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Abstract

Text mining is a �eld of data mining, drawing its techniques from machine learning, natu-
ral language processing, information retrieval, information extraction and knowledge man-
agement. While text mining is a mature area of research, with numerous open source
algorithms and NLP software libraries available�such as NLTK and scikit-learn�text
mining and natural language processing (NLP) experiments are still di�cult to reproduce,
including the di�culty of systematic comparison of algorithms. To this end, a number of
attempts have been made to develop easy-to-use work�ow management systems, allowing
users to compose complex processing pipelines in a visual programming manner.

The thesis addresses several open questions and technology gaps in text mining (TM)
and natural language processing (NLP), following three main research directions: (a) devel-
opment of advanced TM and NLP infrastructures, (b) development of advanced work�ows
for natural language processing and bisociative knowledge discovery, and (c) development
of advanced work�ows for transforming relational data mining into text mining problems.

We developed a web-based text mining platform TextFlows, which facilitates the con-
struction and execution of text mining and NLP work�ows. The platform serves as an
easy-to-access integration platform for the advanced text mining and NLP approaches pre-
sented in this thesis. A survey of existing libraries and work�ow management systems for
text mining is provided, outlining their abilities and de�ciencies. Moreover, the dissertation
addresses several novel knowledge discovery scenarios, for which it proposes the method-
ology and presents the developed reference implementation, together with their evaluation
on real-world text mining and data mining tasks. In particular, the thesis focuses on the
development of advanced work�ows for natural language processing, advanced work�ows
for bisociative knowledge discovery, and advanced work�ows for transforming relational
data mining problems into text mining problems. The thesis also provides reference im-
plementations for solving the addressed scenarios in the developed TextFlows text mining
platform, which allows for work�ow sharing and experiment repeatability.
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Povzetek

Tekstovno rudarjenje je podro£je podatkovnega rudarjenja, ki temelji na tehnikah strojnega
u£enja, obdelave naravnega jezika, ekstrakcije informacij, informacijskega poizvedovanja in
upravljanja znanja. Tekstovno rudarjenje je zrelo podro£je raziskovanja, ki ponuja uporab-
niku ²tevilne odprtokodne algoritme in knjiºnice za obdelavo naravnega jezika, kot sta npr.
knjiºnici NLTK in scikit-learn. Kljub temu pa so tako eksperimenti tekstovnega rudarjenja
in obdelave naravnega jezika kot tudi sistemati£na primerjava algoritmov ²e vedno teºko
izvedljivi. V ta namen je bilo opravljenih ve£ (le deloma uspe²nih) poizkusov razvoja siste-
mov, ki bi uporabniku z enostavno uporabo in na£inom vizualnega programiranja omogo£ili
sestavo in izvajanje kompleksnih postopkov za obdelavo tekstovnih podatkov.

Doktorska disertacija obravnava ve£ odprtih vpra²anj in tehnolo²kih vrzeli tekstovnega
rudarjenja ter obdelave naravnega jezika v okviru treh glavnih smeri: (a) razvoj naprednih
infrastruktur za tekstovno rudarjenje in obdelavo naravnega jezika, (b) razvoj naprednih
delotokov za odkrivanje meddomenskih zakonitosti v podatkih, (c) razvoj naprednih de-
lotokov za pretvorbo problema relacijskega rudarjenja podatkov na problem tekstovnega
rudarjenja.

Razvili smo odprtokodno obla£no platformo TextFlows za tekstovno rudarjenje po-
datkov, ki omogo£a gradnjo in izvajanje delotokov tekstovnega rudarjenja podatkov in
obdelave naravnega jezika. Platforma hrati omogo£a tudi integracijo ter enostaven dostop
do naprednih delotokov, razvitih v okviru te doktorske disertacije. Disertacija vklju£uje
tudi pregled obstoje£ih knjiºnic in sistemov za rudarjenje tekstovnih podatkov ter povzema
njihove zmoºnosti in pomanjkljivosti. Obravnavanih je tudi ve£ novih scenarijev odkriva-
nja znanja, za katere smo razvili novo metodologijo in implementacijo, hkrati pa podamo
tudi evaluacijo na problemih tekstovnega in podatkovnega rudarjenja. Disertacija se osre-
doto£a na razvoj naprednih delotokov za obdelavo naravnega jezika, naprednih delotokov
za odkrivanje meddomenskih zakonitosti v podatkih in delotokov, ki preoblikujejo problem
relacijskega podatkovnega rudarjenja v problem tekstovnega rudarjenja. Implementacije
postopkov za re²evanje obravnavanih scenarijev so na voljo v platformi TextFlows, kar
omogo£a enostavno izmenjavo razvitih delotokov in ponovljivost eksperimentov.
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Chapter 1

Introduction

This chapter places our work into a broader context of data mining, provides the line of
reasoning for choosing the given research topic and states the contributions to science of
this thesis. First we provide an outline of the topic addressed, followed by the purpose of
the dissertation, its goals and scienti�c contributions. We conclude with a short structural
overview of the rest of the thesis.

1.1 Problem Description

Text mining [1] is a research area that deals with the construction of models and patterns
from text resources, aiming at solving tasks such as text categorization and clustering,
taxonomy construction, and sentiment analysis. This research area, also known as text
data mining or text analytics, is usually considered as a sub-�eld of data mining (DM)
research [2], but can be viewed also more generally as a multidisciplinary �eld drawing its
techniques from data mining, machine learning, natural language processing (NLP) [3], [4],
information retrieval (IR) [5], information extraction (IE) [6] and knowledge management
[7]. From a procedural point of view, text mining processes typically follow the CRISP-DM
reference process model for data mining [8], which proposes six phases when working on
a DM project: problem understanding, data understanding, data preparation, modeling,
evaluation, and deployment. Text mining can be distinguished from general data mining
by special procedures applied in the data preparation phase, where unstructured or poorly
structured text needs to be converted into organized data, structured as a table of instances
(rows) described by attributes (columns). In the modeling phase, such a table of instances
is used by the standard or slightly adapted data mining algorithms to uncover interesting
information hidden in the data. Two typical approaches are using clustering algorithms to
�nd groups of similar instances, and learning classi�ers to categorize new instances.

While text mining is a mature area of research, with numerous open source algo-
rithms and NLP software libraries available�such as LATINO1 [9], NLTK2 [10] and scikit-
learn3 [11]�text mining and NLP experiments are still di�cult to reproduce, including the
di�culty of systematic comparison of algorithms. To this end, a number of attempts have
been made to develop easy-to-use work�ow management systems, allowing users to com-
pose complex processing pipelines in a visual programming manner. These attempts are
presented in Chapter 2.

1LATINO (Link Analysis and Text Mining Toolbox) is open-source�mostly under the LGPL license�
and is available at https://github.com/LatinoLib/LATINO

2http://www.nltk.org
3http://scikit-learn.org

https://github.com/LatinoLib/LATINO
http://www.nltk.org
http://scikit-learn.org
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The thesis addresses several open questions and technology gaps in text mining (TM)
and natural language processing (NLP), following three main research directions: (a) devel-
opment of advanced TM and NLP infrastructures, (b) development of advanced work�ows
for natural language processing and bisociative knowledge discovery, and (c) development
of advanced work�ows for transforming relational data mining problems into text mining
problems. The problem description below follows these three research directions.

1.2 Purpose of the Dissertation

The purpose of this dissertation is multifold. First, we facilitate the construction and
execution of text mining and NLP work�ows by developing a web-based text mining plat-
form. The developed TextFlows platform, described in this thesis, is a new open source,
web-based text mining platform that supports the design and composition of scienti�c pro-
cedures implemented as executable work�ows. As a fork of ClowdFlows [12], TextFlows
has inherited its service-oriented architecture that allows the user to utilize arbitrary web
services as work�ow components. TextFlows is oriented towards text analytics and o�ers
a number of algorithms for text mining and natural language processing. The platform
is implemented as a cloud-based web application, aiming to overcome various de�ciencies
of similar text analytics platforms by providing novel features that should be bene�cial
to the text mining community. In contrast to existing text analytics work�ow manage-
ment systems, the developed platform is the only one with all the following properties.
It is simple (i.e. enables visual programming, is web-based and requires no installation),
enables work�ow sharing and reuse, and is open source. Moreover, the platform enables
combining work�ow components (also called `widgets') from di�erent contexts (e.g., using
clustering in relational data mining) and from di�erent software sources (e.g., building
ensemble classi�ers from di�erent libraries). To do so, it provides a uni�ed input-output
representation, which enables interoperability between widget libraries through automated
data type conversion. It uses a common text representation structure and advocates the
development of `hubs' for algorithm execution. The platform serves as an easy-to-access
integration platform for the advanced text mining and NLP approaches presented in this
thesis. Furthermore, a survey of existing libraries and work�ow management systems
for text mining is provided, outlining their abilities and de�ciencies. Moreover, the dis-
sertation addresses several novel knowledge discovery scenarios for which it proposes the
methodology and the developed reference implementations, together with their evaluation
on real-world text mining and data mining tasks. In particular, the thesis focuses on the
development of advanced work�ows for natural language processing, advanced work�ows
for bisociative knowledge discovery, and advanced work�ows for transforming relational
data mining problems into text mining problems. The thesis also provides reference im-
plementations for solving the addressed scenarios in the developed TextFlows text mining
platform, which allows for work�ow sharing and experiment repeatability.

1.3 Hypotheses and Goals

The main hypothesis of the thesis is that textual data can be e�ciently processed with a
system that implements the visual programming paradigm and utilizes computing by means
of distributed hardware and software resources to improve scalability and adaptation to
data of large proportions, which outperforms existing work�ow management systems. By
unifying functionalities of di�erent knowledge discovery platforms and adding features to
facilitate text mining joined with natural language processing, we should be able to address
novel scenarios which could not be considered within the same platform until now, such
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as comparison of stemmers and Part-of-Speech taggers from di�erent libraries, literature-
based discovery in a text mining platform, and relational data mining empowered by a
text mining inspired technique.

Another hypothesis investigated in this thesis is that by using advanced text mining
approaches we can extract the hidden and till now uncovered links and patterns across
di�erent domains of investigation. These cross-domain links, named bisociations [13], [14],
can show us, for example, a solution to a problem in one domain, which can be applied in
another domain, but was not yet explored by the experts because of their high specialization
on their own domain of expertise. Discovered bisociations may also trigger new ideas which
could lead to new discoveries in a given domain. The assumption is that bisociative links
should provide novel insights into the problem domain and one has to cross contexts in
order to �nd them.

We also investigate the hypothesis that by using text mining approaches we can de-
velop a propositionalization technique, which can be seen as a transformation of a relational
database into a corpus of text documents. The technique should transform relational data
into a single table format by constructing simple, easy to understand features, acting as
words in the transformed Bag-of-Words representation, resulting also in improved scala-
bility in order to handle large datasets.

The main goal of the dissertation is to provide a methodology and reference imple-
mentation of a cloud-based text mining and natural language processing platform, to meet
the requirements of mining ever-growing amounts of textual data. This reference platform
integrates:

• a visual programming paradigm with a graphical user interface accessible from a web
browser on a computer or mobile device,

• a framework for sharing data and work�ows and making them publicly available to
a broad audience,

• a cloud-based architecture that allows the distributed text processing on a cluster of
machines, and

• an implementation of numerous open source algorithms and available NLP software
libraries to allow for easy reproduction of text mining and NLP experiments.

The dissertation also addresses novel knowledge discovery scenario to demonstrate the
usefulness of the cloud-based text mining methodology and the practical utility of the
implemented reference platform. The goal of the dissertation is to develop methodologies
composed from several text mining and natural language processing components. These
scenarios include:

• a natural language processing use cases featuring implementations and comparisons
of methods from several knowledge discovery libraries in a uni�ed work�ow environ-
ment,

• a complex literature-based discovery scenario featuring various text mining compo-
nents (tokenization, stemming, lemmatization, document visualization, bisociative
links discovery), and

• a relational data mining scenario where a text mining inspired approach is evalu-
ated in comparison with existing propositionalization approaches on several relational
datasets.
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1.4 Scienti�c Contributions

The main scienti�c contributions of the thesis are as follows:

• A web-based text mining platform, named TextFlows, enabling advanced work�ow
construction, execution, modi�cation and sharing:

� Compared to existing text mining work�ow management systems, the developed
platform is the only one with the following three properties: simplicity (it is
web based and requires no installation), enables work�ow sharing, and is open
source.

� The platform enables combining algorithms from di�erent contexts (e.g., using
clustering in relational data mining) and from di�erent software sources (e.g.,
building ensemble classi�ers from di�erent libraries).

� Uni�ed input-output representation enables interoperability between widget li-
braries through automated data type conversion.

• Advanced bisociative literature mining techniques:

� We developed advanced bisociative knowledge discovery work�ows, including a
banded matrix approach to bisociative bridging term discovery and improved the
identi�cation of bridging terms by using synonyms and controlled dictionaries.

� Evaluation of a banded matrix approach when used as a heuristic for bisociative
cross-domain knowledge discovery.

� Application of bisociative knowledge discovery in a narrative ideation context.

• Novel propositionalization technique called wordi�cation:

� The proposed approach has the advantage of producing easy to understand hy-
potheses, using much simpler features than the comparable propositionalization
systems.

� The experimental comparison with other propositionalization techniques show-
ing that the proposed wordi�cation approach using the J48 and LibSVM clas-
si�ers performs favorably in terms of accuracy and e�ciency, compared to the
state-of-the-art propositionalization algorithms.

� It is shown that the presented approach has the capacity to solve non-standard
relational data mining tasks, such as clustering on relational databases, associ-
ation rule learning, outlier detection, etc.

� The implementation of the wordi�cation technique as a reusable, online-available
experimental work�ow (from connecting to a relational database management
server to visualizing the experimental results and evaluation), which enables
researchers to reuse the developed software in their own experiments.

The scienti�c contributions of this work were published in the following papers:

Text mining and natural language processing

M. Perov²ek, V. Podpe£an, J. Kranjc, T. Erjavec, S. Pollak, N. Q. Do Thi, X. Liu, C.
Smith, M. Cavazza, and N. Lavra£, �Text mining platform for NLP work�ow de-
sign, replication and reuse,� in Proceedings of IJCAI Workshop on Replicability and
Reusability in Natural Language Processing: From Data to Software Sharing, 2015.
[Online]. Available: https://docs.google.com/viewer?a=v&pid=sites&srcid=
ZGVmYXVsdGRvbWFpbnxhZGFwdGl2ZW5scDIwMTV8Z3g6NTU1M2Q5MmYzZTYyNTZkNQ.

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhZGFwdGl2ZW5scDIwMTV8Z3g6NTU1M2Q5MmYzZTYyNTZkNQ
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhZGFwdGl2ZW5scDIwMTV8Z3g6NTU1M2Q5MmYzZTYyNTZkNQ
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M. Perov²ek, J. Kranjc, T. Erjavec, B. Cestnik, and N. Lavra£, �TextFlows: A visual
programming platform for text mining and natural language processing,� Science of
Computer Programming: Special Issue on Knowledge-based Software Engineering, vol.
121, pp. 128�152, 2016.

Literature-based cross-domain knowledge discovery

M. Perov²ek, B. Cestnik, T. Urban£i£, S. Colton, and N. Lavra£, �Towards narrative
ideation via cross-context link discovery using banded matrices,� in Proceedings of the
12th International Conference on Intelligent Data Analysis, Springer, 2013, pp. 333�
344.

M. T. Llano, R. Hepworth, S. Colton, J. Gow, J. Charnley, N. Lavra£, M. �nidar²i£,
M. Perov²ek, M. Granroth-Wilding, and S. Clark, �Baseline methods for automated
�ctional ideation,� in Proceedings of the International Conference on Computational
Creativity, 2014, pp. 211�219.

Relational data mining

M. Perov²ek, A. Vavpeti£, and N. Lavra£, �A wordi�cation approach to relational data
mining: Early results,� in Late Breaking Papers of the 22nd International Conference
on Inductive Logic Programming, 2012, pp. 56�61. [Online]. Available: http://ceur-
ws.org/Vol-975/paper-06.pdf.

M. Perov²ek, A. Vavpeti£, B. Cestnik, and N. Lavra£, �A wordi�cation approach to re-
lational data mining,� in Proceedings of the 16th International Conference, Discovery
Science 2013, Springer, 2013, pp. 141�154.

N. Lavra£, M. Perov²ek, and A. Vavpeti£, �Propositionalization online,� in Proceedings of
the European Conference, ECML PKDD 2014, Nancy, France, Springer, 2014, pp. 456�
459.

M. Perov²ek, A. Vavpeti£, J. Kranjc, B. Cestnik, and N. Lavra£, �Wordi�cation: Propo-
sitionalization by unfolding relational data into bags of words,� Expert Systems with
Applications, vol. 42, no. 17, pp. 6442�6456, 2015.

1.5 Thesis Structure

In Chapter 1 we have already presented the grounds for this thesis by describing the main
motivation and purpose, as well as providing the hypothesis goals and giving a summary
of contributions. This section provides the overview of the thesis.

The related work to this thesis is presented in Chapter 2, where we �rst place our work
into a broad context of text mining. Afterwards, existing platforms, libraries, tools and
environments for text mining and natural language detection are evaluated.

We present the motivation for developing a new cloud-based text mining platform,
named TextFlows, in Chapter 3. Moreover, we also present the technical background and
architecture of the TextFlows platform, along with its key text mining components. The
architecture of the system is presented in detail along with speci�c data structures that
allow e�cient text mining in a work�ow environment. We also describe the concept of
work�ows, their implementation, execution and sharing, followed by presenting the widget
repository and the implemented modules of the platform. In Chapter 3 we also explain the
relationship between TextFlows and ClowdFlows, while also comparing TextFlows with
other state-of-the-art work�ow management systems along several dimensions that a�ect

http://ceur-ws.org/Vol-975/paper-06.pdf
http://ceur-ws.org/Vol-975/paper-06.pdf


6 Chapter 1. Introduction

the usefulness of each system, where we identi�ed their distinguishing features, abilities,
and de�ciencies.

Chapter 4 addresses novel natural language processing and knowledge discovery scenar-
ios which rely on the TextFlows implementation, described in Chapter 3. The main goal
of this chapter is to ultimately justify the development of a web-based, cloud-based knowl-
edge discovery platform for text mining and NLP processing. For the natural language
processing scenario we demonstrate the advanced features of the developed platform on
�ve use cases. First, we propose a document acquisition and text preprocessing work�ow,
which is also used as a part of the work�ow in the remaining four use cases. Second, we
also describe the Kenyan elections dataset [15], [16], which is the dataset used in the ex-
periments and proposed work�ows. Third, we propose a work�ow for comparing di�erent
classi�ers from di�erent libraries for a text classi�cation problem, as well as a comparison of
several stemmers/lemmatizers on the same text categorization problem. Moreover, we also
show a comparison of Part-of-Speech taggers from di�erent software libraries. Finally, we
present an approach for outlier detection on document corpora as a work�ow implemented
in TextFlows.

The literature-based cross-domain knowledge discovery scenario [14] is presented in
Chapter 5. First, we illustrate the problem of bridging term ranking followed by a brief
description of CrossBee [17]�[19]. Next, we provide an overview of the CrossBee methodol-
ogy, as well as the elementary and ensemble heuristics used in its bridging term discovery
process. We also show the implementation of the complex CrossBee methodology as a
work�ow in TextFlows, where the platform acts as the enabling technology for implement-
ing the developed cross-domain link discovery approach. Furthermore, we study a new
type of elementary heuristics for bridging term ranking, which use banded matrices to
discover structures which reveal the relations between the rows (representing documents)
and columns (representing words/terms) of a given data matrix (representing a set of doc-
uments). Moreover, we also propose an extension of the CrossBee methodology, which
incorporates background knowledge�controlled vocabularies�into the bridging term dis-
covery process. Finally, we evaluate the developed framework on multiple identi�ed textual
sources and comparing results to previously published results in order to verify the impor-
tance of the retrieved bisociations.

In Chapter 6 we address a relational data mining (RDM) and inductive logic program-
ming (ILP) scenario [20]�[23] by proposing a new methodology, called wordi�cation, for
data propositionalization [24], [25]. Wordi�cation constructs simple, easy to understand
features, acting as words in the transformed Bag-of-Words representation [1]. The main
advantages of the approach are: simple implementation, accuracy comparable to competi-
tive methods, and greater scalability, as it performs several times faster on all experimental
databases. In Chapter 6 we describe the wordi�cation methodology in detail and the im-
plementation of the evaluation procedure as an executable work�ow in the web-based text
mining platform TextFlows. The implemented work�ows include also several other ILP
and RDM algorithms as well as the utility components that were added to the platform to
enable access to these techniques to a wider research audience.

Chapter 7 concludes the thesis by presenting a summary with respect to the hypothesis
and goals presented in Chapter 1. Finally, we also present several ideas for further work.
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Chapter 2

Background and Related Work

This chapter introduces the background of this thesis and describes the related work.
First, a description of the area of text mining is provided, followed by an evaluation of
existing platforms, libraries, tools and environments for text mining and natural language
processing. Secondly, we introduce a speci�c type of information extraction task referred
to as bisociation discovery and in particular bisociative literature mining, which is the
focus of a part of this thesis. Finally, we present the area of relational data mining (RDM)
and propositionalization.

2.1 Text Mining and Natural Language Processing

Text mining [1] is the process of discovering of new, previously unknown information, by
automatically extracting information from di�erent written resources. A key element is
the linking of the extracted information together to form new facts or new hypotheses to
be explored further by more conventional means of experimentation. Text mining can be
viewed also more generally as a multidisciplinary �eld drawing its techniques from data
mining, machine learning, natural language processing (NLP) [3], [4], information retrieval
(IR) [5], information extraction (IE) [6] and knowledge management [7].

Text mining research aims at solving tasks such as text categorization and clustering,
taxonomy construction, and sentiment analysis. This research area, also known as text
data mining or text analytics, is usually considered as a sub�eld of data mining (DM)
research [2]. The di�erence between regular data mining and text mining is that in text
mining the patterns are extracted from natural language text rather than from structured
databases of facts. Databases are designed for programs to process automatically; text is
written for people to read. However, there is a �eld called natural language processing [3],
[4] which is making a lot of progress in doing small subtasks in text analysis. Natural
language processing (NLP) refers to the computer processing of natural languages, for some
purpose, regardless of the processing depth. The so-called `natural language' stands for the
languages we use in our daily life, such as English, Russian, Chinese, it is synonymous with
human language, mainly to be distinguished from formal language, including programming
languages. As it stands, natural language is the most natural and most common form of
human communication, not only in the spoken form, but also the written language is
growing exponentially in recent years, when the mobile Internet is hot with all the social
media. Compared with the formal language, natural language is much more complex, often
with omissions and ambiguity, making it di�cult to process.

From a procedural point of view, text mining processes typically follow the CRISP-DM
reference process model for data mining [8], which proposes six phases when working on
a DM project: business understanding, data understanding, data preparation, modeling,
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evaluation, and deployment. Text mining can be distinguished from general data min-
ing by special procedures applied in the data preparation phase, where unstructured or
poorly structured text needs to be converted into organized data, structured as a table
of instances (rows) described by attributes (columns). In the modeling phase, such a ta-
ble of instances can be used by the standard or slightly adapted data mining algorithms
to uncover interesting information hidden in the data. Two typical approaches are using
clustering algorithms to �nd groups of similar instances, and classi�cation rule learning
algorithms to categorize new instances.

Text mining is a mature area of research o�ering numerous open source algorithms and
NLP software libraries:

• LATINO (Link Analysis and Text Mining Toolbox) [9] is an open-source example of
such library, which is implemented mostly under the LGPL license and is publicly
available1. LATINO is a light-weight framework for building text mining applica-
tions, which consists of the core software library, several third party open source
libraries, a collection of language resources and a range of models for tokenization,
lemmatization and language detection.

• Stanford's Core NLP Suite [26] is a GPL-licensed framework of tools for processing
English, Chinese, and Spanish. It includes several tools for tokenization (splitting
of text into words), Part-of-Speech tagging, grammar parsing (identifying things like
noun and verb phrases), named entity recognition, and more.

• Natural Language Toolkit (NLTK)2 [10], is a Python based NLP library, which in-
cludes, similarly to the Stanford library, several capabilities for tokenizing, parsing,
and identifying named entities as well as many more features.

• TextBlob3 is also a Python based library for processing textual data. It is partly
based on NLTK, has a simple API and addresses several tasks such as Part-of-Speech
tagging, noun phrase extraction, sentiment analysis, classi�cation, translation, etc.

• scikit-learn4 [11] is a more general machine learning Python library, which features
various classi�cation, regression and clustering algorithms including support vector
machines, logistic regression, naive Bayes, random forests, gradient boosting, k-means
and DBSCAN. It is designed to interoperate with the Python numerical and scienti�c
libraries NumPy5 and SciPy6. Moreover, it contains several approaches for extracting
features from text, as well as document categorization and clustering.

• Apache Spark7 is a fast and general-purpose cluster computing system. It provides
high-level APIs in Java, Scala, Python and R, and an optimized engine that supports
general execution graphs. Similarly to scikit-learn it is also a general purpose data
mining library but it supports a rich set of higher-level tools for text processing and
text streaming.

• Apache Lucene8 and Solr9 are not technically targeted at solving NLP problems, but
they contain a powerful number of tools for working with text ranging from advanced

1https://github.com/LatinoLib/LATINO
2http://www.nltk.org
3https://github.com/sloria/textblob
4http://scikit-learn.org
5http://www.numpy.org
6http://www.scipy.org
7http://spark.apache.org
8http://lucene.apache.org
9http://lucene.apache.org/solr/
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http://spark.apache.org
http://lucene.apache.org
http://lucene.apache.org/solr/


2.2. Related Work�ow-Management Environments 9

string manipulation utilities to powerful and �exible tokenization libraries to blazing
fast libraries for working with �nite state automatons.

• Apache OpenNLP10 uses a di�erent underlying approach than Stanford's library: the
OpenNLP project is an Apache-licensed suite of tools to do tasks like tokenization,
Part-of-Speech tagging, parsing, and named entity recognition. While not necessarily
state of the art any more in its approach, it remains a solid choice that is easy to get
up and running.

While text mining is a mature area of research, with numerous open source algorithms
and NLP software libraries available, text mining and NLP experiments are still di�cult to
reproduce, including the di�culty of systematic comparison of algorithms. To this end, a
number of attempts have been made to develop easy-to-use work�ow management systems,
allowing users to compose complex processing pipelines in a visual programming manner.
Section 2.2 presents some of these attempts.

2.2 Related Work�ow-Management Environments

In this section we describe several text mining and natural language processing platforms,
while an extensive survey of work�ow management platforms, including general data min-
ing platforms (such as RapidMiner [27], KNIME [28], Weka [29] and Orange [30]), as well
as dedicated bioinformatic platforms (such as Tavaxy [31], Galaxy [32] and UGENE [33])
is out of the scope of this thesis.

Work�ow management systems have become a very hot topic in the last years, mostly
in the �eld of bioinformatics and other natural sciences. Lately, however, this trend has
also spread to NLP, as evidenced by recent workshops at the main NLP conferences, e.g.,
the �Workshop on Language Technology Service Platforms: Synergies, Standards, Sharing�
at the 9th Language Resources and Evaluation Conference (LREC 2014)11, the �Workshop
on Open Infrastructures and Analysis Frameworks for HLT�12 at the 25th Conference on
Computational Linguistics (COLING 2014) and the �Workshop on Replicability and Repro-
ducibility in Natural Language Processing: adaptive methods, resources and software�13

at the 24th International Joint Conference on Arti�cial Intelligence (IJCAI 2015).
The current situation with work�ow management systems for NLP is very �uid; some

well-established systems are slowly starting to be used for NLP applications, while at the
same time, new ones are being developed, speci�cally targeted to NLP. In this section we
overview some of the more important NLP-related work�ow management systems, where
each platform/project is introduced with its most salient characteristics presented.

2.2.1 Taverna

The set of tools developed by the myGrid14 team in the U.K. and used primarily for
bioinformatics and other life sciences research (having in mind experiment replication) is
currently probably the most advanced, richest and easiest to use work�ow management
(eco)system, and consists of the following main components:

• SoapLab15 [34] which provides a convenient way to generate web services for command-
line software;

10https://opennlp.apache.org
11http://lrec2014.lrec-conf.org/
12http://glicom.upf.edu/OIAF4HLT/
13https://sites.google.com/site/adaptivenlp2015
14http://www.mygrid.org.uk/
15http://soaplab.sourceforge.net/soaplab2/

https://opennlp.apache.org
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http://www.mygrid.org.uk/
http://soaplab.sourceforge.net/soaplab2/
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• Taverna16 [35] with its Work�ow editor and Server;

• BioCatalogue17 [36], a registry (for life sciences) where web services can be shared,
searched for, annotated with tags, etc.

• myExperiment18 [37], a social network for sharing, reusing and repurposing public
work�ows.

As the most important part of the myGrid o�erings, we here discuss Taverna, which
is conceived as a suite of tools used to design and execute scienti�c work�ows. It com-
bines distributed web services and/or local tools into complex analysis pipelines, which can
be executed on local desktop machines or through larger infrastructures, such as super-
computers, Grids or cloud environments, using the Taverna Server. The Server allows for
work�ow execution from web browsers, or through third-party clients; it supports WSDL19,
REST [38], GRID20 and cloud services, local and distributed command-line scripts, as well
as other types of services, such as R-Scripts21.

Taverna is connected to myExperiment and BioCatalogue, as well as to other service
registries, such as BioVeL22, the Biodiversity Virtual e-Laboratory. In addition, Taverna
o�ers an Interaction Service, which enables scientists to select parameters and data during
work�ow execution, and the Provenance suite, which records service invocations, interme-
diate and �nal work�ow results.

Taverna work�ows can be designed and executed in several ways, to serve di�erent types
of work�ow users. First, the Taverna Workbench�once downloaded to a local machine�
provides an environment for scientists to develop new work�ows and test new analysis
methods, by either developing work�ows from scratch, or by composing them from existing
work�ows. Second, work�ows can be executed directly through a Taverna Server, which is
an environment for serving �nished work�ows to a larger community of scientists. Here,
a single installation of the Server provides access to a collection of work�ows, normally
through a web interface, called the Taverna Player; in this case, no installation or in-depth
knowledge of the work�ows is required, but work�ows cannot be changed nor can new
work�ows be added to the collections.

The Taverna Workbench, as the most sophisticated means of composing work�ows,
needs to be �rst downloaded and installed on a local machine (Windows, Linux or Mac OS
X). For third-party services that require a login, Taverna allows credentials to be added
at run-time, or to be stored in a purpose-built credential manager. The Workbench allows
users to identify and combine services by dragging and dropping them onto the work�ow
design panel. The services can be from third parties (using e.g., WSDL or REST), but
contain a few local scripts for formatting data and managing service compatibility, known
as shim services. Most work�ows will need shim services as the analysis services are not
usually designed to work together and, therefore, often have incompatible input and output
formats. A work�ow can also contain nested work�ows, so work�ows can be components
of other work�ows. Nested work�ows can, for example, control retrieval of data from
asynchronous services. Here the nested work�ow is executed repeatedly until results are
available and the control links between its output and downstream services pause the
remainder of the work�ow until all preceding results are available. As the work�ow runs,

16http://www.taverna.org.uk/
17https://www.biocatalogue.org/
18http://www.myexperiment.org/
19http://wsdl2code.googlecode.com/svn/trunk/03-Literature/WSDL/wsdl.1.1..pdf
20https://www.ogf.org/documents/GFD.72.pdf
21https://www.r-project.org/
22http://www.biovel.eu/

http://www.taverna.org.uk/
https://www.biocatalogue.org/
http://www.myexperiment.org/
http://wsdl2code.googlecode.com/svn/trunk/03-Literature/WSDL/wsdl.1.1..pdf
https://www.ogf.org/documents/GFD.72.pdf
https://www.r-project.org/
http://www.biovel.eu/


2.2. Related Work�ow-Management Environments 11

the results panel shows progress through the work�ow and iterations over data, as well as
any errors if there are problems with executions.

The Taverna Server, which executes work�ows, can also be downloaded and con�gured
to run with or without login restrictions. It is written in Java, has to be installed on
Unix and uses Tomcat with, for secure mode, HTTPS and SSL host certi�cate. There are
various public installations of the Taverna Server, with the best known being the already
mentioned BioVeL portal with work�ows from the area of biodiversity.

As mentioned, Taverna is currently the most developed and advanced (open source)
work�ow management system, with a host of features and connection capabilities, including
�ne-grained access management. It is also very popular, e.g., myExperiment currently
contains over 2,000 Taverna work�ows. By far the largest part of the user community
is from the �eld of bioinformatics and other life sciences, where Taverna work�ows are
typically used in the areas of high-throughput analyses or for evidence gathering methods
involving data mining.

Given the power and versatility of Taverna and other myGrid platforms, it is surprising
that�apart from a few basic work�ows submitted by various individuals�there are few
public NLP work�ows have been so far implemented in it. In connection with biomedical
informatics, there is one published experiment in text mining [39], which has given rise
to further research and there is also one platform that makes use of the myGrid building
blocks for the purposes of NLP, which is the subject of Section 2.2.2.

2.2.2 PANACEA

In PANACEA23 [40], a FP7 project that ran 2010�2012, the objective was to automate
the stages involved in the acquisition, production, updating and maintenance of language
resources required by machine translation systems, and by other applications for processing
of natural language.

The architecture of this factory is based on deploying NLP tools as web services using
SoapLab to generate them for command-line software, this being the standard mode of
invocation for most current NLP tools. These individual services can then be combined in
the Taverna Workbench and deployed on a Taverna Server.

In the scope of PANACEA various enhancements have been made to the underlying
technology, e.g., the possibility to limit in SoapLab the amount of direct data that SOAP
messages can transfer; various bugs were also identi�ed and reported to the developers. A
common interchange format for the language resources (esp. annotated corpora) was also
de�ned [41], in the �rst instance XCES [42], because that was previously used by most
of the project partners, but in the �nal version the format moved to the more current
Linguistic Annotation Format (LAF) and Graph-based Format for Linguistic Annotations
(GrAF) developed in the scope of the ISO/TC37/SC4 technical committee [43]. Finally,
the IPR and other legal issues connected to sharing possibly proprietary tools and esp.
resources were also considered in PANACEA [44].

The concrete results of the project are made available via ELDA24, the European
Evaluations and Language resources Distribution Agency, and consist of:

• the PANACEA Registry25, currently describing 163 services (not all freely available)

• the PANACEA MyExperiment26 installation, which allows exploring work�ows, but
allows executing them only after registration.

23http://panacea-lr.eu/
24http://www.elda.org/
25http://registry.elda.org/
26http://myexperiment.elda.org/
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The actual web services mostly run on machines (SoapLab or Taverna servers) of the
project partners. It should be noted that the ELDA installation is made with an eye to
commercializing the platform.

2.2.3 Argo

Tsujii Lab at the University of Tokyo had a long tradition in combining NLP with biomed-
ical informatics. For example, they were the creators of the GENIA corpus [45], the �rst
and best known biomedical corpus annotated with linguistic information. In connection
with their work on NLP for bioinformatics a work�ow for text mining U-compare27 [46],
which includes NLP annotation services was developed. U-compare is implemented as an
independent Java application, using the Apache UIMA28 framework. This work was later
intergrated into Taverna, in the already mentioned work by [39].

Recently, a new work�ow management system has been developed on the basis of U-
compare, now in the context of the National Centre for Text Mining (NaCTeM) at the
University of Manchester, called Argo29 Argomain, [47]. Argo o�ers the usual array
of features, accessed through a browser based interface: the user can upload documents,
compose work�ows and execute them. A novelty introduced by Argo is that work�ows can
have interactive components as well, where the execution of the work�ow pauses to receive
input from the user. This is useful for work�ows which allow for manual annotation of
corpora by the user, and Argo o�ers several such work�ows. However, Argo does not seem
to have any sophisticated utilities for cataloguing available web services or work�ows, nor
a system of access permissions.

As far as its architecture goes, Argo continues to be based on UIMA, and uses REST
for communication between the components, so other services or work�ows can call Argo
de�ned web services as well. It supports import and export (deserializations and serializa-
tions) into RDF[48], which is the de-facto language of the Semantic Web. The requirement
that web services need compatible I/O formats is in Argo resolved with a powerful sys-
tem based on cascaded �nite-state transducers called Type Mapper [49], which allows for
developing needed shim services.

2.2.4 WebLicht

The European Research Infrastructure CLARIN30 aims to provide the researchers uni�ed
single sign-on access to a platform which integrates language-based resources and advanced
tools. This is to be implemented by the construction and operation of a shared distributed
infrastructure that aims at making language resources, technology and expertise available
to the humanities and social sciences research communities. CLARIN is a distributed data
infrastructure, with national sites in a number of European countries. These sites provide
access to language data repositories, to services and work�ows to work with language data,
and to expertise that enables researchers to use these resources and tools.

In the scope of national CLARIN portals, various work�ows have been developed,
with the German WebLicht31 [50] being the most advanced. While WebLicht is, in some
respects, similar to PANACEA, the focus here is not on providing web services for human
language technology research, but rather producing annotated corpora for use in linguistic

27http://u-compare.org/
28https://uima.apache.org/
29http://argo.nactem.ac.uk/
30http://www.clarin.eu/
31http://weblicht.sfs.uni-tuebingen.de/
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research. Nevertheless, the methods are similar, as on both platforms most web services
are devoted to the linguistic annotation of textual input.

WebLicht does not, as does PANACEA, use the myGrid tools and platforms but rather
developed its own infrastructure, starting from the wrappers to make the included tools
into RESTful web services, to its centralized repository, and the web editor enabling the
composition of the work�ows (or toolchains, as they are known in WebLicht, as they are
typically limited to one input and one output). As opposed to PANACEA, WebLicht does
cover all the standard linguistic annotation steps, for a number of languages, and with of-
ten several tools being available for an annotation step. The WebLicht repository includes
information about the type of inputs and outputs of individual services, which allows con-
trolling the work�ow construction process in the editor to allow connecting only tools that
have matching I/O speci�cations. For example, a Part-of-Speech tagger needs a tokenizer
to be applied to a text before it can be called. As in PANACEA, WebLicht also imposes
standards on the I/O interchange format: it uses TCF (Text Corpus Format) [51], a for-
mat similar but slimmer than ISO LAF/GrAF, but also provides conversion to LAF/GrAF.
With TCF the text and annotations are in one XML �le, but with stand-o� annotation,
with each processing step adding a layer of annotation.

The web-based WebLicht editor allows the construction of work�ows and their invoca-
tion (after a CLARIN(-DE) recognized log-in) and viewing or saving the results. WebLicht
has a dedicated viewer, which allows displaying an annotated corpus in tabular format (for
tokens and their annotations), lists (for sentences) or as a graphic (for parse trees).

While the WebLicht platform is not open source, the initiative is open to adding new
partners who are interested in contributing tools and services. This typically involves
wrapping the tools to be contributed to make them RESTful and to take care of I/O
requirements, installing this web service on a local machine and then registering them to
the WebLicht central repository. Currently, such third-party web services are provided for
the Finnish language, by the University of Helsinki, and for the Romanian language, by
their Academy of Sciences.

2.2.5 Language Grid

The Language Grid32 [52] is a multilingual Internet service platform, developed by Lan-
guage Grid Project (started in 2006) at the Japanese National Institute of Information
and Communications Technology. The Language Grid is based on the service-oriented
architecture (SOA), a web-oriented version of the pipeline architecture typically employed
by NLP tools. As other work�ow management systems it provides three main functions:
language service registration and deployment, language service search, and language ser-
vice composition and execution. Importantly, Language Grid also o�ers access to a large
number of language resources such as online dictionaries and bi-lingual corpora.

In contrast to e.g., myGrid, geared towards running and reproducing scienti�c exper-
iments, the Language Grid is much more application oriented, with a focus on enabling
communication in multilingual communities (via machine translation), the best known ex-
ample being the support of farming in rural communities in Vietnam, by enabling computer
mediated communication between Vietnamese youth and Japanese experts in agriculture.
This is also re�ected in its architecture, where the users, services and work�ows (or �com-
posite services�) are centrally administered. And while running such web services is easy
with the provided graphical interface, constructing them is more complicated: work�ows
are composed using WS-BPEL (Web Service Business Process Execution Language) as
XML �les, rather than in a dedicated web based or locally installed visual editor. Al-

32http://langrid.org/

http://langrid.org/
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though Eclipse does provide a visual BPEL editor, which can be used for this process,
work�ow construction is still more complicated than with e.g., Taverna.

The Language Grid is Open source and the �rst European node, known as Lingua-
grid33 [53] was established in Italy in 2010.

2.2.6 LAPPS Grid

The Language Grid Server also serves as the basis for the U.S. Language Application
(LAPPS) Grid project34 [54]. LAPPS is especially interesting in three aspects. First, it
uses advanced standards for data encoding and exchange, in particular the JSON-based
serialization for Linked Data (JSON-LD). The JavaScript Object Notation (JSON) is
a lightweight, text-based, language-independent data interchange format that de�nes a
small set of formatting rules for the portable representation of structured data. Because
it is based on the W3C Resource De�nition Framework (RDF), JSON-LD is simple to
map to and from other graph-based formats, in particular the already mentioned ISO
LAF/GrAF [43]. It also enables services to reference categories and de�nitions in web-
based repositories and ontologies, such as those of ISOcat35. Second, it uses the Open
Advancement approach (developed in the making of IBM's Watson [55]) for component-
and application-based evaluation, that has been successful in enabling rapid identi�cation
of frequent error categories within modules and documents, thus contributing to more ef-
fective investment of resources in both research and application assembly. The LAPPS
Grid thus envisions scenarios where it is possible for users to rapidly (re)con�gure and
automatically evaluate a (changed) pipeline on a chosen dataset and metrics. Third, work-
�ows are planned to incorporate a comprehensive model for addressing constraints on the
intellectual property used in the LAPPS Grid, making it maximally open to users ranging
from open source developers to commercial users of language services.

In this section we described several text mining and natural language processing platforms.
In summary, none of the described text analytics work�ow management systems o�ers
combination of components from di�erent contexts (e.g., using clustering in relational
data mining) and from di�erent software sources (e.g., building ensemble classi�ers from
di�erent libraries), while still maintaining a high level of simplicity, providing full-time
accessibility, enabling methodology and result sharing and reuse, and being open source.
The lack of such a platform motivated us to develop the TextFlows platform, presented
in this thesis, which is oriented towards text analytics and o�ers a number of algorithms
for text mining and natural language processing. The platform is implemented as a cloud-
based web application and aims to overcome various de�ciencies of similar text analytics
platforms, providing novel features that should be bene�cial to the text mining community.

2.3 Literature-Based Cross-Domain Knowledge Discovery

Among varieties of information that can be extracted from text, part of this thesis focuses
on a speci�c type of information extraction task referred to as bisociation discovery, and
in particular bisociative literature mining. This part of research has scienti�c grounds in
the literature on domain-crossing associations, called bisociations, introduced in Koestler's
book �The Act of Creation� [13]. According to Koestler, bisociative thinking occurs when
a problem, idea, event or situation is perceived simultaneously in two or more �matrices of

33http://www.linguagrid.org/
34http://lapps.anc.org/
35http://www.isocat.org/
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though� or domains. When two matrices of thought interact with each other, the result is
either their fusion in a novel intellectual synthesis or their confrontation in a new aesthetic
experience. He regarded many di�erent mental phenomena that are based on comparison
(such as analogies, metaphors, jokes, identi�cation, anthropomorphism, and so on) as spe-
cial cases of bisociation. More recently, this work was followed by the researchers interested
in the so-called bisociative knowledge discovery [14], where�according to Berthold�two
concepts are bisociated if there is no direct, obvious evidence linking them and if one has to
cross di�erent domains to �nd the link, where a new link must provide some novel insight
into the problem addressed.

In the area of bisociative literature mining, also called literature-based discovery (LBD),
Smalheiser and Swanson [56], [57] presented a new approach to discover unknown relations
between previously unrelated concepts. As suggested in their work, this can be done by
identifying interesting bridging terms (B-terms) appearing in two disparate literatures (sets
of documents) and bearing a potential of indirectly connecting the two concepts (described
through the two document sets) under investigation. Smalheiser and Swanson developed an
online system ARROWSMITH, which takes as input two sets of documents from disjoint
domains A and C and lists the terms that are common to A and C; the resulting bridging
terms are further investigated for their potential to generate new scienti�c hypotheses. The
major focus in literature-based discovery has been on the closed discovery process, where
both A and C have to be speci�ed in advance [58].

Inspired by this early work, literature-based discovery approaches were further devel-
oped and successfully applied to di�erent problems, such as �nding associations between
genes and diseases [59], diseases and chemicals [60], and others. Holzinger et al. [61] de-
scribe several quality-oriented web-based tools for the analysis of biomedical literature,
which include the analysis of terms (biomedical entities such as disease, drugs, genes, pro-
teins and organs) and provide concepts associated with a given term. A recent approach by
Kastrin et al. [62] is complementary to the other LBD approaches, as it uses di�erent sim-
ilarity measures (such as common neighbors, Jaccard index, and preferential attachment)
for link prediction of implicit relationships in the Semantic MEDLINE network.

Early Swanson's work has shown that databases such as PubMed can serve as a rich
source of yet hidden relations between usually unrelated topics, potentially leading to novel
insights and discoveries. By studying two separate literatures�the literature on migraine
headache and the articles on magnesium�Swanson [63] discovered �Eleven neglected con-
nections�, all of them supportive for the hypothesis that magnesium de�ciency might cause
migraine headache. Swanson's literature mining results have been later con�rmed by lab-
oratory and clinical investigations. This well-known example has become a gold standard
in the literature mining �eld and has been used as a benchmark in several studies, includ-
ing those presented in [17], [19], [58], [64]�[67]. The experimental data used to test the
cross-domain knowledge discovery methodology proposed in this work are papers from the
combined migraine-magnesium domain, studied extensively by Swanson and his followers,
as well as the combined autism-calcineurin domain pair explored in [17], [19], [66], [68].

The main challenge in literature-based discovery research is how to narrow the list
of candidate bridging terms, which act as links between the domains of interest. In the
RaJoLink methodology [69] the list of interesting terms is e�ectively �ltered according to
MeSH (Medical Subject Headings) categories; in the next step the expert checks which
terms (from the usually long list of resulting terms) seem promising. The developers of
the CrossBee system [17]�[19] explore a speci�c form of bisociation by ranking terms that
appear in documents, which represent bisociative links between concepts of di�erent do-
mains. Term ranking is based on the voting of an ensemble of heuristics. The resulting
ranked list of potential domain bridging terms enables the user to start inspecting these
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B-terms with top-ranked terms, which should result in higher probability of �nding obser-
vations that may lead to the discovery of new links between di�erent domains. Research
in literature mining, conducted by Petri£ et al. [66] and Sluban et al. [67], suggests that
bridging terms are more frequent in documents that are in some sense di�erent from the
majority of documents in a given domain. For example, in [67] it was shown that such doc-
uments, considered being outlier documents of their own domain, contain a substantially
larger amount of bridging-linking terms than the normal, non-outlier documents.

In part of the thesis we continue the development of cross-domain bisociation explo-
ration engine CrossBee [17]�[19]. CrossBee is an o�-the-shelf solution for �nding bisociative
terms bridging two domains. The CrossBee web application is built on top of the CrossBee
library created in previous work of Jur²i£ et al. [17], [70]. The CrossBee human-computer
interaction (HCI) functionality includes the following facilities: (a) Performance evalua-
tion that can be used to measure the quality of results, e.g., through plotting ROC curves
when the actual bridging terms are known in advance. (b) Marking of high-ranked terms
by emphasizing them, thus making them easier to spot throughout the application. (c)
B-term emphasis can be used to mark the terms prede�ned as B-terms by the user. (d)
Domain separation colors all the documents from the same domain with the same color,
making an obvious distinction between the documents from the two domains. (e) User
interface customization enables the user to decrease or increase the intensity of the follow-
ing features: high-ranked term emphasis, B-term emphasis and domain separation; this
facility was introduced to enable the user to set the intensity of these features, given that
in cooperation with the experts we discovered that some of them like the emphasizing
features while others do not.

In summary, infrastructures and work�ows that could e�ectively support bisociative
knowledge discovery are still immature and this thesis aims at bridging this scienti�c
gap through advanced text analytics work�ow development including the use of shared
vocabularies in text processing.

2.4 Relational Data Mining and Propositionalization

Inductive Logic Programming (ILP) and Relational Data Mining (RDM) algorithms are
characterized by the ability to use background knowledge in learning relational models or
patterns [20]�[23], as by taking into account additional relations among the data objects
the performance of data mining algorithms can be signi�cantly improved.

Propositionalization [24], [25] is an approach to ILP and RDM, which o�ers a way to
transform a relational database into a propositional single-table format. In contrast to
methods that directly induce relational patterns or models, such as Aleph [71] and Pro-
gol [72], propositionalization algorithms transform a relational problem into a form which
can be solved by standard machine learning or data mining algorithms. Consequently,
learning with propositionalization techniques is divided into two self-contained phases:
(1) relational data transformation into a single-table data format and (2) selecting and
applying a propositional learner on the transformed data table. As an advantage, propo-
sitionalization is not limited to speci�c data mining tasks such as classi�cation, which is
usually the case with ILP and RDM methods that directly induce models from relational
data.

The transformation to a single-table format can be achieved for the so-called individual-
centered relational databases [73], i.e. databases that have a clear notion of an individual.
For example, the East-West trains challenge [74], where the task is to classify the trains
as East-bound or West-bound, is a well-known domain in which individuals are clearly
identi�ed: each train is a single individual related with one or more cars that have di�erent
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characteristics.
Most of the related work involves propositionalization through �rst-order feature con-

struction [24], [25], [75], [76], where the algorithms construct complex �rst-order features,
which then act as binary attributes in the new propositional representation of examples.
One of the �rst propositionalization algorithms, LINUS [24], generates features that do
not allow recursion and newly introduced variables. An improvement of LINUS, named
SINUS [77], incorporates more advanced feature construction techniques inspired by fea-
ture construction implemented in 1BC [73]. RSD [75] is a relational subgroup discovery
algorithm composed of two main steps: the propositionalization step and the subgroup
discovery step, where the output of the propositionalization step can be used as input to
other propositional learners. RSD e�ectively produces an exhaustive list of �rst-order fea-
tures that comply with the user-de�ned mode constraints, similar to those of Progol [72]
and Aleph [71]. Furthermore, RSD features satisfy the connectivity requirement, which
imposes that no constructed feature can be decomposed into a conjunction of two or more
features.

RELAGGS [78], which stands for relational aggregation, is a propositionalization ap-
proach, which uses the input relational database schema as a basis for a declarative bias
and aims to use optimization techniques usually used in relational databases (e.g., in-
dexes). Furthermore, the approach employs aggregation functions in order to summarize
non-target relations with respect to the individuals in the target table.

An early experimental comparison of propositionalization techniques was reported
in [79], where RSD, SINUS and RELAGGS algorithms were compared.

Other means of propositionalization include stochastic propositionalization [25], which
employs a search strategy similar to random mutation hill-climbing: the algorithm iterates
over generations of individuals, which are added and removed with a probability propor-
tional to the �tness of individuals, where the �tness function used is based on the Minimum
Description Length (MDL) principle.

Safarii36 is a commercial multi-relation data mining tool. Safarii, which is extensively
described in [80], o�ers a unique pattern language that merges ILP-style structural de-
scriptions as well as aggregations. Furthermore, Safarii comes with a tool called ProSafarii,
which o�ers several preprocessing utilities, including propositionalization via aggregation.

Ceci et al. [81] investigate spatial classi�cation which uses a propositionalization ap-
proach which constructs features using spatial association rules to produce an attribute-
value representation. They compare the approach to a structural approach using an ex-
tended Naive Bayes classi�er. They report an advantage of the structural alternative in
terms of accuracy, while the propositional approach performs faster. Ceci et al. [82] present
two emerging patterns based classi�ers that work in the multi-relational setting: one uses a
heuristic evaluation function to classify objects, while the other is based on a probabilistic
evaluation. The main result of the study is that both approaches perform better than
associative classi�cation to which they were compared.

Kuºelka and �elezný developed RelF [76], which constructs a set of tree-like relational
features by combining smaller conjunctive blocks. The novelty is that RelF preserves the
monotonicity of feature reducibility and redundancy (instead of the typical monotonicity
of frequency), which allows the algorithm to scale far better than other state-of-the-art
propositionalization algorithms.

An approach that is related to propositionalization is presented in [83]. The authors
propose a strategy of multi-relational learning where they neither upgrade a propositional
learner to work with multiple relations or propositionalize the relations. Instead, their
approach learns from multiple views (feature sets) of a RDB and then integrates the in-

36http://www.kiminkii.com/safarii.html

http://www.kiminkii.com/safarii.html
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dividual view learners to construct a �nal model. Their approach exhibits comparable
classi�cation accuracies compared to related approaches, and a faster runtime.

Recently, a propositionalization technique called Bottom Clause Propositionalization
(BCP) was introduced in [84]. It was integrated with C-IL2P [85]; the combined system,
named CILP++, achieves accuracy comparable to Aleph, while being faster. Compared
to RSD, BCP is better in terms of accuracy when using a neural network and similar when
using C4.5.

None of the described approaches studies the means of combining relational data mining
and text mining, which is the approach proposed in this thesis. Moreover, infrastructures
and work�ows that would e�ectively support such transformations do not exist and this
thesis aims at bridging this scienti�c gap.
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Chapter 3

TextFlows: A Cloud-Based Text

Mining Platform

This chapter presents TextFlows, a web-based text mining and natural language processing
platform supporting work�ow construction, sharing and execution. The platform enables
visual construction of text mining work�ows through a web browser, and the execution
of the constructed work�ows on a processing cloud. This makes TextFlows an adaptable
infrastructure for the construction and sharing of text processing work�ows, which can be
reused in various applications.

The chapter is structured as follows. The motivation for developing a new web-based
text mining platform TextFlows is presented in Section 3.1. In Section 3.2 we present the
technical background and architecture of the TextFlows platform, along with its key text
mining components. The architecture of the system is presented in detail along with speci�c
data structures that allow e�cient text mining in a work�ow environment. The concept of
work�ows, their implementation, execution and sharing are presented in Section 3.3, while
Section 3.4 describes the widget repository and the implemented modules of the platform.
In Section 3.5 we compare TextFlows with other state-of-the-art work�ow management
systems along several dimensions that a�ect the usefulness of each system, while Section 3.6
explains the relationship between TextFlows and ClowdFlows.

3.1 Motivation for a Cloud-Based Text Mining Platform

The TextFlows platform described in this chapter is a new open source, web-based text
mining platform that supports the design and composition of scienti�c procedures imple-
mented as executable work�ows. As a fork of ClowdFlows [12], TextFlows has inherited
its service-oriented architecture that allows the user to utilize arbitrary web services as
work�ow components. TextFlows is oriented towards text analytics and o�ers a number
of algorithms for text mining and natural language processing. The platform is imple-
mented as a cloud-based web application and attempts to overcome various de�ciencies
of similar text analytics platforms, providing novel features that should be bene�cial to
the text mining community. In contrast to existing text analytics work�ow management
systems, the developed platform is the only one with all the following properties. It is sim-
ple (i.e. enables visual programming, is web-based and requires no installation), enables
work�ow sharing and reuse, and is open source. Moreover, the platform enables combining
work�ow components (called �widgets�) from di�erent contexts (e.g., using clustering in
relational data mining) and from di�erent software sources (e.g., building ensemble classi-
�ers from di�erent libraries). To do so, it provides a uni�ed input-output representation,
which enables interoperability between widget libraries through automated data type con-
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version. It uses a common text representation structure and advocates the usage of `hubs'
for algorithm execution.

The TextFlows platform is publicly available at http://textflows.org, while its
source code is available at https://github.com/xflows/textflows under the MIT Li-
cense. Detailed installation instructions are provided with the source code. After setting
up a local TextFlows instance, advanced users can also implement and test their own al-
gorithms. Improvements to the code can also be pushed to the main Git code repository
via pull requests. The committed changes are reviewed by the TextFlows core team and
merged into the master branch.

TextFlows is a web application which can be accessed and controlled from anywhere
while the processing is performed in a cloud of computing nodes. TextFlows di�ers from
most comparable text mining platforms in that it resides on a server (or cluster of machines)
while its graphical user interface for work�ow construction is served as a web application
through a web browser. The distinguishing feature is the ease of sharing and publicizing
the constructed work�ows, together with an ever growing roster of reusable work�ow com-
ponents and entire work�ows. As not only widgets and work�ows, but also data and results
can be made public by the author, TextFlows can serve as an easy-to-access integration
platform both for various text mining work�ows but also for experiment replicability. Each
public work�ow is assigned a unique URL that can be accessed by anyone to either repeat
the experiment, or to use the work�ow as a template to design another, similar, work�ow.

Work�ow components (widgets) in TextFlows are organized into packages, which al-
lows for easier distributed development. The TextFlows packages implement several text
mining algorithms from LATINO1 [9], NLTK2 [10] and scikit-learn3 [11] libraries. More-
over, TextFlows is easily extensible by adding new packages and work�ow components.
Work�ow components of several types allow graphical user interaction during run-time
and visualization of results by implementing views in JavaScript, HTML or any other
format that can be rendered in a web browser (e.g., Flash, Java Applet).

3.2 Platform Architecture and Components

This section presents the TextFlows platform, together with its architecture and main
components of the system, as well as introduces the graphical user interface. Like its
predecessor data mining platform ClowdFlows [12], TextFlows can also be accessed and
controlled from a web browser, while the main processing is performed on a cloud of
computing nodes.

3.2.1 Platform Architecture

In software engineering, terms front-end and back-end are used to distinguish the separation
between a presentation layer (the client side) and a data access layer (the server side),
respectively. Figure 3.1 shows the TextFlows architecture, which is logically separated into
the front-end (in pink) and the back-end (in blue). The back-end comprises a relational
database for storing work�ows, workers for task execution and a broker for delegating
tasks from di�erent queues to workers which can reside on di�erent clusters of machines.
The front-end is designed for user interaction with work�ows through the graphical user
interface in a web browser.

1LATINO (Link Analysis and Text Mining Toolbox) is open-source�mostly under the LGPL license�
and is available at https://github.com/LatinoLib/LATINO

2http://www.nltk.org
3http://scikit-learn.org

http://textflows.org
https://github.com/xflows/textflows
https://github.com/LatinoLib/LATINO
http://www.nltk.org
http://scikit-learn.org
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Figure 3.1: An overview of the TextFlows architecture, separated into the front-end (in
pink) and the back-end (in blue).

The back-end of the TextFlows platform uses Django4, a Python-based open source
high-level web framework. Django follows the model�view�controller architectural de-
sign, which encourages rapid development, and includes an object-relational mapper and
a template engine for e�cient code generation. The object-relational mapper provides an
interface which links objects to a database. This provides support for several database
systems, such as PostgreSQL, MySQL, SQLite and Oracle. PostgreSQL is used in the
public installation of TextFlows.

Without additional extensions Django is synchronous, sometimes also described as
blocking. This means that a HTTP request will not be returned until all processing is com-
plete. Though this is the expected behavior usually required in web applications, in the case
of TextFlows we need tasks to run in the background without blocking. Furthermore, di�er-
ent system environment requirements of implemented libraries dictate that the TextFlows
platform must be distributed across multiple machines (e.g., the LATINO library uses
the .Net framework and performs best on Windows operating systems). TextFlows task
queues are used as a mechanism to distribute work across threads and machines. This is
performed via Celery5, which is a task queue system based on distributed message pass-
ing. Celery is focused on real-time operation, but supports scheduling as well. Dedicated
worker processes monitor task queues for new work to perform and active workers execute
di�erent tasks concurrently on multiple servers. Tasks can be executed asynchronously
(in the background) or synchronously (wait until ready). A Celery system can consist of
multiple workers and brokers, thus supporting high availability and horizontal scaling.

Celery communicates via messages and uses a message broker to mediate between clients
and workers. To initiate a task, a client adds a message to the queue, which the broker

4https://www.djangoproject.com
5http://www.celeryproject.org

https://www.djangoproject.com
http://www.celeryproject.org
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then delivers to a worker. The system used as a broker in TextFlows is RabbitMQ6, a
complete and highly reliable enterprise messaging system based on the Advanced Message
Queuing Protocol (AMQP). It o�ers not only exceptionally high reliability, but also high
availability and scalability, which is vital for the TextFlows platform.

TextFlows uses the PySimpleSoap library7 for integrations of web services as work�ow
components. PySimpleSoap is a lightweight Python library which provides an interface for
client and server web service communication. Using PySimpleSoap we cannot only import
WSDL web services as work�ow components, but also expose entire work�ows as WSDL
web services.

The client side of the TextFlows platform consists of operations that involve user in-
teraction primarily through the graphical user interface (GUI) in a modern web browser.
The graphical user interface is implemented in HTML and JavaScript, with an extensive
use of the jQuery library8. The jQuery library was designed to simplify client-side script-
ing and is the most popular JavaScript library in use today9. On top of jQuery we use
the interaction library jQuery-UI10, which is a collection of GUI modules, animated visual
e�ects, and themes. This library supports the option to make elements in the graphical
user interface draggable, droppable, and selectable, which are the features supported by
the TextFlows work�ow canvas (cf. Section 3.3).

3.2.2 Key Text Mining Concepts in TextFlows

The key concepts used in text mining and natural language processing are a document
collection (or corpus), a single document (or text), and document features (or annota-
tions) [1]. The following sections describe the model of corpora, documents and annotations
in TextFlows. When designing TextFlows, emphasis was given to common representations
that are passed among the majority of widgets: each TextFlows document collection is
represented by an instance of the AnnotatedDocumentCorpus (ADC) class, a single doc-
ument is an instance of the AnnotatedDocument class, while the features are instances of
the Annotation class.

Annotated Corpus

A document collection is any grouping of text documents that can be used in text analyt-
ics. Even though the size of a collection may vary from a few to millions of documents,
from the text analysis perspective, more is better. In TextFlows, the Python class that
represents a corpus of documents is called AnnotatedDocumentCorpus (ADC). Every ADC
instance contains not only a collection of documents which are part of this corpus but also
the features that provide additional information about the corpus (e.g., authors, date of
collection, facts and notes about the dataset, etc.). The features are stored in a simple
key-value Python dictionary, where keys are strings and the values can store any Python
object.

Annotated Document

In TextFlows a single textual data unit within a collection�a document�is represented
by the class AnnotatedDocument. An AnnotatedDocument object contains the text of the
entire document, which may vary in size, e.g., from a single sentence to a whole book.

6http://www.rabbitmq.com
7https://code.google.com/p/pysimplesoap/
8http://jquery.com
9http://w3techs.com/technologies/overview/javascript_library/all

10http://jqueryui.com

http://www.rabbitmq.com
https://code.google.com/p/pysimplesoap/
http://jquery.com
http://w3techs.com/technologies/overview/javascript_library/all
http://jqueryui.com
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Similarly to AnnotatedDocumentCorpus, AnnotatedDocument instances in TextFlows
also contain features which may provide information about a single document (e.g., author,
date of publication, document length, assigned keywords, etc.).

Annotation

In TextFlows Annotation instances are used to mark parts of the document, e.g., words,
sentences or terms. Every Annotation instance has two pointers: one to the start and
another to the end of the annotation span in the document text. These pointers are repre-
sented as the character o�set from the beginning of the document. Annotation instances
also have a type attribute, which is assigned by the user and is used for grouping annota-
tions of similar nature. As described in detail in Section 3.4, annotations can also contain
key-value dictionaries of features, which are used by various taggers to annotate parts of
document with a speci�c tag, e.g., annotations of type �token� that have a feature named
�StopWord� with value �true�, represent stop words in the document.

3.3 The Concept of Work�ows

The work�ow model in the TextFlows platform consists of an abstract representation of
work�ows and work�ow components. A work�ow is an executable graphical representation
of a complex procedure. The graphical user interface (GUI) used for constructing work�ows
follows a visual programming paradigm which simpli�es the representation of complex
procedures into a spatial arrangement of building blocks. The most basic unit component
in a TextFlows work�ow is a processing component, which is represented as a widget in the
graphical representation. Considering its inputs and parameters, every such component
performs a task and outputs the results. Di�erent processing components are linked via
connections through which data are transferred from a widget's output to another widget's
input. Additional inputs for a widget are its parameters, which the user enters into the
widget text �elds. The graphical user interface implements an easy-to-use way of arranging
widgets on a canvas to form a graphical representation of a complex procedure.

The TextFlows graphical user interface, illustrated in Figure 3.2, consists of a widget
repository and a work�ow canvas. The widget repository is a set of widgets ordered in a
hierarchy of categories. Upon clicking on a widget in the repository, the widget is added as
a building block to the work�ow canvas. While hovering over a widget its documentation is
shown in as a tooltip. Connections between widgets can be added by clicking on an output
of a widget and then on an input of another widget. The work�ow canvas implements
moving, connecting, and issuing commands to execute or delete widgets. Every action on
the work�ows canvas causes an asynchronous HTTP POST request to be sent to the server.
After the requested operation is validated on the server, a success or error message with
additional information is passed to the user interface. An example of such a validation is
checking for cycles in the work�ows when connecting widgets.

3.3.1 Work�ow Execution Engine

The work�ow execution engine is responsible for executing the work�ow widgets in the
prede�ned order. Two such engines are integrated into the TextFlows platform: a server-
side implementation in Python and a client-side implementation in JavaScript. Sub-parts
of work�ows in subprocesses and loops are executed by the server-side Python implemen-
tation, while the top-level work�ow is executed from the user interface (when the user
actually needs to see the order of the executed widgets in real time) are processed by the
client-side JavaScript implementation. The former shows results only after their complete
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Figure 3.2: A screenshot of the TextFlows GUI opened in Google Chrome. On the top
there is a toolbar for saving, deleting entire work�ows. On the left is the widget repository
giving a list of available widgets grouped by their functionality. By clicking on a widget in
the repository it is added to the work�ow construction canvas which is on the right. The
console for displaying success and error message is located on the bottom of the interface.

execution, while the latter allows showing results of the execution in real time. With the
Python implementation the server receives only one HTTP request for the entire part of
the work�ow, therefore multiprocessing had to be implemented manually. On the other
hand, when the widget execution order is regulated with the JavaScript engine, it perpet-
ually checks for executable widgets and processes them. Executable widgets are widgets,
which either have no predecessors or their predecessors have already been successfully exe-
cuted. Whenever two or more independent widgets can be executed at the same time they
are asynchronously executed in parallel. Each widget is executed on the server through a
separate asynchronous HTTP request. Every request is handled by the server separately
and executes a single widget. When a widget is prepared to be executed, a task is added
to a relevant task queue; as some widgets have special library requirements or even system
requirement they are executed in a separated task queue with its dedicated workers. Celery
communicates via messages and uses a message broker to �nd a suitable worker to which
the task is delivered to. Dedicated worker processes monitor task queues for new work to
perform. When the task is executed its result is saved into the database and returned to
the client. The execution of a work�ow is considered complete when there are no more
executable or running widgets in the work�ow.

3.3.2 Work�ow Sharing

Work�ows in TextFlows are processed and stored on remote servers from where they can be
accessed from anywhere, requiring only an Internet connection. By default each work�ow
can only be accessed by its author, although (s)he may also choose to make it publicly
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available. The TextFlows platform generates a speci�c URL for each work�ow that has
been saved as public. Users can then simply share their work�ows by publishing the URL.
Whenever a public work�ow is accessed by another user, a copy of the work�ow is created
on the �y and added to their private work�ow repository. The work�ow is copied with all
the relevant data to ensure that the experiments can be repeated. In this way, the users
are able to tailor the work�ow to their needs without modifying the original work�ow.

3.4 The Widget Repository

This section presents the TextFlows widget repository. First we describe di�erent types
of widgets, followed by the presentation of widgets based on their functionality as they
appear in the TextFlows widget repository.

Widgets in TextFlows are separated into four groups based on their type:

• Regular widgets perform speci�c tasks that transform the data from their inputs and
parameters to data on their outputs, and provide success or error messages to the
system. In the back-end such widgets are represented as Python functions, which
receive (on every widget execution) a Python dictionary of inputs and parameters as
widget arguments, perform a speci�c task and return a dictionary of outputs. The
function is called each time the widget is executed. Widgets that implement complex
long-running procedures can also display a progress bar, which shows the progress to
the user in real time.

• Visualization widgets are extended versions of regular widgets as they also provide
the ability to render an HTML template with JavaScript to the client's browser,
which is useful for data visualizations and presentation of a more detailed feedback
to the user. Visualization widgets di�er from regular widgets by a secondary Python
function which controls the rendering of the template. This function is only invoked
when the widget is executed using the JavaScript execution engine, i.e. when it is
not part of a subprocess.

• Interactive widgets are extensions of regular widgets as they pop-up an additional
window during execution through which the user can interact with or manipulate
the data (an example of an interactive widget is shown in Figure 4.12). The entire
procedure is implemented using three Python functions. The �rst function receives
the widget's inputs and initialization parameters as its arguments and prepares the
data for the second function. The second function renders (using an HTML template)
a pop-up window that prompts the user to manipulate the data. The �nal function
uses the user inputs, as well as the widget's inputs and parameters to produce the
�nal output of the widget.

• Work�ow control widgets provide additional work�ow controls which allow the user
to combine di�erent work�ow components into subprocesses, and provide di�erent
types of iterations through data (e.g., iteration through a list of classi�ers, applying
a classi�er to all folds in cross-validation, etc.). This group of widgets consists of:
Subprocess, Input, Output, For Input, For Output, Cross Validation Input and Cross
Validation Output widgets. Whenever a Subprocess widget is added to a work�ow,
an initially empty work�ow with no inputs and outputs is created. Then, when an
Input or Output widget is attached to a subprocess work�ow, an input or output
is automatically added to the subprocess widget itself. This way Work�ows can be
inde�nitely nested.
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Two additional variations of the input and output widgets exist in TextFlows. When
a subprocess contains the For Input and For Output widgets, the work�ow execution
engine will emulate a for loop by attempting to break down the object on the input
and executing the subprocess work�ow once on every iteration. Using these controls
a subprocess can be iteratively executed on a list. Similarly, if the user opts to use
the Cross Validation Input and Cross Validation Output widgets, the input data will
be divided into the training and test dataset according to the selected number of
folds; if the input data is labeled, strati�ed cross-validation [86] is performed.

The widget repository shows the hierarchy of all the widgets currently available in the
TextFlows platform, grouped by their functionality. There are four top-level categories:

• Text mining widgets: a collection of implemented text mining widgets; these widgets
are further divided based on their text mining functionality.

• Basic widgets: widgets that are responsible for creating and manipulating simple
objects such as strings and integers.

• Subprocess widgets: a collection of work�ow control widgets, which are required for
visual programming of complex procedures.

• WSDL imports: work�ow components representing the WSDL web services that the
user has imported.

In the following sections we present in more detail the text mining widgets based on
their functionality in the order of appearance in the TextFlows widget repository.

3.4.1 Corpus and Vocabulary Acquisition

Document acquisition (import) is usually the �rst step of every task, where TextFlows
employs various widgets to enable loading document corpora, labeling of documents with
domain labels and converting them into the AnnotatedDocumentCorpus structure. We
identi�ed the following text document acquisition scenarios, which are also supported by
the developed widgets:

• Loading locally stored �les in various application dependent formats. In TextFlows
document corpora can be uploaded from local �les using the Load Document Corpus
interactive widget. The entire dataset can be either a single text �le (.doc, .docx,
.pdf �le formats are supported), where each line represents a separate document, or a
zip of �les in which a document is represented as a �le. Apart from text, the �les may
optionally contain document titles, as well as multiple labels, which are encoded by
the �rst word within a document pre�xed by an exclamation mark, e.g., �!positive�
is used to denote that the document belongs to the �positive� document category.

• Acquiring documents using the WSDL+SOAP web services. The user can integrate
third-party web services as work�ow components using the Import webservice button
obtained from the bottom of the widget repository. Such integration allows for the
inclusion of database web services into the work�ow (e.g., PubMed o�ers a SOAP
web service interface to access their database). TextFlows currently supports WSDL
as the interface de�nition language for describing connections and requests to the
web service and SOAP as the format for sending and receiving messages. The out-
put of the imported web service widget can be connected to the Load Document
Corpus widget that transforms the plain text input documents into the Annotated-
DocumentCorpus structure.
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• Selecting documents from SQL databases. The TextFlows platform supports loading
data from MySQL databases via the Load Document Corpus from MySQL widget.
Before execution the user enters the information which is required to connect to
a database (e.g., user credentials, database address, database name, table name,
column names, etc.) in order to retrieve the data from a MySQL database server.
This widget then connects to the speci�ed MySQL database server and returns the
input columns representing document titles, texts and labels from the selected table.
The �nal output of the widget is an automatically constructed Annotated Document
Corpus object.

• Crawling the Internet for gathering documents from web pages. The Crawl URL links
widget receives as an input a list of URLs, e.g., Wikipedia pages. First, every page
is visited by an automatic crawler in order to gather the website's (HTML) content.
Next, the Boilerpipe library [87] is used to extract the linguistically relevant textual
content from the web page source. There are several content extraction methods
available which can be selected by the user from the widget's properties. Finally, the
Crawl URL links outputs the Annotated Document Corpus where document titles
are represented with URLs and the extracted website texts become the document
texts.

• Collecting documents from snippets returned from web search engines. In TextFlows
the user can search the web using the Search with Bing and Search with Faroo widgets,
which use the Microsoft Bing11 and Faroo12 as their web search engines, respectively.
Both widgets require the user to enter the search query as well as the number of
search results that the widget should return. The output of both widgets is a list of
URLs which are returned by the web search engine. After the execution the output
can be connected to the Crawl URL links widget which will extract the web content
for every URL.

The most straightforward technique to incorporate background knowledge about the
documents and their domain is to use a controlled vocabulary. A controlled vocabulary
is a lexicon of all terms that are relevant for a given domain. TextFlows allows the users
not only to upload their own local vocabulary �les, but also gives them the possibility to
use one of the implemented vocabulary construction tools, such as the MeSH �lter widget,
which constructs a vocabulary containing all the terms that belong to the user selected
descriptors from the MeSH hierarchy13.

3.4.2 Corpus Manipulation and Visualization

TextFlows implements widgets that allow the manipulation of AnnotatedDocumentCorpus
(ADC) data objects. They allow the user to add new features, extract existing features
from a document corpus, split document corpora (by either specifying conditions or by
indices), merge di�erent corpora, etc.

A special widget in the platform is Document Corpus Viewer, which visualizes the
ADC data objects (note that TextFlows emphasizes the importance of the common ADC
representation which is passed among the majority of widgets). As shown in Figure 3.3,
the Document Corpus Viewer interactive widget allows the user to check the results of

11http://www.bing.com/
12http://www.faroo.com/
13MeSH (Medical Subject Headings) is a controlled vocabulary thesaurus used for indexing articles in

PubMed, a database designed by The National Library of Medicine. The MeSH database is available
online http://www.nlm.nih.gov/mesh

http://www.bing.com/
http://www.faroo.com/
http://www.nlm.nih.gov/mesh
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Figure 3.3: Document Corpus Viewer widget visualizes the AnnotatedDocumentCorpus
data objects. This �gure shows the document exploration page which displays a detailed
view for a selected document. On the left side a list of applied tokenizations is shown, while
on the right the document's full text is displayed. When the user selects a tokenization
from the list, the tokens are highlighted directly on the text of the document with an
alternative background color. As shown in the �gure, annotation features are shown by
hovering over a token.

individual widgets by visualizing the ADC data object from their outputs. Through its
interactive interface the widget allows the user to select an individual document from the
list of document snippets by simply clicking on it. This opens a new page with a detailed
view of the selected document, as shown in Figure 3.3.

3.4.3 Text Preprocessing Widgets

Preprocessing is a very important part of any form of knowledge extraction from text
documents. Its main task is the transformation of unstructured data from text documents
into a prede�ned well-structured data representation. In general, the task of preprocessing
is to construct a set of relevant features from text documents. The set of all features
selected for a given document collection is called a representational model [1], [88], [89].
Each document is represented by a vector of numerical values, one for each feature of the
selected representational model. Using this construction, we get the most standard text
mining document representation, called feature vectors, where each numeric component
of a vector is related to a feature and represents a weight related to the importance of
the feature in the selected document. Typically, such text-based feature vectors are very
sparse, as the majority of weights are equal to zero [1]. The goal of text preprocessing
widgets is to extract a high quality feature vector for every document in a given document
corpus.

Technically, our implementation employs the LATINO (Link Analysis and Text Mining
Toolbox) software library [9], NLTK (Natural Language Toolkit) library [10] and scikit-
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learn library [11] for the text preprocessing needs. Together they contain the majority of
elementary text preprocessing procedures as well as a large number of advanced procedures
that support the conversion of a document corpus into a table of instances, thus converting
every document into a table row representation of an instance.

In the TextFlows widget repository preprocessing techniques are based on standard text
mining concepts [1] and are implemented as separate categories. Every category possesses
a unique hub widget, which has the task of applying a given preprocessing technique from
its category to the AnnotatedDocumentCorpus data object. Every such widget is library
independent, meaning that it can execute objects from either LATINO, NTLK or scikit-
learn libraries.

A standard collection of preprocessing techniques is listed below, together with sets of
functionalities implemented in our platform:

• Tokenization. In tokenization, meaningful tokens are identi�ed in the character
stream of the document, such as words or terms. TextFlows o�ers a large set of
tokenizers: from LATINO, such as Max Entropy Tokenizer (word and sentence),
Unicode, Simple and Regex tokenizers; various tokenizers from the NLTK library,
from simpler ones, such as Line, Regex, S-Expression, Simple, to more complex ones,
like Stanford Tokenizer and Treebank Word Tokenizer. Every tokenizer can be ap-
plied on a document corpus using the Tokenizer Hub widget. This hub receives as
an input an ADC data object and a tokenizer instance, as well as two parameters
entered by the user: the type of annotations to be tokenized (e.g., �TextBlock�) and
the type of annotations to be produced (e.g., �Sentence�, �Token�). The Tokenizer
Hub �nds annotations of the input type and tokenizes them using the input tokenizer.
The output of the hub is a new ADC object, which now contains the annotations
of the new type. As described in the previous section, the results of any corpus
tokenization can be visualized using the Display Document Corpus widget, as shown
in Figure 3.3.

• Stop word removal. Stop words are prede�ned words from a language that do not
carry relevant semantic information (e.g., articles, prepositions, conjunctions, etc.);
the usual practice is to ignore them when building a feature set. In TextFlows
we have three widgets which are used for stop word tagging: Get StopWord Set
(outputs a prede�ned list of stop words for the user selected language�stop word
lists for 18 languages, taken from Snowball14, are included in our library), StopWords
Tagger (receives as an input a list of stop words and outputs a constructed tagger
object, which tags the words from the input list as stopwords), StopWord Tagger Hub
(responsible for applying a stop word tagger on a document corpus). Similarly to the
Tokenization Hub, the Stop Word Tagger Hub receives on its inputs an ADC data
object and a stop word tagger instance. The user is able to enter two parameters:
the type of annotations to be tagged (as a stop word) and a feature name, which
is added (with a default value of `true') to every annotation of the selected type,
which the tagger marks as a stop word. The output of the hub is a new ADC object.
Figure 3.3 shows the visualization of a selected document from the output ADC
data object using the Display Document Corpus widget. The stop word annotation
features are shown by hovering over the documents tokens.

• Part-of-Speech tagging. Tagging annotates words with the appropriate Part-of-Speech
(PoS) tags based on the context in which they appear. The TextFlows platform

14Snowball: A small string processing language designed for creating stemming algorithms: http://

snowball.tartarus.org/

http://snowball.tartarus.org/
http://snowball.tartarus.org/


30 Chapter 3. TextFlows: A Cloud-Based Text Mining Platform

includes the LATINO's Max Entropy PoS Tagger and from NLTK the following
taggers: A�x PoS Tagger (learns only on term a�xes), Brill's rule-based PoS Tagger
[90], Classi�er-based PoS Tagger (requires a classi�er and a pre-annotated dataset to
learn the PoS tags) and a PoS N-gram tagger (learns on a pre-annotated dataset the
most frequent tag for every n-gram). PoS tags are applied to ADC data using the
PoS Tagger Hub. The PoS Tagger Hub requires, besides the usual element annotation
type (default: �Token�) and the PoS feature name (default: �PoS Tag�), an additional
parameter input by the user: a sentence annotation type (default: �Sentence�). The
hub tags element annotations in the context of sentence annotations by assigning
them new features with values returned by the PoS tagger. Figure 3.3 visualizes a
selected document from the output ADC data object using the Display Document
Corpus widget. The generated PoS tag features are shown when hovering over the
document's tokens.

• Stemming and lemmatization. This is the process of converting words/tokens into
their stem or citation forms. The following stemmers/lemmatizers were taken from
the LATINO library: Stem Tagger Snowball and the Lemma Tagger LemmaGen
[91]. We have also implemented the following widgets which represent the corre-
sponding algorithms from the NLTK library: Porter Stemmer, Snowball Stemmmer,
ISRI Stemmer, Regex Stemmer, RSLP Stemmer, Lancaster Stemmer, and WordNet
Lemmatizer. Analogous as in the stop word removal category, stemmers and lem-
matizers can be applied using the Stem/Lemma Tagger hub. This widget receives as
an input an ADC data object and a stemmer (or lematizer) instance and outputs
a new ADC data object with an additional stemming added. The user can enter
two parameters: the type of annotations to be stemmed (�Token� by default) and a
feature name (�Stem� by default), which will be assigned to every annotation of the
selected type as a key-value pair together with the stemmed value.

3.4.4 Bag-of-Words Model

In the most general case, when dealing with raw text, the features are derived from text
using only text preprocessing methods. The most common document representation model
in text mining is the Bag-of-Words (BoW) model [1]. It uses all words (or, e.g., terms) as
features, therefore the dimension of the feature space is equal to the number of di�erent
words in all of the documents. One of the most important characteristics of the described
document features is the fact that they are usually very sparse [1], meaning that most
of the features in a vector have zero weight. This sparsity is due to the fact that there
are many di�erent features (words, terms, concepts) in the document corpus; yet, a single
document contains only a small subset of them. Consequently, the resulting feature matrix
will have many (typically more than 99%) feature values that are zeros [1].

The TextFlows platform uses the Compressed Sparse Row (CSR) matrices, imple-
mented in the scipy.sparse package15 in order to be able to e�ciently store the matrix of
features in memory and also to speed up algebraic operations on vectors and matrices. The
CSR matrices make no assumptions about the sparsity structure of the matrix, and do not
store any unnecessary elements. Their main purpose is to put the subsequent non-zeros of
the matrix rows in contiguous memory locations. Usually three vectors are created: one for
storing �oating-point numbers (values), and the other two for integers (col_ind, row_brk).
The values vector stores the values of the non-zero elements of the matrix, as they occur if
reading through the matrix row by row. The col_ind vector stores the column indexes of
the elements in the val vector, while the row_brk vector stores the locations in the values

15http://docs.scipy.org/doc/scipy/reference/sparse.html

http://docs.scipy.org/doc/scipy/reference/sparse.html
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vector that start a new row in the dense original matrix. The storage savings using this
approach are signi�cant. Instead of storing m∗n elements, we only use 2∗nnz+m storage
locations, where m is the number of rows, n is the number of columns and nnz is the
number of non-zeros in the dense matrix.

In the data mining modeling phase (i.e. document classi�cation or text clustering), each
document from the ADC structure needs to be represented as a set of document features it
contains. In TextFlows the Construct BoW Dataset and BoW Model Constructor widget
takes as an input an ADC data object and generates a sparse BoW model dataset (which
can then be handed to a classi�er). In addition, the widget takes as an input several user
de�ned parameters, which are taken into account when building the feature dataset:

• Token Annotation. This is the type of Annotation instances marking parts of the
document (e.g., words, sentences or terms), which will be used for generating the
vocabulary and the dataset.

• Feature Name. If present, the model will be constructed out of annotations' feature
values instead of document text. For example, this is useful when we wish to build
the BoW model using stems instead of the original word forms.

• Stop Word Feature Name. This is an annotation feature name which is used to tag
tokens as stop words. These tokens will be excluded from the BoW representational
model. If the stop word feature name in not provided, all tokens are included in the
BoW space.

• Label Document Feature Name. This is the name of the document feature which will
be used as a class label of the examples in the dataset. If blank, the generated sparse
dataset will be unlabeled.

• Maximum n-gram Length. The upper bound of the range of n-values for di�erent
n-grams to be extracted. All values of n such that 1 ≤ n ≤ maxNgram will be used,
where maxNgram is the maximum n-gram length.

• Minimum Word Frequency. Cut-o� frequency value for including an item into the
vocabulary.

• Word Weighting Type. The user can select among various weighting models for
assigning weights to features:

� Binary. The feature weight is 1 if the corresponding term is present in the
document, or zero otherwise.

� Term occurrence. The feature weight is equal to the number of occurrences of
the corresponding term. This weight is sometimes better than a simple binary
value since frequently occurring terms are likely to be more relevant for the
given text.

� Term frequency. The weight is derived from the term occurrence by dividing
the vector by the sum of all vector's weights.

� TF-IDF. Term Frequency-Inverse Document Frequency [88] is the most common
scheme for weighting features. For a given term w in document d from corpus
D, the TF-IDF measure is de�ned as follows:

tfIdf(w, d) = tf(w, d)× log
|D|

|{d ∈ D : w ∈ d}|
, (3.1)
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where tf(w, d) represents the number of times term w appears in document d.
The reasoning behind the TF-IDF measure is to lower the weight of terms that
appear in many documents as this is usually an indication of them being less
important (e.g., stop-words). The appropriateness of this scheme was con�rmed
in numerous text mining problem solutions [1], [92].

� Safe TF-IDF. For a given term w in document d from corpusD, the Safe TF-IDF
measure is de�ned as follows:

safeTfIdf(w, d) = tf(w, d)× log
|D|

|{d ∈ D : w ∈ d}|+ 1
, (3.2)

This approach smoothens IDF weights by adding one to document frequencies,
as if an extra document was observed containing every term in the collection
exactly once. This prevents the occurrence of divisions by zero.

� TF-IDF with sublinear TF scaling. It often seems unlikely that twenty occur-
rences of a term in a document truly carry twenty times the signi�cance of a
single occurrence. Accordingly, there has been considerable research into vari-
ants of term frequency that go beyond counting the number of occurrences of a
term [93]. A common modi�cation is to use the logarithm of the term frequency
instead of tf, de�ned as:

wf(w, d) =

{
1 + log tf(w, d), if tf(w, d) > 0

0, otherwise
(3.3)

• Normalize Vectors. The weighting methods can be further modi�ed by vector nor-
malization. If the user opts to use it in TextFlows, the L2 regularization [94] is
performed.

Besides the sparse BoW model dataset the Construct BoW Dataset and BoW Model Con-
structor also outputs a BowModelConstructor instance. This additional object contains
settings which allow repetition of the feature construction steps on another document cor-
pus. These settings include the input parameters, as well as the learned term weights and
vocabulary.

An important widget in the Bag-of-Words category is the Create BoW Dataset using
BoW Model Constructor. Its task is to apply the input BowModelConstructor instance to
an input ADC data object and create a sparse feature dataset. This is useful, for instance,
in every cross-validation fold where you need to build the test dataset's sparse matrix using
the same settings (also including IDF term weights) used for building the training sparse
matrix.

3.4.5 Document Classi�cation

A document classi�cation (also called text categorization) refers to automated assignment
of prede�ned categories to natural language texts. A primary application of text categoriza-
tion systems is to assign subject categories to documents to support information retrieval,
or to aid human indexers in assigning such categories. Text categorization components are
also increasingly used in natural language processing systems for data extraction. Clas-
si�cation techniques have been applied to spam �ltering, language identi�cation, genre
classi�cation, sentiment analysis, etc. The common approach to building a text classi�er
is to manually label a selected set of documents to prede�ned categories or classes, and
use them to train a classi�er. The trained classi�er can then be used to assign class labels
to unseen documents based on the words they contain.
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The term supervised learning refers to the above-described approach to automatically
building a text classi�er from training documents, which have been labeled (often manually)
with prede�ned classes. The TextFlows platform currently contains only the supervised
learning approaches from the LATINO, NTLK and scikit-learn libraries. Every widget
contains input parameters which are used to construct the classi�er object. From the
LATINO library we integrated Nearest Centroid Classi�er, Naive Bayes Classi�er, SVM
(Binary and Multiclass) Classi�er, Majority Classi�er, Maximum Entropy Classi�er, kNN
(fast and regular version) Classi�er, while the NLTK library contributes an additional
Naive Bayes Classi�er. The following widgets represent classi�ers from the scikit-learn
library: Decision Tree Classi�er, Multinomial Naive Bayes Classi�er, Gaussian Naive
Bayes Classi�er, k-Nearest Neighbours Classi�er, SVM Linear Classi�er, SVM Classi�er.

For training and applying classi�ers TextFlows o�ers two dedicated widgets: Train
Classi�er Hub and Apply Classi�er Hub. The Train Classi�er Hub receives on its inputs a
sparse feature dataset object and an untrained classi�er. Its function is to �t the classi�er
model according to the given training data. The �nal outcome of this widget is a trained
classi�er object.

The Apply Classi�er Hub receives a trained classi�er object and returns predicted class
probabilities for every new document from the input test dataset, as well as the test dataset
with a new predicted label column.

3.4.6 Literature-Based Discovery

This category of widgets supports the literature-based discovery process. The package con-
tains several widgets which specify di�erent elementary heuristics. These basic heuristics
are grouped into one of �ve categories: frequency-based, TF-IDF-based, similarity-based,
outlier-based, banded matrix-based. The �rst four categories are an implementation of
the heuristics proposed by Jur²i£ et al. [17], [70], while banded matrix-based heuristics
are newly proposed and are presented in more detail in Section 5.4. Each category is
represented by an interactive widget, which allows the user to manually select its elemen-
tary heuristics through an interactive dialog. The literature-based discovery package also
contains several widgets that specify operations between elementary heuristics, such as
minimum, maximum, sum, norm, etc., which can be used for building complex ensembles,
as we show in Section 5.3.

The library also contains two widgets that support the speci�cation of ensemble heuris-
tics, which is described in Section 5.2.3: Ensemble Heuristic Vote and Ensemble Average
Position widget. The �rst de�nes an ensemble voting heuristic (it calculates term votes
according to Equation 5.1 of Section 5.2.3), while the latter speci�es an ensemble that
calculates normalized sum of term position scores of the input heuristics (see Equation 5.2
of Section 5.2.3).

The most important widget from this package is the Calculate Term Heuristic Scores
widget which takes as an input several heuristics speci�cations and performs the actual
calculations. The decision for such an approach�having one widget which calculates all
the heuristics�is that several elementary heuristics require the same intermediate results.
These results can be cached and calculated only once, which results in faster computation.
To this end, the TextFlows platform uses Compressed Sparse Row (CSR) matrices16 to be
able to store the matrix of features in memory and also to speed up algebraic operations on
vectors and matrices. The Calculate Term Heuristic Scores widget also takes as input the
BowModelContructor object and the AnnotatedDocumentCorpus. The parse settings from

16Compressed Sparse Row (CSR) matrices are implemented in the scipy.sparse package http://docs.

scipy.org/doc/scipy/reference/sparse.html

http://docs.scipy.org/doc/scipy/reference/sparse.html
http://docs.scipy.org/doc/scipy/reference/sparse.html
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the BowModelConstructor object are used to construct Compressed Sparse Row (CSR)
matrices, which represents the BoW model. TextFlows uses mathematical libraries numpy
and scipy to e�ciently perform the heuristics calculations.

Literature-based discovery package also contains the Explore in CrossBee widget which
exports the �nal ranking results and the annotated document corpus into web application
CrossBee, which o�ers manual exploration of terms and documents. Also, the Rank Terms
widget can be used to display the ranked terms in the form of a table along with their
respective scores.

3.4.7 Noise Detection

Noise �ltering is frequently used in data preprocessing to improve the accuracy of induced
classi�ers. TextFlows incorporates an ensemble-based noise ranking methodology for ex-
plicit noise and outlier identi�cation, named NoiseRank [95], which was modi�ed to work
with texts and TextFlows ADC data objects. Its main aim is to detect noisy instances
for improved data understanding, data cleaning and outlier identi�cation. NoiseRank was
previously successfully applied to a real-life medical problem [95]. We show an example of
using the NoiseRank methodology on a task of outlier detection in document corpora in
Section 4.5.

3.4.8 Evaluation and Visualization

The TextFlows platform enables users to create interactive charts for easy and intuitive
evaluation of performance results. It includes standard performance visualizations used in
machine learning, data mining, information retrieval, etc. Notably, the TextFlows platform
includes a full methodology, named VIPER [95], [96], a visualization approach that displays
the results as points in the two-dimensional precision-recall space. The platform contains
several visual performance evaluation widgets, which result in interactive performance
charts that can be saved and exported to several formats.

• Scatter charts. These include ROC space charts and PR space charts.

• Curve charts. These include PR curves, Cost curves, Lift curves, ROC curves,
Kendall curves and Rate-driven curves.

• Column charts. These are general column charts for visualizing multiple performance
measures for a set of algorithms.

While VIPER visualizations appear to be straightforward, this visualization toolbox is
innovative and very useful for text analytics. An example is visual comparison of F-value
results of di�erent text analysis tools, including F-isoline-based text classi�er comparison,
which is not supported by any other visualization tool. We demonstrate several imple-
mented visualization techniques in Section 4.2.

3.4.9 Inductive Logic Programming

The current Inductive logic programming (ILP) module includes a propositionalization
technique named wordi�cation [97], [98] which can be seen as a transformation of a re-
lational database into a corpus of text documents. Wordi�cation constructs simple, easy
to understand features, acting as words in the transformed Bag-of-Words representation.
The main advantages of the approach are: simple implementation, accuracy comparable to
competitive methods, and greater scalability. We describe the wordi�cation methodology
in more detail and compare it to several propositionalization techniques in Chapter 6.
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The ILP module also includes components, such as the popular ILP system Aleph [71],
as well as RSD [75], SDM [99] and RelF [76]. Aleph is an ILP toolkit on its own, with a wide
range of functionalities: from decision tree learning to feature generation and �rst-order
rule induction. Relational Subgroup Discovery (RSD) algorithm implements a proposi-
tionalization approach. It starts with a typical relational ILP domain and converts it into
a single-table representation; this is done by generating a set of �rst-order features which
become attributes of the propositionalized training examples. Although RSD comes with
its own implementation of the CN2-SD [100] subgroup discovery algorithm, the resulting
table can serve an input into any propositional machine learning or data mining algorithm.

3.5 Comparison with Other Text Mining Platforms

In Section 2.2 we presented an overview of more widely used work�ow management systems,
with a focus on those that are also or primarily used for NLP and that support distributed
and/or remote processing. In the following sections we compare the overviewed systems
with TextFlows along several dimensions that a�ect the usefulness of each system.

3.5.1 Open Source

The �rst dimension, summarized in Table 3.1, concerns the question whether the work�ow
management system is open source, i.e. whether it is possible to download the complete
system and install it on local server(s). This is important in cases where the system is to
be an internal one, not accessible to third parties, e.g., for data privacy protection or where
local modi�cations to the system are desired. In the general case, this option is not really
needed, as it is much easier to simply use the o�cial system. Nevertheless, it is desirable
to at least have this option available. Of the surveyed systems, Taverna is available under
OS. It can be installed on all major platforms (Windows, Mac, Linux) with precompiled
distributions or in source Java and has few prerequisites; Language Grid (available from
SourceForge) also runs on all platforms and requires PostgreSQL and Tomcat, with the
set-up being rather complicated. TextFlows is also open source and publicly available to
download and install; all the prerequisites are wrapped in the installation script.

Table 3.1: Comparison of NLP platforms regarding open source.

Taverna Yes (Java)
PANACEA No
Argo No
WebLicht No
Language Grid Yes (Java, PostgreSQL, Tomcat)
TextFlows Yes (Python)

3.5.2 Work�ow Sharing

All systems o�er work�ow sharing, as this is the essence of building such systems, however,
they di�er in whether the platform itself provides the registry and exploration service
of registries or whether they make use of associated services for work�ow sharing and
discovery. As can be seen from Table 3.2, most systems provide their own sharing platform,
with the exception of Taverna and PANACEA, both of which use myExperiment as a social
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network platform and BioCatalogue (and, in the case of Taverna, other catalogues as well)
as a registry for public web services.

Table 3.2: Comparison of NLP platforms regarding work�ow sharing.

Taverna With myExperiment, BioCatalogue, etc.
PANACEA Own installation of BioCatalogue and MyExperiment
Argo Local registry
WebLicht Local registry
Language Grid Local registry
TextFlows Local registry

3.5.3 Simplicity of Use

This dimension, summarized in Table 3.3, describes how di�cult it is to start using a par-
ticular system, not so much from the point of view of executing ready-made work�ows but
of designing work�ows and adding new web services to the platforms. Taverna provides a
dedicated work�ow management system, which is, however, mostly due to the variety of
options, reportedly quite di�cult to master, also because the details of web service com-
munication have to be understood by the user and complex types decomposed into atomic
parts. Furthermore, the di�erent third-party web services are often not compatible. It is
also possible to add new web services using SoapLab. The composition of work�ows in
PANACEA follows that of Taverna, so the same (dis)advantages apply. Argo provides a
web-based interface, which allows for graphical composition of work�ows. It also provides
a sophisticated system for adding new web services, including a testing environment. We-
bLicht supports web-based work�ow composition, with the registry constraining which web
services can be attached to the work�ow, depending on their I/O requirements. WebLicht
also o�ers a good document viewer and a very compatible set of components. However,
new web services cannot be added by users. Language Grid does enable composition of new
work�ows, but this is an o�-line and rather complicated process without a visual editor.
Finally, TextFlows o�ers, via a web interface, easy composition of work�ows. Adding new
native Python algorithms as well as web SOAP-based services with WSDL available is also
trivial (based on the user-supplied URL of WSDL, new work�ow components are created
automatically from service's functions).

Table 3.3: Comparison of NLP platforms regarding simplicity of use.

Taverna Di�cult
PANACEA Di�cult
Argo Easy for work�ow composition
WebLicht Easy for work�ow composition
Language Grid Di�cult
TextFlows Easy for work�ow composition
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3.5.4 I/O Protocols

This dimension, summarized in Table 3.4, concerns input/output protocols. The options
supported by the communication protocols between the web services in a work�ow mostly
depend on the age of the system: the older ones typically prefer WSDL and SOAP, while
the newer ones choose the simpler REST.17

Table 3.4: Comparison of NLP platforms regarding I/O protocols.

Taverna WSDL+SOAP, REST
Argo REST
PANACEA WSDL+SOAP
WebLicht REST
Language Grid WSDL+SOAP
TextFlows WSDL+SOAP, REST, JSON-WSP

When dealing with NLP work�ows, standards become very important. NLP compo-
nents mainly perform pipeline processing, where each tool/service adds another layer of
annotation to the base text where it typically needs to have access to previous annotations.
Furthermore, the input text might itself contain annotations, such as document structure.
The wish for interoperability leads to the development of standards for text (corpus) an-
notation; however there are a number of such standards and best practices, and di�erent
systems use di�erent ones. TAVERNA, not being targeted towards NLP, is standard ag-
nostic, and relies on implementers of work�ows to provide the necessary conversion (shiv)
services, i.e. conversion routines to the format that the downstream services expect. In the
context of NLP it is also possible to develop shiv services that convert not only outputs
but also inputs, taking one of the commonly accepted standards as the pivot encoding.
This is the route taken by PANACEA, where each web service is wrapped to accept and
produce an output: for primary data this is an XCES encoded �le, while text annotations
use the LAF/GrAF [101] standard with stand-o� annotations. Argo is based on UIMA18

and does not enforce any NLP standards in its pipelines. However, Argo did pioneer a new
method of aligning I/O requirements of component web services: rather than relying on
shiv services, which need programming skills, it supports a Type Mapper, i.e. a dedicated
rule-based analytic for transcribing feature structures between types needed for particular
web services. It also supports export and type mapping to RDF.

WebLicht uses a local format TCF, which is, however, quite similar to ISO LAF/GrAF
and conversion to these is provided. In WebLicht all web services are expected to use TCF,
where the conversion is typically implemented as a wrapper around each annotation tool.
Furthermore, the WebLicht Registry included information about the prerequisites for each
web service and allows only chaining web services that do not violate these constraints.
Language Grid has a very di�erent scheme from most other services, and the details of
how the interfaces are to be con�gured are rather hard to come by. In general, it de�nes
an ontology of web services, which then speci�es also their I/O formats. As the focus is on
dictionaries and machine translation, it is these kinds of formats that are de�ned. Finally,
TextFlows, as Taverna, does not impose any standards in its I/O formats. Mostly plain
text, JSON and, for e�ciency, serialized Python data structures and objects (in particular,
the AnnotatedDocumentCorpus instances) are exchanged between work�ow components.

17Note that the WSDL protocol referred to here is version 1.0 or 1.1; WSDL 2.0 o�ers (limited) support
for RESTful web services.

18https://uima.apache.org/

https://uima.apache.org/
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3.5.5 Popularity and Functionality

The dimension, summarized in Table 3.5, concerns the question of popularity and func-
tionality of the presented work�ow management systems. We take several factors into
consideration, such as the size of the user base, number of text mining and NLP widgets
available, number of work�ows shared, etc. We grouped the user base into three categories:
`Large' (over 100,000 users), `Medium' (between 100 and 100,000 users) and `Small' (less
than 100 users). Similarly, we also grouped the number of work�ows, where `Large' rep-
resents more than 1,000 publicly available work�ows, `Medium' between 100 and 1,000
work�ows and `Small' less than 100. In the case regarding the number of NLP widgets
`Large' represents more than 80 NLP components, `Medium' between 30 and 80, while
`Small' measures less than 30 NLP components.

Table 3.5: Comparison of NLP platforms regarding the extent of their popularity and
functionality.

Platform User base Number of work�ows Number of NLP components
Taverna Large Large Small
Argo Small Small Small
PANACEA Small Small Small
WebLicht Medium Medium, oriented towards Large for German and English

corpus processing
Language Grid Large Large, Large for Japanese,

application oriented tools medium for English
TextFlows Small Small Large for English

Out of the surveyed systems, Taverna is the most developed and the most popular
platform, with many features and connection capabilities. The myExperiment website
currently contains over 2,000 Taverna work�ows, but mostly from bioinformatics and other
life science domains�there are only a few NLP work�ows available. Furthermore, Taverna
contains only a few simple widgets, which are tightly integrated into the platform, the rest
must be added as web services. On the other hand, Argo is a relatively new platform,
which is still in its beta development phase. Consequently, it has a much smaller user
base and does not yet o�er construction and exploitation of publicly shared work�ows. It
o�ers a relatively large set of bioinformatic widgets, as well as some NLP tools. With the
PANACEA platform there does not seem to be any great up-take of this service by the NLP
community. The inspection of the PANACEA's MyExperiment repository19 shows that
the platform o�ers only a few work�ows or web services. It implements only a few basic
NLP tools for more or less 5 languages and most of these are fairly speci�c, developed
by the (ex) project partners. As the most recent work�ow was published in 2013, and
the fact that at the time of writing this thesis the platform was not available online, it
seems highly unlikely that this platform will ever be adopted by the NLP community.
Language Grid is an open source service based framework which enables access to various
language services in the world based on a single powerful protocol HTTP. Therefore, it is
widely popular and also contains a large number of NLP services for various languages.
On the other hand, the WebLich platform is not open source, which might contribute to
a lower popularity compared to Teverna or Language Grid. Nonetheless, it is oriented
towards corpus processing, so it o�ers a large number of NLP components. TextFlows is

19http://myexperiment.elda.org/workflows

http://myexperiment.elda.org/workflows
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the newest of the presented platforms, hence it has the smallest user base and number of
publicly shared work�ow of all presented platforms. It does however possess the largest
set of text mining and NLP widgets among the presented platforms, but mainly suited for
English corpora.

3.6 Comparison with ClowdFlows

TextFlows is a heavily modi�ed fork of the ClowdFlows [12] data mining platform, which is
a general work�ow construction and execution tool for data mining and machine learning.
The platform incorporates work�ow components for numerous data mining and machine
learning projects�including WEKA [29] and Orange [30]�while severely lacking text min-
ing and natural language processing components. Moreover, despite being very useful for
work�ow construction by the informed developers and end-users, ClowdFlows currently
su�ers from a somewhat disorganized roster of work�ow components which may be incom-
patible with each other. As a result, new users sometimes struggle to construct functioning
work�ows as there are too many mutually incompatible components.

We created a fork of ClowdFlows in order to maintain cohesion of incorporated text
mining and natural language processing work�ow components. TextFlows has a completely
redesigned roster of work�ow components, which are now highly compatible with each
other within the platform and easier to use for the expert and novice users. In contrast to
ClowdFlows, where there are no guidelines for sorting work�ow components into categories,
TextFlows sorts the components based on the functionality of the components. As a result,
all widgets that perform similar functions are located in the same category. We have also
enriched the user interface with extra information about the work�ow components and
written the documentation for the provided work�ow components and their inputs and
outputs.

While we introduced a completely new common text representation structure (cf. Sec-
tion 3.2.2), a new widget structure as well as numerous new text mining and new NLP
components (cf. Section 3.4) and work�ows (cf. Chapter 4 for selected examples), the
underlying architectures of ClowdFlows and TextFlows remain similar. To summarize,
TextFlows is built on top of ClowdFlows, meaning that both the widget execution en-
gine and the core of the ClowdFlows user interface are present in TextFlows. TextFlows
still bene�ts from all security updates, bug �xes and feature upgrades that ClowdFlows
receives.
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Chapter 4

Text Mining and Natural Language

Processing Use Cases

In this chapter we address novel natural language processing and knowledge discovery
use cases, which rely on the TextFlows implementation described in the previous chapter.
The main goal of this chapter is to ultimately justify the development of a web-based,
cloud-based knowledge discovery platform for text mining and NLP processing. For the
natural language processing scenario, we demonstrate the advanced features of the devel-
oped platform on �ve use cases: a comparison of classi�ers from di�erent libraries for a text
classi�cation problem, a comparison of POS taggers on the same text categorization prob-
lem, a comparison of stemmers/lemmatizers from di�erent libraries and outlier detection
on document corpora.

In Section 4.1 we propose a document acquisition and text preprocessing work�ow,
which will also be either partly or fully used as a subprocess in other use cases. Further-
more, we also describe the Kenyan elections dataset [15], [16], which is the dataset used in
the experiments and work�ows proposed in this chapter. Next, a comparison of di�erent
classi�ers from di�erent libraries for a text classi�cation problem is shown in Section 4.2,
while Section 4.3 shows a comparison of several stemmers/lemmatizers on the same text
categorization problem. Similarly, Section 4.4 proposes a work�ow for comparison of POS
taggers from di�erent software libraries. Finally, we present an approach for outlier detec-
tion on document corpora as a work�ow in the TextFlows platform in Section 4.5.

4.1 Document Acquisition and Preprocessing Work�ow

The two common steps in the three presented use cases are the Document acquisition and
Document preprocessing steps. These two steps were implemented as subprocesses in the
main work�ows for the four use cases, illustrated in Figures 4.2, 4.7, 4.9 and 4.11.

In the remaining four work�ows described in this chapter, Document acquisition is
the �rst step of the methodology and is responsible for, �rst, loading the locally stored �le
(representing the document corpus), then labeling the documents with appropriate domain
labels and �nally converting them into the AnnotatedDocumentCorpus data object. In
our experiments we used a corpus of documents, presented in [15] and [16], which was
originally collected by the IPrA Research Center, University of Antwerp. The document
corpus contains 464 articles (about 320,000 words) concerning Kenyan presidential and
parliamentary elections, held on 27th December 2007, and the crisis following the elections.
The documents originate from six di�erent daily newspapers in English, covering the time
period from 22nd December 2007 to 29th February 2008. Articles from the US and British
press (The New York Times, The Washington, The Independent, The Times and Post)
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Figure 4.1: Document preprocessing work�ow, which is publicly available at http:

//textflows.perovsek.com/workflow/47/. The same work�ow is implemented as a sub-
process in the four use cases presented in the rest of this chapter.

form the class label �Western� (WE) and articles from local Kenyan newspapers Daily
Nation and The Standard are categorized as �Local� (LO).

Figure 4.1 shows the subprocess in the TextFlows platform for the second step in all
four presented methodologies: the Document preprocessing work�ow. As described in
Section 3.4, category speci�c hubs are used for applying di�erent preprocessing objects to
the AnnotatedDocumentCorpus data object. The documents are �rst split into sentences
with LATINO's Max Entropy Sentence Splitter and then the sentences are split into tokens
with LATINO's Max Entropy Tokenizer. Some of these tokens are tagged as stop words
using the Stop Word Tagger with the prede�ned Snowball list of English stop words. Next,
the Porter Stemmer is used for converting tokens into their stems. Finally, theMax Entropy
PoS Tagger is used to Part-of-Speech tag the input ADC data object.

4.2 Classi�er Comparison for Text Categorization Work�ow

In this section we propose a work�ow for classi�er evaluation, which is showcased on the
Kenyan elections dataset. In our experiments we compared 7 di�erent classi�ers from di�er-
ent text mining libraries. As shown in Figure 4.2, we compared 4 classi�ers from LATINO
(Nearest Centroid Classi�er, Naive Bayes Classi�er, Maximum Entropy Classi�er, kNN
Fast Classi�er) and 3 classi�ers implemented in the scikit-learn library (Gaussian Naive
Bayes Classi�er, k-Nearest Neighbours Classi�er, SVM Linear Classi�er).

Every algorithm was evaluated using 10-fold strati�ed cross-validation, as shown in
Figure 4.3. All cross-validations were performed using the same seed in order to ensure the
data was equally split for di�erent classi�ers. Figure 4.4 shows the methodology behind
the CrossValidation subprocess which was executed for every cross-validation fold. First, a
sparse BoW model dataset and the BowModelConstructor instance were generated by the
Construct BoW Dataset and BoW Model Constructor. We constructed unigrams (n-grams
where n = 1) out of stemmed values from word tokens, while disregarding stop words in
the process. The Bag-of-Words vector space was calculated using the TF-IDF weighting
scheme.

The test sparse matrix is required to be constructed using the same parameter settings,
IDFs and vocabulary as the training sparse matrix. Therefore, we applied the BoW con-
structor object (output of the Construct BoW Dataset and BoW Model Constructor) to the
test ADC data object using the Create BoW Dataset using the BoW Model Constructor.

After calculating the training and testing sparse matrices, we �tted the input classi�er
model to the training dataset using the Train Classi�er Hub. Next, the Apply Classi�er
Hub received the trained classi�er object and returned predicted class probabilities for

http://textflows.perovsek.com/workflow/47/
http://textflows.perovsek.com/workflow/47/
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Figure 4.2: The work�ow for evaluating 7 classi�ers from di�erent text mining libraries.
The work�ow is available at http://textflows.perovsek.com/workflow/2/.

Figure 4.3: The For loop subprocess which evaluates the input classi�er using 10-fold
strati�ed cross-validation (with a constant seed) and extracts the obtained results, which
are then visualized as shown in Figure 4.2.

http://textflows.perovsek.com/workflow/2/.
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Figure 4.4: The subprocess work�ow representing the methodology in every fold for the
used 10-fold cross-validation. First, the construction of the training and testing sparse
matrices is performed. Next, the input classi�er model is �tted to the training dataset
and used to predict class probabilities for every new document from the input test dataset.
The subprocess returns constructed pairs of actual and predicted classes.

every new document from the input test dataset. The Extract Actual and Predicted Values
widget used these probabilities and constructed pairs of actual and predicted classes. These
pairs were returned from the CrossValidation subprocess and used for calculating di�erent
metrics, as shown in Figure 4.3.

The results of cross-validation (precision, recall, F-score) were connected to the input
of the VIPER: Visual Performance Evaluation widget, as shown in Figure 4.2, while Fig-
ure 4.5 presents its visualization of classi�er evaluation in the precision-recall plane, where
each point represents the result of an algorithm (for the selected class label �Local�). Points
closer to the upper-right corner have higher precision and recall values. F-measure values
are presented as isolines (contour lines), which allows a simple comparison of algorithm
performance.

Figure 4.5 shows that in terms of F-measure, scikit-learn's SVM Linear Classi�er and
LATINO's Maximum Entropy Classi�er achieved the best results: both algorithms gen-
erally achieved a higher percentage of correctly classi�ed examples (higher recall score),
and also a slightly higher percentage of correctly classi�ed examples of the target class
(higher precision score) compared to other classi�ers used. A somewhat lower performance
was achieved using LATINO's Nearest Centroid Classi�er classi�ers, while the k-nearest
neighbor and Naive Bayes classi�ers performed worse. Detailed results are presented in
Table 4.1.

Table 4.1: Classi�er evaluation on the Kenyan elections dataset.

Library Classi�er Recall Prec.
F1
score

Classif.
accuracy

AUC

LATINO Nearest Centroid Classi�er 0.96 0.90 0.93 92.42% 0.92
LATINO Naive Bayes Classi�er 1.00 0.72 0.84 80.74% 0.81
LATINO Maximum Entropy Classi�er 0.97 0.93 0.95 94.59% 0.95
LATINO kNN Fast Classi�er 0.93 0.88 0.90 90.26% 0.90
scikit-learn Gaussian Naive Bayes Classi�er 0.87 0.82 0.84 83.77% 0.84
scikit-learn k-Nearest Neighbors Classi�er 0.91 0.88 0.89 89.18% 0.89
scikit-learn SVM Linear Classi�er 0.95 0.95 0.95 95.24% 0.95
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Figure 4.5: The VIPER visualization showing evaluation of classi�ers from di�erent li-
braries. This visualization is the result of the work�ow presented in Figure 4.2.

Figure 4.6: A column chart showing evaluation of classi�ers from di�erent libraries. This
visualization is the result of the work�ow presented in Figure 4.2.
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The work�ow was run within a virtual machine with a dedicated one core (Intel i7
2600k) and 4GB of RAM. The running time for the document acquisition and document
preprocessing step is 161 seconds while the comparison of classi�ers with the 10 fold cross-
validation takes 1,486 seconds. The runtime of the entire work�ow was 1,652 seconds.

4.3 Stemmer and Lemmatizer Comparison Work�ow

This section demonstrates advanced features of TextFlows on a use case, comparing selected
stemmers and lemmatizers on a text categorization problem.

The processing starts with the Document acquisition and Document preprocessing steps.
These two steps were implemented as subprocesses in the complex stemmer/lemmatizer
comparison work�ow shown in Figure 4.7. As explained in Section 4.1, the Document
acquisition is the �rst step of the methodology and is responsible for, �rst, loading the
locally stored text �le (containing the Kenyan elections document corpus), then labeling the
documents with appropriate domain labels and �nally converting them into the ADC data
object. Next, the second step of the presented methodology�the Document preprocessing
step�is performed. The documents are segmented into sentences with LATINO's Max
Entropy Sentence Splitter and these tokenized using LATINO's Max Entropy Tokenizer.
Some of the tokens are tagged as stop words using the Stop Word Tagger with a prede�ned
list of English language stop words, taken from Snowball. Finally, the Max Entropy PoS
Tagger is used to Part-of-Speech tag the input ADC data object. In this preprocessing
subprocess we, exceptionally, omitted the application of a stemmer, as this was done later
in the cross-validation subprocess.

In the experiments we compared six di�erent stemmers: RSLP Stemmer, Snowball
Stemmer, ISRI Stemmer, Lancaster Stemmer (from the NLTK library) and Stem Tag-
ger Snowball (from LATINO library); as well as two lemmatizers: the NLTK WordNet

Figure 4.7: The work�ow implemented in the TextFlows platform, used for the evaluation
of six di�erent stemmers and two lemmatizers, selected from various text mining libraries,
on a text categorization problem. The abbreviations on the input and output stubs are
as follows: tgr tagger, el element, lst list, adc annotated document corpus, evr and alp
evaluation results. The work�ow is publicly available at http://textflows.perovsek.

com/workflow/42/.

http://textflows.perovsek.com/workflow/42/.
http://textflows.perovsek.com/workflow/42/.
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Figure 4.8: The subprocess work�ow representing the methodology in every fold for the
used 10-fold cross-validation. First, the input stemmer/lemmatizer is applied to the doc-
ument corpus. Next, the construction of the training and testing sparse matrices is per-
formed. Then, maximum entropy classi�er is �tted to the training dataset and used to
predict class probabilities for every new document from the input test dataset. Last, the
subprocess returns constructed pairs of actual and predicted classes. The abbreviations
on the input and output stubs are as follows: doc and adc annotated document corpus,
tgr tagger, adc annotated document corpus str string, int integer, cvf number of cross-
validation folds, sed seed, res results.

Lemmatizer and the LATINO Lemma Tagger LemmaGen.
Every stemmer/lemmatizer was applied to the document corpus, as shown in Figure 4.8.

In every iteration (over the list of stemmers/lemmatizers) of the for loop the input stem-
mer/lemmatizer is applied to the preprocessed ADC data object using the Stem/Lemma
Tagger Hub by generating new features with name �Stem� on every elementary token. In
order to use the stemmed values together with Part-of-Speech tags we constructed (for
every token) new features named �Stem with PoS� using the Add Computed Token Fea-
tures widget. These features were later used in the CrossValidation subprocess to generate
the BoW models. The values of the �Stem with PoS� features were constructed using the
Add Computed Token Features widget as a combination of stems/lemmas and PoS tags:
�Stem_PoS tag�.

What follows is the CrossValidation subprocess which was executed for every cross-
validation fold. In this subprocess, a sparse BoW model dataset and the BowModelCon-
structor instance were generated by the Construct BoW Dataset and BoW Model Con-
structor. We constructed unigrams (N-grams where N is equal to 1) out of �Stem with
PoS� features from word tokens, while disregarding stop words in the process. The Bag-of-
Words vector space was calculated using the TF-IDF (Term Frequency - Inverse Document
Frequency) weighting scheme.

The test sparse matrix is required to be constructed using the same parameter settings,
same IDFs and same vocabulary as the training sparse matrix. Therefore, we applied the
BoW constructor object (output of the Construct BoW Dataset and BoW Model Construc-
tor) to the test ADC data object using the Create BoW Dataset using the BoW Model
Constructor.

After calculating the training and testing sparse matrices, we �tted the maximum en-
tropy classi�er to the training dataset using the Train Classi�er Hub. Next, the Apply
Classi�er Hub received the trained classi�er object and returned predicted class probabili-
ties for every new document from the input test dataset. The Extract Actual and Predicted
Values widget used these probabilities and constructed pairs of actual and predicted classes.
These pairs were returned from the CrossValidation subprocess and used for calculating
di�erent metrics, as shown in Figure 4.8.

Table 4.2 shows the results of the presented stemming/lemmatization evaluation work-
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�ow. The �rst row in the table shows the classi�cation results without applying a stem-
mer/lemmatizer. We see that the usage of a stemmer/lemmatizer increases the performance
of the classi�er. The best results were obtained using the NLTK's WordNet Lemmatizer,
which achieved a slightly higher classi�cation accuracy on the Kenyan elections dataset
compared to other applied stemmers and lemmatizers.

Table 4.2: Stemming/lemmatization evaluation on the Kenyan elections dataset.

Library Stemmer/Lemmatizer
F1
score

Class.
accuracy

AUC

/ no stemmer 0.94 94.16% 0.94
NLTK RSLP Stemmer 0.96 95.67% 0.96
NLTK Snowball Stemmer 0.96 96.10% 0.96
NLTK ISRI Stemmer 0.96 95.67% 0.96
NLTK WordNet Lemmatizer 0.96 96.32% 0.96
NLTK Lancaster Stemmer 0.95 95.02% 0.95
NLTK Porter Stemmer 0.95 94.59% 0.95
Latino Stem Tagger Snowball 0.95 94.81% 0.95
Latino Lemma Tagger LemmaGen 0.95 95.24% 0.95

4.4 Part-of-Speech Tagger Comparison for Text Categoriza-

tion Work�ow

In this section we describe a work�ow for the evaluation of di�erent Part-of-Speech taggers
on the Kenyan elections dataset. We start the processing with the Document acquisition
and Document preprocessing steps, described in Section 4.1. In order to perform a com-
parison of Part-of-Speech taggers we exceptionally omit the PoS tagger from the document
preprocessing step and apply it later in the cross-validation subprocess.

In the experiments we compared �ve di�erent PoS taggers: English Maximum Entropy
PoS Tagger (from LATINO library) and PoS A�x Tagger, PoS N-gram Tagger, PoS
Brill's rule-based Tagger, PoS Classi�er-based Tagger (from NLTK library). As shown in
Figure 4.9, PoS tagging widgets from NLTK require tagged sentence data as input, which
is used for training the PoS tagger. The TextFlows platform already contains several
tagged datasets, which come as a part of the NLTK library, and can be added to work�ows
through the NLTK Document Corpus widget. In this use case we used the annotated
Brown corpus1.

The training process involves inspecting the tag of each word and storing the most likely
tag for any word in a dictionary, which is stored inside the tagger. As it happens, once we
have processed several thousand words of English text, most new words will be nouns. In
cases when the NLTK PoS tagger is unable to assign a tag from its learned lookup table,
it can use a backo� tagger from its input. As shown in Figure 4.9 we have set the PoS
Default Tagger as the backo� tagger for all NLTK PoS taggers. The PoS Default Tagger
assigns the input tag (e.g., �NN�, which is the PoS tag representing a noun) to every single
word. Whenever the initial PoS tagger cannot assign a tag to a token it will invoke the
input backo� tagger and thus tag the token as a noun. This improves the robustness of the
language processing system. The PoS Classi�er-based Tagger widget also requires input of
a classi�er, which is learned to predict PoS tags based on the pre-annotated dataset. Every
PoS tagger was applied to the document corpus, as shown in Figure 4.10. In every iteration

1Description of the Brown corpus is available at http://www.nltk.org/book/ch02.html#

tab-brown-sources

http://www.nltk.org/book/ch02.html#tab-brown-sources
http://www.nltk.org/book/ch02.html#tab-brown-sources
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Figure 4.9: The work�ow used for evaluation of 5 di�erent PoS taggers from various text
mining libraries on a text categorization problem. The work�ow is publicly available at
http://textflows.perovsek.com/workflow/37/.

Figure 4.10: The subprocess work�ow representing the methodology in every fold for the
used 10-fold cross-validation. First, the input PoS tagger is applied to the document
corpus. Next, the construction of the training and testing sparse matrices is performed.
Then, a linear SVM classi�er is �tted to the training dataset and used to predict class
probabilities for every new document from the input test dataset. Last, the subprocess
returns constructed pairs of actual and predicted classes.

http://textflows.perovsek.com/workflow/37/.
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(over the list of PoS taggers) of the for loop the input PoS tagger is applied to the tokenized
sentences of preprocessed ADC data object using the PoS Tagger Hub by generating new
features with name �PoS tag� on every elementary (word) token. In order to use PoS tags
together with stemmed values, we constructed (for every token) new features named �Stem
with PoS� using the Add Computed Token Features widget. These features were later used
in the CrossValidation subprocess to generate the BoW models. The values of the �Stem
with PoS� features were constructed using the Add Computed Token Features widget as a
combination of stems and PoS tags: �Stem_PoS tag�.

Next, 10-fold strati�ed cross-validation was performed on the generated PoS tagged
ADC data objects. Similarly as in the classi�er evaluation use case, all cross-validations
were performed using the same seed in order to ensure the data was equally split for all PoS
taggers. The methodology behind the CrossValidation subprocess, which is executed on
every cross-validation fold, is similar to the methodology presented in Figure 4.4. The only
two di�erences are that cross-validation does not receive a classi�er on its input�instead
it always uses scikit-learn's linear SVM classi�er�and that the Construct BoW Dataset
and BoW Model Constructor widget uses features constructed by the Add Computed Token
Features widget instead of stemmed values.

Table 4.3 shows the results of the presented PoS tagger evaluation work�ow. The �rst
row in the table shows the classi�cation results without applying a PoS tagger (see row
3 of Table 4.1). We see that the usage of a PoS tagger increases the performance of the
classi�er. The best results were obtained using the NLTK's PoS Classi�er Based Tagger,
which in combination with the LATINO's Maximum Entropy Classi�er achieved a slightly
higher classi�cation accuracy on the Kenyan elections dataset compared to the other PoS
taggers.

The experiments were run using the same resources as in the classi�er evaluation
example�a virtual machine with a setting of one core and 4GB of RAM. The execution
time of the entire work�ow was 1,913 seconds, where 158 seconds were used for document
acquisition and preprocessing, while the for loop which compares PoS taggers took 1,747
seconds to execute.

Table 4.3: Part-of-Speech tagger evaluation on the Kenyan elections dataset.

Library Tagger Recall Precision
F1
score

Classi�cation
accuracy

AUC

/ no PoS tagger 0.98 0.93 0.95 95.24% 0.95

LATINO
Maximum Entropy

PoS Tagger
0.98 0.94 0.96 96.10% 0.96

NLTK PoS A�x Tagger 0.98 0.94 0.96 95.67% 0.96
NLTK PoS Ngram Tagger 0.98 0.95 0.96 96.10% 0.96
NLTK PoS Brill Tagger 0.97 0.93 0.95 95.24% 0.95

NLTK+
scikit-learn

PoS Classi�er Based
Tagger (using SVM
Linear Classi�er)

0.98 0.95 0.96 96.32% 0.96
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4.5 Outlier Document Detection in Categorized Document

Corpora Work�ow

In this section we propose a work�ow for detecting atypical, unusual and/or irregular
documents on the Kenyan elections dataset. The idea behind irregularity detection in
categorized document corpora is based on early noise �ltering approaches by [102], who
used a classi�er as a tool for detecting noisy instances in data. Noise detection approaches
identify irregularities and errors in data and are therefore suitable also for detecting atypical
documents in categorized document corpora, which can be considered as outliers of their
own document category.

The aim of the NoiseRank (ensemble-based noise detection and ranking) methodology,
proposed by [95], [103], is to support domain experts in identifying noisy, outlier or erro-
neous data instances. The user should be able to select the noise detection algorithms to be
used in the ensemble-based noise detection process. We have implemented this methodol-
ogy as a work�ow in TextFlows, which now o�ers widgets implementing classi�cation and
saturation noise �lters, and enables the inclusion of external user speci�c noise detection
algorithms available as web services. Figure 4.11 presents the NoiseRank work�ow using
the implemented classi�ers used for class noise detection.

The NoiseRank methodology work�ow returns a visual representation of a list of po-
tential outlier instances, ranked according to the decreasing number of noise detection
algorithms which identi�ed an instance as noisy, due to its classi�cation into a class di�er-
ent from its own class label. The ability of NoiseRank to obtain atypical documents was
tested on the Kenyan elections corpus. The implemented voting-based irregularity detec-
tion method uses four di�erent classi�ers acting as noise detection algorithms by identifying
misclassi�ed instances.

As in the experiments of Section 4.2 and Section 4.4 we ran the work�ow on a virtual
machine with 1 CPU core and 4GB of RAM. The execution time of the entire work�ow
was 202 seconds, where 148 seconds were used for document acquisition and preprocessing,
while the BoW model construction and NoiseRank widget took 52 seconds to execute.

Figure 4.11: Example work�ow of the NoiseRank methodology, which is available at http:
//textflows.perovsek.com/workflow/29/.

http://textflows.perovsek.com/workflow/29/
http://textflows.perovsek.com/workflow/29/
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Figure 4.12 shows the obtained set of atypical/irregular articles grouped and ranked
according to the number of noise detection algorithms that identi�ed them as irregular.

Figure 4.12: The NoiseRank interactive widget where the user gets a visual representation
of a list of top-ranked potentially noisy instances, which are misclassi�ed according to a
decreasing number of elementary noise detection algorithms which identi�ed the instance
as noisy. The user can decide which documents he wishes to exclude from the document
corpus.
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Chapter 5

Cross-Domain Literature Mining

Scenario

Given its immense growth, scienti�c literature can be explored to reveal new discoveries,
based on yet uncovered relations between knowledge from di�erent, relatively isolated �elds
of research specialization. This chapter proposes a bisociation-based text mining approach,
which demonstrates that cross-domain literature mining can be e�ective for cross-domain
knowledge discovery and, thus, helps the experts in searching for hidden links that connect
seemingly unrelated domains. The proposed cross-domain literature mining functionality,
including text acquisition, text preprocessing, and bisociative cross-domain literature min-
ing facilities, is made publicly available within the web-based platform TextFlows, which
supports visual construction and execution of text mining and natural language processing
(NLP) work�ows. To this end, TextFlows was connected to the human-computer interface
of system CrossBee [17]�[19]. In the methodology presented in this chapter, the CrossBee
web application�which was originally developed as an o�-the-shelf solution for �nding
bisociations bridging two domains�is used as a user interface to facilitate bridging term
discovery through sophisticated document visualization and exploration.

The chapter is organized as follows. Section 5.1 illustrates the problem of bridging term
ranking. Since this part of the thesis continues the work in the area of literature mining pro-
posed by Jur²i£ et al. [19], [70], we provide a brief description of CrossBee [17], [19]�an o�-
the-shelf solution for �nding bisociations bridging two user de�ned domains/literatures�
in Section 5.2. We also provide an overview of the underlying methodology, as well as
describe the elementary and ensemble heuristics used in bridging term discovery. In Sec-
tion 5.3 we show how the complex CrossBee methodology was implemented as a work�ow
in TextFlows. In this scenario, the platform acts as the enabling technology for imple-
menting the developed cross-domain link discovery approach. Moreover, we study a new
type of elementary heuristics for B-term ranking in Section 5.4. The newly proposed ap-
proach uses banded matrices [104] to discover structures that reveal the relations between
the rows (representing documents) and columns (representing words/terms) of a given
data matrix (representing a set of documents). We evaluate the newly proposed heuris-
tics on two medical benchmark problems. Finally, in Section 5.5, we propose an exten-
sion of the CrossBee methodology, which incorporates background knowledge�controlled
vocabularies�into the bridging term discovery process that, as a side e�ect, also narrows
down the list of potential bridging terms. We also provide an evaluation of the developed
extended methodology.
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5.1 Problem De�nition and Motivation

Understanding complex phenomena and solving di�cult problems often requires knowledge
from di�erent domains to be combined and cross-domain associations to be taken into
account. These kinds of context crossing associations, called bisociations [13], are often
needed for creative, innovative discoveries. Bisociative knowledge discovery is a challenging
task motivated by a trend of over-specialization in research and development, which usually
results in deep�but relatively isolated�knowledge islands. Scienti�c literature too often
remains closed and cited only in professional sub-communities. In addition, the information
that is related across di�erent contexts is di�cult to identify using associative approaches,
like the standard association rule learning [105] known from the data mining and machine
learning literature. Therefore, the ability of literature mining methods and software tools to
support the experts in their knowledge discovery processes�especially in searching for yet
unexplored connections between di�erent domains�is becoming increasingly important.
Cross-domain literature mining is closely related to bisociative knowledge discovery as
de�ned by [106]. Assuming two di�erent domains of interest, a crucial step in cross-
domain knowledge discovery is the identi�cation of interesting bridging terms (B-terms),
appearing in both literatures, which carry the potential of revealing the links connecting
the two domains.

Figure 5.1: Bridging term discovery when exploring migraine and magnesium document
corpora, with B-terms as identi�ed by [63] in the middle.

In cross-domain knowledge discovery, estimating which of the terms have a high poten-
tial for interesting discoveries is a challenging research question. It is especially important
for cross-context scienti�c discovery such as understanding complex medical phenomena or
�nding new drugs for not yet fully understood illnesses. In our approach we focus on the
closed discovery process, where two disjointed domains A and C are speci�ed at the begin-
ning of the discovery process and the main goal is to �nd bridging terms (see Figure 5.1)
which support validation of the novel hypothesized connection between the two domains.

Given this motivation, the main functionality of the approaches, presented in the fol-
lowing sections, is bridging term (B-term) discovery implemented through ensemble based
term ranking, where an ensemble heuristic composed of several elementary heuristics is
constructed for term evaluation.

5.2 CrossBee Approach to Cross-domain Literature Mining

This section brie�y describes previous work, proposed by Jur²i£ et al., in bisociative knowl-
edge discovery for the task of literature mining. The CrossBee tool [17]�[19] is an o�-
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the-shelf solution for �nding bisociations bridging two user de�ned domains/literatures.
CrossBee is a system that not only suggests bridging terms using the ensemble ranking
methodology but also helps the experts when searching for hidden links that connect two
seemingly unrelated domains. In addition to this core functionality, supplementary func-
tionalities and content presentations were added, which make the CrossBee web application
a user-friendly tool for ranking and exploration of prospective cross-context links. This
enables the user not only to spot but also to e�ciently investigate discovered cross-domain
links.

As proposed by Jur²i£ et al., CrossBee uses an ensemble based ranking approach for
bridging term (B-term) detection. The main concept of this methodology is illustrated in
Figure 5.2, where term ranking is performed using an ensemble heuristic. Figure 5.3 shows
the list of B-terms ranked by ensemble voting of heuristics, where the presented ranked
list is the actual output produced by the CrossBee bridging term exploration system using
the gold standard dataset in literature mining, i.e. the combined migraine-magnesium
dataset [63]. The ranked list of B-term candidates, shown in Figure 5.3, provides the user
some additional information including the ensemble's individual base heuristics votes and
term's domain occurrence statistics in both domains.

Figure 5.2: Term ranking approach: �rst, ensemble heuristics vote for terms, next, terms
are sorted according to their potential B-term (as shown on left). Consequently, bridging
terms with the highest bridging term potential should receive the highest scores (as shown
on the right side). The �gure is taken from [18] and [19].

5.2.1 Methodology Outline

This section shortly describes the top-level procedural steps of the CrossBee methodology
for bridging term (B-term) discovery. As shown in Figure 5.4 the entire methodology�
implemented through ensemble-based term ranking, where an ensemble heuristic composed
of six elementary heuristics was used�can be divided into seven individual steps, which
are described below:

1. The goal of the document acquisition is to acquire documents of the two domains,
label them with domain labels and prepare the text for the next step of the method-
ology.

2. The document preprocessing step is responsible for applying standard text prepro-
cessing to the document corpus. The main parts are tokenization, stopword tagging,
and token stemming/lemmatization.

3. The heuristic speci�cation step enables detailed speci�cation of the heuristics to be
used for B-term ranking. The user speci�es one or more heuristics, which are to be
applied to evaluate the B-term candidates.
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Figure 5.3: The ensemble heuristic based ranking page indicating by a cross (X) which
elementary heuristics have identi�ed the term as potential B-term. This example shows
the top 20 ranked terms from the migraine-magnesium domain according to the selected
heuristics.

Figure 5.4: Methodological steps of the CrossBee methodology as proposed by Jur²i£ et
al. [17], [19], [70].
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4. The candidate B-term extraction step takes care of extracting the terms which are
later scored by the speci�ed heuristics. There are various parameters which control
which kind of terms are extracted from the documents (e.g., the maximal number of
tokens to be joined together as a term, minimal term corpus frequency, and similar).

5. Heuristic term score calculation is the most important step of the methodology. It
takes the list of extracted B-term candidates and the list of speci�ed heuristics and
calculates a heuristic score for each candidate term for each heuristic.

6. Visualization and exploration is the �nal step of the methodology. It has three main
functionalities.

7. Methodology evaluation was introduced as an additional step, which can be used
during the development of the methodology. Its purpose is to calculate and visualize
various metrics that were used to assess the quality of the methodology.

Evaluation of the methodology was actually performed on two problems: the standard
migraine-magnesium problem well-known in LBD, and a more recent autism-calcineurin
literature mining problem. As we use these datasets also in our experiments we will
describe them in more detail in Section 5.2.4. In the following section we will describe the
elementary and ensemble heuristics, proposed by Jur²i£ et al. [19], [70], which de�ne the
heuristic speci�cation step, in more detail.

5.2.2 Heuristics for Bridging Term Discovery

Di�erent elementary and ensemble heuristics used for B-term ranking are available in
CrossBee. The heuristics are de�ned as functions that numerically evaluate the term
quality by assigning it bisociation score to a term (measuring the potential that a term is
actually a B-term). For the de�nition of an appropriate set of heuristics, we de�ne a set of
special (mainly statistical) properties of terms, which aim at distinguishing B-terms from
regular terms; thus, these heuristics can also be viewed as advanced term statistics.

Formally, a heuristic is a function with two inputs, i.e. a set of domain labeled doc-
uments D and a term t appearing in these documents, and one output, i.e. a score that
represents the term's bisociation potential. All the heuristics operate on the data retrieved
from the documents in text preprocessing. While term ranking using the scores calculated
by an ideal heuristic should result in ranking all the B-terms at the top of the ranked list,
this ideal scenario is not realistic; nevertheless, ranking by heuristic scores should at least
increase the proportion of B-terms at the top of the ranked term list.

In the work of Jur²i£ et al. [19], [70] base heuristics are divided into four sets: six
frequency based heuristics, four TF-IDF based, three similarity based, and eight outlier
based heuristics. Most of the developed heuristics work fundamentally in a similar way�
they all manipulate solely the data present in term and document vectors and derive the
terms bisociation score. The exceptions to this are the outlier-based heuristics, which
�rst evaluate outlier documents and only later use the information from the term vectors
for B-term evaluation. Using these base heuristics they developed the ensemble heuristic
described below.

5.2.3 Ensemble Heuristic

The ensemble heuristic for bridging term discovery, which was constructed based on the
experiments [19], [70], is constructed as a sum of two parts: the ensemble voting score
svotet and the ensemble position score spost , which are summed together to give the �nal
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ensemble score for every term in the corpus vocabulary. Each term score represents the
term's potential for linking the two disjointed domains.

The ensemble voting score (svotet ) of a given term t is an integer, which denotes how
many base heuristics voted for the term: each term can get a score svotetj ∈ {0, 1, 2, ..., k},
where k is the number of base heuristics used in the ensemble. The ensemble voting score
of term tj that is at position pj in the ranked list of n terms is computed as a sum of
individual heuristics' voting scores:

svotetj =
k∑
i=1

svotetj ,hi
=

k∑
i=1

{
1, pj < n/3

0, otherwise
(5.1)

The ensemble position score (spost ) is calculated as an average of position scores of
individual base heuristics. For each heuristic hi, the term's position score spostj ,hi

is calculated

as n−pj
n , which results in position scores being in the interval [0, 1). For an ensemble of k

heuristics, the ensemble position score is computed as an average of individual heuristics'
position scores:

spostj
=

1

k

k∑
i=1

spostj ,hi
=

1

k

k∑
i=1

n− pj
n

(5.2)

The �nal ensemble score is computed as:

st = svotet + spost (5.3)

The de�nitions1 of �nal set of elementary heuristics they included in the ensemble are
given below, while a detailed justi�cation for the choice of this particular combination of
heuristics is presented in [19].

• outFreqRelRF (t) =
countTermDRF

(t)

countTermDu (t)
: relative frequency of term t in the outlier

document set detected by the Random Forest classi�er,

• outFreqRelSVM(t) =
countTermDSV M

(t)

countTermDu (t)
: relative frequency of term t in outlier doc-

ument set detected by the Support Vector Machine classi�er,

• outFreqRelCS(t) = countTermDCS
(t)

countTermDu (t)
: relative frequency of term t in the outlier doc-

ument set detected by the Centroid Similarity classi�er,

• outFreqSum(t) = countTermDCS
(t)+countTermDRF

(t)+countTermDSV M
(t): sum

of frequencies of term t in all three outlier document sets,

• tfidfDomnSum(t) = tfidfD1(t) + tfidfD2(t): sum of term TF-IDF weights of term
t in the two domains,

• freqRatio(t) = countTermDu (t)
countDocDu (t)

: term to document frequency ratio.

1Due to a large number of heuristics and auxiliary functions, we use the so-called camel casing multi-
word naming scheme for easier distinction; names are formed by word concatenation and capitalization of
all non-�rst words (e.g., freqProdRel and t�dfProduct).



5.2. CrossBee Approach to Cross-domain Literature Mining 59

5.2.4 Experimental Setting

Jur²i£ et al. [19], [70] performed evaluation based on two datasets (or two domain pairs,
since each dataset consists of two domains)�the migraine-magnesium dataset [63] and
the autism-calcineurin [69] dataset�which was viewed as a training and test dataset,
respectively. The training dataset was the dataset they employed when developing the
methodology, i.e. for creating a set of base heuristics as well as for creating the ensemble
heuristic. The results of the evaluation on the training dataset were interpreted carefully
due to a danger of over�tting the dataset, as described in [19], [70]. The test dataset was
used for the evaluation of the methodology in a real-life setting.

Table 5.1: B-terms for the migraine-magnesium dataset identi�ed by Swanson [63].

1 5 ht 16 convulsive 31 prostaglandin
2 5 hydroxytryptamine 17 coronary spasm 32 prostaglandin e1
3 5 hydroxytryptamine receptor 18 cortical spread depression 33 prostaglandin synthesis
4 anti aggregation 19 diltiazem 34 reactivity
5 anti in�ammatory 20 epilepsy 35 seizure
6 anticonvulsant 21 epileptic 36 serotonin
7 antimigraine 22 epileptiform 37 spasm
8 arterial spasm 23 hypoxia 38 spread
9 brain serotonin 24 indomethacin 39 spread depression
10 calcium antagonist 25 in�ammatory 40 stress
11 calcium blocker 26 nifedipine 41 substance p
12 calcium channel 27 paroxysmal 42 vasospasm
13 calcium channel blocker 28 platelet aggregation 43 verapamil
14 cerebral vasospasm 29 platelet function
15 convulsion 30 prostacyclin

The well-researched migraine-magnesium domain pair [63] was used as a training set.
In the literature-based discovery process Swanson managed to �nd more than 60 pairs of
articles connecting the migraine domain with the magnesium de�ciency via 43 bridging
concepts (B-terms), which are listed in Table 5.1.2 In testing the developed methodology
Jur²i£ et al. aimed at rediscovering the 43 B-terms by ranking them as high as possible
in the ranked list of potential B-terms that include Swanson's B-terms and terms that are
not in the Swanson's B-term list.

Table 5.2: B-terms for the autism-calcineurin dataset identi�ed by Petri£ et al. [69].

1 synaptic 6 bcl 2 11 22q11 2
2 synaptic plasticity 7 type 1 diabetes 12 maternal hypothyroxinemia
3 calmodulin 8 ulcerative colitis 13 bombesin
4 radiation 9 asbestos
5 working memory 10 deletion syndrome

For the test dataset Jur²i£ et al. used the autism-calcineurin domain pair, proposed
in [69]. Like Swanson, Petri£ et al. also provide B-terms, 13 in total (listed in Table 5.2),
whose importance in connecting autism to calcineurin (a protein phosphatase) is discussed
and con�rmed by the domain expert. In view of searching for B-terms, this dataset has
a relatively di�erent dimensionality compared to the migraine-magnesium dataset. On
the one hand it has only about one fourth of the B-terms de�ned, while on the other

2Note that Swanson did not state that this was an exclusive list, hence there may exist other important
bridging terms which he did not list.
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hand, it contains more than 40 times as many potential B-term candidates. Therefore,
the ratio between the actual B-terms and the candidate terms is substantially lower�
approximately by factor 160, i.e. the chance to �nd a B-term among the candidate terms
if picking it at random is 160 times lower in the autism-calcineurin dataset than in the
magnesium-migraine dataset. Consequently, �nding the actual B-terms in the autism-
calcineurin dataset is much more di�cult compared to the migraine-magnesium dataset.

Both datasets, retrieved from the PubMed database using a keyword query, were formed
of titles or abstracts of scienti�c papers returned by the query. However, they used an addi-
tional �ltering condition for selecting the migraine-magnesium dataset. For fair comparison
with Swanson's experiments they selected only the articles published before the year 1988
as this was the year when Swanson published his research about this dataset and conse-
quently making an explicit connection between the migraine and magnesium domains.

Table 5.3: Comparison of some statistical properties of the two datasets used in the ex-
periments, as presented in [19], [70].

migraine-magnesium autism-calcineurin

R
et
ri
ev
al Source PubMed PubMed

Query terms "migraine"-"magnesium" "autism"-"calcineurin"
Additional conditions Year < 1988 /
Part of paper used Title Abstract

D
o
cu
m
en
t

S
ta
ti
st
ic
s Number 8,058 (2,415-5,633) 15,243 (9,365-5,878)

Doc. with B-term 394 (4.89%) 1,672 (10.97%)
Avg. words per doc. 11 180

T
er
m

st
a
ti
st
ic

Avg. term per doc. 7 173
Distinct terms 13,525 322,252
B-term candidates 1,847 78,805
De�ned B-terms 43 13

Table 5.3 states some properties for comparing the two datasets that were used in the
evaluation. One of the major di�erences between the datasets is the length of an average
document since only the titles were used in the migraine-magnesium dataset, while the
full abstracts were used in the autism-calcineurin case. Consequently, also the number of
distinct terms and B-term candidates is much larger in the case of the autism-calcineurin
dataset.

5.2.5 The CrossBee HCI Interface

The CrossBee website is built on top of the CrossBee library [17], [70]. From this per-
spective CrossBee is �rstly, a functional enhancement and secondly, a wrapping of this
functionality into a practical web user interface especially designed for the requirements
of bisociation discovery. After the ensemble heuristic computation, the user is presented
with a ranked list of B-term candidates as seen in Figure 5.3. The list provides the user
some additional information including the ensemble's individual base heuristics votes and
term's domain occurrence statistics in both domains.

The user-friendly CrossBee web interface can be used to e�ciently investigate cross-
domain links ranked by the ensemble-based ranking methodology. CrossBee's document
focused exploration empowers the user to �lter and order the documents by various criteria,
including detailed document view that provides a more detailed presentation of a single
document including various term statistics. Methodology performance analysis supports
the evaluation of the methodology by providing various data which can be used to mea-
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Figure 5.5: One of the useful features of the CrossBee interface is the side-by-side view of
documents from the two domains under investigation. The analysis of the term �stress�
from the migraine-magnesium domain is shown. The presented view enables e�cient com-
parison of two documents, the left one from the migraine domain and the right one from
the magnesium domain.

sure the quality of the results, e.g., data for plotting the ROC curves. High-ranked term
emphasis marks the terms according to their bisociation score calculated by the ensemble
heuristic. When using this feature all high-ranked terms are emphasized throughout the
whole application thus making them easier to spot (see di�erent font sizes in Figure 5.5).
B-term emphasis marks the terms de�ned as B-terms by the user (yellow terms in Fig-
ure 5.5). Domain separation is a simple but e�ective option which colors all the documents
from the same domain with the same color, making an obvious distinction between the doc-
uments from the two domains (di�erent colors in Figure 5.5). User interface customization
enables the user to decrease or increase the intensity of the following features: high-ranked
term emphasis, B-term emphasis and domain separation.

The user can inspect the actual appearances of the selected term in both domains,
using the side-by-side document inspection as shown in Figure 5.5. In this way, they can
verify whether his rationale behind selecting this term as a bridging term can be justi�ed
based on the contents of the inspected documents.

Note that the CrossBee web interface was designed for end users who are not computer
scientists or data miners and who prefer using the system by following a �xed sequence
of prede�ned methodological steps. However, for a more sophisticated user, the weakness
of CrossBee is the lack of possibility to experiment with di�erent settings as well as the
lack of possibility to extend the methodology with new ideas and then compare or evaluate
the developed approaches. As another weakness, the CrossBee web application does not
o�er a downloadable library and documentation distribution or extensive help. These
weaknesses were among the incentives for our new developments, resulting in the TextFlows
implementation and its elaborate mechanisms for detecting and exploring bisociative links
between the selected domains of interest.
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5.3 The CrossBee Methodology as a Work�ow in TextFlows

In this section we show how the complex CrossBee methodology, presented in Section 5.2,
was implemented as a work�ow in the TextFlows platform. To ensure the best user expe-
rience in the process of bridging term discovery we have combined the visual programming
interface of the TextFlows platform with the bridging term exploration system CrossBee. In
such setting TextFlows is responsible for work�ow construction and execution, while Cross-
Bee provides only the user interface (described in Section 5.2.5) for term and document
visualization, which supports the expert in �nding relevant documents and exploration of
the top-ranked bisociative terms.

The user starts the bridging term discovery process in TextFlows by either construct-
ing a new work�ow for cross-domain discovery or by opening an existing work�ow. In
the former case, the user is required to input either a PubMed query or a �le with doc-
uments from the two domains, where each line contains a document with exactly three
tab-separated entries: (a) document identi�er, (b) domain acronym, and (c) the document
text. The user is able to tailor the preprocessing steps to his own needs by simply altering
the work�ow using the TextFlows visual programming user interface, which enables simple
addition, connection and removal of components from the work�ow canvas. In this way,
the user can also modify the ensemble of elementary heuristics, outlier documents identi-
�ed by external outlier detection software, the already known bisociative terms (B-terms),
and others, which was previously not possible in the CrossBee tool. When the user runs
the work�ows (by clicking the run button) the system starts with the process of text pre-
processing, followed by the computation of elementary heuristics, the ensemble bisociation
scores and term ranking.

After performing the calculation of bisociative potentials for every term in the vo-
cabulary in TextFlows, the user is directed to the user-friendly tool CrossBee where one
can e�ciently investigate cross-domain links pointed out by the ensemble-based ranking
methodology. CrossBee's document focused exploration empowers the user to �lter and
order the documents by various criteria, including detailed document view that provides a
more detailed presentation of a single document including various term statistics. Method-
ology performance analysis supports the evaluation of the methodology by providing vari-
ous data which can be used to measure the quality of the results, e.g., data for plotting the
ROC curves. High-ranked term emphasis marks the terms according to their bisociation
score calculated by the ensemble heuristic. When using this feature all high-ranked terms
are emphasized throughout the whole application thus making them easier to spot (see dif-
ferent font sizes in Figure 5.5). B-term emphasis marks the terms de�ned as B-terms by the
user (yellow terms in Figure 5.5). Domain separation is a simple but e�ective option which
colors all the documents from the same domain with the same color, making an obvious
distinction between the documents from the two domains (di�erent colors in Figure 5.5).
User interface customization enables the user to decrease or increase the intensity of the
following features: high-ranked term emphasis, B-term emphasis and domain separation.

As described in Section 5.2.1 the top-level overview of the CrossBee methodology con-
sists of the following steps: document acquisition, document preprocessing, heuristics spec-
i�cation, candidate B-term extraction, heuristic terms scores calculation, and visualization
and exploration. Figure 5.6 shows the described pipeline now implemented as an actual
executable work�ow in the online cloud-based work�ow composition and execution envi-
ronment TextFlows. The work�ow for cross-domain literature mining is publicly available3

for sharing and reuse within the TextFlows platform. The work�ow integrates the spec-
i�cation and computation of heuristics, described in Section 5.2.2, and is connected to

3http://textflows.perovsek.com/workflow/7/

http://textflows.perovsek.com/workflow/7/
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Figure 5.6: Methodological steps of the CrossBee cross-domain literature mining approach
as a work�ow in the TextFlows platform. This work�ow is publicly available at http:

//textflows.perovsek.com/workflow/7/.

the term exploration interface of the online system CrossBee, which supports the user in
advanced document exploration by facilitating document analysis and visualization. Since
the proposal of such work�ow was already presented in [19] and our main contribution is
the adapted implementation in the TextFlows platform, we will not include the description
of individual steps of the work�ow in our main part of the thesis. Instead, we will describe
the entire underlying pipeline of natural language processing (NLP) and literature-based
discovery (LBD) components (from the work�ow, shown in Figure 5.6) in Appendix A.1.

5.4 Banded Matrix Based Heuristics

In this section we study a new type of heuristics for B-term ranking, which use banded ma-
trices [104] to discover structures which reveal the relations between the rows (representing
documents) and columns (representing words/terms) of a given data matrix (representing
a set of documents). We use this information in developing new heuristics for evaluating
words/terms according to their bridging term (B-term) potential. In addition, the method
enables the identi�cation of document outliers, but this is out of the scope of this thesis.

The methodology works by �rst encoding the documents from the two domains into
the standard Bag-of-Words (BoW) vector representation and then transforming the binary
matrix of BoW vectors to its banded structure. The proposed banded matrices methodol-
ogy is based on the assumption that similar documents, as well as the words that appear in
the same document, will appear closer to each other in the matrix and will therefore form
`clusters' along the main diagonal of the matrix in its banded form4. Our work is based
on the intuition that terms that connect di�erent domains will be positioned at the edges
of clusters from di�erent domains: we have developed di�erent heuristics that should be
able to identify these B-terms by ranking them high in the ranked list of terms with high
potential for cross-context link discovery. We introduce below the banded matrices, and
follow this with a toy example illustrating the approach.

5.4.1 De�nition of Banded Matrices

Uncovering structures that reveal the nature of relations between rows and columns of data
matrices is an important step towards solving real-world problems, as binary data occur

4A correspondence between bi-clustering and banded structures has been shown in [107].

http://textflows.perovsek.com/workflow/7/
http://textflows.perovsek.com/workflow/7/
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Figure 5.7: An example of a fully banded matrix. The �gure is taken from [104].

in numerous real-world applications. Recent research in social networks, bioinformatics,
and human genomics has shown the bene�ts of banded representations of matrices [107].
These representations have contributed to bringing huge performance boosts in various
mathematical operations, including matrix multiplication.

To explain the algorithm that transforms a matrix into its banded structure we �rst
need to de�ne the basic concepts. A binary matrix has a banded structure if we can �nd a
permutation of rows and columns such that the ones (1s) exhibit a staircase pattern down
the rows along the leading diagonal, as illustrated in Figure 5.7.

De�nition 5.1. A binary matrix M is fully banded if there exists a permutation of rows
κ and a permutation of columns π such that:

1. for every row i in Mπ
κ the entries with 1s occur in consecutive column indices

ai, ai + 1, . . . , bi, and

2. the values of starting indices for 1s in successive rows (i and i+1) satisfy ai ≤ ai+1

and bi ≤ bi+1.

A necessary precondition for (1) to hold is that matrix M satis�es the consecutive-ones
property : a binary matrix satis�es this property if it is possible to order the columns so
that in every row the non-zero entries occur in consecutive positions.

As banded structured matrices cannot be expected to arise in noisy real-world envi-
ronments, we need to rede�ne the problem in the sense that it is applicable to a wider
range of real-world situations. We aim to minimize the number of transformations one
needs to perform on a binary matrix to unveil a banded structure. The number of such
transformations will measure how far the matrix is from being fully banded. The algo-
rithm presented in the next section (following the motivating example) aims to solve this
optimization problem.

5.4.2 A Motivating Example

Let us have two sets of documents A and C. For the purpose of explaining the methodology
we constructed a small ideal-world dataset, which consists of 6 clusters of documents, 3
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of which belong to domain A, while the others belong to domain C. Initially, we took a
set of 120 di�erent randomly selected words and randomly divided them into 6 clusters, so
that there were no intersections, i.e. each word belonged to one cluster only. The number
of possible words per cluster was 20, while each document in the cluster was randomly
assigned only 15 of these words. Using a banded matrix algorithm presented in the next
section this document set would �rst be transformed into a fully banded matrix form shown
in Figure 5.9 and �nally (by applying the discovered row and column permutations on the
initial matrix) into the structure shown in Figure 5.10.

In order to illustrate our methodology, we randomly chose 8 words from each of the
two domains A and C to act as arti�cially de�ned, preselected bridging terms. This
e�ect was achieved by inserting the preselected terms into every document in every cluster
with a 10% chance, thus spoiling the original clean separation of words within documents
of di�erent clusters. The resulting matrix showing documents as rows, and words as
columns, is depicted in Figure 5.8, where the green vertical lines represent the arti�cially
inserted B-terms. As the aim of our method is to identify the bridging terms, we conducted
experiments to check how the designed preselected terms will be ranked by our heuristics.

Having used our methodology on the ideal-world toy domain of Figure 5.8, we got
the result shown in Figure 5.10. The green vertical lines represent the terms which were
deliberately acting as bridging terms in this experiment. As can be seen from Figure 5.10,
similar documents (documents from the same cluster) and similar terms (terms that are
contained in the same document cluster) are located close to each other. As a result, the
`clusters' along the matrix leading diagonal are clearly visible. Note that the preselected
bridging terms occur mainly on the transitions between the clusters. All of our heuristics
(explained in the next section) correctly assigned a B-term score greater than 0 only to
the preselected bridging terms, which served as a proof-of-concept for the toy experiment.

Let us now consider a single document only. A document from domain A (represented

Figure 5.8: Documents (rows) and words (columns) in an ideal-world domain. The color
of a row indicates the domain of a document (blue for domain A and red for domain C).
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Figure 5.9: Matrix of documents shown after the transformation of documents in Figure 5.8
into a fully banded matrix structure. Rows represent the documents, while columns repre-
sent the terms. The green vertical lines represent the terms which were inserted as potential
bridging terms to the documents.

Figure 5.10: Final result of our methodology: matrix of documents from Figure 5.8 per-
muted using row and column permutations obtained from the transformation of the matrix
into its fully banded structure.
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with a horizontal yellow line on Figures 5.8, 5.9 and 5.10 consist of the following words:
magnesium blood cell prophylaxi relationship lithium red calcium e�ect sodium control mem-
brane measurement potential perfuse ophthalmoplegic simultaneous, where the �rst 15
words were randomly selected from the document's cluster term set, while the two words
in bold were randomly inserted from the preselected set of bridging terms. The blue dots
on the horizontal yellow line in Figure 5.10 consequently symbolize the above words. Ac-
cording to the banded structure of the matrix (see Figure 5.9) the words simultaneous

and ophthalmoplegic belong to word clusters of domains A and C, respectively. While
the observed document belongs to domain A, the term ophthalmoplegic is representative
of the documents from domain C. Therefore, our methodology should be able to identify
this term as a potential B-term. In contrast, as the word simultaneous is used in the
documents from the same domain A, it should not be considered as a B-term. Indeed,
our heuristics (presented in the next section) have only identi�ed ophthalmoplegic as a
B-term. Figure 5.9 shows the �nal result of the banded matrix algorithm and is used in
the next section for the explanation of our heuristics.

5.4.3 A Methodology for B-term Ranking Using Banded Matrices

Our approach is designed to �nd links between two domains, named A and C, by exploring
the bridging terms that connect these two separate domains. The methodology works as
follows. First, we preprocess the documents from the two domains using standard text
mining techniques [1]. This is performed through a number of steps: stop-word removal,
stemming or lemmatization, usage of synonym dictionaries, construction of n-grams of
words and, �nally, transformation to a Bag-of-Words representation.

Next, the result of the preprocessing step, i.e. the binary matrix of �Bag-of-Words�
vectors (the BoW matrix), is transformed to its banded matrix structure. Finally, we sort
the terms according to their scores representing their bridging term potential, computed
according to the new heuristics described below. In the following subsections, each step of
the proposed bridging term detection and ranking methodology is described in detail.

5.4.4 Constructing a Banded Structure Using a Bidirectional Minimum
Banded Augmentation Algorithm

The optimization problem addressed to make a banded matrix is labeled Bidirectional
Minimum Banded Augmentation (MBA) [104] and is de�ned as follows:

Problem 5.1. Given a binary matrix M, �nd the minimum number of bidirectional �ips
(�ips from both 1s to 0s and 0s to 1s) so that M becomes fully banded.

Algorithm 5.1: Bidirectional Minimum Banded Augmentation (MBA) algorithm

1. Find �xed permutation of columns π.

2. Solve the consecutive-ones property on the column permuted matrix Mπ.

3. Resolve Sperner con�icts (de�ned later in this section) between rows in Mπ.

4. Sort the rows in Mπ and return the row permutation.

The presented MBA algorithm discovers a single band by �rst �xing the column per-
mutations of the data matrix before proceeding with the rest of the algorithm. A good
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permutation of columns tends to put similar columns (i.e. terms) closer to each other. We
use the Jaccard coe�cient as a column similarity measure: J(Ma,M b) = Ma∩Mb

Ma∪Mb . In our
example, this similarity measure returns the highest value of 1 when two terms occur in
the same set of documents. We used the spectral ordering algorithm [108] to �nd the �xed
column permutation π of matrix M .

Next, the algorithm deals with solving the consecutive-ones properties on rows of matrix
Mπ, which is an essential step in �nding the row permutation κ. Solving the consecutive-
ones problem for row Mπ

i with bidirectional �ips corresponds to solving the maximum
sub-array problem on matrix W j

i [104], de�ned as follows:

W j
i :=

{
1 if M j

i = 1

−1 if M j
i = 0

.

The objective of solving the maximum sub-array problem is to �nd the sub-array of the
matrix that has the maximum sum of numbers. This problem can be solved in linear time
with respect to the size of the array using the scan-line algorithm [109]. This method
returns the interval boundaries which we use to solve the consecutive-ones problem in Mπ

i

by setting the �elds in Mπ
i between the boundaries to 1 and others to 0.

Next, the algorithm deals with removing the Sperner con�icts between the rows of
matrix Mπ. A matrix has Sperner con�icts if its rows do not form a Sperner family of
intervals:

Lemma 5.2. Two rows Mi = [a, b] and Mj = [a′, b′] with consecutive-ones property, where
i 6= j, form a Sperner family of intervals if they are overlapping such that (a ≥ a′ ∨ b′ ≥
b) ∧ (a′ ≥ a ∨ b ≥ b′).

Additional �ips on rows of Mπ need to be made in order to ensure that rows have the
Sperner family of intervals property.

Lemma 5.3. Let M̂ be the binary matrix M augmented with Mij =Mi\Mj for every two
rows Mi ⊂ Mj. Note that M is fully banded if and only if M̂ has the consecutive-ones
property (proof in [104]).

To eliminate all Sperner con�icts between row intervals of Mπ, the algorithm has to go
through all extra rows described in M̂ and make sure that they have the consecutive-ones
property. This can be done by solving the maximum sub-array problem on the extra rows
of M̂ . We perform additional �ips in order for the rows to obtain consecutive-ones property.
Lastly, we update the rows in Mπ according to the changes made over M̂ in order to get
a banded matrix.

Finally, the algorithm sorts rows [a, b] ofMπ in an ascending order of as, while deciding
ties with the ascending order of their bs. The result of the algorithm is a banded matrix
Mband, along with details of the row and column permutations that were performed. We
use these permutations on our original matrix M, as the objective is to produce a matrix
without distorting the data (i.e. without making the bidirectional �ips). In the next
section, we present the heuristics for calculating the B-terms potential scores.
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5.4.5 New Heuristics for B-term Potential Evaluation

Here we describe the details of the three banded matrix-based heuristics, which we propose
for computing the bridging term potential scores. After completing the step of term score
computation, we sort the terms according to the values of one of the heuristics and present
the top-ranked terms (hopefully representing the most interesting B-term candidates) to
the expert. The designed heuristics should favor B-terms over non-B-terms by pushing
interesting B-term candidates higher to the top of the ranked term list. For easier de�nition
of the proposed heuristics we de�ne variable didx to represent the row index of document
d in the banded matrix Mband and tidx to represent the column index of term t in Mband.
Note that in order to compute the score of the proposed heuristics, we distinctively take
into account the document-term matrix in two forms, banded (as shown in Figure 5.9) and
full (as shown in Figure 5.10).

• Heuristic 1: This is a frequency based heuristic for computing the B-term potential.
If all document-term pairs in the tidx-th column of matrix MBand, which equal to
1, belong to the same domain, we denote this domain as D1. Note that in such a
case, the tidx-th column, which represents term t in the banded matrix, should be
�single-colored� in the matrix visualization in Figure 5.9. If the documents in the
MBand for term t do not belong to the same domain, the heuristic returns score 0 for
this term (h1score(t) := 0). Otherwise, the score of Heuristic 1 for term t is de�ned
as:

h1score(t) := countDocD2(t),

where countDocD2(t) is the number of documents that contain term t and belong to
domain D2 (do not belong to domain D1) in the matrix shown in Figure 5.10. This
heuristic is based on the assumption that terms which strongly represent one domain
(the single-colored column in the banded matrix of Figure 5.9), and at the same time
there are many documents from the other domain that contain these terms, have a
higher chance of being the bridging terms between the two domains.

• Heuristic 2: This is also a frequency based heuristic. Similarly as described in Heuris-
tic 1, if all documents for which the tidx-th column of matrixMBand equals to 1 belong
to the same domain, we label this domain as D1. Otherwise, the heuristic returns
score 0 for term t (h2score(t) := 0). Heuristic 2 score for term t is de�ned as:

h2score(t) =
countDocD2(t)

countOnDiagDocD1(t)
,

where countDocD2(t) is the number of documents from domain D2 that contain term
t, and countOnDiagDocD1(t) is the count of document-term pairs equaling 1 in the
tidx-th column of the banded matrix MBand: countOnDiagDocD1(t) := |{didx; d ∈
D1 ∧MBand(didx, tidx) = 1}|. Therefore, for term t h2score(t) is the ratio between
the count of documents that belong to domain D2 and the documents in the MBand

for term t which belong to domain D1. The intuition behind this heuristic is that a
term that strongly represents a given domain according to the banded matrix, and
is at the same time also contained in many documents of the other domain, should
also have a high B-term potential score.

• Heuristic 3: If the documents inMBand for term t do not belong to the same domain,
this heuristic returns a score of 0 (h3score := 0). Otherwise, we label this domain
as D1 and de�ne the Heuristic 3 score for term t as follows:
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h3score(t) =
countOnDiagDocD1(t)

countDocD1(t)
∗ countDocD2(t),

where countOnDiagDocD1(t) is the count of document-term pairs in the tidx-th
column of banded matrix MBand, and where documents belong to domain D1:
countOnDiagDocD1(t) = |{didx; d ∈ D1 ∧MBand(didx, tidx) = 1}|; countDocD1(t)
denotes the number of documents from domain D1 that contain term t, while
countDocD2(t) is the number of documents from domainD2 that contain term t. The
bridging term potential score for term t is the ratio of documents from domain D1

that are contained in the `diagonal cluster' multiplied by the number of documents
from the other domain. The intuition behind this heuristic is that for term t, the more
the term represents a domain (has a large proportion of document on the diagonal
of the banded matrix) and also the more documents from the other domain that
contain t exist, the higher the potential of term t to be a bridging term between the
two domains.

5.4.6 Experiments and Results

This section presents the evaluation of the newly presented heuristics for literature-based
discovery. We have applied di�erent base and ensemble heuristics on two problems, which
were described in Section 5.2.4: the standard migraine-magnesium literature mining bench-
mark problem used in the Swanson's experiments [63], and a more recent example of using
literature mining for uncovering the nature of relations that might contribute to better
understanding of autism, originated by [68] and [69].

Evaluation Procedure

The key aspect of the evaluation is the assessment of how well the proposed ensemble
heuristic performs when ranking the terms. Two evaluation measures were used in the
evaluation of the developed methodology: the standard Area under the Receiver Operating
Characteristic analysis and the number of B-terms found among the �rst 5, 10, 20, 100,
500 and 2,000 terms in the heuristics' ranked list of terms.

First, we compared the heuristics using the Area under the Receiver Operating Char-
acteristic (AUROC) analysis [110]. The Receiver Operating Characteristic (ROC) space is
de�ned by two axes, where the horizontal axis scales from zero to the number of non-B-
terms, and the vertical axis from zero to the number of B-terms. An individual Receiver
Operating Characteristic (ROC) curve, representing a single heuristic, is constructed in
the following way:

• Sort all the terms by their descending heuristic score.

• For every term of the term list do the following: if a term is a B-term, then draw one
vertical line segment (up) in the ROC space, or else draw one horizontal line segment
(right) on the ROC space.

• If a heuristic outputs the same score for many terms, we cannot sort them uniquely.
In such case, we draw a line from the current point p to the point p+(nb, b), where nb
is the number of non-B-terms and b is the number of terms that are B-terms among
the terms with the same bisociation score. In this way we may produce slanted lines,
if such an equal scoring term set contains both B-terms and non-B-terms.

AUROC is de�ned as the percentage of the area under ROC curve, i.e. the area under
the curve divided by the area of the whole ROC space. Besides AUROC we also list the
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interval of AUROC which tells how much each heuristic varies among the best and the
worst sorting of a possibly existing equal scoring term set. This occurs due to the fact that
some heuristics do not produce unambiguous ranking of all the terms. Several heuristics
assign the same score to a set of terms�including both the actual B-terms as well as
non B-terms�which results in the fact that unique sorting is not possible.5 In the case
of equal scoring term sets, the inner sorting is random (which indeed produces di�erent
performance estimates), however the constructed ROC curve corresponds to the average
ROC curve over all such possible random inner sortings.

From the expert's point of view, the ROC curves and AUROC statistics are not the
most crucial information about the quality of a given heuristic. While in general it still
holds that a higher AUROC re�ects a better heuristic, we are more interested in the ranking
from the perspective of the domain expert (the end-user of our system) who is usually more
interested in questions like: (a) how many B-terms are likely to be found among the �rst
n terms in a ranked list (where n is a selected number of terms the expert is willing to
inspect, e.g., 5, 20 or 100), or (b) how much one can trust a heuristic if a new dataset is
explored. Therefore, we also performed an evaluation using an alternative user oriented
approach, which evaluates the ranking results adapted to the user's needs. This evaluation
estimates how many B-terms can be found among the �rst 5, 10, 20, 100, 500 and 2,000
terms on the ranked list of terms produced by a heuristic.

Results on the Migraine-magnesium Dataset

Table 5.4 shows the comparison of ranking performance for all the base banded matrix-
based heuristics, as well as all heuristics proposed by Jur²i£ [19], [70], on the migraine-
magnesium dataset. The heuristics are ordered by their AUROC. The second and third
column in the table represent heuristics' average AUROC score6 and its AUROC interval,
respectively.

As mentioned, such AUROC evaluation does not necessarily align well with the method-
ology evaluation from a user's perspective. Therefore, the right side of Table 5.4 shows
the results of an alternative user-oriented evaluation approach, which shows how many
B-terms were found among the �rst 5, 10, 20, 50, 100, 200, 500, 1,000 and 2,000 terms on
the ranked list of terms produced by a heuristic.

The three banded matrix-based heuristics, described in Section 5.4.5, resulted in very fa-
vorable results on the training migraine-magnesium domain (as seen in Table 5.4). Heuris-
tic 3, which we consider the most complete of the three, outperforms all except the outFre-
qRelRf heuristic (according to the AUROC score) and is the heuristic which �nds the most
B-terms among the top 200 ranked terms. The other two banded matrix-based heuristics
are also among the best ranked heuristics. However, e.g., if the expert limits himself to in-
spect only the �rst 20 terms, he will �nd 0 B-terms in the ranked term list using any of the
newly presented heuristics. Consequently, from the user's perspective, the new heuristics
do not outperform the others.

5In such cases, the AUROC calculation can either maximize the AUROC by sorting all the B-terms in
front of all the other terms inside equal scoring sets or minimize it by putting the B-terms at the back.

6In contrast to the results reported by [17], [19], [70], the AUROC scores presented in this section take
into account only the terms which appear in both domains. This results in lower AUROC scores, which
are thus not directly comparable between the studies. The reason for this approach is in the de�nition of
a bridging term, where the term is required to appear in both domains, as it cannot form a connection
otherwise.
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Table 5.4: Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the migraine-magnesium dataset.

Heuristic Name
AUROC Number of B-terms among the top n ranked terms

Average Interval 5 10 20 50 100 200 500 1,000 2,000

outFreqRelRf 60.32% 1.39% 0.24 0.48 0.95 1 3.72 7.92 15.8 30.33 43
heuristic3 59.63% 2.22% 0 0 0 1 3 9 14.92 28.48 43

outFreqRelSum 59.44% 0.62% 0 0.36 1 1.64 3.54 7 15 27 43
outFreqRelSvm 58.91% 1.25% 0.12 0.24 0.48 1 1.63 5.92 14.69 29 43
heuristic2 58.36% 4.81% 0 0 0 1 6 7.91 12.65 29.62 43

outFreqRf 57.50% 10.94% 0 0 0 0 0 3.91 16.03 27.86 43
freqDomnRatioMin 57.34% 4.71% 0.14 0.28 0.57 1.42 2.83 5.66 14 28 43
heuristic1 56.35% 8.73% 0 0 0 1 2 4.48 16.5 26.58 43

outFreqSum 56.17% 3.97% 0 0 0 0 0 2 14.28 27.11 43
outFreqSvm 55.25% 9.34% 0 0 0 0 0.32 3 14.09 26.14 43
outFreqRelCs 54.29% 1.50% 0 0 1 1 2.69 5.07 11 27 43
freqDomnProdRel 53.23% 3.08% 0 0 0 0 0 6 14 27 43
outFreqCs 52.34% 10.51% 0 0 0 0 0 1.43 15.62 24.67 43
t�dfDomnSum 52.11% 2.69% 0 0 0 0 1 2 11 26.14 43
t�dfAvg 51.31% 3.63% 0 0 1 1.79 3.11 5.75 11.84 20.9 43
freqDomnProd 51.20% 3.36% 0 0 0 0 1 3 13.17 27.16 43
t�dfDomnProd 51.18% 2.69% 0 0 0 0 1 3 13.5 27 43
freqRatio 50.51% 39.26% 0 0 1 1 4 5 11.65 23.09 43
appearInAllDomains 50.00% 50.00% 0.11 0.23 0.46 1.15 2.3 4.6 11.49 22.98 43
t�dfSum 49.65% 3.63% 0 0 0 0 0 1 9 25.36 43
freqTerm 49.60% 3.78% 0 0 0 0 0 1 8.91 25.49 43
freqDoc 49.55% 3.82% 0 0 0 0 0 1 8.03 24.79 43

Results on the Autism-calcineurin Dataset

In this section we show how our newly proposed heuristics based on banded matrices
performs on the autism-calcineurin domain. As discussed, the dimensionality of the autism-
calcineurin dataset is considerably di�erent and less favorable compared to the migraine-
magnesium dataset.

Table 5.5 shows that the performance of the proposed base heuristics based on banded
matrices signi�cantly changes compared to the migraine magnesium dataset (Table 5.4).
These heuristics are now among the average ranked (Heuristic 2 even among the worst
ranked) according to the AUROC evaluation. This could be due to the fact that the
dimensionality of the autism-calcineurin dataset is considerably less favorable compared
to the migraine-magnesium dataset. As the BoW space in this domain is much sparser,
the banded matrix of this space contains many more `clusters' along the leading diagonal,
which are also smaller. Consequently, the heuristics are presented with a more di�cult
job of identifying terms that connect di�erent domains, which should be positioned at the
edges of clusters in the banded matrix.

The right side of the Table 5.5 shows the results of an alternative user oriented evalu-
ation approach�the number of B-terms among the �rst n terms on the ranked list. The
results show that all heuristics (except two) fail to present the user with a single B-term
among the top ranked 50 terms, making the discovery of new connections between the
two domains an extremely di�cult task. As described in Section 5.2.3, Jur²i£ et al. [19],
[70] proposed an approach using ensembles, where di�erent heuristics vote for terms, to
overcome this issue. They show that a carefully chosen ensemble of heuristics improves
the quality of the best ranked terms. In the next section we propose an alternative ap-
proach, which uses background knowledge to improve the ranking capabilities of the base
heuristics, and thus improves the quality of the best ranked terms of the ensemble as well.
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Table 5.5: Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the autism-calcineurin dataset.

Heuristic Name
AUROC Number of B-terms among the top n ranked terms

Average Interval 5 10 20 50 100 200 500 1,000 2,000 5,000 all

freqRatio 95.10% 0.16% 1 1 1 1 1 1 1 3 5 8.99 13
t�dfSum 88.78% 0.05% 0 0 0 0 1 1 1 2 4 5 13
t�dfDomnProd 88.61% 0.05% 0 0 0 0 0 0 1 1 4 6 13
t�dfDomnSum 88.33% 0.02% 0 0 0 0 1 1 2 2 4 5 13
freqTerm 87.80% 0.80% 0 0 0 0 1 1 1 2 3 5 13
freqDomnProd 87.69% 0.73% 0 0 0 0 0 0 0 1 2 6 13
freqDomnProdRel 85.77% 0.69% 0 0 0 0 0 0 0 1 1 6 13
outFreqSum 80.86% 7.94% 0 0 0 0 0 1 1 3 5 7 13
outFreqCs 80.50% 10.05% 0 0 0 0 0 1 1 1 4 7.17 13
freqDoc 79.01% 2.53% 0 0 0 0 0 1 1 2 2 5 13
outFreqRf 78.11% 12.55% 0 0 0 0 0 1 1 2.07 4.67 7.39 13
outFreqSvm 75.15% 17.55% 0 0 0 0 1 1 1.46 4 4.67 5.44 13
t�dfAvg 73.56% 0.05% 1 1 1 1 1 1 1 1 3 6 13
heuristic3 73.34% 2.02% 0 0 0 0 0 0 1 4 4 4 13

heuristic1 70.58% 8.09% 0 0 0 0 0 0 0 1 4 4.02 13

outFreqRelCs 64.40% 0.19% 0 0 0 0 0 0 0 0 0 1.49 13
outFreqRelSum 62.52% 0.09% 0 0 0 0 0 0 0 1.64 2 2 13
outFreqRelRf 61.30% 0.12% 0 0 0 0 0.01 0.58 1 1 1 2 13
outFreqRelSvm 58.39% 0.17% 0 0 0 0 0 0 0 0 1.25 2 13
heuristic2 56.85% 2.26% 0 0 0 0 0 0 0 0 0 1 13

appearInAllDomains 50.00% 50.00% 0 0 0 0.01 0.02 0.03 0.08 0.17 0.33 0.83 13
freqDomnRatioMin 24.93% 1.12% 0 0 0 0 0 0 0 0 0 0 13

5.5 CrossBee Methodology Empowerment with Controlled

Vocabularies

This section describes an extension of the CrossBee methodology, described in Sections 5.2
and 5.3, with a new ingredient: the use of a controlled vocabulary for improving B-term
detection and ranking. The motivation for using prede�ned controlled vocabularies is to
reduce the heuristic search space which, consequently, reduces the running times of B-
term discovery algorithms. Furthermore, controlled vocabularies ensure consistency and
resolve ambiguity inherent in normal human languages where the same concept can be
given di�erent names. In this way, they improve the quality and organization of retrieved
knowledge, given that they consist of prede�ned, authorized terms that have been pre-
selected by the designers of the vocabulary that are experts in the subject area. Controlled
vocabularies solve problems of homographs and synonyms by a bijection between concepts
and authorized terms.

5.5.1 The MeSH Vocabulary

MeSH (Medical Subject Headings) is a controlled vocabulary used for indexing articles for
PubMed, designed by The National Library of Medicine (NLM). Figure 5.11 shows a top-
level example of the MeSH structure and hierarchy. The 2015 version of MeSH contains a
total of 27,455 subject headings, also known as descriptors. Each descriptor is assigned a
unique tree number (shown in square brackets in Figure 5.11) that facilitates search and
�ltering. Most of the descriptors are accompanied by a short description or de�nition,
links to related descriptors, and a list of synonyms or very similar terms (known as entry
terms). Because of these synonym lists MeSH can also be viewed as a thesaurus.

We have implemented a vocabulary construction tool called MeSH �lter as an interac-
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Nervous System Diseases [C10]

Central Nervous System Diseases [C10.228]

Brain Diseases [C10.228.140]

Headache Disorders [C10.228.140.546]

Headache Disorders, Primary [C10.228.140.546.399]

Migraine Disorders [C10.228.140.546.399.750]

Alice in Wonderland Syndrome [C10.228.140.546.399.750.124]

Migraine with Aura [C10.228.140.546.399.750.250]

Migraine without Aura [C10.228.140.546.399.750.450]

Ophthalmoplegic Migraine [C10.228.140.546.399.750.725]

Tension-Type Headache [C10.228.140.546.399.875]

Trigeminal Autonomic Cephalalgias [C10.228.140.546.399.937]

Figure 5.11: Example of MeSH structure and hierarchy.

Figure 5.12: MeSH �lter is a widget in the TextFlows platform designed to help the user
to quickly select the descriptors of interest.

tive widget in the TextFlows platform. This implementation uses synonym lists from the
MeSH 2015 database, available online7. Figure 5.12 shows the interface to the developed
interaction widget. The interface is designed to enable the selection of descriptors of inter-
est from the hierarchy of descriptors. Its �nal output is a text �le containing all the terms
that belong to the user selected descriptors from the MeSH hierarchy.

5.5.2 Extended Methodology Work�ow

This section describes how we have upgraded the proposed methodology with the ability
to use a prede�ned controlled vocabulary for reduction of the B-term search space. This

7http://www.nlm.nih.gov/mesh/filelist.html

http://www.nlm.nih.gov/mesh/filelist.html
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not only increases the e�ciency of the heuristic calculation algorithms, but also tends
to improve the relevance of top ranked B-terms due to reduced ambiguities in human
languages. The upgraded methodology is shown in Figure 5.13. Compared to the initial
methodology shown in Figure 5.6, the new work�ow8 includes two new steps: vocabulary
acquisition and vocabulary preprocessing.

Figure 5.13: Methodological steps of the extended cross-domain literature mining process.
This work�ow is publicly available at http://textflows.perovsek.com/workflow/55/.

A procedural explanation of the new steps of the upgraded work�ow of Figure 5.13 is
presented below.

Vocabulary Acquisition

Figure 5.14 shows a structurally simple methodological step of vocabulary acquisition that
contains only two components. Its goal is to acquire the vocabulary and transform it into
the AnnotatedDocumentCorpus data object, so it can be preprocessed afterwards. The
components are responsible for the following tasks:

Figure 5.14: Vocabulary acquisition work�ow.

3.1. construct vocabulary using synonym lists from the MeSH 2015 database. The user
is shown an interactive interface designed to enable the selection of descriptors of
interest from the hierarchy of descriptors. The output is a text �le containing all the
terms that belong to the selected descriptors from the MeSH hierarchy.

8Publicly available at http://textflows.perovsek.com/workflow/55/

http://textflows.perovsek.com/workflow/55/
http://textflows.perovsek.com/workflow/55/
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3.2. load vocabulary into AnnotatedDocumentCorpus data structure
3.3. optional check of vocabulary acquisition by visual inspection of the created corpus.

Vocabulary Preprocessing

The vocabulary acquisition step is followed by the vocabulary preprocessing step, which is
itself a work�ow implemented as shown in Figure 5.15.

Figure 5.15: Vocabulary preprocessing work�ow.

In order to ensure the proper matching between terms from the vocabulary and doc-
ument corpus, we preprocessed the vocabulary using the preprocessing techniques, which
were also used for preprocessing the document corpus in Step 2 and are described in more
detail in Section A.1.2.

The main components here are tokenization, stopwords labeling and token stemming
or lemmatization. The individual components perform the following tasks:

4.1. split vocabulary terms (represented as separate documents) to tokens (the basic units
for further text processing),

4.1.1. create a simple tokenizer object based on regular expressions,

4.2. tag stopword tokens by using a stopword tagger (component 4.2.2),

4.2.1. load standard English stopwords,

4.2.2. de�ne the stopword tagger using the standard English stopwords only (the de-
tected stopwords are discarded),

4.3. lemmatize tokens by applying the LemmaGen lemmatizer9 [91],

4.3.1. create an instance of LemmaGen lemmatizer,

4.4. construct the output of this vocabulary preprocessing step. The result is a Python list
of strings, where every item represents a vocabulary term, constructed from lemmas
and without stopwords.

Candidate B-term Extraction

After completing the preprocessing steps, the resulting whitelist output is used in Can-
didate B-term Extraction step for �ltering out terms that are not part of the controlled
vocabulary.

9LemmaGen is an open source lemmatizer with 15 prebuilt European lexicons. Its source code and
documentation is publicly available at http://lemmatise.ijs.si/

http://lemmatise.ijs.si/
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Figure 5.16: Candidate B-term extraction.

The candidate B-term extraction step, shown as a work�ow in Figure 5.16, is one of
the core steps of the methodology. Even though it contains only one component, it has a
very important and complex goal of transforming the inputted annotated document corpus
into the BoW model. Consequently, the documents are represented in the form of feature
vectors of term occurrences in the documents (for the purpose of visualization of documents
and the need of highlighting and emphasizing of speci�c terms).

Moreover, the Construct BoW Dataset and BoW Model Contructor widget optionally
accepts either a Python list or a �le representing the controlled vocabulary with the ob-
jective of �ltering out terms that are not part of the controlled vocabulary. Each line in
the �le (also possible: each string from a Python list of strings) can be in one of the two
following formats:

• One term per line: every single line in the text �le represents one separate term.
Only terms which appear in this �le are later used in construction of the BoW space,
and thus in the next steps of the methodology.

• Synonym format : additionally, term synonyms are listed after the term, separated
by commas.

term1 → synonym1a, synonym1b...

Every synonym in the document corpus is then substituted with the term, which
appears at the �rst position in the corresponding line.

Another task of this step is to capture the exact parsing procedure, which is needed
in order to perform various computations which are performed in the advanced heuristic
term scores calculation step. The outputted BowModelContructor object also contains the
�nal vocabulary of all terms.

Having described the developed methodology, the following section presents the results
of methodology evaluation in more detail.

5.5.3 Experiments and Results

This section presents the evaluation of the extended methodology for literature-based dis-
covery. Similar as in Section 5.4.6, we applied di�erent base and ensemble heuristics on two
problems: the standard migraine-magnesium literature mining benchmark problem [63],
and the autism-calcineurin dataset, originated by [68] and [69]. In both cases, we com-
pared our extended methodology to the methodology proposed by Jur²i£ et al., which is
described in Section 5.2.1.
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Results on the Migraine-Magnesium Dataset

In this section we demonstrate that by using a prede�ned controlled vocabulary we can
increase the heuristics' capabilities to rank the B-terms at the beginning of the term list.
We have repeated the experiments on the migraine-magnesium domain, described in Sec-
tion 5.4.6, except that we now used a prede�ned vocabulary constructed from MeSH using
the �MeSH �lter� widget. As we were particularly interested in the bridging terms between
migraine (a disease) and magnesium (a chemical element) as well as the circumstances and
processes observed between them, we only selected categories [C] Diseases, [D] Chemicals
and drugs and [G] Phenomena and Processes from the MeSH hierarchy. In the experiment
we used the work�ow shown in Figure 5.13. The generated vocabulary was used in the
candidate B-term extraction step as a whitelist �lter. As a result, not all B-terms identi�ed
by Swanson [63] were part of the used controlled vocabulary (shown in Table 5.6).

Table 5.6: B-terms for the migraine-magnesium dataset identi�ed by Swanson [63]. The
17 terms which are crossed out were not part of the used controlled vocabulary, therefore
heuristics were unable to identify them as B-term candidates.

1 5 ht 16 convulsive 31 prostaglandin
2 5 hydroxytryptamine 17 coronary spasm 32 prostaglandin e1
3 5 hydroxytryptamine receptor 18 cortical spread depression 33 prostaglandin synthesis
4 anti aggregation 19 diltiazem 34 reactivity
5 anti in�ammatory 20 epilepsy 35 seizure
6 anticonvulsant 21 epileptic 36 serotonin
7 antimigraine 22 epileptiform 37 spasm
8 arterial spasm 23 hypoxia 38 spread
9 brain serotonin 24 indomethacin 39 spread depression
10 calcium antagonist 25 in�ammatory 40 stress
11 calcium blocker 26 nifedipine 41 substance p
12 calcium channel 27 paroxysmal 42 vasospasm
13 calcium channel blocker 28 platelet aggregation 43 verapamil
14 cerebral vasospasm 29 platelet function
15 convulsion 30 prostacyclin

The results of the methodology using a controlled vocabulary on the migraine-magnesium
domain are presented in Table 5.8. The comparison of the heuristics' capabilities to rank
the B-terms at the beginning of the term list in the migraine-magnesium domain from
Table 5.7 and Table 5.8 shows an advantage of using the controlled vocabulary. By in-
specting the number of B-terms found by the base heuristics in the ranked �rst n terms,
we notice that using the controlled vocabulary in the migraine-magnesium domain resulted
in a much higher concentration of Swanson's B-terms among the best ranked terms. Even
though the heuristics based on banded matrices were already among the best performing
heuristics, the reduced search space a�ected them the most. Not only the running times of
the bidirectional MBA algorithm decreased when using the controlled vocabulary, but also
the relevance of top ranked B-terms increased, making the banded matrix-based heuristics
to even outperform the ensemble heuristic without the vocabulary. The full list of base
heuristics and their scores is available in Appendix A.2.

A consequence of the improved ranking capabilities of the base heuristics, is the in-
creased quality of the best ranked terms of the ensemble as well. The ensemble heuristic,
described in Section 5.2.3, performing ensemble voting of six elementary heuristics, also
resulted in very favorable results on the migraine-magnesium domain, where two additional
B-terms were found among the �rst 10 terms and 7 more among the �rst 100 terms.

As explained in Section 5.5 a prede�ned controlled vocabulary can greatly reduce the
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Table 5.7: Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the migraine-magnesium dataset.

Heuristic Name
Number of B-terms among the top n ranked terms

5 10 20 50 100 200 500 1,000 2,000

heuristic3 0 0 0 1 3 9 14.92 28.48 43
heuristic2 0 0 0 1 6 7.91 12.65 29.62 43
heuristic1 0 0 0 1 2 4.48 16.5 26.58 43

outFreqSum 0 0 0 0 0 2 14.28 27.11 43
outFreqRelSvm 0.12 0.24 0.48 1 1.63 5.92 14.69 29 43
outFreqRelRf 0.24 0.48 0.95 1 3.72 7.92 15.8 30.33 43
outFreqRelCs 0 0 1 1 2.69 5.07 11 27 43
t�dfDomnSum 0 0 0 0 1 2 11 26.14 43
freqRatio 0 0 1 1 4 5 11.65 23.09 43

ensemble 1 1 1 5 6 9 18.57 28 43

Table 5.8: Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the migraine-magnesium dataset using a controlled
vocabulary.

Heuristic Name
Number of B-terms among the top n ranked terms

5 10 20 50 100 200 500 1,000 2,000

heuristic3 0 2 6 7 14 22.68 26 26 26
heuristic2 2 5 5.43 12 15.5 25 26 26 26
heuristic1 1 2 2.25 9 13.63 20.15 26 26 26

outFreqSum 0 2 3 5.45 15.05 16.96 26 26 26
outFreqRelSvm 0.45 0.91 1.82 3.25 9 15 26 26 26
outFreqRelRf 0.56 1.11 2 5 8 15 26 26 26
outFreqRelCs 0.31 0.63 1 5 7.06 14 26 26 26
t�dfDomnSum 0 1 1 4 10 19 26 26 26
freqRatio 0 1 1 2 5.96 14.56 26 26 26

ensemble 1 3 4 9 13 19 26 26 26

B-term search space. As a side e�ect, we were unable to: (a) perform AUROC evaluation
comparison due to di�erent number of terms in the vocabulary; as a result, Table 5.8
provides only evaluation which lists the number of B-terms found in the ranked �rst n
terms, (b) detect all B-terms, identi�ed by Swanson (the crossed out B-terms in Table 5.6
were not part of the used controlled vocabulary); this could be solved using larger controlled
vocabularies, though we must be careful not to over�t the vocabulary to the expected
results.

Results on the Autism-Calcineurin Dataset

In this section we replicated the experiments, described in the previous section, using a
prede�ned controlled vocabulary on the autism-calcineurin dataset. Similarly, we wanted
to increase the heuristics' capabilities (from the work�ow, illustrated in Figure 5.13) to
rank the B-terms at the beginning of the term list. We used the same prede�ned vocabu-
lary as with the migraine-magnesium domain, which was constructed from MeSH using the
following categories: [C] Diseases, [D] Chemicals and drugs and [G] Phenomena and Pro-
cesses were used for building the controlled vocabulary. Table 5.9 shows the list of B-terms
identi�ed by Petri£ et al. [69] that were also part of the used controlled vocabulary.

Inspecting the heuristics' capabilities to rank the B-terms at the beginning of the
term list in the autism-calcineurin domain (Table 5.10 and Table 5.11) shows again the
advantage of using a controlled vocabulary. The increase in the number of B-terms found
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Table 5.9: B-terms for the autism-calcineurin dataset identi�ed by Petri£ et al. [69]. The
four terms which are crossed out were not part of the used controlled vocabulary, therefore
heuristics were unable to identify them as B-term candidates.

1 synaptic 6 bcl 2 11 22q11 2
2 synaptic plasticity 7 type 1 diabetes 12 maternal hypothyroxinemia
3 calmodulin 8 ulcerative colitis 13 bombesin
4 radiation 9 asbestos
5 working memory 10 deletion syndrome

in the ranked �rst n terms when using the controlled vocabulary is even more signi�cant
than in the migraine-magnesium domain. Similarly to the migraine-magnesium dataset
the most improved heuristics were banded matrix-based heuristics. Even though in this
domain they do not outperform the ensemble, heuristic 3 managed to rank one B-term
among the top 5 ranked terms (before only among the top 500).

The ensemble heuristic extended with the controlled vocabulary also �nds the �rst
B-term among the top 5 ranked terms (before only among the top 10) and the second
B-term among the top 50 ranked terms (before only among 200). These results con�rm
the �ndings that controlled vocabularies can increase the heuristics' capacities to rank the
B-terms at the beginning of the term list and, thus, provide a more e�cient exploration
task to the end-user of the platform.

Table 5.10: Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the autism-calcineurin dataset.

Heuristic Name
Number of B-terms among the top n ranked terms

5 10 20 50 100 200 500 1,000 2,000 5,000 all

heuristic3 0 0 0 0 0 0 1 4 4 4 13
heuristic2 0 0 0 0 0 0 0 0 0 1 13
heuristic1 0 0 0 0 0 0 0 1 4 4.02 13

outFreqSum 0 0 0 0 0 1 1 3 5 7 13
outFreqRelSvm 0 0 0 0 0 0 0 0 1.25 2 13
outFreqRelRf 0 0 0 0 0.01 0.58 1 1 1 2 13
outFreqRelCs 0 0 0 0 0 0 0 0 0 1.49 13
t�dfDomnSum 0 0 0 0 1 1 2 2 4 5 13
freqRatio 1 1 1 1 1 1 1 3 5 8.99 13

ensemble 0 1 1 1 1 2 3 4 6 8 13

Table 5.11: Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the autism-calcineurin dataset using a controlled
vocabulary.

Heuristic Name
Number of B-terms among the top n ranked terms
5 10 20 50 100 200 500 1000 2,000 5,000 all

heuristic3 1 1 1 1 1 1 1 4 6 9 9
heuristic2 0 0 0 1 1 1 2 2 5.76 9 9
heuristic1 0 1 1 1 1 2 2 5 7 9 9

outFreqSum 0 0 0 0 0 4 5.85 7 8 9 9
outFreqRelSvm 0 0 1 1 1 1 2 4 9 9 9
outFreqRelRf 0 0 0 0 0 1 1 3 8 9 9
outFreqRelCs 0 0 0 0 0 0 2 3 7 9 9
t�dfDomnSum 0 1 1 1 1 2 3 7 9 9 9
freqRatio 1 1 1 1 2 3 3.6 6.01 9 9 9

ensemble 1 1 1 2 2 2 4 6 8 9 9
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Tables 5.10 and 5.11 show only scores for the ensemble heuristic and base heuristics
included in the ensemble (as identi�ed by Jur²i£ et al. [19], [70]). The full list of base
heuristics and their scores is available in Appendix A.3.

To support bisociative cross-domain literature mining, the TextFlows platform includes
implementations of several elementary and ensemble heuristics that guide the expert in the
process of exploring new cross-context bridging terms. We have extended the TextFlows
platform with several components, which�together with document exploration and visu-
alization features of the CrossBee human-computer interface�make it a powerful, user-
friendly text analysis tool for exploratory cross-domain knowledge discovery. We also
propose a further extension of the methodology by facilitating the use of controlled vocab-
ularies, enhancing the heuristics capability to rank the actual B-terms at the top of the
ranked term list. Results show that using a prede�ned controlled vocabulary not only in-
creases the e�ciency of the heuristic calculation algorithms, but also tends to improve the
relevance of top ranked B-terms. Consequently, the described approach enables the user
to perform the exploration task more e�ectively, potentially leading to new discoveries.

Although not primarily designed for this task, we show in Appendix B that our method-
ology can also be used for creating pairs of sentences from di�erent domains, which combine
into surprising, funny or even insightful pieces of text when put together and considered
as a whole. Bridging terms, appearing in both sentences, detected by our methodology
function as a kind of glue, contributing to the coherency and increasing the potential for
combinations to be meaningful.

With all these features, the TextFlows platform (with its reusable text analytics work-
�ows) combined with the CrossBee document exploration interface, has become a publicly
available creativity support tool (CST), supporting creative discovery of new cross-domain
hypotheses.
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Chapter 6

Relational Data Mining Scenario

This chapter presents a propositionalization technique called wordi�cation which can be
seen as a transformation of a relational database into a corpus of text documents. Wordi-
�cation constructs simple, easy to understand features, acting as words in the transformed
Bag-of-Words representation. The main advantages of the approach are: simple imple-
mentation, accuracy comparable to competitive methods, and greater scalability, as it
performs several times faster on all experimental databases. Furthermore, the wordi�ca-
tion methodology and the evaluation procedure are implemented as executable work�ows
in the web-based text mining platform TextFlows. The implemented work�ows include
also several other ILP and RDM algorithms as well as the utility components that were
added to the platform to enable access to these techniques to a wider research audience.

The chapter is organized as follows. Section 6.1 de�nes the problem and gives motiva-
tion for developing new propositionalization technique inspired by text mining. Section 6.2
gives an informal overview of the wordi�cation methodology, while Section 6.3 presents the
formalism and the details of the developed wordi�cation algorithm. The implementation
of the methodology as a work�ow in the TextFlows platform is described in Section 6.4.
Section 6.5 presents the evaluation methodology implementation and the experimental
results.

6.1 Problem De�nition and Motivation

Standard propositional data mining algorithms, included in established data mining tools
like Weka [29], induce models or patterns learned from a single data table. On the other
hand, the aim of Inductive Logic Programming (ILP) and Relational Data Mining (RDM)
is to induce models or patterns from multi-relational data [20]�[23]. Most types of propo-
sitional models and patterns have corresponding relational counterparts, such as relational
classi�cation rules, relational regression trees or relational association rules.

For multi-relational databases in which data instances are clearly identi�able (the so-
called individual-centered representation [73], characterized by one-to-many relationships
among the target table�which contains the target variable�and other data tables), vari-
ous techniques can be used for transforming a multi-relational database into a propositional
single-table format [79]. After performing such a transformation [24], named proposition-
alization [25], standard propositional learners can be used, including decision tree and
classi�cation rule learners.

Inspired by text mining, we propose a new propositionalization approach to relational
data mining, called wordi�cation. Unlike other propositionalization techniques [24], [25],
[75], [76], which �rst construct complex relational features (constructed as a chain of joins
of one or more tables related to the target table), used as attributes in the resulting
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tabular data representation, wordi�cation generates much simpler features with the aim of
achieving greater scalability.

Wordi�cation can be viewed as a transformation of a relational database into a set
of feature vectors, where each original instance is transformed into a-kind-of `document'
represented as a Bag-of-Words (BoW) vector of weights of simple features, which can
be interpreted as `words' in the transformed BoW space. The `words' constructed by
wordi�cation correspond to individual attribute-values of the target table and of the related
tables, subsequently weighted by their Term Frequency-Inverse Document Frequency (TF-
IDF) value [88], [111] (requiring real-valued attributes to be discretized �rst). Alternatively,
instead of TF-IDF, simpler schemes can be used, such as term frequency (TF) `word' count,
or the binary scheme indicating just the presence/absence of a `word' in the `document'.

To intuitively phrase the main idea of wordi�cation, take two simple examples illustrat-
ing the wordi�cation data preprocessing step in class-labeled data, where each structured
data instance is transformed into a tuple of simple features, which are counts/weights
of individual attribute-value pairs. Take the well-known relational domain of East-West
Trains [74] with cars containing di�erent loads: one of the train's features in the BoW
representation is the count/weight of rectangular loads it carries, no matter in which cars
these loads are stored. Or in the standard Mutagenesis domain [112], a molecule may prove
to be toxic if it contains a lot of atoms characterized by the property atom_type=lead, no
matter how these atoms are bonded in the molecule. The main hypothesis of the wordi�-
cation approach is that the use of this simple representation bias is suitable for achieving
good results in classi�cation tasks. Moreover, when using a binary scheme, this representa-
tion bias allows for simple and very intuitive interpretation in descriptive induction tasks,
such as association rule learning from unlabeled multi-relational data. We describe one
such task in Appendix D, where we illustrate the utility of wordi�cation in a descriptive
induction setting of learning association rules from two real-life domains, using data from
a subset of the IMDB movies database and from a database of tra�c accidents.

Wordi�cation su�ers from some loss of information, compared to propositionalization
methods which construct complex �rst-order features (which get values true or false for
a given individual) as a chain of joins of one or more tables related to the target table.
Nevertheless, despite some information loss, wordi�cation has numerous advantages. Due
to the simplicity of features, the generated hypotheses are easily interpretable by domain
experts. The feature construction step in wordi�cation is very e�cient, therefore it can
scale well for large relational databases. As wordi�cation constructs each `document' in-
dependently from the other `documents', a large main table can be divided into smaller
batches of examples, which can be propositionalized in parallel. Next, wordi�cation can
use TF or TF-IDF word weighting to capture the importance of a given feature (attribute
value) of a relation in an aggregate manner, while feature dependence is modelled by con-
structing a-kind-of word `n-grams' as conjuncts of a prede�ned number of simple features.
Finally, the wordi�cation approach has the advantage of using techniques developed in the
text mining community, such as e�cient document clustering or word cloud visualization,
which can now be e�ectively exploited in multi-relational data mining.

6.2 Informal Description of the Wordi�cation Approach

This section provides an informal description of the proposed approach, where wordi�cation
is illustrated on a simpli�ed variant of the well-known East-West Trains problem [74].

The transformation from a relational database representation into a Bag-of-Words fea-
ture vector representation is illustrated in Figure 6.1, where the input to wordi�cation is
a relational database, and the output is a set of feature vectors, which can be viewed as a
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Figure 6.1: The transformation from a relational database representation into a Bag-of-
Words feature vector representation. For each individual entry of the main table one Bag-
of-Words (BoW) vector di of weights of `words' is constructed, where `words' correspond
to the features (attribute values) of the main table and the related tables.

corpus of text documents represented in the Bag-of-Words (BoW) vector format. Each text
document represents an individual entry of the main data table. A document is described
by a set of words (or features), where a word is constructed as a combination of the table
name, name of the attribute and its discrete (or discretized) value1:

[table name]_[attribute name]_[value]. (6.1)

Such constructs are called word-items or witems or simply words in the rest of the the-
sis. Note that values of every non-discrete attribute need to be discretized beforehand in
order to be able to represent them as word-items. For each individual, the word-items
are �rst generated for the main table and then for each entry from the related tables,
and �nally joined together according to the relational schema of the database2. In the
described transformation there is some loss of information as a consequence of building
the document for each instance (each individual row in the main table) by concatenating
all word-items from multiple instances (rows) of the connected tables into a single docu-
ment. To overcome this loss, we extended the document construction step of the initial
wordi�cation methodology by concatenating to the document also n-grams of word-items,
constructed as conjunctions of several word-items. These concatenations of elementary
word-items represent conjunctions of features occurring together in individual instances
(rows of joined tables). Technically, n-gram construction is performed by taking every
combination of length k of word-items from the set of all word-items corresponding to the
given individual, and concatenating them as follows:

[witem1]__[witem2]__ ... __[witemk], (6.2)

where 1 ≤ k ≤ n and�as mentioned earlier�each word-item is a combination of the table
name, name of the attribute and its discrete value. The witems are concatenated in a
predetermined order, each using the �__� concatenation symbol.

In the rest of this chapter, for simplicity, we refer to individuals as documents, to
features as words, and to the resulting representation as the Bag-of-Words (BoW) rep-
resentation. For a given word w in document d from corpus D, the TF-IDF measure is
de�ned as follows:

t�df(w, d) = tf(w, d)× log
|D|

|{d ∈ D : w ∈ d}|
, (6.3)

where tf(·) represents the number of times word w appears in document d. In other words,
a word with a high TF-IDF value will be considered important for the given individual
provided that it is frequent within this document and not frequent in the entire corpus.

1See Line 4 in Algorithm 6.2 presented in Section 6.3.3.
2See Line 10 in Algorithm 6.2 presented in Section 6.3.3.
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Consequently, the weight of a word provides a strong indication of how relevant is the
feature for the given individual. The TF-IDF weights can then be used either for �ltering
out words with low importance or using them directly by a propositional learner.

In addition to the TF-IDF weighting scheme, the implementation of wordi�cation (de-
scribed in detail in Section 6.4) includes also the term frequency (TF) and the binary (0/1)
weighting schemes. A comparison of the three schemes can be found in the Appendix C
(see Table C.1). Given that di�erent weighting schemes do not perform signi�cantly dif-
ferently on the classi�cation tasks used in our experiments, in the rest of the paper we use
the TF-IDF scheme since this form of weighting is prevalent in text mining applications.

TRAIN

trainID eastbound
t1 east
. . . . . .
t5 west
. . . . . .

CAR

carID shape roof wheels train
c11 rectangle none 2 t1
c12 rectangle peaked 3 t1
. . . . . . . . . . . . . . .
c51 rectangle none 2 t5
c52 hexagon �at 2 t5
. . . . . . . . . . . . . . .

Figure 6.2: Example input for wordi�cation in the East-West Trains domain.

t1: [car_roof_none, car_shape_rectangle, car_wheels_2,

car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2,

car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle,

car_wheels_3, car_roof_peaked__car_shape_rectangle,

car_roof_peaked__car_wheels_3, car_shape_rectangle__car_wheels_3], east

...

t5: [car_roof_none, car_shape_rectangle, car_wheels_2,

car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2,

car_shape_rectangle__car_wheels_2, car_roof_flat, car_shape_hexagon,

car_wheels_2, car_roof_flat__car_shape_hexagon,

car_roof_flat__car_wheels_2, car_shape_hexagon__car_wheels_2], west

...

Figure 6.3: The database from Figure 6.2 in the Bag-of-Words document representation.

The wordi�cation approach is illustrated on a modi�ed and substantially simpli�ed
version of the well-known East-West Trains domain [74], where the input database consists

id car_shape
_rectangle

car_roof
_peaked

car_wheels_3 car_roof_peaked__
car_shape_rectangle

car_shape_rectangle
__car_wheels_3

... class

t1 0.000 0.693 0.693 0.693 0.693 ... east
... ... ... ... ... ... ... ...
t5 0.000 0.000 0.000 0.000 0.000 ... west
... ... ... ... ... ... ... ...

Figure 6.4: The transformed database (consisting of TF-IDF values, which are zero if the
term appears in all documents) from Figure 6.2 using the wordi�cation approach. This
�nal output can be given as an input to a propositional classi�er.
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of just two tables shown in Figure 6.2, where we have only one East-bound and one West-
bound train, each with just two cars with certain properties. Note that in the experimental
section we use the standard version of the East-West Trains domain.

The TRAIN table is the main table and the trains are the individuals. We want to learn
a classi�er to determine the direction of an unseen train. For this purpose the direction
attribute is not preprocessed and is only appended to the resulting feature vector (list of
words).

First, the corresponding two documents (one for each train t1 and t5) are generated,
as shown in Figure 6.3. After this, the documents are transformed into the Bag-of-Words
representation by calculating the TF-IDF values for each word of each document (using
Equation 3.1) with the class attribute column appended to the transformed Bag-of-Words
table, as shown in Figure 6.4. For simplicity, only unigrams and bigrams are shown in this
example.

6.3 Wordi�cation Methodology

This section formally describes the wordi�cation methodology by presenting the input
data model and input language bias, the relational database representation, followed by the
presentation of the pseudo-code and the worst-case complexity analysis of the wordi�cation
algorithm.

6.3.1 Data Model

A data model describes the structure of the data. It can be expressed as an entity-
relationship (ER) diagram. The ER diagram, illustrated in Figure 6.5, shows three relations
appearing in the original East-West Trains problem (in addition to the TRAIN and CAR
relationship, it includes also the LOAD relationship, which was skipped for simplicity in
Figure 6.2). The boxes in the ER diagram indicate entities, which are individuals or parts
of individuals. Here, the Train entity is the individual, each Car is part of a train, and
each Load is part of a car. The ovals denote attributes of entities. The diamonds indicate
relationships between entities. There is a one-to-many relationship from Train to Car,
indicating that each train can have an arbitrary number of cars but each car is contained
in exactly one train; and a one-to-one relationship between Car and Load, indicating that
each car has exactly one load and each load is part of exactly one car.

Figure 6.5: Entity-relationship diagram for the East�West challenge.
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Entity-relationship diagrams can be used to choose a proper logical representation for
the data. If we store the data in a relational database the most obvious representation is
to have a separate table for each entity in the domain, with relationships being expressed
by foreign keys.3 This is not the only possibility: for instance, since the relationship be-
tween Car and Load is one-to-one, both entities could be combined in a single table, while
entities linked by a one-to-many relationship cannot be combined without either intro-
ducing signi�cant redundancy or signi�cant loss of information, e.g., introduced through
aggregate attributes. Note that �xed number of arguments (and consequently one-to-many
relationships between multiple tables) distinguish relational learning and inductive logic
programming from propositional learning.

In wordi�cation, we use the entity-relationship diagram to de�ne types of objects in the
domain, where each entity will correspond to a distinct type. The data model constitutes
a language bias that can be used to restrict the hypothesis space and guide the search.
In most problems, only individuals and their parts exist as entities, which means that the
entity-relationship model has a tree-structure with the individual entity at the root and
only one-to-one or one-to-many relations in the downward direction. Representations with
this restriction are called individual-centered representations. This restriction determines
the language bias, constraining the relational database input to wordi�cation.

6.3.2 Formal Setting

The framework, established in this section, de�nes a learning setting which is very similar
to the standard propositionalization problem setting. As in every propositionalization
approach to relational data mining, a two-step approach is implemented: (1) in the �rst
propositionalization step the data is transformed from a relational database format to a
tabular format, and (2) the tabular data is used as input for learning models or patterns by
a selected propositional learner, having its own hypothesis language bias (e.g., decision trees
or propositional classi�cation rules). The formal framework described below focuses only
on step (1) of the two-step wordi�cation methodology. For simplicity, the formalization
describes the setting using only unigram features.

Input

The input to wordi�cation is a relational database (RDB), given as a set of relations
{R1, ..., Rn} and a set of foreign-key connections between the relations denoted by Ri → Rj ,
where Ri has a foreign-key pointing to relation Rj . The foreign-key connections correspond
to the relationships in the entity-relationship diagram. For example, the train attribute
in the CAR relation is a foreign-key referring to trainID in TRAIN. It de�nes the CAR →
TRAIN connection; as expected, it is a many-to-one connection from CAR to TRAIN.

A n-ary relation Ri is formally de�ned as a set of tuples: a subset of the Cartesian
product of mi domains: Ri ⊂

∏mi
j=1Dij = Di1 ×Di2 × . . . ×Dimi

, where a domain (or a
type) is a speci�cation of the valid set of values for the corresponding argument.

Dij = {vij1 , vij2 , . . . , vijkij }

Note that for wordi�cation we require that each domain Dij must have a �nite number of
unique values kij , thus discretization of continuous domains is needed.

A further requirement is that the RDB must be individual-centered. This means that
a target relation RT ∈ RDB must exist, such that it does not have any foreign keys:

6 ∃i : RT → Ri;Ri ∈ RDB
3In the context of relational databases, a foreign key is a �eld in a relational table that matches a

candidate key of another table. The foreign key can be used to cross-reference tables.
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Output

Having established the data model, the individual-centered data representation language
bias and the relational database representation of input data, the formal output (a trans-
formed single-relation representation RT ′) of the wordi�cation methodology can be de�ned
as follows:

RT ′ ⊂
∏
i,j,k

DT ′
ijk

=
∏
i,j,k

domain(Ri, Dij , vijk );Ri
∗−→ RT

or in other words, one domain in the resulting relation RT ′ is de�ned for each relation Ri
(that is connected by following the foreign-key path, denoted by ∗−→ to RT ), and each of
its domains Dij as well as domain values vijk . These domains have the property

DT ′
ijk

= R+
0

since they are determined by the TF-IDF formula. This �nal output relation (table) can
be given as an input to any propositional learner.

6.3.3 Wordi�cation Algorithm

This section presents the wordi�cation methodology by describing in detail the individual
transformation steps in Algorithm 6.1 and Algorithm 6.2.

The algorithm starts recursive document construction on the instances of the main table
(Lines 3-7 in Algorithm 6.1). First it creates word-items for the attributes of the target
table (Lines 2-6 in Algorithm 6.2), which is followed by concatenations of the word-items
and results of the recursive search through examples of the connecting tables (Lines 8-16 in
Algorithm 6.2). As this document construction step is done independently for each example
of the main table, this allows simultaneous search along the tree of connected tables. In
order to perform concurrent propositionalization, Lines 3-7 in Algorithm 6.1 need to be
run in parallel. A common obstacle in parallel computing is memory synchronization
between the di�erent subtasks, which is not the case here as concurrent processes in our
implementation of wordi�cation only need to share a cached list of subtrees. This list
stores the results of subtree word concatenations in order to visit every subtree only once.

As wordi�cation can produce a large number of features (words), especially when the
maximal number of n-grams per word-items is large, we perform pruning of words that
occur in less than a prede�ned percentage (5% on default) of documents. This reduces the

Algorithm 6.1: Wordi�cation's main(T,p,k) procedure.
Input : target table T , pruning percentage p, max number of witems per word k
Output: Propositionalized table R with TF-IDF values, corpus of documents D

D ← [];
W ← ∅ ; // vocabulary set

for ex ∈ T do

d←wordify(T, ex, k) ; // construct the document

D ← D + [d] ; // append document to the corpus

W ←W ∪ keys(d) ;
end

W ←prune(W,p) ; // optional step

return [ calculateTFIDFs(D,W), D];
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Algorithm 6.2: Wordi�cation's wordify(T,ex,k) procedure.
Input : table T , example ex from table T , maximal number of witems per word k
Output: document word count d

d← {}; // hash with a default value 0

for i← 1 to k do // for every word witem length

for comb ∈ attrCombs(ex, k) do // attr. combinations of length k

d[word(comb)]← d[word(comb)] + 1;
end

end

// for every connected table through an example

for secTable ∈ connectedTables(T) do
for secEx ∈ secTable do

if primaryKeyValue(ex)=foreignKeyValue(secEx) then
for (word, count) ∈ wordify(secTable, secEx, k) do

d[word]← d[word] + count;
end

end

end

end

return d;

size of trees by removing sections of the tree that is expected to provide little power for
instance classi�cation.

The constructed features are simple, and as we do not explicitly use existential variables
in the new features (words), we instead rely on the Term Frequency-Inverse Document
Frequency (TF-IDF) measure to implicitly capture the importance of a word for a given
individual. In the context of text mining, TF-IDF value re�ects how representative is a
certain feature (word) for a given individual (document).

6.3.4 Time and Space Complexity

This section covers the worst-case complexity analysis of the Wordi�cation algorithm. Let
t be the number of tables in a database. To simplify the analysis, we assume that each
table is connected with exactly one other table in a one-to-many relation. Let mi and
ni be the number of rows and the number of attributes in table i, respectively. Further,
let m = max(m1,m2, . . . ,mt) and n = max(n1, n2, . . . , nt). The maximal number of rows
is generally much higher than the number of attributes and the number of tables in a
relational database: t� n� m. Let k be the maximal number of n-grams per word.

Time Complexity

The upper-bound time complexity for the propositionalization step of the wordi�cation
methodology when each word is constructed from one witem (k = 1) is O(m · n ·mt−1) =
O(n·mt). When we use words that are combinations of up to 1 ≤ k ≤ n witems (Lines 3-5 in
Algorithm 6.2) the complexity of the algorithm is O(mt ·

∑k
i=1

(
n
i

)
). As limk→n

∑k
i=1

(
n
i

)
=

2n − 1, the worst-case time complexity is therefore O(2n ·mt).
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Space Complexity

The space complexity for the wordi�cation algorithm using unigram features (k = 1) is
O(m · t ·n). When we increase the maximal word length (number of witems per word) the
feature space of the algorithm also increases exponentially. When the maximal word length
is equal to the maximal number of attributes, the space complexity is O(m · t ·

∑k
i=1

(
n
i

)
).

Following a similar reasoning as in the time complexity analysis, the worst case space
complexity of the algorithm is therefore O(m · t · 2n).

When k → n both time and space complexity are in its worst cases exponential in
the number of attributes, but as evidenced from the experiments in Section 6.5, good
performance can be achieved with k = 1 or k = 2, in which case the space complexity is
linear O(m · t ·n) and the time complexity is polynomial O(n ·mt). Since t is usually small,
the approach can perform orders of magnitude faster than its competitors, as demonstrated
in Section 6.5.

6.4 Implementation

This section describes the implementation of the wordi�cation methodology in the TextFlows
platform. Figure 6.6 shows the entire work�ow of the wordi�cation methodology, which
is composed of the wordi�cation component from the ILP module as well as components
from other modules of the TextFlows platform. The implementation allows the user to
provide as input a relational database by connecting to a MySQL database server. First,
the user is required to select the target table from the initial relational database, which will
later represent the main table in the Wordi�cation component of the work�ow. Second,
the user is able to discretize each table using one of the various discretization techniques
provided. These discretized tables are used by the Wordi�cation widget, where the trans-
formation from the relational tables to a corpus of documents is performed. The work�ow
components are described in more detail below.

1. MySQL Connect: Since relational data is often stored in SQL databases, we use the
MySQL package to access the training data by connecting to a MySQL database
server. The MySQL Connect widget is used for entering information required to con-
nect to a database (e.g., user credentials, database address, database name, etc.) in
order to retrieve the training data from a MySQL database server and automatically
construct the background knowledge and the training examples.

Figure 6.6: TextFlows wordi�cation work�ow with additional analyses after the wordi�-
cation process. This work�ow is publicly available at http://textflows.perovsek.com/
workflow/50/. The abbreviations on the input and output stubs (which are not important
for understanding the work�ow) are as follows: con connection, ctx context, odt Orange
data table, lot list of Orange data tables, str string, arf ARFF �le, ins instances, lrn
learner, cla classi�er.

http://textflows.perovsek.com/workflow/50/
http://textflows.perovsek.com/workflow/50/
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2. Database Context: This widget enables a selection of tables and columns that will be
used in the next steps of the methodology. The information is carried to the connected
widgets through the so-called database context objects. These objects also contain
the detected table relationships. In case that the input relational database does not
have prede�ned primary and foreign keys between the tables, the user is given an
option for simple table connection search through the names of the attributes.

3. Dataset Discretization: The sole task of this widget is to convert continuous at-
tributes to categorical, by discretizing the continuous attributes. Dataset Discretiza-
tion widget supports three discretization methods: using equal-width intervals, using
equal-frequency intervals, and class-aware discretization proposed by [113] that uses
MDL and entropy to �nd the best cut-o� points. Dataset Discretization widget can
take as input either a single data set or a list of multiple datasets. In the latter case,
discretization of all continuous attributes of every dataset is performed.

4. Wordi�cation: The wordi�cation widget transforms the relational database to a cor-
pus of documents for the main table. As an input it takes three arguments: the target
(main) table, a list of additional tables and a database context, which contains the
relations between the tables. The widget �rst indexes the examples of every table
by their primary and foreign keys' values. This step is required for performance op-
timization of data retrieval operations when searching for connecting instances from
di�erent (connected) tables in the word-item concatenation step. Next, recursive
document construction for every individual is performed. The algorithm starts on
every example of the main table: it creates word-items for its attributes, followed
by concatenations of the word-items and results of the recursive search through the
connecting tables. When searching along the tree of connected tables, the algorithm
stores the results of subtree word concatenations for every instance. Consequently,
the algorithm iterates over every subtree only once. The user can run the widget
with di�erent parameters: maximal number of n-grams per word, as well as the
pruning threshold parameter. The wordi�cation widget produces two outputs: a set
of generated word documents and an ar� table with calculated TF-IDF values for
every example of the main table.

5. Word Cloud: A set of generated word documents can be displayed using word cloud
visualization, enabling improved domain understanding.

6. Data Mining: After the wordi�cation step the user can perform various types of anal-
ysis, depending on the task at hand (classi�cation, clustering, etc). In the example
work�ow shown in Figure 6.6, the ar� output is used as input to build and display
a J48 decision tree.

Along with other components from the ILP module, the wordi�cation component can
be used to construct diverse RDM work�ows. As completed work�ows, data, and results
can also be made public by the author of the work�ow, the platform can serve as an
easy-to-access integration platform for various RDM work�ows. Each public work�ow is
assigned a unique URL that can be accessed by anyone to either repeat the experiment,
or use the work�ow as a template to design another work�ow.

6.5 Experiments

This section presents the evaluation of the wordi�cation methodology. After describing the
relational databases used in this study, we describe the experiments performed on these
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datasets and provide a comparison of wordi�cation to other propositionalization techniques.
In comparison with the experimental setting described in [98], a larger number of datasets
is used, and very favorable results are obtained by using decision tree learner J48, compared
to relatively poor results reported in previous work, where the Naive Bayesian classi�er
assuming feature independence was used. In addition to the J48 tree learner, we also tested
the LibSVM learner.

Let us �rst present the �ve relational databases used in the experiments: Trains (in two
variants), Carcinogenesis, Mutagenensis with 42 and 188 examples, IMDB, and Financial.
Table 6.1 lists the characteristics of the datasets. All the datasets can be downloaded from
a web page4, making them easily reusable in other experiments.

Table 6.1: Table properties of the experimental data.

Trains

Table #rows #attributes
cars 63 9(10)
trains 20 2

Carcinogenesis

Table #rows #attributes
atom 9,064 5
canc 329 2

sbond_1 13,562 4
sbond_2 926 4
sbond_3 12 4
sbond_7 4,134 4

Mutagenesis 42

Table #rows #attributes
atoms 1,001 5
bonds 1,066 5
drugs 42 7

ring_atom 1,785 3
ring_strucs 279 3

rings 259 2

Mutagenesis 188

Table #rows #attributes
atoms 4,893 5
bonds 5,243 5
drugs 188 7

ring_atom 9,330 3
ring_strucs 1,433 3

rings 1,317 2

IMDB

Table #rows #attributes
actors 7,118 4

directors 130 3
directors_genres 1,123 4

movies 166 4
movies_directors 180 3
movies_genres 408 3

roles 7,738 4

Financial

Table #rows #attributes
accounts 4,500 4
cards 892 4
clients 5,369 4
disps 5,369 4

districts 77 16
loans 682 7
orders 6,471 6
tkeys 234 2
trans 1,056,320 10

4http://kt.ijs.si/janez_kranjc/ilp_datasets/

http://kt.ijs.si/janez_kranjc/ilp_datasets/
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• Trains: The well-known East-West Trains challenge is an ILP problem of predicting
whether a train is East-bound or West-bound. A train contains a variable number
of cars that have di�erent shapes and carry di�erent loads. We have considered two
versions of the data for our experiments: the original dataset from the East-West
Trains challenge and a modi�ed dataset where every car also has its position as
an additional attribute. In both datasets we have considered East-bound trains as
positive examples.

• Carcinogenesis: The problem addressed by [114] is to predict carcinogenicity of a
diverse set of chemical compounds. The dataset was obtained by testing di�erent
chemicals on rodents, where each trial would take several years and hundreds of
animals. The dataset consists of 329 compounds, of which 182 are carcinogens.

• Mutagenesis: In this task the goal is to predict mutagenicity of aromatic and het-
eroaromatic nitro compounds [115]. Predicting mutagenicity is an important task
as it is very relevant to the prediction of carcinogenesis. The compounds from the
data are known to be more structurally heterogeneous than in any other ILP dataset
of chemical structures. The database contains 230 compounds of which 138 have
positive levels of mutagenicity and are labeled as `active'. Others have class value
`inactive' and are considered to be negative examples. We took the datasets of the
original Debnath paper [115], where the data was split into two subsets: a 188 com-
pound dataset and a smaller dataset with 42 compounds.

• IMDB: The complete IMDB database is publicly available in the SQL format. This
database contains tables of movies, actors, movie genres, directors, and director
genres. The database used in our experiments consists only of the movies whose
titles and years of production exist on the IMDB's top 250 and bottom 100 chart5.
The database therefore consists of 166 movies, along with all of their actors, genres
and directors. Movies present in the IMDB's top 250 chart were considered as positive
examples, while those in the bottom 100 were regarded as negative.

• Financial: This is a publicly available dataset, which was arti�cially constructed as
part of the PKDD'99 Discovery Challenge. The classi�cation task addressed is the
prediction of successful loans. The dataset consists of 8 tables describing clients of a
bank, their accounts, transactions, permanent orders, granted loans and issued credit
cards.

Table 6.2 presents the performance of the majority classi�er for each of the described
datasets. This should serve as a baseline for the classi�cation results reported in the
following subsections.

Table 6.2: Majority classi�er performance for each dataset.

Domain CA[%]
Trains 50.00

Mutagenesis 42 69.05
Mutagenesis 188 66.50

IMDB 73.49
Carcinogenesis 55.32

Financial 86.75

5As of July 2, 2012.
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6.5.1 Evaluation of Feature Construction and Filtering

The experiments, enabling the analysis of the feature generation step of wordi�cation were
performed on the original East-West Trains challenge dataset using di�erent parameter
settings: using elementary word-items and complex word-items constructed from up to
5-grams of witems.

Figure 6.7: Experiments on the wordi�cation propositionalization step. Left: Size of
the feature space in correlation with the number witems per word. Right: Classi�cation
accuracies in leave-one-out cross-validation (using the J48 decision tree learner with default
parameter setting) as a function of the maximum number of n-grams per word.

The left plot in Figure 6.7 shows that the size of the feature space in the non-pruned
version of wordi�cation increases exponentially as the maximal number of witems per word
increases. Note that wordi�cation also implements a pruning technique where words that
occur in less than a prede�ned percentage of documents are pruned. As shown in Figure 6.7,
using higher thresholds for feature �ltering drastically reduces the dimensionality of the
data, resulting in more e�cient learning.

We have also applied di�erent wordi�cation settings in the classi�cation task on the
Trains dataset. The classi�cation accuracies using the J48 decision tree of leave-one-out
cross-validation for di�erent parameters are shown on the right side of Figure 6.7 (the
reason for using leave-one-out instead of the standard 10-fold cross-validation setting is a
very small number of instances in the Trains dataset). The results show that using larger
n-grams of witems improves the classi�cation accuracies compared to 1-grams of witems,
but results in longer run-times of the propositionalization step because of a larger feature
space. In this speci�c domain, pruning also performs favorably in terms of classi�cation
accuracy. Additional experiments in Appendix C show (see Table C.2) this observation
is only applicable to small domains, while for larger domains with more potential witem
combinations this observation does not hold.

6.5.2 Comparative Evaluation of Propositionalization Techniques

This section describes the experiments performed in the evaluation of di�erent proposi-
tionalization approaches on binary classi�cation tasks, using the datasets from the �ve
relational domains. Figure 6.8 shows the full experimental work�ow (from connecting to
a relational database management server to visualizing the experimental results and eval-
uation). This evaluation work�ow is available online in the TextFlows platform, which
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Figure 6.8: Evaluation work�ow for evaluating and comparing Wordi�cation, Aleph, RSD,
and RelF, implemented in the TextFlows mining platform. The abbreviations on the
input and output stubs are as follows: con connection, ctx context, dat full dataset for
cross-validation, cvf number of cross-validation folds, sed random seed, lrn/lea learner
instance, res cross-validation results, sta classi�cation statistics, evr evaluation results.
The work�ow is publicly available at http://textflows.perovsek.com/workflow/69/.

enables ILP researchers to reuse the developed work�ow and its components in future
experimentation.

The �rst step of the evaluation methodology is to read the relational data, stored in an
SQL database, using the MySQL package widgets. Data then enters the cross-validation
subprocess (Figure 6.9), where the following steps are repeated for each fold (we used 10-
fold cross-validation). First, discretization of the training fold of the relational database
is performed. We have arbitrarily selected equi-distance discretization with 3 intervals of
values to discretize the continuous attributes of the experimental relational datasets, such
that none of the techniques was given an advantage. Then a propositionalization technique
is applied to the training data and the results are formatted in a way to be used by the
Weka algorithms. The J48 decision tree and the LibSVM learners were selected with their
default parameter settings to perform binary classi�cation.

The test set is handled as follows. First, the data is discretized to the intervals deter-
mined on the training set. Second, the features produced by the given propositionalization
approach on the training set are evaluated on the test set to produce a propositional repre-
sentation of the test data. Note that this process is slightly di�erent for wordi�cation, since
the features do not have to be evaluated. We do however need the IDF values calculated
on the training set. Finally, these test examples are classi�ed by the classi�ers trained on
the training data. The results of each step are then collected to be returned at the end by
the cross-validation subprocess.

Every propositionalization algorithm was run with its default settings. A non-parallel
version of wordi�cation was run using only the elementary words (maximal number of
witems per word was set to 1) and without pruning, as none of our datasets required this.

http://textflows.perovsek.com/workflow/69/
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Figure 6.9: The cross-validation subprocess from Figure 6.8. This work�ow gets a training
set (input trn) and a test set (input tst) as input and is executed for each fold. There are
two Wordi�cation widgets in the work�ows: one responsible for constructing the features
on the trains set and the other on the test set. The connection between the two widgets
is needed for transferring the IDF weights learned on the training set, which are used for
feature construction on the test set. The results of each step are collected by the cv output
widget. Other widget input and output abbreviations are not important for understanding
the work�ow.

RSD was speci�ed to construct features with a maximum length of a feature body of
8. None of the constructed features were discarded as the minimum example coverage of
the algorithm was set to 1.

Aleph was run in the feature construction mode (named AlephFeaturize in the evalu-
ation work�ow) with coverage as the evaluation function and maximal clause length of 4.
The minimal number of positive examples was set to 1 and the maximal number of false
positives to 0.

RelF, the most relevant of the algorithms in the TreeLiker software [76], was run in
the default setting as well, but it is not clear from the documentation what exactly are
the default parameter values. RelF expects a feature template from the user. In this
case, we constructed relatively simple templates (enabling features with depth 1), since
constructing and selecting more complex templates is out of scope for the analysis in this
thesis. It should be noted that templates more �nely tuned to a particular domain could
yield signi�cantly better results. RelF also supports continuous attributes, but since in
our experiments all approaches were given a discretized dataset, this feature could not be
exploited.

6.5.3 Results Comparison

The results of the experiments on multiple datasets, presented in Table 6.3, show the
classi�cation accuracy and the ROC AUC obtained by the J48 and LibSVM learners (when
applied on the data obtained as a result of propositionalization approaches), as well as the
run-times needed for propositionalization. The run-time performance for each algorithm
was done by measuring the time an algorithm took to propositionalize the full database
in each domain. The results show that the wordi�cation methodology achieves scores
comparable to the state-of-the-art propositionalization algorithms RSD and RelF, as well
as compared to propositionalization performed by using features constructed by Aleph,
while the run-time required for transforming the database into its propositional form is
much faster.

In terms of classi�cation accuracy obtained by the J48 classi�er, wordi�cation performs
favorably compared to other propositionalization techniques, except on the Trains dataset
(without the car's position attribute) and the Financial dataset. Poor performance on the
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Table 6.3: Classi�er evaluation on di�erent databases.

Domain Algorithm
J48 LibSVM

Time[s]
CA[%] AUC CA[%] AUC

Trains Wordi�cation 50.00 0.50 50.00 0.50 0.11

without position RelF 65.00 0.65 80.00 0.80 1.04
RSD 65.00 0.65 75.00 0.75 0.53

Aleph - Featurize 60.00 0.60 65.00 0.65 0.40

Trains Wordi�cation 95.00 0.95 50.00 0.50 0.12

RelF 75.00 0.75 75.00 0.75 1.06
RSD 60.00 0.60 80.00 0.80 0.47

Aleph - Featurize 55.00 0.55 70.00 0.70 0.38

Mutagenesis 42 Wordi�cation 97.62 0.96 78.57 0.65 0.39

RelF 76.19 0.68 76.19 0.62 2.11
RSD 97.62 0.96 69.05 0.50 2.63

Aleph - Featurize 69.05 0.50 69.05 0.50 2.07

Mutagenesis 188 Wordi�cation 68.62 0.55 81.91 0.78 1.65

RelF 75.00 0.68 68.62 0.54 7.76
RSD 68.09 0.54 71.28 0.58 10.10

Aleph - Featurize 60.11 0.68 60.11 0.68 19.27

IMDB Wordi�cation 81.93 0.75 73.49 0.50 1.23

RelF 69.88 0.66 73.49 0.50 32.49
RSD 74.70 0.59 73.49 0.50 4.33

Aleph - Featurize 73.49 0.50 73.49 0.50 4.96

Carcinogenesis Wordi�cation 62.31 0.61 60.79 0.58 1.79

RelF 60.18 0.59 56.23 0.52 16.44
RSD 60.49 0.59 56.23 0.52 9.29

Aleph - Featurize 55.32 0.50 55.32 0.50 104.70

Financial Wordi�cation 86.75 0.50 86.75 0.50 4.65

RelF 97.85 0.92 86.70 0.50 260.93
RSD 86.75 0.50 79,06 0.50 533.68

Aleph - Featurize 86.75 0.50 86.75 0.50 525.86

Trains dataset can be explained by examining the J48 tree in the wordi�ed trains dataset
with the position attribute, where the J48 classi�er puts the cars_position_3 attribute into
the root of the decision tree. Because of the absence of this attribute in the �rst dataset
and the usage of only unigram words, the decision tree failed to �nd a clear distinction
between the positive and negative examples (this problem can be solved by using bigrams
of witems). Similar results were obtained using the LibSVM classi�er where wordi�cation
achieved the best results on every dataset except for the two variants of the Trains data.

From the point of view of run-times, wordi�cation is clearly the most e�cient system,
as it outperforms other techniques on every dataset. The true value of the wordi�cation
methodology, its low time-complexity, shows even more drastically on larger datasets, such
as Carcinogenesis and Financial datasets, where it achieves comparable classi�cation results
in up to 100-times faster manner (compared to RSD or Aleph feature construction).

In order to statistically compare classi�cation accuracies of multiple propositionaliza-
tion approaches (separately for each of the classi�ers) on multiple datasets, we applied
the Friedman test [116] using signi�cance level α = 0.05 and the corresponding Nemenyi
post-hoc test [117]. This approach is used as an alternative to the t-test, which is proven
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Wordi�cation (1.9)
RelF (2.2)
RSD (2.3)
AlephFeaturize (3.6)
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Wordi�cation (1.0)
AlephFeaturize (2.9)
RSD (3.0)
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Figure 6.10: Critical distance diagram for the reported classi�cation accuracy (left; not
enough evidence to prove that any algorithm performs better) and run-time (right; sig-
ni�cant di�erences for α = 0.05) results. The numbers in parentheses are the average
ranks.

to be inappropriate for testing multiple algorithms on multiple datasets [118].
The Friedman test ranks the algorithms for each dataset, the best performing algorithm

getting the rank of 1, the second best rank 2, etc. In the case of ties, average ranks are
assigned. The Friedman test then compares the average ranks of the algorithms. The
null-hypothesis states that all the algorithms are equivalent and so their ranks should be
equal. If the null-hypothesis is rejected, we can proceed with a post-hoc test, in our case
the Nemenyi test. The Nemenyi test is used when we want to compare multiple algorithms
to each other. The performance of the algorithms is signi�cantly di�erent if the average
ranks di�er by at least the critical distance (CD), as de�ned by [118]. This test can be
visualized compactly with a critical distance diagram; see Figure 6.10 for classi�cation
accuracy (CA) and run-time, when using J48 as the selected classi�er (omitting AUC due
to similar results obtained as for CA).

The described statistical test was performed using J48 for the three reported measures:
classi�cation accuracy, AUC and run-time. The validation yielded the following. For
classi�cation accuracy and AUC, there is not enough evidence to prove that any propo-
sitionalization algorithm on average performs better than the others (Figure 6.10 left, for
signi�cance level α = 0.05), even though wordi�cation achieves the best results on 5 out
of 7 benchmarks. This is due to the fact that the test takes into account the order of all
algorithms, not only one versus the others.

We repeated the same statistical analysis for the LibSVM results, where the conclusion
ended up the same. For classi�cation accuracy and AUC, there is not enough evidence to
prove that any propositionalization algorithm on average performs better than the others,
even though wordi�cation also achieves the best results on 5 out of 7 benchmarks.

For run-time, the results are statistically signi�cant in favor of wordi�cation; see the
critical distance diagram in the right part of Figure 6.10. The diagram tells us that the
wordi�cation approach performs statistically signi�cantly faster than other approaches,
under the signi�cance level α = 0.05. Other approaches fall within the same critical
distance and no statistically signi�cant di�erence was detected.

As shown in Figure 6.8, the results of the Cross Validation widget (precision, recall,
F-score) are connected to the input of the VIPER (Visual Performance Evaluation) widget.
VIPER is an alternative evaluation visualization [95], implemented in the TextFlows data
mining platform, which displays the results as points in the two-dimensional precision-recall
space (for the selected target class). Figure 6.11 presents the VIPER performance visual-
ization, evaluating J48 and LibSVM results after applying wordi�cation, RSD, RelF and
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Figure 6.11: The VIPER visualization showing evaluations of the standard J48 algorithm
after applying propositionalizaton techniques. In the Trains dataset (left), `East' was
selected as the target class, while in the IMDB dataset (right) positive class was selected
as the target.

Aleph feature construction as propositionalizaton techniques. The results are presented in
the so-called precision-recall space, where each point represents the result of an algorithm.
Points closer to the upper-right corner have higher precision and recall values. F-measure
values are presented as isolines (contour lines) in the precision-recall space, which allows a
simple comparison of algorithm performances.

From the results shown in Figure 6.11 we can conclude that in terms of precision
and recall J48 achieves best results using the wordi�cation propositionalization. Using the
wordi�cation methodology, not only a higher percentage of positive examples was retrieved
(higher recall score), but also a slightly higher percentage of correctly classi�ed examples of
the target class (higher precision score) compared to other propositionalization techniques.
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Chapter 7

Summary and Further Work

The work in this thesis facilitates the construction and execution of text mining and natu-
ral language processing (NLP) work�ows by implementing a web-based text mining plat-
form TextFlows. By unifying functionalities of di�erent knowledge discovery platforms
and adding features to facilitate text mining and natural language processing, we have
addressed novel scenarios which could not have been considered within the same plat-
form until now, such as comparison of stemmers and POS taggers from di�erent libraries,
literature-based discovery in a text mining platform, and relational data mining empowered
by a text mining inspired technique.

In the rest of this chapter the achievements and main scienti�c contributions of the
thesis are brie�y summarized. We conclude by discussing the directions of further work
and planned improvements of the presented platform, developed methodologies, their com-
ponents and their integrations.

7.1 Summary of Contributions

This thesis presents TextFlows, an open source platform featuring work�ow components
for text mining and natural language processing. TextFlows provides a common graphical
user interface and joins several text mining, visualization and machine learning libraries
under a single unifying platform, expanding their usability for researchers, practitioners
and non-experts. The platform provides a scalable architecture, which can serve several
concurrent users, and o�ers a framework for simple work�ow and dataset sharing.

The usability of the platform was demonstrated on �ve natural language processing
illustrative use cases, showing that components developed for di�erent systems and in
di�erent programming languages can be run within a single coherent system and may be
represented as a visually constructed work�ow available on the web. The ease of sharing
the completed work�ows and results over the web allows for TextFlows to become a central
integration platform for many text mining and natural language processing tasks. We have
compared our work to related platforms and shown the di�erences, bene�ts, and drawback
for using TextFlows with respect to other text mining platforms.

We implemented and presented the TextFlows cross-context literature mining facility,
which in combination with the existing term exploration engine CrossBee [17]�[19] supports
the expert in advanced document exploration, aimed at facilitating document retrieval,
analysis and visualization. The combination of the two systems forms a creativity support
tool, helping experts to uncover not yet discovered relations between seemingly unrelated
domains from large textual databases. For estimating which terms have a high bisociative
potential we implemented a complex methodology which was developed as a pipeline of
natural language processing and literature-based discovery components in the TextFlows
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platform. The visual programming user interface of TextFlows not only enables the user to
tailor the methodology steps to his own needs but also allows experiment repeatability and
methodology reuse by other users and developers. It was shown that by using a prede�ned
vocabulary we can increase the heuristics' capacities to rank the B-terms at the beginning
of the term list. Indeed, by applying this approach in the migraine-magnesium and autism-
calcineurin domains we got a higher concentration of B-terms among the best ranked terms.
Consequently, the user is presented with a simpler exploration task of �nding hidden links
that connect seemingly unrelated domains.

Furthermore, the thesis also presents the propositionalization [24], [25] technique called
wordi�cation, which aims at constructing a propositional table using simple and easy to
understand features. This methodology, implemented as a use case in the TextFlows plat-
form, is inspired by text mining and can be seen as a transformation of a relational database
into a corpus of documents, where document `words' are constructed from attribute values
by concatenating each table name, attribute name and value (called word-item or witem
in this paper) into a single named-entity. As is typical for propositionalization methods,
after the wordi�cation step any propositional data mining algorithm can be applied. As
shown in the experiments on seven standard ILP datasets, the proposed wordi�cation ap-
proach using the J48 and LibSVM classi�ers performs favorably (in terms of accuracy and
e�ciency), compared to state-of-the-art propositionalization algorithms (RSD [75], RelF
[76]) as well as compared to propositionalization performed by using features constructed
by Aleph [71]. In addition, the proposed approach has the advantage of producing easy to
understand hypotheses, using much simpler features than RSD and other systems, which
construct complex logical features as conjunctions of �rst-order literals. It is interesting
to observe that in wordi�cation feature simplicity is compensated by the mechanism of
feature weighting, inherited from text mining, which successfully countervails the loss of
information compared to complex relational features constructed by other propositional-
ization algorithms.

7.2 Public Availability of the Developed Software

We have released the sources of the TextFlows platform under an open source MIT license,
available at https://github.com/xflows/textflows. Detailed deployment instructions
are provided with the source code, while the user documentation of individual widgets
implemented in the platform is available at http://docs.textflows.org. A public in-
stallation of the platform is available for online use at http://textflows.org, while the
static version (not updated with new features) containing the exact work�ows presented
in this thesis is available at http://textflows.perovsek.com.

The git repository of the CrossBee's extension for importing datasets and heuris-
tic results from TextFlows is available at http://source.ijs.si/kt/crossbee/tree/

diagonalization, while the wordi�cation source code is accessible as part of the Python
Relational Data Mining package (https://github.com/xflows/rdm).

7.3 Assessment of Contributions

In Section 1.3 we described several goals and hypotheses of this thesis. In this section, we
reevaluate the proposed TextFlows platform and the presented methodologies with regards
to those requirements.

The main hypothesis presented in Section 1.3 is that textual data can be e�ciently
processed with a system that implements the visual programming paradigm and utilizes
computing by means of distributed hardware and software resources. The comparisons in

https://github.com/xflows/textflows
http://docs.textflows.org
http://textflows.org
http://textflows.perovsek.com
http://source.ijs.si/kt/crossbee/tree/diagonalization
http://source.ijs.si/kt/crossbee/tree/diagonalization
https://github.com/xflows/rdm
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Section 3.5 show that none of the described text analytics work�ow management systems
o�ers a combination of components from di�erent contexts and from di�erent software
sources, while still maintaining a high level of simplicity and interconnectivity, as well as
providing full-time accessibility and enabling methodology and result sharing. TextFlows is
implemented as a cloud-based web application, which helps it overcome various de�ciencies
of similar text analytics platforms in terms of accessibility and scalability. Moreover, the
TextFlows platform is open source and provides several novel features, which are bene�cial
to the text mining community, such as interoperability between di�erent NLP libraries.
However, o�ering a combination of algorithms from di�erent software libraries through a
uni�ed input-output representation also brings higher running times due to additional au-
tomated data type conversions. Moreover, running widgets (such as LATINO widgets) in a
distributed environment on several machines (through Celery) brings additional overhead
due to the requirements of transporting the data over the network. This issue was partially
addressed by building serializers/deserializers which compress/decompress the Annotated-
DocumentCorpus objects into smaller JSON strings. Furthermore, the ability to inspect
every widget's inputs and outputs comes with the requirement that every intermediate
result needs to be stored into the database, resulting in a huge number of I/O operations,
which brings down the performance of the platform.

We have demonstrated the usability of the platform on �ve natural language processing
use cases featuring implementations and comparisons of methods from several knowledge
discovery libraries in a uni�ed work�ow environment. By unifying functionalities of dif-
ferent knowledge discovery platforms and adding features to facilitate text mining joined
with natural language processing, we have addressed novel scenarios which could not be
considered within the same platform until now, such as comparison of stemmers and POS
taggers from di�erent libraries, literature-based discovery in a text mining platform, and
relational data mining empowered by a text mining inspired technique.

Another hypothesis investigated in this thesis is the usage of advanced text mining ap-
proaches for extraction of hidden/uncovered links and patterns across di�erent domains of
investigation. We have presented a complex literature-based discovery scenario featuring
various text mining components (tokenization, stemming, lemmatization, document visual-
ization, bisociative links discovery) implemented as a work�ow in the TextFlows platform.
We have shown the extensibility of the platform by implementing several components,
which�together with document exploration and visualization features of the CrossBee
human-computer interface�make it a powerful, user-friendly text analysis tool for ex-
ploratory cross-domain knowledge discovery. An advantage of the TextFlows-CrossBee
combination compared to only CrossBee is in the possibility to experiment with di�erent
settings, as well as the possibility to extend the methodology with new ideas and then
compare or evaluate the developed approaches. Consequently, for end-users who are not
computer scientists or data miners the system is a bit harder to use, as such users usually
prefer to follow a �xed sequence of prede�ned methodological steps.

We have also proposed three elementary heuristics based on banded matrices for the
bridging term discovery. The evaluation showed that the newly proposed heuristics resulted
in very favorable results on the migraine-magnesium domain; however, the performance
on the autism-calcineurin dataset suggests that the larger BoW space greatly decreases
their B-term discovery capabilities. Moreover, the construction of a banded matrix has a
much higher space and time complexities compared to the requirements of other elementary
heuristics, making banded matrix-based heuristics much harder to use on larger datasets.
Even though we have partly addressed these two issues by proposing an extended method-
ology, which uses the controlled vocabularies to reduce the search space, further extensive
research on more datasets is required. This extended bridging term discovery methodol-
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ogy facilitates the use of controlled vocabularies and enhances the heuristics capabilities to
rank the actual B-terms at the top of the ranked term list. Results show that using a pre-
de�ned controlled vocabulary not only increases the e�ciency of the heuristic calculation
algorithms, but also tends to improve the relevance of top ranked B-terms. Consequently,
the described approach enables the user to perform the exploration task more e�ectively,
potentially leading to faster discoveries of new links between the two domains. With all
these features, the TextFlows platform, combined with the CrossBee document exploration
interface, has become a publicly available tool, which can support creative discovery of new
cross-domain hypotheses.

Finally, we proposed a relational data mining scenario where a text mining inspired
approach wordi�cation was evaluated in comparison with existing propositionalization ap-
proaches on several relational datasets. The experiments showed that wordi�cation per-
formed favourably but that still su�ers from some loss of information, compared to propo-
sitionalization methods which construct complex �rst-order features as a chain of joins of
one or more tables related to the target table. We tried to address this feature dependence
issue by constructing a-kind-of word `n-grams' as conjuncts of a prede�ned number of sim-
ple features and using TF or TF-IDF word weighting to capture the importance of these
new features. Nevertheless, despite some information loss, wordi�cation has numerous
advantages. Due to the simplicity of features, the generated hypotheses are easily inter-
pretable by domain experts. The feature construction step in wordi�cation is very e�cient,
therefore it can scale well for large relational databases. As wordi�cation constructs each
`document' independently from the other `documents', a large main table can be divided
into smaller batches of examples, which can be propositionalized in parallel. Finally, the
wordi�cation approach has the advantage of using techniques developed in the text mining
community, such as e�cient document clustering or word cloud visualization, which can
now be e�ectively exploited in multi-relational data mining.

7.4 Further Work

In this section we �rst discuss the directions for further work related to the software plat-
form followed by a discussion on the potential directions for further work on the developed
methodologies in cross-context literate mining and relational data mining.

7.4.1 The TextFlows Platform

There are several directions for future work. First, we plan to expand the TextFlows
widget repository with additional text preprocessing components (such as chunking, term
extraction, syntactic parsing), extend the batch of weighting schemes for generating the
BoW models, and include various algorithms for clustering. We also plan to extend the
literature-based discovery package to include more widgets for cross-domain bridging term
discovery. Furthermore, we will connect the platform to various external tools to better
assist the user in the process of exploration and visualization of results, such as TopicCircle
[18] for clustering visualization.

Second, by using public data on user work�ows, submitted to the public version of the
TextFlows platform, we will construct a recommender system based on the data on pre-
viously executed work�ows that will enable computer-assisted construction of text mining
work�ows and bring the platform even closer to non-experts in terms of usability.

Third, since current weakness of TextFlows is its inability to deal with very large data,
we plan to integrate the stream mining and big data mining features of Apache Spark1 to

1http://spark.apache.org

http://spark.apache.org
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the TextFlows platform. This will allow for performing natural language processing on a
larger scale, as well as performing di�erent tasks on streams of data such as website news
feeds, or real time data from social networks such as Twitter and Facebook.

Furthermore, we wish to simplify the installation procedures of TextFlows to private
servers by providing one-click deployment to services such as Amazon Elastic Compute
Cloud (EC2)2, Google Compute Engine3 and Microsoft Azure4.

7.4.2 Cross-Context Literature-Based Discovery

In future work we will also introduce additional user interface options for data visualization
and exploration as well as advance the term ranking methodology by adding new sophis-
ticated heuristics which will take into account also the semantic aspects of the data (e.g.,
by introducing terms representing subject-verb-object triplets). Besides, we will apply the
system to new domain pairs to exhibit its generality, investigate the need and possibilities
of dealing with domain speci�c background knowledge, and assist researchers in di�erent
disciplines in their explorations which may lead to new scienti�c discoveries.

Furthermore, introducing more semantic understanding into the ranking could sub-
stantially improve the performance. We further plan to improve the set of heuristics, e.g.,
by introducing a more global view taking into consideration a term's local neighbourhood,
and exploring the potential of outlier documents in guiding search.

7.4.3 Relational Data Mining

In our experiments we also considered feature construction using n-grams. However, our
preliminary experiments indicate that in larger domains this technique should be coupled
with feature selection algorithms, which we plan to address in our further work.

Other advantages of wordi�cation, which will be explored in further work, include the
capacity to perform clustering on relational databases; while this can be achieved also with
other propositionalization approaches, wordi�cation may successfully exploit document
similarity measures and word clouds as easily understandable means of cluster visualization.

The implementation of the entire experimental work�ow (from connecting to a rela-
tional database management server to visualizing the experimental results and evaluation)
in the web-based text mining platform TextFlows is another major contribution, which will
enable ILP researchers to reuse the developed software in future experimentation. To the
best of our knowledge, this is the only work�ow-based implementation of ILP algorithms
in a platform accessible through a web browser, enabling simple work�ow adaptation to
the user's needs. Adding new ILP algorithms to the platform is also possible by exposing
an algorithm as a web service. This may signi�cantly contribute to the accessibility and
popularity of ILP and RDM methods in the future.

In future work we will also address other problem settings (such as clustering) and
use the approach for solving real-life relational problems. Moreover, we plan to use the
approach in a more elaborate scenario of mining heterogeneous data sources, involving
a mixture of information from databases and text corpora. We will further investigate
the strength of n-gram construction and feature weighting, as used in the text mining
community, in propositional and relational data mining, as our results indicate that these
mechanisms may be successfully used to compensate for the loss of information compared
to constructing complex logical features.

2https://aws.amazon.com/ec2/
3https://cloud.google.com/compute/
4https://azure.microsoft.com/

https://aws.amazon.com/ec2/
https://cloud.google.com/compute/
https://azure.microsoft.com/
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Appendix A

Cross-Domain Literature Mining

A.1 Individual Steps of the CrossBee Methodology in the

TextFlows Platform

This section describes the entire underlying pipeline of natural language processing (NLP)
and literature-based discovery (LBD) components of the CrossBee methodology (described
in Section 5.2.1) implemented as a work�ow in the TextFlows platform. While the top-level
procedural explanation of the work�ow, shown in Figure 5.6, is provided in Sections 5.2.1
and 5.3, the detailed explanations of individual steps of the work�ow are described below.
Note that the proposal of such work�ow was already presented in [19], thus our main
contribution is the adapted implementation in the TextFlows platform.

A.1.1 Document Acquisition Work�ow

Document acquisition is the �rst step of the work�ow from Figure 5.6. Its goal is to
acquire documents of the two domains, label them with domain labels and pack both
domains together into the annotated document corpus format. It is composed of several
components described below.

Figure A.1: Document acquisition work�ow.

The components are responsible for the following tasks:

1.1. load literature A into annotated document corpus data structure

1.1.1. load raw text data from a �le (this component could be replaced by loading
documents from the web or by acquiring them using web services), where each
line contains a document with exactly three tab-separated entries: (a) document
identi�er, (b) domain acronym, and (c) the document text,
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1.1.2. build the annotated document corpus from the raw data, i.e. parse the loaded
raw text data into a collection of documents and assign a domain label (e.g., �lit-
erature A�, �docsA�, �migraine�) to the documents to enable their identi�cation
after merging with literature B,

1.2. load literature B into the annotated document corpus data structure (individual
components are aligned with the components 1.1),

1.3. merge the two literatures into a single annotated document corpus structure,
1.4. optional check of document acquisition by visual inspection of the created corpus.

The document acquisition work�ow is shown in Figure A.1. The output is the annotated
document corpus consisting of the acquired documents labeled with domain labels.

A.1.2 Text Preprocessing Work�ow

The document acquisition step is followed by the text preprocessing step, which is itself a
work�ow implemented as shown in Figure A.2. The main components here are tokenization,
stopwords labeling and token stemming or lemmatization. The output of this step is
structurally equal to the input; however every document in the annotated document corpus
now contains additional information about tokens, stopwords and lemmas.

Figure A.2: Document preprocessing work�ow.

The individual components perform the following tasks:

2.1. split documents to tokens (the basic units for further text processing),

2.1.1. create tokenizer object (simple tokenizer based on regular expressions),

2.2. tag stopword tokens by using a stopword tagger (component 2.2.2),

2.2.1. load standard English stopwords,

2.2.2. de�ne the stopword tagger using the standard English stopwords only (the de-
tected stopwords are used in candidate B-term extraction step),

2.3. lemmatize tokens by applying the LemmaGen lemmatizer1 [91],

2.3.1. create an instance of LemmaGen lemmatizer.

A.1.3 Heuristics Speci�cation Work�ow

While the heuristics speci�cation step is the core part of our methodology, this step only
speci�es which heuristics are selected and how these heuristics should be combined into the
ensemble heuristic. The actual calculation is performed later in the heuristic term score
calculation step.

1LemmaGen is an open source lemmatizer with 15 prebuilt European lexicons. Its source code and
documentation is publicly available at http://lemmatise.ijs.si/

http://lemmatise.ijs.si/
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Figure A.3: Heuristic speci�cation.

Work�ow speci�cation displayed in Figure A.3 is the outcome of our research about
the base term heuristics and their combination into the ensemble heuristic presented in
Section 5.2.2. Which heuristics to use and how to combine them is based on the experiments
on the real data that we performed as a part of the research presented in this thesis�these
experiments are presented in more detail in [19]. The �ndings resulted in the setting shown
in Figure A.3, which is a good choice when applied on new data. Nevertheless, the setting
and the choice of the base heuristics is fully customizable and can be freely con�gured to
better suit the needs of new applications.

The output of this procedure is a speci�cation of a complex ensemble heuristic, which
computes the term bisociation scores. The components in the heuristic speci�cation per-
form the following tasks:

3.1. de�ne base heuristics (see Section 5.2.2 for details about the base heuristics selection),

3.1.1. de�ne TF-IDF based heuristic t�dfDomnSum,
3.1.2. de�ne term frequency based heuristic freqRatio,
3.1.3. de�ne outlier based heuristics outFreqRelRF, outFreqRelSVM, outFreqRelCS,

outFreqRelSum

3.2. for every inputted heuristic de�nes a new heuristic that normalizes the scores to the
range [0,1) and outputs a list of new heuristic speci�cations,

3.3. combine the six heuristics into a single ensemble heuristic

3.3.1. de�ne an ensemble voting heuristic that includes votes of the six heuristics
(ensemble voting score, see Equation 5.1),

3.3.2. de�ne a calculated heuristic that calculates normalized sum of position scores
of the six heuristics (ensemble position score, see Equation 5.2),

3.4. de�ne the �nal ensemble heuristic by summing the ensemble voting heuristics, which
results in the number of terms heuristics' votes in the range from 0 to 6 (integer
value), and the calculated normalized sum of heuristics scores in the range from 0 to
less than 1 (�nal ensemble score, see Equation 5.3).

A.1.4 Candidate B-term Extraction Work�ow

Another core step of the work�ow is candidate B-term extraction, shown in Figure A.4.
Although it contains only one component, it has a very important and complex goal of
transforming the inputted annotated document corpus into the BoW model in order to
represent documents in the form of feature vectors of term occurrences in the documents
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Figure A.4: Candidate B-term extraction.

(for the purpose of visualization of documents and the need of highlighting and emphasizing
of speci�c terms). Another task of this step is to capture the exact parsing procedure, which
is needed in order to perform various computations which are performed in the advanced
heuristic term scores calculation step. The outputted BowModelContructor object also
contains the vocabulary of all terms.

A.1.5 Heuristic Term Score Calculation Work�ow

Figure A.5 shows a structurally simple methodological step of heuristic term score calcu-
lation that contains only one component. The inputs to the procedure are the annotated
document corpus, the BoWModelContructor and the heuristics speci�cation. Based on
the information present in the BoWModelContructor, the algorithm calculates various fre-
quency and TF-IDF document features vectors, which are used to calculate the speci�ed
heuristics scores for all the terms. The calculation results in the same heuristic structure
as de�ned in the heuristic speci�cation step, however the ensemble heuristic at the top
level, as well as all elementary heuristics, now contain their calculated scores of the terms.
The scores of the top-level heuristic are intended to represent terms' bisociation scores and
are typically used as a basis for the �nal term ranking.

Figure A.5: Heuristic term score calculation.

A.1.6 B-term Visualization and Exploration Work�ow

Step 6 of the methodology implements a work�ow shown in Figure A.6. It enables vi-
sualization and exploration of the ranked list of B-terms. There are four inputs to this
step. The �rst and the most important are the ensemble heuristic scores of the extracted
candidate B-terms. Inputs Annotated Document Corpus and BoW Dataset are used by
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Figure A.6: B-term visualization and exploration.

the online application for cross-context bisociation exploration CrossBee, which needs the
exact information about term extraction from documents to be able to align the terms
back with the original documents in order to visualize them; while the BoW Model Con-
structor provides the constructed vocabulary. The goals of the created components are the
following:

6.1. explore the �nal results in a web application CrossBee, which was designed speci�-
cally for the purpose of bisociativity exploration (expressed either through terms or
through documents),

6.1.1. optional expert speci�ed B-terms may be provided to CrossBee in order to em-
phasize them in the text and to deliver a feedback about the bisociative quality
of the provided ranking. If available, these terms are loaded and preprocessed
using the same preprocessing techniques as described in the document prepro-
cessing step,

6.2. rank the terms

6.2.1. display the ranked terms in the form of a table along with their respective scores.

A.1.7 Methodology Evaluation Work�ow

Step 7 of the overall methodology is the methodology evaluation step, implemented as
a work�ow shown in Figure A.7. There are three inputs to the process: the heuristic
scores of one or more evaluated heuristics (which presents the result of all the preceding
methodological steps), the BowModelContructor (which contains the corpus vocabulary)
and additional information about the actual B-terms (required in order to assess any kind
of quality measures). Note that, in order not to over�ow the overall methodology work�ow
of Figure 5.6 with additional information, the list of actual bridging terms was not shown as
an additional step of the methodology. Instead, it is implemented as a separate subprocess
in the methodology evaluation work�ow, which is responsible for loading and preprocessing
the actual B-terms.
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Figure A.7: Methodology evaluation.

The components of the methodology evaluation work�ow perform the following tasks:

7.1. prepare pairs of actual and predicted values, which are used to calculate di�erent
information retrieval measures in step 7.2,

7.1.1. if available, load the actual (expert identi�ed) B-terms, which present the gold
standard terms used to evaluate the quality of the methodology and preprocess
them using same techniques as in document preprocessing step,

7.2. calculate di�erent measures, such as precision, recall, and the F1-measure, ROC
curves and the AUC (Area Under Curve) values,

7.2.1. display ROC curves graphically,
7.2.2. compare information retrieval measures in the form of a table,
7.2.3. compare information retrieval measures in the form of a bar chart,
7.2.4. display and compare the F1-scores in the advanced VIPER performance evalu-

ation chart [95] component.

The methodology evaluation functionality presented in this section is not part of the
actual work�ow for cross-domain knowledge discovery; however, it is indispensable when
developing a new approach. Description of this step concludes the section presenting the
key parts of the methodology.

A.2 Heuristic Scores on the Migraine-Magnesium Dataset

In Section 5.5.3 we demonstrated that by using a prede�ned controlled vocabulary we can
increase the heuristics' capabilities to rank the B-terms at the beginning of the term list on
the migraine-magnesium domain, which was described in Section 5.2.4. Tables 5.7 and 5.8
included only the newly presented heuristics based on banded-matrices and the ensemble
heuristic and base heuristics included in the ensemble (as identi�ed by Jur²i£ et al.). In
this section we show the full list of base heuristics and their scores. The comparison
of the heuristics' capabilities to rank the B-terms at the beginning of the term list in
the migraine-magnesium domain, presented in Tables A.1 and A.2 below, con�rms the
advantage of using the controlled vocabulary. By inspecting the number of B-terms found
by the heuristics in the ranked �rst n terms, we notice that using the controlled vocabulary
in the migraine-magnesium domain resulted in a much higher concentration of Swanson's
B-terms among the best ranked terms for all base heuristics as well as the ensemble.
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Table A.1: Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the migraine-magnesium dataset.

Heuristic Name
Number of B-terms among top n ranked terms

5 10 20 50 100 200 500 1,000 2,000

outFreqRelRf 0.24 0.48 0.95 1 3.72 7.92 15.8 30.33 43
heuristic3 0 0 0 1 3 9 14.92 28.48 43
outFreqRelSum 0 0.36 1 1.64 3.54 7 15 27 43
outFreqRelSvm 0.12 0.24 0.48 1 1.63 5.92 14.69 29 43
heuristic2 0 0 0 1 6 7.91 12.65 29.62 43
outFreqRf 0 0 0 0 0 3.91 16.03 27.86 43
freqDomnRatioMin 0.14 0.28 0.57 1.42 2.83 5.66 14 28 43
heuristic1 0 0 0 1 2 4.48 16.5 26.58 43
outFreqSum 0 0 0 0 0 2 14.28 27.11 43
outFreqSvm 0 0 0 0 0.32 3 14.09 26.14 43
outFreqRelCs 0 0 1 1 2.69 5.07 11 27 43
freqDomnProdRel 0 0 0 0 0 6 14 27 43
outFreqCs 0 0 0 0 0 1.43 15.62 24.67 43
t�dfDomnSum 0 0 0 0 1 2 11 26.14 43
t�dfAvg 0 0 1 1.79 3.11 5.75 11.84 20.9 43
freqDomnProd 0 0 0 0 1 3 13.17 27.16 43
t�dfDomnProd 0 0 0 0 1 3 13.5 27 43
freqRatio 0 0 1 1 4 5 11.65 23.09 43
appearInAllDomains 0.11 0.23 0.46 1.15 2.3 4.6 11.49 22.98 43
t�dfSum 0 0 0 0 0 1 9 25.36 43
freqTerm 0 0 0 0 0 1 8.91 25.49 43
freqDoc 0 0 0 0 0 1 8.03 24.79 43

ensemble 1 1 1 5 6 9 18.57 28 43

Table A.2: Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the migraine-magnesium dataset using a controlled
vocabulary.

Heuristic Name
Number of B-terms among top n ranked terms

5 10 20 50 100 200 500 1,000 2,000

heuristic2 2 5 5.43 12 15.5 25 26 26 26
heuristic3 0 2 6 7 14 22.68 26 26 26
heuristic1 1 2 2.25 9 13.63 20.15 26 26 26
freqDomnRatioMin 0.59 1.18 2.37 5.92 13.25 20 26 26 26
outFreqSum 0 2 3 5.45 15.05 16.96 26 26 26
freqDomnProdRel 0 1 2 5.67 9 20 26 26 26
outFreqRf 1 1.67 3.11 7.93 11.88 15.88 26 26 26
outFreqSvm 1 1 2.5 5.32 11.79 16.79 26 26 26
outFreqCs 0 0 2.45 5.6 10.22 17.06 26 26 26
t�dfDomnSum 0 1 1 4 10 19 26 26 26
freqDomnProd 0 1 1 4 9 19 26 26 26
t�dfDomnProd 0 1 1 4 9 19 26 26 26
outFreqRelRf 0.56 1.11 2 5 8 15 26 26 26
freqDoc 0 0 1 2.5 7.82 17.1 26 26 26
t�dfSum 0 0 1 2.25 7.5 17.35 26 26 26
freqTerm 0 0 1 2.25 7.56 17.43 26 26 26
appearInAllDomains 0.39 0.78 1.56 3.9 7.81 15.62 26 26 26
outFreqRelSum 0.42 0.83 1.2 4 9 14 26 26 26
t�dfAvg 0 1.42 2.47 5.63 7 13 26 26 26
outFreqRelSvm 0.45 0.91 1.82 3.25 9 15 26 26 26
outFreqRelCs 0.31 0.63 1 5 7.06 14 26 26 26
freqRatio 0 1 1 2 5.96 14.56 26 26 26

ensemble 1 3 4 9 13 19 26 26 26
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A.3 Heuristic Scores on the Autism-Calcineurin Dataset

In Section 5.5.3 we performed experiments using a prede�ned controlled vocabulary for
cross-domain knowledge discovery on the autism-calcineurin dataset; we have shown only
results for the ensemble heuristic and the base heuristics included in the ensemble (see
Tables 5.10 and 5.11). In this section we show the experimental results for the full list of
base heuristics. The comparison of all heuristics' capabilities to rank the B-terms at the
beginning of the term list on the autism-calcineurin dataset, presented in Tables A.3 and
A.4 below, con�rms the advantage of using the controlled vocabulary on other heuristics
as well.

Table A.3: Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the autism-calcineurin dataset.

Heuristic Name
Number of B-terms among top n ranked terms

5 10 20 50 100 200 500 1,000 2,000 5,000 all

freqRatio 1 1 1 1 1 1 1 3 5 8.99 13
t�dfSum 0 0 0 0 1 1 1 2 4 5 13
t�dfDomnProd 0 0 0 0 0 0 1 1 4 6 13
t�dfDomnSum 0 0 0 0 1 1 2 2 4 5 13
freqTerm 0 0 0 0 1 1 1 2 3 5 13
freqDomnProd 0 0 0 0 0 0 0 1 2 6 13
freqDomnProdRel 0 0 0 0 0 0 0 1 1 6 13
outFreqSum 0 0 0 0 0 1 1 3 5 7 13
outFreqCs 0 0 0 0 0 1 1 1 4 7.17 13
freqDoc 0 0 0 0 0 1 1 2 2 5 13
outFreqRf 0 0 0 0 0 1 1 2.07 4.67 7.39 13
outFreqSvm 0 0 0 0 1 1 1.46 4 4.67 5.44 13
t�dfAvg 1 1 1 1 1 1 1 1 3 6 13
heuristic3 0 0 0 0 0 0 1 4 4 4 13
heuristic1 0 0 0 0 0 0 0 1 4 4.02 13
outFreqRelCs 0 0 0 0 0 0 0 0 0 1.49 13
outFreqRelSum 0 0 0 0 0 0 0 1.64 2 2 13
outFreqRelRf 0 0 0 0 0.01 0.58 1 1 1 2 13
outFreqRelSvm 0 0 0 0 0 0 0 0 1.25 2 13
heuristic2 0 0 0 0 0 0 0 0 0 1 13
appearInAllDomains 0 0 0 0.01 0.02 0.03 0.08 0.17 0.33 0.83 13
freqDomnRatioMin 0 0 0 0 0 0 0 0 0 0 13

ensemble 0 1 1 1 1 2 3 4 6 8 13
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Table A.4: Comparison of base and ensemble heuristics capacity to rank the B-terms at
the very beginning of the term list for the autism-calcineurin dataset using a controlled
vocabulary.

Heuristic Name
Number of B-terms among top n ranked terms

5 10 20 50 100 200 500 1,000 2,000 5,000 all

outFreqSvm 0 0 0 0 2 4 4.81 7 8.94 9 9
outFreqSum 0 0 0 0 0 4 5.85 7 8 9 9
t�dfDomnProd 0 0 0 0 0 3 4 7 9 9 9
freqDomnProd 0 0 0 0 1 3 4 7 9 9 9
freqRatio 1 1 1 1 2 3 3.6 6.01 9 9 9
freqDomnProdRel 0 0 0 0 0 1 4 7 9 9 9
outFreqCs 0 0 0 0 0 2 6.59 7 7.82 9 9
t�dfSum 0 1 1 1 1 2 3 7 9 9 9
t�dfDomnSum 0 1 1 1 1 2 3 7 9 9 9
freqTerm 0 1 1 1 1 2 3 6.21 9 9 9
outFreqRf 0 0 0 0 0 3 4.25 6.56 8.01 9 9
freqDoc 0 1 1 1 1 2 3 6 8 9 9
outFreqRelSvm 0 0 1 1 1 1 2 4 9 9 9
heuristic1 0 1 1 1 1 2 2 5 7 9 9
t�dfAvg 1 1 1 1 1 2 2 4 7 9 9
outFreqRelCs 0 0 0 0 0 0 2 3 7 9 9
outFreqRelSum 0 0 0 1 1 1 1 3 7 9 9
heuristic3 1 1 1 1 1 1 1 4 6 9 9
outFreqRelRf 0 0 0 0 0 1 1 3 8 9 9
heuristic2 0 0 0 1 1 1 2 2 5.76 9 9
appearInAllDomains 0.01 0.03 0.06 0.14 0.28 0.55 1.38 2.76 5.52 9 9
freqDomnRatioMin 0 0 0 0 0 0 1 2 6 9 9

ensemble 1 1 1 2 2 2 4 6 8 9 9
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Appendix B

Bisociative Morals Ideation

Although not primarily designed for this task, our banded matrix-based B-term ranking
methodology, described in Section 5.4, can be used for creating pairs of sentences from
di�erent domains, which combine into surprising, funny or even insightful pieces of text
when put together and considered as a whole. Bridging terms, appearing in both sentences,
detected by our methodology function as a kind of glue, contributing to the coherency and
increasing the potential for combinations to be meaningful.

To illustrate the potential of the proposed approach for narrative ideation, we chose
two domains: What-if sentences and Aesop's fables' morals. The �rst domain consists of
94 What-if sentences, retrieved from Twitter (using hash tag #whatif) and the UKWaC
British English web corpus. For instance, here is example of such a sentence: �What
if Google someday went down and we couldn't Google what happened to Google?� The
Aesop's fables1 morals dataset is a collection of 277 fable morals. We created this dataset
by crawling the Aesop's fables online collection.

Each what-if sentence as well as each Aesop's fables' moral was treated as a separate
document. The documents from both domains were preprocessed using standard text
mining techniques, described in Section 4.1. This resulted in 383 distinct terms from all
the obtained documents. We applied our methodology to �nd terms with the highest
b-term potential. For simplicity, the terms were sorted using the scores of Heuristic 3
(presented in Section 5.4.5), which we consider the most complete among the presented
heuristics. The �ve terms with the highest b-term potentials were used to create all pairs
of sentences sharing the selected bridging term (with the �rst sentence being from the
what-if domain and the second from the Aesop's fables domain). The 15 highest scoring
b-term based concatenated pairs of sentences which resulted are shown in Table B.1. These
results show�subjectively�that using the terms with the highest b-term potential resulted
in several meaningful, creative combinations of sentences. Moreover, it is clear that a
large proportion of the sentence pairs in Table B.1 have meaningful relations which could
form the basis of artefacts such as poems or stories. We can argue that it would be quite
a laborious task to �nd similarly valuable combinations from all possible pairs (143) of
sentences from the given domains without guidance provided by bridging terms. We plan
to use crowd-sourcing to test the hypothesis that our approach can reliably produce such
valuable combinations.

The experimental evidence indicates that the presented methodology has the potential
for supporting the users in the task of bisociative, cross-domain narrative ideation. Banded
matrices help us to discover the structures which reveal the nature of relations between
terms and documents. We have shown that the approach can be used to construct creative

1Aesop was a Greek fabulist, known as author of numerous fables; these are characterized by animals,
which solve problems and have human characteristics. See http://www.aesopfables.com/

http://www.aesopfables.com/
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Table B.1: Results of our methodology: combinations of what-if sentences with Aesop's
fable morals. In the brackets are the fable titles, which were not part of the document's
contents, but are given here as an additional piece of information. The bridging terms are
shown in bold.

What if life is one big dream, and when we die, we wake up. Evil tendencies are shown in early life.
(The Man, the Boy and the Donkey)

What if we woke up, as a baby, and our whole life had been a dream? Evil tendencies are shown in
early life. (The Man, the Boy and the Donkey)

What if, like Bhutan, we gauged our life's success by how happy we are, not by how big the house is,
the number. Evil tendencies are shown in early life. (The Man, the Boy and the Donkey)

What if someone you love dearly gave you a surprise bday party and when you arrived every1 was
exchanging gifts but not nary a 1 was for you! Misery loves company. (The Fox Who Had Lost His Tail)

What if someone you love dearly gave you a surprise bday party and when you arrived every1 was
exchanging gifts but not nary a 1 was for you! Even the wildest can be tamed by love. (The Lion in

Love)

What if there are other beings in the same room as us but we can't see them and they can't see us.
Not everything you see is what it appears to be. (The Dancing Monkeys)

What if there are other beings in the same room as us but we can't see them and they can't see us.
Gossips are to be seen and not heard. (The Eagle the Cat and the Wild Sow)

What if we don't see tomorrow and everything you said today couldn't be undone. Would you be
proud? Not everything you see is what it appears to be. (The Dancing Monkeys)

What if we don't see tomorrow and everything you said today couldn't be undone. Would you be
proud? Gossips are to be seen and not heard. (The Eagle the Cat and the Wild Sow)

What if eyeballs had butts but we couldn't see them because they're hidden in our skulls? Not
everything you see is what it appears to be. (The Dancing Monkeys)

What if eyeballs had butts but we couldn't see them because they're hidden in our skulls? Gossips are
to be seen and not heard. (The Eagle the Cat and the Wild Sow)

What if humans could actually breathe in space? And the government says we can't so we don't try
to escape? Nothing escapes the master's eye. (The Stag in the Ox-Stall)

What if humans could actually breathe in space? And the government says we can't so we don't try
to escape? We had better bear our troubles bravely than try to escape them. (The Kings Son and the

Painted Lion)

What if you simply stopped doing whatever it is that isn't a part of your success? The best intentions
will not always ensure success. (The Monkeys and Their Mother)

What if, like Bhutan, we gauged our life's success by how happy we are, not by how big the house is,
the number. The best intentions will not always ensure success. (The Monkeys and Their Mother)

combinations of sentences from di�erent domains, coupled with bridging terms with the
highest b-term potential. The results con�rm the potential of the proposed approach to
identify meaningful bridging concepts in the intersection of texts from di�erent domains.

In further work, we will upgrade the methodology to combine not only pairs of sentences
from two domains, but also to compose longer chains of sentences, resulting in narrative
ideation. Another line of research will address more subtle connections between sentences.
For instance, there is a semantic connection between baby and early life in �What if we
woke up, as a baby, and our whole life had been a dream? Evil tendencies are shown in early
life.� However, this connection arises purely by coincidence: it was not detected by the
system. An important next step will be to crowd-source opinions about how reliable the
process is at producing sentence pairs (and larger constructs) which can be meaningfully
interpreted in such a way that intelligence and possibly creativity are projected onto the
software producing them. After the analysis of the results and further re�nement of the
techniques, we plan to embed �ctional ideation processes and idea expansion via bisociation
into software for generating artefacts of cultural value such as poems and stories. We hope
to show that the kinds of cross-context link discovery methods presented here can be used
generically in Computational Creativity projects across domains.
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Appendix C

Evaluation of Wordi�cation Feature

Construction

In addition to the TF-IDF weighting scheme, the implementation of wordi�cation (de-
scribed in detail in Section 6.4) includes also the term frequency (TF) and the binary
(0/1) weighting schemes. A comparison of the three schemes can be found in Table C.1.
The results show that di�erent weighting schemes, used in our experiments, do not perform
signi�cantly di�erently on the classi�cation tasks.

Table C.1: Evaluation of di�erent feature weighting techniques.

Domain Weighting J48-Accuracy[%] J48-AUC

Trains TF-IDF 50.00 0.50
without position TF 85.00 0.85

Binary 35.00 0.35

Trains TF-IDF 95.00 0.95

TF 80.00 0.80
Binary 70.00 0.70

Mutagenesis 42 TF-IDF 97.62 0.96
TF 97.62 0.96

Binary 97.62 0.96

Mutagenesis 188 TF-IDF 68.62 0.55

TF 68.09 0.54
Binary 68.62 0.55

IMDB TF-IDF 81.93 0.75
TF 81.93 0.75

Binary 81.93 0.75

Carcionogenesis TF-IDF 62.31 0.61
TF 62.61 0.61

Binary 62.92 0.62

Financial TF-IDF 86.75 0.50
TF 86.75 0.50

Binary 86.75 0.50
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In Section 6.5.1 we described how we have applied di�erent wordi�cation settings in
the classi�cation task on the Trains dataset. The classi�cation accuracies using the J48
decision tree of leave-one-out cross-validation for di�erent parameters showed that using
larger n-grams of witems improved the classi�cation accuracies compared to 1-grams of
witems. The results of additional experiments on more domains (presented in Table C.2)
reveal that this observation is only applicable to small domains, while for larger domains
with more potential witem combinations this observation does not always hold.

Table C.2: Evaluation of di�erent number of witems.

Domain k J48-Accuracy[%] J48-AUC Time[s]

Trains 1 50.00 0.50 0.12
without position 2 75.00 0.75 0.15

3 75.00 0.75 0.20

Trains 1 95.00 0.95 0.12
2 75.00 0.75 0.16
3 70.00 0.70 0.22

Mutagenesis 42 1 97.62 0.96 0.65
2 97.62 0.96 0.83
3 92.86 0.88 0.88

Mutagenesis 188 1 68.62 0.55 1.25
2 68.62 0.55 2.26
3 66.49 0.50 2.68

IMDB 1 73.49 0.50 0.16
2 73.49 0.50 0.20
3 73.49 0.50 0.25

Carcionogenesis 1 56.84 0.56 5.31
2 51.67 0.51 6.65
3 52.58 0.51 7.04

Financial 1 86.75 0.50 4.11
2 86.75 0.50 4.24
3 86.75 0.50 4.38
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Appendix D

Illustrative Examples of the

Wordi�cation Methodology

This appendix illustrates the utility of wordi�cation in a descriptive induction setting
of learning association rules from two real-life domains, using data from a subset of the
IMDB movies database and from a database of tra�c accidents. Tables D.1 and D.2 list
the characteristics of both databases.

Table D.1: Table properties of the two experimental datasets.

IMDB

Table #rows #attributes
movies 166 4
roles 7,738 2
actors 7,118 4

movie_genres 408 2
movie_directors 180 2

directors 130 3
director_genres 243 3

Accidents

Table #rows #attributes
accident 102,756 10
person 201,534 10

Table D.2: Document properties after applying the wordi�cation methodology.

Domain Individual #examples #words #words after �ltering
IMDB movie 166 7,453 3,234

Accidents accident 102,759 186 79

The preprocessing procedure was performed on the two databases as follows. First,
the wordi�cation step was applied. As shown in Figure D.1, we used TextFlows to read
the relational data from the MySQL database, discretize continuous attributes and apply
the propositionalization step. Due to lack of support for association rule learning in the
TextFlows platform, the results of the wordi�cation feature construction step were saved
as an ARFF �le and imported into RapidMiner [119]. Using RapidMiner we �rst removed
irrelevant features (which have the same value across all the examples), which resulted in
the reduction of the features to less than half of the original (see Table D.2). In order to
prepare the data for association rule mining, we also binarized the data: after experiment-
ing with di�erent TF-IDF thresholds, features with a higher TF-IDF weight than 0.06 were
assigned the value true and false otherwise.
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Figure D.1: TextFlows wordi�cation work�ow used for feature construction before apply-
ing association rule learning. This work�ow is publicly available at http://textflows.
perovsek.org/workflow/67/. The abbreviations (not important for understanding the
work�ow) on the input and output stubs are as follows: con connection, ctx context, odt
Orange data table, lot list of Orange data tables, str string, arf ARFF �le, ins instances,
lrn learner, cla classi�er.

D.1 Results on the IMDB Database

The complete IMDB database is publicly available in the SQL format1. This database
contains tables of movies, actors, movie genres, directors, director genres.

The evaluation database used in our experiments consists only of the movies whose titles
and years of production exist on IMDB's top 250 and bottom 100 chart. The database
therefore consisted of 166 movies, along with all of their actors, genres and directors.
Movies present in the IMDB's top 250 chart were added an additional label goodMovie,
while those in the bottom 100 were marked as badMovie. Additionally, attribute age was
discretized; a movie was marked as old if it was made before 1950, fairlyNew if it was
produced between 1950 and 2000 and new otherwise.

goodMovie← director_genre_drama, movie_genre_thriller,
director_name_AlfredHitchcock.

(Support: 5.38% Con�dence: 100.00%)

movie_genre_drama← goodMovie, actor_name_RobertDeNiro.
(Support: 3.59% Con�dence: 100.00%)

director_name_AlfredHitchcock← actor_name_AlfredHitchcock.
(Support: 4.79% Con�dence: 100.00%)

director_name_StevenSpielberg← goodMovie, movie_genre_adventure,
actor_name_TedGrossman.

(Support: 1.79% Con�dence: 100.00%)

Figure D.2: Examples of interesting association rules discovered in the IMDB database.

After preprocessing the dataset using the wordi�cation methodology, we performed
association rule learning. Frequent itemsets were generated using RapidMiner's FP-growth
implementation [119]. Next, association rules for the resulting frequent itemsets were
produced. Among all the discovered rules, several interesting rules were found. Figure D.2
presents some of the interesting rules selected by the expert. The �rst rule states that if
the movie's genre is thriller and is directed by Alfred Hitchcock, who is also known for
drama movies, then the movie is considered to be good. The second rule we have selected

1http://www.webstepbook.com/supplements/databases/imdb.sql

http://textflows.perovsek.org/workflow/67/
http://textflows.perovsek.org/workflow/67/
http://www.webstepbook.com/supplements/databases/imdb.sql
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concludes that if the movie is good and Robert De Niro acts in it, then it must be a
drama. The third interesting rule shows that Alfred Hitchcock acts only in the movies he
also directs. The last rule concludes that if Ted Grossman acts in a good adventure movie,
then the director is Steven Spielberg. Note that Ted Grossman usually plays the role of a
stunt coordinator or performer.

D.2 Results on the Tra�c Accident Database

The second dataset consists of all accidents that happened in Slovenia's capital Ljubljana
between years 1995 and 2005. The data is publicly accessible from the national police
department website2. The database contains the information about accidents along with
all the accident's participants.

noInjuries← accident_trafficDensity_rare,
accident_location_parkingLot.

(Support: 0.73% Con�dence: 97.66%)

person_gender_male← person_vehicleType_motorcycle.
(Support: 0.11% Con�dence: 99.12%)

Figure D.3: Examples of interesting association rules discovered in the accidents database.

The data already contained discretized attributes, so further discretization was not
needed. Similarly to the IMDB database, preprocessing using wordi�cation methodology,
FP-growth itemset mining and association rule mining were performed. Figure D.3 presents
some of the interesting rules found in the Slovenian tra�c accidents dataset.

The �rst rule indicates that if the tra�c is rare and the accident happened in a parking
lot, then no injuries occurred. The second rule implies that whenever a motorcycle is
involved in an accident, a male person is involved.

2http://www.policija.si/index.php/statistika/prometna-varnost

http://www.policija.si/index.php/statistika/prometna-varnost
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