ensembles from random library subsam-
ples (RLS) is the clear winner. The computational e�ciency of the RLS method allows for
applications to domains where a rich library of domain knowledge is available leading to a
large space of candidate models. In such cases, the iterative methods of bagging, boosting
and even BRLS are not applicable due to the prohibitively high computational costs. To
apply them, one needs to handcraft the library of domain knowledge, omit modeling alter-
natives, and thus simplify the space of candidate model structures. In contrast, RLS, in
addition to being more e�cient, often leads to models with better predictive performance
as compared to the models obtained with the other ensemble methods.

8.1.2 On the in�uence of diversity

Machine learning literature provides various frameworks for explaining the performance
improvement gained using ensemble methods. Recall from Section 2.2.4, where we stated
that while the results on the positive in�uence of ensemble constituents' diversity on the
performance are inconsistent, there is a general consensus that bias-variance-covariance
decomposition of the predictive error allows for plausible explanation. To properly inves-
tigate this issue in the context of process-based models, we take note of their similarity
with regression models, which will stand as a proxy for illustrating the decomposition of
the generalization error. For a single model for the task of regression f for an input x,
the generalization error of the estimator can be broken down into two components: bias
and variance. However, according to Hastie, Tibshirani, and Friedman (2003) there is a
trade-o� between these components, i.e., attempts on decreasing the bias may result in
increased variance and vise versa. The decomposition of the generalization error is then:

E{(f − ŷ)2} = E{(f − E{f})2}+ (E{f} − ŷ)2

=⇒ var(f) + bias(f)2 = MSE(f) ,
(8.1)

where ŷ denotes the expected value of the target variable and E{· } is the expectation
operator, and MSE(f) is the mean squared error of the estimator. For an ensemble of
regressors with M constituents, the average bias and variance can be computed as:

bias =
1

M

∑

i

(E{fi} − ŷ) , (8.2)

var =
1

M

∑

i

E{(fi − E{fi})2} . (8.3)

However, the generalization error when ensembles are considered, according to Ueda
and Nakano (1996), has a third component, i.e., the covariance between the ensemble
constituents. The average covariance of the base models is then computed as:
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covar =
1

M(M − 1)

∑

i

∑

j 6=i

E{(fi − E{fi})(fj − E{fj})} (8.4)

From equations 8.2, 8.3 and 8.4 the bias-variance-covariance decomposition of the gen-
eralization error of the ensemble is:

E{( 1

M

∑

i

fi − ŷ)2} = bias
2

+
1

M
var + (1− 1

M
)covar (8.5)

From equation 8.5 it can be assumed that the component of covariance has a big in�u-
ence on the generalization error, that is, the diversity between the ensemble constituents
is strongly (negatively) correlated to the generalization error and would substantially in-
�uence the overall predictive loss. Ensembles tend to reduce the variance component of
the predictive error, while not increasing the bias component at the same time (Brown,
Wyatt, Harris, & Yao, 2005). This is what happens in the case of learning ensembles of
process-based models: by averaging the predictions of several models learned on the same
dataset, we reduce the variance component of the predictive error.

Moreover, the analysis of the measured diversity presented in this thesis relates to the
component of covariance in the overall ensemble performance. However, the results provide
evidence that the correlation between the covariance among the ensemble process-based
constituents and the overall performance gain of the ensembles is very weak. This however
is in-line with the �ndings of Kuncheva and Whitaker (2003), which show that there is
not always a strong correlation between the intra-ensemble diversity (covariance) and the
predictive performance of the ensemble, therefore the question of performance-diversity
trade-o� is more problem/task speci�c than general. Additional analyses, presented by
Brown et al. (2005), also demonstrate that the error components of bias, variance and
covariance are very related, meaning that focusing at decreasing one of these errors will
a�ect the others in the opposite way.

We conjecture that ensembles of process-based models also reduce their bias. This
is due to the fact that averaged process-model simulations can lead to predictions that
are out of scope of a single process-based model. Therefore, ensembles of process-based
models (and models of dynamic systems in general) have a potential to extend the original
space of individual models leading to reduction of the bias component of the predictive
error. Nonetheless, validating this hypothesis, by completely and properly decomposing
the generalization error and investigating the relation of every component to the overall
performance of the ensemble is a challenge that we will consider for further work.

8.1.3 On modeling dynamic systems

The work presented in this thesis follows two di�erent lines of research. First, it extends
the state-of-the-art in the paradigm of equation discovery. More speci�cally, we build upon
previous methods for learning process-based models that have proven successful for auto-
mated modeling of population dynamics in a number of aquatic ecosystems (Todorovski
& Dºeroski, 2007; Borrett, Bridewell, Langley, & Arrigo, 2007; �erepnalkoski et al., 2012;
Bridewell et al., 2008). Second, it follows the basic principles of ensemble learning, and
translates them into a methodology for modeling dynamic systems.

This work is closely related to that of Bridewell et al. (2005), where the authors use
ensemble methods to establish better descriptive models by tackling the over-�tting prob-
lem. Their approach is based on integrating the model structures of ensemble constituents
into a single model. This model still provides a process-based explanation of the observed
system structure, while being more robust in terms of over-�tting observed data. The
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evaluation of over�tting is performed by a variant of the general cross-validation method,
where samples of data are kept out of the training set and are used to estimate the model
error. While this method provides estimates of model error on unseen data, these estimates
are not related to the predictive performance of the model, i.e., its ability to predict future
system behavior beyond the time-period captured in training data.

The studies of Whigham and Recknagel (2001), Cao, Recknagel, Cetin, and Zhang
(2008), Gilboa, Friedler, and Gal (2009) are also related to our work, as they employ auto-
mated approaches to modeling dynamics of lake ecosystems in a process-based formalism.
However, these studies start from a modeling assumption that includes a �xed structure of
model equations and employ genetic algorithms to calibrate the values of the �xed model
parameters and obtain better simulations. The study of Aleksovski et al. (2015) also re-
lates to our work, since it tackles the tasks of predictive modeling of (discrete) non-linear
dynamic systems with machine learning approaches. Here, the modeling problem is �rst
transformed into a non-linear regression approximation problem subsequently addressed
by learning fuzzy linear model trees and ensembles of fuzzy linear model trees. The results
show that the ensembles improve the performance over the single fuzzy linear trees. While
this study focuses on short-term (one-step ahead) prediction of discrete-time dynamic sys-
tems, where the value of the time series in the next time-point is predicted; the tasks
of long-term prediction of continuous non-linear dynamic systems are not considered nor
evaluated.

In a broader sense, this work also relates to a long tradition of accurately predicting
behaviors of dynamic systems by combining diverse predictions obtained by perturbing
parameters of an individual model. A recent paradigm (Van den Berge et al., 2011; Mirchev
et al., 2012), referred to as supermodeling, aims at constructing an ensemble of "imperfect"
models, comprised from a set of interconnected (coupled) models, which are integrated
simultaneously and are able to exchange information among themselves on a time-step
basis. However, the focus of this paradigm is predominantly estimation of the coupling
coe�cients, whereas the structures of these "imperfect" models, often very complex, are
provided a priori by a domain expert.

While the comparative empirical study, presented in this study, is limited to the do-
main of modeling population dynamics, the proposed methodology to learning ensem-
bles of process-based models is general enough to be applied to any other domain and
to any other type of models of dynamic systems. To proceed with process-based model-
ing in other domains, one has to encode a library of domain-speci�c modeling knowledge.
These are available for various domains including modeling active potentials in neurons
(Simidjievski, Todorovski, & Dºeroski, 2014), epidemiology and modeling gene regulatory
networks (Tanevski et al., 2016), net carbon production (Todorovski, 2003) and protein
interactions (Ta²kova et al., 2011; Tanevski et al., 2015). Some of these applications of
process-based modeling show the applicability of the proposed approach to the very active
�elds in life sciences such as systems biology, systems neuroscience and bioinformatics that
deal with numerous identi�cation problems. The predictive ability of the process-based
ensembles bears a promise for further applications, since combining predictive models into
ensembles have been proved to work well for predictive tasks in various domain.

8.1.4 On ensemble interpretability

In this thesis, for designing the methods for learning ensembles of process-based models,
we relate to traditional and well-established methods in machine learning, i.e., bagging
(Breiman, 1996a), Adaboost (Freund, 1999), the random subspaces method (Ho, 1998)
and bagging of random subspaces (Panov & Dºeroski, 2007). One thing that all of these
methods have in common is that they lack the ability to produce an interpretable ensemble.
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The ensemble methods proposed in this thesis aim at improving the generalization power of
process-based models, in terms of achieving predictive performance gain over the state-of-
the-art process-based modeling approaches. However, when learning ensembles of process-
based models, they also inherit the same limitation: a trade-o� between two con�icting
requirements � predictive performance and interpretability. The increase of predictive
accuracy comes at the cost of losing the interpretability of the learned ensemble model.
Nevertheless, interpretability is an inherit de�ciency of ensembles in general, given that
they aggregate a set of models in order to be constructed.

Several attempts are made that tackle this challenge. In the context of learning ensem-
ble of process-based models, probably the most appropriate approach would be learning a
meta-model. Here, the idea is constructing a new process-based model out of the ensemble
constituents, either by combining components of their structures or learning additional
parameters which connects them. The former closely relates to the study of (Bridewell
et al., 2005), where the authors propose a method which integrates the model structures
of the ensemble constituents into a single complex meta-model. The latter refers to trans-
forming the task of a posteriori combination of the trajectories of the individual ensemble
constituents into contracting a system of Ordinary Di�erential Equations which would be
simulated simultaneously. In this context, the approach of supermodeling would most ap-
propriately �t in. However, further investigations are required to determine which is the
most appropriate approach to learn interpretable ensembles of process-based models, and
more importantly, without harming their predictive performance.

8.2 Contributions to Science

This thesis contributes to several important aspects of the process-based modeling paradigm.
The majority of these �ndings are published in several journal and conference publications,
some of them are included in this manuscript. The complete list of publications is given
in the appendix titled Bibliography. In the following subsections, we summarize the main
scienti�c contributions of the work presented in this thesis.

8.2.1 A novel methodology for learning ensembles of process-based

models

In this thesis we address the task of learning ensembles of process-based models by design-
ing, implementing and evaluating the appropriate methodology. The developed method-
ology is general and modular, which allows for various extensions for adapting di�er-
ent ensemble methods to the particular context of learning process-based models. This
methodology is the main contribution of this thesis, since it extends the scope of current
process-based modeling approaches to the task of learning ensembles of process-based mod-
els. To this end, the proposed ensemble methodology consists of four di�erent algorithms
for learning homogeneous ensembles of process-based models, as well as an algorithm for
simulating them.

This contribution is also important in the wider context of the ensemble learning
paradigm, applied in the context of time-series predictive tasks. While such ensembles
have a narrow focus on short-term prediction tasks, where the value of the time series
at the next time point is predicted, ensembles of process-based models provide accurate
long-term predictions over many future time points.
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8.2.2 An evaluation framework for empirical analysis of the predictive

performance of process-based modeling methods

We designed and performed an empirical evaluation framework for estimating the predic-
tive performance of process-based modeling methods. In terms of the proposed ensemble
methodology, this framework allows for identi�cation of the optimal design properties of
the di�erent ensemble methods proposed in this thesis. Moreover, it provides a thorough
and fair evaluation of the predictive performance of the proposed methods. In this thesis,
the experimental evaluation involves a series of predictive tasks of modeling population
dynamics in real-world aquatic ecosystems.

Note, however, while the evaluation framework in the thesis has only been used in
the limited context in the domain of ecological modeling, it is easily applicable towards
other application domains, both real-world and arti�cial. Therefore, this contribution
is also important in the wider context of the process-based modeling paradigm. While
the state-of-the-art approaches focus mainly on measuring the descriptive performance
of the obtained process-based models or perform a cross-validation, here we propose a
standardized procedure for measuring performance of models when applied to tasks of
modeling future behaviors beyond the time-period captured in training data.

8.2.3 Improved long-term prediction as compared to state-of-the-art

approaches to process-based modeling of dynamic systems

In this context, we compared the predictive performance of di�erent ensembles of process-
based models to the performance of a single process-based model. We conducted a thorough
empirical evaluation on the task of modeling population dynamics in aquatic ecosystems.
The considered case studies addressed the task of modeling phytoplankton growth, a com-
plex non-linear dynamic process, in three di�erent real-life aquatic ecosystem domains.
Based on the performed empirical evaluation, we also identi�ed the main design decisions
that need to be made when learning ensembles of process-based models. In general, all
proposed ensemble methods, following the respective designs, yield to signi�cantly better
predictive performance compared to a single process-based models.

This contribution is also important in the wider context of ensembles for time-series
forecasting. While forecasting ensembles have a narrow focus on short-term prediction
tasks, where the value of the time series at the next time point is predicted, ensembles of
process-based models provide accurate long-term predictions over many future time points.

8.2.4 Accurate long-term predictions of population dynamics in real-

world aquatic ecosystems

Finally, the work presented in this thesis provides an important contribution to the domain
of ecological modeling. The results of the performed experimental evaluation con�rm
that ensembles of process-based models provide (1) logically plausible and (2) accurate
predictions of concentrations of species in aquatic ecosystems. Moreover they tend to
improve the predictive performance compared to the one of a single process-based model.
This is also a signi�cant improvement of predictive performance over the state-of-the-art
models of population dynamics, which is limited at providing an accurate prediction of the
future behavior of the observed system (Atanasova, Todorovski, Dºeroski, Remec, et al.,
2006; Atanasova, Recknagel, et al., 2006).
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8.3 Further Work

We have identi�ed several limitations of our methodology, which can be addressed by fol-
lowing several directions for further work. First, note that the experiments performed
in this thesis are limited to modeling population dynamics in three lake ecosystems. An
immediate continuation of the work presented here is to investigate the generality of the
proposed methodology and extend the scope of learning ensembles of process-based models
of population dynamics to other aquatic environments, such as marine and river ecosys-
tem. Next, we plan to investigate whether the �ndings of this thesis are also consistent
when applied in an arti�cial setting, for predictive tasks of synthetic dynamic systems.
Here, the arti�cial data is �rst generated by simulating known process-based models pre-
viously learned for a task of modeling population dynamics. The goal is then predictive
reconstructing of the behavior of the known model under various levels of noise, therefore
evaluating the robustness of the proposed ensemble methodology. Finally, we also intend
to analyze the applicability of proposed methodology to di�erent scienti�c domains, such
as systems biology and systems neuroscience. Here, however, an additional challenge lies
in developing a suitable and extensive library of domain knowledge and obtaining valid
measurements of the systems.

The second direction considers the ensemble performance-diversity enigma. The re-
sults from the experimental evaluation showed that there is no signi�cant linear relation
between the diversity of the ensemble constituents and the overall performance of the en-
semble. Nevertheless, we intend to explore this problem further. First, we plan to follow
ideas from Geman et al. (1992), Brown et al. (2005) and investigate this relation in terms of
bias-variance-covariance decomposition of the predictive error of the ensemble. In order to
do this properly, this will include additional ( 100) tasks of learning ensembles of process-
based models, so any randomness in the learning procedure will be alleviated. Second, in
this thesis we measure the diversity between the ensemble constituents at the trajectory
level. However, process-based models besides this quantitative property also encompass
qualitative structural property. In this context, we plan to investigate whether the struc-
tural diversity between the base models in�uences the overall predictive performance of
the ensemble.

In this thesis we proposed four methods for learning ensembles of process-based models.
The results of the evaluation of predictive performance showed that boosting process-based
models, can yield to overall stable and accurate predictions. However, in terms of com-
putational e�ciency, learning ensembles of process-based models with boosting, especially
when the library of domain knowledge leads to a large space of candidate models, is pro-
hibitive. On the other hand, the most e�cient ensemble method, i.e. the RLS method,
greatly bene�ts from learning each ensemble constituents on smaller subset of the back-
ground knowledge. One direction for future work would be utilizing the properties of these
two algorithms, i.e., robustness and computational e�ciency, by combining boosting and
RSM, therefore learning ensembles with boosting random library subsamples. We conjec-
ture that the new algorithm will still have satis�able predictive accuracy and robustness,
while being learned in a reasonable computational time-frame.

In general the ensemble methods proposed in this thesis add substantial computational
overhead compared to learning a single process-based model. This overhead primarily re-
lates to the space of model structures instantiated from the library of domain knowledge.
To this end, the process od enumerating the model structures implemented in ProBMoT
is exhaustive, which means that in practice this results in a very large space of pleasurable
models considered in each ensemble iteration. To tackle this limitation, we plan to imple-
ment a heuristic search strategy over the space of candidate structures, which in turn will
result in obtaining the most suitable models structures for the problem at hand within a
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reasonable time frame. This allows us to tackle more complex modeling tasks, where the
iterative ensemble methods, such as bagging and boosting, will bene�t the most.

Finally, considering the interpretability of the ensembles of process-based models, we
plan to follow ideas from (Bridewell et al., 2005) and improve our methodology by in-
corporating understandable structure into the resulting ensemble. In a similar context,
we intend to extend our methodology towards learning interactive ensembles of models of
dynamic systems (Mirchev et al., 2012). In contrast to the proposed ensembles methods,
where the base models are learned and simulated independently and combined afterwards,
within the interactive ensembles, the base models are allowed to share and interchange
information both during the learning and the simulation phase. In this context, one can
learn the constituent models, their interconnections or both.
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Appendix A

Library of Domain Knowledge for

Modeling Population

Dynamics in Aquatic Ecosystems

For the tasks of modeling population dynamics in the three real-world lake ecosystems
presented in this thesis, we used the library of domain knowledge developed by Atanasova,
Todorovski, Dºeroski, and Kompare (2006), which is presented in the remainder of this
chapter.

library AquaticEcosystem;

// ENTITIES

template entity EcosystemEntity {

vars:

conc {aggregation:sum; unit:"kg/m�3"; range:<0,20>};

}

template entity Population:EcosystemEntity {

vars:

tempGrowthLim{aggregation:product},

tempRespLim{aggregation:product},

tempMortLim{aggregation:product},

tempExcLim{aggregation:product},

tempSedLim{aggregation:product};

}

template entity PrimaryProducer:Population{

vars:

nutrientLim{aggregation:product},

lightLim{aggregation:product},

growthRate;

consts:

maxGrowthRate {range:<0.05,3>; unit:"1/(day)"};

}

template entity Zooplankton:Population{

vars:

phytoLim{aggregation:sum},

phytoSum{aggregation:sum};
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consts:

maxFiltrationRate {range:<0.01,15>; unit:"m3/(mgZoo*day)"},

assimilationCoeff {range:<0,20>; unit:"mgZoo/(mgAlgae)"};

}

template entity Nutrient:EcosystemEntity{

consts:

halfSaturation {range:<0,15>; unit:"mg/l"},

alpha {range:<0,20>; unit:"mgAlgaeBiomass/mgZooBiomass"};

}

template entity Environment {

vars:temperature,light,flow;

consts:volume,depth,area;

}

// PROCESSES

template process NutrientPrimaryProducerInteraction(pp:PrimaryProducer,ns:Nutrient<1,20>,

env:Environment ){

processes:

LightInfluence(pp,env), NutrientInfluence(pp,<n:ns>),

Growth(pp,ns,env),RespirationPP(pp,ns,env);

}

// Temperature Growth Influence

template process TempGrowthInfluence(pop:Population,env:Environment){}

template process TempGrowthLim:TempGrowthInfluence {

consts:

refTemp {range:<10,22>},

minTemp {range:<0,6>},

optTemp {range:<15,25>};

}

template process Linear1TempGrowthLim:TempGrowthLim{

equations: pop.tempGrowthLim = env.temperature/refTemp;

}

template process Linear2TempGrowthLim:TempGrowthLim{

equations:

pop.tempGrowthLim = (env.temperature − minTemp)/(refTemp − minTemp);

}

template process ExponentialTempGrowthLim:TempGrowthLim{

consts: theta {range:<1.06,1.13>};

equations:

pop.tempGrowthLim = pow(theta, env.temperature − refTemp);

}

// Temperature Respiration Influence

template process TempRespInfluence(pop:Population,env:Environment){}

template process TempRespLim:TempRespInfluence{

consts:

refTemp {range:<10,22>},

minTemp {range:<0,6>},

optTemp {range:<15,25>};
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}

template processLinear1TempRespLim:TempRespLim{

equations: pop.tempRespLim = env.temperature/refTemp;

}

template process Linear2TempRespLim:TempRespLim{

equations:

pop.tempRespLim = (env.temperature − minTemp)/(refTemp − minTemp);

}

template process ExponentialTempRespLim:TempRespLim{

consts: theta {range:<1.06,1.13>};

equations:

pop.tempRespLim = pow(theta, env.temperature − refTemp);

}

// Temperature Mortality Influence

template process TempMortInfluence(pop:Population,env:Environment){}

template process NoTempMortLim:TempMortInfluence{

equations: pop.tempRespLim = 1;

}

template process TempMortLim:TempMortInfluence{

consts:

refTemp {range:<10,22>},

minTemp {range:<0,6>},

optTemp {range:<15,25>};

}

template process Linear1TempMortLim:TempMortLim{

equations: pop.tempRespLim = env.temperature/refTemp;

}

template process Linear2TempMortLim:TempMortLim{

equations:

pop.tempRespLim = (env.temperature − minTemp)/(refTemp − minTemp);

}

template process ExponentialTempMortLim:TempMortLim{

consts: theta {range:<1.06,1.13>};

equations:

pop.tempRespLim = pow(theta, env.temperature − refTemp);

}

// Temperature Excretion Influence

template process TempExcInfluence(pop:Population,env:Environment){}

template process NoExcMortLim:TempExcInfluence{

equations: pop.tempExcLim = 1;

}

template process TempExcLim:TempExcInfluence{

consts:

refTemp {range:<10,22>},

minTemp {range:<0,6>},

optTemp {range:<15,25>};

}

template process Linear1TempExcLim:TempExcLim{

equations: pop.tempExcLim = env.temperature/refTemp;

}
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template process Linear2TempExcLim:TempExcLim{

equations:

pop.tempExcLim = (env.temperature − minTemp)/(refTemp − minTemp);

}

template process ExponentialTempExcLim:TempExcLim{

consts:theta {range:<1.06,1.13>};

equations:

pop.tempExcLim = pow(theta, env.temperature − refTemp);

}

// Temperature Sedimentation Influence

template process TempSedInfluence(pop:Population,env:Environment){}

template process NoTempSedLim:TempSedInfluence{

equations: pop.tempSedLim = 1;

}

template process TempSedLim:TempSedInfluence{

consts:

refTemp {range:<10,22>},

minTemp {range:<0,6>},

optTemp {range:<15,25>};

}

template process Linear1TempSedLim:TempSedLim{

equations: pop.tempSedLim = env.temperature/refTemp;

}

template process Linear2TempSedLim:TempSedLim{

equations:

pop.tempSedLim = (env.temperature − minTemp)/(refTemp − minTemp);

}

template process ExponentialTempSedLim:TempSedLim{

consts: theta {range:<1.06,1.13>};

equations:

pop.tempSedLim = pow(theta, env.temperature − refTemp);

}

// Light Influence

template process LightInfluence(pp:PrimaryProducer,env:Environment){}

template process LightLim:LightInfluence{}

template process MonodLightLim:LightLim{

consts: halfSat {range:<0,200>};

equations: pp.lightLim = env.light/(env.light + halfSat);

}

template process OptimalLightLim:LightLim{

consts: optLight {range:<100,200>};

equations:

pp.lightLim = env.light ∗ exp(−env.light/optLight + 1)/optLight;

}

// Nutrient Influence

template process NutrientInfluence(pp:PrimaryProducer,n:Nutrient){}

template process NutrientLim:NutrientInfluence{}

template process MonodNutrientLim:NutrientLim{

equations: pp.nutrientLim = n.conc/(n.conc + n.halfSaturation);
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}

template process Monod2NutrientLim:NutrientLim{

equations:

pp.nutrientLim = pow(n.conc, 2)/(pow(n.conc, 2) + n.halfSaturation); }

template process ExponentialNutrientLim:NutrientLim{

consts: saturationRate {range:<0,15>};

equations:

pp.nutrientLim = 1 − exp(−saturationRate ∗ n.conc);

}

// Growth

template process Growth(pp:PrimaryProducer,ns:Nutrient<1,20>,env:Environment){

processes:

TempGrowthInfluence(pp,env),GrowthRate(pp,ns,env);

equations:

td(pp.conc) = pp.growthRate ∗ pp.conc,

td(< n : ns > .conc) = −n.alpha ∗ pp.growthRate ∗ pp.conc;

}

template process GrowthRate(pp:PrimaryProducer,ns:Nutrient<1,20>,env:Environment){}

template process LimitedGrowthRate:GrowthRate{

equations:

pp.growthRate = pp.maxGrowthRate ∗ pp.tempGrowthLim

∗pp.lightLim ∗ pp.nutrientLim;

}

// Respiration PP

template process RespirationPP(pp:PrimaryProducer,ns:Nutrient<1,20>,env:Environment){}

template process ExponentialRespirationPP:RespirationPP{

consts: respRate {range:<0.0001,2>};

equations:

td(pp.conc) = −respRate ∗ pp.conc,

td(< n : ns > .conc) = respRate ∗ pp.conc;

}

template process TempRespirationPP:RespirationPP{

processes: TempRespInfluence(pp,env);

}

template process Temp1RespirationPP:TempRespirationPP{

consts: respRate {range:<0.0001,1>};

equations:

td(pp.conc) = −respRate ∗ pp.conc ∗ pp.tempRespLim,

td(< n : ns > .conc) = respRate ∗ pp.conc ∗ pp.tempRespLim;

}

template process Temp2RespirationPP:TempRespirationPP{

consts: respRate {range:<0.0001,1>};

equations:

td(pp.conc) = −respRate ∗ pow(pp.conc, 2) ∗ pp.tempRespLim,

td(< n : ns > .conc) = respRate ∗ pow(pp.conc, 2) ∗ pp.tempRespLim;

}

// Mortality PP

template process MortalityPP(pp:PrimaryProducer,env:Environment){

processes: TempMortInfluence(pp,env);

}
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template process TempMortalityPP:MortalityPP{

consts: mortRate {range:<0.0001,2>};

equations: td(pp.conc) = −mortRate ∗ pp.conc ∗ pp.tempMortLim; }

template process Temp2MortalityPP:MortalityPP{

consts: mortRate {range:<0.0001,2>};

equations:

td(pp.conc) = −mortRate ∗ pow(pp.conc, 2) ∗ pp.tempMortLim;

}

// Feeds On

template process FeedsOn(zoo:Zooplankton,pps:PrimaryProducer<1,20>,env:Environment){

processes: TempGrowthInfluence(zoo,env),PhytoLim(zoo,pps);

}

template process FeedsOnFiltration:FeedsOn{

equations:

td(zoo.conc) = zoo.assimilationCoeff ∗ zoo.maxFiltrationRate

∗zoo.tempGrowthLim ∗ zoo.conc ∗ zoo.phytoSum ∗ zoo.phytoLim,

td(< pp : pps > .conc) = −zoo.maxFiltrationRate ∗ zoo.tempGrowthLim

∗zoo.conc ∗ pp.conc ∗ zoo.phytoLim;

}

template process PhytoLim(zoo:Zooplankton,pps:PrimaryProducer<1,20>){}

template process MonodPhytoLim:PhytoLim{

consts: halfSaturation {range:<0,20> };

processes: Summation(zoo,pps);

equations:

zoo.phytoLim = zoo.phytoSum/(halfSaturation + zoo.phytoSum);

}

template process Monod2PhytoLim:PhytoLim{

consts: halfSaturation {range:<0,20> };

processes: Summation(zoo,pps);

equations:

zoo.phytoLim = pow(zoo.phytoSum, 2)/(pow(zoo.phytoSum, 2) + halfSaturation);

}

template process Summation(zoo:Zooplankton,pps:PrimaryProducer<1,20>){

equations: zoo.phytoSum =< pp : pps > .conc;

}

template process RespirationZoo(zoo:Zooplankton,ns:Nutrient<1,20>,env:Environment){

processes: TempRespInfluence(zoo,env);

}

template process TempRespirationZoo:RespirationZoo{

consts: respirationRate {range:<0.001,1.5>};

equations:

td(zoo.conc) = −respirationRate ∗ zoo.tempRespLim ∗ zoo.conc,

td(< n : ns > .conc) = respirationRate ∗ zoo.conc;

}

template process Temp2RespirationZoo:RespirationZoo{

consts: respirationRate {range:<0.001,1.5>};

equations:

td(zoo.conc) = −respirationRate ∗ zoo.tempRespLim ∗ zoo.conc ∗ zoo.conc,

td(< n : ns > .conc) = respirationRate ∗ pow(zoo.conc, 2);

}
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// Mortality Zoo

template process MortalityZoo(zoo:Zooplankton){}

template process ExponentialMortalityZoo:MortalityZoo{

consts: mortRate {range:<0.0001,2>};

equations: td(zoo.conc) = −mortRate ∗ zoo.conc;

}

template process TempMortalityZoo(env:Environment):MortalityZoo{

consts: mortRate {range:<0.0001,2>};

equations:

td(zoo.conc) = −mortRate ∗ zoo.conc ∗ zoo.tempMortLim;

}

template process Temp2MortalityZoo:MortalityZoo{

consts: mortRate {range:<0.0001,2>};

equations:

td(zoo.conc) = −mortRate ∗ pow(zoo.conc, 2) ∗ zoo.tempMortLim;

}

template process HyperbolicMortalityZoo:MortalityZoo{

consts: decay {range:<0.001,1.5>};

equations:

td(zoo.conc) = −pow(zoo.conc, 2) ∗ decay/(decay + zoo.conc);

}

template process SigmoidMortalityZoo:MortalityZoo{

consts: decay {range:<0.001,1.5>};

equations:

td(zoo.conc) = −pow(zoo.conc, 3) ∗ decay/(pow(decay, 2) + pow(zoo.conc, 2));

}

template process ExcretionZoo(zoo:Zooplankton,env:Environment){}

template process TempExceretionZoo:ExcretionZoo{

consts: exRate {range:<0.0001,2>};

equations:

td(zoo.conc) = −exRate ∗ zoo.conc ∗ zoo.tempExcLim;

}

template process Temp2ExceretionZoo:ExcretionZoo{

consts:exRate {range:<0.0001,2>};

equations:

td(zoo.conc) = −exRate ∗ pow(zoo.conc, 2) ∗ zoo.tempExcLim;

}

template process Sedimentation(pop:Population,env:Environment){

processes: TempSedInfluence(pop,env);

consts: sedimentationRate {range:<0.0001,0.5>; unit:"1/(day)"};

equations:

td(pop.conc) = −(sedimentationRate/env.depth) ∗ pop.conc ∗ pop.tempSedLim;

}
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