
FEATURE RANKING FOR
STRUCTURED OUTPUT PREDICTION

Matej Petković

Doctoral Dissertation
Jožef Stefan International Postgraduate School
Ljubljana, Slovenia

Supervisor: Prof. Dr. Sašo Džeroski, Jožef Stefan Institute, Jamova 39, Ljubljana, Slove-
nia
Co-Supervisor: Dr. Dragi Kocev, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia

Evaluation Board:
Prof. Dr. Nada Lavrač, Chair, Jožef Stefan Institute, Ljubljana, Slovenia
Prof. Dr. Hendrik Blockeel, Member, KU Leuven, Leuven, Belgium
Prof. Dr. Kristian Kersting, Member, Technische Universität Darmstadt, Darmstadt, Ger-
many

Matej Petković

FEATURE RANKING FOR
STRUCTURED OUTPUT PREDICTION

Doctoral Dissertation

RANGIRANJE ZNAČILK ZA NAPOVEDOVANJE
STRUKTURIRANIH VREDNOSTI

Doktorska disertacija

Supervisor: Prof. Dr. Sašo Džeroski

Co-Supervisor: Dr. Dragi Kocev

Ljubljana, Slovenia, September 2020

To my parents
Mojim staršem

Ko sem faks si iskal, sem gozdarstvo izbral
(D. Domajnko, Gozdar)

vii

Acknowledgments

I thank my supervisor Sašo Džeroski for giving me the opportunity to work here, for giving
support and general directions for research, and for thorough corrections of our papers.

I thank Marko Bohanec for also giving me the opportunity to work here.
I thank my co-supervisor Dragi Kocev for his help with writing the papers, for general

lessons, for all the time has spent with me, and for other opportunities he gave me.
I thank Panče Panov for his help at the very beginning when the help is needed most.
I thank the masters of the grid – Barbara Krašovec, Janez Srakar and Jan Jona Javoršek

– for their close-to-zero response times, no matter where they were at that time or when
the issues occurred, for the environments that Barbara has created, and for adjusting the
grid parameters if we were in a hurry. I also apologise for bringing a cluster or two down
once or twice.

I thank Mili Bauer for explaining many things at the beginning, for solving bureaucratic
problems in an elegant way, and for sweets.

I thank Nikola Simidjievski for various thoughts and lessons.
I thank Jurica Levatić for his love for space, which has caused many great things to

happen.
I thank Tome Eftimov for the opportunities to work and write together.
I thank Kristian Kersting for accepting me into his group. That were three really

pleasant months in Darmstadt.
I thank Martin Breskvar, Tomaž Stepišnik, Jure Brence, Blaž Škrlj, Ilin Tolovski, Ana

Kostovska, Jasmin Bogatinovski and Laura Hughes for fun, ideas, raised question and jokes
– either at lunch or in the office.

I thank Maša Matijašević for spotting all the mistyped words, redundant commas, and
other mistakes.

Finally, I thank the evaluation board – Nada Lavrač, Hendrik Blockeel and Kristian
Kersting – for taking their time, and for corrections that improved the thesis.

Merci to all of you.

ix

Abstract

In this thesis, we develop feature ranking methods for a variety of learning settings, bridging
the gap between the ever more complex data on the one hand, and the lack of feature
ranking methods that would explain the models learned on these data on the other hand.
The developed feature ranking methods address complex machine learning tasks from
supervised, semi-supervised and unsupervised learning: supervised and semi-supervised
structured output prediction (SOP), including multi-target regression (MTR), multi-label
classification (MLC), and hierarchical multi-label classification (HMLC). We also extend
feature ranking methods to relational learning, where the data representation is even richer
and more complex. The feature rankings produced by our methods offer state-of-the-
art performance in all the learning contexts, as showcased by extensive empirical studies
presented in this thesis.

The developed feature ranking methods handle various learning contexts in an elegant
and unified way. More precisely, we adapt two groups of feature ranking methods. The
first group of feature ranking methods is tree-ensemble-based and contains the Symbolic,
Genie3 and Random Forest scores. The scores are computed from different ensembles
of predictive clustering trees (PCTs), i.e., random forests, bagging, and ensembles of ex-
tremely randomized PCTs. The second group of methods are distance-based methods that
follow the Relief approach to feature ranking.

In the thesis, we first give the necessary background and present the main ideas behind
the developed feature ranking methods. Then, extensive empirical studies are presented,
evaluating the developed methods for each learning setting. The main empirical findings
are that the proposed feature ranking methods yield meaningful rankings and outperform
the existing methodology. Especially when the number of features is large, ensemble-based
methods outperform the distance-based ones. Both groups of methods scale-up well, since
they are subquadratic in the number of features and easily parallelizable.

The thesis also presents a practically relevant case study that uses the developed
ensemble-based feature ranking algorithms for MTR to explain the models that predict
the thermal power consumption of Mars Express spacecraft of the European Space Agency
(ESA). We finish the thesis with a comprehensive discussion of its contributions and an
outline of many possible directions for further work.

xi

Povzetek

V disertaciji razvijemo metode za rangiranje značilk, namenjene različnim učnim scenari-
jem. S tem premostimo razkorak med vse kompleksnejšimi podatki in mankom metod za
rangiranje značilk, ki bi pojasnile modele, naučene na takih podatkih. Razvite metode na-
slavljajo kompleksne naloge strojnega učenja s področja nadzorovanega, polnadzorovanega
in nenadzorovanega učenja: večtarčno regresijo, večoznačno klasifikacijo in hierarhično ve-
čoznačno klasifikacijo. Metode za rangiranje značilk razširimo tudi na področje relacijskega
učenja, kjer je predstavitev podatkov še bogatejša in kompleksnejša. V vseh naštetih učnih
scenarijih je rangiranje značilk, dobljeno z razvitimi metodami, med najboljšimi v primer-
javi z drugimi sodobnimi metodami, kar pokažemo z obsežnimi empiričnimi študijami.

Razvite metode za rangiranja značilk obvladujejo različne učne scenarije elegantno in
poenoteno. Razvijemo dve skupini metod. V prvi, ki vsebuje metode, temelječe na ansam-
blih dreves, so kazalci imen Symbolic, Genie3 in Naključni gozd. Te kazalce izračunamo
iz različnih ansamblov dreves za napovedno razvrščanje (DNR-jev): naključnih gozdov,
vrečenja in ansamblov skrajno naključnih DNR-jev. V drugi skupini so metode, temelječe
na računanju razdalj, ki sledijo pristopu algoritma Relief za rangiranje značilk.

V disertaciji najprej predstavimo potrebno ozadje in podamo zamisli, ki pripeljejo do
razvitih metod za rangiranje značilk. Temu sledi predstavitev obsežnih empiričnih študij,
ki ovrednotijo razvite metode v vseh učnih scenarijih. Iz teh študij sledi, da predlagane
metode za rangiranje značilk proizvedejo smiselna rangiranja in nadvladajo obstoječe me-
tode. Rangiranja, izračunana iz ansamblov DNR-jev, so boljša kot rangiranja, ki temeljijo
na računanju razdalj, še posebej pri podatkovjih z visokim številom značilk. Obe skupini
metod sta primerni tudi za velika podatkovja, saj nista niti kvadratni, kar se tiče števila
značilk, hkrati pa je njune člane tudi lahko paralelizirati.

V disertaciji pokažemo tudi, da so razviti algoritmi za rangiranje značilk v kontekstu
večtarčne regresije uporabni tudi v praksi, saj z njimi pojasnimo modele za napovedovanje
toplotne energije na satelitu Mars Express Evropske vesoljske agencije. Disertacijo zaklju-
čimo z izčrpno debato o doprinosih disertacije ter začrtanimi smernicami za nadaljnje delo.

xiii

Contents

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 Motivation . 3
1.2 Goals and Hypotheses . 3
1.3 Methodology . 5

1.3.1 Development of Novel Feature Ranking Methods 5
1.3.2 Evaluating the Quality of Feature Rankings 5
1.3.3 Comparing the Performance of Feature Ranking Methods 6
1.3.4 A Case Study of Predicting Thermal Power Consumption of the Mars

Express Spacecraft . 6
1.4 Contributions . 6
1.5 Organization of the Thesis . 7

2 Background 9
2.1 Data Representation . 9

2.1.1 Tabular Data . 9
2.1.2 Relational Data . 10

2.2 The Basic Learning Tasks . 11
2.2.1 Unsupervised Learning (Clustering) 11
2.2.2 Supervised Classification and Regression 11
2.2.3 Supervised Structured Output Prediction 13
2.2.4 Semi-supervised Learning . 15

2.3 Feature Ranking . 16
2.3.1 Feature Ranking and Feature Selection 17
2.3.2 Classification, Regression and Clustering Tasks 18
2.3.3 Trees and Tree Ensembles . 21
2.3.4 Feature Ranking with Tree Ensembles 23
2.3.5 Distance-based Feature Ranking with Relief 25

2.4 Predictive Clustering and Structured Output Prediction 27
2.4.1 Learning PCTs and PCT Ensembles 27
2.4.2 MTR with PCTs . 27
2.4.3 MLC and HMLC with PCTs . 28
2.4.4 Semi-supervised and Unsupervised Learning with PCTs 30

3 Extending Feature Ranking to Different Learning Tasks: Basic Notions 31
3.1 Ensemble-based Feature Ranking for SOP and Unsupervised Learning . . . 31

3.1.1 Feature Ranking for SOP . 31

xiv Contents

3.1.2 Unsupervised Feature Ranking . 33
3.1.3 Semi-supervised Feature Ranking . 34

3.2 Distance-based Feature Ranking . 35
3.2.1 Feature Ranking for SOP . 35
3.2.2 Unsupervised Feature Ranking . 36
3.2.3 Semi-supervised Feature Ranking . 37

3.3 Feature Ranking for Relational Classification 38
3.3.1 Data Conversion . 38
3.3.2 Relational Feature Ranking Scores 39

4 Feature Ranking for Multi-Target Regression 43
Paper: Feature Ranking for Multi-target Regression 44

5 Feature Ranking for Multi-Label Classification and HMLC 71
Paper: Feature Ranking with Relief for Multi-label Classification: Does Dis-

tance Matter? . 72
Paper: Multi-label Feature Ranking with Ensemble Methods 88
Paper: Feature Ranking for Hierarchical Multi-Label Classification with Tree

Ensemble Methods . 108

6 Feature Ranking for Semi-Supervised Structured Output Prediction 129
Paper: Ensemble-Based Feature Ranking for Semi-supervised Classification . . 130
Paper: Feature Ranking for Semi-supervised Learning 146

7 Feature Ranking for Unsupervised Learning 175
Paper: Ensemble- and Distance-Based Feature Ranking for Unsupervised Learn-

ing . 176

8 Case Study: Predicting Mars Express Thermal Power Consumption 201
Paper: Machine Learning for Predicting Thermal Power Consumption of the

Mars Express Spacecraft . 202
Paper: Quantifying the Effects of Gyroless Flying of the Mars Express Space-

craft with Machine Learning . 218

9 Relational Feature Generation and Ranking 227
Paper: Estimating the Importance of Relational Features by using Gradient

Boosting . 228
Paper: Relational Tree Ensembles and Feature Rankings 239

10 Conclusions and Further Work 289
10.1 Summary of the Contributions . 290
10.2 Further Work . 292

References 293

Bibliography 299

Biography 303

xv

List of Figures

Figure 2.1: An example relational dataset . 10
Figure 2.2: Clustering example . 12
Figure 2.3: Classification example . 12
Figure 2.4: Regression example . 13
Figure 2.5: Structured-output example . 14
Figure 2.6: Binning the values of numerical features 18
Figure 2.7: An example decision tree . 22
Figure 2.8: Influence of the w parameter in semi-supervised learning 29

Figure 3.1: A copy of the example relational data set 38
Figure 3.2: An example relational tree . 41

xvii

List of Tables

Table 2.1: Tabular data . 9

Table 3.1: Structure of a generic table from a relational data set. 38

xix

List of Algorithms

Algorithm 2.1: Induction of predictive clustering trees 21
Algorithm 2.2: Finding the best test in a tree node 21
Algorithm 2.3: Computation of ReliefF feature importance scores 26
Algorithm 2.4: Computation of RReliefF feature importance scores 26

Algorithm 3.1: Computation of RReliefF feature importance scores with highlights 35
Algorithm 3.2: Computation of Relief feature importance scores in SSL context . . 37

1

Chapter 1

Introduction

Laziness is the mother of invention (said Agatha Christie). Therefore, it is no wonder that
people are making computers and robots smarter and smarter, so that the machines can
do complex tasks for which some level of intelligence is necessary. These include virtual
personal assistance (Hoy, 2018), playing Go at a super-human level (Silver et al., 2016),
making medical diagnoses (de Bruijne, 2016), and much more.

All these are applications of machine learning (Mitchell, 1997), i.e., making machines
learn from experience that is typically given in the form of some data. Learning is successful
when a computer makes the right decisions in situations that it has not seen during learning.
The outcomes of learning depend on the subfield of machine learning that our task or
application belongs to. This thesis is mostly concerned with tasks related to predictive
modeling, where the goal is to learn a (predictive) model that - given some descriptors
(features1) of the data - predicts the value of a target variable.

With the advance of computers and data collection, we have entered the era of big
data. A typical data set can be large in both the number of examples and the number of
features. Having many examples is desirable since more examples, i.e., training, can lead
to better models, whereas a large number of features has some undesirable consequences:

1. The algorithms used for constructing models may be too slow or may use too much
memory.

2. Among the thousands of features, there are typically just a few that actually matter
when making predictions, therefore we are wasting our time and loosing insight by
taking into account all of them.

3. The learned models may be too complicated for a human to understand.

All of the problems above can be avoided by computing a feature ranking. A feature
ranking algorithm assigns an importance (or relevance) score to every feature, typically
following some well-motivated heuristic definition of importance, e.g., a feature is important
if its values determine the values of the target variable2. The output of a feature ranking
algorithm are the importance scores, which define the order (ranking) of the features.

Keeping only some top-ranked features (the features with the highest importance) in the
data might make model induction much more efficient time- and memory-wise. This special
case of using a feature ranking algorithm to reduce the number of features is referred to as
feature selection, and completely solves the first two problems mentioned above. It might
also solve the third one (as fewer features mean less complex models), but feature selection

1In this thesis, the word feature is used as a synonym for descriptor and descriptive attribute. Other
meanings are possible, as explained by Fürnkranz et al. (2014).

2This is the motivation behind the info-gain score (Cover & Thomas, 2006).

2 Chapter 1. Introduction

is not the only way to obtain understandability/explainability. For example, the predictions
of random forests (Breiman, 2001) or neural networks can be easily explained directly by
feature ranking in terms of permutation-based feature importance scores (Breiman, 2001),
even if the models are learned with the full set of features.

The most common tasks of predictive modeling are classification (where the target
variable can take finitely many categorical values) and regression (where the domain of
the target variable are the real numbers). A plethora of feature ranking methods exists
that can be used in these two settings (Guyon & Elisseeff, 2003; Stańczyk & Jain, 2015).
However, data are becoming more and more complex not only in terms of their size, but
also in terms of their types.

The values of target variables are not limited to categorical values or numbers, but
can also be vectors or (partially ordered) sets of values. For example, the tasks of multi-
target regression (where the target values are vectors of numeric variables), multi-label
classification (where the target values are sets of categorical values), and hierarchical multi-
label classification (where the target values are partially ordered sets of categorical values)
appear naturally. Consider, for example, models that take images as inputs and need to
answer questions such as How many cats and dogs are in the picture? (the answer is a
vector of two numeric values), Which animals appear in the picture? (the answer is a set of
categorical values) or Which species, genera and families of animals appear in the picture?
(the answer is a partially ordered set of categorical values).

The above predictive modeling tasks belong to the area of structured output prediction
(SOP) (Bakır et al., 2007). There is a growing body of predictive modeling approaches that
can tackle such problems, e.g., predictive clustering trees (Blockeel, 1998). However, this
is not the case with feature ranking in the context of SOP, even though the characteristics
of the descriptive part of multi-target or multi-label (and in general SOP) data sets, e.g.,
the number of features, are no different than those of classification and regression data
sets.

The complexity of the data goes even further. Besides the complexity of the output in
predictive modeling, the complexity of data can vary in two additional dimensions. These
include the complexity of the input part of the data, on the one hand, and the availability
of output target values in training data.

First, let us discuss the input part of the data. In the cases above, one table suffices
to represent a data set. There, every row corresponds to an example and every column
corresponds to either a feature or a target. Thus, a single table holds descriptions of objects
of interest, e.g., patients (if we predict some disease), pictures (if we predict the presence
of animals in pictures), etc. However, sometimes, this is not enough. For example, if
we are trying to predict the category/genre of a movie, the features describing a movie
(release date, title, etc.) might not be very informative and it is beneficial to know also
something about people that see the movie (e.g., their age, gender, etc.). In that case, we
need more than one table, e.g., a table for people, and some relations among those tables
(e.g., hasSeenMovie(person, movie), etc.). The number of features that can be generated
from such relational data is typically very high, further emphasizing the need for feature
ranking and selection.

Second, classification, regression, etc. are (if not specified otherwise) supervised learning
tasks, where the value of the target variable is available for each example. Sometimes,
labeling all the examples with their target values is too expensive, e.g., when testing
chemical compounds (DiMasi et al., 2003), or would demand too much time since it has
to be done manually, e.g., determining whether a tweet is written in a positive or negative
tone (Kralj Novak et al., 2015). When the target values are missing for some, or even
most of the training examples, the predictive modeling tasks at hand are referred to as

1.1. Motivation 3

semi-supervised learning tasks. The unlabeled data might still be of use when constructing
a predictive model or computing a feature ranking.

In the extreme case, when no target values are present, i.e., when there is no target
variable, we speak about unsupervised learning. In this setting, the most common machine
learning task is clustering, where the aim is to find well-defined subgroups of data, called
clusters. In the feature ranking for unsupervised learning, we cannot say how relevant a
feature is for the target, however, we can determine how relevant the feature is for the
produced clustering, or how redundant the feature is in the context of the others.

1.1 Motivation

The motivation for this thesis is the gap between the ever more present high-dimensional
data sets with additional degrees of complexity on the one hand, and the lack of feature
ranking methods applicable to such data sets on the other hand. Under additional degrees
of complexity, we mean

• different types of structured outputs, i.e., target variables, in supervised learning,
giving rise to tasks such as multi-target regression, multi-label classification, and
hierarchical multi-label classification,

• the partial lack of example labels in semi-supervised learning for classification and
regression on one hand, and different tasks of SOP, such as multi-target regression,
multi-label classification, and hierarchical multi-label classification on the other hand,

• the complete lack of labels/targets in unsupervised learning, and

• the presence of multiple interconnected relations in relational learning.

For all (semi-)supervised learning tasks, the motivation for computing a feature ranking
is the same as described in detail in the introductory parts of this section. For the cases
of classification and regression, we want to determine the influence of the features on
the target, i.e., their relevance for predicting the target. The motivation is similar for
unsupervised learning, where we want to determine the influence of the features on the
clustering of the data.

The above three dimensions of complexity, i.e., type of input (relational vs. propo-
sitional/tabular), type of output (classification/regression, different types of structured
output values) and degree of supervision (unsupervised, semi-supervised and fully super-
vised) can be considered almost independently (except that unsupervised learning means
no output values). Their combinations give rise to a wide variety of machine learning
tasks, such as fully supervised classification in a relational setting and semi-supervised
multi-target regression in a propositional setting. For the majority of these, especially su-
pervised SOP and semi-supervised learning, the corresponding feature ranking tasks had
not been addressed at all at the time the research for this thesis started.

Feature ranking methods did exist for classification and regression, and had started
emerging for multi-label classification. There were also a number of methods for unsuper-
vised feature ranking. However, the different existing methods were based on heterogeneous
ideas and did not approach the task of feature ranking in a unified manner.

1.2 Goals and Hypotheses

The overall goal of this thesis is to approach the feature ranking tasks corresponding to
the variety of machine learning tasks outlined above in a coherent manner, based on the

4 Chapter 1. Introduction

same unifying principles. The approaches we propose are based on two approaches to
feature ranking for classification and regression that are general enough to be extended to
the various machine learning tasks. These are the feature ranking methods embedded in
ensembles of classification and regression trees (Breiman, 2001), and methods for distance-
based feature ranking from the Relief family of algorithms (Robnik-Šikonja & Kononenko,
2003). When designing the novel methods, we had the following goals in mind:

• Extending and developing the existing ensemble- and distance-based feature ranking
methods to the tasks of multi-target regression (MTR), multi-label classification
(MLC), and hierarchical multi-label classification (HMLC),

• Further extending those method and developing feature ranking methods for the
semi-supervised learning (SSL) counterparts of the above supervised SOP tasks, as
well as for unsupervised learning,

• Extensively evaluating the newly proposed methods by using standard benchmark
data sets and comparing the new methods to the current state-of-the-art,

• Applying the proposed methods to real-world applications/case studies,

• Implementing the methods in a unified framework, which will simplify their use.

Closely related to the above goals, we have formulated and investigated (trying to
confirm or disprove) the following hypotheses:

H1: It is possible to extend ensemble- and distance-based feature ranking approaches to
the unsupervised feature ranking task, to the tasks of supervised SOP (i.e., MTR,
MLC, and HMLC), and to their semi-supervised versions.

H2: It is possible to extend ensemble-based approaches to classification and the corre-
sponding feature ranking methods to handle relational data.

H3: The proposed ensemble- and distance-based approaches yield relevant and state-of-
the-art feature rankings for MTR.

H4: The proposed ensemble- and distance-based approaches yield relevant and state-of-
the-art feature rankings for MLC.

H5: The proposed ensemble- and distance-based approaches yield relevant and state-of-
the-art feature rankings for HMLC.

H6: For unsupervised, MTR, MLC and HMLC problems, the ensemble-based feature
ranking approaches on average outperform the distance-based approaches to feature
ranking when the number of features is extremely high.

H7: The proposed ensemble- and distance-based feature ranking approaches yield rele-
vant and state-of-the-art feature rankings for feature-ranking problems in SSL for
classification.

H8: The proposed ensemble- and distance-based feature ranking approaches yield relevant
and state-of-the-art feature rankings for feature-ranking problems in SSL for different
types of SOP.

H9: The proposed ensemble-based and distance-based approaches yield relevant and state-
of-the-art feature rankings for unsupervised feature-ranking problems.

H10: The proposed ensemble-based approaches to relational classification yield state-of-
the-art performance as well as relevant feature rankings.

1.3. Methodology 5

1.3 Methodology

First, we design and implement the planned extensions of ensemble-based and distance-
based feature ranking approaches, from the classification and regression setting to the
variety of new learning settings. Second, using a plethora of benchmark data sets, we ex-
tensively evaluate the newly developed feature ranking methods, using appropriate metrics
for assessing their performance. Third, we compare the performances of different feature
ranking methods by applying appropriate statistical tests. Finally, in collaboration with
domain experts, we address a practically relevant case study of predicting thermal power
consumption of the different subsystems of a spacecraft, where we need both predictive
modeling and feature ranking in the context of multi-target regression.

1.3.1 Development of Novel Feature Ranking Methods

As mentioned above, we have developed two groups of methods. The first group of methods
are ensemble-based feature ranking scores that are computed from ensembles of predictive
clustering trees. We define and implement the Symbolic (Petković, Kocev, et al., 2020),
Genie3 (Huynh-Thu et al., 2010), and Random Forests (Breiman, 2001) scores, computing
them from Bagging (Breiman, 1996; Kocev et al., 2013), Random Forest (Breiman, 2001;
Kocev et al., 2013) and Extremely Randomized (Geurts et al., 2006; Kocev et al., 2020)
tree ensembles. We provide the appropriate definition of the score for each structured-
output prediction task (MTR, MLC, HMLC), and each degree of supervision (supervised,
semi-supervised, unsupervised) separately.

The second group of methods are distance-based scores, mostly based on the Relief
family of algorithms (Kira & Rendell, 1992; Robnik-Šikonja & Kononenko, 2003). Here,
we need to find an appropriate adaptation of the distance definition in the target space
(or get rid of it in the unsupervised case), for each of the tasks. Especially for MLC, we
have many different options for defining the distance in the target space (Petković, Kocev,
et al., 2018), which correspond to the many different performance measures used in MLC.

All the above feature ranking methods are implemented as algorithms incorporated in
the Clus software3 and made publicly available.

1.3.2 Evaluating the Quality of Feature Rankings

To evaluate the performance of a feature ranking approach on unseen data for a given
data set, we proceed as follows. We use the train-test split of the data if it is provided,
and 10-fold cross validation otherwise. In any case, we compute a feature ranking from
the training part of the data, and use both training data and this ranking in a k-nearest
neighbors (kNN) predictor evaluating its performance on the test part of the data.

More specifically, we evaluate a feature ranking via the performance of the k-nearest
neighbors (kNN) predictor that uses the feature importance estimates to define feature
weights in its distance function (Cunningham & Delany, 2007; Wettschereck, 1994). In
addition to the simplicity of the kNN model, it allows for a time-efficient and unifying
evaluation over all the different learning tasks, except for the unsupervised case. Finally,
using this approach, a feature ranking can be evaluated directly with no need for feature-
selection-like evaluation approaches (Slavkov, 2012).

3http://source.ijs.si/ktclus/clus-public

http://source.ijs.si/ktclus/clus-public

6 Chapter 1. Introduction

1.3.3 Comparing the Performance of Feature Ranking Methods

The proposed feature ranking methods are compared through statistical tests of the differ-
ences in the quality of feature rankings, performed in a well-established and computation-
ally cheap frequentist approach, as suggested by Demšar (2006). Since the performance of
the kNN models that use the computed feature importances in their distance definition are
not directly comparable across different data sets, all evaluated feature rankings are first
assigned their rank with respect to their performance on each data set: the best performing
is assigned rank 1, the second-best is assigned rank 2 etc. These ranks then serve as the
input of Friedman’s statistical test, which determines whether the differences among the
average ranks of the feature rankings (across different data sets) are statistically significant
or not. If they are, a post hoc test can be used to determine where these differences occur.

In the case of one-versus-all comparison, an appropriate choice for a post hoc test is
the Bonferroni-Dunn test (Demšar, 2006). This is used when a proposed feature ranking
algorithm is compared to many baselines. In the case of an all-versus-all comparison, the
Nemenyi post hoc test (Nemenyi, 1963) is used. Both tests control for the family-wise
false-discovery rate.

These tests are also appropriate since their results can be easily presented with an
average rank diagram, where we plot the algorithms to a real line so that their coordinate
equals their average rank. The algorithms that are not statistically significantly different in
terms of performance are additionally connected by a line. The down-side of this approach
is that the used tests may not be the strongest. Another possible approach is to simply
use the paired Wilcoxon’s test and control for the family-wise false discovery rate with
the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995): We apply the latter
approach in some of our experiments.

Note that recently, a new Bayesian statistical comparison method has been proposed
(Corani et al., 2017). However, it can be used only for comparing two algorithms, depends
on many hyper-parameters, is computationally intensive, and thus not that suitable for
practical use than the approaches described above.

1.3.4 A Case Study of Predicting Thermal Power Consumption of the
Mars Express Spacecraft

In addition to showing that the newly developed feature ranking methods achieve state-
of-the-art performance on standard benchmark data sets, we proved their usefulness in
a practically relevant case study that was executed through a collaboration with domain
experts from the European Space Agency (ESA). The task at hand was to predict the ther-
mal power consumption of the 33 heaters of the ESA’s Mars Express spacecraft (Chicarro
et al., 2004). To solve this task, we developed accurate MTR models (including random
forests of predictive clustering trees) and obtained the Genie3 feature rankings embedded
in these models. The rankings explained the learned models and gave the operators of the
spacecraft additional insights into the thermal dynamics of the spacecraft under different
operating conditions (Petković, Boumghar, et al., 2019; Petković, Lucas, et al., 2019).

1.4 Contributions

The scientific contributions of the dissertation are summarized as follows:

• Two novel groups of feature ranking algorithms, a group of ensemble-based and
a group of distance-based algorithms, for different kinds of supervised SOP tasks:
MTR, MLC and HMLC.

1.5. Organization of the Thesis 7

• Two novel groups of feature ranking algorithms, a group of ensemble-based and a
group of distance-based algorithms, for semi-supervised learning in the context of
different SOP tasks: MTR, MLC and HMLC.

• Two novel groups of feature ranking algorithms, a group of ensemble-based and a
group of distance-based algorithms, for unsupervised learning.

• A novel ensemble-based method for feature ranking in relational learning/classification.

• Extensive empirical evaluation of the developed methods across benchmark problems
from various domains.

• A case study using the developed MTR ensemble-based algorithms both for pre-
diction and feature ranking on a practical problem from the domain of spacecraft
operations modeling.

The developed algorithms, their evaluations and the case study have been published as
conference and journal publications that are listed in the Bibliography section at the end
of this thesis.

1.5 Organization of the Thesis

The remainder of the thesis is organised as follows. Chapter 2 provides the necessary back-
ground information. This includes material on the different learning settings considered,
covering unsupervised, supervised and semi-supervised learning (for SOP), as well as on
feature ranking. The two most related approaches that we build upon are discussed: Tree
ensembles for SOP and distance-based feature ranking. Chapter 3 briefly presents the
key ideas behind the developed methods for feature ranking in the different learning set-
tings: supervised structured output prediction, unsupervised learning and semi-supervised
learning, including classification, regression and structured output prediction. The chap-
ter concludes with the key ideas behind the developed methods for feature ranking for
relational classification.

The contributions of the thesis are described in detail in Chapters 4 to 9. The im-
plementations of the proposed methods and their extensive experimental evaluation are
presented, as well as the case study. Each chapter includes one or two papers, either pub-
lished or under review, where the contributions were originally presented, preceded by a
summary with a short statement of the contributions. Chapter 4 treats feature ranking
for multi-target regression, while Chapter 5 deals with feature ranking for multi-label clas-
sification and hierarchical multi-label classification. Chapter 6 covers feature ranking for
semi-supervised learning and Chapter 7 covers feature ranking for unsupervised learning.
Chapter 8 presents the case study of predicting thermal power consumption for the Mars
Express spacecraft. Chapter 9 introduces feature ranking in relational learning. Finally,
Chapter 10 concludes the thesis. It also discusses some directions for further work.

9

Chapter 2

Background

In this chapter, we describe the considered data representations (Section 2.1) and back-
ground machine learning tasks of predictive modeling and unsupervised learning (Section
2.2). We then proceed to formal introduction to feature ranking (Section 2.3), and – in
our case, another closely related topic – predictive clustering (Section 2.4).

2.1 Data Representation

Before giving an introduction to the developed methods and tasks that they solve, we
have to describe the corresponding data representations. In this thesis, we consider two of
them: tabular/propositional data and relational data. Even though tabular data can be
seen as a special case of relational data, the tabular data is presented separately, since it
is considerably simpler.

2.1.1 Tabular Data

The most commonly used data format is (still) the tabular format where a data set is given
as a single table, e.g., Table 2.1. There, the header gives the names of the features (in
the example table, these are xi, 1 ≤ i ≤ n), and the name of the target attribute y if the
target attribute is present.

Table 2.1: Each example x is described by a vector of numeric and/or nominal feature
values x. Some data sets contain also the target column y whose type (numeric, nominal,
vector of numeric, set of nominal, etc.) depends on the task at hand.

x1 x2 · · · xn y

3.142 true · · · 21 y1

· · ·

2.718 false · · · 12 ym

The rest of the rows describe examples, e.g., the first example is a pair (x, y1) that
consists of the descriptive part x = (3.142, true, . . . , 21), i.e., the values of the features xi
for this example, and the target part y1, i.e., the value of the target attribute.

All the features are either numeric, i.e., their domain is a subset of R, or nominal
(categorical), i.e., they can take finitely many predefined values. For example, feature x1
in the example table is numeric, whereas feature x2 is nominal and can take the values

10 Chapter 2. Background

true and false. The considered types of the target variable y – if it is present – are given
later in Sections 2.2.2 and 2.2.3. The case when the target variable is not present in the
data is described in Section 2.2.1.

2.1.2 Relational Data

The relational data format is an extension of the tabular format to the case where data
is given in more than one table, and the tables are connected via some relations. Figure
2.1 gives a specific example of such a data set. This is the IMDB dataset, available at
http://grouplens.org/datasets/hetrec-2011/. The IMDB dataset consists of five tables,
each of them describing objects of a particular type (e.g., movies, ratings, users, etc.). The
tables are interconnected with relations which are represented by lines. A single end of a
line corresponds to one-to- (every rating belongs to a single movie) or -to-one (every rating
is authored by a single user) relations. A multiple-end of a line corresponds to many-to- (a
user might author many ratings) or -to-many (many ratings belong to a movie) relations.
For this particular data set, the goal is to predict the value of the category column in the
target table Movies (shown in bold).

Figure 2.1: An example schema of the IMDB relational data set.

Now, every table in the data set describes objects of a particular type. For example, the
Movies table describes movies (their features are title, release date, and url), the Ratings
table describes ratings (their features are stars and date), etc. As in the tabular case,
some columns in the tables are considered features (e.g., those mentioned in the previous
paragraph), and there is one column in one of the tables (called the target table) that
corresponds to the target variable. In the specific case above, this is the Category column
(genre) in the Movies table.

Additionally, some columns simply provide identification (ID) of an object. For exam-
ple, the Movie ID column identifies a movie, whereas a pair (User ID, Movie ID) identifies
a rating, since every user can rate a given movie only once. ID columns appear in all tables
and implicitly define the relations among the tables, such as liesIn(region, nation) or
ratedBy(user, movie).

As in the tabular case, the target column need not be present, and can be – if present
– of several possible types. Thus, all of the tasks described in Section 2.2 for single-table
data can also be defined for relational data.

This was a brief introduction to relational data. It only provided the essentials. Ad-
ditional details, including how to convert such a representation into an equivalent format
that is useful for relational learning algorithms, are given in Section 3.3.

http://grouplens.org/datasets/hetrec-2011/

2.2. The Basic Learning Tasks 11

2.2 The Basic Learning Tasks

The main topic of the thesis is the task of feature ranking. However, this task is tightly
coupled with the tasks predictive modeling and clustering, which also provide basic motiva-
tion for performing feature ranking. Thus, before proceeding to a more formal description
of feature ranking, we describe the considered tasks of predictive modeling (classification,
regression, multi-label classification, hierarchical multi-label classification), and clustering.

In predictive modeling, one tries to learn the unknown mapping y : x 7→ y(x), given
some data (as described in Section 2.1). An approximation ŷ of the true mapping y is
considered good if it gives accurate predictions ŷ(x) for the previously unseen examples x.

In clustering, there is no target variable and the goal is to find a partition of the data
set into groups, such that

• the examples in a group are similar to each other, for every group;

• the examples in any two different groups are not similar.

In the next subsections, we describe the aforementioned tasks. We start with clustering
and then proceed to prediction modeling tasks. For all the tasks, the connection to feature
ranking is given in Section 2.3.

2.2.1 Unsupervised Learning (Clustering)

In unsupervised learning, the target variable y is not present in the data, so the data
contain only the descriptive part of examples. The most common task of unsupervised
learning is clustering where the goal is to find well-defined relevant groups (clusters) of
data. Various approaches exist for creating clusters of data. Some of them solve a problem
in several stages, e.g., in the hierarchical clustering algorithms (Blockeel, 1998; Nielsen,
2016) where at the end, one decides where to cut the hierarchy of nested clusters to obtain
the final ones. The other algorithms solve the problem directly, maybe the most well-
known among them is the k-means algorithm (Arthur & Vassilvitskii, 2007). An example
clustering of data into four well-defined subgroups is shown in Figure 2.2.

Clustering is the only unsupervised task that is treated in our work, however, it is
not the only one in general. For example, in (association) rule learning (Fürnkranz et al.,
2014), the goal can be to find at least some interesting subgroups in the data: the groups do
not need to be disjunctive, and their union need not be the whole data set. Interestingness
of a subgroup can be quantified, for example, by quantifying the difference between the
distribution of the examples in the whole data set, and the distribution of the examples in
the subgroup.

2.2.2 Supervised Classification and Regression

The two basic tasks of predictive modeling are classification and regression. In classifi-
cation tasks, we answer questions such as Which bird is in the picture: A parrot, an owl
or a pigeon? (see Figure 2.3), i.e., the target is a nominal variable with a finite domain
Y of size |Y| ≥ 2. The elements of the domain are typically referred to as classes. In the
special case of |Y| = 2, e.g., Y = {true, false}, the task at hand is binary classification.
Otherwise, the task at hand is multi-class classification, e.g., Y = {parrot, owl, pigeon}.
In any case, every example in a classification data set belongs to a single class, and our
goal is to predict the correct one. In the rest of the thesis, we simply refer to both tasks
as classification.

A great number of methods exist that solve such tasks (Kotsiantis, 2007). However, it
is worth noticing that some methods cannot handle multi-class problems that easily, e.g.,

12 Chapter 2. Background

Figure 2.2: An example clustering of a two-dimensional data set. Each cluster is given its
own color.

Figure 2.3: An instance from an example classification data set where the goal is to predict
which bird (parrot, owl, pigeon) is in the picture.

2.2. The Basic Learning Tasks 13

Figure 2.4: An instance from an example regression data set where the goal is to estimate
how many birds are in the picture.

support vector machines (Cristianini & Shawe-Taylor, 2010). The same holds for some
evaluation measures. For example, accuracy can be used in all situations, while the F1

measure (defined in Chapter 6) can be calculated by using macro-averaging of the true/false
positives and true/false negatives for all the classes.

The other basic task of predictive modeling is regression. Here, we answer questions
such as How many birds are in the picture? (see Figure 2.4), i.e., the domain of the target
variable is a subset of R, and since there are infinitely many possible target values, typically,
one cannot expect that the approximation ŷ of the true mapping y would give a perfectly
accurate prediction for any x.

Again, many methods exist that can tackle regression problems (Ryan, 2008). In
addition, the task of binary classification can be solved via regression in the following way.
The two classes a and b are first mapped to 0 and 1, respectively. Then, a regression model
is applied and we obtain an approximate mapping ŷ. After a threshold ϑ ∈ [0, 1] is chosen,
we predict an example x to belong to class b if and only if ŷ(x) ≥ ϑ. A similar procedure
of thresholding can be applied for multi-class classification but here, one should resort to
multi-target regression which is one of the tasks in structured-output prediction described
in the next section.

2.2.3 Supervised Structured Output Prediction

A common name for the numeric and nominal types are primitive data types (International
Organization for Standardization, 2007). More interesting or, at least, richer are those that
are constructed out of the primitives by adding a vector, a set, or a partially ordered set
structure to them1. The constructed data type is thus of the type structured (International
Organization for Standardization, 2007) and the task at hand is called structured output
prediction (Bakır et al., 2007; Kocev, 2011). By considering that the output is a structured
datatype, we can answer the following questions (see Figure 2.5):

1The axioms of Zermelo-Fraenkel set theory (Hrbacek & Jech, 1999) assure that it suffices to use only
sets to represent numbers and the aforementioned structures. However, it is much more user-friendly, for
example, if zero (respectively one) is represented as a number 0 (resp. 1) rather than the empty set ∅ (resp.
the set that contains the empty set {∅}).

14 Chapter 2. Background

Figure 2.5: An instance from an example structured-output data set where we want to
know i) how many birds, how many mammals, and how many insects are in the picture,
or ii) Which animal species are in the picture, or iii) Which species, genera and families
are in the picture. These questions respectively correspond to the tasks of multi-target
regression, multi-label classification, and hierarchical multi-label classification.

1. How many birds, how many mammals, and how many insects are in the picture?

2. Which animal species are in the picture?

3. Which species, genera and families are in the picture?

These questions correspond to the different structured output tasks discussed in the forth-
coming subsections.

2.2.3.1 Multi-target Regression

The first question (How many birds, how many mammals, and how many insects are in
the picture?) can be answered by representing it as a multi-target regression (MTR) task
where one predicts the values of a numeric vector, i.e., the target domain Y is a subset of
Rt, where t ≥ 2 is the number of target components. The condition t ≥ 2 can be relaxed
to t ≥ 1, so that the (single-target) regression (STR) task becomes a special case of MTR.

As mentioned previously, MTR is one of the means of solving multi-class classification
problems where the i-th class is first mapped to the vector ei, where eij = 1 if i = j and
eij = 0 otherwise. After an MTR approximation ŷ of the true mapping is learned, the
final prediction is the i0-th class where i0 = argmaxi ŷi(x).

A possible way to approach a MTR problem is problem transformation, which trans-
forms one MTR problem into several STR ones and builds one predictive model for each
component of the target vector separately. For this, any of the regression methods can
be used. However, by doing so, possible interactions among the components might be
overlooked.

Another way to approach a MTR problem and overcome the issue above is algorithm
adaptation, i.e., adapting STR methods to handle vectors of numeric values. This has
been done, for example, with regression trees (Blockeel, 1998; Kocev, 2011). By building a
single model, one can additionally benefit regarding time-complexity and interpretability
of models (Kocev & Džeroski, 2013).

2.2. The Basic Learning Tasks 15

2.2.3.2 Multi-label Classification

The second question (Which animal species are in the picture?) is one of the multi-label
classification (MLC) tasks where one predicts a subset of a finite predefined set of labels
L . Thus, the target domain Y is now a power set P(L).

Going from standard classification to MLC corresponds to relaxing the mutual exclu-
sivity of the classes in classification, since in this task, an example can be labeled with
more than one or zero labels. The labels which label a given example, are referred to as
relevant labels for this example.

Predictive modeling approaches to MLC can be grouped similarly as those for MTR.
For example, one can always approach a MLC problem by learning a predictive model
for every label separately, thus transforming a MLC problem into |L | standard classifica-
tion problems (Tsoumakas & Vlahavas, 2007). A similar, yet even more time-consuming
approach is to build L(L − 1)/2 predictive models, one for each pair of labels `1 6= `2
(Elkafrawy et al., 2015). Another option is to treat the subsets of labels as class val-
ues since they are all elements of the power set, thus transforming a multi-label problem
into a multi-class classification problem with possibly extremely high number of classes
(Tsoumakas & Vlahavas, 2007).

Another group of methods are the so-called method adaptation approaches where an
existing method is adapted to directly address MLC problems. This has been done, for
example, in the case of predictive clustering trees (Madjarov et al., 2012) and support
vector machines (Elisseeff & Weston, 2001).

2.2.3.3 Hierarchical Multi-label Classification

The third question (Which species, genera and families are in the picture?) is one of the
hierarchical multi-label classification (HMLC) tasks. HMLC is a further generalisation
of MLC where the label set L is partially ordered with some partial ordering 4. This
ordering results in a hierarchical constraint : if `1 4 `2 for two labels `1,2 ∈ L , then a
HMLC model must satisfy the condition `1 ∈ ŷ(x)⇒ `2 ∈ ŷ(x). This means that if a less
general (more specific) label `1 is predicted to be relevant for a given example x, then also
a more general (less specific) label `2 has to be predicted relevant for the same example.

Continuing with the example question that motivated HMLC tasks, label set L may
consist of all taxonomic ranks of living beings, and the underlying ordering would be their
taxonomic ordering as we know it, e.g., African elephant 4 elephants, elephants 4
mammals, mammals 4 animals, etc.

A possible approach to HMLC is to ignore the hierarchy in the learning phase and
use any of the MLC approaches discussed above. However, at the prediction stage, the
set of relevant labels must potentially be extended so that the hierarchy constraint is
satisfied. However, method adaptation techniques where an existing method is adapted to
a HMLC problem may be more appropriate. This can be done with predictive clustering
trees (PCTs), which were shown to outperform their basic versions that follow the binary
relevance approach (Vens et al., 2008) or with kernel-based approaches (Rousu et al., 2006).

2.2.4 Semi-supervised Learning

Data for any of predictive modeling tasks – either one of the primitive ones or one of the
structured output ones – may contain some unlabeled examples, i.e., examples x for which
the value of the target attribute is unknown.

If this is not the case, i.e., all target values are known, we refer to the learning setting
as to supervised learning. In a sense, this case is the easiest from the learning perspective,

16 Chapter 2. Background

since, typically, learning algorithms may handle missing values of features, but can only
rarely cope with the missing values of target variable.

If there are some missing values of the target variable, we refer to the learning setting as
to semi-supervised learning since it is somewhere in between supervised and unsupervised
learning. One way of solving a semi-supervised learning problem is – considering the above
limitations of the learning algorithms – to ignore the data with the unknown target value
and learn only from the data with known target values. Note that all of the tasks discussed
in the supervised setting are also present in the semi-supervised setting, e.g., MTR datasets
containing examples with missing values for the target variables can be approached with
methods for semi-supervised MTR.

However, under the clustering hypothesis, i.e., Clusters of data examples (as computed
in the descriptive space) well resemble the distribution of target values, one can make use
also of unlabeled data and boost the performance of the predictive models (Levatić, 2017;
Zhu et al., 2009).

The unlabeled data can be used in more than one way. First, one can iteratively label
them, so that on every iteration, a predictive model is built on the labeled data, and the
target values of the unlabeled data are predicted. After assessing the certainty with which
the predictions are made, only the examples for which the algorithm is the most certain
about their labels keep their labels. This procedure is referred to as self-training (Zhu
et al., 2009).

Another way to take into account the unlabelled data is using predictive clustering
trees where the heuristic that estimates the quality of the splits is computed not only from
the distribution of the target variable, as is the case for standard decision trees (Breiman
et al., 1984), but rather takes into account also the distribution of the features (Levatić,
2017).

2.3 Feature Ranking

As mentioned in the Introduction, feature ranking is tightly coupled with either predictive
modeling or clustering, since feature ranking either makes these tasks easier or explains
their results. Now that these background tasks are covered, we can give the exact definition
of feature ranking, and partially repeat the motivation for computing it.

To keep the notation easier, we limit ourselves to tabular data, and give the exact
formulation for relational data later in Section 3.3. Also, since the definition and motivation
are different for predictive modeling tasks and clustering, we consider two separate cases.

Predictive Modeling. The motivation for feature ranking in the context of predic-
tive modeling is three-fold. First, since the number of features xi in a typical data set
is increasing over the years, some data may be prohibitively big for some learning algo-
rithms. Therefore, correctly using only some small number of relevant (important) features
may result in considerable speed-ups, making model learning much more efficient, or even
possible, while not decreasing the quality of the model.

Second, the volume of space increases exponentially with the dimension2. This can
make the data very sparse and the learning algorithms cannot induce a good model. Again,
choosing only relevant features for building a model decreases the sparsity and can actually
improve the predictive performance of the learned model.

Third, feature ranking can explain the predictions of the model. This is important for
two reasons: i) If the model describes the behavior of some machine, e.g., the heaters of a

2Strictly speaking, we can speak about the volume of the subspace spanned by the numeric features.
However, in the subspace that is spanned by nominal features, we face a similar phenomenon, namely the
combinatorial explosion of the number of points in this space.

2.3. Feature Ranking 17

satellite (see Chapter 8), the machine’s operator can better understand the behavior of the
machine; ii) If a domain expert, e.g., a medical doctor, understands how the model makes
the predictions, the expert will trust the model, which is important when delicate decisions
have to be made. Solutions for the above problems may all be achieved by computing a
feature ranking.

Feature ranking for predictive modeling. The input of a feature ranking algorithm
is data that consists of examples (x,y). The output of a feature ranking algorithm is a
list of scores importance(xi) ∈ R, for every feature xi in the data set, where the scores
resemble the influence of features xi on the target variable y. A feature ranking algorithm
thus performs feature importance estimation.

If we order the features decreasingly with respect to the computed scores, we obtain
their ranking. Then, keeping only some top-ranked features (the features with the highest
scores) solves the first two problems. This amounts to using feature ranking algorithm as
a feature selection approach3. Analyzing all the scores solves the third problem.

Selecting the optimal subset of features has been shown to be NP-hard (Welch, 1982),
thus finding an optimal feature ranking should be at least as hard. This is why there is
no general definition of importance. Rather, every algorithm defines its own heuristic for
computing the scores importance(xi).

Clustering. The motivation for feature ranking in the context of clustering is similar
to the motivation above. For example, reducing the number of features might considerably
speed up a clustering algorithm, or increase the quality of clustering. Similarly, clustering
might be better understood if we see the importance scores. However, there is an additional
motivating example that more or less subsumes the already mentioned, and serves as a
definition of feature ranking for unsupervised learning, which we adapt from (Doquet
& Sebag, 2020): in unsupervised learning we cannot say how relevant a feature is for
predicting a target variable, but we can estimate how redundant the feature is in the
context of the others.

Feature ranking for unsupervised learning. The input of feature ranking algo-
rithm is data that consists of examples x. The output of feature ranking algorithm is a list
of scores importance(xi) ∈ R, for every feature xi in the data set. Features that are more
relevant to the unsupervised learning task at hand (e.g., clustering) receive higher scores,
while features that are less relevant or redundant, depending on the ranking approach,
receive lower scores.

As in the predictive modeling case, we can sort the features with respect to their scores,
and keep in the data only the most relevant/least redundant ones.

2.3.1 Feature Ranking and Feature Selection

The basic learning tasks, such as classification, regression and clustering, are very well-
established, therefore it comes as no surprise that a plethora of feature ranking (and selec-
tion) methods exist that are applicable in these cases. The feature ranking methods are
divided into three big groups (Guyon & Elisseeff, 2003): filters, wrappers and embedded
methods. In this part, we give a brief overview of these groups. The concrete examples of
the algorithms from this group are given in the next subsection.

In general, filters are the fastest, because they do not interact with any particular
classifier (or regressor), which is typically a bottleneck of computing the feature ranking.
Rather, feature importance scores are some heuristic values defined within a given filter. As
we shall see in the concrete examples below, the heuristics are often provably suboptimal,

3Feature selection can be seen as a special case of feature ranking where the only possible values of
feature scores are 1 (feature is selected) and 0 (feature is not selected).

18 Chapter 2. Background

but they mostly come with low or even optimal computational cost of O(mn), where m
and n are the number of examples and features in a data set. This is the optimal cost
since each algorithm needs this much time to read the whole data set.

Embedded feature ranking methods are all part of some classification, regression or
clustering algorithm. Thus, most of the computational resources are spent on learning,
and after the model (or clustering) is learned, the feature importance scores are more or
less seamlessly computed from the model (or clustering).

Wrapper approaches are used especially when the feature ranking is computed to per-
form feature selection, or when the learning algorithm (e.g., support vector machines) is
already chosen. The reason for this is that every wrapper consists of two parts: one is a
learning algorithm by which a subset of features is evaluated, and the other is a heuristic
for exploring the space of all feature subsets. A heuristic is necessary since selecting the
optimal feature subset is a NP-hard problem (Amaldi & Kann, 1998). Thus, one starts the
procedure with some set C of candidate features (e.g., C is empty or a full set of features)
and then, guided by predictive performance of the models (or quality of the clusterings)
obtained from the part of the data set that corresponds to features from C, one iteratively
adds and/or removes features from the set C. Usually C is modified in a more (e.g., forward
selection and backward elimination (Kittler, 1978)) or less (e.g., beam search (Siedlecky
& Sklansky, 1988)) greedy way to save time. Moreover, greediness of the search procedure
can also be an advantage, since it is reported (Guyon & Elisseeff, 2003) that it is a guard
against overfitting.

2.3.2 Classification, Regression and Clustering Tasks

In this section, we provide a brief overview of the feature ranking methods for the basic
learning tasks, starting with classification, continuing with regression and ending with
clustering.

2.3.2.1 Classification

An example of a simple and computationally fast filtering approach for a classification
data set is the χ2 statistic. However, it is applicable only to nominal features. If we are
given a nominal feature xi, we use the χ2-statistic to test the null hypothesis H0 that the
distribution of the target is independent of the value of xi. The greater the value of the
statistic, less probable it is that H0 holds, hence higher values of χ2 mean higher relevance
of xi. If a feature is numeric, then it has to be discretized, using for example binning, as
shown in Figure 2.6.

ϑ0 ϑ1 ϑ2 ϑ3 ϑ4

ϑ0 ϑ1 ϑ2 ϑ3 ϑ4

Figure 2.6: Equal-frequency (top) and equal-width (bottom) binning of eleven examples.
In both cases, the range of a feature was divided into 4 subintervals (bins). Colors of the
feature values correspond to a value of the newly constructed nominal feature.

Especially when computing feature ranking to do a feature selection, the problem might
be the redundancy of some features. For example, if features x1 and x2 are highly correlated
with each other (or even copies of each other), and have a large influence on the target,
knowing the value of one of them gives us the same information about the target as knowing

2.3. Feature Ranking 19

both values. Hence, sometimes it is desirable for the heuristic to take into account also the
redundancy, but not always:

• If we rank the features in order to select the top-ranked ones, only one of the features
x1 and x2 should be among the top-ranked features, since it suffices to keep only one
of them.

• If we rank the features to see how much each of them influences the target, both
x1 and x2 should be ranked at the top, since they have approximately the same
influence.

In the first case, the symmetrical uncertainty-based filter (Witten et al., 2011) may give
better ranks than the χ2 method, since it also takes into account the redundancy. Sym-
metrical uncertainty between random variables z1 and z2 is defined as

U(z1, z2) = 2
H(z1) +H(z2)−H(z1, z2)

H(z1, z2),

where H is the Shannon entropy (Shannon, 1948). The value of U measures how much
information do z1 and z2 share about each other. The heuristic for ranking is defined as

importance(xi) =
U(xi, y)√∑
j 6=i U(xi, xj)

(2.1)

However, its complexity is O(mn2), which may be prohibitively large. There are many
other information-theoretic-based filters, info gain being one of the most frequently used
ones (Mitchell, 1997), since it is part of the ID3 algorithm (Quinlan, 1986). The measure
again uses Shannon entropy H, and is defined as

IG(xi) = H(y)−H(y|xi). (2.2)

Another prominent member of the filter group is ReliefF (Robnik-Šikonja & Kononenko,
2003), which is an extension of the Relief algorithm (Kira & Rendell, 1992) to an arbitrary
classification task. Since we extend the Relief family to the tasks of structured output
prediction, unsupervised and semi-supervised learning, ReliefF will be described later in
Section 2.3.5.

As for the embedded approaches, one has to first find an appropriate classifier, from
which a ranking is then computed. One option are the support vector machines (Guyon
et al., 2002) with linear kernels, where the final model is of form ŷ(x) = sign(〈x,n〉 − b),
where n is the normal of the hyperplane that was fitted to separate positive and negative
examples. Since the value of ŷ changes most quickly in the directions on the normal, the
feature importance score is defined as importance(xi) = |ni|.

Another possibility, for example, are feature rankings computed from (ensembles of)
decision trees (Quinlan, 1986), or predictive clustering trees (Kocev, 2011). However, since
we extend these approaches to structured output prediction and unsupervised learning,
they will be described later in Section 2.3.4.

An example of a wrapper is the SVM-RFE algorithm (Guyon et al., 2002): recursive
feature elimination, where we compute the ranking in the following way. We start with
the set C of all features. Then, at each step, we learn a support vector machine model
using linear kernels, i.e., fit the normal n and bias b to the data, to obtain the predictor
ŷ(x) = sign(〈x,n〉 − b). Features xi, for which ni ≈ 0, have no or very limited influence
on the value ŷ(x). Hence, on each step, we discard the feature xi with the smallest |ni|.

20 Chapter 2. Background

At step j, the discarded feature is assigned the score of j, and the ranking is obtained after
n− 1 steps.

Another option in wrapper approaches is recursive feature addition, where one starts
with an empty set C of candidates. Then, on every step, a classifier is learned that uses
the features from the set C ∪ {xi}, for every xi /∈ C. Then, the feature xi that improves
the model’s quality the most is added to C. Of course, this procedure is computationally
quite intensive since it learns O(n2) models.

2.3.2.2 Regression

One of the simplest and the fastest filters for regression data sets is the Pearson correlation
coefficient (Pearson, 1895). Here, the importance of a feature xi is defined as

importance(xi) =

∣∣∣∣
Cov (xi, y)

σxσy

∣∣∣∣ , (2.3)

where Cov is the covariance operator, and σx and σy denote standard deviations of the
feature and target, respectively. A high value of importance(xi) means that the feature is
highly correlated with the target, i.e., relevant.

Both Pearson correlation coefficient and χ2 (described above) are optimal regarding
the computational complexity, but they also both suffer from myopia, i.e., they are not
able to capture any interactions between features, which can lead to highly suboptimal
rankings: If binary target y is defined as y = x1 XOR x2 (while the other features are just
random noise), these two measures perceive all features as (equally) random.

This is overcome by another member of the filter group, RReliefF (Robnik-Šikonja &
Kononenko, 2003). Since we extend the Relief family to the other learning tasks, it will be
described later in Section 2.3.5.

As for the embedded approaches, support vector machines with linear kernels can be
used not only in the context of classification, but also in the context of regression. However,
one should use the support vector machines adapted to regression instead.

Similar holds for other embedded approaches to feature ranking, namely the ensemble-
based feature rankings computed from (ensembles of) decision trees (Quinlan, 1986) or
predictive clustering trees (Kocev, 2011). As noted in the classification subsection, they
will be described later in Section 2.3.4.

As for the wrapper methods, one should only replace a classifier by a regressor and use
any of the approaches mentioned in the classification case (e.g., recursive feature elimina-
tion/ addition).

2.3.2.3 Clustering

The unsupervised filters are typically conceptually somewhat more complicated than their
supervised counterparts, and their final scores importance(xi) cannot be represented by a
simple formula, such as Equation (2.2). For example, the Laplace score (He et al., 2005) is
based on graph theory and the creation of the Laplace matrix of a graph, whose vertices are
the examples and whose edges correspond to the level of similarity among the examples:
a feature xi is relevant if its values respect the graph structure, i.e., the higher the weight
on the edge between two nodes, the more similar are the values of xi for these two nodes.

Another filter-based approach is SPEC (spectral clustering) (Zhao & Liu, 2007) –
a generalization of many existing feature ranking scores, including Relief and Laplacian
score. The actual unsupervised score that the authors propose is thus a result of particular
instantiations, such as choosing an appropriate similarity measure, e.g., radial basis kernels.

2.3. Feature Ranking 21

Similarity matrix (again using radial-basis kernel) is also one of the building blocks of
the MCFS filter (Cai et al., 2010). After computing it, the algorithm proceeds to solving a
generalized eigenvalue problem, and ensures the sparsity of the scores via L1-regularization
in the objective function.

Another variation of the above approaches is NDFS (Li et al., 2012) where L2,1-
regularization is applied. The best features are those which are the most closely related to
the labels of the clusters constructed within the algorithm.

Existing unsupervised embedded methods for feature ranking include the Agnos family
of feature ranking algorithms (Doquet & Sebag, 2020). For example, AgnoS-S, the best
performing algorithm in the family, is based on an auto-encoder with one hidden layer
with the number of neurons never greater (and typically considerably smaller) than n.
Additionally, slack variables ai, 1 ≤ i ≤ n are included into the auto-encoder (every
feature value is in the input layer multiplied by the corresponding ai), and into the loss
function (in the form of L1 penalty

∑
i |ai|). After the auto-encoder is trained, one simply

reads the importance scores importance(xi) = |ai|.
As for the wrapper approaches, an analogous procedure to the recursive feature elim-

ination/addition in the context of classification and regression can be applied in the un-
supervised scenario (instead of learning predictive models, one would cluster the data),
however, we could not find any unsupervised wrappers in the literature.

2.3.3 Trees and Tree Ensembles

In this section, we first explain the mechanisms with which single trees and ensembles
thereof are built. In the next section, we will then be able to define feature ranking scores
embedded in the trees (and ensembles).

2.3.3.1 A Single Tree

Decision trees (Breiman et al., 1984; Quinlan, 1986) are mostly grown in a top-down fash-
ion. In this part, we limit ourselves to classification and regression. A general framework
that also covers structured output prediction and clustering is described later in Section
2.4. The pseudocode of tree-induction is given in Algorithm 2.1.

Algorithm 2.1: Tree(E)
1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ = none then
3: return Leaf (prototype(E))
4: else
5: for each Ei ∈ P∗ do
6: treei = Tree(Ei)
7: return Node(t∗,

⋃
i{treei})

Algorithm 2.2: BestTest(E)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each test t do
3: P = partition induced by t on E
4: h = |E|impu(E)−∑Ei∈P |Ei|impu(Ei)
5: if h > h∗ then
6: (t∗, h∗,P∗) = (t, h,P)
7: return (t∗, h∗,P∗)

Starting with E = DTRAIN, i.e., the whole data set, the algorithm first greedily finds
(line 1) a splitting criterion (also known as test) that splits the data into subgroups, so
that the heuristic score h is maximized. The tests are typically of the form xi ∈ A for some
subset A of the domain Xi of the feature xi, as shown in Figure 2.7. Thus, there are only
two possible outcomes of the test and thus, the data is partitioned into two parts. The
heuristic h that measures the quality of a test is the decrease of the impurity impu of the
target variable. The impurity function can be in theory any measure of how non-constant
the target value is. Thus, heuristic (greedily) guides the algorithm towards the shallow
trees that partition the data so that the target variable is constant on the every induced

22 Chapter 2. Background

x3 ∈ (−∞, 15)

x1 ∈ {married}

children: 1.80children: 2.30

YE
S NO

children: 0.02

YE
S NO

1

Figure 2.7: An example decision tree for the regression problem of predicting the number
of children. The feature x1 is the relationship status of a person, whereas the feature
x3 is the age of a person. Since x3 is numeric, the test in the root of the tree is of form
x3 ∈ A = (−∞, ϑ), where the threshold ϑ is set to 15. Since x1 is nominal with the domain
X1 = {single, in-relation, . . . , married}, the test in the other internal node of the tree
is of form x1 ∈ A where A is a proper non-empty subset of X1. In this particular case,
A = {married}.

subset of the data. The heuristic score is needed since finding the optimal tree is known
to be NP-complete (Hyafil & Rivest, 1976).

The best among the tests is found by iterating over all the possible tests (Algorithm
2.2). For a given test, the corresponding heuristic score (decrease of the impurity after
applying the test) is computed in line 4. If the test decreases the impurity (Algorithm 2.1,
line 3), the tree-induction algorithm creates a leaf node and computes a leaf node with a
prototype value (prediction) that is used in the prediction stage.

Otherwise, an internal node N with the chosen test is constructed, and the tree-
induction algorithm is recursively called on the subsets Ei in the partition P of the data,
defined by the test. The tests are typically of the form xi ∈ A for some subset A of the
domain Xi of the feature xi, as shown in Figure 2.7. Thus, there are only two possible
outcomes of the test and thus, the data is partitioned into two parts. The trees grown
from these subsets become child nodes of the node N (Algorithm 2.1, line 7).

To fully define the trees, we need to specify the actual impurity and prototype functions.
For the regression, impurity of the target is measured as the variance of the target, i.e.,

impu(E) = Var(E,y) = 1
|E|
∑

(x,y)∈E(y − ȳ)2, where ȳ = 1
|E|
∑

(x,y)∈E y is the average
(over the subset E) of the target variable4.

As the prototype function in regression problems, one typically uses the mean value ȳ
but others, such as median, are also possible5.

For the classification, there is more than one frequently used impurity function. As
mentioned before, ID3 algorithm uses info gain, as defined in Equation (2.2). Predictive
clustering trees, on the other hand, use Gini index impu(E) = Gini(E,y) = 1−∑y p

2
E(y),

where the sum goes over the possible values y of the target variable, and pE(y) is the
relative frequency of the value y in the subset E. When adapting the impurity measures
to the semi-supervised problems in Section 2.4.4, we show that Gini index is the most
appropriate nominal analogue of variance.

Trees, as predictive models, are mostly valued for their interpretability. However, they
might be undesirably unstable, which may hurt their predictive performance (Breiman,
1996). This is overcome by the ensemble techniques described in the next section.

4Biased estimator of variance is used to prevent the potential divisions by zero when |E| = 1.
5The prototype function should depend on the evaluation criterion. For example, mean minimizes the

mean squared error, whereas the median minimizes the mean absolute error.

2.3. Feature Ranking 23

2.3.3.2 Tree Ensembles

An ensemble is a set of base predictive models. Its prediction for an example x is made by
combining the predictions of the base models. For the classification, this is typically done
by taking the majority vote of the baseline models. For the regression tasks, a mean over
the base-model prediction is computed.

The motivation for introducing an ensemble is that it can be viewed as more stable
versions of its base models, since – if the members are diverse models (Hansen & Salamon,
1990) – the ensemble predictions have lower variance and are therefore more accurate.
Thus, since the trees are unstable, they are very suitable base models.

To introduce some diversity into the tree induction, one has to modify the completely
deterministic tree induction Algorithms 2.1 and 2.2. There are several ways to do so and
we use three of them.

Bagging Instead of being learned from the whole training set DTRAIN, each tree in the
bagging ensemble (Breiman, 1996) is built from a different bootstrap replicate B of
DTRAIN, called bag6. Thus, the bagging procedure manipulates only the training
data but not the tree induction itself.

Random Forests This ensemble method (Breiman, 2001) goes a step further and, in
addition to bootstrapping, modifies the selection of the best test. More precisely,
instead of evaluating all possible tests in Algorithm 2.2, only the tests that a random
subset of features yield are evaluated. The number of the retained features n′ is a
parameter to the algorithm. Its typical values are dlog2 ne or d

√
ne, etc. Thus, If

n′ = n is the special case when random forest procedure boils down to bagging.

Extra Trees Ensembles of extremely randomized trees (Geurts et al., 2006) also consider
only n′ features in each node, but do not evaluate all the corresponding tests. Rather,
only one test per feature is chosen randomly, thus only n′ tests are evaluated, and the
algorithm chooses the best one among these n′ tests. The rationale behind this more
extreme randomization is that this increases the diversity, and makes the ensemble
a stronger learner. Note that, however, Extra-Tree ensembles originally do not use
bootstrapping, but for some data sets (e.g., those with many binary features where
the random choice of a particular test is useless), our experiments show that it is
beneficial to use it, see, for example, Chapters 6 and 7.

Computing an ensemble instead of a single tree improved the predictive performance of
the model. However, we lose some interpretability since the model becomes much more
complex. However, there are feature ranking scores embedded into tree ensembles, which
can again explain the ensemble. The definitions of these scores are given in the next section.

2.3.4 Feature Ranking with Tree Ensembles

Now, we have everything prepared to describe feature ranking scores that are embedded
in tree ensembles for classification and regression. For its simplicity, we start with the
Symbolic score7, continue with the Genie3 (Huynh-Thu et al., 2010) score and finish with
the Random Forest score (Breiman, 2001). Here, we assume that ensemble E has already
been grown.

6A bootstrap replicate of a data set of size m is obtained by choosing an example from the data m-times
uniformly at random, with repetition. The choices are independent.

7The score is implemented in xgboost package https://xgboost.readthedocs.io/en/latest/

https://xgboost.readthedocs.io/en/latest/

24 Chapter 2. Background

Symbolic The motivation for the Symbolic score is that a feature xi is relevant for a
given tree T if the feature influences the predictions of the tree. Thus, the Symbolic
score simply counts the occurrences of a feature in the internal nodes of a tree, and
is defined as

importanceSYMB(xi) =
1

|E|
∑

T ∈E
|T (xi)|, (2.4)

where the sum goes over the trees T in the ensemble, and T (xi) is the set of internal
nodes in a tree T where xi is present in the test. The set of the examples that reach
a given node N is denoted by E(N).

Genie3 The Genie3 score can be seen as a more sophisticated version of the Symbolic
score, where, additionally, the quality of the split is taken into account. Here, instead
of only counting the number of examples, the heuristic value of the test h∗(N) in a
node N is taken as a basic reward. It is important to note that the value h∗(N)
is proportional to the number of examples (see line 4 of Algorithm 2.2). The exact
definition of the Genie3 score is

importanceGENIE3(xi) =
1

|E|
∑

T ∈E

∑

N ∈T (xi)
h∗(N). (2.5)

Random Forest score The Random Forest score was designed to explain the predictions
of the random forest ensemble (hence the name), but – as we shall see – it can be
used with any predictive model. However, trees are especially appropriate because the
predictions (needed for the computation of the score) can be obtained fast, provided
the trees are balanced.

The Random Forest score measures to what extent noising (i.e., permuting) the
feature values decreases the predictive performance of a tree. This is done in two
steps. First, recall that a tree in a random forest (and the other aforementioned
ensembles) is learned on a bootstrap replicate (called bag) of the training data set
DTRAIN. Thus, approximately one third of the training data set are the so-called
out-of-bag examples8. We denote them with OOBT .

Since these examples were not seen during the induction of the tree T , one can
use them to assess the predictive power of the tree. Using some error measure Err
(where lower values correspond to better predictions), we denote the value of this
error measure for the set OOBT as Err(OOBT). We compare this value to the error
Err(OOBT i) where the set OOBT i is obtained from OOBT by randomly permuting
the values of the feature xi. The greater the (relative) difference between the error
values, the more important the feature. The exact definition of the Random Forest
score is thus

importanceRF(xi) =
1

|E|
∑

T ∈E

Err(OOBiT)− Err(OOBT)

Err(OOBT)
. (2.6)

A typical error measure in regression problems is the quadratic loss. As for the
classification problems, one can set Err to accuracy. Since for accuracy, more is
better, we first compute the scores following Equation (2.6), and then multiply them
by the factor of −1.

8The probability of an example not being selected to the bag is (1 − 1/m)m, m being the number of
examples in DTRAIN. Thus, the expected proportion of the examples that are not part of the bag quickly
converges to m/e ≈ 0.37m when m→∞.

2.3. Feature Ranking 25

Equation (2.6) shows that any model can be used for permutation-style feature ranking.
Moreover, all the three scores can be actually seen as ensemble versions of the tree scores,
i.e., the averages of the latter, since the outer operator is always averaging. As a conse-
quence, the larger the ensemble, the more stable the scores.

In this section, we described the first group of feature ranking scores that we base our
methodology on. In the next section, the remaining group of algorithms is described.

2.3.5 Distance-based Feature Ranking with Relief

The algorithms in the Relief group are all filters. Their main advantage over the other
filters is that they are not myopic and at the same time, they do not need to test for
the possible interactions of (pairs of) features explicitly which considerably increases the
computational complexity of the algorithm. For example, they can (in linear time with
respect to the number of features) detect relevant features in XOR relations (Robnik-
Šikonja & Kononenko, 2003).

The rationale behind the Relief group of algorithms is that, given two examples that
are close to each other (in the descriptive space), a feature xi is relevant if the differences
between the target values of the two examples are notable if and only if the differences in
the values of xi between these two examples are notable.

Closeness of the examples or differences of the attribute values are expressed as the
distances in the appropriate subspaces of a data set. More precisely, if X =×n

i=1Xi is
the descriptive space and x1,x2 ∈ X are the descriptive parts of two examples, then the
distances between these two examples in the feature spaces Xi are defined as

di(x
1,x2) =

1[x1
i 6= x2

i] : Xi * R
|x1
i−x2

i |
max
x

xi−min
x

xi
: Xi ⊆ R (2.7)

where 1 : ϕ 7→ 1[ϕ] denotes the indicator function that returns 1 if the condition ϕ is
satisfied and 0 otherwise, and x1

i and x2
i denote the values of the feature xi for the two

examples. Furthermore, the distance in the descriptive space X is then defined as

dX (x1,x2) =
1

n

n∑

i=1

di(x
1,x2). (2.8)

The definition of the distance dY in the target space depends on the task. For classifi-
cation, we follow the nominal part of Equation (2.7), whereas for regression, the numeric
part of the same equation applies.

Different members of the Relief family cover different tasks. For example, Relief (Kira
& Rendell, 1992) can handle only binary classification whereas ReliefF (Robnik-Šikonja &
Kononenko, 2003) can handle any classification tasks. Finally, RReliefF (Robnik-Šikonja
& Kononenko, 2003) handles regression tasks. To some extent, the importance scores, as
returned by all of them, equal the expected value of the expression

P1 − P2 = P (x1
i 6= x2

i | y1 6= y2)− P (x1
i 6= x2

i | y1 = y2), (2.9)

where example r = (x1,y1) ∈ DTRAIN is randomly chosen, and n = (x2,y2) is one of its
nearest neighbors. Above, y1,y2 ∈ Y are the target parts of the corresponding examples.
The conditional probabilities above are first expressed with unconditional ones (using Bayes
formula P (A|B)P (B) = P (A ∧B)), and Equation (2.9) then reads as

P1 − P2 =
PdiffFeat, diffTarget

PdiffTarget
− PdiffFeat − PdiffFeat, diffTarget

1− PdiffTarget
, (2.10)

26 Chapter 2. Background

where the labels diffFeat and diffTarget correspond, respectively, to the events that two
instances have a different value of a feature, and a different value of the target.

The corresponding probabilities are in the algorithms modelled as distances in the ap-
propriate spaces. For example, PdiffFeat = P (x1

i 6= x2
i) ≈ di(x1,x2). The exact formulation

of the ReliefF and RReliefF algorithms is given in Algorithms 2.3 and 2.4, respectively.

Algorithm 2.3: ReliefF(DTRAIN, I, K)
1: w = zero list of length n
2: for ι = 1, 2, . . . , I do
3: r = (xι,yι) = random example from DTRAIN
4: H1, . . . ,HK = K nearest hits for r
5: for all classes c 6= yι do
6: Mc,1, . . . ,Mc,K ← K nearest misses for r from class c
7: for i = 1, 2, . . . , n do
8: w[i] +=

(∑
c 6=yι

P (c)
1−P (yι)

∑K
l=1 di (Mc,l, r) /(IK)

)
−∑k

l=1 di (Hl, r) /(IK)

9: return w

Algorithm 2.4: RReliefF(DTRAIN, I, K)
1: w = zero list of length n
2: PdiffFeat, diffTarget, PdiffFeat = zero lists of length F
3: PdiffTarget = 0.0
4: for ι = 1, 2, . . . , I do
5: r = random example from DTRAIN
6: n1,n2, . . . ,nK = K nearest neighbors of r
7: for k = 1, 2, . . . ,K do
8: PdiffTarget += dY

(
r,nk

)

9: for i = 1, 2, . . . , n do
10: PdiffFeat[i] += di

(
r,nk

)

11: PdiffFeat, diffTarget[i] += di
(
r,nk

)
dY
(
r,nk

)

12: for i = 1, 2, . . . , F do
13: wi =

PdiffFeat, diffTarget[i]
PdiffTarget

− PdiffFeat[i]−PdiffFeat, diffTarget[i]
1−PdiffTarget

14: return w

They both take the numbers of iterations I and neighbors K as their arguments. The
main difference between the algorithms originates from the fact that in classification, the
event examples have different class values does not happen with probability 1. This is why
we can separate the neighbors to hits (the neighbors that belong to the same class as the
randomly chosen example r), and misses (the neighbors that belong to the different class
as the example r), which are computed in lines 4 and 6 of Algorithm 2.3.

The reward for a feature in ReliefF is then proportional to the distances in the space
Xi between and its K misses. Similarly, the penalty for the feature is proportional to the
feature distances between r and its hits.

In the regression case, belonging to different class is not defined in a strict sense.
However, in RReliefF, it is quantified via the distance dY , i.e., the larger the distance, the
more different are the “class” values. Otherwise, the RReliefF algorithm follows the same
motivation as ReliefF, but now, the algorithm makes full use of Equation (2.10).

For example, the probability PdiffFeat, diffTarget is modelled as the product of distances
didY . Similarly, PdiffFeat ≈ di and PdiffTarget ≈ dY .

2.4. Predictive Clustering and Structured Output Prediction 27

The generalization of the notion of belonging to different classes and the fact that
RReliefF operates only with distances allows for generalizations that we have developed
and are described in the next chapters.

Note that we did not show the pseudocode for Relief since the feature importances, as
returned by ReliefF, are the same (when applied to a binary classification problem).

2.4 Predictive Clustering and Structured Output Prediction

The predictive clustering framework (Blockeel, 1998) unifies the tree induction processes for
supervised learning (i.e., predictive modeling), unsupervised learning (more precisely, clus-
tering), and lately also semi-supervised learning (Levatić, 2017). The trees in this frame-
work are referred to as predictive clustering trees (PCTs). Moreover, predictive clustering
generalizes the algorithms for inducing classification and regression trees (as presented in
Section 2.3.3), so that they are applicable also to the tasks of structured-output prediction,
such as multi-target regression, multi-label classification, and hierarchical multi-label clas-
sification. In the following subsections, we explain the main ingredients of learning PCTs
and PCT ensembles.

2.4.1 Learning PCTs and PCT Ensembles

So far, it was sufficient to divide the columns in a data set into features and targets. A
common name for these two types of columns are attributes, and so far, we could have used
the name descriptive attributes instead of features and target attributes instead of targets.
However, the first step towards generalization of the tree induction algorithm is defining
three groups of attributes in a data set:

• descriptive attributes AD: These are the attributes that can appear as part of the
test in the internal nodes of a tree.

• target attributes AT : These are the attributes whose values are output by the function
prototype in the leaves of a tree.

• clustering attributes AC : These are the attributes that are included in the computa-
tion of heuristic values.

For example, in standard classification or regression, the groups of target and clustering
attributes coincide, and consist of precisely one attribute (which we have been referring
to as y). The rest of the attributes are descriptive. In clustering, on the other hand, all
three groups of attributes coincide and contain all the attributes present in a data set,
as we explain in detail in Section 2.4.4. In the following sections, we also present PCT
induction for the tasks of structured output predictions. To do so, it suffices to define three
components of the tree induction algorithm, namely, the three groups of attributes, the
impurity measure impu that is used in heuristic function h, and the function prototype.

2.4.2 MTR with PCTs

In Section 2.2.3.1, we defined multi-target regression (MTR) tasks as predictive modeling
tasks where the target variable y is a vector of numeric values. However, when defining
PCT induction for MTR tasks, it is better to think about target y as a group of numeric
attributes, since this simplifies matters a lot.

More precisely, in MTR, groups AT and AC coincide and contain only numeric at-
tributes. The rest of the attributes belong to group AD.

28 Chapter 2. Background

In the internal nodes, impurity of a data subset E ⊆ DTRAIN is now defined as

impu(E) =
1

|AC |
∑

y∈AC

Var(E, y)

Var(DTRAIN, y)
,

i.e., as a normalized average of variances of the clustering attributes. The normalization
factors take care of possible different scales of the clustering attributes. Note that when
|AC | = 1, this definition boils down to the definition of (standard) regression impurity, as
defined in Section 2.3.3.1.

The function prototype (used in the leaves of the tree) returns a vector of average
values for the attributes in AT . The average in every leaf is computed from the training
examples that belong to this leaf. The prediction of an ensemble of PCTs is the average
of predictions of the trees.

2.4.3 MLC and HMLC with PCTs

Moving to the generalizations of classification, we now describe the tasks of multi-label
classification (MLC) and its hierarchical version (HMLC).

As for the three attribute groups, we again haveAC = AT , and the rest of the attributes
are inAD, but the attribute types of the clustering (and target) attributes are now different,
as compared to MTR.

As defined in Section 2.2.3.2, the target values in MLC tasks are subsets of the set of
labels L . However, if we denote L = {`1, . . . , `L}, every subset S can be represented as
its incidence vector s ∈ {0, 1}L, where sj = 1 ⇔ `j ∈ S. We can thus act as we have L
binary targets, which can be regarded as either numeric or nominal. If we treat the binary
targets as nominal, we can use the Gini index for each label in the impurity function:

impu(E) =
1

|L |
∑

`∈L

Gini(E, `)

Gini(DTRAIN, `)
,

However, numeric representation speeds up the tree induction since this reduces a MLC
problem to a MTR one, regarding the definition of the impurity function impu9. This also
means that the groups of AC and AT consist of L numeric attributes whose values in the
data are constrained to zeros and ones. If we treat the binary targets as numeric, we can
use the same impurity function as for MTR.

As for the function prototype, one again follows the MTR case, i.e., computes the
averages of the target attributes. Then, additionally, those numeric values are thresholded,
so that the final predictions equal

prototype(E) = {`j | ȳj ≥ ϑ}, (2.11)

where the threshold ϑ is typically set to ϑ = 1/2. The prediction of an ensemble of PCTs
is obtained by majority voting, for every label separately (or by thresholding the per-tree
averaged MTR predictions of PCTs in the ensemble).

As for the HMLC case where L is partially ordered (which results in a hierarchy of
the labels), the impurity function has to take into account the fact that the labels that
are higher in the hierarchy are more important. This is done by assigning every label a
weight. To do so, the partial ordering is first represented as a directed acyclic graph. The
graph has the labels as nodes. An edge between two nodes `1 and `2 exists if and only if

9In general, one would define the impurity function as impu(E) = minz∈P(L)

∑
(x,y)∈E Loss(y,z)

which may not have a closed form. Going to MTR setting relaxes the condition z ∈ P(L) and makes
PCT induction feasible.

2.4. Predictive Clustering and Structured Output Prediction 29

`1 4 `2, and ¬(`1 4 ` 4 `2), for all ` ∈ L \ {`1, `2}. If `1 and `2 are connected (`1 4 `2),
then `2 is a parent of `1. Finally, the weights w(`) are recursively defined as

w(`) =

{
1 ; parents(`) = ∅
w0 ·mean ({w(`p)|`p ∈ parents(`)}) ; parents(`) 6= ∅

, (2.12)

where w0 ∈ (0, 1] is a user-defined parameter. The impurity function is now defined as

impu(E) =
1

|AC |
∑

`∈AC
w(`) · Var(E, `)

Var(DTRAIN, `)
,

where |AC | = |L | = L, and we conveniently denoted a clustering attribute as `. Note
that choosing w0 = 1 boils down to ignoring the hierarchy structure and solving a HMLC
problem as a MLC one.

For the prototype function, we use the one defined in Equation (2.11). Note that
such predictions automatically satisfy the hierarchical constraint which is also one of the
advantages of PCTs over, for example, support vector machines for HMLC (Barutcuoglu
et al., 2006).

descriptive attributes

ta
rg

et
at

tr
ib

u
te

s

(a) w = 1

descriptive attributes

ta
rg

et
at

tr
ib

u
te

s

(b) w = 1/2

descriptive attributes

ta
rg

et
at

tr
ib

u
te

s

(c) w = 0

Figure 2.8: Comparison of the clusters in data when the w parameter in the impurity func-
tion of Equation (2.13) ranges from w = 1 (supervised), over w = 1/2 (semi-supervised),
to w = 0 (unsupervised).

Finally, we make an additional note about compatibility of both impurities that can
be used for binary attributes, e.g., in MLC. They can be regarded as numeric or nominal
attributes, for which impurities are defined as their variances and Gini indices, respectively.

First, note that the variance of a Bernoulli variable X equals p(1 − p) where p =
P (X = 1). Moreover, Gini impurity of X equals 2p(1 − p). Therefore, the induced trees
(and feature ranking) are independent of our treatment of binary target variables in MLC.

The same reasoning can be used when a nominal feature xi is 1-hot encoded, i.e., using
the Gini index for a nominal feature xi yields the same value as using the variance for
the |Xi| numeric features obtained by 1-hot encoding the feature xi. We can prove this as
follows. Recall that Gini index of variable xi is defined as Gini(xi) = 1−∑v∈Xi p

2
v where

pv is the relative frequency of value v ∈ Xi. Next, note that the |Xi| features xi,v that the
1-hot encoding results in are Bernoulli variables (with the variance of pv(1 − pv)). Thus,
we can deduce that

Gini(xi) = 1−
∑

v

p2v =
∑

v

pv(1− pv) =
∑

v

Var(xi,v).

30 Chapter 2. Background

2.4.4 Semi-supervised and Unsupervised Learning with PCTs

Now that all the predictive modeling tasks have been covered, we can proceed to the semi-
supervised learning, and, in the case of PCTs, its special case unsupervised learning. In this
section, the function impu and prototype belong to any (supervised) task, e.g., regression
or HMLC mentioned so far.

To extend the PCT induction to the semi-supervised case where many values y(x)
are missing, one extends the group of clustering attributes AC , so that the heuristic can
make use of unlabelled examples. More precisely, for a semi-supervised version of a task,
AC = AD ∪ AT , where the groups of target and descriptive attributes AD and AT are
defined as in the supervised case, and the impurity function is defined as

impu(E) = w · 1

|AT |
∑

yj∈AT
αj · impu(E, yj) + (1−w) · 1

|AD|
∑

xi∈AD
βi · impu(E, xi), (2.13)

where the constants αj are the normalization constants that make the values impu(E, yj)
comparable. For example, in MTR tasks, αj = 1/Var(E, yj). Similar goes for the constants
βi. Values impu(E, yj) and impu(E, xi) are computed only from the examples that have
a known value of yj and xi.

The user-defined parameter w ∈ [0, 1] defines the influence of the target attributes to
the heuristic score. Three different cases are considered:

• Setting the parameter to w = 1 corresponds to solving semi-supervised problems in
a supervised fashion, i.e., ignoring the unlabeled data. This case is shown in Figure
2.8a. Here, the width of the clusters in the descriptive space, i.e., the impurity of
descriptive attributes, does not matter.

• Setting it to w ∈ (0, 1) corresponds to taking into account both descriptive and target
attributes, as shown in Figure 2.8b. Now, both descriptive and target attributes
matter when computing the impurity.

• The second extreme case, i.e., w = 0 is shown in Figure 2.8c. Here, only the descrip-
tive part of data plays a role when computing the impurity and the target attributes
are ignored. This situation is in turn equivalent to the case where there is no target
attribute present, i.e., to the unsupervised learning. Indeed, the second sum in the
impurity definition (2.13) corresponds to the definition of the impurity function for
clustering tasks.

31

Chapter 3

Extending Feature Ranking to
Different Learning Tasks: Basic
Notions

In this chapter, we present the basic ideas behind our extensions of feature ranking algo-
rithms to a variety of learning tasks considered in this thesis. These include (supervised)
structured output prediction, semi-supervised learning (including SOP) and unsupervised
learning, as well as relational classification. We start with feature ranking for SOP based on
ensembles of PCTs (Section 3.1), continue with the distance-based feature ranking (Section
3.2), and finish with feature ranking in a relational setting, based on ensembles of relational
classification trees (Section 3.3).

3.1 Ensemble-based Feature Ranking for SOP and Unsuper-
vised Learning

Our ensemble-based feature ranking scores for different learning tasks are extensions of the
feature ranking scores for classification and regression presented in Section 2.3.4, just like
predictive clustering trees are an extension of the standard decision trees for classification
and regression for different learning tasks. Equipped with the powerful predictive clustering
methodology, we show how one can elegantly extend the Symbolic, Genie3 and Random
Forest feature ranking scores defined in Equations (2.4), (2.5) and (2.6) to structured
output prediction, unsupervised learning and semi-supervised learning.

3.1.1 Feature Ranking for SOP

We first describe how the three extended scores are defined. We describe what is differ-
ent for the considered tasks of structured output prediction. This is done for each score
separately.

3.1.1.1 Symbolic Score

Arguably, the Symbolic score defined in Equation (2.4) is the most generic of the used
scores since – after an ensemble of PCTs is built – it is obtained by counting the number
of internal nodes where a given feature appears in the test. However, note that the splits
that are closer to the root of the tree influence more examples than the splits deeper in
the tree. Thus, we weight every occurrence of a feature in a tree node by the number of

32 Chapter 3. Extending Feature Ranking to Different Learning Tasks: Basic Notions

examples that reach this node, and define the Symbolic score as

importanceSYMB(xi) =
1

|E|
∑

T ∈E

∑

N ∈T (xi)

|E(N)|
|DTRAIN|

, (3.1)

where the outer sum goes over the trees T in the ensemble E , and the internal sum goes
over the set of internal nodes T (xi) where xi is present in the test. The set of examples
that reach a given node N is denoted by E(N).

Evidently, the Symbolic score is ready to be used in all tasks of structured output
prediction (MTR, MLC, HMLC), and no special adaptation of Equation (3.1) is needed.

Note that in our early work (for example, in feature ranking for MTR presented in
Chapter 4), we used a slightly different definition, where instead of weighting the occur-
rences of a feature by the exact number of examples, we weighted them with the term
wdepth(N) as an approximation of |E(N)|, where w ∈ (0, 1] is a user-defined parameter.

3.1.1.2 Genie3 Score

The integral part of the Genie3 score definition (see Equation 2.5) is computing the quality
h∗(N) of the test in an internal node N , for every internal N in the trees of the ensemble.
Given that one knows how to grow an ensemble of PCTs for a specific structured output
prediction task means that the heuristic function h for choosing the tests is defined. Thus
one can also compute the Genie3 score (and feature ranking) by using the same heuristic
function h. Note that function h differs for different types of structured outputs. It follows
the template h(E) = |E|impu(E)−∑Ei∈P |Ei|impu(Ei), as specified in line 4 of Algorithm
2.2. Eventually, it is the function impu that is different for different types of SOP. It is
defined as follows:

• MTR:

impu(E) =
1

|AC |
∑

y∈AC

Var(E, y)

Var(D , y)

• MLC:

impu(E) =
1

|AC |
∑

`∈AC

Gini(E, `)

Gini(D , `)

=
1

|AC |
∑

`∈AC

Var(E, `)
Var(D , `)

,

• HMLC:

impu(E) =
1

|AC |
∑

`∈AC
w(`) · Gini(E, `)

Gini(D , `)

=
1

|AC |
∑

`∈AC
w(`) · Var(E, `)

Var(D , `)
,

as discussed in Section 2.4. Recall from there that AC is the set of clustering attributes
(i.e., the set of labels for MLC and HMLC), and that w(`) is the weight of the label `.

3.1. Ensemble-based Feature Ranking for SOP and Unsupervised Learning 33

3.1.1.3 Random Forest Score

Whereas the Symbolic and Genie3 scores are parameter-less (given that the parameters of
the PCT learning algorithm have been set), computing the Random Forest score demands
specifying the error measure Err (see Equation 2.6). Of course, this error measure depends
on the SOP task at hand.

For MTR, one typically uses the average relative mean squared error, defined as

RMSE(ŷ) =
1

|AT |
∑

yj∈AT

1

Var(yj)
· 1

|D |
∑

(x,y)∈D

(yj − ŷj(x))2

where ŷ is a MTR model, yj and ŷj are the j-th components of the corresponding vectors,
AT denotes the set of the target attributes, and D is the set at hand. The per-target
squared errors are thus normalized by the variance of the targets. Instead of RMSE, one
could also use its absolute error analogue where the (yj − ŷj(x))2 terms are replaced by
the terms |yj − ŷj(x)|, and the per-target errors are normalized by

√
Var(yj). Other

MTR error measures are also possible, but RMSE resembles the tree heuristic (variance
reduction) most closely.

As for MLC, there is a variety of error measures, as discussed in Chapter 5. Following
a similar reasoning as in the MTR case (that the chosen measure Err should resemble the
tree building heuristic), the most appropriate option for Err is the Hamming loss1, defined
as

HammingLoss(ŷ) =
1

|D |
∑

(x,y)∈D

|y∆ŷ(x)|
|L |

where L is the label set and A∆B denotes the symmetric difference of the sets A and B.
As for HMLC, the situation is similar to MLC, since here, the weighted versions of the

MLC error measures apply. Thus, the default choice for the measure Err is the weighted
Hamming loss, defined as

HammingLoss(ŷ) =
1

|D ||L |
∑

(x,y)∈D

∑

`∈L

w(`) ·XOR(` ∈ y, ` ∈ ŷ(x)) (3.2)

where the label weights w(`) are defined as in Equation (2.12) and the function XOR maps
the conditions ` ∈ y and ` ∈ ŷ to 1 if the label ` belongs to exactly one of the sets y and
ŷ, and to 0 otherwise.

3.1.2 Unsupervised Feature Ranking

In the unsupervised scenario, we can check that using the definitions of the feature ranking
scores from the supervised scenario still makes sense, and take into account a different
interpretation of the ranking. This is easy to see for Symbolic ranking, since the attributes
that appear in the tests in a tree influence the clustering, and those that appear closer to
the root influence the clustering more. Similarly, the Genie3 score now measures how well
a given test separates a data subset into two clusters, since the heuristic now measures the
spread (impurity) of clusters of data.

As for the Random forest ranking, the measure Err is now an adaptation of RMSE,
defined in the previous section. The adaptation is performed in two steps:

1. Instead of the target space, we use the descriptive space to calculate the error2.
1This might not be obvious, but can be proved with some algebraic manipulation after expanding the

term |y∆ŷ(x)|.
2Recall that when PCTs are used for clustering, all three groups of variables, i.e., descriptive, target

and clustering variables coincide, and contain all the variables.

34 Chapter 3. Extending Feature Ranking to Different Learning Tasks: Basic Notions

2. Generalizing the definition of the Err to also apply to nominal features. While for
MTR, MLC and HMLC, all the targets for one task are of the same type, when we
use PCTs for clustering, we typically have a mix of numeric and nominal variables.

For numeric features, one can simply replace the quadratic terms (yj−ŷj(x))2 by the terms
(xi − x̂i)

2, where the predicted value x̂i is the i-th component of the centroid of a cluster
that corresponds to the leaf into which the example x belongs. For nominal features, these
terms are replaced by 1[xi 6= x̂i]. In both cases, we denote these error terms as e(xi, x̂i).

Finally, if we recall the normalisation weights βi from the semi-supervised learning
impurity function (Equation (2.13)), defined as

βi =

{
1

Var(xi)
; Xi ⊆ R

1
Gini(xi)

; Xi 6⊆ R
,

then we can finally define the measure Err as

Err =
1

|AD|
∑

xi∈AD
βi

1

|D |
∑

x∈D

e(xi, x̂i), (3.3)

where AD denotes the set of all descriptive attributes.

3.1.3 Semi-supervised Feature Ranking

In the previous two subsections we have covered our extended feature ranking approaches
for the cases of supervised and unsupervised learning. Now, we do so for the most general
setting, namely, semi-supervised learning.

Again, the Symbolic and Genie3 scores do not need any modifications even though the
tree induction heuristic h is now changed. The Symbolic score is independent of h. For
the Genie3 score, no changes are needed once we have changed h.

What remains is to define the Random forest score for semi-supervised feature ranking.
In the previous subsection, we have already defined part of the score (Equation (3.3)) that
corresponds to the unsupervised part of the SSL impurity from Equation (2.13). Following
this definition and the one given above, we define the error measure Err for semi-supervised
Random Forest score as

Err = w· 1

|AT |
∑

yj∈AT
αj ·

1

|D |
∑

(x,y)∈D

e(yj , ŷj(x))+(1−w)· 1

|AD|
∑

xi∈AD
βi·

1

|D |
∑

(x,y)∈D

e(xi, x̂i),

where the normalization constants αj are defined analogously to βi, and depend on the
predictive modeling task. Parameter w determines the amount of supervision: When
w = 1, we have fully supervised learning, and when w = 0, we have unsupervised learning.
The values e(yj , ŷj(x)) are defined in light of the SOP task at hand. For example, for SSL
HMLC problems, we have (following Equation (3.2))

e(y`, ŷ`(x)) = w(`) ·XOR(` ∈ y, ` ∈ ŷ(x))

and we have AT = L , and αj = α`. Normalisation constants α` are computed using
similar error terms, but with ŷ(x) replaced by the predictions of the default model learned
on the whole data set.

3.2. Distance-based Feature Ranking 35

3.2 Distance-based Feature Ranking

In this section, we present the extensions of the Relief family of algorithms to the same
tasks as in the previous section, i.e., to structured output prediction, unsupervised and
semi-supervised learning (including SSL for SOP). As opposed to ensemble-based feature
rankings, the Relief family is not directly connected to the predictive clustering framework.
However, we keep the notation for the three groups of attributes (descriptive, clustering
and target), since this makes explanation much easier.

Algorithm 3.1: RReliefF(DTRAIN, I, K) with highlights
1: w = zero list of length n
2: PdiffFeat, diffTarget, PdiffFeat = zero lists of length n
3: PdiffTarget = 0.0
4: for ι = 1, 2, . . . , I do
5: r = random example from DTRAIN
6: n1,n2, . . . ,nK = K nearest neighbors of r
7: for k = 1, 2, . . . ,K do
8: PdiffTarget += dY

(
r,nk

)

9: for i = 1, 2, . . . , n do
10: PdiffFeat[i] += di

(
r,nk

)

11: PdiffFeat, diffTarget[i] += di
(
r,nk

)
dY
(
r,nk

)

12: for i = 1, 2, . . . , F do
13: wi =

PdiffFeat, diffTarget[i]
PdiffTarget

− PdiffFeat[i]−PdiffFeat, diffTarget[i]
1−PdiffTarget

14: return w

The key observation for extending the Relief family is that RReliefF (given in Algo-
rithms 2.4 and 3.1) operates only with distances along individual descriptive attributes
(features) and along the single numeric target. RReliefF can be thus generalized to SOP if
one appropriately defines the target distance dY on the target space Y. The critical lines
in the pseudocode that enable the generalization and need to be changed are lines 8 and
11, where dY appears. Note that the distance di (lines 10 and 11) does not need to be
changed.

With some further observations and modifications, one can extend the obtained al-
gorithm to the unsupervised and the semi-supervised scenarios. Note that classification
versions, namely Relief and ReliefF, are not appropriate for generalization, since their in-
tegral part is to compute the neighbors of an example that belong to the same and to
different classes, a notion that only works in the classification context.

3.2.1 Feature Ranking for SOP

In this section, we present the instantiations of the distance dY for the different tasks of
structured output prediction.

3.2.1.1 Feature Ranking for MTR

We start with MTR. Here, we define dY in an analogous way to dX , specified in Equation
(2.8), namely

dY(y1,y2) =
1

|AT |
∑

yj∈AT
dj(y

1,y2),

where the numeric part of the distance dj (given in Equation (2.7)) applies.

36 Chapter 3. Extending Feature Ranking to Different Learning Tasks: Basic Notions

3.2.1.2 Feature Ranking for MLC

In MLC, we denote L = {`1, . . . , `L} and represent a set of labels S ⊆ L as its incidence
vector s (as explained in Section 2.4.3). We can then follow the above definition for MTR
and define the distance

d(S1, S2) =
1

L

L∑

j=1

dj(s
1, s2)

This distance definition has been used previously in an MLC extension of RReliefF (Reyes
et al., 2015). However, we note that d(S1, S2), as defined above, may not be the most
appropriate for MLC problems. Namely, it can be decomposed to the distances dj(s1, s2)
and thus ignores the potential interactions among the labels.

Moreover, we note that this distance actually equals

dHamming(S1, S2) =

∣∣S1∆ S2
∣∣

L
, (3.4)

which mimics Hamming loss – one of the MLC evaluation measures. As this is one of the
many MLC evaluation measures, we propose to use three other distances, namely

dAccuracy(S1, S2) = 1− |S1 ∩ S2| / |S1 ∪ S2|
dF1(S

1, S2) = 1− 2|S1 ∩ S2| / (|S1|+ |S2|)
dSubsetAcc(S1, S2) = 1

[
S1 6= S2

]
.

They are all based on the corresponding MLC evaluation measures (MLC accuracy, MLC
F1 measure and subset accuracy), and cannot be decomposed into single-label distances.
In Chapter 5, we show – among other things – that they outperform the distance dHamming .

3.2.1.3 Feature Ranking for HMLC

For HMLC, one can use the weighted versions of all the MLC distance instantiations, by
defining w =

∑L
j=1w(`j) and

|S| =
1

w

L∑

j=1

w(`j) · 1[`j ∈ S],

|S1 ∪ S2| =
1

w

L∑

j=1

w(`j) ·max{1[`j ∈ S1],1[`j ∈ S2]},

|S1 ∩ S2| =
1

w

L∑

j=1

w(`j) ·min{1[`j ∈ S1],1[`j ∈ S2]}.

This generalizes the first three MLC distances given above, whereas the distance dSubsetAcc
remains the same.

3.2.2 Unsupervised Feature Ranking

The predictive clustering terminology is useful when defining the unsupervised version of
Relief, since – knowing that dY operates in the target space and dX in the descriptive
space – we can precisely define the algorithm by stating that, in unsupervised learning,
AT = AD. As a consequence, dX = dY .

3.2. Distance-based Feature Ranking 37

3.2.3 Semi-supervised Feature Ranking

The semi-supervised version of Relief is considerably more complex (since it can cover all of
the tasks mentioned so far) and needs more than one modification. Its pseudocode is given
in Algorithm 3.2. In the remainder of the section, we describe the necessary modifications.

Algorithm 3.2: SSL-Relief(DTRAIN, I, K, [w0, w1])
1: importance = zero list of length n
2: PdiffAttr, diffCluster, PdiffAttr = zero lists of length n
3: PdiffCluster = 0.0
4: w = computeInstanceInfluence(DTRAIN,w0 ,w1)
5: s = 0 # sum of weights of the pairs, used in normalization
6: for ι = 1, 2, . . . ,m do
7: r = random example from DTRAIN
8: n1,n2, . . . ,nK = K nearest neighbors of r
9: for k = 1, 2, . . . ,K do

10: w = w[r] ·w[nk]
11: s += w
12: if r and nk are labeled then
13: dcluster = dY
14: else
15: dcluster = dX
16: PdiffCluster += w dcluster

(
r,nk

)

17: for i = 1, 2, . . . , n do
18: PdiffAttr[i] += w di

(
r,nk

)

19: PdiffAttr, diffCluster[i] += w di
(
r,nk

)
dcluster

(
r,nk

)

20: for i = 1, 2, . . . , D do
21: importance[i] =

PdiffAttr, diffCluster[i]
PdiffCluster

− PdiffAttr[i]−PdiffAttr, diffCluster[i]
s−PdiffCluster

22: return importance

SSL-Relief takes as input the standard parameters (DTRAIN, the number of iterations I,
and the number of Relief neighbors K), as well as an interval [w0, w1] ⊆ [0, 1], from which
the influence levels of r-n pairs are computed (line 4): First, for every (x,y) ∈ DTRAIN,
we find the distance dx to its nearest labeled neighbor. If d = 0, i.e., the value y is known,
the influence w of this example is set to 1. Otherwise, the influence of the example (x,y)
is defined by a linear function dx 7→ w(dx) that goes through the points (max(x′,?) dx′ , w0)
and (min(x′,?) dx′ , w1) where ? denotes the missing target values. These influence values
are analogues to the w parameter in the definition of the impurity function for learning
PCTs in SSL defined in Equation (2.13).

When iterating over the neighbors, the influence of the neighbouring pair is defined as
the product of influence values of the examples in the pair. The clustering distance is set
to either dY (when both examples are labeled) or dX (otherwise). After that, the weights,
this time denoted by importance, are updated as in the (un)supervised case.

The algorithm is designed to have the supervised and unsupervised versions described
above as special cases. Thus, if no target values are missing, one obtains the supervised
version of Relief for the task at hand. Similarly, if there is no target attribute or no example
has a known target value, the algorithm boils down to the unsupervised version of Relief.

38 Chapter 3. Extending Feature Ranking to Different Learning Tasks: Basic Notions

3.3 Feature Ranking for Relational Classification

In Section 2.1.2, we have already given some basic information about relational data. Now,
we first briefly present how to convert that data format to a format usable by a relational
tree learning algorithm. Then, we briefly present how a relational tree is learned and also
give the definition of feature ranking in this context.

3.3.1 Data Conversion

Algorithms love a uniform representation of data. For example, if we are classifying pic-
tures into cats and dogs, the model typically assumes that all the pictures have the same
dimensions. This also holds for algorithms whose input are relational data, e.g., the IMDB
data whose schematic representation has first been given in Figure 2.1 and is shown again
in Figure 3.1 to make reading easier.

Figure 3.1: A copy of the schema of the IMDB data set, as presented in Figure 2.1.

As mentioned in Section 2.1.2, columns in tables of a relational data set are of two
types, i.e., some columns play the role of the features or target variable (e.g., release date
and category of a movie), whereas the ID columns implicitly define the relations among
the tables.

To simplify the implementation of our relational trees learning algorithm, we normalize
the data in the following way. First, we can assume that every table in the data set is
of the same form as Table 3.1. In the table, object type corresponds to the type of the

Table 3.1: The structure of a generic table from a relational data set.

object type
object ID foreign ID1 · · · foreign IDJ x1 (type1) · · · xn (typen) y

e1 f11 · · · f1,J x11 · · · x1,n y1

...
...

...
...

...
...

em fm,1 · · · fm,J xm,1 · · · xm,n ym

objects described in the table (e.g., Rating). The values in the first column (object ID)
give the IDs of the objects (for example, Rating ID). The J foreign IDs, J ≥ 0, reference
the objects from the other tables that are related and somehow further describe the objects
in this table (e.g., if the table describes ratings, the foreign ID1 may be User ID, and the
foreign ID2 may be Movie ID). The columns xi denote the features that directly describe
the objects in the table (e.g., stars and date). Every feature has its own type. The last

3.3. Feature Ranking for Relational Classification 39

column is the target column. Note that the target column is actually present in at most
one table in the data set (e.g., column category in the Movies table). As for the example
ID column, it may happen that it is not explicitly present, since the foreign IDs completely
determine it (for example, Rating ID is not necessary since the User ID and Movie ID
completely determine the rating ID).

For every table, some descriptive relations are created, i.e., one for each feature xi. If
the target column is present in the table, an additional (target) relation is created. Here,
we only present how to create a relation from a feature column since the creation of the
target relation is analogous. The creation of the relations depends on whether the object
ID column is present in the table or not. However, in both cases, the created relations are
represented extensionally as the set of the tuples that are in this relation.

If the object ID column is present in the table, the creation of relations proceeds as
follows. For every feature xi, a binary relation is created, e.g., rxi = {(ek, xk,i) | 1 ≤ k ≤
m}, where we keep the notation from Table 3.1. Since foreign ID columns also behave as
features, a relation rfj is created also for every foreign ID column, in an analogous way.

If the object ID column is not present in the table, we assume without loss of generality
that first J ′ foreign IDs, 0 < J ′ ≤ J , define the object ID. Then, a (J ′ + 1)-ary relation
is created for every feature xi, and also for every foreign ID fj , such that j > J ′. For
example, rxi = {(fk,1, . . . , fk,J ′ , xk,i) | 1 ≤ k ≤ m}.

Some concrete examples of the created relations are:

• rage = {(Ana, 21), (Bob, 33), . . . } (created from the feature age in the Users table),

• rgender = {(Ana, F), (Bob, M), . . . } (created from the feature gender in the Users table),

• rstars = {(Ana, titanic, 8), (Ana, psycho, 4), (Bob, psycho, 9), . . . } (created from the
feature stars in the Ratings table – note that Rating ID is not explicitly present, but
rather defined by User ID and Movie ID).

Thus, the input to our relational trees is a set of descriptive relations (together with
the known types of their components), and a target relation. Instead of growing a single
tree, one can build an ensemble of relational trees. Again, growing an ensemble results in
better predictive performance and in worse interpretability of the predictive model.

This motivates us to extend the definition of feature ranking scores to the relational
case and embed the Symbolic and Genie3 scores into the ensembles. The definition of
relational feature ranking, and a brief description of the relational versions of the two
scores, is given in the next subsection.

3.3.2 Relational Feature Ranking Scores

The definition of feature ranking in relational context is similar to the definitions of feature
ranking for tabular data in the context of supervised and unsupervised learning. However,
since we do not deal with relational data sets in the unsupervised learning context in
this thesis, we only give the definition for the case where a target relation (and a target
attribute) is present.

Feature ranking for relational data. The input of a feature ranking algorithm is
a data set that consists of a set Rd of descriptive relations and a target relation ry. The
output of the feature ranking algorithm is a list of scores importance(rd) ∈ R, for every
descriptive relation rd in the data set, where the scores reflect the influence of relations rd
on the target relation ry.

However, to extend the ensemble-based feature ranking scores to relational data, one
has to first specify the possible splits in the trees, and then adapt the scores. In the
remainder of the section, we give a brief introduction to both steps.

40 Chapter 3. Extending Feature Ranking to Different Learning Tasks: Basic Notions

3.3.2.1 Relational Trees

The algorithm that we develop for growing a relational tree (for classification) follows the
algorithm for growing a PCT, as given in Algorithms 2.1 and 2.2. Since the target relation
behaves precisely as a standard target variable, one can use the same heuristic for growing
a tree, and only specify candidate tests that are evaluated in internal nodes of the tree.

We give an introduction to the candidate tests (splits) in relational trees by following
the schema of the IMDB data set in Figure 3.1. The basic set of splits contains conditions,
such as

• For a given movie, is there a 10-star rating of the movie?, and

• For a given movie, is there a user that rated this movie and comes from Spain?,

as presented in the FOIL algorithm (Quinlan & Cameron-Jones, 1993). These conditions
correspond to the existentially quantified conjunctions of descriptive relations, e.g.,

• ∃User : rstars(titanic,User , 10)

• ∃User ∃Stars ∃Nation : rstars(titanic,User ,Stars) ∧ rnation ID(User ,Nation) ∧
rnation name(Nation, spain)

where the given movie was set to Titanic. Thus, in general, we form a conjunction of
relations in which some components are grounded (have their value set to some constant
value, e.g., spain) and some are ungrounded (variables, e.g., Nation).

In our work, we go beyond the existential quantification and use aggregates to define
a richer set of splits, which is to some extent similar to the extension of TILDE (Blockeel
& Raedt, 1998) by Vens (2007). By doing so, we can pose conditions, such as

• For a given movie, is its average number of stars larger than ϑ (for some threshold
ϑ?), and

• For a given movie, does the majority of the users that rated this movie belong to a
nation from the set N? (for some set of nations N).

These conditions are formalized as

• mean(User ,Stars) rstars(titanic,User ,Stars) > 8.5

• mode(User ,Stars) modeNation modeNationName rstars(titanic,User ,Stars)

∧ rnation ID(User ,Nation)

∧ rnation name(Nation,NationName)

∈ {seychelles, slovenia, spain}
where the given movie was set to Titanic, the threshold was set to ϑ = 8.5 and the set of
nations was set to N = {seychelles, slovenia, spain}. Note that aggregating over the vari-
ables Nation and NationName is necessary only for technical reasons (and corresponds to
extracting x from a singletone {x}) since the corresponding relations are -to-one relations.
Note also that other aggregates than mean and mode are possible, namely, count, min and
max. Moreover, using only count and ϑ = 0 is equivalent to existential quantification, thus
these tests indeed extend the ones presented above. An example of a constructed relational
tree is shown in Figure 3.2.

The features that contain more relations are more complex and possibly more expres-
sive, but, on the other hand, the number of candidate splits is exponential in the number
of relations in the conjunctions. Thus, we allow that in every child node (should it be an

3.3. Feature Ranking for Relational Classification 41

mean(User ,Stars) rstars(X,User , Stars) > 8.5

drama

mode(User ,Stars)modeNation modeNationName

rstars(X,User , Stars)

∧ rnation ID(User ,Nation)

∧ rnation name(Nation,NationName)

∈ {seychelles, slovenia, spain}

comedythriller

Y
E
S N

O

YE
S N

O

1

Figure 3.2: An example relational tree for assigning categories (genres) to movies.

internal node), the conjunction of relations in the split is a continuation of the conjunction
in the parent node of this node. When generating the possible splits, a look-ahead param-
eter ` is introduced into the algorithm: In each child node, at most ` relations are added
to the parent’s conjunction.

That way, a tree can contain more and more complex features when growing. An
example of a relational tree is given in Figure 3.2. A movie X enters the tree and is sent
down the tree, according to the tests in the internal nodes. When the movie reaches a
leaf, the corresponding genre is predicted. Note that the conjunction of the relations in
the YES-child of the root node was constructed by continuing the conjunction (of a single
relation) in the root node. Thus, we can deduce that the ` parameter was set to at least
2, since the split in the YES-child of the root node contains three relations, whereas the
root node contains only one.

3.3.2.2 Genie3 and Symbolic Score for Relational Learning

One can regard the left-hand side of a condition in a node N as a (newly constructed)
feature f(N), whose building blocks are descriptive relations from the data set. Thus, once
the possible splits are defined, we can extend the ensemble-based feature ranking scores to
the relational setting, and estimate the relevance of the descriptive relations. However, for
extending the Random forest score, one would need to define permutations of the values of
the relations. Since it is not clear how to define this for not -to-one relations or non-binary
relations, we limit ourselves to the Genie3 and Symbolic scores.

Since the motivation for both scores remains the same and we know how to reward an
occurrence of a feature f(N) in a node, the remaining step is to transfer the reward of
the feature in the split to the descriptive relations themselves. To do so, first note that a
constructed feature can be useless if even a single descriptive relation is left out. Thus, all
the descriptive relations that appear in the constructed feature should be equally rewarded.
Second, if the conjunction of relations in a child node is a continuation of the conjunction
in the parent node, some relations have already been rewarded in the parent node. Thus,
in the current node, only the new part of the conjunction is rewarded.

42 Chapter 3. Extending Feature Ranking to Different Learning Tasks: Basic Notions

Thus, the relational Symbolic and Genie3 score are defined as

importanceSYMB(rd) =
1

|E|
∑

T ∈E

∑

N ∈T (rd)
P [rd|f(parent(N))] · |E(N)|

|DTRAIN|

importanceGENIE3(rd) =
1

|E|
∑

T ∈E

∑

N ∈T (rd)
P [rd|f(parent(N))] · h∗(N)

where P [rd|f(parent(N))] denotes the proportion of appearances of relation rd in the part
of the feature f(N) that is not already present in the feature in the node parent(N),
T denotes a tree in an ensemble E , and T (rd) the set of internal nodes N where the
descriptive relation rd appears in the test.

Let us give a concrete example of computation of the Symbolic score, using the tree in
Figure 3.2. Here, we assume that this is the only tree in the ensemble E , and that half of
the training examples that reach a given internal node in the tree are sent to each of the
node’s children.

First, we compute the value of the Symbolic score for the relation rstars. It appears
both in the root node, where its reward equals 1 · 1, and in its YES-child, where its
reward equals 0 · 1/2, since rstars is not in the new part of the YES-child’s test. Thus,
importanceSYMB(rstars) = 1.

The remaining two relations (rnation ID and rnation name) with a positive Symbolic score
both appear only in the YES-child of the root, where each of them is rewarded 1/2 · 1/2.
Thus, importanceSYMB(rnation ID) = importanceSYMB(rnation name) = 1/4.

43

Chapter 4

Feature Ranking for Multi-Target
Regression

In this Chapter, we present in detail the first set of contributions of the thesis: those
concerning the supervised learning setting and the structured output prediction task of
multi-target regression (MTR). Recall from the introductory sections that the task of
MTR is to simultaneously predict the values of several numeric targets (Section 2.2.3).
Also recall that we presented our feature ranking methods for MTR in Sections 3.1.1 and
3.2.1. Our contributions in this context include:

1. An extension of ensemble-based feature ranking scores from the context of STR to
the context of MTR.

2. An extension of distance-based feature ranking scores from the context of STR to
the context of MTR.

3. An extensive experimental evaluation of the newly proposed feature importance
scores for MTR on a collection of benchmark datasets assessing the performance
of the scores individually and in cross-comparison.

Chronologically, we first proposed the extension of ensemble-based feature ranking
methods from the STR to the MTR setting in a paper presented at the DS-2017 con-
ference (Petković et al., 2017). As outlined in Chapter 3, the proposed feature ranking
methods consist of pairs of ensemble generation methods (bagging, random forests and
extra trees) and scores (Symbolic, Genie3, and Random Forest scores). We evaluated the
performance of the methods on a range of benchmark datasets, finding good parametriza-
tions for the methods in the process. The main findings are that all of the eight proposed
methods (pairs of ensemble methods and scores) yield relevant feature rankings and that
the best performing method is the one that uses random forests for learning the ensemble
and Genie3 for calculating the feature importance scores. Moreover, this method is also
computationally efficient: random forests are among the most efficient ensemble learning
methods and computing the Genie3 score only adds a small computational cost of a single
traversal of each tree in the ensemble.

We then extended our work on feature ranking for MTR in several directions and
presented this extended version in a paper published in the Machine Learning journal
(Petković, Kocev, et al., 2020), which is included in this Chapter in its entirety. In this
paper, (1) we propose an extension of RReliefF for MTR and a MTR-via-STR version
of it and provide a theoretical and empirical analysis of its computational complexity;
(2) we provide a theoretical and empirical analysis of the computational complexity of
ensemble-based feature ranking for MTR; (3) we analyze the performance and efficiency

44 Chapter 4. Feature Ranking for Multi-Target Regression

of the MTR-via-STR versions of both ensemble-based and RReliefF-based rankings; and
finally (4) we evaluate the performance of all of the above feature ranking methods for
MTR, analyzing the influence of the method’s parameters on their performance.

The comprehensive experimental evaluation reveals the following. First, the ensemble-
based ranking methods yield relevant feature rankings when the scores are computed using
the most appropriate tree ensemble. The evaluation identified two best ensemble-based
ranking methods (in terms of performance and efficiency): these are the Genie3 and Sym-
bolic scores calculated from random forests. Second, the evaluation shows that Relief
distance-based rankings can yield relevant rankings when the parameters of Relief are op-
timized, i.e., the numbers of iterations I and neighbors K in the algorithm are set to
appropriate values, e.g., I is set to the size of the training set and K is set to 15. When
we compared the top ensemble-based and Relief-based ranking methods, there were no
statistically significant differences among them. Further analysis revealed that this is due
to the strong variability in the properties of the data sets. Nevertheless, we can accu-
rately determine which of the two groups (ensemble-based or Relief-based) of methods will
perform better on a given data set.

Third, the analysis shows that the native MTR versions of ensemble-based ranking
methods are statistically significantly faster than their MTR-via-STR counterparts (where
a ranking is built for every target separately, and the final ranking is obtained by averaging
the scores from the per-target rankings), but not worse in terms of quality. In the case
of Relief, there are no differences. All in all, we recommend using the Genie3 and the
Symbolic scores coupled with the random forest ensemble construction method, since they
both yield relevant rankings and are fast enough.

This Chapter addresses the following hypotheses defined in the introduction:

H1: It is possible to extend ensemble- and distance-based feature ranking approaches to
the unsupervised feature ranking task, to the tasks of supervised SOP (i.e., MTR,
MLC, and HMLC), and to their semi-supervised versions.

H3: The proposed ensemble- and distance-based approaches yield relevant and state-of-
the-art feature rankings for MTR.

H6: For unsupervised, MTR, MLC and HMLC problems, the ensemble-based feature
ranking approaches on average outperform the distance-based approaches to feature
ranking when the number of features is extremely high.

These three hypotheses are confirmed with the design and implementation of the MTR
feature ranking approaches presented in this Chapter and the experimental study compar-
ing their performance. Hypothesis H3 is completely confirmed by the results presented in
this Chapter. For hypotheses H1 and H6, the parts pertaining to MTR are confirmed here,
while their remaining parts are addressed in the forthcoming chapters.

The paper included in this Chapter is:

• Petković, M., Kocev, D. and Džeroski, S. Feature ranking for multi-target regression.
Machine Learning. 109, 1179–1204 (2020).

The contribution of Matej Petković to this paper is as follows. MP contributed
to the design of the ensemble-based and distance-based feature ranking methods for MTR
and implemented these methods in computer code. He also participated in designing the
experiments, carried out the experiments, and processed their results. He drafted the paper
and revised it following the feedback from the co-authors and reviewers.

Machine Learning (2020) 109:1179–1204
https://doi.org/10.1007/s10994-019-05829-8

Feature ranking for multi-target regression

Matej Petković1,2 · Dragi Kocev1,2 · Sašo Džeroski1,2

Received: 1 July 2018 / Revised: 12 June 2019 / Accepted: 6 July 2019 / Published online: 27 August 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract
In this work, we address the task of feature ranking for multi-target regression (MTR). The
task of MTR concerns problems with multiple continuous dependent/target variables, where
the goal is to learn a model for predicting all of them simultaneously. This task is receiving
an increasing attention from the research community, but performing feature ranking in the
context of MTR has not been studied thus far. Here, we study two groups of feature ranking
scores for MTR: scores (Symbolic, Genie3 and Random Forest score) based on ensembles
(bagging, random forests, extra trees) of predictive clustering trees, and a score derived as an
extension of the RReliefF method. We also propose a generic data-transformation approach
to MTR feature ranking and thus have two versions of each score. For both groups of feature
ranking scores, we analyze their theoretical computational complexity. For the extension of
the RReliefF method, we additionally derive some theoretical properties of the scores. Next,
we extensively evaluate the scores on 24 benchmark MTR datasets, in terms of the quality
of the ranking and the computational complexity of producing it. The results identify the
parameters that influence the quality of the rankings, reveal that both groups of methods
produce relevant feature rankings, and show that the Symbolic and Genie3 score, coupled
with random forest ensembles, yield the best rankings.

Keywords Feature ranking · Multi target regression · Tree based methods · Relief

1 Introduction

Single target regression (STR) is the predictive modeling task of learning a model able to
predict the values of a single numeric target variable. STR can be generalized to multi-target

Editors: Takuya Kida, Takeaki Uno, Tetsuji Kuboyama, Akihiro Yamamoto.

B Matej Petković
matej.petkovic@ijs.si

Dragi Kocev
dragi.kocev@ijs.si

Sašo Džeroski
saso.dzeroski@ijs.si

1 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

2 Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia

123

45

1180 Machine Learning (2020) 109:1179–1204

regression (MTR), where the goal is to learn a model that predicts several (at least two)
target variables simultaneously. While STR is a well established research topic, MTR is
only recently attracting interest in the research community (Kocev et al. 2013; Spyromitros-
Xioufis et al. 2016; Borchani et al. 2015). MTR is a structured output prediction task with
applications in a wide range of real life problems.

Prominent examples forMTR come from ecology and include predicting the abundance of
different species sharing the same habitat (Džeroski et al. 2000), predicting forest properties
(Kocev et al. 2009), chemometrics to infer concentrations of several analytes frommultivari-
ate calibration using multivariate spectral data (Burnham et al. 1999), real-time prediction of
multiple gas tank levels of the Linz Donawitz converter gas system (Han et al. 2012), simul-
taneous estimation of different biophysical parameters from remote sensing images (Tuia
et al. 2011), channel estimation through the prediction of several received signals (Sanchez-
Fernandez et al. 2004) etc. Many other applications can be found in Sect. 4.2, where the data
used in our experiments are described.

A possible way to approach a MTR problem is problem transformation, which transforms
one MTR problem into several STR problems and builds one predictive model for each
target separately. Another way to approach the problem is by algorithm adaptation, i.e.,
to adapt STR methods to handle several targets simultaneously. For example, regression
trees can be generalized so that the heuristic function used to select splits considers the
multiple targets and the leaves make predictions for all targets. By building a single model,
we benefit regarding time-complexity, and also exploit the potential relations between the
multiple targets: this results inmore interpretable and compactmodels, as demonstratedwhen
predicting communities of different species (Kocev and Džeroski 2013). For an overview of
MTR methods, we refer the reader to Borchani et al. (2015).

The algorithm adaptation approaches, e.g., predictive clustering trees (PCTs) (Blockeel
1998), typically use search heuristics for MTR which aggregate those for different STR
problems. As described later in Sect. 2.1, the most commonly used aggregation is the sim-
ple average. However, if we happen to have some background knowledge about the MTR
problem, PCTs allow for incorporating this knowledge into the tree induction process via
different weights for different problems.

Another important task in machine learning - which is the main topic of this work - is
feature ranking, which is typically seen as a data preprocessing step. By using some scoring
function, the scores importance(xi) of descriptive attributes (features) xi are estimated and
an ordering (ranking) of the features is made, based on their estimated importances. There
are two main reasons for doing this. First, we may want to reduce the dimensionality of the
input space, so that only the features that contain the most information about the target(s)
are kept in the dataset. By doing this, we decrease the amount of memory/time needed to
build a predictive model, while the performance of the model is not degraded. Particularly,
when the dimensionality of the input data is extremely high, the performance of the model
can also increase with the dimensionality reduction, since most of the original features are
expected to be noisy. Second, dimensionality reduction typically results in models that are
easier to understand, which is useful when a machine learning expert works in collaboration
with a domain expert. Predictive models, such as decision trees, are easier to interpret when
a small number of relevant features are used to learn them.

There is a plethora of feature ranking methods for the machine learning tasks of single
target regression and classification (Stańczyk and Jain 2015). However, in the case of MTR,
the task of feature ranking has not been studied to a great extent. To the best of our knowledge,
our earlier work (Petković et al. 2017) is among the first in that direction.

123

46 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1181

In the field of statistics, few feature ranking methods can be found. In contrast to the
proposed feature ranking methods that can handle both numeric and nominal features, the
main drawback of these methods is that they allow only for numeric features, since they
typically assume a (generalized) linear model that describes the dependence of the targets
y on the features x. One such method is forward selection (Brobbey 2015). It starts with a
constant mapping y = c ∈ R, and repeatedly adds the most significant feature that improves
the model. The sooner a feature is included in the model, the greater its importance is.

In this work, we propose two groups of feature ranking scores. The first group is based on
ensembles of PCTs, which are a generalization of decision trees able to handle various types
of structured output prediction tasks, including MTR. The proposed scores exploit different
properties of the ensemble learning mechanism to estimate feature importances. The second
group contains the score obtained by generalizing RReliefF (Robnik-šikonja and Kononenko
2003) towards the task of MTR. The key observation on which this score is based is that the
distance function on the target space used in RReliefF can be generalized to more complex
spaces than R. We refer to these scores as MTR scores.

Another approach to feature ranking for MTR is to perform data transformation in the
sameway as in binary relevance for multi-label classification (Tsoumakas andKatakis 2007),
where a separate classifier is learned for each label.We employ the same strategy:we calculate
separate importance scores for each target variable, and then aggregate the feature importance
scores into a single score. We thus define an analogue for every MTR score and refer to these
scores as STR scores. The STR scores, e.g., those based on RReliefF, have already been
shown to have state-of-the-art performance in the case of STR problems. Hence, they can
serve as an additional baseline in the evaluation.

The ensemble-based feature ranking methods belong to the class of embedded methods,
where the feature importance estimation is embedded in the decision model. In contrast, the
RReliefF-based feature ranking methods belong to the group of filter methods (Guyon and
Elisseeff 2003). Themain difference between the two groups is that filtermethods do not need
to construct any decision/predictive model in the process of feature importance estimation.
A third group of related methods are wrapper methods, which typically solve the problem of
feature selection directly, i.e., try to find the most useful set of features (for some predictive
model) without constructing a feature ranking.

An initial investigation of the proposed feature rankingmethods forMTRbased on ensem-
ble methods has been presented by Petković et al. (2017). We extend that work along several
major dimensions:

1. We propose an extension of RReliefF for MTR and a STR version of it, giving

(a) Theoretical and empirical computational complexity analysis;
(b) Discussion of the theoretical properties of the scores;
(c) Parametrization of the methods and empirical performance evaluation;

2. We present a theoretical and an empirical computational complexity analysis for the
MTR rankings derived by the ensemble-based scores;

3. We analyze the performance of STR rankings based on ensemble scores, giving

(a) Theoretical and empirical computational complexity analysis;
(b) Empirical performance evaluation;
(c) Comparison of the MTR and STR rankings based on ensemble scores in terms of

time complexity and performance;

123

47

1182 Machine Learning (2020) 109:1179–1204

Table 1 Notation in the paper

Symbol Meaning

xi , y j i-th feature and j-th target

D, T Numbers of features and targets

Xi , Y j The domains of the i-th feature and the j-th target

X ⊆ X1 × · · · × XD Descriptive domain

Y ⊆ Y1 × · · · × YT Target domain

x ∈ X , y ∈ Y Descriptive and target part of an example

D ⊆ X × Y A dataset

DTRAIN, DTEST ⊆ D Training and testing part of dataset

M = |DTRAIN| Number of examples in the training set

4. We give a comparison of ensemble-based and Relief-based scores (STR and MTR rank-
ings) in terms of time complexity and performance.

The notation used throughout the paper is given in Table 1. The rest of the paper is
organized as follows. In Sect. 2.1, we define the ensemble-based scoring functions. Next, in
Sect. 2.2, we introduceMTR-Relief and present some novel theoretical results that apply also
to the standard RReliefF. We then describe the STR approaches. Furthermore, we perform
computational complexity analysis of themethods inSect. 3.Next, in Sect. 4, the experimental
design for our extensive evaluation of the proposed methods on benchmark MTR datasets is
presented and the obtained results are discussed in Sect. 5. Finally, we conclude in Sect. 6,
where we also provide some directions for further work.

2 Methods

In this section,wedescribe the proposedmethods and the necessary background.We startwith
the ensemble-based methods (Sect. 2.1), continue with MTR-Relief (Sect. 2.2), and finish
with the generic STR approach (Sect. 2.3). The PCT framework, as well as MTR-Relief
is implemented in the CLUS system (available at http://source.ijs.si/ktclus/clus-public/)
(Table 2).

2.1 Ensemble basedmethods

2.1.1 Predictive clustering trees and ensembles thereof

The PCT framework views a decision tree as a hierarchy of clusters: the root of a PCT corre-
sponds to one cluster containing all data, which is recursively partitioned into smaller clusters
while moving down the tree. The leaves represent the clusters at the lowest level of the hierar-
chy and each leaf is labeledwith its cluster’s prototype (prediction). PCTs generalize decision
trees and can be used for a variety of learning tasks, including clustering and different types
of structured output prediction tasks, e.g., multi-target regression, multi-label classification,
hierarchical multi-label classification, time series prediction etc. (Blockeel 1998; Kocev et al.
2013). The generalization is based on appropriately adapting the heuristic for inducing PCTs
and the prototype function to the given structured output prediction task.

123

48 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1183

Table 2 The proposed groups of
multi-target regression feature
ranking scores

Symbolic score, computed from random forests, bagging and extra
trees ensemble:

Uses only the depth(s) of nodes at which a feature appears in the
trees in the ensemble

Genie3 score, computed from random forests, bagging and extra
trees ensemble:

Uses the values of the variance reduction function at the nodes at
which a feature appears in the trees in the ensemble

Random Forest score, computed from random forests and bagging
ensemble:

Permutes the values of each feature and measures the resulting
reduction in performance of the ensemble on out-of-bag examples

MTR-Relief score, an extension of RReliefF, builds no predictive
model:

Examines the similarities in feature and output values for randomly
selected instances and their neighbours

The first group consists of the Symbolic, Genie3 and Random Forest
scores, and the second group consists of MTR-Relief score. For every
score, we propose two versions: MTR and STR

PCTs are induced with the standard top-down induction of decision trees algorithm
(Breiman et al. 1984) presented in Algorithm 1. It takes as input a set of examples E and
outputs a tree. The heuristic h that is used for selecting the best test at a node is the weighted
impurity of the subgroups of instances of the partitions (lines 3 and 4), induced by the tests.
By minimizing it (line 5 of the Algorithm 2), the algorithm is guided towards small trees
with good predictive performance. If there are no candidate tests, a leaf is created and the
prototype of the instances belonging to that leaf is computed. The main difference between
the algorithm for learning PCTs and other algorithms for learning decision trees is that the
former considers the impurity function and the prototype function (that computes predictions
in leaves) as parameters that can be instantiated for a given learning task.

Algorithm 1 PCT(E)
1: (t∗, h∗, P∗) = BestTest(E)

2: if t∗ �= none then
3: for each Ei ∈ P∗ do
4: treei = PCT(Ei)
5: return node(t∗,

⋃
i {treei })

6: else
7: return leaf(Prototype(E))

Algorithm 2 BestTest(E)

1: (t∗, h∗, P∗) = (none, 0, ∅)

2: for each candidate test t do
3: P = partition induced by t on E
4: h = |E |impu(E) − ∑

Ei∈P |Ei |impu(Ei)
5: if h < h∗ then
6: (t∗, h∗, P∗) = (t, h, P)

7: return (t∗, h∗, P∗)

123

49

1184 Machine Learning (2020) 109:1179–1204

In this work, we focus on the task of MTR and define the impurity function using the
variances of the target variables. First, we denote the variance of the target y j over subset of
examples E ⊆ DTRAIN as Var j (E). We then compute the weights w j = Var j (DTRAIN) and
use them as normalization factors in the definition of the impurity function:

impu(E) = 1

T

T∑

j=1

1

w j
Var j (E).

In a leaf L , the prototype function returns a vector with the average values of the target
variables calculated for the examples belonging to L .

Next, we use three types of ensembles to calculate feature importance scores (i.e., feature
rankings). These ensembles have PCTs as their base predictive models (Kocev et al. 2013).
An ensemble is a set of base predictive models constructed with a given algorithm. The
prediction for each new example is made by combining the predictions of the models from
the ensemble. In regression tasks, this is typically achieved by taking the average of the
predictions of the base models.

A necessary condition for an ensemble to be more accurate than any of its individual
members, is that the members are accurate and diverse models (Hansen and Salamon 1990).
There are several ways to introduce diversity among the PCTs in an ensemble. We describe
and make use of three of them.

Random forests (RF) and bagging Instead of being learned from the original dataset
DTRAIN, each tree in the ensemble is built from a different bootstrap replicate B of the
datasetDTRAIN, called bag. The examplesDTRAIN\B are called out-of-bag examples (OOB).
Additionally, the line 2 of the BestTest procedure (see Algorithm 2) is modified to change the
feature set during learning by introducing randomization in the test selection.More precisely,
at each node in a decision tree, a random subset of the input attributes is taken, and the best
test is selected from the splits defined by these attributes. The number of attributes that are
retained is given as a function of the total number of descriptive attributes D, e.g., �√D	,
�log2(D)	, etc. In the special case when we keep all of the attributes, we obtain the bagging
procedure.

Extra trees ensembles (ET)Here, at each node all attributes are considered (as in bagging),
but we do not evaluate all tests that the attributes yield. Rather, we choose randomly only one
per attribute. Among these D tests, we choose the best one. From the bias-variance point of
view, the rationale behind the Extra-Trees method is that the explicit randomization of the
cut-point and attribute combined with ensemble averaging should be able to reduce variance
more strongly than the weaker randomization schemes used by other methods (Geurts et al.
2006). Note that ET uses the initial dataset DTRAIN for learning the base predictive models
and does not make bootstrap replicates.

2.1.2 Ensemble based scores

Feature ranking is obtained by exploiting the ensemble structure of the learning algorithm.
Due to its simplicity, we first describe the Symbolic score. Then, we discuss the Genie3
(Huynh-Thu et al. 2010) and the Random Forest score1 (Breiman 2001).

In the following, we denote a tree as T , whereas N ∈ T denotes a node. Trees form a
forest F . Its size (the number of trees in the forest) is denoted as |F |. The set of all internal
nodes of a tree T in which the attribute xi appears as part of a test is denoted as T (xi).

1 To prevent any confusion, Random Forest score will be always in singular form and capitalized, whereas
the ensemble method random forests will be in plural form and not capitalized.

123

50 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1185

Symbolic score Let d(N) denote the depth of N ∈ T : if N is the root of T , then
d(N) = 0. Otherwise, d(N) = 1 + d(parent(N)). In the simplest version of the score,
we count how many times a given attribute occurs in the tests in the internal nodes of the
trees. Since the attributes that appear closer to the root are intuitively more important than
those that appear deeper in the trees, we introduce the parameter w ∈ (0, 1] and define the
importance of the feature xi as

importanceSYMB(xi) = 1

|F |
∑

T ∈F

∑

N ∈T (xi)

wd(N). (1)

The symbolic score can be computed from all three types of ensembles that we use. Its
simplest version corresponds to setting w to 1.

Genie3 score The main motivation for the Genie3 ranking is that splitting the current
subset E ⊆ DTRAIN, according to a test where an important attribute appears, should result
in high impurity reduction. The Genie3 importance of the attribute xi is thus defined as

importanceGENIE3(xi) = 1

|F |
∑

T ∈F

∑

N ∈T (xi)

h∗(N),

where h∗(N) is the value of the variance reduction function described in the BestTest pro-
cedure. Since h∗ is proportional to |E |, greater emphasis is again put on the attributes higher
in the tree, where |E | is larger. The Genie3 score is applicable to all three ensemble methods
that we use.

Random Forest (RF) score This feature ranking method tests how much the noise in a
given feature decreases the predictive performance of the trees in the forest. The greater
the performance degradation, the more important the feature is. This score uses the internal
out-of-bag estimates of the error, therefore it cannot be used with ensembles of ET, where
all trees are learned on the whole dataset.

Once a tree T is grown, the algorithm evaluates the performance of the tree by using the
corresponding OOBT examples. This results in the predictive error Err(OOBT) ≥ 0, where
we assume that lower error value corresponds to better predictions. To assess the importance
of the feature xi for the tree T , we randomly permute its values in the set OOBT and obtain
the set OOBi

T . Then, the error Err(OOBi
T) is computed and the importance of the feature

xi for the tree T is defined as the relative increase of error after noising. The final Random
Forest score of the feature is the average of these values across all trees in the forest:

importanceRF(xi) = 1

|F |
∑

T ∈F

Err(OOBi
T) − Err(OOBT)

Err(OOBT)
.

2.2 MTR-Relief

In this section, we describe the proposed extension of the RReliefF method towards MTR
(dubbed MTR-Relief). We provide technical preliminaries, give the description of the score
and discuss some theoretical properties of RReliefF.

2.2.1 MTR-Relief definition

The first member of the Relief family of feature ranking algorithms is Relief, which can
handle only binary targets (Kira and Rendell 1992). ReliefF and RReliefF extend the Relief

123

51

1186 Machine Learning (2020) 109:1179–1204

family of algorithms for the tasks of multi-class classification (handling nominal target vari-
ables) and regression (handling numeric target variables), respectively (Robnik-šikonja and
Kononenko 2003).

All methods of the Relief family assign to each feature xi a weight wi that is a measure
of its importance. The expected value of wi has a nice probabilistic interpretation in the case
when both the target and xi are nominal (Robnik-šikonja and Kononenko 2003): simplified
to some extent, we have the relation E[wi] = p1 − p2 where

p1 = P(different value of xi | different target value) (2)

p2 = P(different value of xi | same target value) (3)

However, in the case of regression, this relation serves only as a motivation. For a fixed
xi , we first define the events diffFeat/sameFeat (two instances have different/same
value of xi) and diffTarget/sameTarget (two instances have different/same target
value), and the associated probabilities Pevent = P(event) and Pevent1, event2 =
P(event1 ∧ event2). After applying the Bayes rule to Eqs. (2) and (3), we obtain

E[wi] = PdiffFeat, diffTarget
PdiffTarget

− PdiffFeat − PdiffFeat, diffTarget
1 − PdiffTarget

(4)

where the probabilities are modeled as distances

PdiffFeat ≈ di , PdiffTarget ≈ dY and PdiffFeat, diffTarget ≈ didY .

By adapting the distance dY , we can extend the Relief algorithm to address different machine
learning tasks. In our particular case of MTR, the distances are defined as follows. To be
consistent with the RReliefF algorithm, we set

di (x1, x2) =
⎧
⎨

⎩

1[x1i �= x2i] : Xi nominal
|x1i −x2i |

max
x

xi−min
x

xi
: Xi ⊆ R , (5)

where max and min go over the known examples x. The analogous approach is taken for
the metrics d j on the sets Y j , 1 ≤ j ≤ T , but here only the numeric part of Eq. (5) applies.
The distances on the descriptive domain X and the target domain Y between x1 and x2, and
y1 = y(x1) and y2 = y(x2), respectively, are defined as

dX (x1, x2) = 1

D

D∑

i=1

di (x1, x2) (6)

dY (y1, y2) = 1

T

T∑

j=1

d j (y1, y2) (7)

In Eq. (7), we use the �1 metric to be consistent with the RReliefF definition from Eq. (6),
thus making RReliefF a special instance of MTR-Relief when T = 1.

The calculation of the weights wi = importance(xi) using MTR-Relief is outlined in
Algorithm 3, wherewe generalize the pseudocode of the RReliefF algorithm (Robnik-šikonja
and Kononenko 2003). For each of them iterations, we randomly select an example r fromD
(line 4) and find its k nearest neighbors (line 5), using the distance from Eq. (6). After that, we
use the neighbors to update the estimates of probabilities that appear in the definition of the
weights inEq. (4) for all attributes (lines 8–10). The estimates of probabilities are updatedwith
theweighted average of the distances between r and its neighbors. Theweight δ(�) for the �-th

123

52 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1187

nearest neighbor is proportional to exp(−(σ�)2), and it is normalized (
∑k

�=1 δ(�) = 1/mk)
to ensure that wi ∈ [−1, 1], when the algorithms finishes. The parameter σ is user defined.
Finally, the weights wi are computed (line 12).

Algorithm 3MTR-Relief(D , m, k, σ)
1: PdiffFeat, diffTarget, PdiffFeat = lists of length D consisting of zeros
2: PdiffTarget = 0.0
3: for ι = 1, 2, . . . ,m do
4: r = random example from D
5: I1, I2, . . . , Ik = k nearest neighbors of r
6: for � = 1, 2, . . . , k do
7: PdiffTarget += δ(�)dY

(
r, I�

)

8: for i = 1, 2, . . . , D do
9: PdiffFeat[i] += δ(�)di

(
r, I�

)

10: PdiffFeat, diffTarget[i] += δ(�)di
(
r, I�

)
dY

(
r, I�

)

11: for i = 1, 2, . . . , D do

12: wi = PdiffFeat, diffTarget[i]
PdiffTarget

− PdiffFeat[i]−PdiffFeat, diffTarget[i]
1−PdiffTarget

As the number of iterations m increases, the estimates of the probabilities are expected to
be more accurate. However, note that we do not need more than M iterations. The value of k
should be small enough to capture the local structure in the data and capture the interactions
between features (Robnik-šikonja and Kononenko 2003). When k gets bigger, we may want
to weight neighbors’ contributions with σ .

2.2.2 Theoretical analysis of relief algorithms

Below we analyze some properties of the algorithms from the Relief family. The motivation
for the definition of Relief is, as mentioned before, an elegant probabilistic interpretation of
the weights in the case when both the feature and the target are nominal. In that case, the
feature xi is rewarded in a particular iteration, i.e., the weight update is positive, if (loosely
speaking) two instances are more probable to have different values of xi if they belong to
different classes as opposed to the case when they are of the same class.

In the following, we fix the feature xi . First, we specify the condition when the weight
wi is positive. As a consequence, we will derive the result indicating the most rewarded
features by the regression versions of Relief. For simplicity, we first assume that k = 1 and
σ = 0. After the proof for this case, we will generalize the results. In the following, r ι is the
randomly chosen instance in the ι-th iteration, and sι is its nearest neighbor.

Theorem 1 The feature xi is rewarded (gets a positive weight update) in the ι-th iteration
if, and only if, the target distance dY (r ι, sι) is not smaller than the average target distance,
computed by the algorithm.

Proof We first take two arbitrary events A and B and simplify the expression P(A | B) −
P(A | ¬B) to

P(AB) − P(A)P(B)

P(B)(1 − P(B))
. (8)

123

53

1188 Machine Learning (2020) 109:1179–1204

We then set A and B to diffFeat and diffTarget, respectively (defined in Sect. 2.2.1).
The weight wi , computed by Algorithm 3 is a special instance of Eq. (8):

wi =
1
m

∑
ι αιτι − (1

m

∑
ι αι

) (1
m

∑
ι τι

)

(1
m

∑
ι τι

) (
1 − 1

m

∑
ι τι

) , (9)

where we introduced τι = dY (r ι, sι) and αι = di (r ι, sι). If we rearrange the terms in Eq. (9)
and define τ = ∑

ι τι, we obtain

wi = m

τ(m − τ)

∑

ι

(

τι − 1

m
τ

)

αι (10)

Since 0 ≤ τι ≤ 1 and τ/m is the average computed distance in the target space, we have
completed the proof. ��

Note that this theorem also applies for the standard (single target) regression task. In the
case, when k > 1 and σ = 0, we get additional inner sums

∑
� over the neighbors and the

terms τι, αι and aιτι are respectively replaced by
∑k

�=1 τι,�,
∑k

�=1 αι,� and
∑k

�=1 αι,�τι,�.
Here, the terms αι,� and τι,� are defined analogously to αι and τι. The additional index �

specifies the neighbor to which the distance is computed, and instead of Eq. (10) we now
have

wi = mk

τ(mk − τ)

∑

ι

∑

�

(

τι,� − 1

mk
τ

)

αι,�,

where τ = ∑
ι

∑
� τι,�.

If σ �= 0, the generalization of the upper formula is obvious.
As a corollary, we derive the result indicating the most rewarded features by the regression
versions of Relief. Before proceeding to the result, we define the centralization of the random
variable X as the random variable X −E[X]. In the formulation of the next theorem, we treat
the features as random variables.

Theorem 2 For a given feature, it is optimal if its centralization is locally positively linearly
dependent on the target.

Proof The features are sorted with respect to the weights wi , but the order of the features
does not change if we define the weights as

ωi =
∑

ι

(

τι − 1

m
τ

)

αι,

since we have rescaled the weights from Eq. (10) by multiplying them by a positive constant.
If we define the vectors α = (αι)ι and τ = (τι − τ/m)ι and fix their Euclidean norms, then,
by the Cauchy-Schwarz inequality, it follows that ωi ≤ ‖α‖ ‖τ‖. We also know that the
maximum value for ωi is achieved when α = βτ for some β ≥ 0. ��

Note that the locality in the theorem originates from the pairs of instances for which the
distances di and dY are computed. Theorem 1 gives some insight into the Relief procedure
on its own, but it mostly serves as an intermediate step for proving Theorem 2 which actually
characterizes the features that the algorithm may have some bias toward.

123

54 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1189

2.3 STR approach

If a structured target domain Y can be decomposed into primitive parts, we can compute
a feature ranking (or build a predictive model) for each part separately, and than average
(combine) the results to obtain the final ranking. One of the prominent examples of this
technique from predictive the modeling field is the binary relevance approach for multi-label
classification (Tsoumakas and Katakis 2007).

To the best of our knowledge, there is no previous use of approaches based on binary
relevance for performingMTR feature ranking.We build on this idea and formulate a generic
algorithm for MTR feature ranking in Algorithm 4. For the base feature ranking method F,
we use RReliefF and the three ensemble-based scores from Sect. 2.1.2.

Algorithm 4 STR-ranking(F, D , …)
1: for j = 1, 2, . . . , T do
2: D j = {(x, y j (x)) | (x, y(x)) ∈ D}
3: compute importance j (xi) by F(D j , . . .), for all i
4: for i = 1, 2, . . . , D do
5: importance(xi) = ∑T

j=1 importance j (xi)/T

As stated in the discussion earlier in Sect. 1, simple (non-weighted) averaging is an option
when one does not have any background knowledge of the data. However, some of the targets
can be given a higher importance on the overall ranking if, e.g., a domain expert so desires.

3 Computational complexity

In this section, we analyze the time and space complexity of the proposed algorithms using
the big O notation. The variables that are not explicitly defined here, are listed in Table 1.

3.1 Ensemble scores

To simplify the conclusions, the analysis is carried out under the assumption that the trees
in the forest are balanced (Kocev et al. 2013), i.e., a tree consists of O(M) nodes, has depth
O(log2 M) and MN = O(M/2d(N)) examples reach a node N at depth d(N). We also
assume that all features are numeric, since i) handling them is more time consuming than
handling nominal features and ii) the majority of features in the datasets in our experiments
(see Sect. 4.2) is numeric.

For each considered xi , we first need to sort the examples in the given node
(O(MN logMN)) and then find the best split (O(T MN)). The complexities for inducing
an ensemble of size S are then: O(SDM logM(logM + T)) for bagging, O(S

√
DM logM

(logM+T)) forRF andO(SDT M logM) for ET. The additional cost for updating the impor-
tances of all features is O(SM) for the Symbolic and the Genie3 score, and O(SDM logM)

for the Random Forest score.
If we assume T = 1, we obtain the complexity of growing a single STR ensemble.

Since we have to grow T of them, the complexities are now O(SDMT log2 M) for bagging,
O(S

√
DTM log2 M) forRF andO(SDT M logM) forET.Hence, the complexity of growing

the ET ensemble stays the same, whereas the other two increase. The additional per-tree cost
for updating importances is the same, thus we have T -times more work with updating the
importances in the STR case.

123

55

1190 Machine Learning (2020) 109:1179–1204

We draw the following conclusions. First, the cost of updating importances is negligible
in the case of Symbolic and Genie3 scores. Second, growing a STR ensemble is by factor
min{T , logM} more time consuming that growing a MTR ensemble. However, STR trees
are usually bigger than their MTR analogues and thus tend to take longer to grow in practice.
Third, since it is not much more time consuming to evaluate all splits that a feature yields, as
compared to evaluating a single split, random forests and bagging ensembles time complexity
is (also in practice) comparable to the time complexity of extra trees ensembles.

3.2 Relief scores

First, we analyze the time complexity for MTR-Relief. Since the space-partitioning data
structures, such as kD trees (Friedman et al. 1977) do not perform well when the dimension
D is high, we use a brute-force method for finding the nearest neighbors. Finding k nearest
neighbors takes O(MD) steps, assuming that an update of the heap of the current k nearest
neighbors (O(log k)) is negligible in comparison to a distance computation (O(D)).

Before we start updating the probabilities, we compute the distances in the target space
between r and its neighbors, which takes O(kT) time. Updating the probabilities now takes
only O(kD) time.

Computation of the weights takesO(D) time. Thus, the overall time taken byMTR-Relief
is O(m[MD+kT +kD]+D) = O(m[MD+kT]). Since usually kT < MD, this amounts
to O(mMD).

Hence, the time needed for computing importance j (xi), for all i and a fixed j , in the
STR-Relief is O(mMD), hence the overall time needed here is O(TmMD), which is higher
than the time complexity of MTR-Relief by a factor of T .

However, note that the nearest neighbors do not depend on the target space, hence we can
make the naive implementation of STR-Relief more efficient, if we update the probabilities
in parallel, for each target. This comes with the cost of a larger memory consumption. The
additional space that is needed in MTR-Relief is O(D): the lists PdiffFeat, diffTarget, PdiffFeat

and the list storing the wi s. In the case of parallel updates for STR-Relief, we need O(T D)

memory, which might be a considerable amount if the numbers for features and targets
are large. The same time-space consumption relation holds when we want to compute the
rankings for different values of parameters: either time or space consumption increases by a
factor of the number of combinations we want to study.

4 Experimental design

In this section, we present in detail the experimental design used to evaluate the performance
of the proposed methods. We begin by stating the experimental questions. We then briefly
summarize the MTR datasets used in this study. Next, we present the evaluation procedure.
Finally, we give the specific parameters instantiations for each of the methods.

4.1 Experimental questions

We design the experimental evaluation focusing on several research questions referring to
the parametrization of the proposed methods, the relevance of the obtained feature rankings,
and their (relative) performance:

123

56 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1191

1. Which ensemblemethod is themost appropriate for a given importance score in ensemble-
based feature ranking?

2. How do the number of neighbors k, the number of iterationsm and the weighting param-
eter σ influence the rankings obtained with MTR-Relief?

3. How do the MTR rankings compare to their single target (STR) counterparts?
4. Can the knowledge of feature importance (scores) lead to better predictive performance

of a regressor, i.e., are the obtained feature rankings relevant?
5. Which ranking method yields the best feature rankings overall?

4.2 Datasets

Weuse 24MTRbenchmark problems. Table 3 presents the basic statistics of the datasets. The
number of features ranges from 6 to 576 and the features are mainly numeric. The number of
targets ranges from 2 to 16, while the number of examples is in the range between 103 and
60607. The datasets come from different domains: the ATP datasets concern the prediction of
airline tickets prices. The collembola, forestry, soil quality, and vegetation condition datasets

Table 3 Description of the benchmark problems in terms of the number of nominal and numeric descriptive
attribute, the number of targets, and the number of examples

Dataset Nominal Numeric Targets Examples

ATP1d (Spyromitros-Xioufis et al. 2016) 0 411 6 337

ATP7d (Spyromitros-Xioufis et al. 2016) 0 411 6 296

collembola (Kampichler et al. 2000) 8 39 3 393

EDM (Karalič and Bratko 1997) 0 16 2 154

ENB (Tsanas and Xifara 2012) 0 8 2 768

Forestry Kras (Stojanova et al. 2010) 0 160 11 60,607

Forestry LIDAR IRS (Stojanova 2009) 0 29 2 2730

Forestry LIDAR Landsat (Stojanova 2009) 0 150 2 6218

Forestry LIDAR Spot (Stojanova 2009) 0 49 2 2730

jura (Goovaerts 1997) 0 15 3 359

OES10 (Spyromitros-Xioufis et al. 2016) 0 298 16 403

OES97 (Spyromitros-Xioufis et al. 2016) 0 263 16 334

osales (Kaggle 2012) 0 401 12 639

RF1 (Spyromitros-Xioufis et al. 2016) 0 64 8 9125

RF2 (Spyromitros-Xioufis et al. 2016) 0 576 8 9125

SCM1d (Spyromitros-Xioufis et al. 2016) 0 280 16 9803

SCM20d (Spyromitros-Xioufis et al. 2016) 0 61 16 8966

scpf (Kaggle 2013) 0 23 3 1137

sigmeareal (Demšar et al. 2005) 0 6 2 817

sigmeasim (Demšar et al. 2005) 2 9 2 10,368

slump (Yeh 2007) 0 7 3 103

soil quality (Demšar 2006) 0 156 3 1944

vegetation condition (Kocev et al. 2009) 1 39 7 16,967

water quality (Džeroski et al. 2000) 0 16 14 1060

123

57

1192 Machine Learning (2020) 109:1179–1204

contain environmental data, EDM stands for electrical discharge machining, ENB and water
quality originate from studies of water quality. Jura contains measurements of heavy met-
als concentrations. OES stands for occupational employment survey. The datasets osales
(online product sales) and scpf (see-click-predict fix) originate from two Kaggle competi-
tions, TheRF1 andRF2 datasets describe river flows. The SCM1d and SCM20d datasets were
constructed for a competition in the domain of supply chain management. The sigmeareal
and sigmeasim datasets describe GMO (herbicide resistant) crops. Finally, the slump dataset
concerns prediction of properties of concrete slump.

4.3 Evaluationmethodology

We adopted the following evaluation methodology to answer the above research questions
and to properly assess the performance of the proposed methods. First, we randomly divide
each dataset D into 2/3 for training (DTRAIN) and 1/3 for testing (DTEST). A ranking is
computed from the training part only, and evaluated on the testing part. This is repeated 10
times and the performance measures are averaged at the end.

The quality of a ranking is assessed by using the kNN algorithm where instead of the
standard Euclidean distance, its weighted version was used. For two input vectors x1 in x2,
the distance d between them is defined as

d(x1, x2) =
√
√
√
√

D∑

i=1

wi d2i (x1i , x
2
i), (11)

where di is defined by Eq. (5). The weights are set to wi = max{importance(xi), 0}, since
they need to be made non-negative to ensure that d is well defined, and also to ignore the
attributes that are of lower importance than a randomly generated attribute would be.

The evaluation through a kNN predictive model was chosen because of two main reasons.
First, this is a distance basedmodel, hence, it can easilymake use of the information contained
in the feature importances in the learning phase. Second, kNN is simple: its only parame-
ter is the number of neighbors, which we set to 5. In the prediction stage, the neighbors’
contributions to the predicted value are equally weighted, so we do not introduce additional
parameters that would influence the performance.

A further argument for using kNN as an evaluationmodel is as follows. If a feature ranking
is meaningful, then when the feature importances are used as weights in the calculation of the
distances kNN should produce better predictions as compared to kNN without using these
weights (Cunningham and Delany 2007; Wettschereck 1994).

We assess the predictive performance with the average relative root mean squared error
RRMSE. If we denote the predicted value of the target y j by ŷ j (x) and the variance of the
target y j on DTRAIN by Var j (DTRAIN), then the RRMSE for this target is defined as

RRMSE(y j) =
√
√
√
√

1

|DTEST|
∑

(x, y)∈DTEST

(y j (x) − ŷ j (x))2

Var j (DTRAIN)
,

where y j (x) is the true value of the y j for the example x. From this, we compute RRMSE =
1
T

∑T
j=1 RRMSE(y j).

123

58 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1193

4.4 Statistical analysis of the results

For comparing two algorithms, we use the Wilcoxon’s test, and for comparing more than
two algorithms, we use the Friedman’s test. In both cases, the null hypothesis H0 is that all
considered algorithms have the same performance. If H0 is rejected by the Friedman’s test,
we additionally applyNemenyi’s post-hoc test to investigatewhere the statistically significant
differences between any two algorithms occur. A detailed description of all tests is available
in Demšar (2006).

When performing more than one Wilcoxon’s test for a given hypothesis, we control the
false discovery rate by the Benjamini–Hochberg procedure (Benjamini and Hochberg 1995):
let pi be the i-th smallest among the obtained p values, and t the number of tests. Let i0 be
the largest i , such that

pi ≤ i

t
α =: α̂i . (12)

Then, we can reject the hypotheses that correspond to p values pi , for 1 ≤ i ≤ i0.
The results of the Nemenyi tests are presented through average ranks diagrams. Each

diagram shows the average rank of the algorithm over the considered datasets, and the critical
distance, i.e., the distance bywhich the average ranks of two considered algorithmsmust differ
to be considered statistically significantly different. Additionally, the groups of algorithms
among which no statistically significant differences occur are connected with a line.

Before proceedingwith the statistical analysis,we round the performances to three decimal
points. In the analysis, the significance level was set to α = 0.05.

4.5 Parameter instantiation for the ensemble scores

The algorithm for inducing an ensemble of PCTs for MTR takes as input the following
parameters: the number of base predictive models in the forest (all ensemble types), minimal
number of examples in a leaf of a tree (all ensemble types), and the feature subset size
(random forests only). In all cases, we grow 100 trees, whose leaves must contain at least
two examples each. Additionally, the feature subset size in the case of random forests is set
to �√D	.

Next, recall that the Symbolic score requires selecting a value for w. In a preliminary
study of the MTR versions of the scores, we investigated the influence of several values of
w, i.e., w ∈ {0.25, 0.5, 0.75, 1}, on the performance of the produced feature rankings. We
performed Friedman’s test and it turns out that the differences among the rankings are not
statistically significant in the case of bagging (p value is 0.379) and ET (p value is 0.441),
whereas in the case of RF, they are (p value is 0.0148). In the RF case, we can proceed to
Nemenyi’s test, whose results are shown in Fig. 1.

The diagram reveals that only the Symbolic score with weight w = 1.0 is statistically
significantly worse than the rankings with weights w = 0.5 and w = 0.25. This can be

Fig. 1 The average ranks diagram
for Nemenyi’s test, comparing
different values of the parameter
w, w ∈ {0.25, 0.5, 0.75, 1.0}, for
the Symbolic score computed
from the RF ensemble 1 2 3 4

Symb50RfMTR
Symb25RfMTR

Symb100RfMTR
Symb75RfMTR

critical distance: 0.9574

123

59

1194 Machine Learning (2020) 109:1179–1204

Fig. 2 The influence for the
neighbors k in the range
1 ≤ k ≤ 40 for the Relief score
when σ = 0.05. The weights are
normalized so that the weight of
the nearest neighbor equals 1

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

explained by Eq. (1): the value of 1.0 for the weight is the only one where the depth of the
node where an attribute appears is not taken into account when computing the relevance.

Since the average ranks of the ranking methods with w = 0.25, w = 0.5, w = 0.75 and
w = 1.0 are respectively 2.31, 2.27, 2.56 and 2.85 for bagging, and 2.40, 2.40, 2.35 and
2.88 for ET, the ranking Symb50 is a reasonable choice for all three ensembles, since it is
always ranked at least second. The reason for this is less obvious, but we hypothesize that it
could be an artifact of the algorithm for inducing ensembles. Namely, the splits in the nodes
of the trees are binary. If we assume that the best test in an internal node N ∈ T partitions
the examples approximately in half, then the attribute in N ’s test influences one half of the
instances that arrive to its parent; hence, the parent should receive twice as large a reward as
each of its two children. The value w = 0.5 was, for this same reason, selected also in the
STR versions of the scores.

4.6 Parameter instantiation for the relief score

Since the sizes of datasets range over different orders of magnitude, the number of iter-
ations m is specified as a proportion of the size of DTRAIN. The considered values are
m ∈ {1%, 5%, 10%, 25%, 50%, 100%}. On the other hand, since the number of neighbors k
controls the level of locality, it is better given in absolute values. Our choice is to consider
the values k ∈ {1, 5, 10, 15, 20, 25, 30, 40}.

The influence of weighting is investigated with two values of the weighting parameter
that result in two extreme weighting schemes: σ = 0 corresponds to no weighting, i.e., all
neighbors have equal influence, and σ = 0.05, that results in a weighting scheme where the
possible 40th nearest neighbor has only ∼ 2% of the influence of the nearest neighbor, see
Fig. 2.

5 Results and discussion

In this section, we present and discuss the results of the comprehensive experimental eval-
uation. First, we discuss the results for the ensemble-based scores. Next, we present the
parametrization of MTR-Relief. At the end, we compare the performance of the proposed
ensemble-based and Relief-based feature ranking methods.

123

60 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1195

1 2 3

Genie3RfMTR Genie3EtMTR
Genie3BaggingMTR

critical distance: 0.6764

MTR Genie3

1 2 3

Genie3RfSTR Genie3EtSTR
Genie3BaggingSTR

critical distance: 0.6764

STR Genie3(a) (b)

Fig. 3 The average ranks diagrams from Nemenyi’s post-hoc test, applied to the times needed to compute
feature rankings with different ensemble methods for the MTR (a) and the STR (b) version of the Genie3
score

5.1 Ensemble-based feature ranking

5.1.1 Which ensemble method is the most appropriate

For a given fixed score (Genie3, Symb50 or RF) and ranking type (MTRor STR), we compare
the performance of the different ensemble methods in terms of RRMSE to select the most
suitable one for a given score.

For the MTR rankings, the outcome can be summarized as follows. The Friedman test
for Genie3 and Symb50 scores did not reject the null hypotheses, with p values of 0.476 and
0.877, respectively. The Wilcoxon test for the RF score rejected the null hypotheses with
p = 0.0170 and indicated that the bagging method is statistically significantly better than
the RF ensemble method.

If methods perform equally well, then the most efficient should be preferred. Hence,
we compare the different ensemble methods for the scores Genie3 and Symb50 in terms
of time. The differences are significant: the p values are 1.00 × 10−15 and 3.12 × 10−14

respectively. Thus, we can proceed to Nemenyi’s post-hoc tests that reveal that, in both cases,
the RF ensemble method is significantly faster than the other two methods. This means that it
suffices to consider

√
D features in a tree node to obtain a good split (hence, RF is faster than

bagging), but only D test candidates for ET do not suffice (since the trees in ET ensemble
must be considerably bigger than the trees in a RF). Since the average ranks diagrams are
qualitatively the same, we show only the one for the Genie3 score in Fig. 3a.

For the STR rankings, there are no statistically significant differences regarding the quality
of the ranking, i.e., the Friedman tests (for Genie3 and Symb50 scores) and the Wilcoxon
test (RF score) do not reject the null hypotheses. Conversely, all three null hypotheses for
the time complexity analysis are rejected with p values of 0.0, 0.0 and 1.82 × 10−5 for the
scores Genie3, Symb50 and RF, respectively. The differences are now it the case of Genie3
and Symb50 even more profound. In addition to the RF ensemble method being faster than
the other two methods, bagging is now also significantly faster than the ET method. The
average ranks diagram for the Genie3 score is shown in Fig. 3b.

5.1.2 Comparison of MTR and STR rankings

For each of the 8 combinations of ranking score and ensemble method, we compare the
quality of MTR and STR rankings with the Wilcoxon test. The smallest of the eight p values
is p1 = 0.0298 in the case of the Genie3 score, coupled with bagging. Since this is not
smaller than Benjamini–Hochberg correction α̂1 = 0.00625 from Eq. (12), we cannot reject
any hypothesis. On the other hand, every MTR ranking is significantly faster than its STR

123

61

1196 Machine Learning (2020) 109:1179–1204

Table 4 The results of the
Wilcoxon tests that compare the
performance of standard 5NN to
its weighted-distance version

Score-ensemble-version pi α̂i

Genie3-RF-STR 7.59× 10−5 8.33 × 10−3

Genie3-RF-MTR 2.28× 10−4 1.00 × 10−2

Symb50-RF-MTR 3.40× 10−3 1.25 × 10−2

Symb50-RF-STR 9.71× 10−3 1.67 × 10−2

RF-Bagging-MTR 2.49× 10−3 2.50 × 10−2

RF-RF-STR 8.64 × 10−2 5.00 × 10−2

The i th row contains the name of the score-ensemble-version triplet that
provided the feature importances used in the tests of weighted 5NNs
against standard 5NN; the p value pi ; and the corrected value α̂i
Statistically significant results are shown in bold

counterpart: all p values now equal 1.8×10−5 and all null hypotheses can be rejected. Thus,
the MTR rankings should be preferred.

5.1.3 Are the obtained feature rankings relevant?

Here, we investigate whether 5NN prediction can benefit from using the additional informa-
tion from the feature importances. To this end, we compare the performance of 5NN without
and with feature importances. We test the relevance of both the MTR and the STR version of
each score, coupled with the most suitable ensemble method, as determined in Sect. 5.1.1.
Hence, six comparisons are made by using the Wilcoxon’s test, where we test the standard
5NN against the weighted 5NN whose feature weights are defined via feature importances
as in Eq. (11)

Table 4 gives the results of the statistical evaluation. It shows that the hypotheses are
rejected in the case of the Genie3 and the Symb50 scores (in favor of the weighted 5NN).
This holds for both the MTR and the STR versions of the scores. The hypothesis was also
rejected in the case of the MTR version of the Random Forest score, again in favor of the
weighted 5NN. Therefore, we can conclude that using feature ranking is beneficial in these
five cases, i.e., the obtained feature importances are relevant and meaningful.

5.2 Relief feature ranking

5.2.1 Influence of the neighbor weighting �

For both proposed methods (MTR-Relief and STR-Relief), we performed 48 Wilcoxon’s
tests comparing the weighted variant of the algorithm (σ = 0.05) to its non-weighted variant
(σ = 0). The other two parameters, i.e., m and k were fixed. Here, we will report only the
lowest p values for each of the versions. In the case of MTR-Relief, the lowest one was
p1 = 0.0653, while in the case of STR-Relief, the lowest one was p1 = 0.0864. Thus, the
differences are not statistically significant, even before we apply the Benjamini–Hochberg
procedure. Since the two quite extreme weighting schemes result in rankings with only
minor differences in quality, we conclude that the influence of the weighting parameter is
limited. Therefore,we consider only the non-weighted variants of the algorithms in the further
analysis.

123

62 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1197

1 2 3 4 5 6 7 8

It1Neigh25MTR
It1Neigh40MTR
It1Neigh30MTR
It1Neigh20MTR

It1Neigh1MTR
It1Neigh5MTR

It1Neigh10MTR
It1Neigh15MTR

critical distance: 2.1432

m = 1%

1 2 3 4 5 6 7 8

It100Neigh25MTR
It100Neigh30MTR
It100Neigh15MTR
It100Neigh40MTR

It100Neigh1MTR
It100Neigh5MTR

It100Neigh20MTR
It100Neigh10MTR

critical distance: 2.1432

m = 100%(a) (b)

Fig. 4 The influence of the number of neighbors (k): the average ranks diagrams from Nemenyi’s post-hoc
test for MTR-Relief with m = 1% (a) and m = 100% (b)

5.2.2 Influence of the number of neighbors k

To assess the influence of the number of neighbors, we compare the quality of the rankings
obtained by varying the values of k, while the number of iterations (value of m) and ranking
type (MTR or STR) are fixed. This is done by applying Friedman tests to the described
groups of algorithms. The obtained p values corresponding to the 10 groups with m ≤ 50%
are all smaller than 10−10. The remaining two p values are p = 0.00438 (MTR ranking) and
p = 1.26 × 10−4 (STR ranking), hence all null hypotheses can be rejected and we can say
that the number of neighbors has considerable influence on the quality of the feature ranking.

We proceed to Nemenyi’s post-hoc tests. In Fig. 4, we show average ranks diagrams for
the two extreme values of m: m ∈ {1%, 100%}, for the MTR rankings. The diagrams for
STR rankings (and other values of m) are similar. Using more neighbors is obviously better
when m = 1% (Fig. 4a). In this case, only a small portion of DTRAIN gets to influence
the ranking, thus the ranking overfits to the structure of DTRAIN in the neighborhood of the
chosen instances. We can mitigate this by examining larger neighborhoods, i.e., choosing
more neighbors whose influence is then averaged. In the case of m = 1%, this is the only
mechanism that reduces overfitting, hence the strong influence on the performance. In the
results with m = 100% (Fig. 4b), we get to examine the whole DTRAIN, so the algorithm
does not overfit to the extent observed before. However, the diagrams reveal that choosing
only one neighbor is still not sufficient, but we do not need more than 10 neighbors to obtain
good performance.

5.2.3 Influence of the number of iterationsm

We perform analogous experiments to the ones described in the previous section, where the
number of neighbors k and ranking type are fixed, while the values of the parameter m vary.

The p values from Friedman tests are all smaller than 2.0 × 10−6, hence in all of the
cases, the number of iterations influences the ranking quality. We then perform the follow-up
Nemenyi’s post-hoc tests and show the resulting average ranks diagrams for the two most
extreme cases: k ∈ {1, 40}, but now for the STR rankings (Fig. 5).

When k = 1 (Fig. 5a), the general more-is-better trend is obvious. This can be again
explained by a slightly modified overfitting argument. Since the datasets originate from real-
world domains, they must contain some (random) noise. In the case of k = 1, its influence
can be diminished only by taking into account more and more instances. Approximately
the same holds for k = 40 (Fig. 5b), but in this case, the average ranks of the scores for
m ≥ 10 are closer. Furthermore, they show that the only values of m that are always part

123

63

1198 Machine Learning (2020) 109:1179–1204

1 2 3 4 5 6

It100Neigh1STR
It50Neigh1STR
It25Neigh1STR

It1Neigh1STR
It5Neigh1STR

It10Neigh1STR

critical distance: 1.5392

k = 1

1 2 3 4 5 6

It25Neigh40STR
It100Neigh40STR
It50Neigh40STR

It1Neigh40STR
It5Neigh40STR

It10Neigh40STR

critical distance: 1.5392

k = 40(a) (b)

Fig. 5 The influence of the number of iterations (m): the average ranks diagrams from Nemenyi’s post-hoc
test for STR-Relief with k = 1 (a) and k = 40 (b)

Fig. 6 Heat map of the average ranks of different options for the value pairs (m, k). The background of the
map corresponds to the average rank of the non-weighted 5NN, whereas each square with coordinates (m,
k) represents the average ranks of the regressor which uses the MTR-Relief (the left part of the square) or
STR-Relief (the right part of the square) ranking, computed with these parameter values

of the top-performing group of scores, are 25%, 50% and 100%. Similar conclusions can be
made by inspecting the other diagrams.

5.2.4 Comparison of MTR and STR rankings

We first compare MTR ans STR rankings based on the Relief score graphically by showing
a heat map, where the color corresponds to the average rank of the corresponding regressor.
In Fig. 6, there are 48 squares, each of them corresponding to a (m, k) pair of values. Addi-
tionally, each square is divided in half. Its left and right part correspond to MTR-Relief and
STR-Relief, respectively. The background of the heat map is of the color that corresponds
to the performance of the non-weighted 5NN regressor. An inspection of the graph reveals
that no differences are to be expected between the MTR and STR versions, since most of the
time a difference is not visible between the left and right part of each square. The smallest
among the 48 p values from the Wilcoxon tests, where we compare MTR and STR rankings
is p = 0.0163 and is obtained when m = 10% and k = 25. However, if we apply the
Benjamini–Hochberg correction, there are no statistically significant differences.

5.2.5 Are the obtained feature rankings relevant?

In Fig. 6, we can additionally see that some parameter settings clearly lead to irrelevant
rankings, e.g., m = 1% and k = 1, for which the average ranks for the MTR and STR
weighted 5NNpredictive performance are 89.4 and 90.1, whereas the baseline 5NN regressor

123

64 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1199

Table 5 The results of the
Wilcoxon’s tests that compare the
performance of standard 5NN to
its weighted-distance version

m-k-version pi α̂i

It100Neigh15MTR 0.00664 0.00833

It50Neigh15STR 0.0119 0.01

It25Neigh40STR 0.0975 0.0125

It25Neigh40MTR 0.100 0.0167

It100Neigh30STR 0.145 0.025

It100Neigh40MTR 0.153 0.05

The i th row contains the values of the parameters of the Relief ranking
that provided the feature importances and was tested against standard
5NN; the p value pi ; and the corrected value α̂i
Statistically significant result is shown in bold

1 2 3 4 5 6 7 8 9 10 11 12

Genie3RfSTR
Genie3RfMTR
It100Neigh15MTR
Symb50RfMTR
Symb50RfSTR
It50Neigh15STR

RfRfSTR
RfBaggingMTR

It100Neigh30STR
It25Neigh40STR

It25Neigh40MTR
It100Neigh40MTR

critical distance: 3.4014

RRMSE

1 2 3 4 5 6 7 8 9

It25
It50
Genie3RfMTR
Symb50RfMTR

RfRfSTR
RfBaggingMTR

Genie3RfSTR
Symb50RfSTR

It100

critical distance: 2.4523

time(a) (b)

Fig. 7 Comparison of the 12 ranking scores: the average ranks diagrams from Nemenyi’s post-hoc test for
RRMSE (a) and time (b). Due to the implementation of Relief, the running times for Relief depend only on
the number of iterations

has the average rank of 48.5. Hence, we take a similar approach to that in Sect. 5.1.3, where
we tested for the relevance of ensemble scores.We determine the best three parameter settings
for each of the rankings (MTR and STR) and then apply the Wilcoxon tests for the weighted
5NN against the non-weighted 5NN baseline. The results are given in Table 5.

In contrast to the ensemble scores relevance analysis, now only one ranking performs
statistically significantly better than the baseline. This is the MTR version of the score when
m = 100% and k = 15.

5.3 Which rankingmethod yields the best feature rankings?

In this section, we compare the six candidates from the Ensemble-based rankings and the
six candidates from the Relief-based rankings. The comparison is made in terms of RRMSE
and time, by applying Friedman’s test. The corresponding p values are pRRMSE = 0.117
and ptime = 0.0. The follow-up Nemenyi’s test produced the average ranks diagrams shown
in Fig. 7. Note that the critical distance in the RRMSE-based diagram should be ignored
(pRRMSE > 0.05) and we focus only on the average ranks. It seems that the quality of
different scores is quite similar: most of them are grouped together with the exception of the
STR rankings of Genie3 and RF score as two outliers.

On the other hand, when we compare how much time is needed to compute the rankings
(Fig. 7b), we can identify more groups. For example, the fastest group is formed by the Relief
scores withm ∈ {25%, 50%} and theMTR rankings of the Genie3 and Symbolic scores. The

123

65

1200 Machine Learning (2020) 109:1179–1204

Fig. 8 The PCT constructed from
the meta dataset, where Y and N
denote Yes and No branches. In
every leaf node, the majority
target statistics are shown, e.g., in
the leaf Relief (4/6), there are 6
examples. On 4 of them, Relief
performs better

attributes > 30

Relief (8/8)targets > 8

Ensemble (9/10)Relief (4/6)

Y N

Y N

Table 6 Cross-validated
performance of the meta decision
tree, where y denotes true values
and ŷ denotes predicted values

slowest ones are the STR rankings from the ensemble-based scores, together with the MTR
ranking of the RF score where bagging is used.

Since our efficient implementation allows for computing all Relief scores at once, the
induction time for these scores depends only on the number of iterations, hence the shortened
descriptions of theMTRand STR rankings (only the number of iterations is shown in Fig. 7b).

We next perform a meta-learning analysis of the obtained results. If we want to get a
recommendation on using an appropriate feature algorithm for a given new dataset, the
average ranks in Fig. 7a do not provide a unique recommendation, since there are too many
candidates. Also, we want to understand when the ensemble-based rankings perform better
than the Relief-based rankings, considering some basic properties of the datasets. To do so,
we describe each dataset as a (x, y) pair, where the descriptive part x consists of the basic
dataset statistics shown in Table 3: number of examples, features and targets. The target part
for a particular dataset was y = Ensemble if an ensemble method performed better on this
dataset, and y = Relief if a Relief method was better. From this meta dataset, we build a
single PCT, which is shown in Fig. 8. It seems that the number of examples does not influence
the better performing score. We can conclude that the Ensemble group of rankings performs
better for datasets that have a higher descriptive dimension D > 30 and a lower number of
targets (T ≤ 8).

The accuracy of the tree is 79.2% and was estimated via tenfold cross validation. The
corresponding confusion matrix is shown in Table 6.

5.4 Absolute performance of rankings

So far, the statistical analysis shownoperated onlywith the ranks of the algorithmsondifferent
datasets and we have not shown yet any actual performance figures in terms of RRMSE. The
purpose of analysis of these results is twofold: we can explore (i) whether the previously
discovered statistically significant differences are also practically relevant, and (ii) which
datasets represent harder and which datasets represent easier feature ranking (and predictive
modelling) problems.

Inspecting Fig. 7a, we can see that the best average rank among the ensemble-based scores
belongs to the STR-Genie3 rankings, computed from the random forest ensemble. The best
ranked score from Relief group is MTR-Relief ranking, computed withm = 100% iterations

123

66 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1201

Table 7 The performance (in terms of RRMSE) of the baseline 5NN model and the weighted models that
correspond to the best rankings from the ensemble and the Relief group of scores

Baseline Best ensemble score Best relief score
5NN Genie3-RF-STR It100Neigh15MTR

ATP1d 0.467 0.45 0.452

ATP7d 0.664 0.653 0.678

collembola 1.006 0.992 1.006

EDM 0.784 0.776 0.759

ENB 0.306 0.155 0.148

Forestry Kras 0.588 0.59 0.587

Forestry LIDAR IRS 0.425 0.347 0.404

Forestry LIDAR Landsat 0.535 0.49 0.528

Forestry LIDAR Spot 0.414 0.367 0.402

jura 0.836 0.749 0.762

OES10 0.6 0.588 0.598

OES97 0.535 0.532 0.534

osales 0.946 0.868 0.932

RF1 0.239 0.228 0.251

RF2 0.509 0.313 0.529

SCM1d 0.306 0.302 0.301

SCM20d 0.318 0.32 0.317

scpf 1.059 0.989 0.934

sigmeareal 0.977 0.906 0.912

sigmeasim 0.141 0.116 0.052

slump 0.795 0.766 0.756

soil quality 0.732 0.731 0.729

vegetation condition 0.662 0.665 0.68

water quality 0.985 0.983 0.98

and k = 15 neighbors. We present performance figures for these two rankings, together with
the baseline non-weighted 5NN in Table 7.

We can see that sometimes, the baseline 5NN performs considerably worse than at least
one of the other two predictivemodels. For example, this is the case for the ENB, RF2 and sig-
measim datasets. Interestingly, ENB and sigmeasim have only 8 and 11 features respectively.
For the consideredmethods, these datasets present not that hard feature ranking problems. On
the other hand, the statistically significant differences are sometimes not practically relevant,
e.g., the relative decrease of the RRMSE after computing the ranking on the SCM datasets
is quite small. These datasets present harder feature ranking problems. However, as evident
from the statistical tests, the baseline is quite consistently the worst performing of the three
predictive models.

6 Conclusion

In this work, we focus on the task of feature ranking for multi-target regression. More specif-
ically, we propose methods for feature ranking that exploit the potential relatedness among

123

67

1202 Machine Learning (2020) 109:1179–1204

multiple targets to produce a single feature ranking valid for all of the targets. Namely, we
propose methods for feature ranking that are based on ensemble learning and on the Relief
family of feature ranking algorithms. In the former group of methods, we consider three
ensemble learning methods (bagging, random forests and extremely randomized trees) cou-
pled with three scores (Genie3, Random Forest and Symbolic). The ensemble methods use
predictive clustering trees for MTR as base predictive models. The latter group considers an
extension of RReliefF towards the task of MTR (MTR-Relief). We have also proposed to use
the ’single’ target variants of the proposed methods in the context of MTR by averaging the
importance scores obtained for each of the targets.

We analyze the proposed methods along several dimensions. First, we perform a theo-
retical computational complexity analysis of all of the methods. Next, we complement the
computational complexity analysis with runtime comparisons. Furthermore, we parametrize
the proposed methods. Finally, we benchmark the performance of the proposed methods
on 24 datasets by using the feature importances as weights in 5-nearest neighbors (5NN)
prediction.

The comprehensive experimental evaluation reveals the following. First, five out of the
six ensemble-based ranking methods yield relevant feature rankings when they are com-
puted using the most appropriate tree ensemble, the only exception being the STR ranking
with Random Forest score. The evaluation identified two best ranking methods (in terms of
performance and efficiency): Genie3 and Symbolic scores coupled with random forests.

Second, with the Relief rankings, only a single setting was found yielding statistically
significant differences in performance: the MTR version of Relief with m = 100% and
k = 15. When we compared the top 12 ranking algorithms, there were no statistically
significant differences among them. However, further analysis revealed that this is due to
the properties of datasets, since we can rather accurately determine which of the two groups
(ensemble-based or Relief-based) of algorithms will perform better on a given dataset.

Third, the analysis shows that the MTR versions of ensemble-based rankings are statis-
tically significantly faster than their STR counterparts, but not worse in terms of quality. In
the case of Relief, there are no differences. All in all, we would suggest using the Genie3 and
the Symbolic scoring coupled with random forest ensemble method, since they both yield
relevant rankings and are fast enough.

There are several directions for the future work. First, we plan to consider a different
approach to defining the distance measure in MTR-Relief (or even in RReliefF). We could
use a distance based on the probability densities f (xi) and f (y j), since this is the usual
continuous analogue of the probabilities P(xi = x) in the discrete case. Next, we will
extend the proposed methods to other structured output prediction tasks, such as multi-label
classification, and hierarchical multi-label classification. Furthermore, we will investigate
the influence of the ensemble size on the produced feature rankings (thus further reducing
the computational cost). Finally, we will develop similar approaches for learning feature
rankings for MTR tasks on data streams and for semi/un-supervised MTR tasks.

Acknowledgements We acknowledge the financial support of the Slovenian Research Agency via the Grants
P2-0103 and a young researcher Grant to MP, as well as the European Commission, through the Grants
MAESTRA (Learning from Massive, Incompletely annotated, and Structured Data) and HBP (The Human
Brain Project), SGA1 and SGA2. SD also acknowledges support by Slovenian Research Agency (via Grants
J4-7362, L2-7509, and N2-0056), the European Commission (Project LANDMARK) and ARVALIS (Project
BIODIV). The computational experiments presented here were executed on a computing infrastructure from
the Slovenian Grid (SLING) initiative.

123

68 Chapter 4. Feature Ranking for Multi-Target Regression

Machine Learning (2020) 109:1179–1204 1203

References

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300.

Blockeel, H. (1998). Top-down induction of first order logical decision trees. Ph.D. thesis, Katholieke Uni-
versiteit Leuven, Leuven, Belgium.

Borchani, H., Varando, G., Bielza, C., & Larrañaga, P. (2015). A survey on multi-output regression. Data
Mining and Knowledge Discovery, 5(5), 216–233.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. J. (1984). Classification and regression trees. Boca Raton:

Chapman & Hall/CRC.
Brobbey,A. (2015).Variable selection inmultivariatemultiple regression.Master’s thesis,MemorialUniversity

of Newfoundland, St John’s, NL, Canada.
Burnham, A. J., MacGregor, J. F., & Viveros, R. (1999). Latent variable multivariate regression modeling.

Chemometrics and Intelligent Laboratory Systems, 48(2), 167–180.
Cunningham, P., & Delany, S. J. (2007). k-Nearest Neighbour Classifiers. Technical report, University College

Dublin, Dublin, Ireland.
Demšar, D., Debeljak, M., Džeroski, S., & Lavigne, C. (2005). Modelling pollen dispersal of genetically

modified oilseedrape within the field. In Proceedings of annual meeting of the Ecological Society of
America.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7, 1–30.

Džeroski, S., Demšar, D., & Grbović, J. (2000). Predicting chemical parameters of river water quality from
bioindicator data. Applied Intelligence, 13, 7–17.

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical Software, 3(3), 209–226.

Geurts, P., Erns, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 36(1), 3–42.
Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford: Oxford University Press.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine

Learning Research, 3, 1157–1182.
Han, Z., Liu, Y., Zhao, J., & Wang, W. (2012). Real time prediction for converter gas tank levels based on

multi-output least square support vector regressor. Control Engineering Practice, 20(12), 1400–1409.
Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 12, 993–1001.
Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., & Geurts, P. (2010). Inferring regulatory networks from expres-

sion data using tree-based methods. PLoS One, 5(9), 1–10.
Kaggle. (2012). Kaggle: Online product sales. https://www.kaggle.com/c/online-sales. Accessed June 12,

2018.
Kaggle. (2013). Kaggle: See click predict fix. https://www.kaggle.com/c/see-click-predict-fix. Accessed June

12, 2018.
Kampichler, C., Džeroski, S., & Wieland, R. (2000). Application of machine learning techniques to the

analysis of soil ecological data bases:Relationships betweenhabitat features andCollembolan community
characteristics. Soil Biology and Biochemistry, 32(2), 197–209.

Karalič, A., & Bratko, I. (1997). First order regression. Machine Learning, 26(2–3), 147–176.
Kira, K., & Rendell, L. A. (1992). The feature selection problem: Traditional methods and a new algorithm. In

Proceedings of the tenth national conference on artificial intelligence (pp. 129–134). AAAI Press, San
Jose, California.

Kocev, D., & Džeroski, S. (2013). Habitat modeling with single- and multi-target trees and ensembles. Eco-
logical Informatics, 18, 79–92.

Kocev,D.,Džeroski, S.,White,M.,Newell, G.,&Griffioen, P. (2009).Using single- andmulti-target regression
trees and ensembles to model a compound index of vegetation condition. Ecological Modelling, 220(8),
1159–1168.

Kocev, D., Vens, C., Struyf, J., &Džeroski, S. (2013). Tree ensembles for predicting structured outputs.Pattern
Recognition, 46(3), 817–833.

Petković, M., Džeroski, S., & Kocev, D. (2017). Feature ranking for multi-target regression with tree ensemble
methods. In Yamamoto, A., Kida, T., Uno, T., & Kuboyama, T. (Eds.), Discovery science (pp. 171–185).
Berlin: Springer.

Robnik-šikonja, M., & Kononenko, I. (2003). Theoretical and empirical analysis of ReliefF and RReliefF.
Machine Learning Journal, 55, 23–69.

123

69

1204 Machine Learning (2020) 109:1179–1204

Sanchez-Fernandez, M., de-Prado-Cumplido, M., Arenas-Garcia, J., & Perez-Cruz, F. (2004). Svm multire-
gression for nonlinear channel estimation in multiple-input multiple-output systems. IEEE Transactions
on Signal Processing, 52(8), 2298–2307.

Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., & Vlahavas, I. (2016). Multi-target regression via input
space expansion: treating targets as inputs. Machine Learning, 104(1), 55–98.

Stańczyk, U., & Jain, L. C. (Eds.). (2015). Feature selection for data and pattern recognition. Studies in
computational intelligence. Berlin: Springer.

Stojanova, D. (2009). Estimating forest properties from remotely sensed data by using machine learning.
Master’s thesis, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.

Stojanova, D., Panov, P., Gjorgjioski, V., Kobler, A., & Džeroski, S. (2010). Estimating vegetation height and
canopy cover from remotely sensed data with machine learning. Ecological Informatics, 5(4), 256–266.

Tsanas, A., & Xifara, A. (2012). Accurate quantitative estimation of energy performance of residential build-
ings using statistical machine learning tools. Energy and Buildings, 49, 560–567.

Tsoumakas, G., & Katakis, I. (2007). Multi label classification: An overview. International Journal of Data
Warehouse and Mining, 3(3), 1–13.

Tuia, D., Verrelst, J., Alonso, L., Perez-Cruz, F., & Camps-Valls, G. (2011). Multioutput support vector
regression for remote sensing biophysical parameter estimation. IEEE Geoscience and Remote Sensing
Letters, 8(4), 804–808.

Wettschereck,D. (1994).A study of distance based algorithms. Ph.D. thesis,OregonStateUniversity, Corvallis,
OR.

Yeh, I.-C. (2007). Modeling slump flow of concrete using second-order regressions and artificial neural net-
works. Cement and Concrete Composites, 29, 474–480.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

70 Chapter 4. Feature Ranking for Multi-Target Regression

71

Chapter 5

Feature Ranking for Multi-Label
Classification and HMLC

In this Chapter, we present in detail the second set of contributions of the thesis: those
concerning the supervised learning setting and the structured output prediction tasks of
multi-label classification (MLC) and hierarchical multi-label classification (HMLC). Recall
from the introductory sections (Section 2.2.3) that the task of MLC is to simultaneously
predict (possibly multiple) labels that are relevant for a given example. The task of HMLC
is similar, but here, the set of labels is also partially ordered, i.e., hierarchically organised.
Also recall that we presented our feature ranking methods for MLC and HMLC in Sections
3.1.1 and 3.2.1. Our contributions in this context include:

1. An extension of ensemble-based feature ranking scores from the context of single
target prediction to the context of MLC and HMLC.

2. An extension of distance-based feature ranking scores from the context of single
target prediction to the context of MLC and HMLC.

3. An extensive experimental evaluation of the newly proposed feature importance
scores for MLC in HMLC, respectively, on appropriate collections of benchmark
datasets, assessing the performance of the scores individually and in cross-comparison.

Chronologically, we first proposed the extension of distance-based feature ranking meth-
ods from the single target prediction to the MLC setting in a paper presented at the DS-
2018 conference (Petković, Kocev, et al., 2018). As outlined in Chapter 3, the crucial part
of the adaptation is the definition of an appropriate distance measure between the sets of
labels. The proposed distance measures are then included in the extension of RReliefF. An
extensive evaluation on 24 benchmark datasets revealed that using any of these distance
measures always results in rankings of higher quality than the rankings computed by the
existing MLC-Relief competitor (Reyes et al., 2015). Moreover, all the proposed feature
rankings are relevant – they are significantly better than the uniform rankings that assign
the same importance to all the features. The paper is included in this Chapter.

Next, we extended the three ensemble-based scores from single-target prediction to
MLC and extensively evaluated them (Petković, Džeroski, et al., 2020c). The main findings
are that the proposed methods yield relevant feature rankings and that the best performing
method is the one that uses random forests for learning the ensemble and Genie3 for calcu-
lating the feature importance scores. Moreover, at the same time, the methods outperform
the current state-of-the art, and are computationally very efficient since growing only 10
trees suffices to reach stable quality of the feature rankings. The paper is included in this
Chapter.

72 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

Our initial experiments with HMLC feature rankings covered Symbolic ranking com-
puted from bagging ensembles. The findings were presented at the conference ETAI 2018
(Petković, Džeroski, et al., 2018). In the paper, not included in this Chapter, we show
that the proposed feature rankings are relevant and also time-efficient. We extended this
work and included all the other aforementioned ensemble-based and distance-based feature
ranking methods for HMLC.

The findings are presented in a journal paper (Petković, Džeroski, et al., 2020a) and
are similar to those from MLC experiments. Namely, the ensemble-based feature rankings
outperform the Relief ones, and can be computed very efficiently (from an ensemble of 10
trees). The best two performing scores are Genie3 and Symbolic (computed from random
forest ensembles).

The work presented in this Chapter pertains to the following hypotheses (as defined in
the introduction):

H1: It is possible to extend ensemble- and distance-based feature ranking approaches to
the unsupervised feature ranking task, to the tasks of supervised SOP (i.e., MTR,
MLC, and HMLC), and to their semi-supervised versions.

H4: The proposed ensemble- and distance-based approaches yield relevant and state-of-
the-art feature rankings for MLC.

H5: The proposed ensemble- and distance-based approaches yield relevant and state-of-
the-art feature rankings for HMLC.

H6: For unsupervised, MTR, MLC and HMLC problems, the ensemble-based feature
ranking approaches on average outperform the distance-based approaches to feature
ranking when the number of features is extremely high.

These hypotheses are confirmed with the design and implementation of the MLC and
HMLC feature ranking approaches presented in this Chapter and the experimental studies
comparing their performance. Hypotheses H4 and H5 are completely confirmed by the
results presented in this Chapter. For hypotheses H1 and H6, the parts pertaining to MLC
and HMLC are confirmed in this Chapter, while the remaining parts of these hypotheses
are addressed in the previous and the next chapters.

The papers included in this Chapter are:

• Petković M., Kocev D., Džeroski S. (2018) Feature Ranking with Relief for Multi-
label Classification: Does Distance Matter?. In: Proceedings of the 21st International
Conference on Discovery Science. LNCS, 11198: 51–65, Springer, Cham

• Petković, M., Džeroski, S. and Kocev, D. Multi-label feature ranking with ensemble
methods. Machine Learning. Under review.

• Petković, M., Džeroski, S. and Kocev, D. Feature Ranking for Hierarchical Multi-
Label Classification with Tree Ensemble Methods. Acta Polytechnica Hungarica. In
press.

The contribution of Matej Petković to these papers is as follows. MP contributed
to the design of the ensemble-based and distance-based feature ranking methods for MLC
and HMLC and implemented these methods in computer code. He also participated in
designing the experiments, carried out the experiments, and processed their results. He
drafted the papers and revised them following the feedback from the co-authors and re-
viewers.

Feature Ranking with Relief for Multi-label
classification: Does distance matter??

Matej Petković1,2, Dragi Kocev1,2, and Sašo Džeroski1,2

1 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
2 Jožef Stefan Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia

{matej.petkovic,dragi.kocev,saso.dzeroski}@ijs.si

Abstract. In this work, we address the task of feature ranking for multi-
label classification (MLC). The task of MLC is to predict which labels
from a maximal predefined label set are relevant for a given example. We
focus on the Relief family of feature ranking algorithms and empirically
show that the definition of the distances in the target space used within
Relief should depend on the evaluation measure used to assess the per-
formance of MLC algorithms. By considering different such measures, we
improve over the currently available MLC Relief algorithm. We exten-
sively evaluate the resulting MLC ranking approaches on 24 benchmark
MLC datasets, using different evaluation measures of MLC performance.
The results additionally identify the mechanisms of influence of the pa-
rameters of Relief on the quality of the rankings.

Keywords: feature ranking · multi-label classification · Relief

1 Introduction

Classification is a task in predictive modelling, where the goal is to learn a
model that takes as the input a vector x of descriptive variables (features) xi,
and predicts the class value y that a given example belongs to. If y can take two
different values, the task at hand is referred to as binary classification. Otherwise
(y can take more than two values), the task at hand is multi-class classification.
In both cases, every example is assigned precisely one value. For example, one can
predict whether a person has survived a shipwreck where y ∈ {yes, no} (binary),
or what is the blood type of a person where y ∈ {A, B, AB, 0} (multi-class). In
both cases, class values are mutually exclusive.

A related task is multi-label classification (MLC). As opposed to the standard
classification, a MLC predictive model predicts which labels from a predefined
set L are relevant for a given example. For example, one can predict which of
the genres from the set L = {romance, drama, comedy} are relevant for a given
film. Clearly, a film can be drama and comedy at the same time.

? We acknowledge the financial supported of the Slovenian Research Agency via the
grants P2-0103, J4-7362, L2-7509, N2-0056, and a young researcher grant to MP,
the European Commission, through the grants HBP (The Human Brain Project),
SGA2, and LANDMARK, and ARVALIS (project BIODIV).

73

2 M. Petković et al.

There are two main approaches to MLC: problem transformation and al-
gorithm adaptation. From the problem transformation group of methods most
widely known are binary relevance and label power set. Binary relevance is a
simple method that converts a MLC task to several binary classification tasks
with y ∈ {yes, no} where we predict the relevance of each label separately. This
approach is often criticized for it cannot make use of the interactions among the
labels. In the label power set approach [24], the task of predicting a subset of L
is converted to the task of predicting an element of the power set 2L , and thus
converting a MLC task to multi-class classification task. However, the number
of classes can be as high as 2|L |, which results in a very sparse dataset.

The second group of methods are method transformation techniques where
an existing method is adapted to a new problem. A prominent member of this
group are predictive clustering trees which generalize decision trees, so that they
can handle MLC [15] and other structure output prediction tasks [12].

Another important task in machine learning is feature ranking, where the
goal is to asses the importance of every descriptive attribute (feature) by using
some scoring function. The output of a feature ranking algorithm is a list of
features that is sorted with respect to the scores.

Feature ranking is typically considered a part of data preprocessing, since it
can be used to reduce the dimensionality of the input space, so that only the
features that contain the most information about labels (or target(s) in general)
are kept in the dataset. By doing this, we decrease the computational cost of
building a predictive model, while the performance of the model is not degraded.
Another reason to compute a feature ranking is that dimensionality reduction
typically results in models that are easier to understand, which is useful when a
machine learning expert works in collaboration with a domain expert. Predictive
models, such as decision trees, are easier to interpret when a small number of
the most relevant features are used to learn them.

There is a plethora of feature ranking methods for the task of classifica-
tion [22]. A possible approach to MLC feature ranking is to adapt the binary
relevance approach from predictive modelling, where at the first stage, feature
importances are computed for every label ` ∈ L separately as in the classifi-
cation case. After that, the feature importances are averaged over the different
labels and a single ranking is returned. In this work, we focus on the Relief
family of feature ranking algorithms, which are distance based approaches and
thus widely applicable. They are part of the filter methods which compute the
ranking without any additional predictive model [9]. The filters are typically fast,
i.e., linear in the number of features, but myopic at the same time, i.e., cannot
capture the feature interaction. Relief family of the feature ranking algorithms,
however, overcomes this, and can successfully discover, e.g., XOR-relation [14].

The rest of the paper is organized as follows. In Sec. 2, the overview of related
work is given. In Sec. 3, the proposed feature ranking algorithms are described
and analyzed. In Sec. 4, the detailed description of the experimental is given. In
Sec. 5, the results of the experiments are presented. In Sec. 6, conclusions and
direction for further work are given.

74 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

MLC-Relief: Does distance matter? 3

2 Related Work

We start the overview of the related work with the extensions of the Relief
family to MLC setting that are presented in [20]. There, the binary relevance
and label power set approach were applied to the feature ranking scenario. More
precisely, in the case of binary relevance approach, feature ranking was computed
for every label ` ∈ L separately. This was done by using the Relief algorithm
for the standard binary classification [11]. After that, the feature importances
were averaged to a single score. In the case of the label power set approach the
multi-class extension of the Relief (ReliefF) was used [14].

As mentioned before, these two approaches have some drawbacks. Binary
relevance approach does not take the label interactions into account and can
be expensive to run when the number of labels is high: we have to solve |L |
feature ranking problems which results in high time or space complexity. High
space complexity is also a drawback of label power set approach if the number
of different relevant label subsets is high. In that case, the data may also become
too sparse for the ranking to be relevant.

Both procedures were evaluated on a rather small subset of ten datasets
presented in this study (see Sec. 4.2), in a manner similar to our evaluation
procedure, which uses k nearest neighbours classifier. No statistical tests were
done and the feature rankings were not compared to any baseline.

Another data transformation approach was presented in [13] where the MLC
problem is transformed into |L |(|L | − 1)/2 binary classification problems - one
for each of the label pairs (`1, `2) where `1 6= `2. For each binary problem, only
the examples for which either `1 or `2 is relevant (but not both) are retained in
the corresponding dataset. The exclusion of the examples for which both labels
are relevant is necessary to avoid ill-defined terms in the equations for importance
update. The authors motivate this by claiming that the number of the examples
for which both labels are relevant, is small in comparison to the number of
examples for which precisely one of the two labels is relevant. However, this may
not be the case in some data sets, as observed in [18]. The main drawback of this
approach is the computational complexity, since the number of feature ranking
problems to solve grows quadratically with the number of labels.

A member of the Relief family ReliefF-ML [18] does solve the multi-label
ranking problem directly, yet its space complexity is still considerable. The al-
gorithm RReliefF-ML [18] overcomes this issue since it is an extension of the
RReliefF version that is suitable for regression tasks [14]. In contrast to the ex-
tensions, RReliefF(-ML) computes only one group of the nearest neighbors per
example which results in significantly smaller space complexity.

The method was empirically shown to yield relevant feature rankings [18]
since it statistically significantly outperformed the baseline. For showing statis-
tical significance, Friedman test was used. However, we need to point out that
the very basic assumption of the independence of data samples (datasets in this
case) was not met, since 10 out of 34 are basically different versions of the same
data (Corel16k datasets). In our experiments, we also show that the seemingly

75

4 M. Petković et al.

ad-hoc choice of the target distance may not lead to the best rankings if we want
to optimize for a particular evaluation measure.

Regarding pure predictive modelling setting, the authors in [4] show that
in general, different evaluation measures result in different optimal classifiers.
However, the authors also show that, e.g., Hamming Loss and Subset Accuracy
have the same optimal classifier under some rather strict conditions.

3 MLC-Relief

Relief family of feature ranking algorithms calculates the feature importance
scores by considering differences in the feature values between pairs of examples
(an example and its nearest neighbor). More specifically, if the values of features
of a pair of examples from the same class are different then the features’ impor-
tance decreases. Conversely, if the feature values are different for examples from
different classes then the features’ importance increases.

In the following, we first introduce the distance measures used within the al-
gorithm. Then, the algorithm is described and its computational complexity (in-
cluding the complexity of computing different distances) is analyzed. Throughout
the paper, F and L always denote the number of features and labels respectively.

3.1 Distances: Why and Which

All methods of the Relief family assign feature xi a weight wi that is a measure
of feature importance in these algorithms. The expected value of the wi has a nice
probability interpretation in the case when both the target and xi are nominal
[14]: simplified to some extent, we have a relation

E[wi] =
PdiffAttr, diffTarget

PdiffTarget
− PdiffAttr − PdiffAttr, diffTarget

1− PdiffTarget
, (1)

where we define the probabilities Pev = P (ev) and Pev1, ev2 = P (ev1∧ev2) that
base on the events diff/sameAttr (two instances have different/same value of
xi) and diff/sameTarget (two instances have different/same target value). The
probabilities from the right hand side of Eq. (1) are modeled as the distances in
the corresponding spaces: PdiffAttr is modeled by the distance di on the domain
of feature xi, PdiffTarget is modeled by the distance dL on the label set L , and
PdiffAttr, diffTarget is modeled as their product didL .

First, the distance on the whole descriptive domain X is defined via the
distances di on the domains Xi of features xi as

di(x
1,x2) =

1[x1
i 6= x2

i] : Xi * R
|x1

i−x2
i |

max
x

xi−min
x

xi
: Xi ⊆ R dX (x1,x2) =

1

F

F∑

i=1

di(x
1,x2) (2)

where 1 is the indicator function with the values 1[true] = 1 and 1[false] = 0,
and max and min go over the examples x in the training set.

76 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

MLC-Relief: Does distance matter? 5

For the distance dL between two sets of labels S1 and S2, we consider four
options. The use of the first (Hamming Loss) was proposed in [18].

Hamming Loss. This distance is defined as

dHamming(S1, S2) =
∣∣S1 \ S2 ∪ S2 \ S1

∣∣ / L. (3)

We observe that this is an analogue of dX from Eq. (2). Encoding a subset
S ⊆ L as a 0/1 vector s, where sj = 1⇔ `j ∈ S, we have dHamming(S1, S2) =
1
L

∑L
j=1 dj(s

1, s2), where the numeric part of di in Eq. (2) applies in dj . We
believe that there are more suitable choices for the distance dL that take into
account the set structure.

Accuracy. The similarity between two sets can be also measured by their
Jaccard index |S1 ∩ S2|/|S1 ∪ S2| which is well defined when at least one of the
subsets S1,2 is not empty (this is the case in our datasets). We then define

dAccuracy(S1, S2) = 1− |S1 ∩ S2| / |S1 ∪ S2|. (4)

F1 distance. This distance is defined as

dF1(S1, S2) = 1− 2|S1 ∩ S2| / (|S1|+ |S2|), (5)

where the second term can be seen as the harmonic mean of the precision and
recall [15]. However, these two measures are not symmetric, thus inappropriate
as the distance measures.

Subset Accuracy. This distance is defined as

dSubsetAcc(S1, S2) = 1
[
S1 6= S2

]
. (6)

It is the strictest, since it does not differentiate between, e.g., almost the same
and disjunctive pairs of subsets. This allows for a faster computation of the
distance as compared to the other options (Lemma 2).

Except for the dF1, all distances are also metrics. We named them after the
measures that they are expected to optimize (defined in Sec. 4.4), and believe
that no other standard measures (see [15, 27]) allow for a direct derivation of
distance definitions.

3.2 Algorithm Description

The calculation of the weights wi = importance(xi) using the MLC extension
of RReliefF is outlined in Alg. 1. RReliefF is an iterative procedure. For each
of the m iterations, we randomly select an example r from DTRAIN (line 4) and
find its K nearest neighbors (line 5) using the distance dX from Eq. (2). After
that, we use the neighbors to update the estimates of probabilities that appear
in the definition of the weights (1) for all attributes (lines 8–10). The estimates
of probabilities are updated with the weighted average of the distances between
r and its neighbors. Here, the distance dL from the algorithm input is used. The
weight δ(k) = 1/(mK) ensures that wi ∈ [−1, 1] when the algorithms finishes.
At the end, the weights wi are computed (line 12) by using the relation (1).

77

6 M. Petković et al.

Algorithm 1 MLC-RReliefF(DTRAIN, m, K, dL)

1: PdiffAttr, diffTarget, PdiffAttr = zero lists of length F
2: PdiffTarget = 0.0
3: for ι = 1, 2, . . . ,m do
4: r = random example from D
5: n1,n2, . . . ,nK = K nearest neighbors of r
6: for k = 1, 2, . . . ,K do
7: PdiffTarget += δ(`)dL

(
r,nk

)

8: for i = 1, 2, . . . , F do
9: PdiffAttr[i] += δ(`)di

(
r,nk

)

10: PdiffAttr, diffTarget[i] += δ(`)di
(
r,nk

)
dL

(
r,nk

)

11: for i = 1, 2, . . . , F do

12: wi =
PdiffAttr, diffTarget[i]

PdiffTarget
− PdiffAttr[i]−PdiffAttr, diffTarget[i]

1−PdiffTarget

The default values of the parameters are set as follows. Typically, we iterate
over the whole dataset, i.e., m = |DTRAIN|. By doing this, the estimates of
probabilities are expected to be more accurate. The value of K is typically set
small enough to capture the local structure in the data. In that way, we implicitly
capture the interactions between features [14].

3.3 Computational complexity

We first analyze the time complexity of a single iteration. Since the space-
partitioning data structures, such as kD trees do not perform well when the
number of features F is high, we use a brute-force method for finding the nearest
neighbors. Hence, the computation of the distances between r and the neighbour
candidates takes O(MF) steps, where M = |DTRAIN|. In addition to this, the
current group of the nearest neighbors must be updated from time to time.

Lemma 1. The expected number of updates of the group of current nearest
neighbors of the instance r is approximately K logM .

Proof. When we iterate over the neighbors, the group of currently K nearest
neighbors is updated if, and only if, at most K − 1 better candidates have been
found so far. Let nk be the instances from DTRAIN \ {r}, sorted increasingly
by the distance to r, i.e., n1 is the nearest neighbor and nM−1 is the farthest
neighbor. Let Ek be the expected number of updates when we find the candidate
nk. Then, Ek equals the probability pk of discovering at most K − 1 of the
instances n1, . . . , nk−1 before nk. Probability pk,s of discovering precisely s of
them equals the probability that nk appears in the (s + 1)-th position in the
random permutation of the instances n1, . . . ,nk, hence pk,s = 1/k, for all s < k,

and pk,s = 0 otherwise. It follows that pk =
∑K−1

s=0 pk,s = min{k,K}/k.

The total number of expected updates E then equals E =
∑M−1

k=1 Ek, hence

E =
∑M−1

k=1 pk = K+K
∑M−1

k=K+1
1
k = K(1+HM−1−HK), where k-th harmonic

number Hk is defined as Hk =
∑k

s=1 1/s. Since log k < Hk < 1 + log k, the
leading term in E is indeed K logM .

78 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

MLC-Relief: Does distance matter? 7

The overall cost of updating the current nearest neighbours is thusO(K logM logK)
if we are using, e.g., the heap structure.

When the neighbours nk, 1 ≤ k ≤ K, are computed, the distance between
their label set and the label set of r are computed. Considering that we store
the label sets as 0/1-lists of length L, this takes O(KL) steps for the distances
dHamming , dAccuracy and dF1, since we have to iterate over all labels. In the
case of dSubsetAcc , we can do much better, knowing that the labels are typically
sparse. To be able to obtain a closed form expression, we will assume that all
labels have the same probability to be relevant and that they are independent.

Lemma 2. The expected value of the labels considered in one computation of

dSubsetAcc is 1−pL(2−p)L

(1−p)2 , where p is the probability of a label being relevant.

Proof. We know that dSubsetAcc(S1, S2) = 1 as soon as we encounter the label
`l /∈ S1 ∩ S2. Let X be the number of labels considered. The key observation
is that we can easily compute P (X ≥ k) = P (`1, . . . , `k−1 ∈ S1 ∩ S2) = (1 −
p)2(k−1). This is useful since E[X] =

∑L
x=1 P (X ≥ k). We obtained geometric

series whose sum equals E[X] = 1−pL(2−p)L

(1−p)2 .

Tab. 1 reveals that the dataset Delicious has L = 983 labels and label car-
dinality (average number of labels per example) `c

.
= 19. Thus, p

.
= 0.019 and

E[X]
.
= 1.04, which is considerably smaller than L.

After the distances dL are computed, the probability estimates are updated
in O(KF) steps. After all iterations, the weights are computed in O(F) steps,
thus the final time complexity is O(m[MF +K logM logK+KL+KF] +F) =
O(m[MF +KL]) (in the case of dSubsetAcc , L the term KL is replaced by E[X]).
If the number of labels is high, then the term KL may not be negligible, which
was overlooked in [18].

4 Experimental Design

Here, we give the detailed experimental design for evaluating the performance
of the proposed distances. We begin by stating the experimental questions and
summarizing the MLC datasets used in this study. Then, we present the evalu-
ation procedure and give the specific parameters instantiations of the methods.

4.1 Experimental questions

The main experimental question is: Does the choice of the distance dL matter?

Furthermore, we investigate i) whether the knowledge encapsulated in the
feature importances leads to better predictive performance of a model, i.e, are
the obtained feature rankings relevant, and ii) how the quality of ranking is
influenced by the number of neighbors K and the number of iterations m.

79

8 M. Petković et al.

4.2 Datasets

We use 24 MLC benchmark problems. Tab. 1 presents the basic statistics of
the datasets. The number of features ranges from 72 to 52350. The features
are numeric and nominal. The label set size L ranges from 6 to 983, while the
number of training examples ranges from 322 up to 70000. The average number
of labels per example (in DTRAIN ∪ DTEST), i.e., label cardinality is also given.
With the exception of Delicious dataset, it ranges between 1.0 and 4.38.

The datasets come from different domains. Arts, Business, Computers, Edu-
cation, Entertainment, Health, Recreation, Reference, Science, Social and Society
describe the problems of finding relevant subtopics of the given main topic of a
web page. Bibtex and Bookmarks are automatic tag suggestion problems, Birds
deals with predictions of multiple bird species in a noisy environment. Corel5k
contains Corel images. Delicious contains contextual data about web pages along
with their tags. Emotions deals with emotions in music. Enron contains data
about emails. Genbase and Yeast come from biological domain. Mediamill was
introduced in a video annotation challenge. Medical comes from Medical Natu-
ral Language Processing Challenge. Scene deals with labelling of natural scenes.
TMC2007-500 is about discovering anomalies in text reports.

4.3 Evaluation methodology

We adopted the evaluation methodology that has been previously used in MLC
context [18] and in the other types of structured output prediction [17].

We use the same train-test split of the datasets as in the Mulan repository
http://mulan.sourceforge.net/datasets-mlc.html. A ranking is computed
from the training part DTRAIN only, and evaluated on the testing part DTEST.

The quality of the ranking is assessed by using the kNN algorithm where
instead of the standard Euclidean distance, its weighted version was used. For
two input vectors x1 and x2, the distance between them is defined as

d(x1,x2) =

√√√√
F∑

i=1

wid2
i (x1

i ,x
2
i), (7)

where di is defined by Eq. (2). The weights are set to wi = max{importance(xi), 0},
since they need to be made non-negative to ensure that d is well defined, and also
to ignore the attributes that have smaller values for importance than a randomly
generated attribute would have.

The evaluation through a kNN predictive model was chosen because of two
main reasons. First, this is a distance based model, hence, it can easily make use
of the information contained in the feature importances in the learning phase.
The second reason is kNN’s simplicity: its only parameter is the number of neigh-
bors, which we set to 15. In the prediction stage, the neighbors’ contributions
to the predicted value are equally weighted, so we do not introduce additional
parameters that would influence the performance.

80 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

MLC-Relief: Does distance matter? 9

Table 1: Data characteristics: sizes of train and test part of the dataset, number
of features F , labelset size L and label cardinality `c.

dataset |DTRAIN| |DTEST| F L `c
Arts [26] 3712 3772 23146 26 1.65
Bibtex [10] 4880 2515 1836 159 2.40
Birds [3] 322 323 260 19 1.01
Bookmarks [10] 70000 17856 2150 208 2.04
Business [26] 5710 5504 21924 30 1.60
Computers [26] 6270 6174 34096 33 1.51
Corel5k [7] 4500 500 499 374 3.52
Delicious[25] 12920 3185 500 983 19.02
Education [26] 6030 6000 27534 33 1.46
Emotions[23] 391 202 72 6 1.87
Enron [1] 1123 579 1001 53 3.38
Entertainment [26] 6356 6374 32001 21 1.41
Genbase [6] 463 199 1185 27 1.25
Health [26] 4557 4648 30605 32 1.64
Mediamill [19] 30993 12914 120 101 4.38
Medical [16] 645 333 1449 45 1.25
Recreation [26] 6471 6357 30324 22 1.43
Reference [26] 4027 4000 39679 33 1.17
Scene [2] 1211 1196 294 6 1.07
Science [26] 3214 3214 37187 40 1.45
Social [26] 6037 6074 52350 39 1.28
Society [26] 7273 7239 31802 27 1.67
TMC2007-500 [21] 21519 7077 500 22 2.22
Yeast [8] 1500 917 103 14 4.24

The second rationale for using kNN as an evaluation model is as follows. If
a feature ranking is meaningful, then when the feature importances are used as
weights in the calculation of the distances kNN should produce better predictions
as compared to kNN without using these weights [28].

4.4 Evaluation Measures

In the following, we denote the sets of true and predicted labels for an example
x respectively by y(x) and ŷ(x). The measures Hamming Loss, Accuracy , F1

Score and Subset Accuracy can be defined in terms of the distances (3)–(6). They
are respectively the means (over DTEST) of the values dHamming(y(x), ŷ(x)),
1 − dAccuracy(y(x), ŷ(x)), 1 − dF1(y(x), ŷ(x)) and 1 − dSubsetAcc(y(x), ŷ(x)).
Thus, Hamming Loss should be minimized while the remaining three should
be maximized. We use another four well known measures: One Error , Precision,
Recall and area under the pooled precision-recall curve (pooledAUPRC). The
definitions can be found in [15, 27].

81

10 M. Petković et al.

4.5 Statistical Analysis of the Results

For comparing the algorithms, we use the Friedman test. The null hypothesis H0

is that all considered algorithms have the same performance. If H0 is rejected by
the Friedman’s test, we additionally apply Nemenyi or Bonferroni-Dunn post-
hoc test. The first is used when we investigate where the statistically significant
differences between any two algorithms occur, while the second is used when we
are interested in the differences between one particular algorithm and the others.
A detailed description of all tests is available in [5].

The results of the Nemenyi and Bonferroni-Dunn tests are presented on crit-
ical distance diagrams. Each diagram shows the average rank of the algorithm
over the considered datasets, and the critical distance, i.e., the distance for which
average ranks of two considered algorithms must differ to be considered statisti-
cally significantly different. Additionally, the groups of algorithms among which
no statistically significant differences occur are connected with a line.

Before proceeding with the statistical analysis, we round the performances to
three decimal points. In the analysis, the significance level was set to α = 0.05.

4.6 Parameter instantiation

Since the sizes of datasets range over different orders of magnitude, the number of
iterations m is given as the proportion of the size of DTRAIN. The considered val-
ues are m ∈ {1%, 5%, 10%, 25%, 50%, 100%}. On the other hand, since the num-
ber of neighbors K controls the level of locality, it is better given in absolute val-
ues. Our choice is to consider the following values K ∈ {1, 5, 10, 15, 20, 25, 30, 40}.

5 Results

5.1 Does the Distance Matter?

To give every distance as good chance as possible, we compute and evaluate
feature rankings for all combinations of the parameters m and K and for ev-
ery dataset and distance version, the best pair (with respect to the evaluation
measure at hand) is chosen.

Friedman test rejected the null hypothesis for three of the four evaluation
measures that the distance definitions are part of: Accuracy (p = 5.2 · 10−4), F1

Score (p = 3.5 · 10−4) and Subset Accuracy (p = 0.011). In the case of Hamming
Loss, the performances are not statistically significantly different (p = 0.28).
The Bonferroni-Dunn test reveals that dHamming performs statistically signifi-
cantly worse than the other three distances, for the evaluation measures Accu-
racy (Fig. 1a) and F1 Score (with qualitatively the same diagram). In the case of
Subset Accuracy , it has still the worst performance, but it is not statistically sig-
nificantly worse than dSubsetAcc (Fig. 1b). Interestingly enough, the hypotheses
was not rejected for the Hamming Loss evaluation measure. Also in this case,
the rankings with dHamming have the worst average rank of 2.9 (as compared
to the best average rank of 2.1 that belongs to dAccuracy), which leads us to a

82 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

MLC-Relief: Does distance matter? 11

1 2 3 4

dF1

dAccuracy
dHamming
dSubsetAcc

critical distance: 0.8922

(a) Evaluation measure: Accuracy

1 2 3 4

dAccuracy
dF1

dHamming
dSubsetAcc

critical distance: 0.8922

(b) Evaluation measure: Subset Accuracy

Fig. 1: Comparison of the four distance functions in terms of a) Accuracy , and
b) Subset Accuracy : Critical distance diagrams from Bonferroni-Dunn test with
the baseline dHamming .

conclusion that the rankings with dHamming are indeed to some extent optimized
for Hamming Loss, but not sufficiently. Average ranks for this four measures are
shown on the radar plot in Fig. 2a.

The average ranks of the feature rankings with respect to the other four
measures are shown in Fig. 2b. Here, the null hypothesis H0 is rejected in the
case of Precision (p = 0.0011) and Recall (p = 3.8 · 10−4). This is not that
surprising, since optimizing for F1 Score should directly result in optimized
Precision and/or Recall , as noted after the definition of dF1 (Eq. (5)). The results
of the follow-up Bonferroni-Dunn tests are similar to those for Subset Accuracy :
rankings obtained with dHamming have the worst rank, but are not statistically
significantly worse than those obtained with dSubsetAcc . Additionally, H0 is also
rejected in the case of pooledAUPRC (p = 0.027), but in this case, no ranking is
statistically significantly different from the one that corresponds to dHamming .

Since we have rejected the null hypotheses (all algorithms perform equally
well) in 6 of 8 cases, we can already claim that choosing an appropriate distance
measure does matter. Moreover, both diagrams in Fig. 2 show that our newly

(a) Distance related measures (b) Other measures

Fig. 2: Average ranks of the rankings computed with the four distance functions
(denoted by A, B, C and D), in terms of measures that a) are, and b) are not
directly related to any of distances.

proposed distance definitions result in rankings that outperform those computed

83

12 M. Petković et al.

with dHamming . A reason for this may be that the latter cannot really capture
the possible interactions between the labels since it can be decomposed to the
per-label distances, as noted in Sec. 3.1. This may also be the reason why the
rankings computed with the newly proposed distances are typically closer to
each other than to the rankings computed with dHamming .

To detect the differences among the rankings, we also apply Nemenyi post-hoc
test. In addition to the relations discovered with Bonferroni-Dunn test, we now
know that there is statistically significant difference between dF1 and dSubsetAcc ,
when the quality is measured in terms of pooledAUPRC .

5.2 Are the Obtained Rankings Relevant?

To answer this question, we partially repeat the analysis from the previous
section: in addition to the evaluation of the four ranking types, also the non-
weighted 15NN algorithm is evaluated. If we reject the null hypothesis H0 with
Friedman test, the four rankings are compared to the non-weighted 15NN clas-
sifier with Bonferroni-Dunn post-hoc test. If there is a statistically significant
difference between the weighted 15NN classifier and non-weighted 15NN classi-
fier (in favour of the weighted one), we proclaim the ranking relevant.

H0 is rejected for all evaluation measures. The corresponding Bonferroni-
Dunn tests identifies the following. The distances dAccuracy and dF1 always result
in relevant rankings. The distance dSubsetAcc fails to result in relevant rankings
in the case of One Error . The distance dHamming results in relevant rankings
when the quality is measured in terms of Subset Accuracy and pooledAUPRC .

5.3 Influence of the Parameters m and K

To assess how does the number of iterations m influence the quality of ranking,
we choose one of the distance functions and a value for the number of neighbors
K. When m varies over the values specified in Sec. 4.6, six different rankings are
obtained. We compare their quality in terms of the chosen evaluation measure,
by applying the Friedman test.

H0 is rejected for all values of m and for all versions of target distance in the
case of Accuracy , F1 Score, Precision, Recall and Subset Accuracy . In the case
of Hamming Loss, it is never rejected. In the case of One Error , it is rejected for
dF1 when K ≥ 25 and for dSubsetAcc when K = 40. In the case of pooledAUPRC ,
the hypothesis is only rejected for dSubsetAcc when m = 40.

The only values of m which are always in the top performing group of algo-
rithms, are 25%, 50% and 100%. A typical critical distance diagram (for dAccuracy

and K = 20) is shown in Fig. 3a.
To assess the influence of the number of Relief neighbours K, a similar anal-

ysis is performed, now with the interchanged roles of m and K: the former is
fixed and the latter varies. The summary of the results is as follows. Number of
neighbors seems to have a lesser influence on the quality, since we do not reject
all hypotheses for any of the evaluation measures. However, this is mostly due

84 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

MLC-Relief: Does distance matter? 13

1 2 3 4 5 6

dAccuracy&m = 100
dAccuracy&m = 50
dAccuracy&m = 25

dAccuracy&m = 1
dAccuracy&m = 10
dAccuracy&m = 5

critical distance: 1.5392

(a) Influence of the number of Relief
iterations, for dAccuracy when K = 20.

1 2 3 4 5 6 7 8

dAccuracy&K = 30
dAccuracy&K = 25
dAccuracy&K = 40
dAccuracy&K = 20

dAccuracy&K = 1
dAccuracy&K = 5
dAccuracy&K = 10
dAccuracy&K = 15

critical distance: 2.1432

(b) Influence of the number of Relief
neighbors, for dAccuracy when m = 25%.

Fig. 3: Critical distance diagrams from Nemenyi tests that show the influence of
the number of a) iterations, and b) neighbors, on the quality of the dAccuracy

rankings, measured in terms of Precision.

to the fact that K almost never statistically significantly influence the quality
of the dHamming rankings. For the other distances, the hypothesis is always re-
jected when the quality is measured in terms of Accuracy , F1 Score, Precision,
Recall . This also holds for Subset Accuracy with two exceptions for dSubsetAcc :
m ∈ {1%, 100%}. Again, no hypothesis is rejected in the case of Hamming Loss.

Typically, more is better regarding the number of neighbors and the highest
values of K, i.e., K ∈ {30, 40} have often the best average rank. This can be
explained by the sparsity of the labels. To properly asses the average label space
distance in DTRAIN, one has to consider larger neighborhoods. However, the dif-
ferences among the algorithms for which K ≥ 15 are not statistically significant.
A typical situation (for dAccuracy and m = 25%) is shown in Fig. 3b.

6 Conclusions and Future Work

In this paper, we propose the use of three distance measures on the target space
within an extension of RReliefF approach to feature ranking for MLC tasks.
These are the distances that are used within the evaluation measures Accu-
racy , F1 Score and Subset Accuracy for predictive performance on MLC tasks.
We have shown that using any of these distances always results in rankings of
higher quality than the rankings computed with the distance used in the eval-
uation measure Hamming Loss [18]. Additionally, the newly proposed measures
outperform the old one in terms of Precision and Recall , since these two are
directly connected to the F1 Score. For more independent measures, such as
pooledAUPRC and One Error we did not observe any differences, so we can
conclude that the use of the proposed distance within RReliefF optimizes the
corresponding MLC evaluation measures.

We have also shown that all proposed rankings are relevant by comparing
the nearest neighbor classifier that uses feature relevance information, to the
standard nearest neighbor classifier. Additionally, we measure the influence of the
parameters m (number of Relief iterations) and K (number of Relief neighbors)
and show that rankings computed from m = 25% of the training dataset cannot

85

14 M. Petković et al.

be statistically significantly outperformed on average. The same goes for rankings
that were computed by examining the neighborhoods of size K = 15.

There are several directions for future work. We plan to find appropriate
distance measures for the hierarchical version of the MLC task: hierarchical
multi-label classification. Incorporating probabilities in the distances, the Re-
lief family can be also extended in the direction of data with missing labels
and semi-supervised problems. Once these are solved, we also plan to develop an
extension of Relief for seemingly much harder context of unsupervised learning,
where there are no target variables and the analogous approach cannot be taken.

References

1. UC Berkeley Enron Email Analysis Project. http://bailando.sims.berkeley.

edu/enron_email.html, Accessed: 2018-06-28
2. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classifi-

cation. Pattern Recognition 37(9), 1757–1771 (2004)
3. Briggs, F., Huang, Y., Raich, R., Eftaxias, K., Lei, Z., Cukierski, W., Frey Hadley,

S., Hadley, A., Betts, M., Fern, X.Z., Irvine, J., Neal, L., Thomas, A., Fodor, G.,
Tsoumakas, G., Ng Hong, W., Nguyen, T.N.T., Huttunen, H., Ruusuvuori, P.,
Manninen, T., Diment, A., Virtanen, T., Marzat, J., Defretin, J., Callender, D.,
Hurlburt, C., Larrey, K., Milakov, M.: The 9th annual mlsp competition: New
methods for acoustic classification of multiple simultaneous bird species in a noisy
environment. In: IEEE International Workshop on Machine Learning for Signal
Processing, MLSP 2013. p. 1 (2013)

4. Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label depen-
dence and loss minimization in multi-label classification. Machine Learning 88(1),
5–45 (2012)

5. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

6. Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I.: Protein classification with
multiple algorithms. In: 10th Panhellenic Conference on Informatics (PCI 2005).
pp. 448–456 (2005)

7. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object recognition as
machine translation: Learning a lexicon for a fixed image vocabulary. In: Heyden,
A., Sparr, G., Nielsen, M., Johansen, P. (eds.) Computer Vision — ECCV 2002.
pp. 97–112. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

8. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Di-
etterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information
Processing Systems 14. Springer International Publishing (2001)

9. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3, 1157–1182 (2003)

10. Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel text classification for auto-
mated tag suggestion. In: Proceedings of the ECML/PKDD 2008 Discovery Chal-
lenge (2008)

11. Kira, K., Rendell, L.A.: The feature selection problem: Traditional methods and
a new algorithm. In: Proceedings of the Tenth National Conference on Artificial
Intelligence. pp. 129–134. AAAI’92, AAAI Press (1992)

12. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting struc-
tured outputs. Pattern Recognition 46(3), 817–833 (2013)

86 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

MLC-Relief: Does distance matter? 15

13. Kong, D., Ding, C., Huang, H., Zhao, H.: Multi-Label ReliefF and F-statistic Fea-
ture Selections for Image Annotation. In: 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 2352–2359 (2012)

14. Kononenko, I., Robnik-Šikonja, M.: Theoretical and Empirical Analysis of ReliefF
and RReliefF. Machine Learning Journal 55, 23–69 (2003)

15. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental
comparison of methods for multi-label learning. Pattern Recognition 45, 3084–3104
(2012)

16. Pestian, J.P., Brew, C., Matykiewicz, P., Hovermale, D.J., Johnson, N., Breton-
nel Cohen, K., Duch, W.: A shared task involving multi-label classification of
clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biological,
Translational, and Clinical Language Processing (BioNLP ’07). pp. 97–104 (2007)

17. Petković, M., Džeroski, S., Kocev, D.: Feature ranking for multi-target regression
with tree ensemble methods. In: Yamamoto, A., Kida, T., Uno, T., Kuboyama, T.
(eds.) Discovery Science. pp. 171–185. Springer International Publishing (2017)

18. Reyes, O., Morell, C., Ventura, S.: Scalable extensions of the relieff algorithm for
weighting and selecting features on the multi-label learning context. Neurocom-
puting 161, 168 – 182 (2015)

19. Snoek, C.G.M., Worring, M., van Gemert, J.C., Geusebroek, J.M., Smeulders,
A.W.M.: The challenge problem for automated detection of 101 semantic concepts
in multimedia. In: Proceedings of the 14th ACM International Conference on Mul-
timedia. pp. 421–430. ACM, New York, NY, USA (2006)

20. Spolaôr, N., Cherman, E.A., Monard, M.C., Lee, H.D.: A comparison of multi-label
feature selection methods using the problem transformation approach. Electronic
Notes in Theoretical Computer Science 292, 135–151 (2013)

21. Srivastava, A.N., Zane-Ulman, B.: Discovering recurring anomalies in text reports
regarding complex space systems. In: 2005 IEEE Aerospace Conference (2005)

22. Stańczyk, U., Jain, L.C. (eds.): Feature Selection for Data and Pattern Recognition.
Studies in Computational Intelligence, Springer Berlin Heidelberg (2015)

23. Trochidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification
of music into emotions. In: 2008 International Conference on Music Information
Retrieval (ISMIR 2008). pp. 325–330 (2008)

24. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International
Journal of Data Warehousing and Mining pp. 1–13 (2007)

25. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classifi-
cation in domains with large number of labels. In: ECML/PKDD 2008 Workshop
on Mining Multidimensional Data (MMD’08) (2008)

26. Ueda, N., Saito, K.: Parametric mixture models for multi-labeled text. In: Advances
in Neural Information Processing Systems 15. pp. 721–728. MIT Press (2003)

27. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for
hierarchical multi-label classification. Machine Learning 73(2), 185–214 (2008)

28. Wettschereck, D.: A study of distance based algorithms. Ph.D. thesis, Oregon State
University, USA (1994)

87

Machine Learning Journal manuscript No.
(will be inserted by the editor)

Multi-label feature ranking with ensemble methods

Matej Petković · Sašo Džeroski · Dragi
Kocev

Received: date / Accepted: date

Abstract In this paper, we propose three ensemble-based feature ranking scores
for multi-label classification (MLC), which is a generalisation of multi-class classi-
fication where the classes are not mutually exclusive. Each of the scores (Symbolic,
Genie3 and Random forest) can be computed from three different ensembles of
predictive clustering trees: Bagging , Random forest and Extra trees. We extensively
evaluate the proposed scores on 24 benchmark MLC problems, using 15 standard
MLC evaluation measures. We determine the ranking quality saturation points in
terms of the ensemble sizes, for each ranking-ensemble pair, and show that qual-
ity rankings can be computed really efficiently (typically 10 or 50 trees suffice).
We also show that the proposed feature rankings are relevant and determine the
most appropriate ensemble method for every feature ranking score. We empirically
prove that the proposed feature ranking scores outperform current state-of-the-art
methods in the quality of the rankings (for the majority of the evaluation mea-
sures), and in time efficiency. Finally, we determine the best performing feature
ranking scores. Taking into account the quality of the rankings first and - in the
case of ties - time efficiency, we identify the Genie3 feature ranking score as the
optimal one.

Keywords feature ranking · multi-label classification · ensemble-based methods ·
predictive clustering trees

We acknowledge the financial support of the Slovenian Research Agency via the grants P2-
0103, J2-9230, J7-1815, J7-9400 and N2-0128, and a young researcher grant to MP. The com-
putational experiments presented here were executed on a computing infrastructure from the
Slovenian Grid (SLING) initiative.

Matej Petković · Sašo Džeroski · Dragi Kocev
Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Jožef Stefan International Postgraduate School
Jamova 39, 1000 Ljubljana, Slovenia
Tel.: +386-1477-3635
E-mail: matej.petkovic@ijs.si, E-mail: saso.dzeroski@ijs.si, E-mail: dragi.kocev@ijs.si

88 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

2 Matej Petković et al.

1 Introduction

As opposed to the standard classification problems, where the goal is to learn a
model that predicts one of the two or more mutually exclusive predefined class
values, e.g., predict whether a given board position leads to a win, draw or loss if
both players are playing optimally, multi-label classification (MLC) is a predictive
modeling task where the examples can be labeled with more than one (or even
zero) of the labels from a predefined set of labels L . In this case, we denote
examples as (x,y), where i) x is a vector of values of features xi that are either
numeric (the domain of xi is a subset of R) or nominal (the domain of xi is a finite
set of values), and ii) y is a subset of the label set L . The elements of y are the
labels that are relevant for a given example.

MLC problems are receiving more and more attention from the research com-
munity. For example, one of the use cases of MLC is labeling pictures with objects
that appear on them. Due to the abundance of data more and more efficient meth-
ods are needed, and this is were feature ranking can play a significant role.

One can always approach a MLC problem by transforming the data and then
use standard classification method to learn predictive models. The most typical
approach is binary relevance where the MLC problem is divided into a set of
L = |L | standard classification problems, and a separate model for each of the
labels is build separately, i.e., a model that predicts whether a given label ` is
relevant for a given example. In the end, these predictions are joined into a final
one [Tsoumakas and Vlahavas, 2007]. However, building a separate model for each
label might be too costly as well as it prevents the predictive model to take into
account dependencies among the labels in the learning phase. A similar, yet even
more time consuming approach is to build L(L − 1)/2 predictive models, one for
each pair of labels `1 6= `2 [Elkafrawy et al., 2015]. In the end, the votes for every
label are summed up and the ones with the most votes are predicted as relevant.

Another in the group of problem transformation approaches is the power set
approach [Tsoumakas and Vlahavas, 2007] where subsets y are looked upon as the
elements of the power set P(L). It transforms the data into a standard classifica-
tion problem. A drawback of this approach is that the maximal number of classes
2L may be really high and the data becomes very sparse.

Another group of methods are the so called method adaptation approaches
where an existing method is adapted to directly address MLC problems.
This has been done, for example, in the case of predictive clustering trees
[Madjarov et al., 2012] and support vector machines [Elisseeff and Weston, 2001].

The main topic of this paper is the task of feature ranking. It is a machine
learning task and it is very closely related to predictive modelling. Input to a
feature ranking algorithm is a dataset D and its output are feature relevance scores
relevance(xi), for all features xi. The relevance score of a feature xi assesses how
dependent are the target values y on the feature xi.

By performing a feature ranking, we can explain the predictions of complex
black-box models, such as deep neural networks or ensembles. Another motiva-
tion for feature ranking is dimensionality reduction, i.e., performing feature selec-
tion [Lee and Kim, 2017,Sechidis et al., 2014]. The task of feature selection can
be viewed as a subtask of feature ranking, where we select the most relevant fea-
tures, and ignore the others when building a predictive model. In that way, the
obtained models are easier to understand, faster to build and less prone to over-

89

Multi-label feature ranking with ensemble methods 3

fitting. The selection of the most relevant features is done by first computing the
feature relevances, and then retaining the features with the top k highest scores,
for a k ∈ N.

Approaches to the MLC feature ranking tasks are analogous to those of MLC
predictive modelling. We can convert a dataset into L classification datasets (as in
binary relevance), compute ranking for each label separately and aggregate feature
relevances across the labels to obtain the final ranking. Other data transformation
approaches are possible in combination with the many feature ranking methods for
classification are applicable [Guyon and Elisseeff, 2003]: convert the problem into
L binary classification tasks, or convert the problem into a multi-class classification
task with 2L classes by using the label power set approach. These two approaches
inherit the drawbacks from the MLC task: too high computational cost due to the
many binary classification tasks, or sparsity due to the large number of classes
in the multi-class classification task. These drawbacks might lead to potentially
irrelevant feature rankings.

Method adaptation approaches for MLC feature ranking are divided into
three major groups - a heritage from the standard classification scenario
[Guyon and Elisseeff, 2003]. The first group are filters and they do not need any
predictive model. They are typically computationally very efficient, but can be
myopic, i.e., do not make use of the feature dependencies. The second group are
wrappers and they heavily use predictive models but are very appropriate more
or less only for feature selection, since they typically return a feature subset with-
out relevances. Usually, the procedure goes as follows: a candidate feature set is
chosen at the beginning. Then, a predictive model that uses only features from
this feature set is learned, the feature set is updated according to the predictive
performance of the model, and the cycle repeats. The third group of feature rank-
ing algorithms are embedded methods where a single predictive model is built and
feature relevances are computed directly from it.

The rest of the paper is organized as follows. In Sec. 2 we describe some related
work. In Sec. 3, the necessary background for the proposed scores is presented, and
in Sec. 4 description of the scores is given. In Sec. 5, the experimental setup is
presented (with the listing of experimental questions, evaluation procedure etc).
Sec. 6 we present and discuss the results of the experiments. In Sec. 7, we conclude
and give directions for further work.

2 Related Work

The datasets in our experiments have hundreds of labels (see Tab. 2), hence,
the data transformation approaches are inappropriate or even infeasible. These
approaches include methods addressing the feature ranking through binary rele-
vance, label power set [Spolaôr et al., 2013] and the 1-vs-1 version of the ReliefF
algorithm [Kong et al., 2012]. Consequently, we will only focus on the method
adaptation approaches. Furthermore, as explained above, the methods from the
wrapper subgroup of method adaptation methods are also not really appropri-
ate for all feature ranking tasks, so we will review the filter and the embedded
approaches and start with the former.

There exist adaptations of information theory based feature ranking scores,
such as information gain [Pereira et al., 2015], or feature ranking scores that base

90 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

4 Matej Petković et al.

on statistical tests, such as χ2 feature ranking [Spolaôr and Tsoumakas, 2013].
However, none of them can exploit the feature dependencies, and they all need ad-
ditional preprocessing of the data, since the numeric features have to be discretized
prior to computing the feature ranking.

These drawbacks are addressed by the RReliefF-ML adaptation [Reyes et al., 2015]
of the RReliefF algorithm [Kononenko and Robnik-Šikonja, 2003] to MLC setting.
This is a generalization of the regression version of the Relief algorithm, where
only one set of neighbours needs to be computed in every iteration, as opposed
to the other versions that base on the Relief for classification and need L (binary
relevance), O(L2) (the version from [Kong et al., 2012]) or 2L groups (power set
approach) in the worst case.

The RReliefF-ML algorithm was empirically shown to yield relevant feature
rankings [Reyes et al., 2015] by using it on 34 benchmark problems and apply-
ing Friedman statistical test. However, the very basic assumption of test (inde-
pendence of datasets) was not met [Petković et al., 2018]. Moreover, it has been
shown [Dembczyński et al., 2012] that different MLC evaluation measures result
in different optimal classifiers when a predictive modelling problem is being solved,
which should also reflect in the field of feature ranking. This was the motivation
for parameterizing the distance in the RReliefF-ML algorithm and for proposing
three different distance definitions that mimic standard MLC evaluation measures:
the original hamming loss distance was compared to the distances that base on
the multi-label accuracy, multi-label F1 measure and subset accuracy. In general,
the resulting MLC-Relief algorithm outperformed the original.

The only embedded feature ranking method that we could found is computed
from a Random forest of predictive clustering trees (PCTs) [Kocev et al., 2013a].
There, a Random forest of 500 PCTs is built and the ranking is computed out
of it as proposed in [Breiman, 2001]. The preliminary study of the method was
carried out on the limited number of four benchmark datasets (all four of them are
included in our study). In this work, we extend that work in the following ways:

1. In addition to Random forest , we propose to use two new ensemble methods:
Bagging and Extra trees

2. In addition to the feature ranking score from [Kocev et al., 2013a], we propose
two new: Symbolic and Genie3

3. We extensively evaluate the methods on 24 benchmark datasets
4. We analyze the computational complexity of the proposed feature ranking

algorithms, and show that they can be computed much more efficiently that
those in [Kocev et al., 2013a] (up to 50-times faster).

5. We compare the proposed methods to the non-informed features rankings and
state-of-the-art feature ranking methods, and show that we outperform the
baselines.

3 Background

3.1 Multi-Label Classification PCTs

The proposed feature ranking method is based on ensembles of predictive clus-
tering trees (PCTs) – these are an adaptation of the standard decision trees
[Breiman et al., 1984] to different types of structured output prediction tasks [Blockeel, 1998,

91

Multi-label feature ranking with ensemble methods 5

Table 1: The algorithm for learning predictive clustering trees. Algorithm 1 gives
the top-down induction procedure, while Algorithm 2 gives the best test selection
procedure.

Algorithm 1 PCT(E)

1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ 6= none then
3: for each Ei ∈ P∗ do
4: treei = PCT(Ei)
5: return Internal(t∗,

⋃
i{treei})

6: else
7: return Leaf (Prediction(E))

Algorithm 2 BestTest(E)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each test t do
3: P = partition induced by t on E
4: h = |E|impu(E)−∑

Ei∈P |Ei|impu(Ei)

5: if h > h∗ then
6: (t∗, h∗,P∗) = (t, h,P)
7: return (t∗, h∗,P∗)

Kocev et al., 2013b], including MLC, and also clustering. The induction procedure
is given in Alg. 1 (from Tab. 1). The input to the method is a set E of training
examples, i.e., a training set. The procedure then selects the split test from all
candidate splits based on the evaluation of the heuristic score h. The best split is
thus chosen to partition the subset E into subsets Ei, an internal node is created
(with the selected split), and the method is called recursively on each of the sub-
sets. If no good split exists, a leaf node is created and a prediction for that node
is computed.

The adaptation to a given task is completely defined by the impurity measure
impu used when evaluating the splits (line 5 in Alg. 2, from Tab. 1), and prediction
function Prediction. The heuristic greedily guides the tree induction since finding
the tree with the smallest depth is a NP-hard problem [Hancock et al., 1996].

In the implementation of PCTs (available at http://source.ijs.si/ktclus/
clus-public), a label set y is internally represented as its incidence vector y whose
j-th component yj takes the value 1 when `j ∈ y and takes the value 0 otherwise.
The impurity of the label `j for the subset E is then defined as the variance
Var(E)j of yj . These values are aggregated in order to obtain the impurity of y
for the subset E as

impu(E) =

L∑

j=1

Var(E)j
Var(DTRAIN)j

,

i.e., as the average of the normalized variances of the labels.

The prediction ŷ for a subset E that belongs to a leaf is obtained by first
computing the average incidence vector

y =
1

|E|
∑

(x,y)∈E
y,

which gives us the estimates of probabilities yj = P (`j ∈ y | x), and then predict-
ing `j ∈ y if and only if yj ≥ 1/2.

92 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

6 Matej Petković et al.

3.2 Ensembles of PCTs

An ensemble is a set of base predictive models. Its prediction for an example x
is made by combining the predictions of the ensemble base models. In the case of
MLC and ensembles of PCTs, this is typically done by first averaging the prob-
abilities that single trees give, and then applying the threshold of 1/2 as in the
single tree case.

The motivation for introducing an ensemble is that it can be viewed as more
stable versions of its base models, since - if the members are diverse models
[Hansen and Salamon, 1990] - the ensemble predictions have lower variance and
are therefore more accurate. Even though we do not use the ensembles as pre-
dictive models and rather just compute feature ranking scores out of them, the
same motivation still holds. Since every tree is built independently of the others
we define the ensemble feature ranking scores as the averages of the scores over
the trees in the ensemble.

To introduce some diversity into the tree induction, one has to modify the
completely deterministic tree induction algorithm (Alg. 1). There are several ways
to do so and we use three of them.

Bagging and Random forest. Instead of being learned from the whole train-
ing set DTRAIN, each tree in the Bagging/Random forest ensemble is built from a
different bootstrap replicate B of DTRAIN, called bag. The examples DTRAIN \ B
are called out-of-bag examples (OOB). Additionally, instead of evaluating all pos-
sible tests in the BestTest procedure (Alg. 2), only the tests that a random subset
of features yield, are evaluated. The number of the retained features f is a pa-
rameter to the algorithm. Its typical values are dlog2 F e or d

√
F e, etc. If f = F ,

i.e, we keep all the features, we obtain the Bagging procedure, and Random forest
procedure otherwise.

Extra trees ensembles. As in Random forest , we again consider f features
in each node, but we do not evaluate all the corresponding tests. Rather, we
choose randomly only one test per feature and choose the best one among these f
tests. From the bias-variance point of view, the rationale behind the Extra-Trees
method is that the explicit randomization of the cut-point and feature combined
with ensemble averaging should be able to reduce variance more strongly than the
weaker randomization schemes used by other methods [Geurts et al., 2006]. Note
that, however, Extra-Tree ensembles do not use bootstrapping.

4 Feature Ranking Scores

We first propose and describe the Symbolic score. Then, we proceed explaining the
Genie3 [Huynh-Thu et al., 2010] and the Random forest score [Breiman, 2001] In
the following, a tree is denoted by T , whereas N ∈ T denotes a node. Trees form
an ensemble E of the size |E|. The set of all internal nodes of a tree T in which
the feature xi appears as part of a test is denoted as T (xi).

Symbolic score. The main motivation for this score is that the relevance(xi)
should be proportional to the number of occurrence of the feature xi in the splits
in the trees. However, tests closer to the root influence more examples, hence the
depth of the nodes should be also taken into account. The relevance of feature xi

93

Multi-label feature ranking with ensemble methods 7

as defined by the Symbolic score is thus given as

relevanceSYMB(xi) =
1

|E|
∑

T ∈E

∑

N ∈T (xi)

αdepth(N), (1)

where the value of the parameter α ∈ (0, 1] controls how quickly the influence of
a node decreases with its depth. Setting it to α = 1 results in simple counting of
the appearances of the features in the tree nodes.

Genie3 score. The main motivation for this score is that a relevant feature xi
highly reduces the impurity of the target variable if it appears in the split in the
tree. The Genie3 relevance of the feature xi is thus defined as

relevanceGENIE3(xi) =
1

|E|
∑

T ∈E

∑

N ∈T (xi)

|E(N)|h∗(N), (2)

where E(N) is the set of examples that come to the node N , and h∗(N) is the
heuristic value of the split, i.e., the variance reduction, as described in the Alg. 2.
Additionally, greater emphasis is again put on the nodes closer to the root that
are reached by higher number of examples E(N).

Random forest (RF) score. This score tests how much noising a feature de-
creases the predictive performance of the trees in the ensemble. The greater the
performance degradation, the more important the feature is.

Once a tree T in an ensemble is grown, it typically overfits to the dataset it was
built for, since no pruning is used in the considered ensemble methods. Thus, the
performance of the tree has to be assessed by using out-of-bag examples OOBT
that were not part of the tree induction. This results in the error Err(OOBT) as
measured with Hamming loss. Afterward, the values of feature xi in the set OOBT
are randomly permuted. We denote the perturbed OOB set by OOBi

T , and the
corresponding predictive error by Err(OOBi

T). The relevance of the feature xi
as the relative increase of the error after noising, averaged over the trees in the
ensemble, namely

relevanceRF(xi) =
1

|E|
∑

T ∈E

Err(OOBi
T)− Err(OOBT)

Err(OOBT)
. (3)

It is evident that this feature ranking score cannot be computed from an ensemble
of Extra trees, since they do not use bootstrapping. Note also that due to the
possibly numerous permutations of the OOB datasets (whose size is on average
more than one third of DTRAIN) and sending the examples through the trees twice,
the time complexity of computing the ranking is not negligible compared to that
of building the tree, which is the case for the other two feature ranking scores.
However, the algorithm can be made more efficient if we note that Err(OOBi

T) =
Err(OOBT) for the features xi that do not appear in T ,

Finally, while the first two scores are inherently related to trees, the permu-
tation mechanism of the Random forest score can also be used with the other
learners. However, building an ensemble of decision trees using Random forest or
Bagging is very appropriate since i) these two ensembles use bootstrapping, and
ii) the time complexity of the trees for making predictions is low.

94 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

8 Matej Petković et al.

4.1 Theoretical Aspects

Here, we first give the time complexity of the proposed methods, and then the
convergence properties of the scores with increasing number of trees.

Under the relaxed balancedness assumption of the trees that a tree has depth
O(logn), we can quickly derive (by counting the number of operations in the
nodes) the following time complexities. The time complexity for inducing Bagging
is O(|E|FLn log2 n), where |E| is the size of the ensemble, F is the number of
features, l is the number of labels, n is the number of examples.

Next, we give the following observation for computing the value of relevance(xi)
(using any ensemble method).

Proposition 1 Variance of the random variable Ri = relevance(xi) decreases
linearly with the number of trees in an ensemble.

Proof Let Ri,t be the relevance of some fixed variable xi as computed from the

tree t. Note that the Eqs. (1)–(3) say that Ri = 1
|E|
∑|E|

t=1Ri,t. Moreover, Ri,t are

independent and identically distributed variables, thus Var(Ri) = VarRi,1/|E|. �

Corollary 1 With probability one, the order of features with respect to their rank-
ing converges to some final ranking, when E ↗ ∞.

Proof The law of large numbers assures that the distribution of Ri variables con-
verges to the Dirac delta function, positioned at E[Ri]. The fact that the expected
values are all different equal with probability one, concludes the proof. �

5 Experimental Setup

5.1 Experimental Questions

We perform experiments to answer the following questions:

1. For a given ranking-ensemble pair, how many trees are needed to reach the
saturation point in the quality of the ranking?

2. Are the obtained feature rankings relevant, i.e., are they better than a non-
informed ranking that considers all features equally important?

3. What is the most suitable ensemble method for a given feature ranking score?
4. Do the proposed feature ranking scores outperform state-of-the-art baseline?
5. Which feature ranking score is the best?

As state-of-the-art baseline, we take the MLC-Relief method.

5.2 Datasets

We use the same 24 MLC benchmark problems that were used in [Petković et al., 2018].
Tab. 2 presents the basic statistics of the datasets. The number of features ranges
from 72 to 52350. The features are numeric and nominal. The label set size L
ranges from 6 to 983, while the number of training examples ranges from 322 up
to 70000. The average number of labels per example (in DTRAIN ∪ DTEST), i.e.,

95

Multi-label feature ranking with ensemble methods 9

label cardinality is also given. With the exception of Delicious dataset, it ranges
between 1.0 and 4.38.

The datasets come from different domains. Arts, Business, Computers, Edu-
cation, Entertainment, Health, Recreation, Reference, Science, Social and Society
describe the problems of finding relevant subtopics of the given main topic of a web
page. Bibtex and Bookmarks are automatic tag suggestion problems, Birds deals
with predictions of multiple bird species in a noisy environment. Corel5k contains
Corel images. Delicious contains contextual data about web pages along with their
tags. Emotions deals with emotions in music. Enron contains data about emails.
Genbase and Yeast come from biological domain. Mediamill was introduced in a
video annotation challenge. Medical comes from Medical Natural Language Pro-
cessing Challenge. Scene deals with labelling of natural scenes. TMC2007-500 is
about discovering anomalies in text reports.

Table 2: Data characteristics: Sizes of the train and test parts of the dataset,
number of features F , labelset size L and label cardinality `c.

dataset |DTRAIN| |DTEST| F L `c
Arts [Ueda and Saito, 2003] 3712 3772 23146 26 1.65
Bibtex [Katakis et al., 2008] 4880 2515 1836 159 2.40
Birds [Briggs et al., 2013] 322 323 260 19 1.01
Bookmarks [Katakis et al., 2008] 70000 17856 2150 208 2.04
Business [Ueda and Saito, 2003] 5710 5504 21924 30 1.60
Computers [Ueda and Saito, 2003] 6270 6174 34096 33 1.51
Corel5k [Duygulu et al., 2002] 4500 500 499 374 3.52
Delicious [Tsoumakas et al., 2008] 12920 3185 500 983 19.02
Education [Ueda and Saito, 2003] 6030 6000 27534 33 1.46
Emotions [Trochidis et al., 2008] 391 202 72 6 1.87
Enron [UC Berkeley, 2018] 1123 579 1001 53 3.38
Entertainment [Ueda and Saito, 2003] 6356 6374 32001 21 1.41
Genbase [Diplaris et al., 2005] 463 199 1185 27 1.25
Health [Ueda and Saito, 2003] 4557 4648 30605 32 1.64
Mediamill [Snoek et al., 2006] 30993 12914 120 101 4.38
Medical [Pestian et al., 2007] 645 333 1449 45 1.25
Recreation [Ueda and Saito, 2003] 6471 6357 30324 22 1.43
Reference [Ueda and Saito, 2003] 4027 4000 39679 33 1.17
Scene [Boutell et al., 2004] 1211 1196 294 6 1.07
Science [Ueda and Saito, 2003] 3214 3214 37187 40 1.45
Social [Ueda and Saito, 2003] 6037 6074 52350 39 1.28
Society [Ueda and Saito, 2003] 7273 7239 31802 27 1.67
TMC2007-500
[Srivastava and Zane-Ulman, 2005]

21519 7077 500 22 2.22

Yeast [Elisseeff and Weston, 2001] 1500 917 103 14 4.24

5.3 Evaluation Methodology

We adopted the evaluation methodology that has been previously used in MLC
context [Reyes et al., 2015] and in the other types of structured output prediction
[Petković et al., 2019].

96 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

10 Matej Petković et al.

We use the same train-test split of the datasets as in the Mulan repository
http://mulan.sourceforge.net/datasets-mlc.html. A ranking is computed from
the training part DTRAIN only, and evaluated on the testing part DTEST.

The quality of the ranking is assessed by using the kNN algorithm in which
as a distance measure the weighted Euclidean distance was used. For two input
vectors x1 and x2, the distance between them is defined as

d(x1,x2) =

√√√√
F∑

i=1

wid2i (x1
i ,x

2
i), (4)

where di is defined as the absolute difference of the feature values scaled to the
[0, 1]-interval, if xi is numeric, and as 1[x1

i 6= x2
i] (1 is the indicator function),

if xi is nominal. The weights are set to wi = max{relevance(xi), 0}, since they
need to be made non-negative to ensure that d is well defined, and also to ignore
the attributes that have smaller values for importance than a randomly generated
attribute would have.

The evaluation through a kNN predictive model was chosen because of three
main reasons. First, this is a distance based model, hence, it can easily make use
of the information contained in the feature importances in the learning phase. The
second reason is kNN’s simplicity: its only parameter is the number of neighbors
and we set its value to 15 (based on initial experiments in [Petković et al., 2018]
and the experiments presented in [Spyromitros et al., 2008]). In the prediction
stage, the neighbors’ contributions to the predicted value are equally weighted,
so we do not introduce additional parameters that would influence the perfor-
mance. The third reason for using kNN as an evaluation model is as follows. If
a feature ranking is meaningful, then when the feature importances are used as
weights in the calculation of the distances kNN should produce better predictions
as compared to kNN without using these weights [Wettschereck, 1994].

5.4 Evaluation Measures

We evaluate our feature ranking scores using 15 standard MLC evaluation mea-
sures [Madjarov et al., 2012,Vens et al., 2008]. These are

– average area under precision-recall curve (AUPRC), area under the average
precision-recall curve (AUPRC), average area under the ROC curve (AUROC),

– micro precision, micro recall, micro F1 measure,
– multi-label precision, multi-label recall, multi-label F1 measure, multi-label

accuracy,
– Hamming loss, subset accuracy,
– one error, coverage, ranking loss.

We avoided the use of macro-averaged measures and average precision since they
are ill-defined in some cases that we also encountered in our evaluation of the re-
sults. For example, these cases concern datasets containing examples (x,y) whose
label set y is empty, thus calculating average precision leads to 0/0 expressions.
Additionally, the problems might occur when a given label is never predicted as
relevant. All in all, the datasets where such ill-defined cases occur are Business,

97

Multi-label feature ranking with ensemble methods 11

Corel5k, Delicious, Genbase, Health, Medical, Reference (macro recall); Birds, De-
licious and Mediamill (average precision); and all but Emotions and Scene (macro
precision and macro F1).

5.5 Statistical Analysis of the Results

For comparing the algorithms, we use the Friedman test. The null hypothesis
H0 is that all considered algorithms have the same performance. If it is rejected
by the Friedman’s test, we additionally apply Nemenyi or Bonferroni-Dunn post-
hoc test. The first is used when we investigate where the statistically significant
differences between any two algorithms occur, while the second is used when we
are interested in the differences between one particular algorithm and the others.
A detailed description of all tests is available in [Demšar, 2006].

The results of the Nemenyi and Bonferroni-Dunn tests are presented on critical
distance diagrams. Each diagram shows the average rank of the algorithm over
the considered datasets. Additionally, the groups of algorithms among which no
statistically significant differences occur are connected with a line.

Before proceeding with the statistical analysis, we round the performances to
three decimal points. In the analysis, the significance level was set to α = 0.05.

Sometimes, it is necessary to control the false discovery rate. We do this with
the Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995].

5.6 Parameter instantiation

We set the number of features that are considered at each node to f = d
√
F e

[Kocev et al., 2013b] when building a Random forest , and to f = F when building
an ensemble of Extra trees [Kocev and Ceci, 2015]. The remaining parameter that
completely defines tree induction is the minimal number of instances in a leaf which
was set to 2. We build ensembles of sizes |E| ∈ {10, 25, 50, 75, 100, 150, 200, 250}.
The proposed feature ranking scores themselves are parameter-less, except for the
Symbolic ranking where the value of the parameter α is set to 0.5 as recommended
in [Petković et al., 2019].

We set the parameters of the MLC-Relief algorithm to their recommended
values [Petković et al., 2018]: the number of iterations m is set to |DTRAIN|/4, the
number of the Relief neighbours K is set to K = 15, and the distance between the
label sets y1 and y2 in the target space is set to the F1 distance

dF1(y1,y2) = 1− 2|y1 ∩ y2| / (|y1|+ |y2|).

6 Results and Discussion

Due to the large number of datasets and evaluation measures, we will use the
Arts dataset and the evaluation measures AUPRC and Ranking Loss as a running
example, for which we show the detailed graphs. The results for the other datasets
and measures will be shown in an aggregated form. Their extended version is
available at https://github.com/Petkomat/mlc-ranking.

98 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

12 Matej Petković et al.

6.1 How Many Trees?

For each dataset, ranking-ensemble pair and evaluation measure M , we can define
the curves that consist of the points (e,M(e)) where e ranges over the possible
values of ensemble sizes given in Sec. 5.6. The curves for the Arts dataset that
belong to feature rankings computed from the Bagging ensemble and evaluated in
terms of AUPRC and Ranking Loss are given in Fig. 1. Since AUPRC should be
maximized and Ranking Loss minimized, Symbolic score performs best in both
cases (except for the 10-trees rankings, evaluated with Ranking Loss), and Random

forest score performs worst. Furthermore, it is expected that more trees con-
tribute to a more stable and better feature relevance estimates (the variances of
the relevance estimates (xi) is inversely proportional to the number of trees in an
ensemble), and the curves are not monotonic and not very steep (except for the
Symbolic ranking). Consequently, the graphs hint that a small number of trees
suffices to achieve the saturation point of the ranking quality. Essentially, we are
looking to find the minimal number of trees that need to be included into the en-
semble so that the performance of the learned feature rankings is not statistically
significantly different compared to the best feature ranking.

10 25 50 75 100 150 200 250

0.250

0.275

0.300

0.325

A
U

P
R

C

Random Forest

Genie3

Symbolic

(a) AUPRC

10 25 50 75 100 150 200 250

0.19

0.20

0.21

ra
n

ki
n

g
lo

ss

Random Forest

Genie3

Symbolic

(b) Ranking Loss

Fig. 1: Quality of the feature rankings computed from the three scores and Bagging
ensembles, on the Arts dataset when the ensemble sizes varies. The quality is
measured in terms of AUPRC (a) and Ranking Loss (b).

To further investigate that, we fix the ranking-ensemble pair and evaluation
measure while the ensemble size varies. We compare the differences among the
corresponding rankings over all the datasets by applying Friedman statistical test.
Since there are 8 ranking-ensemble pairs and 15 evaluation measures, this results
in 120 tests. However, these tests are not independent, since some of them base
on the same rankings. Thus, we control the false discovery rate by the Benjamini-
Hochberg procedure [Benjamini and Hochberg, 1995]. The null hypothesis that all
feature rankings have the same quality is rejected only in 21 cases. This essentially
implies that having ensembles with as little as 10 base predictive models already
yield good feature ranking. The results from the statistical tests are available at
the repository https://github.com/Petkomat/mlc-ranking.

Difference in the feature rankings was discovered (i.e., the null hypothesis is
rejected) for i) 14 out of 15 evaluation measures for the Symbolic-Random forest

99

Multi-label feature ranking with ensemble methods 13

pair (the exception is one error), and ii) 7 out of 14 evaluation measures for the
Symbolic-Bagging pair. This means that the other feature two feature ranking
scores (Genie3 and Random forest) achieve their saturation points much earlier,
i.e., 10 trees in an ensemble suffice. The reason that Symbolic score needs more
trees may be its simplicity, since the actual quality of the nodes that contain a
given feature in their tests is ignored when computing this score.

1 2 3 4 5 6 7 8

250 trees
150 trees
75 trees
200 trees

10 trees
25 trees
50 trees

100 trees

(a) Random forest

1 2 3 4 5 6 7 8

150 trees
200 trees
250 trees
100 trees

25 trees
10 trees
50 trees
75 trees

(b) Bagging

Fig. 2: Average rank diagrams for the Symbolic score computed from Random for-
est (a) and Bagging ensembles (b) and evaluated through the Nemenyi statistical
test using multi-label F1 as the evaluation measure.

We next use Nemenyi post-hoc test to discover the optimal ensemble size for
the remaining two combinations of the Symbolic ranking where 10 trees in the
ensemble do not suffice: the first with Random forest and the second with Bag-
ging ensemble. The post-hoc test reveals the groups of the algorithms with sta-
tistically significantly different performance. The results of the tests are given in
Figs. 2a (Random forest) and 2b (Bagging): These are obtained by evaluating
the feature ranking with the multi-label F1 measure, however, the same conclu-
sions can be drawn by inspecting the other measures (available at the repository
https://github.com/Petkomat/mlc-ranking). The best performing group of the
algorithms (denoted by the left-most red line) is similar in both cases: It contains
the feature rankings that were computed from at least 50 trees which means that
50 trees will suffice to achieve the optimal performance.

In sum, we select ensembles with 10 trees as the optimal setting for the majority
of ranking-ensemble pairs, except for the Symbolic-Random forest and Symbolic-
Bagging – for these two we learn ensembles with 50 trees. In the analysis of the
results presented in the next sections, we will use these values. Note that the
selected values are conservative for the performance of the proposed methods in
terms of predictive performance, however, it is optimal in a sense of predictive
performance - efficiency trade-off.

6.2 Are the Feature Rankings Relevant?

Now that we have fix ensemble size for every ranking-ensemble pair, we proceed
to the experiments that will reveal whether the proposed feature rankings outper-
form the non-informed baseline ranking which awards every feature relevance 1.
The detailed results are again given for the Arts dataset on which the rankings are
evaluated with AUPRC and Ranking Loss (Figs. 3a and 3b respectively). In addi-
tion to the points that present ranking-ensemble pairs, the non-informed baseline

100 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

14 Matej Petković et al.

ranking is presented with black circles. The column that belongs to the Extra trees
have one point less since Random forest score cannot be computed from those
ensembles. One can see that feature rankings always outperform the baseline for
this dataset, however, the difference between the baseline and the Random forest-
Random forest ranking as measured in terms of Ranking Loss is not practically
significant.

bagging random forests extra trees

0.20

0.25

0.30

A
U

P
R

C

(a) AUPRC

bagging random forests extra trees

0.20

0.22

0.24

ra
n

ki
n

g
lo

ss

R. Forest

Genie3

Symbolic

baseline

MLC-Relief

(b) Ranking Loss

Fig. 3: Comparison of the proposed scores to the non-informed baseline and the
state-of-the art baseline (MLC-Relief), in terms of AUPRC (a, higher is better)
and Ranking Loss (b, lower is better) evaluation measures. The legend applies to
both graphs.

To check whether the baseline is consistently outperformed, we fix an evalua-
tion measure and perform 8 pairwise comparisons of rankings to the baseline. At
the end, we apply Benjamini-Hochberg correction of the p-values and obtain the
following results.

For the measures Hamming Loss, One Error and Micro Precision, no statisti-
cally significant differences were found. As for the remaining 12 evaluation mea-
sures, 7 out of 8 feature rankings outperform the baseline - the exception is the
Symbolic feature score, computed from Extra trees ensembles. This means that ev-
ery score results in relevant rankings, provided it is computed from an appropriate
ensemble of trees.

6.3 Most Appropriate Ensemble Methods

To find the most appropriate ensemble method for a given feature ranking score,
we fix the feature ranking score and vary the ensemble method from which this
score is computed. We use the Friedman test in the case of the Symbolic and
Genie3 scores since they can be computed from three different ensembles, and
Wilcoxon test for Random forest score. This results in 45 comparisons, one for
each score and measure.

The differences are typically not statistically significant (in 30 cases). The
Symbolic score is the only one for which the differences are mostly significant.
However, for the Symbolic score, the post-hoc Nemenyi tests do not select a single
ensemble method as the best performing. More specifically, Extra trees have the

101

Multi-label feature ranking with ensemble methods 15

worst average ranks according to two evaluation measures: multi-label precision
(Fig. 4a) and Ranking Loss (Fig. 4b). The other evaluation measures did not yield
statistically significant differences across the different ensemble types.

The differences among the different ensemble methods in the case of the Genie3
ranking are statistically significant for micro-averaged F1 and AUPRC. For both
evaluation measures, the Nemenyi post-hoc test reveals that the Random forest
ensembles have the worst average rank, hence, they should be avoided in combi-
nation with Genie3.

In the case of the Random forest score, the differences are statistically signif-
icant for the three area under curves measures and Ranking Loss: Wilcoxon test
reveals that Bagging should be preferred over the Random forest ensemble.

1 2 3

bagging extra trees
random forests

(a) multi-label precision

1 2 3

random forests extra trees
bagging

(b) Ranking Loss

Fig. 4: The average ranks of Symbolic feature rankings computed from different
ensemble methods. The statistical significance of differences is assessed by the
Nemenyi test. The quality of the ranking is measured in terms of multi-label
precision (a) and Ranking Loss (b).

We next investigate the results where the differences are not statistically signif-
icant. We summarize these results (in Tab. 3) by providing the ensemble method
with the best average rank for each feature ranking score and for each evaluation
measure. The results reveal that the ensemble method that should be used as a
default choice are Extra trees for the Genie3 score, Bagging for the Random forest

score, and Random forest for the Symbolic score.

6.4 Are Feature Rankings State-of-the-art?

To answer this question, we compare the proposed feature ranking scores (com-
puted with the most appropriate ensemble method) to the MLC-Relief baseline.
The results for the Arts dataset are shown in Fig. 3 where in addition to the col-
ored circles that belong to the proposed scores, black crosses that belong to the
MLC-Relief score are shown. We can see that the proposed scores outperform the
MLC-Relief score on this dataset.

To check whether this is valid in general, we use the Friedman statistical test.
Results show that the null hypothesis is rejected for all 15 evaluation measures, so
we proceed to the post-hoc test, but now, instead of Nemenyi one, Bonferroni-Dunn
test is applied since we are only interested in the comparisons to MLC-Relief.

We show the detailed results for the measures AUPRC (Fig.5a) and Ranking
Loss (Fig. 5b). These results show that Random forest ranking is not statistically
significantly different from the MLC-Relief (according to AUPRC) or MLC-Relief

102 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

16 Matej Petković et al.

Table 3: The type of ensemble for which the produced ranking has the best average
rank, for each feature ranking score, and each evaluation measure. The abbrevia-
tion ML in the evaluation measure names stand for multi-label.

Genie3 Random forest Symbolic

Hamming loss Extra trees Bagging Random forest
ranking loss Extra trees Bagging Random forest
one error Extra trees Bagging Random forest
coverage Extra trees Bagging Random forest
ML accuracy Extra trees Bagging Bagging
ML precision Extra trees Bagging Bagging
ML recall Extra trees Bagging Bagging
ML F1 Measure Extra trees Bagging Bagging
subset accuracy Bagging Bagging Bagging
micro precision Random forest Bagging Random forest
micro recall Extra trees Bagging Bagging
micro F1 Extra trees Bagging Bagging

AUROC Extra trees Bagging Random forest

AUPRC Bagging Bagging Random forest

AUPRC Extra trees Bagging Random forest

is statistically significantly worse that all proposed algorithms (according to Rank-
ing Loss).

1 2 3 4

Symbolic
Genie3

MLC-Relief
Random Forest

(a) AUPRC

1 2 3 4

Symbolic
Genie3

MLC-Relief
Random Forest

(b) Ranking Loss

Fig. 5: Average rank diagrams of the proposed ensemble-based scores, compared
to the MLC-Relief baseline. Statistically significant differences are assessed by the
Bonferroni-Dunn test. The quality of the rankings is measures in terms of AUPRC
(a) and Ranking Loss (b).

For the other measures, we show only the average ranks diagrams in the form
of radar plots where more than one measure can be shown in one graph, see
Figs. 6a-6d. The closer the algorithm is to the center of the graph, i.e., rank 1, the
better. We can see that MLC-Relief is mostly ranked last, except for the multi-
label measures in Fig. 6d, micro recall and F1 measure and subset accuracy when
it is ranked second but last.

Thus, we conclude that our methods are state of the art. Not only that ensemble-
based methods have always the best two average ranks. Their computational com-
plexity is also better than the computational complexity of MLC-Relief (recall the
time complexities of the proposed methods from Sec. 4.1). The time complexity of
MLC-Relief is O(Fn2 +nKL) where, additionally, K is the number of MLC-Relief
neighbors. This means that MLC-Relief is quadratic in the number of examples,
which might be prohibitively large, for bigger data sets.

103

Multi-label feature ranking with ensemble methods 17

AUPRC

AUROC

AUPRC

1 2 3

(a)

micro F1

micro precision

micro recall

1 2 3

(b)

coverage

Hamming loss

one error

ranking loss

subset accuracy

1 2 3

(c)

ML accuracyML F1

ML precision ML recall

1 2 3

Random Forest

Genie3

Symbolic

MLC-Relief

(d)

Fig. 6: The average ranks of the ensemble-based scores, compared to MLC-Relief,
for all 15 evaluation measures. The legend in (d) applies to all subfigures.

6.5 Which Feature Ranking Score is the Best?

To see which of the proposed ranking scores is the best, we compare the Symbolic,
Genie3 and Random forest scores, for each of the evaluation measures, using the
Friedman test. In 9 cases, the differences among them are statistically significant,
therefore we can proceed to the Nemenyi post-hoc test. The average diagrams for
two of them, are presented in Figs. 7a (AUPRC) and 7b (multi-label precision).
In both figures, the order of the scores is the same: Genie3, Symbolic, Random

forest. Based on the results from AUPRC, the difference between Genie3 and
Random forest is statistically significantly different, while based on multi-label
precision, the difference between Random forest and the other two ranking scores
is statistically significantly different.

We can conclude that Random forest does not give the best rankings. Since
Genie3 and Symbolic score typically result in the rankings of (approximately) the
same quality, the final decision is made based on the time complexity: since we
need induce 50 trees to obtain the best performance with Symbolic score, and only
10 to achieve that with Genie3 score, we identify Genie3 feature ranking score as
the one that should be preferred.

104 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

18 Matej Petković et al.

1 2 3

Genie3 Random Forest
Symbolic

(a) AUPRC

1 2 3

Genie3 Random Forest
Symbolic

(b) multi-label precision

Fig. 7: The average rank diagrams of the proposed scores. Statistically significant
differences are assessed by the Nemenyi post-hoc test. The quality of the rankings
is measured in terms of AUPRC (a) and multi-label precision (b).

7 Conclusions

In this paper, we propose three ensemble-based feature ranking scores for multi-
label classification (MLC): Symbolic, Genie3 and Random forest. We compute
each of them from three different ensembles of predictive clustering trees: Bagging ,
Random forest and Extra trees (with the exception that the Random forest score
cannot be computed from Extra trees ensemble).

We extensively evaluate the proposed scores on 24 benchmark MLC problems,
using 15 standard MLC evaluation measures. For each score and ensemble method,
we first determine the saturation point in terms of the ensemble size, after which
the quality of the ranking does not improve any further. We find out that 10 trees
usually suffice, whereas the Symbolic score needs Bagging and Random forest
ensembles of size 50.

Next, we show that the proposed feature ranking scores yield relevant feature
rankings, by comparing them to the non-informed ranking which values all the
features the same. After that, we fist determine the most appropriate ensemble
method for every feature ranking score and empirically prove that the proposed
feature ranking scores outperform current state-of-the-art methods in the quality of
the rankings (for the majority of the evaluation measures), and in time efficiency.
Finally, we determine which of the proposed feature ranking scores is the best.
Taking into account the quality of the rankings first and - in case of the ties - time
efficiency, we find that the Genie3 feature ranking score is the optimal one.

Future work can follow two major directions. First, since the Random forest

score typically yields the worst feature rankings, it could be additionally analyzed
and parameterized with MLC error measures in Eq. (3) to obtain better perfor-
mance. Second, other ensemble techniques may be evaluated, such as gradient
boosting, which could be even more efficient.

References

[Benjamini and Hochberg, 1995] Benjamini, Y. and Hochberg, Y. (1995). Controlling the false
discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal
Statistical Society. Series B (Methodological), 57(1):289–300.

[Blockeel, 1998] Blockeel, H. (1998). Top-down Induction of First Order Logical Decision
Trees. PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium.

[Boutell et al., 2004] Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. (2004). Learning
multi-label scene classification. Pattern Recognition, 37(9):1757–1771.

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

105

Multi-label feature ranking with ensemble methods 19

[Breiman et al., 1984] Breiman, L., Friedman, J., Olshen, R., and Stone, C. J. (1984). Clas-
sification and Regression Trees. Chapman & Hall/CRC.

[Briggs et al., 2013] Briggs, F., Huang, Y., Raich, R., Eftaxias, K., Lei, Z., Cukierski, W.,
Frey Hadley, S., Hadley, A., Betts, M., Fern, X. Z., Irvine, J., Neal, L., Thomas, A., Fodor,
G., Tsoumakas, G., Ng Hong, W., Nguyen, T. N. T., Huttunen, H., Ruusuvuori, P., Man-
ninen, T., Diment, A., Virtanen, T., Marzat, J., Defretin, J., Callender, D., Hurlburt, C.,
Larrey, K., and Milakov, M. (2013). The 9th annual mlsp competition: New methods for
acoustic classification of multiple simultaneous bird species in a noisy environment. In IEEE
International Workshop on Machine Learning for Signal Processing, MLSP 2013, pages 1–8.

[Dembczyński et al., 2012] Dembczyński, K., Waegeman, W., Cheng, W., and Hüllermeier, E.
(2012). On label dependence and loss minimization in multi-label classification. Machine
Learning, 88(1):5–45.

[Demšar, 2006] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data
sets. Journal of Machine Learning Research, 7:1–30.

[Diplaris et al., 2005] Diplaris, S., Tsoumakas, G., Mitkas, P., and Vlahavas, I. (2005). Protein
classification with multiple algorithms. In 10th Panhellenic Conference on Informatics (PCI
2005), pages 448–456.

[Duygulu et al., 2002] Duygulu, P., Barnard, K., de Freitas, J. F. G., and Forsyth, D. A.
(2002). Object recognition as machine translation: Learning a lexicon for a fixed image
vocabulary. In Heyden, A., Sparr, G., Nielsen, M., and Johansen, P., editors, Computer
Vision — ECCV 2002, pages 97–112, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Elisseeff and Weston, 2001] Elisseeff, A. and Weston, J. (2001). A kernel method for multi-
labelled classification. In Dietterich, T. G., Becker, S., and Ghahramani, Z., editors, Advances
in Neural Information Processing Systems 14. Springer International Publishing.

[Elkafrawy et al., 2015] Elkafrawy, P., Mausad, A., and Esmail, H. (2015). Experimental com-
parison of methods for multi-label classification in different application domains. Interna-
tional Journal of Computer Applications, 114:1–9.

[Geurts et al., 2006] Geurts, P., Erns, D., and Wehenkel, L. (2006). Extremely randomized
trees. Machine Learning, 36(1):3–42.

[Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An introduction to variable
and feature selection. Journal of Machine Learning Research, 3:1157–1182.

[Hancock et al., 1996] Hancock, T., Jiang, T., Li, M., and Tromp, J. (1996). Lower bounds
on learning decision lists and trees. Information and Computation, 126(2):114–122.

[Hansen and Salamon, 1990] Hansen, L. K. and Salamon, P. (1990). Neural network ensem-
bles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:993–1001.

[Huynh-Thu et al., 2010] Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010).
Inferring regulatory networks from expression data using tree-based methods. PLoS One,
5(9):1–10.

[Katakis et al., 2008] Katakis, I., Tsoumakas, G., and Vlahavas, I. (2008). Multilabel text
classification for automated tag suggestion. In Proceedings of the ECML/PKDD 2008 Dis-
covery Challenge.

[Kocev and Ceci, 2015] Kocev, D. and Ceci, M. (2015). Ensembles of extremely randomized
trees for multi-target regression. In Discovery Science: 18th International Conference (DS
2015), volume 9356 of LNCS, pages 86–100.

[Kocev et al., 2013a] Kocev, D., Slavkov, I., and Džeroski, S. (2013a). Feature ranking for
multi-label classification using predictive clustering trees. In Solving Complex Machine
Learning Problems with Ensemble Methods.

[Kocev et al., 2013b] Kocev, D., Vens, C., Struyf, J., and Džeroski, S. (2013b). Tree ensembles
for predicting structured outputs. Pattern Recognition, 46(3):817–833.

[Kong et al., 2012] Kong, D., Ding, C., Huang, H., and Zhao, H. (2012). Multi-Label ReliefF
and F-statistic Feature Selections for Image Annotation. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2352–2359.

[Kononenko and Robnik-Šikonja, 2003] Kononenko, I. and Robnik-Šikonja, M. (2003). Theo-
retical and Empirical Analysis of ReliefF and RReliefF. Machine Learning Journal, 55:23–69.

[Lee and Kim, 2017] Lee, J. and Kim, D.-W. (2017). Scls: Multi-label feature selection based
on scalable criterion for large label set. Pattern Recognition, 66:342 – 352.

[Madjarov et al., 2012] Madjarov, G., Kocev, D., Gjorgjevikj, D., and Džeroski, S. (2012). An
extensive experimental comparison of methods for multi-label learning. Pattern Recognition,
45:3084–3104.

[Pereira et al., 2015] Pereira, R. B., Plastino, A., Zadrozny, B., and Merschmann, L. H. C.
(2015). Information gain feature selection for multi-label classification. Journal of Informa-
tion and Data Management, 6(1):48–58.

106 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

20 Matej Petković et al.

[Pestian et al., 2007] Pestian, J. P., Brew, C., Matykiewicz, P., Hovermale, D. J., Johnson,
N., Bretonnel Cohen, K., and Duch, W. (2007). A shared task involving multi-label classi-
fication of clinical free text. In Proceedings of the Workshop on BioNLP 2007: Biological,
Translational, and Clinical Language Processing (BioNLP ’07), pages 97–104.

[Petković et al., 2019] Petković, M., Kocev, D., and Džerovski, S. (2019). Feature ranking for
multi-target regression. Machine Learning Journal. https://doi.org/10.1007/s10994-019-
05829-8.

[Petković et al., 2018] Petković, M., Kocev, D., and Džeroski, S. (2018). Feature ranking with
relief for multi-label classification: Does distance matter? In Soldatova, L., Vanschoren, J.,
Papadopoulos, G., and Ceci, M., editors, Discovery Science, pages 51–65. Springer Interna-
tional Publishing.

[Reyes et al., 2015] Reyes, O., Morell, C., and Ventura, S. (2015). Scalable extensions of the
ReliefF algorithm for weighting and selecting features on the multi-label learning context.
Neurocomputing, 161:168 – 182.

[Sechidis et al., 2014] Sechidis, K., Nikolaou, N., and Brown, G. (2014). Information theoretic
feature selection in multi-label data through composite likelihood. In Fränti, P., Brown,
G., Loog, M., Escolano, F., and Pelillo, M., editors, Structural, Syntactic, and Statistical
Pattern Recognition, pages 143–152, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Snoek et al., 2006] Snoek, C. G. M., Worring, M., van Gemert, J. C., Geusebroek, J.-M.,
and Smeulders, A. W. M. (2006). The challenge problem for automated detection of 101
semantic concepts in multimedia. In Proceedings of the 14th ACM International Conference
on Multimedia, pages 421–430, New York, NY, USA. ACM.

[Spolaôr et al., 2013] Spolaôr, N., Cherman, E. A., Monard, M. C., and Lee, H. D. (2013).
A comparison of multi-label feature selection methods using the problem transformation
approach. Electronic Notes in Theoretical Computer Science, 292:135–151.

[Spolaôr and Tsoumakas, 2013] Spolaôr, N. and Tsoumakas, G. (2013). Evaluating feature
selection methods for multi-label text classification. In BioASQ Workshop, pages 1–12.

[Spyromitros et al., 2008] Spyromitros, E., Tsoumakas, G., and Vlahavas, I. (2008). An em-
pirical study of lazy multilabel classification algorithms. In Artificial Intelligence: Theories,
Models and Applications, LNAI 5138, pages 401–406. Springer Berlin Heidelberg.

[Srivastava and Zane-Ulman, 2005] Srivastava, A. N. and Zane-Ulman, B. (2005). Discover-
ing recurring anomalies in text reports regarding complex space systems. In 2005 IEEE
Aerospace Conference.

[Trochidis et al., 2008] Trochidis, K., Tsoumakas, G., Kalliris, G., and Vlahavas, I. (2008).
Multilabel classification of music into emotions. In 2008 International Conference on Music
Information Retrieval (ISMIR 2008), pages 325–330.

[Tsoumakas et al., 2008] Tsoumakas, G., Katakis, I., and Vlahavas, I. (2008). Effective and
efficient multilabel classification in domains with large number of labels. In ECML/PKDD
2008 Workshop on Mining Multidimensional Data (MMD’08).

[Tsoumakas and Vlahavas, 2007] Tsoumakas, G. and Vlahavas, I. (2007). Random k-labelsets:
An ensemble method for multilabel classification. In Kok, J. N., Koronacki, J., Mantaras, R.
L. d., Matwin, S., Mladenič, D., and Skowron, A., editors, Machine Learning: ECML 2007,
pages 406–417, Berlin, Heidelberg. Springer Berlin Heidelberg.

[UC Berkeley, 2018] UC Berkeley (2018). Enron Email Analysis Project. http://bailando.
sims.berkeley.edu/enron_email.html. Accessed: 2018-06-28.

[Ueda and Saito, 2003] Ueda, N. and Saito, K. (2003). Parametric mixture models for multi-
labeled text. In Advances in Neural Information Processing Systems 15, pages 721–728.
MIT Press.

[Vens et al., 2008] Vens, C., Struyf, J., Schietgat, L., Džeroski, S., and Blockeel, H. (2008).
Decision trees for hierarchical multi-label classification. Machine Learning, 73(2):185–214.

[Wettschereck, 1994] Wettschereck, D. (1994). A study of distance based algorithms. PhD
thesis, Oregon State University, USA.

107

Acta Polytechnica Hungarica Vol. ??, No. ?, 20??

Feature Ranking for Hierarchical Multi-Label Clas-
sification with Tree Ensemble Methods

Matej Petković1, 2, Sašo Džeroski1, 2, Dragi Kocev1, 2

1Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
2Jožef Stefan Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
matej.pektovic@ijs.si, saso.dzeroski@ijs.si, dragi.kocev@ijs.si

In this work, we address the task of feature ranking for hierarchical multi-label classification
(HMLC). The task of HMLC concerns problems with multiple binary variables organized
into a hierarchy of target attributes. The goal is to learn a model for predicting all of them
simultaneously. This task is receiving an increasing attention from the research community,
due to its wide application potential in text document classification and functional genomics.
Here, we propose a group of feature ranking methods based on three established ensemble
methods of predictive clustering trees: Bagging, Random Forests and Extra Trees. Predictive
clustering trees are a generalization of decision trees towards predicting structured outputs.
Furthermore, we propose to use three scoring functions for calculating the feature impor-
tances: Symbolic, Genie3 and Random Forest. We test the proposed methods on 30 bench-
mark HMLC datasets, show that Symbolic and Genie3 scores yield relevant rankings, that
all three scores outperform the HMLC-Relief ranking method, and are computed very time-
efficiently. For each scoring function, we find the most appropriate ensemble method and
compare the scores among each other to find the best one.

Keywords: hierarchical multi-label classification; feature ranking; ensemble methods; Relief

1 Introduction

Classification is a task in predictive modelling, where we learn a model that takes a
vector xxx of descriptive variables (features) xi as the input, and predicts the class value
y that a given example belongs to. If y can take two different values, the task at hand
is referred to as binary classification. Otherwise (y can take more than two values),
the task at hand is multi-class classification. In both cases, every example is assigned
precisely one value. For example, one can predict whether a person is sick, where
y ∈ {yes,no} (binary), or what is the blood type of a person where y ∈ {A,B,AB,0}
(multi-class). In both cases, class values are mutually exclusive. A related task is
multi-label classification (MLC). As opposed to the standard classification, a MLC
predictive model predicts which labels ` from a predefined set L are relevant for

– 1 –

108 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

Petković et al. Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods

a given example. For example, one can predict which of the genres from the set
L = {romance,drama,comedy} are relevant for a given film. Clearly, a film can
be drama and comedy at the same time.

animal

Australian African Asian

dingo koala giraffe elephant tiger

1

Figure 1
An exemplary hierarchy of animals.

Hierarchical MLC (HMLC) is a generalization of MLC, where the labels are orga-
nized into a hierarchy that is given as a binary relation ≺, which partially orders the
set L . If `1 ≺ `2, we say that `1 is a predecessor of `2. This relation imposes the
hierarchical constraint: If ` is relevant for a given example then all the predecessor
labels are also relevant for the example. Fig. 1 shows a toy hierarchy of groups of
animals. For example, animal ≺ ` for all labels ` ∈L , Asian ≺ tiger etc. The
label elephant has two parents (African and Asian) and one additional prede-
cessor (animal). Thus, if an example is an elephant, then it is also an African,
Asian and an animal. Note that hierarchy may result in a tree where every label
has at most one parent, or it may result in a general directed acyclic graph (DAG)
where the number of parents can be higher, which is the case in the toy hierarchy.
In this paper, DAG refers only to the hierarchies that are not also tree-shaped.

A possible approach to HMLC is to ignore the hierarchy at the learning phase and
use any of the MLC methods, such as binary relevance or power set approach [24].
Binary relevance is a simple method that converts a MLC task to several binary
classification tasks with y ∈ {yes,no} where we predict the relevance of each label
separately. This approach is often criticized for it cannot make use of the interac-
tions among the labels. In the label power set approach, the task of predicting a
subset of L is converted to the task of predicting an element of the power set 2L ,
and thus converting a MLC task to multi-class classification task. However, the
number of classes can be as high as 2|L |, which results in a very sparse dataset. At
prediction stage, predecessors of the labels predicted as relevant, must be added to
the set of relevant labels, so that the hierarchical constraint is met. A similar two-
step approach is possible [1], where support vector machines are learned for each
class separately, and then combined using a Bayesian network model so that the pre-
dictions meet the hierarchical constraint. However, method adaptation techniques
where an existing method is adapted to a new problem may be more appropriate.
This can be done with predictive clustering trees (PCTs), which were shown to out-
perform their basic versions that follow the binary relevance approach [25].

In this paper, we do not address the task of building predictive models for HMLC.
Rather, we propose a feature ranking method that is useful in this context. Feature
ranking is another important task in machine learning, where the goal is to assess the
importance of every descriptive attribute (feature) by using some scoring function.
The output of a feature ranking algorithm is a list of features that is sorted with

– 2 –

109

Acta Polytechnica Hungarica Vol. ??, No. ?, 20??

respect to the scores.

Feature ranking is typically considered a part of data preprocessing, since it can be
used to reduce the dimensionality of the input space, so that only the features that
contain the most information about labels (or target(s) in general) are kept in the
dataset. By doing this, we decrease the computational cost of building a predic-
tive model, while the performance of the model is not degraded. Another reason to
compute a feature ranking is that dimensionality reduction typically results in mod-
els that are easier to understand, which is useful when a machine learning expert
works in collaboration with a domain expert. Predictive models, such as decision
trees, are easier to interpret when a small number of the most relevant features are
used to learn them.

There is a plethora of feature ranking methods for the task of classification [23]. A
possible approach to MLC feature ranking is to adapt the binary relevance approach
from predictive modelling, where at the first stage, feature importances are com-
puted for every label ` ∈L separately as in the classification case. After that, the
feature importances are averaged over the different labels and a single ranking is
returned. However, the landscape of methods for feature ranking for HMLC is not
well populated due to the complexity of the task.

In this work, we propose a group of novel feature ranking approaches for HMLC.
They base on the scoring functions Symbolic, Genie3 [13] and Random Forest [4],
coupled with Bagging, Random Forests and Extra Trees ensembles of PCTs for
HMLC [16, 21]. We compare them to two baselines and show that the proposed
scoring functions outperform i) the non-informed ranking where all features have
the same importance, and ii) the adaptation of Relief algorithm to HMLC [22].

The rest of the paper is organized as follows. In Sec. 2, we first describe predictive
clustering trees, ensembles thereof and the three proposed feature ranking scores.
Then, we proceed to the HMLC-Relief description. In Sec. 3, the experimental
design is described in detail. In Sec. 4, the results are presented. We conclude with
the Conclusions.

2 Methods

We first present the PCT-ensemble-based feature rankings and then proceed to the
Relief ranking. Both PCT framework and the Relief family of algorithms is im-
plemented in the CLUS system available at http://source.ijs.si/ktclus/
clus-public.

2.1 Predictive Clustering Trees and Ensembles Thereof

PCTs generalize decision trees and can be used for a variety of learning tasks, in-
cluding clustering and different types of structured output prediction tasks, e.g.,
multi-target regression, multi-label classification, hierarchical multi-label classifi-
cation, time series prediction etc. [3, 16]. PCTs are induced with the standard

– 3 –

110 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

Petković et al. Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods

top-down induction of decision trees algorithm [5] presented in Alg. 1. It takes as
input a set of examples E and outputs a tree. The heuristic h that is used for se-
lecting the tests is the weighted impurity of the subgroups of the instances, induced
by the tests (line 4 of the Alg. 2). By minimizing it, the algorithm is guided to-
wards small trees with good predictive performance. If there are no candidate tests,
a leaf is created and the prototype of the instances belonging to that leaf is computed.

Algorithm 1 PCT(E)

1: (t∗,h∗,P∗) = BestTest(E)
2: if t∗ 6= none then
3: for each Ei ∈P∗ do
4: treei = PCT(Ei)
5: return node(t∗,

⋃
i{treei})

6: else
7: return leaf(Prototype(E))

Algorithm 2 BestTest(E)

1: (t∗,h∗,P∗) = (none,0, /0)
2: for each candidate test t do
3: P = partition induced by t on E
4: h = |E|impu(E)−∑Ei∈P |Ei|impu(Ei)
5: if h < h∗ then
6: (t∗,h∗,P∗) = (t,h,P)
7: return (t∗,h∗,P∗)

In the HMLC case, the impurity function is defined as follows. First, the label sub-
set S⊆L is converted into 0/1-vector sss of length |L |, where sss j = 1⇔ ` j ∈ S. We
denote the variance of sss j over subset of examples E ⊆DTRAIN as Var j(E). Addition-
ally, each label ` j is assigned a weight w j that is defined as w j = α w(Parents(` j))
if the set of parents Parents(` j) is not empty and w j = 1 otherwise (in the root(s) of
the hierarchy). The function w(P) returns the average weight of the label set P, and
the parameter α ∈ (0,1) is user-defined. Finally, we define the impurity function as

impu(E) =
1
|L |

|L |
∑
j=1

w jVar j(E),

hence the labels ` j that are closer to the root of the hierarchy have bigger influence
on the heuristic function. In a leaf L, the prototype function returns a vector whose
j-th component equals the average value of sss j of the examples belonging to L.

To calculate feature importance scores (i.e., feature rankings), we grow ensembles
of PCTs instead of growing a single one. An ensemble is a set of base predictive
models, whose prediction for each new example is made by combining the predic-
tions of the models from the ensemble. In HMLC tasks, this is typically achieved
by taking the average of the base-model predictions. In our experiments, we used
the following three approaches.

Random Forests, Bagging. In the Random Forests ensemble, instead of being
learned from the original dataset DTRAIN, each tree in the ensemble is learned from
a different bootstrap replicate B of the dataset DTRAIN, called bag. Additionally, we
chose a random subset S of features in every internal node of the tree, and consider
only the tests that are yielded by the features in S when looking for the best test in
Alg. 2. Typical size of the set S is of the order logF or

√
F , where F is the number

features in DTRAIN. If |S|= F , we obtain Bagging procedure.

Extra Trees. Each tree is being learned directly from DTRAIN, but the candidate
tests in each node are now extremely randomized. Again, we chose a random subset

– 4 –

111

Acta Polytechnica Hungarica Vol. ??, No. ?, 20??

S of features in every internal node of the tree, and consider only one randomly
chosen test per chosen feature, when looking for the best test.

2.2 Ensemble Scores

Once we build an ensemble of PCTs, we can exploit the ensemble structure to com-
pute the feature ranking in three different ways. In the following, we denote a tree
as T , whereas N ∈T denotes a node. Trees form a forest F . Its size (the number
of trees in the forest) is denoted as |F |. The set of all internal nodes of a tree T in
which the feature xi appears as part of a test is denoted as T (xi).

Symbolic Ranking. In the simplest version of the score, we would count how many
times a given feature occurs in the tests in the internal nodes of the trees. Since the
features that appear closer to the root are intuitively more important than those that
appear deeper in the trees, we weight these occurrences by the number of examples
e(N) that reach a node N , and define the importance of the feature xi as

importanceSYMB(xi) =
1
|F | ∑

T ∈F
∑

N ∈T (xi)

e(N)/|DTRAIN|. (1)

Symbolic ranking can be computed for all three ensemble methods that we use.

Genie3 Ranking. The main motivation for Genie3 ranking is that splitting the
current subset E ⊆DTRAIN, according to a test where an important attribute appears,
should result in high impurity reduction. The Genie3 importance of the attribute xi
is thus defined as

importanceGENIE3(xi) =
1
|F | ∑

T ∈F
∑

N ∈T (xi)

h∗(N), (2)

where h∗(N) is the value of the variance reduction function described in the Alg. 2.
Since h∗ is proportional to e(N) = |E|, greater emphasis is again put on the at-
tributes higher in the tree, where |E| is larger. Genie3 ranking can be computed for
all three ensemble methods that we use.

Random Forest Ranking.1 This feature ranking method tests how much does noise
in a given feature decrease the predictive performance of the trees in the forest. The
greater the performance degradation, the more important the feature is. This score
uses the internal out-of-bag estimates of the error, therefore it cannot be used with
ensembles of Extra Trees.

Once a tree T is grown, the algorithm evaluates the performance of the tree by using
the corresponding OOBT examples. This results in the predictive error Err(OOBT),
where lower error value corresponds to better predictions. To assess the importance
of the feature xi for the tree T , we randomly permute its values in the set OOBT

1 To avoid confusion, we use the plural form (Random Forests) to refer to the ensemble
method, and singular form to refer to feature ranking score (Random Forest).

– 5 –

112 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

Petković et al. Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods

and obtain the set OOBi
T . Then, the error Err(OOBi

T) is computed and the impor-
tance of the feature xi for the tree T is defined as the relative increase of error after
noising. The final Random Forest score of the feature is the average of these values
over all trees in the forest, namely

importanceRF(xi) =
1
|F | ∑

T ∈F

Err(OOBi
T)−Err(OOBT)

Err(OOBT)
. (3)

2.3 HMLC-Relief Ranking

Relief family of feature ranking algorithms calculates the feature importance scores
by considering differences in the feature values between pairs of examples (an ex-
ample and its nearest neighbors). More specifically, if the values of features of a
pair of examples from the same class are different then the features’ importance de-
creases. Conversely, if the feature values are different for examples from different
classes then the features’ importance increases.

The expected value of the importance importanceRelie f (xi) in the Relief has a nice
probability interpretation in the case when both the target y and xi are nominal [17]:
simplified to some extent, we have a relation

E[importanceRelie f (xi)] =
PdiffAttr, diffTarget

PdiffTarget
− PdiffAttr−PdiffAttr, diffTarget

1−PdiffTarget
, (4)

where we define the probabilities Pev = P(ev) and Pev1, ev2 = P(ev1∧ ev2) that
base on the events diff/sameAttr (two instances have different/same value of xi)
and diff/sameTarget (two instances have different/same target value). The prob-
abilities in Eq. (4) are modeled as the distances in the corresponding spaces: PdiffAttr
is modeled by the distance di on the domain of feature xi, PdiffTarget is modeled by
the distance dL between two label subsets of L , and PdiffAttr, diffTarget is modeled as
their product didL . This enables the generalization not only to numeric attributes
and targets, but also to more complex target types, such as hierarchies as described
in [22]. However, it must be assured that the upper bound of all distances is 1, which
was overlooked in [22]. There, they proceed as follows.

First, the distance on the whole descriptive domain X is defined via the distances
di on the domains Xi of features xi as

di(xxx1,xxx2) =

111[xxx1
i 6= xxx2

i] : Xi *R
|xxx1

i −xxx2
i |

max
xxx

xxxi−min
xxx

xxxi
: Xi ⊆ R dX (xxx1,xxx2) =

1
F

F

∑
i=1

di(xxx1,xxx2) (5)

where 111 is the indicator function with the values 111[true] = 1 and 111[false] = 0.
The distance between two label sets S1 and S2 is defined as a weighted Euclidean

distance dE(S1,S2) =
√

∑|L |j=1 w j(sss1
j − sss2

j)
2 between the corresponding 0/1-vectors

sss1 and sss2, where the vectors and the weights are defined as in Sec. 2.1. We correct
this and define

µ = 1/max
S,S′

dE(S,S′) and dL (S1,S2) = µ dE(S1,S2). (6)

– 6 –

113

Acta Polytechnica Hungarica Vol. ??, No. ?, 20??

Algorithm 3 HMLC-RReliefF(DTRAIN, m, K)

1: PPPdiffAttr, diffTarget, PPPdiffAttr = zero lists of length F
2: PdiffTarget = 0.0
3: for ι = 1,2, . . . ,m do
4: rrr = random example from D
5: nnn1,nnn2, . . . ,nnnK = K nearest neighbors of rrr
6: for k = 1,2, . . . ,K do
7: PdiffTarget += δ (`)dL

(
rrr,nnnk

)

8: for i = 1,2, . . . ,F do
9: PPPdiffAttr[i] += δ (`)di

(
rrr,nnnk

)

10: PPPdiffAttr, diffTarget[i] += δ (`)di
(
rrr,nnnk

)
dL

(
rrr,nnnk

)

11: for i = 1,2, . . . ,F do
12: importanceRelie f (xi) =

PPPdiffAttr, diffTarget[i]
PdiffTarget

− PPPdiffAttr[i]−PPPdiffAttr, diffTarget[i]
1−PdiffTarget

2.3.1 Algorithm Description

The iterative procedure of calculating the importances using the HMLC-Relief ex-
tension is outlined in Alg. 3. For each of the m iterations, we randomly select an
example rrr from DTRAIN (line 4) and find its K nearest neighbors (line 5) using the
distance dX from Eq. (5). After that, we use the neighbors to update the estimates of
probabilities from Eq. (4), for all attributes (lines 8–10). The estimates are updated
with the average of the distances between rrr and its neighbors. Here, the distance
dL is used. The weight δ (k) = 1/(mK) ensures that the computed importances
(line 12) are between −1 and 1 when the algorithms finishes.

The default values of the parameters are set as follows. Typically, we iterate over
the whole dataset, i.e., m = |DTRAIN|. By doing this, the estimates of probabilities
are expected to be more accurate. The value of K is typically set small enough
to capture the local structure in the data. In that way, we implicitly capture the
interactions between features [17]. Previous experiments [17, 19] have shown that
K = 10 or K = 15 give the best performance.

2.3.2 Efficient Distance Computation

The normalization factor in the numeric part of the definition of di in Eq. (5) is
trivial to compute. However, this is not the case with the µ in Eq. (6), if we want to
do that efficiently. For tree-shaped hierarchies, we developed an efficient algorithm
for computing µ that bases on the fact that the distance-maximizing pair of the
labels consists either of two leaves of the hierarchy or the root and a leaf. In both
cases, at least one of the leaves in the maximizing pair is the label with the highest
depth in the hierarchy. Knowing that, we can carefully design the O(|L |) recursive
algorithm, which is the optimal time complexity.

If hierarchy is a general DAG we could not do considerably better than computing
the maximizing pair by exhaustive search.

– 7 –

114 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

Petković et al. Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods

3 Experimental Design

3.1 Experimental Questions

The experiments were designed to answer the following experimental questions:

1. Given an ensemble feature ranking score, after which number of trees in the
ensemble the quality of the ranking saturates?

2. Do the proposed ensemble feature ranking scores yield relevant rankings, i.e.,
can the additional information captured in the feature ranking boost the per-
formance of the non-informed baseline classifier?

3. Do the proposed ensemble feature ranking scores outperform the improved
version of HMLC-Relief algorithm?

4. Given an ensemble feature ranking score, which ensemble method is the most
suitable?

5. Which ensemble feature ranking score yields the best rankings?

3.2 Datasets

We use 30 HMLC benchmark problems whose basic characteristics are summarized
in Tab. 1. Most of the datasets have a few thousand of examples while the number
of features could be as high as 74435. The label set typically contains a few hun-
dred elements. Approximately one quarter of the hierarchies are DAGs. Many of
the datasets are microarray data and come from the field of functional genomics.
They describe the connection between description of proteins and their functional
classes that are taken from Gene Ontology [7] (the corresponding hierarchies are
DAGs), or the MIPS functional hierarchy2 (the corresponding hierarchies are tree-
shaped). Some other datasets are about text categorization of the processed news
(reuters), patent classification according to the World International Patent Orga-
nization (wipo) etc.

3.3 Evaluation Procedure

In our experiments, we use the same train/test splits of the datasets as the original
authors, for all the data sets. First, a feature ranking is computed from the training
set DTRAIN. Its quality is assessed by the k-nearest neighbor (kNN) algorithm in
which the weighted version of Euclidean distance is used instead of the standard
one. It is defined as

d(xxx1,xxx2) =

√
D

∑
i=1

wid2
i (xxx

1
i ,xxx

2
i), (7)

2 http://mips.helmholtz-muenchen.de/funcatDB/

– 8 –

115

Acta Polytechnica Hungarica Vol. ??, No. ?, 20??

Table 1
Datasets’ characteristics: training and test set size, number of features, label set size, and hierarchy type.

dataset |DTRAIN| |DTEST| features |L | hierarchy type
cellcycle-yeast-FUN [6] 2482 1284 77 751 tree
church-yeast-FUN [6] 2480 1284 27 751 tree
clef07a-is [9] 10000 1006 80 152 tree
derisi-yeast-FUN [6] 2455 1278 63 751 tree
diatoms [10] 726 372 200 81 tree
eisen-yeast-FUN [6] 1588 837 79 751 tree
enron-corr [14] 988 660 1001 67 tree
expr-yeast-FUN [6] 2494 1294 552 751 tree
exprindiv-ara-FUN [6] 2314 1182 1251 424 tree
exprindiv-ara-GO [6] 7161 3679 1251 627 DAG
gasch1-yeast-FUN [6] 2486 1287 173 751 tree
hom-ara-FUN [6] 2260 1213 72869 420 tree
hom-ara-GO [6] 7119 4002 72869 623 DAG
hom-yeast-FUN [6] 2549 1318 47034 751 tree
icpr2010 [11] 4913 2999 4000 76 tree
interpro-ara-FUN [6] 2455 1264 2815 427 tree
interpro-ara-GO [6] 7778 3985 2815 630 DAG
pheno-yeast-FUN [6] 1010 582 69 751 tree
reuters [18] 3000 3000 47236 143 tree
scop-ara-FUN [6] 2055 1042 2003 407 tree
scop-ara-GO [6] 6507 3336 2003 572 DAG
seq-ara-FUN [6] 2455 1264 4450 424 tree
seq-ara-GO [6] 7778 3985 4450 630 DAG
seq-yeast-FUN [6] 2590 1342 478 751 tree
spo-yeast-FUN [6] 2442 1269 80 751 tree
struc-ara-FUN [25] 2455 1264 14804 427 tree
struc-ara-GO [25] 7778 3985 14804 630 DAG
struc-yeast-FUN [25] 2535 1316 19628 751 tree
wipo [20] 1352 358 74435 528 tree
yeast-GO [1] 2310 1155 5930 133 DAG

– 9 –

116 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

Petković et al. Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods

where xxx1,2 are the input vectors of nominal/numeric feature values and di is defined
by Eq. (5). Since the rankings that base on the Random Forest score and HMLC-
Relief could contain negative relevance scores, which in both cases means that the
feature is more irrelevant that a random feature would be, the weights are defined as
wi = max{0, importance(xi)}.

This evaluation procedure was chosen because kNN classifier is a distance-based
model that can directly make use of feature importances, learned in the first phase
of procedure. The second reason for our choice was kNN’s simplicity: its only
parameter is the number of neighbors, which we set to 10.

The rationale for using kNN as an evaluation model is as follows. If a feature
ranking is meaningful, then when the feature importances are used as weights in
the calculation of the distances kNN should produce better predictions as com-
pared to kNN without using these weights [26]. Once the kNN model is trained
on DTRAIN, its performance on DTEST is measured in terms of the area under the
average precision-recall curve AUPRC [25].

It might seem that another possible approach to evaluation is extending a dataset
with some randomly generated features and then see whether they are ranked at
the bottom of the ranking. However, this approach is more suitable for synthetic
data where the ground truth is known and all features can be made relevant. In
the real world data, it may very well happen that some of the high-dimensional
datasets indeed contain completely irrelevant features, hence, using this approach
would yield incorrect performance estimates.

3.4 Statistical Analysis of the Results

For comparing two algorithms, we use the Wilcoxon’s test, and for comparing more
than two algorithms, we use the Friedman’s test. In both cases, the null hypothesis
H0 is that all considered algorithms have the same performance. If H0 is rejected
by the Friedman’s test, we additionally apply Nemenyi’s post-hoc test to investigate
where the statistically significant differences between any two algorithms occur. A
detailed description of all tests is available in [8].

When performing Wilcoxon’s tests whose outcomes are not independent, we control
the false discovery rate by the Benjamini-Hochberg procedure [2]: let pi be the i-
th smallest among the obtained p-values, and t the number of tests. Let i0 be the
largest i, such that pi ≤ α̂i := (i/t)α . Then, we can reject the hypotheses belonging
to p-values pi, for 1≤ i≤ i0.

The results of the Nemenyi’s tests are presented on average ranks diagrams. Each di-
agram shows the average rank of the algorithm over the considered datasets, and the
critical distance, i.e., the distance for which average ranks of two considered algo-
rithms must differ to be considered statistically significantly different. Additionally,
the groups of algorithms among which no statistically significant differences occur
are connected with a line. If Friedman’s test did not reject the null hypothesis, all

– 10 –

117

Acta Polytechnica Hungarica Vol. ??, No. ?, 20??

algorithms on the average rank diagram are connected with the same line, and no
critical distance is given.

Before proceeding with the statistical analysis, we round the performances to three
significant digits. In the analysis, the significance level was set to α = 0.05.

3.5 Parameter Instantiation

First, we give the parameters used in the process of obtaining the ensemble-based
rankings. Afterwards, we give those for HMLC-Relief.

We consider the following ensemble sizes: |F | ∈ {10,25,50,75,100,150,250}.
Since 100 trees is a typical recommended value [15], this should be enough. This
is the only parameter for Bagging, while Random Forests and Extra Trees method
need another one: the number of features F ′ considered in each internal node as
described in Sec. 2.1. The recommended value for Random Forests is F ′ =

√
F

[15] and F ′ = F for Extra Trees [15]. However, if we carefully examine the data,
we see that are some datasets, e.g., enron-corr and struc-ara-GO, for which the
diversifying mechanism of the Extra Trees algorithm does not work if we set F ′=F ,
since every single one of the attributes take at most two values which results in only
one possible split per attribute. Thus, we rather choose F ′ =

√
F for Extra Trees

also, since a necessary condition for an ensemble to be more accurate than any of
its individual members, is that the members are diverse models [12]3.

As for Relief algorithm, it has been shown in the previous experiments that the
Relief algorithm is quite robust regarding the value of the number of neighbors K,
and that no other value outperforms K = 15 [17, 19], hence we se stick to this value.
Since the datasets are not all of equall size, the number of iterations m in HMLC-
Relief algorithm is given as the proportion of the size of DTRAIN. The considered
values are m ∈ {1%,5%,10%,25%,50%,100%}.

4 Results

In this section, we give answers to our experimental questions from Sec. 3.1.

4.1 Saturation of the Ranking Quality

First, we show when do ensemble rankings saturate and then proceed to the HMLC-
Relief ranking.

3 If we fix the ensemble size and feature ranking score and compare the quality of the
rankings from the ensembles of Extra Trees that use

√
F- and F-feature subsets via

Wilcoxon’s test, the results show that
√

F-version of the ensemble statistically signifi-
cantly outperforms the F-version of the ensemble on the problematic datasets, and that
there are no statistically significant differences on the other datasets.

– 11 –

118 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

Petković et al. Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods

4.1.1 Influence of the Ensemble Size

We analyze each ranking score and ensemble separately. While these two are fixed,
we let the number of the trees in the ensemble vary, and apply Friedman’s test to
discover whether some differences among them occur.

The resulting p-values are all bigger than 0.05, which means that the rankings can
be computed very efficiently since it suffices to grow only 10 trees. Therefore, the
ensemble size in the subsequent experiments is fixed to 10. Fig. 2a shows the result-
ing average rank diagram for Genie3 score, computed from a Bagging ensemble.
Similar conclusions can be made using the other ensembles and scores.

1 2 3 4 5 6 7

75 trees
50 trees
250 trees

10 trees
100 trees
25 trees

150 trees

critical distance: 1.6449(a)
1 2 3 4 5 6

m = 100%
m = 50%
m = 25%

m = 5%
m = 10%
m = 1%

critical distance: 1.3767(b)

Figure 2
Saturation of the rankings: Friedman’s test discovered no statistically significant differences among dif-
ferent (a) ensemble sizes in the ensemble rankings (Genie3 score, coupled with the Bagging ensemble is
shown), (b) considered proportions of the dataset by HMLC-Relief.

4.1.2 Influence of the HMLC-Relief’s Number of Iterations

Similarly to previous setting, we let the value of the parameter m vary and compare
the quality of the corresponding HMLC-Relief rankings by applying Friedman’s
test. Again, there are no statistically significant differences among the algorithms
(p = 0.96) and the differences among quality of the rankings are now even smaller.
As shown in Fig. 2b, no two average ranks differ by more than 0.43. Since the most
time-efficient setting is m = 1%, this is the considered number of iterations in the
subsequent HMLC-Relief experiments.

4.2 Are the Ensemble-Based Rankings Relevant?

To answer this question, we compare the predictive performance of the kNN classi-
fier which uses the importances from a particular feature ranking, to a non-weighted
kNN baseline by using Wilcoxon’s test. This pair-wise comparison is made for ev-
ery admissible pair of feature ranking score and ensemble method, which results in
8 (not independent) comparisons. After we compute the p-values, the Benjamini-
Hochberg correction is applied.

It turns out that all weighted kNN classifiers perform better than the baseline. How-
ever, the differences are statistically significant in five out of eight cases, as shown
in Tab. 2. The cases where the weighted kNN model is not statistically significantly

– 12 –

119

Acta Polytechnica Hungarica Vol. ??, No. ?, 20??

better than the baseline, are both feature rankings that are computed using Random
Forest score and the feature ranking computed from Symbolic score and Extra Trees
ensemble.

Table 2
The relevance of ensemble-based feature rankings as assessed by Wilcoxon’s test and the Benjamini-
Hochberg correction applied. Cases where the weighted kNN performed statistically significantly better
than the baseline, are bolded.

Feature Ranking p-value
(Symbolic, Random Forests) 222...111444 ···111000−4

(Genie3, Random Forests) 111...000333 ···111000−3

(Symbolic, Bagging) 222...444111 ···111000−3

(Genie3, Extra Trees) 222...000666 ···111000−2

(Genie3, Bagging) 222...666333 ···111000−2

(Random Forest, Random Forests) 4.17 ·10−2

(Random Forest, Bagging) 4.49 ·10−2

(Symbolic, Extra Trees) 3.29 ·10−1

Thus, using Genie3 score always results in relevant rankings, while Symbolic score
fails to yield relevant rankings when used in combination with Extra Trees. The fact
that Random Forest ranking fails to yield relevant rankings in all cases, may be at
least partially explained by the sparsity of the data, since in that case, the differences
of the error estimates on the out of bag examples and out of bag examples with
permuted values of a feature, may not be that significant.

4.3 The most Appropriate Ensemble for a Given Score

In this section, we fix the remaining parameter of the ensemble-based rankings, i.e.,
we find the most appropriate ensemble method for each feature ranking score. This
is done by first fixing a feature ranking score, and then comparing the quality of the
rankings obtained using this score and one of the possible ensemble methods. In
the case of Symbolic and Genie3 score, Friedman’s test is applied, since they can
be used in combination with three ensemble methods. In the case of Random Forest
score which cannot be paired with Extra Trees, Wilcoxon’s test is used.

In the case of Symbolic ranking, the obtained p-value is p = 0.106, hence the dif-
ferences are not statistically significant, as shown in Fig. 3a. Following the rationale
from the previous section, Random Forests ensemble is proclaimed as the optimal
one, since this method is considerably more time-efficient than Bagging. Since the
majority of attributes is numeric (or can be considered numeric, because they are
nominal and binary), Extra Trees i) have the same O time complexity of induc-
ing one node as Random Forests, ii) typically result in bigger trees than Random
Forests, the Random Forests ensemble is the most time efficient.

We observe a similar situation when comparing different ensemble methods when
the feature ranking score is fixed to Genie3, as shown in Fig. 3b. Again, no statisti-

– 13 –

120 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

Petković et al. Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods

cally significant differences are found (p= 0.705), hence Random Forests ensemble
is again chosen as the most appropriate one.

In the case of Random Forest feature ranking score, Wilcoxon’s test detects statisti-
cally significant differences (p = 0.030): Random Forests ensemble performs worse
than Bagging ensemble, hence the latter is the most appropriate one for this feature
ranking score.

1 2 3

Symbolic, Bagging Symbolic, Extra Trees
Symbolic, Random Forests

critical distance: 0.6050(a)
1 2 3

Genie3, Random Forests Genie3, Extra Trees
Genie3, Bagging

critical distance: 0.6050(b)

Figure 3
The quality of different feature rankings as assessed by Friedman’s test, when ensemble method varies,
and feature ranking score is fixed to (a) Symbolic and (b) Genie3. No statistically significant differences
were found.

4.4 Comparison of the Scores

In Sec. 4.1, we have shown that we obtain as good as it gets ensemble-based fea-
ture rankings when we grow 10 trees, and as good as it gets HMLC-Relief fea-
ture rankings when we set then number of iterations to m = 1% of the training set
size |DTRAIN|. In the previous section, we additionally found the most appropri-
ate ensemble method for a given feature ranking score. In this section, we first
check whether the three ensemble scores computed with the optimal parameters
outperform the HMLC-Relief score, computed with the optimal parameters. This is
done in a similar fashion to the Sec. 4.2 by applying three pairwise comparisons via
Wilcoxon’s test and correcting the results with Benjamini-Hochberg procedure.

The differences reported here are always in favor of the ensemble-based scores. The
obtained p-values are (sorted in the increasing order): p1 = 4.86 ·10−5 (Symbolic,
Random Forests), p2 = 1.74 · 10−4 (Genie3, Random Forests), p3 = 1.59 · 10−3

(Random Forest, Bagging). After applying the correction, all three differences
are statistically significant, hence all three ensemble-based rankings outperform the
HMLC-Relief ranking.

Next, we investigate which of the ensemble-based scores performs best. To this
end, we apply Friedman’s test. The obtained p-value equals 2.33 ·10−3 and we can
proceed to the Nemenyi’s post-hoc test to discover where the differences occur. The
results are shown in the Fig. 4.

There are two groups of scores that do not perform statistically significantly dif-
ferent. The first group consist of Symbolic and Genie3 score, and the second one
consists of Genie3 and Random Forest score. The graph also reveals Symbolic score

– 14 –

121

Acta Polytechnica Hungarica Vol. ??, No. ?, 20??

1 2 3

Symbolic, Random Forests Random Forest, Bagging
Genie3, Random Forests

critical distance: 0.6050

Figure 4
Comparison of the three ensemble-based feature ranking scores.

(with the average rank of 1.55) performs statistically significantly better than Ran-
dom Forest score (with the average rank of 2.42). Since the Random Forest score
has also the worst time complexity, we prefer the other two over it.

4.5 A Closer Look to Some Other Rankings’ Characteristics

A high number of benchmark problems allows for a statistical analysis performed in
the previous sections, where we were able to draw some definite conclusions. How-
ever, when averaging the performances, some information is always lost, therefore
we now take a closer look at two additional characteristics of the obtained feature
rankings. For example, one of the characteristics that was already mentioned is that
the quality of the ranking stabilizes quite quickly, i.e., growing ten trees suffices.
In this section, we present some others and use the graphs in Fig. 5 which show
the results for hom-ara-FUN dataset, as a running example. One of the reasons for
choosing this dataset is that it is high dimensional and is also one the datasets where
considering all features when inducing the trees in the Extra Trees ensemble does
not work. This is visible from Fig. 5a, which shows the qualities of the Symbolic
ranking, computed from different ensembles. Considering only a subset of features
in each node (Extra Trees, SQRT) as compared to considering all the features (Extra
Trees, all), pushes the quality of the rankings over the baseline.

10 25 50 75 100 150 250
number of trees

0.50

0.52

0.54

0.56

A
U

P
R

C

hom-ara-FUN

Random Forests

Bagging

Extra Trees, all

Extra Trees, SQRT

baseline

(a)

10 25 50 75 100 150 250
number of trees

0.50

0.52

0.54

0.56

A
U

P
R

C

hom-ara-FUN

Random Forests

Symbolic

Genie3

baseline

(b)

Figure 5
Quality of the feature rankings on the hom-ara-FUN dataset when number of trees varies and (a) feature
ranking score is fixed to Symbolic, (b) ensemble method is fixed to Random Forests. In the figure (a), all
and SQRT denote the number of features considered in the Extra Trees algorithm.

– 15 –

122 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

Petković et al. Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods

The order of the rankings. Fig. 5b depicts typical situation with respect to the
order of the feature ranking scores when an ensemble method is fixed. More pre-
cisely, only in 4 out of 30 cases, the ranking that belongs to the Random Forest score
is placed in between those that belong to Symbolic and Genie3 score. This can be
explained by the fact that the mechanisms for computing feature relevances in the
latter two scores are more similar to each other than to the mechanism of Random
Forest score. Indeed, the statistics of the nodes that are considered by Symbolic
score (number of examples) and Genie3 score (variance reduction), are somewhat
related since number of examples is also part of the variance reduction statistic.
Random Forest score, on the other hand, takes a look at the error reduction values.

Efficiency of the rankings. Under the efficiency of the ranking, we mean the (rel-
ative) number of the features that have a positive feature importance. The lower
the number, the more efficient the ranking. In Fig. 5b, all three scores result in a
relevant feature rankings, since all three curves lie above the baseline. The dataset
at hand has the second highest number of features (72869) and it is surprising that
the weighted kNN algorithms which make use of the weights from the rankings, use
at most 8% of the features: this is the approximate number of features in the case
of Genie3 and Symbolic score. In the case of the Random Forest score, the num-
ber is even lower: only 3%. That means that more than 90% of the features were
proclaimed completely irrelevant and have weight 0 (or negative). Similar situation
was observed for the other extremely high dimensional datasets, e.g., wipo where
Random Forest rankings proclaim 99% of the features irrelevant. The complete
statistics are given in Tab. 3.

By carefully inspecting the table, we make three observations. First, Symbolic and
Genie3 score columns are equal, but this can be explained by the fact that they are
computed from the same ensemble (Random Forests) and the terms in Eq. (1) and
Eq. 2 are always positive which is obvious for the Symbolic score, and can be proven
with simple algebra for the Genie3 score.

A more interesting observation is that Random Forest ranking is consistently more
efficient that the other two ensemble rankings. Only on the two of 30 datasets,
Random Forest score is less efficient that the other two. The reason for this is most
likely the following. Note that Random Forest rankings are computed from the
Bagging ensemble which always considers all features when inducing a new node of
a tree. If the relevant features can be told apart from the irrelevant ones, then, always
one of the relevant features would be chosen in a test split. On contrary, Genie3
and Symbolic scores are computed from Random Forests ensemble, which consider
only a subspace of features, so all (or most of the) relevant ones can be skipped by
chance, so from time to time, an irrelevant feature appears in a test. In addition to
that, bootstrapping may also play an important role in this process. If the data is
sparse which is true for many of the datasets (including, e.g., yeast-GO), then it
can happen that different features are important for different bootstrap replicates.

The last observation is that HMLC-Relief feature rankings are typically more effi-
cient than the ensemble-based feature rankings. This is another proof that data is
sparse, since the second term in Eq. (4) - which can make the relevance negative
- should converge to zero when the domain is populated with more and more ex-

– 16 –

123

Acta Polytechnica Hungarica Vol. ??, No. ?, 20??

Table 3
The proportion of the features in the dataset with positive importance, for each of the rankings, computed
in a optimal setting as given in Sec. 4.4.

dataset Genie3 Random Forest Symbolic HMLC-Relief
cellcycle-yeast-FUN 100% 100% 100% 71%
church-yeast-FUN 85% 81% 85% 26%
clef07a-is 100% 100% 100% 64%
derisi-yeast-FUN 95% 79% 95% 59%
diatoms 95% 78% 95% 78%
eisen-yeast-FUN 100% 100% 100% 62%
enron-corr 76% 54% 76% 16%
expr-yeast-FUN 96% 94% 96% 38%
exprindiv-ara-FUN 86% 68% 86% 45%
exprindiv-ara-GO 98% 94% 98% 42%
gasch1-yeast-FUN 100% 100% 100% 61%
hom-ara-FUN 8% 3% 8% 56%
hom-ara-GO 16% 6% 16% 76%
hom-yeast-FUN 15% 6% 15% 14%
icpr2010 88% 66% 88% 48%
interpro-ara-FUN 19% 8% 19% 6%
interpro-ara-GO 26% 10% 26% 3%
pheno-yeast-FUN 65% 68% 65% 6%
reuters 5% 3% 5% 2%
scop-ara-FUN 20% 17% 20% 5%
scop-ara-GO 29% 23% 29% 6%
seq-ara-FUN 60% 36% 60% 47%
seq-ara-GO 84% 64% 84% 67%
seq-yeast-FUN 91% 89% 91% 14%
spo-yeast-FUN 96% 95% 96% 39%
struc-ara-FUN 36% 16% 36% 53%
struc-ara-GO 62% 27% 62% 53%
struc-yeast-FUN 29% 9% 29% 32%
wipo 4% 1% 4% 5%
yeast-GO 22% 25% 22% 6%

– 17 –

124 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

Petković et al. Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods

amples (a sketch of a proof can be found in [17]). However, the efficiency is not
correlated with the ranking quality as shown in Sec. 4.4.

Conclusions
We proposed three feature ranking scores, i.e., Symbolic, Genie3 and Random For-
est score for the task of HMLC. The proposed feature ranking methods can be com-
puted very efficiently, since it suffices to grow only 10 trees in the ensemble. The
first two scores yield relevant feature ranking, while Random Forest score fails to do
so. The most suitable ensemble method for Symbolic and Genie3 score is Random
Forests ensemble. For Random Forest score, the most suitable ensemble method
is Bagging. When coupled with the suitable ensemble method, all three scores
also outperform the HMLC-Relief feature ranking. When we compare the ensem-
ble scores to each other, Symbolic score statistically significantly outperforms the
Random Forest score, therefore we suggest to use either the former or Genie3 score,
since there are no statistically significant differences among these two (but the Sym-
bolic score has the lowest rank on average).

We have also shown that Symbolic and Genie3 score are more closely related to each
other than to Random Forest score. Especially on the extremely high-dimensional
datasets, all three feature ranking scores successfully filter out a majority of the
features and still outperform the baseline that uses all of them. The HMLC-Relief
feature rankings are even more efficient in that sense, but they are of lower quality.

This work can be extended in at least two directions. First, one could improve the
HMLC-Relief, so that its performance would be comparable to the ensemble-based
rankings. Next, we could extend the ensemble-based scores to the gradient boosting
ensemble technique which is inherently different from the ones presented here, since
there, the trees are not independent of each other which also allow for the analysis
of the development of the ranking through the iterations.

Acknowledgement
We acknowledge the financial support of the Slovenian Research Agency via the
grants P2-0103 and a young researcher grant to MP, as well as the European Com-
mission, through the grants MAESTRA (Learning from Massive, Incompletely an-
notated, and Structured Data) and HBP (The Human Brain Project), SGA1 and
SGA2. SD also acknowledges support by Slovenian Research Agency (via grants
J4-7362, L2-7509, and N2-0056), the European Commission (project LANDMARK)
and ARVALIS (project BIODIV). The experiments presented here were executed on
the computing infrastructure from the Slovenian Grid (SLING) initiative.

References

[1] Barutcuoglu, Z., Schapire, R. E., and Troyanskaya, O. G. (2006). Hierarchical
multi-label prediction of gene function. Bioinformatics, 22(7):830–836.

[2] Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate:
A practical and powerful approach to multiple testing. Journal of the Royal
Statistical Society., 57(1):289–300.

– 18 –

125

Acta Polytechnica Hungarica Vol. ??, No. ?, 20??

[3] Blockeel, H. (1998). Top-down Induction of First Order Logical Decision Trees.
PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium.

[4] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

[5] Breiman, L., Friedman, J., Olshen, R., and Stone, C. J. (1984). Classification
and Regression Trees. Chapman & Hall/CRC.

[6] Clare, A. (2003). Machine learning and data mining for yeast functional ge-
nomics. PhD thesis, University of Wales Aberystwyth, Aberystwyth, Wales, UK.

[7] Consortium, T. G. O. (2000). Gene ontology: tool for the unification of biology.
Natural Genetics, 25(1):25–29.

[8] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7:1–30.

[9] Dimitrovski, I., Kocev, D., Loskovska, S., and Džeroski, S. (2008). Hierchical
annotation of medical images. In Proceedings of the 11th International Multi-
conference - Information Society IS 2008, pages 174–181. IJS, Ljubljana.

[10] Dimitrovski, I., Kocev, D., Loskovska, S., and Džeroski, S. (2011). Hierarchi-
cal classification of diatom images using predictive clustering trees.

[11] Dimitrovski, I., Kocev, D., Loskovska, S., and Džeroski, S. (2010). Detection
of visual concepts and annotation of images using ensembles of trees for hier-
archical multi-label classification. In Recognizing Patterns in Signals, Speech,
Images and Videos, pages 152–161, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

[12] Hansen, L. K. and Salamon, P. (1990). Neural network ensembles. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12:993–1001.

[13] Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring
regulatory networks from expression data using tree-based methods. PLoS One,
5(9):1–10.

[14] Klimt, B. and Yang, Y. (2004). The enron corpus: A new dataset for email
classification research. In ECML ’04: Proceedings of the 18th European Con-
ference on Machine Learning – LNCS 3201, pages 217–226. Springer Berlin /
Heidelberg.

[15] Kocev, D. (2011). Ensembles for predicting structured outputs. PhD thesis,
IPS Jožef Stefan, Ljubljana, Slovenia.

[16] Kocev, D., Vens, C., Struyf, J., and Džeroski, S. (2013). Tree ensembles for
predicting structured outputs. Pattern Recognition, 46(3):817–833.

[17] Kononenko, I. and Robnik-Šikonja, M. (2003). Theoretical and Empirical
Analysis of ReliefF and RReliefF. Machine Learning Journal, 55:23–69.

[18] Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). Rcv1: A new bench-
mark collection for text categorization research. Journal of Machine Learning
Research, 5:361–397.

– 19 –

126 Chapter 5. Feature Ranking for Multi-Label Classification and HMLC

Petković et al. Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods

[19] Petković, M., Džeroski, S., and Kocev, D. (2018). Feature ranking with re-
lief for multi-label classification: Does distance matter? In Soldatova, L., Van-
schoren, J., Papadopoulos, G., and Ceci, M., editors, Discovery Science, pages
51–65. Springer.

[20] Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J. (2006). Kernel-
based learning of hierarchical multilabel classification models. Journal of Ma-
chine Learning Research, 7:1601–1626.

[21] Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., and Džeroski,
S. (2010). Predicting gene function using hierarchical multi-label decision tree
ensembles. BMC Bioinformatics, 11(1).

[22] Slavkov, I., Karcheska, J., Kocev, D., and Deroski, S. (2018). HMC-ReliefF:
Feature ranking for hierarchical multi-label classification. Computer Science and
Information Systems, 15(1):187–209.

[23] Stańczyk, U. and Jain, L. C., editors (2015). Feature Selection for Data and
Pattern Recognition. Studies in Computational Intelligence. Springer Berlin Hei-
delberg.

[24] Tsoumakas, G. and Katakis, I. (2007). Multi-label classification: An overview.
International Journal of Data Warehousing and Mining, pages 1–13.

[25] Vens, C., Struyf, J., Schietgat, L., Džeroski, S., and Blockeel, H. (2008).
Decision trees for hierarchical multi-label classification. Machine Learning,
73(2):185–214.

[26] Wettschereck, D. (1994). A study of distance based algorithms. PhD thesis,
Oregon State University, USA.

– 20 –

127

129

Chapter 6

Feature Ranking for Semi-Supervised
Structured Output Prediction

In this Chapter, we present in detail the third set of contributions of the thesis: those
concerning the semi-supervised learning (SSL) setting and the predictive modeling tasks
of single target classification (STC) and regression (STR), multi-target regression (MTR),
multi-label classification (MLC) and hierarchical multi-label classification (HMLC). Recall
from the introductory sections that in the SSL setting, some (or the majority) of exam-
ples are unlabeled, i.e., have missing target values (Section 2.2.4). Also recall that we
briefly presented our feature ranking methods for SSL in Sections 3.1.3 and 3.2.3. Our
contributions in this context include:

1. An extension of ensemble-based feature ranking scores from the context of supervised
learning to the context of SSL, for both primitive and structured outputs.

2. An extension of distance-based feature ranking scores from the context of supervised
learning to the context of SSL, for both primitive and structured outputs.

3. An extensive experimental evaluation of the newly proposed feature importance
scores for SSL on task appropriate collections of benchmark datasets, assessing the
performance of the scores individually and in cross-comparison.

Chronologically, we first proposed the extension of ensemble-based feature ranking
methods from the supervised classification to the semi-supervised classification setting in a
paper presented at the DS-2019 conference (Petković, Džeroski, et al., 2019). As outlined in
Chapter 3, the proposed feature ranking methods consist of pairs of ensemble generation
methods (bagging, random forests and extra trees) and scores (Symbolic, Genie3, and
Random Forest scores). We evaluated the performance of the feature ranking methods
on a range of benchmark datasets, and the main findings as follows. First, we show that
using unlabeled data improves the quality of feature rankings, even when the clustering
hypothesis (Section 2.2.4) is not satisfied. Thus, SSL feature rankings outperform their
supervised counterparts. Next, we show that the proposed feature rankings are state-of-the
art and, finally, that they are all equally good.

We considerably extended this work (Petković, Džeroski, et al., 2020b) to handle the
other aforementioned predictive modeling tasks (STR, MTR, MLC, HMLC). We also pro-
posed extensions of distance-based methods for all the tasks (STC, STR, MTR, MLC,
HMLC) in the SSL setting. We also extensively evaluated all the methods on collections of
datasets for each task, with additional STC datasets as compared to (Petković, Džeroski,
et al., 2019). The main findings of the evaluation on the 38 benchmark datasets are the
following.

130 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

In the majority of cases, the SSL feature rankings outperform their supervised counter-
parts, regardless of whether the clustering hypothesis is satisfied for a particular dataset.
Next, SSL feature rankings give a more global picture of a dataset, as compared to the
supervised feature rankings. Finally, for all the predictive modeling tasks, except for clas-
sification (where the number of features in the considered datasets is not extremely high),
ensemble-based SSL feature ranking methods outperform the distance-based SSL feature
ranking methods. However, the winner among the ensemble-based methods, i.e., the best
feature ranking method overall, changes from task to task: Symbolic ranking is the best
for STR and MTR, Random forest ranking for MLC and, Genie3 for HMLC.

The work presented in this Chapter addresses the following hypotheses (as defined in
the introduction):

H1: It is possible to extend ensemble- and distance-based feature ranking approaches to
the unsupervised feature ranking task, to the tasks of supervised SOP (i.e., MTR,
MLC, and HMLC), and to their semi-supervised versions.

H6: For unsupervised, MTR, MLC and HMLC problems, the ensemble-based feature
ranking approaches on average outperform the distance-based approaches to feature
ranking when the number of features is extremely high.

H7: The proposed ensemble- and distance-based feature ranking approaches yield rele-
vant and state-of-the-art feature rankings for feature-ranking problems in SSL for
classification.

H8: The proposed ensemble- and distance-based feature ranking approaches yield relevant
and state-of-the-art feature rankings for feature-ranking problems in SSL for different
types of SOP.

These hypotheses are confirmed with the design and implementation of the feature rank-
ing approaches presented in this Chapter and the experimental studies comparing their
performance. Hypotheses H7 and H8 are completely confirmed by the results presented
in this Chapter. For hypotheses H1 and H6, the parts pertaining to SSL are confirmed in
this Chapter, while the remaining parts of these hypotheses are addressed in the previous
and the next chapters.

The papers included in this Chapter are:

• Petković M., Džeroski S., Kocev D. (2019) Ensemble-Based Feature Ranking for
Semi-supervised Classification. In: Proceeinds of the 22nd International Conference
on Discovery Science, LNCS, 11828: 290-305. Springer, Cham

• Petković, M., Džeroski, S. and Kocev, D. Feature Ranking for Semi-supervised Learn-
ing. Machine Learning. Under review.

The contribution of Matej Petković to these papers are as follows. MP con-
tributed to the design of the ensemble-based and distance-based feature ranking methods
for SSL and implemented these methods in computer code. He also participated in design-
ing the experiments, carried out the experiments, and processed their results. He drafted
the papers and revised them following the feedback from the co-authors and reviewers.

Ensemble-Based Feature Ranking for
Semi-supervised Classification

Matej Petković1,2, Sašo Džeroski1,2, and Dragi Kocev2

1 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
2 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia

{name.surname}@ijs.si, http://kt.ijs.si

Abstract. In this paper, we propose three feature ranking scores (Sym-
bolic, Genie3, and Random Forest) for the task of semi-supervised clas-
sification. In this task, there are only a few labeled examples in a dataset
and many unlabeled. This is a highly relevant task, since it is increasingly
easy to obtain unlabeled examples, while obtaining labeled examples is
often an expensive and tedious task. Each of the proposed feature rank-
ing scores can be computed by using any of three approaches to learn-
ing predictive clustering tree ensembles (bagging, random forests, and
extra trees). We extensively evaluate the proposed scores on 8 bench-
mark datasets. The evaluation finds the most suitable ensemble method
for each of the scores, shows that taking into account unlabeled exam-
ples improves the quality of a feature ranking, and demonstrates that
the proposed feature ranking scores outperform a state-of-the-art semi-
supervised feature ranking method SEFR. Finally, we identify the best
performing pair of a feature ranking score and an ensemble method.

Keywords: semi-supervised learning · feature ranking · ensembles

1 Introduction

A center task in machine learning is predictive modeling concerned with learning
a predictive model, from a given training dataset of values of features-target pairs
(x, y), where x = (x1, . . . , xF). The learned predictive models can then be used
to predict target values for previously unseen values of features. In this paper,
we focus on the classification task, where the domain Y of the target y is a finite
set of discrete values. The task at hand is called binary classification if |Y| = 2,
and multi-class classification if |Y| > 2. In both cases, we refer to the target
values of y as labels or classes.

Typically, all the examples in the training set are labeled, i.e., have a known
value of y. In that case, we say that the learning is supervised. However, deter-
mining which class an example belongs to, might be very expensive or take too
much time in some domains (e.g., compound toxicity). Hence, there is a multi-
tude of datasets with only a handful of labeled examples and many unlabeled
ones. To address this challenge, methods that can use the unlabeled data in the
learning phase have been developed [6,14]. These semi-supervised learning (SSL)

131

2 M. Petković et al.

methods are applicable mostly when there are only a few labeled examples and
plenty of unlabeled data, which makes applying the supervised learning hard.

Another prominent task in machine learning is feature ranking where, the
goal is to discover to what extent each of the features xi, 1 ≤ i ≤ F is relevant
for the class y(x). Formally, given a dataset DTRAIN, the output of a feature
ranking algorithm is a list of feature importance scores importance(xi), where a
higher score corresponds to a higher relevance of the feature for the target values.
The task of feature ranking is typically seen as a data preprocessing step. We can
perform dimensionality reduction on the data to make the learning of a predictive
model faster or even at all feasible. This is done by discarding the features that
have lower importance than some threshold ϑ ∈ R. Lower dimensionality also
results in models that are easier to understand – this is particularly important
when a data scientist collaborates with a domain expert. Lately, much work is
being done in the field of explainable artificial intelligence. In the case of black
box models, such as neural networks and ensembles, feature ranking is the only
way to at least partially explain the obtained predictions.

A task that is related to feature ranking is feature selection. The goal of
feature selection is to identity a subset of the features that yield better (or at
least the same) predictive performance when used to learn predictive models (as
compared to learning a predictive model on the complete feature set). Note that
this is a task different from feature ranking: the former looks for the best subset,
while the latter focuses on ordering the features based on their relevance for the
target. Notwithstanding, as mentioned above, feature ranking can be used to
perform feature selection by applying a threshold on the importance scores.

We propose a method for SSL feature ranking, i.e., learning a feature ranking
for datasets with a handful of labeled examples and many unlabeled examples.
The proposed method is based on the ensemble learning paradigm [16]. It uses
tree-based methods for semi-supervised learning of classification trees [14].

We perform an empirical evaluation of the proposed method on 8 bench-
mark multi-class classification datasets. In the empirical evaluation, we set out
to investigate the influence of the combination of ensemble learning methods
and feature ranking scores, the number of labeled examples, and the number of
unlabeled examples. Moreover, we compare the performance of the variants of
the proposed method to the performance of their fully supervised counterparts
as well as to the performance of another competing method for semi-supervised
feature ranking based on ensemble learning [1].

The remainder of this paper is organized as follows. In Section 2, we re-
view the background and the related work. Next, in Section 3, we describe the
proposed method for feature ranking for semi-supervised classification. Further-
more, we outline the design of the empirical evaluation of the proposed method
in Section 4 and then we discuss the results of the evaluation in Section 5. Finally,
we conclude and provide directions for further work in Section 6.

132 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

Ensemble-Based Feature Ranking for Semi-supervised Classification 3

2 Background and related work

2.1 Related Work

There are three major groups of methods that address the SSL task. The simplest
option is to discard the unlabeled data, and then use an existing algorithm for
supervised learning. However, when the number of labeled examples is really low
(e.g., 10 or 20 examples), this approach has severely limited success.

The second group of methods performs self-training [17] where an algorithm
for supervised learning is first applied to the labeled examples in DTRAIN. Next,
the resulting model is used to predict the target values of the unlabeled examples,
and a heuristic score is used to assess the certainty/reliability of the predictions
of the models. The examples for which the algorithm is the most certain in its
predictions, keep their labels and the examples are added to the current set of
labeled examples. The cycle is iteratively repeated until a stopping criterion is
met (e.g., no more unlabelled examples or no more reliable predictions). At the
end, a model is learned on the final set of labeled examples.

The last class of SSL methods are algorithm-adaptation methods, where an
existing algorithm, e.g., for learning decision trees [3], is adapted so that it can
also take into account the unlabeled examples. In the case of decision trees, this
was done by adapting the heuristic that measures the impurity of the current
dataset [14], so that not only the target y is taken into account, but also the
features xi. Under the clustering assumption, i.e., the assumption that the class
values correspond to well-defined clusters of data [6], the last two approaches
are expected to be superior to the first solution.

Like supervised feature ranking methods, feature ranking methods for SSL
belong to three major groups [18]: filter methods, where no predictive model is
needed for feature ranking; embedded methods, where feature ranking is com-
puted directly from a predictive model; and wrapper methods, where a predictive
model is typically retrained more than once and the ranking is built iteratively.

Filter methods are typically the fastest, but can be myopic. Namely, they
do not take into consideration possible feature interactions and have limited
scope, e.g., the variance score [2] is applicable to datasets with numeric features
only. A representative of embedded methods is the SEFR feature ranking [1]
computed from an ensemble of decision trees: this is an SSL adaptation of the
random forest ranking [4], where the trees are learned in a self-training fashion.
A representative of the wrapper methods is the method for recursive feature
elimination with support vector machines (SVMs) [20]. At each iteration, an
SVM model is trained and thus a normal w is obtained. Features xi for which
the absolute value of components |wi| are the smallest are removed, and the
procedure is iteratively repeated until a complete ranking is obtained. For other
SSL feature ranking methods (which are mostly limited to feature selection of
numeric features), we refer the reader to a recent survey [18].

133

4 M. Petković et al.

2.2 Semi-supervised Predictive Clustering Trees

The proposed feature ranking method is based on ensembles of predictive clus-
tering trees (PCTs) for classification. The PCT framework views a decision tree
as a hierarchy of clusters, which are induced with the standard top-down induc-
tion process [5] described in Alg. 1. The root of a PCT corresponds to a cluster
containing all data, which is recursively partitioned into subclusters while mov-
ing down the tree. The leaves represent the clusters at the lowest level of the tree
hierarchy and each leaf is labeled with its cluster’s prototype (prediction). PCTs
generalize decision trees and can be used for a variety of learning tasks, including
clustering tasks, different types of structured output prediction tasks [3,12], as
well as SSL tasks [14]. The generalization is based on appropriately adapting the
heuristic for inducing PCTs and the prototype function to the given structured
output prediction task.

Alg. 1 is used for learning PCTs. Its input is a set of examples E ⊆ DTRAIN,
and its output is a tree. The heuristic h that is used for selecting the best test
at a node is the weighted impurity reduction of the subsets of E (lines 3 and
4), induced by the tests. By maximizing it (line 5 of Alg. 2), the algorithm is
guided towards small trees with good predictive performance. If no test reduces
the impurity, a leaf is created and the prototype (e.g., average) of the instances
belonging to that leaf is computed.

Algorithm 1 PCT(E)

1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ 6= none then
3: for each Ei ∈ P∗ do
4: treei = PCT(Ei)
5: return Node(t∗,

⋃
i{treei})

6: else
7: return Leaf (Prototype(E))

Algorithm 2 BestTest(E)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each test t do
3: P = partition induced by t on E
4: h = |E|impu(E)−∑

Ei∈P |Ei|impu(Ei)
5: if h > h∗ then
6: (t∗, h∗,P∗) = (t, h,P)
7: return (t∗, h∗,P∗)

In the standard classification scenario, the impurity impu(E) of a data sub-
set E is defined as the Gini impurity of the class y, i.e., Gini(E, y) = 1 −∑

c p
2
E(c), where pE(c) is the relative frequency of the class value c in the sub-

set E. In the semi-supervised scenario, where some or most of the target val-
ues are missing, the heuristic is adapted so that also impurity of the features
is taken into account. To this end, we first define the normalized version of
Gini , namely Gini ′(E, y) = Gini(E, y)/Gini(DTRAIN, y). Analogously, we in-
troduce the impurity measure for numeric features as the normalized variance
Var′(E, xi) = Var(E, xi)/Var(DTRAIN, xi). Finally, the impurity of a set E is

defined as impu(E) = w Gini ′(E, y) + (1− w) · 1
F

∑F
i=1 impu(E, xi), where the

impu(E, xi) is calculated as Gini ′(E, xi) if xi is nominal and as Var′(E, xi) if
xi is numeric, and F is the number of features and the influence of Gini ′(E, y)
is controlled by the parameter w ∈ [0, 1], whose optimal value is set by internal
cross-validation. When computing the relative frequencies that are used in the
Gini ′ score, only the examples with known values of the target y (or feature xi)

134 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

Ensemble-Based Feature Ranking for Semi-supervised Classification 5

are taken into account. The prediction, i.e., the prototype in a leaf of a PCT, is
defined as the majority class value in the leaf.

2.3 Ensembles of PCTs

An ensemble is a set of base predictive models constructed with a given algo-
rithm. The prediction for a new example x is made by combining the predictions
of the models from the ensemble. In classification tasks, this is typically done by
voting, where the i-th base model either votes for the class value it predicts, or
computes the probabilities pi(c | x), for all class values c. In the first case, the
prediction of the ensemble is the class with the most votes. In the second case,
the prediction is the class with the highest sum

∑
i pi(c | x).

A necessary condition for an ensemble to be more accurate than its members,
is that the members are accurate and diverse models [9], i.e., that they make
different errors on new examples. However, we do not use the ensembles as
predictive models. Rather, we use them as a basis for computing feature ranking
scores. As it is evident from the scores’ definitions in Sec. 3 (Eqs. (1), (2) and
(3)), one can also compute the ranking from a single tree, but the variance
of feature importances decreases when the number of trees is higher. There are
several ways to introduce diversity among the PCTs in an ensemble. We describe
and make use of three of them.

Bagging and random forests. Instead of being learned from the original
dataset DTRAIN, each tree in the bagging/random forest ensemble is built from a
different bootstrap replicate B of the dataset DTRAIN, called bag. The examples
DTRAIN \ B are called out-of-bag examples (OOB). Additionally, the line 2 of
the BestTest procedure (see Alg. 2) is modified to change the feature set during
learning by introducing randomization in the test selection. More precisely, at
each node in a decision tree, a random subset of the features is taken, and the
best test is selected from the splits defined by these features. The number of the
retained features F ′ is given as a function of the total number of features F , e.g.,
d
√
F e, dF/4e, etc. We obtain the bagging procedure if we keep all the features,

and the random forest procedure otherwise.

Extra tree ensembles. As in random forests, we consider F ′ features in
each node, but we do not evaluate all potential tests that the features could yield.
Rather, we choose randomly only one test per feature. Among these F ′ tests, we
choose the best one. From the bias-variance point of view, the rationale behind
the Extra-Trees method is that the explicit randomization of the cut-point and
feature combined with ensemble averaging should be able to reduce variance
more strongly than the weaker randomization schemes used by other methods
[7]. Note that originally, Extra-Tree ensembles use no bootstrapping. However,
we introduced it due to two main reasons: i) some preliminary experiments
showed that it is beneficial to do so from the predictive power point of view,
and ii) the Random Forest score (see Eq. (3)) requires OOB examples for its
computation.

135

6 M. Petković et al.

3 Feature Ranking Scores for SSL Classification

We first propose and describe the Symbolic score. Then, we proceed explaining
the Genie3 [11] and the Random Forest scores [4]. To avoid confusion, Random
Forest score will be always in singular form and capitalized, whereas the ensem-
ble method random forests will be in plural form and not capitalized. In the
following, a tree is denoted by T , whereas N ∈ T denotes a node in a tree.
Trees form an ensemble E of size |E|. The set of all internal nodes of a tree T in
which the feature xi appears as part of a test is denoted as T (xi).

Symbolic score. In the simplest version of the score, we count the occur-
rence of a given feature in the tests in the internal nodes of the trees. Since the
features appearing closer to the root influence more examples and are intuitively
more important, we define the importance of the feature xi as

importanceSYMB(xi) =
1

|E|
∑

T ∈E

∑

N ∈T (xi)

|E(N)|/|DTRAIN|, (1)

so that the appearances of the feature xi are weighted by the number of examples
the corresponding node influences. The term 1/|DTRAIN| is just a scaling factor.
This is a parameter-less version of the previously defined Symbolic score [16],
where an appearance of a feature xi in node N was awarded αdepth(N), where
the value of the α ∈ (0, 1] had to be chosen by the user.

Genie3 score. The main motivation for this score is that splitting the cur-
rent subset E ⊆ DTRAIN, according to a test where an important feature appears,
should result in high impurity reduction. The Genie3 importance of the feature
xi is thus defined as

importanceGENIE3(xi) =
1

|E|
∑

T ∈E

∑

N ∈T (xi)

|E(N)|h∗(N), (2)

where E(N) is the set of examples that come to the node N , and h∗(N) is the
value of the variance reduction function described in Alg. 2. Greater emphasis
is again put on the features higher in the tree, where |E| is larger.

Random Forest (RF) score. This score tests how much noising a given
feature decreases the predictive performance of the trees in the ensemble. The
greater the performance degradation, the more important the feature is.

Once a tree T is grown, the algorithm evaluates the performance of the
tree by using the corresponding OOBT examples. This results in the accuracy
a(OOBT). Afterward, we randomly permute the values of feature xi in the set
OOBT and obtain the set OOBi

T with the corresponding accuracy a(OOBi
T).

The importance of the feature xi for the tree T is defined as the relative decrease
of accuracy after noising. The final Random Forest score of the feature is the
average of these values across all trees in the forest:

importanceRF(xi) =
1

|E|
∑

T ∈E

a(OOBT)− a(OOBi
T)

a(OOBT)
. (3)

136 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

Ensemble-Based Feature Ranking for Semi-supervised Classification 7

Note that a(OOBi
T) = a(OOBT) if the feature xi does not appear in T . This

can speed up the computation of importanceRF, but this feature ranking method
is still the most time consuming. While the time complexity of the first two is
negligible as compared to the one of growing the forest, this one has an additional
linear factor: the number of examples in the training set.

4 Experimental Design

In this section, we define the experimental questions, briefly describe the datasets,
define the evaluation procedure and describe which parameters of the algorithms
were used in the experiments. With the empirical evaluation, we set out to an-
swer the following four questions:

1. Which ensemble method suits a given feature ranking score the most?
2. Can our SSL-feature ranking scores make effective use of the unlabeled ex-

amples, especially when the number of labeled examples is small?
3. Do our SSL-feature ranking scores yield state-of-the-art feature rankings?
4. Which SSL-feature ranking score has the highest quality?

Before proceeding to the rest of the section, let us mention that the pro-
posed SSL feature ranking scores are implemented in the Clus software http:

//source.ijs.si/ktclus/clus-public, and that all the datasets, the results
are available at http://source.ijs.si/mpetkovic/ssl-fr, together with our
implementation of the competing SEFR method [1].

We use 8 benchmark classification datasets from various domains: medicine
(Arrhythmia, Dis), science and technology (Gasdrift, Pageblocks, Phishing), gam-
ing (Chess, Tic-tac-toe) and economy (Bank). The main properties of the datasets,
i.e., the number of features, classes, and examples are given in Tab. 1.

Prior to performing any experiments, each dataset D was randomly split
into x = 10 stratified folds which resulted in the test sets DTESTi, 0 ≤ i < x.
In contrast to the cross-validation in the standard classification scenario where
DTRAINi = ∪j 6=iDTESTj we first define the copy DTEST

`
i of DTESTi in which we

Table 1: Basic properties of the datasets in the experiments: number of nominal
and numeric features, number of examples, number of classes and the proportion
of examples belonging to the majority class.

dataset nominal numeric examples classes majority class [%]

Arrhythmia [15] 73 206 452 16 54
Bank [15] 9 7 4521 2 88
Chess [15] 36 0 3196 2 52
Dis [8] 22 6 3772 2 98
Gasdrift [15] 0 129 13910 6 22
Pageblocks [15] 0 10 5473 5 90
Phishing [15] 30 0 11055 2 56
Tic-tac-toe [15] 9 0 958 2 65

137

8 M. Petković et al.

remove the labels (class values) of all but b`/(x − 1)c + ri randomly selected
examples, where b·c is the floor function, r is the reminder of ` when divided by
x − 1, and ri = 1 if i < r and 0 otherwise. This assures that every training set
DTRAIN

`
i = ∪j 6=iDTEST

`
i contains precisely ` labeled examples. We make sure

that the implication `1 ≤ `2 ⇒ labeled examples of DTRAIN
`1
i are a subset of the

labeled examples in DTRAIN
`2
i holds.

An SSL-ranking score is computed from DTRAIN
`
i and its standard-classifi-

cation counterpart is computed on the DTRAIN
`
i with the unlabeled examples

removed. Afterward, both rankings are evaluated on DTEST
`
i . This is done by

using the kNN algorithm with k = 20 where weighted version of the standard
squared Euclidean distance is used. For two input vectors x1 in x2, the distance
d between them is defined as d(x1,x2) =

∑F
i=1 wid

2
i (x1

i ,x
2
i), where di is defined

as the absolute difference of the feature values scaled to the [0, 1]-interval, if xi
is numeric, and as 1[x1

i 6= x2
i] (1 is the indicator function), if xi is nominal.

We first define wi = max{importance(xi), 0}, since Random Forest ranking
can award a feature a negative score. In the degenerated case when the resulting
values all equal 0, we define wi = 1, for all features xi. The first step is necessary
to ignore the features that are of lower importance than a randomly generated
one would be. The second step is necessary to ensure d is well-defined.

The evaluation through kNN was chosen because of three main reasons. First,
this is a distance based method, hence, it can easily make use of the information
contained in the feature importances in the learning phase. Second, kNN is
simple: Its only parameter is the number of neighbors. In the prediction stage,
the neighbors’ contributions to the predicted value are equally weighted, so we
do not introduce additional parameters that would influence the performance.
Finally, if a feature ranking is meaningful, then when the feature importances are
used as weights in the calculation of the distances, kNN should produce better
predictions as compared to kNN without using these weights [19].

To assess the predictive performance, we first compute the sum M of the
x confusion matrices Mi that we obtain from the x-fold cross-validation, i.e.,
M =

∑x−1
i=0 Mi. We use the confusion matrix M to compute accuracy, Cohen’s κ,

F1 score and Matthew’s correlation coefficient as evaluation measures. The latter
three were used since they do not give misleading results in the case of skewed
class distribution. Due to space limitations, we will report only accuracy and
F1 score (considering Cohen’s κ, F1 score and Matthew’s correlation coefficient
leads to the same conclusions as presented here). We compute 1-versus-other
macro-averaged versions of the F1 measure and Matthew’s coefficient (to also
consider multi-class classification problems). Note that defining the matrix M is
necessary, because averaging the scores over the folds is wrong, as the measures
are not additive.

We parametrize the used methods as follows. The number of trees in the en-
sembles was set to 100. The number of features that are considered in each
internal node was set to

√
F for random forests and F for extra trees [7].

The optimal value of the parameter w for computing the ensembles of PCTs
was selected by 5-fold internal cross-validation. The considered values were

138 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

Ensemble-Based Feature Ranking for Semi-supervised Classification 9

w ∈ {0, 0.1, 0.2, . . . , 0.9, 1}. The possible numbers of labeled examples ` in the
training datasets were ` ∈ {50, 100, 200, 350, 500} [13].

5 Results and Discussion

5.1 Most Appropriate Ensemble

We start our analysis by choosing the most appropriate ensemble for a given
feature ranking score. To this end, we fix the score (Symbolic, Genie3 or Random
Forest) and compute it from the three ensembles (random forest, bagging, and
extra trees), for all values of the number of labeled examples `. When we evaluate
these rankings on a given test set with a given evaluation measure m, we obtain
a curve consisting of points (`,m(`)), for every score-ensemble pair. The final
measure for the performance of an ensemble for a given score is the area under
the corresponding curve, denoted by auc. When computing the auc, we assume
that the points ` are equidistant, which effectively puts more weight on the lower
values of `, where the SSL methods are the most applicable.

Thus, for every feature ranking score, dataset and evaluation measure, we
obtain curves that belong to the three ensemble methods, and rank them with
respect to the auc: the one with the highest auc is assigned rank 1. We then
average these ranks over the datasets and evaluation measures.

The summary of the comparison of the pairs (ensemble, score) is given in
Tab. 2. We can see that the differences among different ensemble methods are
not large which means that for a given score, all three ensemble methods are
appropriate to some extent. This is also evident from the fact that no average
rank - except maybe that of supervised extra trees coupled with Genie3 score
(2.34) is close to the worst possible average rank of 3. However, note that en-
sembles of extra trees always have the worst average rank, hence we decide only
between random forests and bagging. If we are interested only in the quality of a
ranking, then the following choices are made: for Symbolic score, random forests
are the most appropriate (in both the SSL and the supervised case), whereas
for the other two scores (Genie3 and Random Forest) the bagging method per-
forms best. We will stick to these choices throughout the rest of the paper. If the
time complexity of inducing the ranking is also taken into account, then random

Table 2: Average ranks of the feature rankings computed from a fixed feature
ranking score and varying ensemble method: random forests (RF), bagging and
extra trees (ET). The ranks are reported for SSL ensembles and supervised
ensembles separately.

SSL ensembles supervised ensembles

score RF bagging ET RF bagging ET

Symbolic 1.86 2.07 2.07 1.93 1.95 2.11
Genie3 2.00 1.93 2.07 1.91 1.75 2.34
Random Forest 2.07 1.82 2.11 1.98 1.89 2.14

139

10 M. Petković et al.

Table 3: Differences between the auc of SSL feature rankings and their supervised
counterparts, measured in terms of accuracy and F1 measure of 20NN classifier.
If ∆ > 0, the SSL feature ranking outperforms the supervised one.

Symbolic Genie3 Random Forest

dataset ∆acc ∆F1 ∆acc ∆F1 ∆acc ∆F1

Arrhythmia 0.015 0.046 -0.010 0.012 0.004 0.031
Bank -0.030 0.058 -0.028 0.060 -0.039 0.057
Chess -0.153 -0.168 -0.152 -0.166 -0.091 -0.107
Dis -0.017 0.095 -0.022 0.113 -0.011 0.117
Gasdrift -0.237 -0.217 -0.267 -0.244 -0.262 -0.237
Pageblocks 0.017 0.202 0.018 0.228 0.017 0.190
Phishing -0.257 -0.300 -0.243 -0.288 -0.252 -0.297
Tic-tac-toe 0.110 0.201 0.105 0.191 0.142 0.265

forests would be preferred over bagging, at least in the case of the supervised
version of the Symbolic score, where the difference in average ranks is only 0.02,
but random forests rankings are computed

√
F -times faster.

5.2 Can Unlabeled Data Improve a Feature Ranking?

Here, we compare the quality of the SSL feature rankings to their supervised
counterparts in more depth. Since the latter use only labeled data, this shows
whether SSL feature rankings can make effective use of unlabeled data. We draw
the same curves as in the previous section and obtain three types of diagrams
as shown in Fig. 1. The Tic-tac-toe dataset (Figs. 1a and 1b) is a representative
dataset where SSL rankings outperform their supervised counterparts, for all
considered numbers of labeled examples `. Note that for 50 labeled examples, the
20NN model that uses the supervised rankings only achieves a default accuracy
(see Tab. 1), hence taking into account unlabeled examples clearly helps.

The next type of diagrams presented in Figs. 1c and 1d shows the curves for
the Arrhythmia dataset. This dataset is the only one where the curves of the
SSL and supervised rankings intersect: for the lower number of labeled examples
(up to 200), the SSL feature rankings outperform their supervised counterparts,
which again shows the usefulness of the unlabeled examples. Adding more labeled
examples (at least 350), boosts the performance of supervised rankings more and
they achieve better performance in this case. Sometimes, taking into account
the unlabeled examples does not help, as shown in the diagrams of the last type
whose representative, the Gasdrift dataset, is presented in Figs. 1e and 1f.

To explain this, we test the validity of the clustering assumption. Recall
that, in general, SSL should be the most effective when the clusters in the data
are in concordance with the values of the target variable y. To check this, we
compute the k-means clustering of a dataset D , where the parameter k is set to
the number of class values. We compare the resulting partition of the D to that
induced by the class labels y(x), in terms of the Adjusted Rand Index (ARI)
[10], which equals 1 when the partitions are equal and 0 if the partitions are

140 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

Ensemble-Based Feature Ranking for Semi-supervised Classification 11

50 100 200 350 500
labelled examples

0.7

0.8

0.9

ac
cu

ra
cy

(a) Tic-tac-toe

50 100 200 350 500
labelled examples

0.4

0.5

0.6

0.7

0.8

0.9

F
1

(b) Tic-tac-toe

50 100 200 350 500
labelled examples

0.54

0.56

0.58

0.60

0.62

ac
cu

ra
cy

(c) Arrhythmia

50 100 200 350 500
labelled examples

0.05

0.10

0.15

0.20

0.25

F
1

(d) Arrhythmia

50 100 200 350 500
labelled examples

0.4

0.6

0.8

ac
cu

ra
cy

(e) Gasdrift

50 100 200 350 500
labelled examples

0.2

0.4

0.6

0.8

F
1

Symbolic SSL

Symbolic

Genie3 SSL

Genie3

RForest SSL

RForest

(f) Gasdrift

Fig. 1: Comparison of the SSL feature ranking with the supervised feature rank-
ings on the Tic-tac-toe, Arrhythmia and Gasdrift datasets, in terms of accuracy
and F1 measure of the 20NN classifier. The legend in (f) applies to all subfigures.

random. The whole procedure is repeated 10 times and in the end, we compute
the median of the ARI scores.

It turns out that the median ARI score for the Gasdrift dataset is quite low
(2.19·10−2), whereas the Tic-tac-toe dataset has high ARI score (7.00·10−1). For
the other datasets, we do not show the graphs, but only the differences between
the auc values between the SSL and the supervised version of every ranking score.
They are given in the Tab. 3. We will focus mainly on the columns that belong
to the F1 measure results, since some of the datasets (Bank, Dis, Pageblocks) are
very imbalanced. We see that results are consistent for all three feature ranking

141

12 M. Petković et al.

scores: SSL rankings outperform their supervised versions in 5 out of 8 cases. The
remaining three include the datasets Gasdrift (discussed above), Phishing and
Chess. The Phishing dataset has an ARI score of −7.16 · 10−5, which effectively
means that class labels are randomly distributed among the clusters; Thus, the
better performance of the supervised rankings comes as no surprise. The last
one is the Chess dataset which has an ARI score of 2.20 · 10−1.

5.3 Are the Proposed Methods State-of-the-Art?

To answer this question, we compare our SSL feature rankings to the SEFR
ranking. We follow the structure of the previous section and first show the graphs
for the datasets Tic-tac-toe, Arrhythmia and Gasdrift in Fig. 2.

Figs. 2a and 2b depict the quality of the feature rankings computed from
the Tic-tac-toe dataset, in terms of the accuracy and F1 measure respectively.
We observe that the differences between SSL and SEFR rankings are not as
remarkable as those between the SSL and the supervised rankings. However,
all SSL rankings still consistently outperform the SEFR ranking, except for the
Random Forest ranking computed from 50 labeled examples.

Similar results are obtained for the Arrhythmia dataset as shown if Figs. 2c
and 2d. Again, the differences are in favor of the SSL rankings - in this case,
without exceptions. From these two graphs, we can also deduce that adding more
labeled examples does not necessarily help: the quality of rankings (except for
the Genie3 rankings, shown in green) does not monotonically increase and the F1

scores of the 20NN classifiers that use the Random Forest, Symbolic and SERF
importance scores computed from 500 labeled examples are even slightly lower
than the F1 scores of the same rankings computed from 50 labeled examples.
The Gasdrift dataset is the one of the eight datasets for which the differences
are the smallest, as shown in Figs. 2e and 2f. The quality of the rankings here
increases as more labeled examples are provided. However, the differences equal
approximately 0.2 percentage points, as evident from Tab. 4.

The same table also reveals that typically, the Symbolic, Genie3 and Random
Forest rankings outperform the SEFR rankings, since the large majority of the
∆ values in the table are positive. In terms of F1 score, Random Forest and
Symbolic rankings outperform the SEFR ranking in 7 out of 8 cases, and Genie3
ranking outperforms it in 6 out of 8 cases. The numbers for accuracy are similar,
so we can rightly conclude that our rankings exhibit state-of-the-art performance.

5.4 Which Ranking Score is the Best?

The answers to the previous two experimental questions are pretty clear. How-
ever, determining the best ranking is a bit harder. The average ranks (over all
datasets and evaluation measures) of the Genie3, Random Forest and Symbolic
scores are 1.90, 2.03 and 2.06 respectively, so Genie3 score performs best on
average, but at the same time, it is ranked first only five times. Random Forest
score is ranked first most frequently (15 times), but is also ranked last most
frequently (16 times). The distribution of the Symbolic ranking is the closest to

142 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

Ensemble-Based Feature Ranking for Semi-supervised Classification 13

50 100 200 350 500
labelled examples

0.70

0.75

0.80

0.85

0.90

0.95

ac
cu

ra
cy

(a) Tic-tac-toe

50 100 200 350 500
labelled examples

0.7

0.8

0.9

F
1

(b) Tic-tac-toe

50 100 200 350 500
labelled examples

0.55

0.56

0.57

0.58

0.59

0.60

ac
cu

ra
cy

(c) Arrhythmia

50 100 200 350 500
labelled examples

0.08

0.10

0.12

0.14

0.16

0.18
F

1

(d) Arrhythmia

50 100 200 350 500
labelled examples

0.3

0.4

0.5

0.6

ac
cu

ra
cy

(e) Gasdrift

50 100 200 350 500
labelled examples

0.2

0.3

0.4

0.5

0.6

F
1

Symbolic SSL

Genie3 SSL

RForest SSL

SEFR

(f) Gasdrift

Fig. 2: Comparison of the SSL and SEFR feature rankings on the Tic-tac-toe,
Arrhythmia and Gasdrift datasets, in terms of accuracy and F1 measure of the
20NN classifier. The legend in (f) applies to all subfigures.

the uniform one (it is ranked 1st, 2nd and 3rd 12-times, 11-times, and 9-times
respectively) and has the worst average (2.06).

Since all the feature ranking scores offer state-of-the-art performance, we may
conclude that they are approximately equally good, so we can again make a de-
cision based on the second criterion: computational complexity. Recall that ran-
dom forests were the most appropriate method for the Symbolic score, whereas
bagging was the most suitable for Genie3 and Random Forest score, which means
that Symbolic rankings are computed

√
F -times faster than the Genie3 rankings.

The Random Forest rankings demand even more time than Genie3 rankings, due

143

14 M. Petković et al.

Table 4: Differences between the auc of SSL feature rankings and SEFR feature
rankings, measured in terms of accuracy and F1 measure, of 20NN classifier. If
∆ > 0, the SSL feature ranking outperforms the SEFR one.

Symbolic Genie3 Random Forest

dataset ∆acc ∆F1 ∆acc ∆F1 ∆acc ∆F1

Arrhythmia 2.9 · 10−2 6.1 · 10−2 2.9 · 10−2 7.1 · 10−2 2.1 · 10−2 5.4 · 10−2

Bank 6.0 · 10−3 6.9 · 10−3 8.5 · 10−3 1.1 · 10−2 −3.4 · 10−3 6.1 · 10−3

Chess −2.4 · 10−2 −2.6 · 10−2 −8.6 · 10−4 −2.8 · 10−3 6.3 · 10−3 2.4 · 10−3

Dis −8.9 · 10−3 1.3 · 10−2 −1.4 · 10−2 3.1 · 10−2 −2.6 · 10−3 3.5 · 10−2

Gasdrift 2.5 · 10−3 3.7 · 10−3 −1.6 · 10−3 −1.7 · 10−3 2.6 · 10−3 5.2 · 10−3

Pageblocks 8.5 · 10−4 1.2 · 10−2 2.5 · 10−3 4.0 · 10−2 −8.0 · 10−4 −5.1 · 10−3

Phishing 1.4 · 10−2 1.7 · 10−2 7.9 · 10−3 9.7 · 10−3 5.4 · 10−3 6.4 · 10−3

Tic-tac-toe 1.7 · 10−2 2.2 · 10−2 1.5 · 10−2 1.9 · 10−2 1.8 · 10−2 2.2 · 10−2

to the permutations of feature values and evaluating each tree of the ensemble
on the corresponding out-of-bag examples multiple times, as explained in Sec. 3.

6 Conclusions

In this paper, we propose three feature ranking scores (Symbolic, Genie3 and
Random Forest). Each can be computed from three different ensembles (bag-
ging, random forests and extremely randomized trees) of predictive-clustering
trees (PCTs), which were adapted to the semi-supervised classification task. We
evaluate the obtained feature rankings on 8 benchmark classification datasets.
We first determine the most suitable ensemble for each of the scores. For the
Symbolic score, these are random forests, whereas for the Genie3 and Random
Forest score, this is bagging.

Next, we show that using unlabeled data leads to improvements in the rank-
ing since the proposed semi-supervised feature rankings mostly outperform their
supervised analogs, which use only labeled data. We analyzed the datasets where
this does not hold by checking the validity of the clustering assumption of SSL
and show that most probably the assumption is not valid in these cases. After
that, we compare our feature ranking scores to the SEFR feature ranking method
and empirically show that we consistently outperform this state-of-the-art base-
line with every proposed feature ranking score. Finally, we compare the proposed
scores among each other and conclude that they are all equally good. We suggest
using the Symbolic score because it has the best (lowest) time complexity.

We will continue our work on this topic in three directions. We first plan
to extend the number of the benchmark datasets and then to define and evalu-
ate rankings that are obtained from gradient boosting ensembles. Next, we will
extend the approach towards regression and more complex predictive modeling
tasks including structured output prediction. Finally, we will work to circumvent
the use of the internal cross-validation for determining the best value of w in the
PCT heuristic by computing the ARI score instead.

144 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

Ensemble-Based Feature Ranking for Semi-supervised Classification 15

7 Acknowledgements

We acknowledge the financial support of the Slovenian Research Agency via the
grants P2-0103 and a young researcher grant to MP. SD and DK acknowledge the
support by the Slovenian Research Agency (via grants J2-9230, and N2-0056),
and the European Commission (project LANDMARK and The Human Brain
Project SGA2). The computational experiments presented here were executed
on a computing infrastructure from the Slovenian Grid (SLING) initiative.

References

1. Bellal, F., Elghazel, H., Aussem, A.: A semi-supervised feature ranking method
with ensemble learning. Pattern Recognition Letters 33(10), 1426–1433 (2012)

2. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press
(1995)

3. Blockeel, H.: Top-down Induction of First Order Logical Decision Trees. Ph.D.
thesis, Katholieke Universiteit Leuven, Leuven, Belgium (1998)

4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
5. Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression

Trees. Chapman & Hall/CRC (1984)
6. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press (2010)
7. Geurts, P., Erns, D., Wehenkel, L.: Extremely randomized trees. Machine Learning

36(1), 3–42 (2006)
8. Gijsbers, P.: OpenML repository (2017), https://www.openml.org/d/40713
9. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 12, 993–1001 (1990)
10. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1), 193–

218 (1985)
11. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory net-

works from expression data using tree-based methods. PLoS One 5(9), 1–10 (2010)
12. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting struc-

tured outputs. Pattern Recognition 46(3), 817–833 (2013)
13. Levatić, J.: Semi-supervised Learning for Structured Output Prediction. Ph.D.

thesis, Jožef Stefan Postgraduate School, Ljubljana, Slovenia (2017)
14. Levatić, J., Ceci, M., Kocev, D., Džeroski, S.: Semi-supervised classification trees.

Journal of Intelligent Information Systems 49(3), 461–486 (2017)
15. Lichman, M.: UCI machine learning repository (2013), http://archive.ics.uci.

edu/ml
16. Petković, M., Kocev, D., Džeroski, S.: Feature ranking for multi-target regression.

Machine Learning Journal (2019), Accepted
17. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: Trans-

fer learning from unlabeled data. In: 24th International Conference on Machine
Learning. pp. 759–766. ACM (2007)

18. Sheikhpour, R., Sarram, M., Gharaghani, S., Chahooki, M.: A survey on semi-
supervised feature selection methods. Pattern Recognition 64(C), 141–158 (2017)

19. Wettschereck, D.: A Study of Distance Based Algorithms. Ph.D. thesis, Oregon
State University, Corvallis, OR (1994)

20. Xu, Z., King, I., Lyu, M.R.T., Jin, R.: Discriminative semi-supervised feature se-
lection via manifold regularization. Transactions on Neural Networks 21(7), 1033–
1047 (2010)

145

Machine Learning Journal manuscript No.
(will be inserted by the editor)

Feature Ranking for Semi-supervised Learning

Matej Petković · Sašo Džeroski · Dragi
Kocev

Received: date / Accepted: date

Abstract The data made available for analysis are becoming more and more
complex along several directions: high dimensionality, number of examples and
the amount of labels per example. This poses a variety of challenges for the
existing machine learning methods: coping with dataset with a large number
of examples that are described in a high-dimensional space and not all ex-
amples have labels provided. For example, when investigating the toxicity of
chemical compounds there are a lot of compounds available, that can be de-
scribed with information rich high-dimensional representations, but not all of
the compounds have information on their toxicity. To address these challenges,
we propose semi-supervised learning of feature ranking. The feature rankings
are learned in the context of classification and regression as well as in the
context of structured output prediction (multi-label classification, hierarchi-
cal multi-label classification and multi-target regression). To the best of our
knowledge, this is the first work that treats the task of feature ranking within
the semi-supervised structured output prediction context. More specifically,
we propose two approaches that are based on tree ensembles and the Relief
family of algorithms. The extensive evaluation across 38 benchmark datasets
reveals the following: Random Forests perform the best for the classification-
like tasks, while for the regression-like tasks Extra-PCTs perform the best,
Random Forests are the most efficient method considering induction times
across all tasks, and semi-supervised feature rankings outperform their super-
vised counterpart across a majority of the datasets from the different tasks.

We acknowledge the financial support of the Slovenian Research Agency via the grant P2-
0103 and a young researcher grant to MP. SD and DK also acknowledge the support by the
Slovenian Research Agency (via grants J7-9400, J7-1815, J2-9230, and N2-0128), and the
European Commission (project AI4EU).

M. Petković, S. Džeroski, D. Kocev
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
Tel.: +386-1477-3635
E-mail: {matej.petkovic,saso.dzeroski,dragi.kocev}@ijs.si

146 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

2 Matej Petković et al.

Keywords feature ranking · semi-supervised learning · tree ensembles ·
Relief · structured output prediction · multi-target prediction

1 Introduction

In the era of massive and complex data, predictive modeling is undergoing
some significant changes. Since data are becoming ever more high dimensional,
i.e., the target attribute potentially depends on a large number of descrip-
tive attributes, there is a need to provide better understanding of the impor-
tance or relevance of the descriptive attributes for the target attribute. This
is achieved through the task of feature ranking [Guyon and Elisseeff, 2003,
Jong et al., 2004,Nilsson et al., 2007,Petković et al., 2019]: the output of a
feature ranking algorithm is a list (also called a feature ranking) of the de-
scriptive attributes ordered by their relevance to the target attribute. The
obtained feature ranking can then be used in two contexts: (1) to better
understand the relevance of the descriptive variables for the target vari-
able or (2) as a frequent pre-processing step to reduce the number of de-
scriptive variables. By performing the latter, not only the computational
complexity of building a predictive model later on is decreased, but at the
same time, the models that use a lesser number of features are easier to ex-
plain and understand which is of high importance in a variety of application
domains such as medicine [Holzinger et al., 2019,Hoogendoorn et al., 2016,
Tjoa and Guan, 2019], life sciences [Grissa et al., 2016,Saeys et al., 2007,
Tsagris et al., 2018] and ecological modeling [Bhardwaj and Patra, 2018,
Galelli et al., 2014,Zhou et al., 2018].

Another aspect of massiveness is the number of examples in the data.
However, for some problems such as sentiment analysis of text, e.g., tweets
[Kralj Novak et al., 2015], or determining properties of new chemical com-
pounds [DiMasi et al., 2003], e.g., in QSAR (quantitative structure activity
relationship) studies (which is one of the considered datasets in the experi-
ments), one can only label a limited quantity of data, since labeling demands
a lot of human effort and time (labelling tweets), or is expensive (performing
wet lab QSAR experiments). Since the cases where many examples remain
unlabeled are not that rare, advances in predictive modeling have brought us
to the point where we can make use of them. In this work, we focus on semi-
supervised learning (SSL) techniques that handle data where some examples
are labeled and some are not (as opposed to supervised learning (SL) where
all examples are labeled). Another direction of research goes into weakly su-
pervised learning [Zhou, 2017] where all examples may be labeled but (some)
labels may be inaccurate or of a lower quality.

The SSL approaches are all based on the assumption that the target values
are well-reflected in the structure of the data, i.e.,

Assumption 1 (Clustering Hypothesis) Clusters of data examples (as
computed in the descriptive space) well resemble the distribution of target val-
ues.

147

Feature Ranking for Semi-supervised Learning 3

If the clustering hypothesis is satisfied, then a SSL algorithm that can make
use of unlabeled data, may outperform the classical SL algorithms that sim-
ply ignore them. This holds for predictive modeling tasks [Levatić, 2017,
Zhu et al., 2009], and as we show in this work, for feature ranking tasks also.

In addition to the massiveness, the complexity of the data is also increasing.
Predictive modeling is no longer limited to the standard classification and
regression, but also tackles their generalizations. For example, in classification,
the target variable may take only one of the possible values, for each example
in the data. On the other hand, problems such as automatic tagging (e.g., the
Emotions dataset (see Sec. 6.2) where the task is to determine emotions that
a given musical piece carries) allow for more than one label per example (e.g.,
a song can be sad and dramatic at the same time). A further generalization of
this problem is hierarchical multi-label classification, where the possible labels
are organized into a hierarchy, such as the one in Fig. 1, which shows animal-
related labels. If a model labels an example as koala, it should also label it
with the generalizations of this label, i.e., Australian and animal.

Similarly, the task of regression can be generalized to multi-target regres-
sion, i.e., predicting more than one numeric variable at the same time, e.g.,
predicting canopy density and height of trees in forests (the Forestry dataset
in Sec. 6.2).

The main motivation for the generalized predictive modeling tasks is that
considering all the target variables at the same time may exploit the potential
interactions among them which are ignored when one predicts every variable
separately. Moreover, building a single model for all targets can dramatically
lower the computational costs.

In many cases, the data are at the same time semi-supervised (has missing),
high dimensional and has a structured target, as for example in gene function
prediction: Labeling genes with their functions is expensive (semi-supervision),
the genes can be described with a large number of variables (high dimension-
ality), and the functions are organized into a hierarchy (structured target).
Thus, designing feature ranking algorithms that i) can use unlabeled data,
and ii) can handle a variety of target types, including structured ones, is a
relevant task that we address in this work. To the best of our knowledge, this
is the first work that treats jointly the task of feature ranking in the context
of semi-supervised learning for structured outputs.

We propose two general feature ranking approaches. In the first ap-
proach, a ranking is computed from an ensemble of predictive clustering trees
[Kocev et al., 2013,Blockeel, 1998], adapted to structured outputs and SSL
[Levatić, 2017], whereas the second approach is based on the distance-based
Relief family of algorithms [Kira and Rendell, 1992]. An initial study, inves-
tigated the performance of the ensemble-based approach in the classification
task [Petković et al., 2019]. In this work, we substantially extend our previous
study in several directions:

1. Additional datasets for classification are considered.

148 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

4 Matej Petković et al.

2. Additional four tasks are considered (multi-label and hierarchical multi-
label classification, single- and multi-target regression), and the ensemble-
based feature ranking methods are evaluated in these cases.

3. The Relief family of algorithms is extended to SSL, and evaluated for all
five tasks (in comparison to the ensemble-based feature ranking methods).

The rest of the paper is organized as follows. In Sec. 2, we give the for-
mal definitions of the different predictive modeling tasks, and introduce the
notation. Sec. 3 surveys the related work, whereas Secs. 4 and 5 define the
ensemble-based and Relief-based feature importance scores, respectively. Sec. 6
fully describes the experimental setup. We present and discuss the results in
Sec. 7, and conclude with Sec. 8.

The implementation of the methods, as well as the results are available at
http://source.ijs.si/mpetkovic/ssl-ranking.

2 Preliminaries

Basic notation. The data D consist of examples (x,y), where x is a vector
of values of D descriptive variables (features), and y is the value of the target
variable(s). The domain Xi of the feature xi is either numeric, i.e., Xi ⊆ R, or
categorical, i.e., it is a finite set of categorical values, e.g., Xi = {A,B,AB, 0}
if a feature describes blood type. Both numeric and categorical types are con-
sidered primitive unstructured types. The domain Y of the target variable
depends on the predictive modeling task at hand. In this paper, we consider
five tasks, two having unstructured, and three having structured target data
types.

Regression (STR). In this case, the target is a single numeric variable.
Since we later consider also its generalization (multi-target regression), we
refer to this task as single-target regression (STR).

Multi-target regression (MTR). Here, the target variable is a vector
with T numeric variables as components, i.e., Y ⊆ RT . Equivalently, we can
define MTR as having T numeric targets, hence the name. In the special case
of T = 1, MTR boils down to STR.

Classification. In this case, the target is categorical. Since the algorithms
considered in this paper can handle any classification task, we do not distin-
guish between binary (|Y| = 2) and multi-class classification (|Y| > 2).

Multi-label classification (MLC). The target domain is a power set
P(L) of some set L of categorical values, whose elements are typically referred
to as labels. Thus, the target values are sets. Typically, the target value y of
the example (x,y) is referred to as a set of labels that are relevant for this
example. The sets y can be of any cardinality, thus the labels are not mutually
exclusive, as is the case with the task of (standard) classification.

Hierarchical multi-label classification (HMLC). This is a general-
ization of MLC where the domain is again a power set of some label set L ,

149

Feature Ranking for Semi-supervised Learning 5

which, additionally, is now partially-ordered via some ordering ≺. An exem-
plary hierarchy (of animal-related labels), which results from such an ordering
is shown in the corresponding Haase diagram in Fig. 1.

animal

Australian African Asian

dingo koala giraffe elephant tiger

1

Fig. 1: An exemplary hierarchy of animal related labels.

If `1 ≺ `2, the label `1 is predecessor of the label `2. If, additionally, there
is no such label `, such that `1 ≺ ` ≺ `2, we say that `1 is a parent of `2. If a
label does not have any parents, it is called a root. A hierarchy can be either
tree-shaped, i.e., every label has at most one parent, or it can be directed
acyclic graph (DAG). Since the label elephant has two parents (African and
Asian), the hierarchy in Fig. 1 is not a tree.

Regarding predictive modeling, the ordering results in a hierarchical con-
straint, i.e., if a label ` is predicted to be relevant for a given example, then,
also its predecessors must be predicted relevant, e.g., if a given example is
koala, it must also be Australian and animal.

In the cases of MLC and HMLC, each set of relevant labels S ⊆ L is con-
veniently represented by the 0/1 vector s of length |L |, whose j-th component
equals one if and only if `j ∈ S. Thus, we will also use the notation T = |L |.

Semi-supervised learning (SSL). The unknown target values will be
denoted by question marks (?). If the target value of the example is known,
we say that the example is labeled, otherwise the example is unlabeled. This
applies to all types of targets and is not to be confused with the labels in the
tasks of MLC and HMLC.

3 Related Work

In general, feature ranking methods are divided into three groups
[Stańczyk and Jain, 2015]. Filter methods do not need any underlying predic-
tive model to compute the ranking. Embedded methods compute the ranking
directly from some predictive model. Wrapper methods are more appropri-
ate for feature selection, and build many predictive models which guide the
selection.

Filters are typically the fastest but can be myopic, i.e., can neglect possible
feature interactions, whereas the embedded methods are a bit slower, but can
additionally serve as an explanation of the predictions of the underlying model.
The prominence of the feature ranking reflects in numerous methods solving
this task in the context of classification and STR [Guyon and Elisseeff, 2003,

150 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

6 Matej Petković et al.

Stańczyk and Jain, 2015], however, the territory of feature ranking for SSL is
mainly uncharted, especially when it comes to structured output prediction.

An overview of SSL feature ranking methods for classification and
STR is given in [Sheikhpour et al., 2017]. However, the vast majority of
the methods described there are either supervised or unsupervised (ig-
noring the labels completely). An exception is the SSL Laplacian score
[Doquire and Verleysen, 2013], applicable to the STR problems.

This method is a filter and stems from graph theory. It first converts a
dataset into a graph, encoded as a weighted incidence matrix whose weights
correspond to the distances among the examples in the data. The distances
are measured in the descriptive space but more weight is put on the labeled
examples. One of the drawbacks of the original method is that it can only
handle numeric features. Our modification that overcomes this is described in
Sec. 6.6.

For structured output prediction in SSL, we could not find any competing
feature ranking methods. Our ensemble-based scores belong to the group of
embedded methods, and crucially depend on ensembles of SSL predictive clus-
tering trees (PCTs) [Levatić, 2017]. We thus describe bellow SSL PCTs and
ensembles thereof.

3.1 Predictive clustering trees

PCTs are a generalization of standard decision trees. They can handle various
structured output prediction tasks and have been recently adapted to SSL
[Levatić, 2017]. This work considers the SSL of PCTs for classification, STR,
MTR [Levatić et al., 2018], MLC, and HMLC.

For each of these, one has to specify the impurity function impu that is
used in the best test search (Alg. 2), and the prototype function prototype
that creates the predictions in the leaf nodes. After these two are specified, a
PCT is induced in the standard top-down-tree-induction manner.

Starting with the whole dataset DTRAIN, we find the test (Alg. 1, line 1)
that greedily splits the data so that the heuristic score of the test, i.e., the
decrease of the impurity impu of the data after applying the test, is maximized.
For a given test, the corresponding decrease is computed in line 4 of Alg. 2.

If no useful test is found, the algorithm creates a leaf node and computes
a leaf node with the prediction (Alg. 1, line 3). Otherwise, an internal node
N with the chosen test is constructed, and the PCT-induction algorithm is
recursively called on the subsets in the partition of the data, defined by the
test. The resulting trees become child nodes of the node N (Alg 1, line 7).

151

Feature Ranking for Semi-supervised Learning 7

Algorithm 1 PCT(E)

1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ = none then
3: return Leaf (prototype(E))
4: else
5: for each Ei ∈ P∗ do
6: treei = PCT(Ei)
7: return Node(t∗,

⋃
i{treei})

Algorithm 2 BestTest(E)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each test t do
3: P = partition induced by t on E
4: h = |E|impu(E)−∑Ei∈P |Ei|impu(Ei)
5: if h > h∗ then
6: (t∗, h∗,P∗) = (t, h,P)
7: return (t∗, h∗,P∗)

The impurity functions for a given subset E ⊆ DTRAIN in the considered
tasks are defined as weighted averages of the feature impurities impu(E, xi),
and target impurities impu(E, yj).

For nominal variables z, the impurity is defined in terms of the Gini Index
Gini(E, z) = 1−∑v p

2
E(v), where the sum goes over the possible values v of

the variable z, and pE(v) is the relative frequency of the value v in the subset
E. In order not to favoritize any variable a priori, the impurity is defined
as the normalized Gini value, i.e., impu(E, z) = Gini(E, z)/Gini(DTRAIN, z).
This applies to nominal features and the target in classification.

For numeric variables z, the impurity is defined in terms of their variance
Var(E, z), i.e., impu(E, z) = Var(E, z)/Var(DTRAIN, z). This applies to nu-
meric features and targets in other predictive modeling tasks, since the sets
in MLC and HMLC are also represented by 0/1 vectors. However, note that
computing the Gini-index of a binary variable is equivalent to computing the
variance of this variable if the two values are mapped to 0 and 1. When com-
puting the single-variable impurities, missing values are ignored.

In a fully-supervised scenario, the impurity of data is measured only on the
target side. However, the majority of target values may be missing in the semi-
supervised case. Therefore, for SSL, also the features are taken into account
when calculating the impurity, which is defined as

impu(E) = w · 1

T

T∑

j=1

αjimpu(E, yj) + (1− w) · 1

D

D∑

i=1

βiimpu(E, xi), (1)

where the level of supervision is controlled by the user-defined parameter
w ∈ [0, 1]. Setting it to 1 means fully-supervised tree-induction (and conse-
quently ignoring unlabeled data). The other extreme, i.e., w = 0, corresponds
to fully-unsupervised tree-induction (also known as clustering). The dimen-
sional weights αj and βi are typically all set to 1, except for HMLC where
αi = 1 for the roots of the hierarchy, and αi = α · mean(parent weights)
otherwise, where α ∈ (0, 1) is a user-defined parameter. A MLC problem is
considered a HMLC problem where all labels are roots.

The prototype function returns the majority class in the classification case,
and the per-component mean [ȳ1, . . . , ȳT] of target vectors otherwise. In all
cases, the prototypes (predictions) are computed from the training examples in
a given leaf. In the cases of MLC and HMLC, the values ȳj can be additionally

152 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

8 Matej Petković et al.

thresholded to obtain the actual subsets, i.e., ŷ = {`j | ȳj ≥ ϑ, 1 ≤ j ≤ T},
where taking ϑ = 0.5 corresponds to computing majority values of each label.

3.2 Ensemble methods

To obtain a better predictive model, more than one tree can be grown, for a
given dataset, which results in an ensemble of trees. Predictions of an ensemble
are averaged predictions of trees (or, in general, arbitrary base models) in the
ensemble. However, a necessary condition for an ensemble to outperform its
base models is, that the base models are diverse [Hansen and Salamon, 1990].
To this end, some randomization must be introduced into the tree-induction
process, and three ways to do so have been used [Levatić, 2017].

Bagging. When using this ensemble method, instead of growing the trees
using DTRAIN, a bootstrap replicate of DTRAIN is independently created for
each tree, and used for tree induction.

Random Forests (RFs). In addition to the mechanism of Bagging, for
each internal node of a given tree, only a random subset (of size D′ < D) of all
features is considered when searching for the best test, e.g., D′ = ceil(

√
D).

Extremely Randomized PCTs (ETs). As in Random Forests, a subset
of features can be considered in every internal node (this is not a necessity),
but additionally, only one test per feature is randomly chosen and evaluated.
In contrast to Random Forests (and Bagging), the authors of original ETs
did not use bootstrapping [Geurts et al., 2006]. However, previous experiments
[Petković et al., 2019] showed that it is beneficial to do so when the features
are (mostly) binary, since otherwise ets can offer only one possible split and
choosing one at random has no effect.

4 Ensemble-Based Feature Ranking

The three proposed importance scores can be all computed from a single PCT,
but to stabilize the scores, they are rather computed from an ensemble: Since
the trees are grown independently, the variance of each score importance(xi)
decreases linearly with the number of trees.

Once an ensemble (for a given predictive modeling task) is built, we come
to the main focus of this work: Computing a feature ranking out of it. There are
three ways to do so: Symbolic [Petković et al., 2019], Genie3 [Petković et al., 2019]
(its basic version (for standard classification and regression) was proposed
in [Huynh-Thu et al., 2010]), and Random Forest score [Petković et al., 2019]

153

Feature Ranking for Semi-supervised Learning 9

(its basic version was proposed in [Breiman, 2001]):

importanceSYMB(xi) =
1

|E|
∑

T ∈E

∑

N ∈T (xi)

|E(N)|/|DTRAIN|, (2)

importanceGENIE3(xi) =
1

|E|
∑

T ∈E

∑

N ∈T (xi)

h∗(N), (3)

importanceRF(xi) =
1

|E|
∑

T ∈E

e(OOBi
T)− e(OOBT)

e(OOBT)
. (4)

Here, E is an ensemble of trees T , T (xi) is the set of the internal nodes N of a
tree T where the feature xi appears in the test, E(N) ⊆ DTRAIN is the set of
examples that reach the node N , h∗ is the heuristic value of the chosen test,
e(OOBT) is the value of the error measure e, when using T as a predictive
model for the set OOBT of the out-of-bag examples for a tree T , i.e., examples
that were not chosen into the bootstrap replicate, thus not seen during the
induction of T . Similarly, e(OOBT i) is the value of the error measure e on
the OOBT with randomly permuted values of the feature xi.

Thus, Symbolic and Genie3 ranking take into account node statistics: The
Symbolic score’s award is proportional to the number of examples that reach
this node, while Genie3 is more sophisticated and takes into account also the
heuristic value of the test (which is proportional to |E(N)|, see Alg. 2, line 4.

The Random Forest score, on the other hand, measures to what extent
noising, i.e., permuting, the feature values decreases the predictive perfor-
mance of the tree. In Eq. (4), it is assumed that e is a loss, i.e., lower is
better as is the case, for example, in the regression problems where (relative
root) mean squared errors are used. Otherwise, e.g., for classification tasks and
the F1 measure, the importance of a feature is defined as −importanceRF from
Eq. (4). Originally, it was designed to explain the predictions of the RFs ensem-
ble [Breiman, 2001] (hence the name), but it can be used with any predictive
model. However, trees are especially appropriate, because the predictions can
be obtained fast, provided the trees are balanced.

4.1 Ensemble-based ranking for SSL structured output prediction

The PCT ensemble-based feature ranking methods for different structured
output prediction (SOP) tasks have been introduced by [Petković et al., 2019,
Petković et al., 2020], and evaluated for different SL SOP tasks. In this case,
PCTs use a heuristic based on the impurity reduction on the target space,
as defined by Eq. (1), in a special case when w = 1. As for SSL, the general
case of Eq. (1) applies. Once we have SSL PCTs, the ensemble-based feature
ranking methods technically work by default. They have been evaluated in the
case of SSL classification. However, they have not been evaluated on STR and
SOP tasks.

154 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

10 Matej Petković et al.

4.2 Does the ensemble method matter?

From Eqs. (2)–(4), it is evident that all three feature ranking scores can in
theory be computed from a single tree, and averaging them over the trees in
the ensemble only gives a more stable estimate of E[importance(xi)]. However,
one might expect that bagging, RFs and ETs on average yield the same order
of features (or even the same importance values) since the latter two are more
randomized versions of the bagging method. Here, we sketch a proof that this
is not (necessarily) the case.

One of the cases when the expected orders of features are equal, is a dataset
where each of the two binary features x1 and x2 completely determine the
target y, e.g., y = x1 and y = 1 − x2, and the third feature is effectively
random noise. It is clear that the expected values of the importances are in all
cases importance(x1) = importance(x2) > importance(x3).

One of the cases where bagging gives rankings different from those of RFs,
is a dataset where knowing the values of ranking pairs (x1, x2) and (x3, xi),
for 4 ≤ i ≤ D again completely reconstructs the target value y, and h(x1) >
h(xi) > max{h(x2), h(x3)}, for i ≥ 4. In this case, bagging will first choose
x1 and then x2 in the remaining two internal nodes of the tree, so x1 and x2
would be the most important features. On the other hand, RFs with D′ = 1
and D sufficiently large, will in the majority of the cases first choose one of the
features xi, i ≥ 4, and then, sooner or later, x3. Unlike in the bagging-based
ranking, x3 is now more important than x1.

4.3 Time complexity

In predictive clustering, the attributes in the data belong to three (not mutu-
ally exclusive) categories: i) Descriptive attributes are those that can appear
in tests of internal nodes of a tree, ii) Target attributes are those for which
predictions in leaf nodes of a tree are made, and iii) Clustering attributes are
those that are used in computing the heuristic when evaluating the candidate
tests. Let their numbers be D, T and C, respectively, and let M be the number
of examples in DTRAIN. Note that in the SSL scenario (if w /∈ {0, 1}), we have
the relation C = D+T . Assuming that the trees are balanced, we can deduce
that growing a single semi-supervised tree takes O(MD′ logM(logM + C))
[Levatić, 2017].

After growing a tree, ranking scores are updated in O(M) time (where M
is the number of internal nodes) for the Symbolic and Genie3 score, whereas
updating the Random Forest scores takes O(DM logM). Thus, computing the
feature ranking scores does not change the O-complexity of growing a tree,
and we can compute all the rankings from a single ensemble. Thus, growing an
ensemble E and computing the rankings takes O(|E|MD′ logM(logM + C)).

155

Feature Ranking for Semi-supervised Learning 11

5 Relief-based Feature Ranking

The Relief family of feature ranking algorithms does not use any
predictive model. Its members can handle various predictive mod-
eling tasks, including classification [Kira and Rendell, 1992], regression
[Kononenko and Robnik-ikonja, 2003], MTR [Petković et al., 2019], MLC
[Petković et al., 2018,Reyes et al., 2015], and HMLC [Petković et al., 2020].
The main intuition behind Relief is the following: the feature xi is relevant
if the differences in the target space between two neighboring examples are
notable if and only if the differences in the feature values of xi between these
two examples are notable.

5.1 Supervised Relief

More precisely, if r = (x1,y1) ∈ DTRAIN is randomly chosen, and n =
(x2,y2) is one of its nearest k neighbors, then the computed importances
importanceRelief(xi) of the Relief algorithms equal the estimated value of

P1 − P2 = P (x1
i 6= x2

i | y1 6= y2)− P (x1
i 6= x2

i | y1 = y2), (5)

where the probabilities are modeled by the distances between r and n in
appropriate subspaces. For the descriptive space X spanned by the domains
Xi of the features xi, we have

dX (x1,x2) =
1

F

F∑

i=1

di(x
1,x2); di(x

1,x2) =

1[x1
i 6= x2

i] : Xi * R
|x1

i−x2
i |

max
x

xi−min
x

xi
: Xi ⊆ R (6)

where 1 denotes the indicator function. The definition of the target space
distance dY depends on the target domain. In the cases of classification and
MTR, the categorical and numeric part of the definition di in Eq. (6) apply,
respectively. Similarly, in multi-target regression, dY is the analogue of dX
above.

In the cases MLC and HMLC, we have more than one option for the target
distance definition [Petković et al., 2018], but in order to be as consistent as
possible with the STR and MTR cases, we use the Hamming distance between
the two sets. Recalling that sets S ⊆ L are presented as 0/1 vector s (Sec. 2),
the Hamming distance dY is defined as

dY(S1, S2) = γ

|L |∑

i=1

αi1[s1i 6= s2i] (7)

where the weights αi are based on the hierarchy and are defined as in Eq. (1),
and γ is the normalization factor that assures that dY maps to [0, 1]. It
equals 1

|L | in the MLC case, and depends on the data in the HMLC case

[Petković et al., 2020].

156 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

12 Matej Petković et al.

To estimate the conditional probabilities P1,2 from Eq. (5), they are first
expressed in the unconditional form, e.g., P1 = P (x1

i 6= x2
i ∧y1 6= y2)/P (y1 6=

y2). Then, the numerator is modeled as the product didY , whereas the nomi-
nator is modeled as dY . The probability P2 is estimated analogously.

5.2 Semi-supervised Relief

In the SSL version of the above tasks, we have to resort to the predictive
clustering paradigm, using descriptive and clustering attributes instead of de-
scriptive and target ones. More precisely, the descriptive distance is defined
as above. As for the clustering distance, it equals dY when the target value of
both y1 and y2 are known, and equals dX otherwise. The contribution of each
pair to the estimate of probabilities is weighted according to their distance to
the labeled data. The exact description of the algorithm is given in Alg. 3.

Algorithm 3 SSL-Relief(DTRAIN, m, k, [w0, w1])

1: imp = zero list of length D
2: PdiffAttr, diffCluster, PdiffAttr = zero lists of length D
3: PdiffCluster = 0.0
4: w = computeInstanceInfluence(DTRAIN,w0 ,w1)
5: s = 0 # sum of weights of the pairs, used in normalization
6: for iteration = 1, 2, . . . ,m do
7: r = random example from D
8: n1,n2, . . . ,nk = k nearest neighbors of r
9: for ` = 1, 2, . . . , k do

10: w = w[r] ·w[n`]
11: s += w
12: if r and n` are labeled then
13: dcluster = dY

(
r,n`

)

14: else
15: dcluster = dX

(
r,n`

)

16: PdiffCluster += w dcluster

(
r,n`

)

17: for i = 1, 2, . . . , D do
18: PdiffAttr[i] += w di

(
r,n`

)

19: PdiffAttr, diffCluster[i] += w di
(
r,n`

)
dcluster

(
r,n`

)

20: for i = 1, 2, . . . , D do

21: imp[i] =
PdiffAttr, diffCluster[i]

PdiffCluster
− PdiffAttr[i]−PdiffAttr, diffCluster[i]

s−PdiffCluster

22: return imp

SSL-Relief takes as input the standard parameters (DTRAIN, the number
of iterations m, and the number of Relief neighbors k), as well as the interval
[w0, w1] ⊆ [0, 1], which the influence levels of r-n pairs are computed from
(line 4): First, for every (x,y) ∈ DTRAIN, we find the distance dx to its nearest
labeled neighbor. If d = 0, i.e., the value y is known, the influence w of this
example is set to 1. Otherwise, the influence of the example is defined by a
linear function d 7→ w(d) that goes through the points (max(x,?) dx, w0) and
(min(x,?) dx, w1). Thus, the standard regression version of Relief is obtained
when no target values are missing.

157

Feature Ranking for Semi-supervised Learning 13

5.3 Time complexity

For technical reasons, the actual implementation of SSL-Relief does not follow
the Alg. 3 word for word, and first computes all nearest neighbors. This takes
O(mMD) steps, since the majority of the steps in this stage is needed for com-
puting the distances in the descriptive space. We use the brute-force method,
because it is, for the data at hand, still more efficient than, for example, k-
D trees. Since the number of iterations is typically set to be a proportion of
M (in our case m = M), the number of steps is O(M2D). When computing
the instances’ influence (line 4), only the nearest neighbor of every instance
is needed, so this can be done after the K-nearest neighbors are computed,
within a negligible number of steps.

In the second stage, the probability estimates are computed and the worst-
case time complexity is achieved when all examples are labeled since this is
the case when we have to additionally compute dY (otherwise, we use the
stored distances dX). The number of steps needed for a single computation od
dY depends on the domain: O(1) suffices for classification and STR, whereas
O(T) steps are required in the MTR, MLC and HMLC cases.

The estimate updates themselves take O(D) steps per neighbor, thus, the
worst case time complexity is O(M2D + kM(T + D)) = O(M2D + kMC)
where C = D + T is (again) the number of clustering attributes.

6 Experimental Setup

In this section, we undertake to experimentally evaluate the proposed feature
ranking methods. We do so by answering a set of experimental questions listed
below. We then describe in detail how the experimental evaluation is carried
out.

6.1 Experimental questions

The evaluation is based on the following experimental questions:

1. For a given ensemble-based feature ranking score, which ensemble method
is the most appropriate?

2. Are there any qualitative differences between the semi-supervised and su-
pervised feature rankings?

3. Can the use of unlabeled data improve feature ranking?
4. Which feature ranking algorithm performs best?

6.2 Datasets

All datasets are well-known benchmark problems that come from different
domains. For classification, we have included five new datasets (those below the
splitting line of Tab. 1), in addition to the previous ones [Petković et al., 2019].

158 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

14 Matej Petković et al.

Since MLC can be seen as a special case of HMLC with a trivial hierarchy,
we show the basic characteristics of the considered MLC and HMLC problems
in a single table (Tab. 2), separating the MLC and HMLC datasets by a line.

Similarly, the regression problems (for STR and MTR) are shown in Tab. 3.
The given characteristics of the data differ from tasks to task, but the

last column of every table (CH) always gives the estimate of how well the
clustering hypothesis (Asm. 1) holds. For all predictive modeling tasks, this
estimate is based on k-means clustering [Arthur and Vassilvitskii, 2007] or,
more precisely, on the agreement between the distribution of the target values
in these clusters. The number of clusters was set to the number of classes in
the case of classification, and to 8 otherwise, i.e., the default Scikit Learn’s
[Pedregosa et al., 2011] parameters are kept. The highest agreement of the five
runs of the method is reported.

CH computation. In the case of classification, the measure at hand is
the Adjusted Random Index [Hubert and Arabie, 1985] (ARI) that we have
already used earlier [Petković et al., 2019]. It computes the agreement between
the classes that examples are assigned via clustering, and the actual class
values. The optimal value of ARI is 1, whereas the value 0 corresponds to the
case when clustering is independent of class distribution.

In the other cases, we compute the variance of each target variable, i.e., an
actual target in the STR and MTR case, and a component of the 0/1 vector
which a label set in the case of MLC and HMLC is represented by. Let C be
the set of the obtained clusters, i.e., c ⊆ D , for each cluster c ∈ C. Then,
for every target variable yj , we compute vj =

∑
c p(c)Var(c, yj)/Var(D , y),

i.e., the relative decrease of the variance after the clustering is applied, where
p(c) = |c|/|D |. It can be proved (using the standard formula for the estimation
of sample variance and some algebraic manipulation) that vj ≤ 1. Trivially,
vj ≥ 0. We average the contributions vj over the target variables to obtain
the score v. In the case of HMLC, we use weighted average where the weights
are proportional to the hierarchical weights αi, defined in Sec. 3.1. Finally, the
tables report the values of CH = 1− v ∈ [0, 1], to make the value 1 optimal.

6.3 Parameter instantiation

We parametrize the used methods as follows. The number of trees in the
ensembles was set to 100 [Kocev et al., 2013]. The number of features that
are considered in each internal node was set to

√
D for RFs and D for ETs

[Geurts et al., 2006]. The optimal value of the level of supervision parameter
w for computing the ensembles of PCTs was selected by internal 4-fold cross-
validation. The considered values were w ∈ {0, 0.1, 0.2, . . . , 0.9, 1}.

The amount of supervision in SSL-Relief is adaptive, which allows for
coarser set of values, and we consider w1,2 ∈ {0, 0.25, 0.5, 0.75, 1} (where
w1 ≤ w2). The considered numbers k of Relief neighbors were k ∈ {15, 20, 30},
and the best hyper-parameter setting option (the values of w1, w2, and k) was
again chosen via internal 4-fold cross-validation. Since more is better when

159

Feature Ranking for Semi-supervised Learning 15

the number of iterations m in Relief is concerned, this parameter was set to
m = |D |.

The possible numbers of labeled examples L in the training datasets were
L ∈ {50, 100, 200, 350, 500} [Levatić, 2017].

6.4 Evaluation pipeline

For the tasks of MLC and HMLC, the data come with predefined training
and test parts (DTRAIN and DTEST). This is not the case for the tasks of
classification, STR and MTR, therefore, 10-fold cross validation is performed.
To obtain the training-test pairs in cross-validation, we follow the procedure
used by [Petković et al., 2019], as shown in Fig. 2.

Table 1: Basic properties of the classification datasets: number of examples
|D |, number of features D, number of classes (the y-domain size |Y|), the
proportion of examples in the majority class (MC), and the CH value.

dataset |D | D |Y| MC CH
Arrhythmia [Lichman, 2013] 452 279 16 0.54 0.02
Bank [Lichman, 2013,Moro et al., 2011] 4521 16 2 0.88 -0.00
Chess [Lichman, 2013] 3196 36 2 0.52 0.22
Dis [Gijsbers, 2017] 3772 28 2 0.98 0.00
Gasdrift [Lichman, 2013] 13910 128 6 0.22 0.02
Pageblocks [Lichman, 2013] 5473 10 5 0.90 0.03
Phishing [Lichman, 2013] 11055 30 2 0.56 -0.00
Tic-tac-toe [Lichman, 2013] 958 9 2 0.65 0.70
Aapc [Džeroski et al., 1997] 335 84 3 0.47 0.34
Coil2000 [Van Der Putten and Van Someren, 2004] 9822 85 2 0.94 -0.00
Digits [Xu et al., 1992] 1797 64 10 0.10 -0.00
Pgp [Levatić et al., 2013] 932 183 2 0.52 0.00
Thyroid [Lichman, 2013] 3772 27 2 0.94 0.01

Table 2: Basic properties of the MLC (above the line) and HMLC (below the
line) datasets: number of examples |D |, number of features D, number of labels
|L |, label cardinality (average number of labels per example) `c, the depth of
hierarchy, and the CH value.

dataset |D | D |L | `c depth shape CH
Bibtex [Katakis et al., 2008] 7395 1836 159 2.4 1 tree 0.02
Birds [Briggs et al., 2013] 645 260 19 1.0 1 tree 0.05
Emotions [Trochidis et al., 2008] 593 72 6 1.9 1 tree 0.04
Genbase [Diplaris et al., 2005] 662 1185 27 1.3 1 tree 0.26
Medical [Pestian et al., 2007] 978 1449 45 1.3 1 tree 0.04
Scene [Boutell et al., 2004] 2407 294 6 1.1 1 tree 0.21
Clef07a-is [Dimitrovski et al., 2008] 11006 80 96 3.0 3.0 tree 0.05
Ecogen [Chen et al., 2004] 1893 138 56 15.5 3.0 tree 0.03
Enron-corr [Klimt and Yang, 2004] 1648 1001 67 5.3 3.0 tree 0.03
Expr-yeast-FUN [Clare, 2003] 3788 552 594 8.9 4.0 tree 0.00
Gasch1-yeast-FUN [Clare, 2003] 3773 173 594 8.9 4.0 tree 0.01
Pheno-yeast-FUN [Clare, 2003] 1592 69 594 9.1 4.0 tree 0.00

160 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

16 Matej Petković et al.

train test

· · ·
unlabelled

labelled

1

Fig. 2: Training and test set creation in SSL cross-validation: In the test fold,
all examples keep their labels, whereas the folds that form the training set,
together contain (approximately) L labeled examples.

Each dataset D is randomly split into x = 10 folds which results in the
test sets DTESTi, 0 ≤ i < x. In contrast to cross-validation in the SL scenario,
where DTRAINi = ∪j 6=iDTESTj , we first define the copy DTEST

L
i of DTESTi

in which we keep the target values for bL/(x − 1)c + ri randomly selected
examples (orange parts of columns in Fig. 2) and remove the others (white
parts). Here, b·c is the floor function, r is the reminder of L when divided by
x − 1, and ri = 1 if i < r and 0 otherwise. This assures that every training
set DTRAIN

L
i = ∪j 6=iDTEST

L
i contains a number of labeled examples as close

as possible to L.

For the MLC and HMLC data, we can choose L labeled instances from
the training set and delete the target values for the others. This is done for
different numbers L of labeled examples, and we make sure that the implication
L1 ≤ L2 ⇒ labeled examples of DTRAIN

L1
i are a subset of the labeled examples

in DTRAIN
L2
i holds.

The ranking evaluation proceeds as follows. First, SSL-ranking is computed
from DTRAIN

L
i and its SL counterpart is computed on the DTRAIN

L
i with

the unlabeled examples removed. Afterward, both rankings are evaluated on
DTEST

L
i (in the cases of MLC and HMLC, DTRAIN

L and DTEST
L are used).

Table 3: Basic properties of the STR and MTR datasets: number of examples
|D |, number of features D, number of targets T , and the CH value.

dataset examples D T CH
CHEMBL2850 [Gijsbers, 2017] 1211 1024 1 0.09
CHEMBL2973 [Gijsbers, 2017] 1521 1024 1 0.18
Mortgage [Bilken University, 2020] 1049 15 1 0.57
Pol [Bilken University, 2020] 5000 26 1 0.12
QSAR [Gijsbers, 2017] 2145 1024 1 0.20
Treasury [Bilken University, 2020] 1049 15 1 0.54
Atp1d [Spyromitros-Xioufis et al., 2016] 337 411 6 0.49
CollembolaV2 [Kampichler et al., 2000] 393 47 3 0.02
Edm1 [Karalič and Bratko, 1997] 154 16 2 0.23
Forestry-LIDAR-IRS [Stojanova, 2009] 2730 28 2 0.19
Oes10 [Spyromitros-Xioufis et al., 2016] 403 298 16 0.63
Scm20d [Spyromitros-Xioufis et al., 2016] 8966 61 16 0.16
Soil-quality [Demšar et al., 2006] 1944 142 3 0.07

161

Feature Ranking for Semi-supervised Learning 17

This is done by using the kNN algorithm with k ∈ {20, 40} where weighted
version of the standard squared Euclidean distance is used. For two input
vectors x1 in x2, the distance d between them is defined as d(x1,x2) =∑D

i=1 wid
2
i (x1

i ,x
2
i), where di is defined as in Eq. (6). The dimensional weights

wi are defined as wi = max{importance(xi), 0}, since Random Forest and Re-
lief ranking can award a feature a negative score. In the degenerated case when
the resulting values all equal 0, we define wi = 1, for all features xi. The first
step is necessary to ignore the features that are of lower importance than a
randomly generated one would be. The second step is necessary to ensure d
is well-defined. We chose more than one value of k to show the qualitative
differences between the supervised and semi-supervised feature rankings.

The evaluation through kNN was chosen because of three main reasons.
First it can be used for all the considered predictive modeling tasks. Second,
this is a distance based method, hence, it can easily make use of the information
contained in the feature importances in the learning phase. Third, kNN is
simple: Its only parameter is the number of neighbors. In the prediction stage,
the neighbors’ contributions to the predicted value are equally weighted, so we
do not introduce additional parameters that would influence the performance.

6.5 Evaluation measures

To asses the predictive performance of a kNN model, the following evalua-
tion measures are used: F1 for classification (macro-averaged for multi-class
problems), Root Relative Squared Error (RRMSE) for STR and MTR, and
area under the average precision-recall curve for MLC and HMLC (AU PRC).
Their definitions are given in the Tab. 4. In the cross-validation setting, we
average the scores over the folds (taking test set sizes into account).

Table 4: Evaluation measures, for different predictive modeling tasks. The F1

measure and AU PRC are defined in terms of precision p = tp/(tp + fp) and
recall r = tp/(tp + fn), where the numbers tp, fp and fn denote the number
of true positive, false positive and false negative examples, respectively.

tasks measure definition

classification F1 2/(1/p+ 1/r)

MLC, HMLC AU PRC area under the micro-averaged precision-recall curve

STR, MTR RRMSE 1
T

∑T
j=1

√
1

|DTEST|
∑

(x,y)∈DTEST

(ŷj−yj)2

Var(DTEST,yj)

For each ranking and dataset, we construct a curve that consist of points
(L, performanceL). The comparison of two methods is then based either i) on
these curves directly (see Fig. 3), or ii) on the area under the computed curves.

162 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

18 Matej Petković et al.

6.6 The considered methods

The methods that our proposed methods are compared to, depend on the
predictive modeling task:

– Classification: We have shown [Petković et al., 2019] that ensemble-based
ranking algorithms have state-of-the-art performance. Thus, their and Re-
lief’s SSL and SL versions are compared against each other.

– STR: As mentioned before (Sec. 3), the existing SSL state-of-the-art com-
petitor is Laplace, thus we compare Laplace, and the SL/SSL versions
of both ensemble-based rankings and Relief-based rankings, against each
other.

– MTR, MLC, HMLC: To the best of our knowledge, there are no existing
methods that can perform feature ranking in the SSL structured output
prediction scenarios, thus, we compare both versions of ensemble-based
rankings and Relief-based rankings against each other.

Despite our best efforts, we could not obtain any existing implementation of
the Laplace method, so we provide ours together with the rest of the code. Also
note that the ensemble-based and Relief-based methods work out of the box,
i.e., no data preprocessing is necessary, whereas by design, Laplace can handle
only numeric features. To overcome this issue, we extend the method by the
following procedure: i) transform the nominal features using 1-hot encoding,
ii) compute the Laplace scores si, iii) for the originally nominal features xi,
define their score si as the sum of the scores of the corresponding 1-hot encoded
features, and, finally, iv) define the importance scores importanceLaplace(xi) =
S+s−si (where S and s denote the maximum and the minimum of the scores,
respectively). The last step is necessary since less is better, for the originally
computed Laplace scores. The transformation si 7→ S+s−si maps S to s and
vice-versa, thus, the scale remains intact. The other problem of the method
are constant features (they cause 0/0 values), present, for example, in QSAR
data: These had to be manually removed.

7 Results

Unless stated otherwise, the rankings are compared in terms of the areas under
the performance curves (see Sec. 6.5). When a SSL-ranking is compared to a
SL-ranking, and the difference ∆ between the two performances is computed,
∆ > 0 always corresponds to the case when the SSL-ranking performs better.

7.1 The optimal ensemble method for ensemble-based ranking

We first determine the most appropriate ensemble method, for each of the
three ensemble scores, and their two versions (SSL and SL). The results in
Tab. 5 give the average ranks of the ensemble methods in each setting, in
terms of the areas under the performance curves.

163

Feature Ranking for Semi-supervised Learning 19

Table 5: Average ranks of the considered SSL and SL ensembles, for a fixed
ensemble-based score and predictive modeling task. The best ranks are shown
in bold, unless all three methods perform equally well. In the case of ties, we
bold the most efficient method (see Tab. 6).

task score
SSL ensemble SL ensemble

RFs ETs bagging RFs ETs bagging

classification

Genie3 2.00 2.15 1.85 1.69 2.46 1.85
Random Forest 1.92 2.15 1.92 2.00 2.08 1.92
Symbolic 1.77 2.23 2.00 1.77 2.23 2.00

MLC

Genie3 1.50 2.67 1.83 2.17 2.17 1.67
Random Forest 2.00 2.00 2.00 1.67 2.00 2.33
Symbolic 1.33 2.33 2.33 2.00 2.50 1.50

HMLC

Genie3 1.67 2.00 2.33 1.67 1.83 2.50
Random Forest 2.17 1.83 2.00 1.83 1.67 2.50
Symbolic 2.17 2.00 1.83 1.67 2.00 2.33

STR

Genie3 1.67 2.00 2.33 2.17 2.00 1.83
Random Forest 2.00 1.83 2.17 2.67 1.67 1.67
Symbolic 2.17 1.50 2.33 2.33 1.83 1.83

MTR

Genie3 2.14 1.86 2.00 2.43 1.71 1.86
Random Forest 2.29 2.14 1.57 2.43 1.71 1.86
Symbolic 2.00 2.00 2.00 2.29 1.71 2.00

We observe that for both regression tasks (STR and MTR), RFs ensem-
bles almost never perform best (with the exception of Genie3 SSL-rankings),
whereas for the other three classification-like tasks, they quite consistently
outperform the other two ensemble methods. The differences among the av-
erage ranks are typically not considerable (with the exception of the most of
the MLC rankings, and supervised MTR rankings) which is probably due to
the fact that the split selection mechanisms of the considered ensemble meth-
ods are still quite similar, and the trees are fully-grown, so sooner or later, a
relevant feature appears in the node. In the case of ties, we choose the more
efficient one (see Tab. 6): RFs are always the most efficient, whereas the sec-
ond place is determined by the number of possible splits per feature. For lower
values (e.g., when most of the features are binary, as is the case in MLC and
HMLC data), bagging is faster than ETs.

Table 6: Average ranks of the ensemble methods, in terms of induction times.

task RFs ETs bagging
classification 1.00 2.23 2.77
MLC 1.00 2.67 2.33
HMLC 1.00 2.50 2.50
STR 1.17 2.33 2.50
MTR 1.29 1.71 3.00

To make the later graphs more readable, we plot, for every score, only the
curve that corresponds to the most suitable ensemble method for this score.

164 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

20 Matej Petković et al.

7.2 Qualitative difference between SSL and SL rankings

We first discuss the qualitative difference between the SSL-rankings and their
supervised counterparts. In the process of obtaining a feature ranking, the
SSL-version of the ranking algorithm sees more examples than its supervised
version, and it turns out that this is well-reflected in the results. Fig. 3 shows
the results for five datasets (one dataset, for each task) and the performance of
the rankings, as assessed by kNN models, for k ∈ {20, 40}. Those two values of
k are used to show that SSL-rankings tend to capture a more global picture of
data, whereas the supervised ones reflect a more local one. This phenomenon

Table 7: Proportions of the computed feature rankings whose SSL-version
captures more global properties of the data, as compared to its supervised
version. The differences δ20 and δ40 of the areas under the performance curves
of 20NN and 40NN models are computed (always in a way that δ > 0 means
that SSL-version performs better). Therefore, if ∆ = δ40 − δ20 > 0, then the
SSL-version of the ranking is more global, and is more local if ∆ < 0.

task classification MLC HMLC STR MTR
P [∆ > 0] 0.73 0.83 0.96 1.00 0.93

is most visible in the two regression datasets. In the case of the treasury

dataset, SSL-rankings perform worse than supervised ones on the local scale
for smaller numbers L of labeled examples (Fig. 3g), and are equal or better
for L ≥ 200. However, on the global scale (Fig. 3h), the SSL-rankings are clear
winners. A similar situation is observed for the other datasets in Fig. 3, and
also in general.

Tab. 7 reveals that for the vast majority of the rankings (and datasets), the
SSL rankings are more global. This proportion is the highest for STR data (it
even equals 100%), and is understandably the lowest for classification, where
the datasets have the smallest number of examples on average.

165

Feature Ranking for Semi-supervised Learning 21

50 100 200 350 500
L

0.4

0.6

0.8

F
1

Relief

Genie3

RForest

Symbolic

(a) classification: digits, 20NN

50 100 200 350 500
L

0.2

0.4

0.6

0.8

F
1

Relief

Genie3

RForest

Symbolic

(b) classification: digits, 40NN

50 100 200 350 500
L

0.6

0.7

0.8

0.9

1.0

A
U

P
R

C

Relief

Genie3

RForest

Symbolic

(c) MLC: genbase, 20NN

50 100 200 350 500
L

0.2

0.4

0.6

0.8

1.0

A
U

P
R

C

Relief

Genie3

RForest

Symbolic

(d) MLC: genbase, 40NN

50 100 200 350 500
L

0.55

0.60

0.65

0.70

0.75

A
U

P
R

C

Relief

Genie3

RForest

Symbolic

(e) HMLC: ecogen, 20NN

50 100 200 350 500
L

0.5

0.6

0.7

A
U

P
R

C

Relief

Genie3

RForest

Symbolic

(f) HMLC: ecogen, 40NN

50 100 200 350 500
L

0.25

0.50

0.75

1.00

1.25

R
R

M
S

E

Relief

Genie3

RForest

Symbolic

Laplace

(g) STR: treasury, 20NN

50 100 200 350 500
L

0.2

0.4

0.6

0.8

R
R

M
S

E

Relief

Genie3

RForest

Symbolic

Laplace

(h) STR: treasury, 40NN

50 100 200 350 500
L

0.5

0.6

0.7

0.8

R
R

M
S

E

Relief

Genie3

RForest

Symbolic

(i) MTR: oes10, 20NN

50 100 200 350 500
L

0.6

0.7

0.8

0.9

R
R

M
S

E

Relief

Genie3

RForest

Symbolic

(j) MTR: oes10, 40NN

Fig. 3: Comparison of the SL and SSL feature rankings, for different predictive
modeling tasks. The curves for the SSL and the SL versions of a ranking are
shown as a solid and a dashed line of the same color. The graphs in the left
column use 20NN models in the evaluation, whereas those in the right, use
40NN models.

166 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

22 Matej Petković et al.

7.3 Can unlabeled data improve feature rankings?

To answer this question, we compare the SSL versions of the proposed feature
rankings to their supervised counterparts. In the previous section, we explained
why sometimes the answer is not straightforward and depends on whether one
is interested in a global or local scale. Since the question is whether the ranking
can be improved by using unlabeled data, and given the qualitative differences
between the SSL- and SL-versions of the rankings from the previous section,
we fix the number of neighbors to k = 40.

We start with the classification results given in Tab. 8.

Table 8: The differences ∆ of areas under the curves of F1-values of the 40NN
models with distance weights based on SSL-rankings and SL-rankings.

datasets Genie3 RForest Symbolic Relief CH

cl
a
ss

ifi
ca

ti
o
n

Arrhythmia 0.039 0.008 0.022 0.006 0.02
Bank 0.064 0.067 0.061 0.050 -0.00
Chess -0.084 0.021 -0.081 0.022 0.22
Dis 0.066 0.046 0.050 0.123 0.00
Gasdrift 0.041 0.038 0.053 0.109 0.02
Pageblocks 0.272 0.250 0.250 0.243 0.03
Phishing -0.125 -0.128 -0.132 -0.115 -0.00
Tic-tac-toe 0.148 0.225 0.152 0.141 0.70
Aapc 0.115 0.041 0.067 0.110 0.34
Coil2000 0.019 0.029 0.022 0.020 -0.00
Digits 0.170 0.204 0.198 0.245 -0.00
Pgp 0.043 0.113 0.096 0.139 0.00
Thyroid 0.288 0.268 0.285 0.265 0.01

From the mainly positive numbers in the table, one can conclude that SSL-
rankings successfully recognize the structure of data, and outperform their
supervised analogs, even in most of the cases where the CH values are low,
e.g., for digits dataset in Fig. 3a, or, most notably, for pageblocs.

Continuing with the results for MLC (the upper part of Tab. 9), we first
see that CH values are rather low, since, in contrast to the ARI values from
classification, correction for chance is not incorporated into these CH values.
An exception to this are the genbase (see Figs. 3c and 3d) and the scene

dataset. For both datasets, the SSL-versions of the rankings outperform their
SL-analogs. This also holds for the birds and emotions datasets, for all rank-
ings, and additionally for the medical dataset in the case of Relief.

The bottom part of Tab. 9 gives the results for HMLC datasets. One can no-
tice that Asm. 1 is never satisfied (low CH values), and that SSL-scores mostly
could not overcome this, with the exception of Relief rankings on the ecogen

dataset. However, inspecting the corresponding curves in detail (Fig. 3f), re-
veals that the negative differences in the performance of SSL-rankings and
SL-rankings are mostly due to the bad start of SSL-rankings: For L ≥ 200,
the SSL-versions prevail.

167

Feature Ranking for Semi-supervised Learning 23

Table 9: The differences ∆ of areas under the curves of AU PRC-values of the
40NN models whose distance weights base on SSL-ranking and SL-ranking.

datasets Genie3 RForest Symbolic Relief CH

M
L

C

Bibtex -0.115 -0.078 -0.100 -0.100 0.02
Birds 0.039 0.052 0.021 0.029 0.05
Emotions 0.012 0.028 0.011 0.044 0.04
Genbase 0.091 0.121 0.094 0.189 0.26
Medical -0.067 0.008 -0.058 0.014 0.04
Scene 0.045 0.048 0.063 0.119 0.21

H
M

L
C

Clef07a-is -0.097 -0.066 -0.102 -0.041 0.05
Ecogen -0.007 -0.003 -0.018 0.051 0.03
Enron-corr -0.068 -0.062 -0.023 -0.064 0.03
Expr-yeast-fun -0.090 -0.103 -0.086 -0.071 0.00
Gasch1-yeast-FUN -0.080 -0.087 -0.084 -0.096 0.01
Pheno-yeast-FUN -0.032 -0.031 -0.036 -0.029 0.00

Table 10: The differences ∆ of areas under the curves of RRMSE-values of the
40NN models with distance weights based on SSL-rankings and SL-rankings.

datasets Genie3 RForest Symbolic Relief Laplace CH

S
T

R

CHEMBL2850 -0.047 -0.063 0.014 -0.092 -0.010 0.09
CHEMBL2973 -0.143 -0.103 -0.114 -0.168 -0.109 0.18
Mortgage 0.074 0.092 0.097 0.078 0.120 0.57
Pol 0.027 0.249 0.127 -0.049 0.278 0.12
QSAR -0.347 -0.446 -0.442 -0.523 -0.262 0.20
Treasury 0.118 0.172 0.165 0.155 0.215 0.54

M
T

R

Atp1d 0.048 0.024 0.048 0.093 0.49
CollembolaV2 -0.048 -0.014 -0.010 -0.002 0.02
Edm1 0.002 0.018 0.004 0.006 0.23
Forestry-LIDAR-IRS -0.115 -0.070 -0.101 -0.114 0.19
Oes10 0.083 0.084 0.083 0.122 0.63
Scm20d -2.357 -2.317 -2.295 -2.281 0.16
Soil-quality -0.044 -0.085 -0.080 -0.111 0.07

We finish this section with the regression results. The upper part of Tab. 10
shows that when CH is well-setisfied, i.e., for the datasets mortgage and
treasury (see Fig. 3h), the SSL-rankings outperform the SL-rankings. More-
over, this also holds for the pol data (except for the Relief rankings). Inspecting
the datasets where negative values are present (most notably the qsar dataset)
reveals the same phenomenon as in HMLC case: for extremely low values of L,
e.g., L = 50, the SSL-rankings do not perform well, possibly because knowing
the labels of 50 out of approximately 2000 examples simply does not suffice.
With more and more labels known, the performance of SSL-rankings drasti-
cally improves, while the performance of SL-rankings stagnates. Finally, for
L ≥ 200 or L ≥ 350, all SSL-rankings again outperform the SL-ones.

Similar findings hold for the MTR data and the results in the bottom part
of Tab. 10. The SSL-rankings perform well from the very beginning on the
three datasets where CH holds the most, i.e., oes10 (see Fig. 3j), atp1d, and
edm1, but can only catch up with the SL-rankings (and possibly outperform
them) for larger values of L in the other cases.

168 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

24 Matej Petković et al.

7.4 Which SSL-ranking performs best?

To answer this question, we compare the predictive performances of the cor-
responding 40NN models and report their ranks in Tab. 11. The results reveal
that, for majority of the tasks, ensemble-based rankings perform best, however,
in some cases, the winners are not clear, e.g., in the case of the classification.
Still, Symbolic ranking quite clearly outperforms the others on both regression
tasks, STR and MTR.

To complement this analysis, we also compute the average ranks of the
algorithms for their induction times. As explained in Sec. 7.1, for the ensemble-

Table 11: The average ranks of different SSL-ranking algorithms that base on
the performance of the corresponding 40NN models.

task Genie3 Random Forest Symbolic Relief Laplace
classification 2.62 2.46 2.62 2.31
MLC 3.00 2.17 2.50 2.33
HMLC 2.00 2.83 2.50 2.67
STR 3.00 3.33 1.83 4.17 2.67
MTR 2.57 2.57 1.71 3.14

based rankings, RFs are always preferable in terms of speed. They can still be
outperformed by Relief if the number of features is higher and the number of
examples is moderate, which follows directly from the O-values in Secs. 4.3 and
5.3. All these methods are implemented in the Clus system (Java), whereas
our implementation of the Laplace score is, as mentioned before, Python-based
(Scikit Learn and numpy). Thus, even though Laplace and Relief have the
same core operations (finding nearest neighbors), using higly-optimized Scikit
Learn’s methods (such as kNN) puts Laplace at the first place, whereas Relief
is (second but) last, for STR problems.

Table 12: The average ranks of different SSL-ranking algorithms in terms of
their induction times. Since the time complexity of ensemble-based rankings
(almost) equals the induction time of the ensembles, we report the latter. For
each task, we show the ranks for both extreme values of L.

task L RFs ETs bagging Relief Laplace

classification
50 1.15 2.46 3.15 3.23

500 1.31 2.69 3.54 2.46

MLC
50 1.67 3.50 3.33 1.50

500 2.00 3.00 3.67 1.33

HMLC
50 1.17 2.83 3.17 2.83

500 1.33 3.00 3.50 2.17

STR
50 2.17 3.50 3.83 4.50 1.00

500 2.67 3.17 4.67 3.50 1.00

MTR
50 1.86 2.29 3.71 2.14

500 1.71 2.43 3.71 2.14

169

Feature Ranking for Semi-supervised Learning 25

8 Conclusions

In this work, we focus on semi-supervised learning of feature ranking.
The feature rankings are learned in the context of simple (single-target) clas-
sification and regression as well as in the context of structured output pre-
diction (multi-label classification, hierarchical multi-label classification and
multi-target regression). This is the first work that treats the task of feature
ranking within the semi-supervised structured output prediction - it treats all
the different prediction tasks in an unified way.

We propose, develop and evaluate two approaches for SSL feature
ranking for SOP based on tree ensembles and the Relief family of algo-
rithms. The tree ensemble-based rankings can be learned using three ensemble
learning methods (Bagging, Random Forests, Extra Trees) coupled with three
scoring functions (Genie3, Symbolic and random forest scoring). The Relief-
based rankings use the regression variant of the Relief algorithm for extension
towards the SOP tasks. This is the first extension of a Relief algorithm towards
semi-supervised learning.

An experimental evaluation of the proposed methods is carried
out on 38 benchmark datasets from the five machine learning tasks:
13 from classification, 6 from multi-label classification, 6 from hierarchical
multi-label classification, 6 from regression and 7 from multi-target regression.
Whenever available, we compared the performance of the proposed methods
to the performance of state-of-the-art methods. Furthermore, we compared
the performance of the semi-supervised feature ranking methods with their
supervised counterparts.

The results from the extensive evaluation are best summarized through the
answers of the research questions:

1. For a given ensemble-based feature ranking score, which ensemble method
is the most appropriate?
Generally, Random Forests perform the best for the classification-like tasks
(classification, muilti-label classification and hierarchical multi-label classi-
fication), while for the regression-like tasks (regression, multi-target regres-
sion) Extra-PCTs perform the best. Furthermore, across all tasks, Random
Forests are the most efficient method considering induction times.

2. Are there any qualitative differences between the semi-supervised and su-
pervised feature rankings?
The semi-supervised rankings tend to capture a more global picture of the
data, whereas the supervised ones reflect a more local one.

3. Can the use of unlabeled data improve feature ranking?
Semi-supervised feature rankings outperform their supervised counterpart
across a majority of the datasets from the different tasks.

4. Which feature ranking algorithm performs best?
Different SSL feature ranking methods perform the best for the different
tasks: Symbolic ranking is the best for the regression and multi-target
regression, Random forest ranking for multi-label classification, Genie3 for
hierarchical multi-label classification, and Relief for classification.

170 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

26 Matej Petković et al.

Acknowledgements The computational experiments presented here were executed on a
computing infrastructure from the Slovenian Grid (SLING) initiative, and we thank the
administrators Barbara Krašovec and Janez Srakar for their assistance.

References

Arthur and Vassilvitskii, 2007. Arthur, D. and Vassilvitskii, S. (2007). K-means++: The
advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 07, page 10271035, USA. Society for Industrial
and Applied Mathematics.

Bhardwaj and Patra, 2018. Bhardwaj, K. and Patra, S. (2018). An unsupervised technique
for optimal feature selection in attribute profiles for spectral-spatial classification of hyper-
spectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 138:139–150.

Bilken University, 2020. Bilken University (2020). Function approximation repository. Ac-
cessible at http://funapp.cs.bilkent.edu.tr/DataSets/.

Blockeel, 1998. Blockeel, H. (1998). Top-down Induction of First Order Logical Decision
Trees. PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium.

Boutell et al., 2004. Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. (2004). Learning
multi-label scene classification. Pattern Recognition, 37(9):1757–1771.

Breiman, 2001. Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
Briggs et al., 2013. Briggs, F., Huang, Y., Raich, R., Eftaxias, K., Lei, Z., Cukierski, W.,

Frey Hadley, S., Hadley, A., Betts, M., Fern, X. Z., Irvine, J., Neal, L., Thomas, A.,
Fodor, G., Tsoumakas, G., Ng Hong, W., Nguyen, T. N. T., Huttunen, H., Ruusuvuori, P.,
Manninen, T., Diment, A., Virtanen, T., Marzat, J., Defretin, J., Callender, D., Hurlburt,
C., Larrey, K., and Milakov, M. (2013). The 9th annual mlsp competition: New methods
for acoustic classification of multiple simultaneous bird species in a noisy environment. In
IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2013,
pages 1–8.

Chen et al., 2004. Chen, B.-J., Chang, M.-W., and lin, C.-J. (2004). Load forecasting using
support vector machines: A study on EUNITE competition 2001. IEEE Transactions on
Power Systems, 19(4):1821–1830.

Clare, 2003. Clare, A. (2003). Machine learning and data mining for yeast functional ge-
nomics. PhD thesis, University of Wales Aberystwyth, Aberystwyth, Wales, UK.

Demšar et al., 2006. Demšar, D., Džeroski, S., Larsen, T., Struyf, J., Axelsen, J., Bruus,
M., and Krogh, P. H. (2006). Using multi-objective classification to model communities
of soil microarthropods. Ecological Modelling, 191:131–143.

DiMasi et al., 2003. DiMasi, J. A., Hansen, R. W., and Grabowski, H. G. (2003). The price
of innovation: new estimates of drug development costs. Journal of Health Economics,
22(2):151 – 185.

Dimitrovski et al., 2008. Dimitrovski, I., Kocev, D., Loskovska, S., and Džeroski, S. (2008).
Hierchical annotation of medical images. In Proceedings of the 11th International Multi-
conference - Information Society IS 2008, pages 174–181. IJS, Ljubljana.

Diplaris et al., 2005. Diplaris, S., Tsoumakas, G., Mitkas, P., and Vlahavas, I. (2005). Pro-
tein classification with multiple algorithms. In 10th Panhellenic Conference on Informat-
ics (PCI 2005), pages 448–456.

Doquire and Verleysen, 2013. Doquire, G. and Verleysen, M. (2013). A graph laplacian
based approach to semi-supervised feature selection for regression problems. Neurocom-
puting, 121:5–13.

Džeroski et al., 1997. Džeroski, S., Potamias, G., Moustakis, V., and Charissis, G. (1997).
Automated revision of expert rules for treating acute abdominal pain in children. In
Proceedings of the 6th Conference on Artificial Intelligence in Medicine in Europe, AIME
’97, page 98109, Berlin, Heidelberg. Springer-Verlag.

Galelli et al., 2014. Galelli, S., Humphrey, G. B., Maier, H. R., Castelletti, A., Dandy, G. C.,
and Gibbs, M. S. (2014). An evaluation framework for input variable selection algorithms
for environmental data-driven models. Environmental Modelling & Software, 62:33 – 51.

Geurts et al., 2006. Geurts, P., Erns, D., and Wehenkel, L. (2006). Extremely randomized
trees. Machine Learning, 36(1):3–42.

171

Feature Ranking for Semi-supervised Learning 27

Gijsbers, 2017. Gijsbers, P. (2017). Dis data. Retrieved from OpenML repository https:

//www.openml.org/d/40713.
Grissa et al., 2016. Grissa, D., Ptra, M., Brandolini, M., Napoli, A., Comte, B., and Pujos-

Guillot, E. (2016). Feature selection methods for early predictive biomarker discovery
using untargeted metabolomic data. Frontiers in Molecular Biosciences, 3:30.

Guyon and Elisseeff, 2003. Guyon, I. and Elisseeff, A. (2003). An introduction to variable
and feature selection. Journal of Machine Learning Research, 3:1157–1182.

Hansen and Salamon, 1990. Hansen, L. K. and Salamon, P. (1990). Neural network ensem-
bles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:993–1001.

Holzinger et al., 2019. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., and Müller, H.
(2019). Causability and explainability of artificial intelligence in medicine. WIREs Data
Mining and Knowledge Discovery, 9(4):e1312.

Hoogendoorn et al., 2016. Hoogendoorn, M., Szolovits, P., Moons, L. M., and Numans,
M. E. (2016). Utilizing uncoded consultation notes from electronic medical records for
predictive modeling of colorectal cancer. Artificial Intelligence in Medicine, 69:53–61.

Hubert and Arabie, 1985. Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal
of Classification, 2(1):193–218.

Huynh-Thu et al., 2010. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P.
(2010). Inferring regulatory networks from expression data using tree-based methods.
PLoS One, 5(9):1–10.

Jong et al., 2004. Jong, K., Mary, J., Cornuéjols, A., Marchiori, E., and Sebag, M. (2004).
Ensemble feature ranking. In PKDD - LNCS 2302, pages 267–278.

Kampichler et al., 2000. Kampichler, C., Džeroski, S., and Wieland, R. (2000). Application
of machine learning techniques to the analysis of soil ecological data bases: relationships
between habitat features and collembolan community characteristics. Soil Biology and
Biochemistry, 32(2):197 – 209.

Karalič and Bratko, 1997. Karalič, A. and Bratko, I. (1997). First Order Regression. Ma-
chine Learning, 26(2-3):147–176.

Katakis et al., 2008. Katakis, I., Tsoumakas, G., and Vlahavas, I. (2008). Multilabel text
classification for automated tag suggestion. In Proceedings of the ECML/PKDD 2008
Discovery Challenge.

Kira and Rendell, 1992. Kira, K. and Rendell, L. A. (1992). The feature selection prob-
lem: Traditional methods and a new algorithm. In Proceedings of the Tenth National
Conference on Artificial Intelligence, AAAI’92, pages 129–134. AAAI Press.

Klimt and Yang, 2004. Klimt, B. and Yang, Y. (2004). The enron corpus: A new dataset for
email classification research. In ECML ’04: Proceedings of the 18th European Conference
on Machine Learning – LNCS 3201, pages 217–226. Springer Berlin / Heidelberg.

Kocev et al., 2013. Kocev, D., Vens, C., Struyf, J., and Džeroski, S. (2013). Tree ensembles
for predicting structured outputs. Pattern Recognition, 46(3):817–833.

Kononenko and Robnik-ikonja, 2003. Kononenko, I. and Robnik-ikonja, M. (2003). The-
oretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning Journal,
55:23–69.

Kralj Novak et al., 2015. Kralj Novak, P., Smailović, J., Sluban, B., and Mozetič, I. (2015).
Sentiment of emojis. PloS one, 10.

Levatić, 2017. Levatić, J. (2017). Semi-supervised Learning for Structured Output Predic-
tion. PhD thesis, Jožef Stefan Postgraduate School, Ljubljana, Slovenia.

Levatić et al., 2013. Levatić, J., Cúrak, J., Kralj, M., Šmuc, T., Osmak, M., and Supek,
F. (2013). Accurate models for p-gp drug recognition induced from a cancer cell line
cytotoxicity screen. Journal of medicinal chemistry, 56(14):5691–5708.

Levatić et al., 2018. Levatić, J., Kocev, D., Ceci, M., and Džeroski, S. (2018). Semi-
supervised trees for multi-target regression. Information Sciencies, 450(C):109127.

Lichman, 2013. Lichman, M. (2013). UCI machine learning repository. http://archive.

ics.uci.edu/ml.
Moro et al., 2011. Moro, S., Cortez, P., and Laureano, R. (2011). Using data mining for

bank direct marketing: An application of the crisp-dm methodology.
Nilsson et al., 2007. Nilsson, R., Peña, J. M., Björkegren, J., and Tegnér, J. (2007). Con-

sistent feature selection for pattern recognition in polynomial time. Journal of Machine
Learning Research, 8:589–612.

172 Chapter 6. Feature Ranking for Semi-Supervised Structured Output Prediction

28 Matej Petković et al.

Pedregosa et al., 2011. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Pestian et al., 2007. Pestian, J. P., Brew, C., Matykiewicz, P., Hovermale, D. J., Johnson,
N., Bretonnel Cohen, K., and Duch, W. (2007). A shared task involving multi-label
classification of clinical free text. In Proceedings of the Workshop on BioNLP 2007:
Biological, Translational, and Clinical Language Processing (BioNLP ’07), pages 97–104.

Petković et al., 2019. Petković, M., Džeroski, S., and Kocev, D. (2019). Ensemble-based
feature ranking for semi-supervised classification. In Kralj Novak, P., Šmuc, T., and
Džeroski, S., editors, Discovery Science, pages 290–305. Springer International Publishing.

Petković et al., 2020. Petković, M., Džeroski, S., and Kocev, D. (2020). Feature ranking
for hierarchical multi-label classification with tree ensemble methods. Acta Polytechnica
Hungarica. To appear.

Petković et al., 2019. Petković, M., Kocev, D., and Džeroski, S. (2019). Feature ranking for
multi-target regression. Machine Learning Journal. Accepted.

Petković et al., 2018. Petković, M., Kocev, D., and Džeroski, S. (2018). Feature ranking
with relief for multi-label classification: Does distance matter? In Soldatova, L., Van-
schoren, J., Papadopoulos, G., and Ceci, M., editors, Discovery Science, pages 51–65.
Springer International Publishing.

Reyes et al., 2015. Reyes, O., Morell, C., and Ventura, S. (2015). Scalable extensions of the
relieff algorithm for weighting and selecting features on the multi-label learning context.
Neurocomputing, 161:168 – 182.

Saeys et al., 2007. Saeys, Y., Inza, I., and Larraaga, P. (2007). A review of feature selection
techniques in bioinformatics. Bioinformatics, 23(19):2507–2517.

Sheikhpour et al., 2017. Sheikhpour, R., Sarram, M., Gharaghani, S., and Chahooki, M.
(2017). A survey on semi-supervised feature selection methods. Pattern Recognition,
64(C):141–158.

Spyromitros-Xioufis et al., 2016. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., and
Vlahavas, I. (2016). Multi-target regression via input space expansion: Treating targets
as inputs. Machine Learning, 104(1):5598.

Stańczyk and Jain, 2015. Stańczyk, U. and Jain, L. C., editors (2015). Feature Selection
for Data and Pattern Recognition. Studies in Computational Intelligence. Springer Berlin
Heidelberg.

Stojanova, 2009. Stojanova, D. (2009). Estimating forest properties from remotely sensed
data by using machine learning, MSc Thesis. Jožef Stefan International Postgraduate
School.

Tjoa and Guan, 2019. Tjoa, E. and Guan, C. (2019). A survey on explainable artificial
intelligence (xai): Towards medical xai.

Trochidis et al., 2008. Trochidis, K., Tsoumakas, G., Kalliris, G., and Vlahavas, I. (2008).
Multilabel classification of music into emotions. In 2008 International Conference on
Music Information Retrieval (ISMIR 2008), pages 325–330.

Tsagris et al., 2018. Tsagris, M., Lagani, V., and Tsamardinos, I. (2018). Feature selection
for high-dimensional temporal data. BMC Bioinformatics, 19(1):17.

Van Der Putten and Van Someren, 2004. Van Der Putten, P. and Van Someren, M. (2004).
A bias-variance analysis of a real world learning problem: The coil challenge 2000. Machine
Learning, 57(1-2):177–195.

Xu et al., 1992. Xu, L., Krzyzak, A., and Suen, C. Y. (1992). Methods of combining mul-
tiple classifiers and their applications to handwriting recognition. IEEE transactions on
systems, man, and cybernetics, 22(3):418–435.

Zhou et al., 2018. Zhou, Y., Zhang, R., Wang, S., and Wang, F. (2018). Feature selection
method based on high-resolution remote sensing images and the effect of sensitive features
on classification accuracy. Sensors, 18(7).

Zhou, 2017. Zhou, Z.-H. (2017). A brief introduction to weakly supervised learning. Na-
tional Science Review, 5(1):44–53.

Zhu et al., 2009. Zhu, X., Goldberg, A. B., Brachman, R., and Dietterich, T. (2009). In-
troduction to Semi-Supervised Learning. Morgan and Claypool Publishers.

173

175

Chapter 7

Feature Ranking for Unsupervised
Learning

In this Chapter, we present in detail the fourth set of contributions of the thesis: those
concerning the unsupervised learning setting. Recall from the introductory sections that
in unsupervised learning, no target variable/attribute is present in the data (Section 2.2).
Also recall that we presented our unsupervised feature ranking methods in Sections 3.1.2
and 3.2.2. Our contributions in this context include:

1. An extension of ensemble-based feature ranking scores from the context of predictive
modeling to unsupervised learning.

2. An extension of distance-based feature ranking scores from the context of predictive
modeling to unsupervised learning.

3. An extensive experimental evaluation of the newly proposed unsupervised feature
importance scores on a collection of benchmark datasets assessing the performance
of the scores individually and in cross-comparison, as well as in comparison to other
existing unsupervised feature ranking methods.

We proposed the extensions of ensemble-based and distance-based feature ranking methods
to the unsupervised learning setting in a journal paper under review (Petković, Škrlj, et
al., 2020). As outlined in Sections 3.1.2 and 3.2.2, the proposed feature ranking methods
follow the intuition of the predictive clustering paradigm. The group of ensemble-based
methods consist of pairs of ensemble generation methods (bagging, random forests and
extra trees) and scores (Genie3, and Random Forest scores). Since the Symbolic score can
be seen as a more rudimentary version of the Genie3 score, we did not experiment with it
this time. The group of distance-based methods consists of URelief – the extension of the
Relief algorithm to the unsupervised learning setting.

We evaluated the performance of the methods on a range of benchmark datasets. En-
sembles of extra trees that were chosen as the main underlying ensemble method for their
time-efficiency also outperform the other two methods in terms of quality of the corre-
sponding feature rankings. The better of the two ensemble-based feature ranking scores
was Genie3.

Both ensemble-based and distance-based feature ranking scores outperform the cur-
rent state-of-the-art unsupervised feature rankings. To be more precise, the Genie3 score
outperforms them (and URelief) statistically significantly and is most frequently the best
performing method. URelief has the second best average rank (after the Genie3 score).

The work presented in this Chapter refers to the following hypotheses (as defined in
the introduction):

176 Chapter 7. Feature Ranking for Unsupervised Learning

H1: It is possible to extend ensemble- and distance-based feature ranking approaches to
the unsupervised feature ranking task, to the tasks of supervised SOP (i.e., MTR,
MLC, and HMLC), and to their semi-supervised versions.

H6: For unsupervised, MTR, MLC and HMLC problems, ensemble-based approaches on
average outperform the distance-based approaches when the number of features is
extremely high.

H9: The proposed ensemble-based and distance-based approaches yield relevant and state-
of-the-art feature rankings for unsupervised feature-ranking problems.

These three hypotheses are confirmed with the design and implementation of the unsu-
pervised feature ranking approaches presented in this Chapter and the experimental study
comparing their performance. Hypothesis H3 is completely confirmed by the results pre-
sented in this Chapter. For hypotheses H1 and H6, the parts pertaining to unsupervised
scenario, are confirmed in this Chapter, while the remaining parts of these hypotheses are
addressed in the previous chapters.

The paper included in this Chapter is:

• Petković, M., Kocev, D., Škrlj, B. and Džeroski, S. Ensemble- and Distance-Based
Feature Ranking for Unsupervised Learning. Information Fusion. Under Review.

The contribution of Matej Petković to this paper are as follows. MP contributed
to the design of the ensemble-based and distance-based feature ranking methods for unsu-
pervised learning and implemented these methods in computer code. He also participated
in designing the experiments, carried out the experiments, and processed their results. He
drafted the paper and revised it following the feedback from the co-authors and reviewers.

Ensemble- and Distance-Based Feature Ranking for
Unsupervised Learning

Matej Petković*, Dragi Kocev, Blaž Škrlj, Sašo Džeroski

Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Jozef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia

Abstract

In this work, we propose two novel (groups of) methods for unsupervised feature
ranking and selection. The first group includes feature ranking scores (Genie3
score, RandomForest score) that are computed from ensembles of predictive
clustering trees. The second method is URelief, the unsupervised extension of
the Relief family of algorithms. Using 26 benchmark data sets and 5 baselines,
we show that both the Genie3 score (computed from the ensemble of extra
trees) and the URelief method outperform the existing methods and that
Genie3 performs best overall. Additionally, we analyze the influence of the
hyper-parameters of the proposed methods on their performance, and show
that for the Genie3 score the highest quality is achieved by the most efficient
parameter configuration. Finally, we propose a way of discovering the location
of the most relevant features in the ranking.

Keywords: feature ranking, unsupervised learning, explainability, tree
ensembles, extra trees, Relief

1. Introduction

High-dimensional data are becoming part of everyday life, making the learn-
ing of models much harder, slower or even infeasible, unless some dimensionality
reduction is performed. Moreover, explainable AI (or XAI) plays a central role
in the human-centric approach to trustworthy AI [1, 2], especially in domains
such as medicine [3, 4], life sciences [5, 6, 7, 8] and ecological modeling [9, 10, 11].

Both problems (high dimensionality and lack of explainability) may be solved
by feature ranking approaches. In the supervised scenario, where the examples
in the data are described as (x, y) pair, with x a tuple of values of descriptive
attributes (features) xi and y a target value, the goal of feature ranking is

∗Corresponding author: matej.petkovic@ijs.si, +38614773635
Email address: {matej.petkovic, dragi.kocev, blaz.skrlj, saso.dzeroski}@ijs.si

(Matej Petković*, Dragi Kocev, Blaž Škrlj, Sašo Džeroski)

Preprint submitted to Information Fusion August 20, 2020

177

to assign a real-valued score to each feature, which defines how relevant the
feature is for predicting the target y. By assessing the relevance correctly,
one can i) discard the irrelevant features and make learning predictive models
faster/feasible, or ii) understand the data better, which helps when a machine
learning expert collaborates with a domain expert.

However, sometimes the examples in the data are hard to label since labeling
either demands a lot of manual work (e.g., labeling tweets [12]), or is expensive
for some other reason (e.g., determining the activity of chemical compounds
[13]). Therefore, semi-supervised learning that uses both labeled and unlabeled
data is gaining importance. Methods for feature ranking in semi-supervised
learning have been recently developed [14, 15] based on SSL with PCTs as well
as existing distance-based approaches for feature ranking such as Relief.

On the spectrum of major machine learning paradigms/ settings, semi-
supervised learning is situated between supervised learning, which uses only
labeled examples (with known values of the targets) to learn predictive mod-
els, and unsupervised learning, where only examples without labels are used,
typically to group examples into clusters of similar examples. Similarity be-
tween examples is determined with respect to a given distance measure, typi-
cally Euclidean. Just as we need feature ranking in the context of supervised
and semi-supervised learning, we also need it in unsupervised learning.

Since we do not have targets to predict in unsupervised learning, feature
importance in this setting cannot mean how relevant the features are for pre-
dicting the targets (and building a predictive model for that purpose). Rather,
feature importance in this context measures how relevant a given feature is for
constructing a clustering from the given data. Other formulations and motiva-
tions of relevance in ranking in an unsupervised context have been considered,
such as the one recently proposed by Doquet and Sebag [16]: We do not know
how relevant is a given feature (for predicting a target), but we can assess how
redundant it is in the context of the other features (a feature is redundant if
we can predict it accurately from other features). However, we believe the rel-
evance to constructing a clustering captures more appropriately the spirit of
unsupervised feature ranking and it is this notion that is embedded within the
approaches for unsupervised feature ranking that we put forward in this paper.
The intuition of Doquet and Sebag [16] corresponds more to feature selection,
the task of finding an optimal set of features, where redundancy is to be avoided.
Feature selection can be viewed as a special case of feature ranking/ relevance
estimation, where every feature is assigned a score of either 1 (the feature is
kept) or 0 (the feature is discarded). We can obtain a feature selection by first
obtaining a ranking (in terms of relevance scores) and then keeping only the
features with the scores exceeding some user-defined threshold [17].

In this work, we propose two groups of novel methods for unsupervised
feature ranking1. The first group consists of two ensemble-based feature ranking

1The implementation of the methods, as well as the results, are available at https://

gitlab.com/Petkomat/unsupervised-feature-ranking

2

178 Chapter 7. Feature Ranking for Unsupervised Learning

scores that are computed from ensembles of predictive clustering trees used for
hierarchical clustering [18]. At each internal node of a tree, the algorithm finds a
feature along which the data are most efficiently divided into subclusters. In the
leaves, prototypes of the clusters are computed. These prototypes can be seen
as a prediction for feature values for a new-coming example, thus the features
that are (more often) used in the splits, are (more) relevant for predicting the
values of all the features.

The second group consists of only one member named URelief, i.e., the
unsupervised extension of the Relief family of algorithms [19, 20]. It does
not use any underlying model, but rather estimates the feature relevances via
the influence of the features to the distances between the neighboring examples
in the data. In other words, if the distance along a given feature strongly
contributes to the overall distance between examples, the feature is deemed
important. In distance-based clustering, the feature would be important for the
clustering of the examples.

The rest of the paper is organized as follows. Sec. 2 gives a brief description
of related work, in particular the baseline methods that we compare to. In
Sec. 3, a detailed description of the proposed ensemble-based scores is given,
whereas in Sec. 4 this is done for URelief. Sec. 5 describes the experimental
setup, including the evaluation procedure. Sec. 6 discusses the experimental
results, and Sec. 7 concludes the paper.

2. Related Work

While the literature on supervised feature selection has been extensively
reviewed and studied [21, 22], the literature on the topic of unsupervised fea-
ture ranking has not been extensively and systematically surveyed. The closest
overview is the recent work by Solorio-Fernández et al. [23] that overviews
methods for unsupervised feature selection. It divides the methods based on
the strategy they use for selecting the features, into three groups: filter, wrap-
per and hybrid. The filter methods evaluate the features based on intrinsic
properties of the data, the wrapper methods evaluate the features based on the
results of a specific clustering algorithm, and the hybrid methods exploit the
advantages of both filter and wrapper methods with a special focus on the bal-
ance between the computational cost and the quality of the selected features.
Here, we briefly summarize the most prominent and relevant work on the topic
of unsupervised feature ranking.

To begin with, the Scikit-feature repository [24] offers unified implemen-
tations of some unsupervised feature ranking algorithms2. One of them is the
Laplace score [25]. It is based on the graph theory and the creation of the
Laplace matrix of a graph, whose vertices are the examples and whose edges
correspond to the level of similarity among the examples.

2https://github.com/jundongl/scikit-feature

3

179

Next, SPEC (spectral clustering) [26] is a unification of many existing fea-
ture ranking scores. These include the Relief and the Laplace scores. The
actual score that the authors experiment with is thus a result of particular in-
stantiations, such as choosing an appropriate similarity measure, e.g., radial
basis kernels.

Furthermore, the similarity matrix (calculated by using a radial-basis ker-
nel) is also one of the building blocks of the MCFS algorithm [27]. However, in
addition to calculating this matrix, the algorithm proceeds to solving a gener-
alized eigenvalue problem. It ensures the sparsity of the scores by including a
L1-regularization term in the objective function.

Next, another variation of the above approaches is NDFS [28]. Here, L2,1-
regularization is applied rather than L1-regularization. The best features are
those which are the most closely related to the labels of the clusters constructed
within the algorithm.

The last method that we discuss here is AgnoS-S. This is the best perform-
ing variation among the unsupervised ranking methods proposed by Doquet and
Sebag [16] in their award-wining paper at the ECML 2019 conference. This is an
auto-encoder-based feature ranking method, where slack variables are included
into the auto-encoder (and the loss function) to ensure that more important
features get higher weights. The method also estimates the intrinsic dimension
of the data [29], determining the width of the middle layer of the auto-encoder,
which the method optimizes.

We use the above approaches as baselines when evaluating the quality of the
methods we introduce in this paper.

3. Ensemble-Based Feature Ranking

The first two proposed feature ranking scores are embedded in ensembles of
predictive-clustering trees (PCTs). In this section, we first describe the PCTs,
proceed to ensembles thereof, and conclude with feature ranking scores.

3.1. Single PCTs

PCTs are a fully modular generalization of standard decision trees [30] where
three groups of attributes need to be defined.

The attributes that can be used in the tests (splits) in the internal nodes
of the trees (line 2 in Alg. 2) are descriptive attributes (or features). The
attributes that are used to assess the quality of split candidates, i.e., are part of
the formula of impurity function impu, are clustering attributes. The attributes
that are predicted in the leaves, i.e., returned by the prototype function, are
target attributes.

When PCTs are used in predictive modeling, clustering and target attributes
mostly coincide (semi-supervised learning is one of the exceptions [31]), and
there is typically only one such attribute (multi-target tasks are an exception
[32]). For example, in classification, we are predicting the value of a single
nominal attribute y, which is also used in impurity calculations. The remaining
attributes are descriptive.

4

180 Chapter 7. Feature Ranking for Unsupervised Learning

However, we use PCTs for (hierarchical) clustering. Here, the groups of
descriptive, clustering, and target attributes coincide, since any of the attributes
can be used in a test, all of them are taken into account when computing the
impurity of clusters, and all of them are ”predicted” when the prototypes of the
clusters are computed in the leaves.

The exact pseudocode for inducing a PCT is given in Alg. 1, which takes as
its input a subset of examples E ⊆ DTRAIN, and returns a PCT.

Algorithm 1 PCT(E)

1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ = none then
3: return Leaf (prototype(E))
4: else
5: for each Ei ∈ P∗ do
6: treei = PCT(Ei)
7: return Node(t∗,

⋃
i{treei})

Algorithm 2 BestTest(E)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each test t do
3: P = partition induced by t on E
4: h = |E|impu(E)−∑Ei∈P |Ei|impu(Ei)
5: if h > h∗ then
6: (t∗, h∗,P∗) = (t, h,P)
7: return (t∗, h∗,P∗)

In clustering (unsupervised learning), the impurity function for a given subset
E ⊆ DTRAIN is defined as the average of impu(E) = 1

n

∑n
i=1 impu(E, xi) of the

clustering-attribute impurities impu(E, xi), which are defined as follows.
For nominal variables x, the impurity is defined in terms of the Gini In-

dex Gini(E, x) = 1 − ∑v p
2
E(v), where the sum goes over the possible val-

ues v of the variable x, and pE(x) is the relative frequency of the value v in
the subset E. To avoid any bias towards variables with high overall impu-
rity, the impurity is defined as the normalized Gini value, i.e., impu(E, x) =
Gini(E, x)/Gini(DTRAIN, x).

For numeric variables x, the impurity is similarly defined as the normalized
variance of x, i.e., impu(E, x) = Var(E, x)/Var(DTRAIN, x).

The prototype function returns a vector [x̂1, . . . , x̂n], where x̂i is a mean of
the attribute xi if the attribute is numeric, and the mode of the attribute, if the
attribute is nominal. The means and modes are computed from the training
examples in a given leaf.

3.2. Ensembles of PCTs

Single trees are known for their instability, i.e., undesirably high variance
[33]. To overcome that, ensemble methods such as bagging [34], random forests
[33] and ensembles of extremely randomized trees (extra trees) [35] have been
proposed. All of these methods have been adapted to learn ensembles of PCTs
[32, 36].

A tree ensemble is a set of trees which are grown on a possibly manipulated
training set and/or a randomized tree induction algorithm. More precisely,
in bagging, every tree in an ensemble is grown on an independent bootstrap
replicate of the training set DTRAIN. Random forests additionally consider
only a random subset of descriptive attributes, when finding the best test (line
2 of Alg. 2). The subset is drawn independently in every internal node.

5

181

Extra trees, as the name suggests, go even further regarding randomization
and, as the random forests, first choose a subset of descriptive attributes, and
then evaluate only one test per attribute. For example, if xi is one of the chosen
numeric features, random forests evaluate the tests xi ≤ ϑ, for all possible
values of ϑ, whereas extra trees additionally randomly choose only one ϑi, for
each chosen feature xi.

Originally, extra trees do not use bootstrapping. However, we have included
it in learning extra PCTs since i) our preliminary experiments show that it
is beneficial to use it (especially when there are many binary features in the
data), and ii) one of the feature scores described in the next section requires
bootstrapping.

3.3. Feature Ranking Scores

We propose to use two feature ranking scores that can be computed from
any of the ensembles described in the previous section.

The first one is Genie3 [37], originally defined for predictive modeling tasks,
such as classification or regression. Within the framework of predictive cluster-
ing, we can extend the score to unsupervised modeling as

importanceGenie3(xi) =
1

|E|
∑

T ∈E

∑

N ∈T (xi)

h∗(N), (1)

where E is an ensemble of trees T , and T (xi) is the set of internal nodes of the
tree T where xi is part of the test. Finally, h∗(N) is the quality of the test in
the node N , as assessed by the heuristic in Alg. 2, line 4.

Note that h∗(N) is proportional to the number of examples that reach the
node N (since those nodes have bigger influence), and the impurity reduction
value. One could thus also use a simpler version of the Genie3 score (namely
Symbolic score [38]) that ignores the impurity reduction factor, and weights
every appearance of the feature xi by the number of examples that reach that
node.

The second feature ranking score that we propose is a generalization of the
RandomForest score [33]. Instead of evaluating a feature directly via the
quality of the tests, this approach compares how much introducing some noise
in the feature degrades the performance of a model. More precisely, for every
tree T in the ensemble, we first define the set of out-of-bag examples OOBT , i.e.,
the examples that were not chosen into the bootstrap replicate of the training
set. Next, we define the set OOBT i that is obtained from the set OOBT by
permuting the values of the feature xi. Let e be some error measure (e.g., the
average of the per-feature variances in a cluster). Then, the RandomForest
(RF) score is defined as

importanceRF(xi) =
1

|E|
∑

T ∈E

e(OOBi
T)− e(OOBT)

e(OOBT)
, (2)

6

182 Chapter 7. Feature Ranking for Unsupervised Learning

i.e., as the relative increase of the error measure e. The larger the increase,
the more important the feature. The score has been originally defined for ran-
dom forests (hence the name), but can be used with practically any ensemble
approach based on bagging.

3.4. Time complexity

Since the sets of descriptive, clustering and target attributes coincide with
the number of all attributes, we denote their sizes by n. The other dimension
of the data set, i.e., the number of examples, is denoted by m.

In the analysis, we assume that the trees are approximately balanced, i.e.,
their depth is O(logm). The largest amount of computation is performed when
estimating the quality of the tests. In a given node, evaluating split candidates
that a single attribute yields, requires O(m′ logm′+m′n) steps (sorting the m′

examples that reach the node according to their attribute values) and efficiently
evaluating either one (extra trees) or all thresholded tests (bagging, random
forests).

Taking into account that there are n′ chosen features in each node (for
bagging, n′ = n), and the assumed depth of the tree, we can derive the total
time complexity of growing a tree: O((m logm + mn)n′ logm) = O((logm +
n)n′m logm)3. One can loose the inner logm term by presorting the data with
respect to all the features in advance.

Since the trees are grown independently, the algorithm is easy to parallelize,
and the time complexity of growing any of the ensembles is the same.

After that, the cost of computing the Genie3 ranking is negligible, since
the ensemble stores the quality of the nodes and we can traverse the nodes of
a single tree in time O(m). Computing the RandomForest ranking is a bit
more time-consuming. We have to permute the values of a feature, and send
the examples trough each tree, for every feature. This is done in O(nm logm)
time. This is still faster than inducing a tree.

4. URELIEF-based Feature Ranking

In contrast to ensemble-based feature ranking scores, the Relief family of
feature ranking algorithms does not use any predictive model. Its members can
handle various predictive modeling tasks, including classification [19], regression
[20], and others [38, 40, 41].

In this work, we extend the Relief family to unsupervised ranking, by again
taking the predictive-clustering point of view. We follow the main intuition
behind Relief [20], which for two examples that are close to each other (in
the clustering space) states: The feature xi is relevant if the differences in the

3Thus, bagging is quadratic in the number of features which is a problem if trees are not
grown in parallel. This is the reason why we did not introduce feature importance scores using
gradient-boosted trees [39].

7

183

Algorithm 3 URelief(DTRAIN, I, K)

1: w, PdiffAttr, diffTarget, PdiffAttr = zero lists of length n
2: PdiffTarget = 0.0
3: for iteration = 1, 2, . . . , I do
4: r = random example from DTRAIN

5: n1,n2, . . . ,nK = K nearest neighbors of r with respect to dX
6: for k = 1, 2, . . . ,K do
7: PdiffClus += dX

(
r,nk

)
/(IK)

8: for i = 1, 2, . . . , n do
9: PdiffAttr[i] += di

(
r,nk

)
/(FIK)

10: PdiffAttr, diffClus[i] += di
(
r,nk

)
dX
(
r,nk

)
/(FIK)

11: for i = 1, 2, . . . , n do

12: wi =
PdiffAttr, diffClus[i]

PdiffClus
− PdiffAttr[i]−PdiffAttr, diffClus[i]

1−PdiffClus

13: return w

target space between the two examples are notable if and only if the differences
in the feature values of xi between these two examples are notable.

As in PCT induction above, we again define clustering and target space
to consist of all n attributes. We estimate the relevance of the descriptive
attributes, which again comprise all n attributes.

Being close or having a notable difference is operationalized in the algorithm
via the distances in the appropriate spaces. For the clustering (target) space X
spanned by the domains Xi of the features xi, we have

dX (x1,x2) =
1

n

n∑

i=1

di(x
1,x2); di(x

1,x2) =

1[x1
i 6= x2

i] : Xi * R
|x1

i−x2
i |

max
x

xi−min
x

xi
: Xi ⊆ R (3)

where 1 denotes the indicator function. These distances are then used in the
estimation of the expression

P (x1
i 6= x2

i | x1 6= x2)− P (x1
i 6= x2

i | x1 = x2), (4)

which is the output of the URelief algorithm. Above, x1,2 ∈ X are two
examples, and x1,2

i values of the feature xi for these two examples.
The unsupervised version of the algorithm, URelief is shown in Alg. 3.

Within the code, the probability PdiffAttr,i = P (x1
i 6= x2

i) is modeled as the
distance di (line 9), whereas the probability PdiffClus = P (x1 6= x2) is modeled
as the distance dX (line 7). The conditional probabilities are estimated via the
Bayes formula (line 12). The product of two events, e.g., P (x1

i 6= x2
i ∧ x1 6= x2)

is modeled as the product of the two probabilities: This is used together with
the Bayes formula in line 12.

The algorithm is iterative. On every iteration, an example r is chosen from
the training set (line 4), and its nearest neighbors nk are computed in the clus-
tering space. After that, the estimates for the needed probabilities are updated

8

184 Chapter 7. Feature Ranking for Unsupervised Learning

according to the distances between r and nk. The updates are normalized, so
that the final estimate of every probability falls into the interval [0, 1]. Finally,
in line 12, the weights (feature importance scores) are computed.

The time complexity of URelief can be estimated as follows. To make
full use of the efficient vectorized implementation of scipy’s [42] cdist for com-
puting the distances among the examples, we first compute all nearest neighbors.
This takes O(Imn) steps. Since the number of iterations is typically set to be a
proportion of m, the number of steps is O(m2n). When updating the probabil-
ity estimates, only the K nearest neighbors are considered, so the total number
of steps is also O(m2n), since K is upper-bounded by some constant.

Thus, regarding the time complexity, URelief is more appropriate for high-
dimensional data than ensemble-based feature rankings, since it is linear in the
number of features. However, the results show that this comes at a performance
price.

5. Experimental Setup

In this section, we describe the experimental setup of the empirical evalua-
tion of the proposed methods. We state the experimental questions and compet-
ing methods, describe the evaluation procedure, give a brief description of the
data sets, and finish with the parameter instantiation of the different ranking
methods.

The evaluation is based on the following experimental questions:

1. Which of the proposed ensemble scores is better?

2. Are the proposed feature ranking scores state-of-the-art (SOTA)?

3. What is the influence of the parameters of the proposed methods on the
quality of the produced rankings?

4. How to locate the relevant features in a ranking?

To answer the first question, we compare the performance of the two ensemble-
based ranking scores with the Wilcoxon (statistical) test [43]. The evaluation
procedure is discussed in Section 5.2.

To answer the second question, URelief, the better of the two ensemble-
based scores, and five current SOTA methods are compared via Friedman’s
test, together with Nemenyi’s post-hoc test [43]. The considered competitors
are AgnoS-S, the Laplace score, NDFS, MCFS and SPEC, all briefly described
in Sec. 2.

To answer the third question, we compare the performances of the proposed
scores obtained with different parameter configurations. We vary the ensemble
method and the subset size for ensemble-based scores. We vary the numbers of
neighbors and iterations for URelief.

To answer the fourth question, we construct a curve that measures the per-
formance of the sets (of different sizes) of top-ranked features. A detailed de-
scription of the approach taken is given in Sec. 6.4.

9

185

5.1. Datasets

We first planned to use all the 29 available datasets from the Scikit-feature
repository. To assure that the considered datasets are independent, as the sta-
tistical tests assume, we had to exclude three of them: lung small (but lung is
present), orlraws10P (but ORL is present) and warpAR10P (but warpPIE10P is
present). Those included - together with the number of features and examples,
are listed in Tab. 1 and available for download from the repository4. Note that
they typically have a low number of examples and a high number of features.

Table 1: The basic characteristics of the considered data sets.

data set examples features domain
ALLAML 72 7129 biology
arcene 200 10000 mass spectrometry
BASEHOCK 1993 4862 text data
Carcinom 174 9182 biology
CLL-SUB-111 111 11340 biology
COIL20 1440 1024 face image
colon 62 2000 biology
gisette 7000 5000 digit recognition
GLI-85 85 22283 biology
GLIOMA 50 4434 biology
Isolet 1560 617 spoken letter recognition
leukemia 72 7070 biology
lung 203 3312 biology
lymphoma 96 4026 biology
madelon 2600 500 artificial
nci9 60 9712 biology
ORL 400 1024 face image
PCMAC 1943 3289 text data
pixraw10P 100 10000 face image
Prostate-GE 102 5966 biology
RELATHE 1427 4322 text data
SMK-CAN-187 187 19993 biology
TOX-171 171 5748 biology
USPS 9298 256 hand written image
warpPIE10P 210 2420 face image
Yale 165 1024 face image

5.2. Evaluation Procedure

In the supervised learning setting, one of the popular procedures for eval-
uating feature ranking algorithms is the use of the weighted k-nearest neigh-

4https://github.com/jundongl/scikit-feature

10

186 Chapter 7. Feature Ranking for Unsupervised Learning

bors (kNN) algorithm [44] in which the distance among the examples employed
weights features by their importance and is defined as

d(x1,x2) =

(
n∑

i=1

importance(xi)(x
1
i − x2

i)p

)1/p

for some p > 0. For example, p = 2 results in the weighted Euclidean distance,
and the better the performance, the better are the feature-importance estimates
[45]. In the unsupervised scenario, choosing the correct evaluation procedure is
trickier.

For example, the above procedure cannot be extended to the unsupervised
scenario, since we would predict the same attributes that are used for the dis-
tance computation. As a consequence, if one, for example, measures the per-
formance of the model in terms of mean squared error, it can be proven that
the performance of the nearest-neighbors model is optimized when the weights
importance(xi) are all equal.

Another popular (yet sometimes not appropriate procedure) for evaluating
unsupervised feature rankings is to i) use a supervised data set, ii) compute
a ranking ignoring the target variable, iii) take some top-ranked features and
learn a model that predicts the target variable. This approach only makes sense
when the so-called clustering hypothesis holds [46], i.e., when clusters of data
examples (as computed in the descriptive space) well resemble the distribution
of target values. Since the considered datasets also contain the target variable,
they allow us to check this hypothesis by computing the Adjusted Random
Index (ARI) [47] between the actual class labels and the labels obtained from
the k-means clustering, where k was set to the number of classes in a given data
set.

The ARI can take the values from the interval [−1, 1], and is adjusted so
that ARI = 0 if the two labelings are independent, i.e., the clusters do not
tell us anything about the target. The distribution of the ARI scores over the
considered data sets is given in Fig. 1 and shows that there are many data
sets with ARI close to 0. Therefore, the supervised approach to evaluating
unsupervised feature rankings is also inappropriate.

Therefore, we adopt another widely-used approach [16] where some fixed
number of features is chosen, and a predictive model is built using only this
many top-ranked features. In our experiments, we choose 16 features5. When
choosing a model, we again follow Doquet and Sebag [16], and use a nearest-
neighbors classifier. However, since some of the data sets contain a rather low
number of examples (e.g., 50), we set the number of neighbors to 1.

Note that the evaluation procedure of Doquet and Sebag [16] is not entirely
correct, since it uses the same data for learning the ranking and evaluating it,

5To see where in the ranking are actually located the most relevant features, we built
models that use top 1, 2, 4, 8, 16, etc. features (see Sec. 6.4). Number 16 is the closest to the
20 features that Doquet and Sebag [16] use.

11

187

0.0 0.2 0.4 0.6 0.8 1.0
Adjusted random index

0

1

2

3

4

Figure 1: The distribution of the ARI values (as estimated by kernel-density estimation in
Python’s module seaborn (Available at https://seaborn.pydata.org/) over the considered
data sets. The ARI value for a given data set (represented as a single tick) is the median of
the ARI values over ten runs of the k-means algorithm.

and therefore measures only how well the ranking overfits the data. We fix this
by using 10-fold cross-validation: A feature ranking is learned from a training
fold, and the 1NN classifier with data from the training fold is tested on the
testing fold. As the evaluation measure, we use mean squared error: All the
features in the data are numeric, since some competing methods cannot handle
nominal features.

5.3. Parameter instantiation

Our previous experiments with the semi-supervised version of Relief [15]
showed that the optimal number of neighbors is around 30, so we set K = 30
in URelief. Regarding the number of iterations I, higher values means more
accurate estimates, so we use I = m, m being the number of examples in the
data. Since the number of examples is not very high, this value of I is not
prohibitively large. We experiment with the other parameter configurations in
Sec. 6.3, considering different numbers of neighbors and iterations.

For calculating the ensemble-based rankings, we set the size of the subset
of chosen features to n′ = log2 n (rounded up), as suggested by Breiman [33].
Moreover, this number is sufficiently low to make tree induction time-efficient.
We use the extra tree ensembles (they evaluate only n′ tests per internal node)
and induce the trees in parallel, using the Slovenian national supercomputing
network. The number of trees was set to 100 and they were fully grown. We also
experiment with other parameter configurations from Section 6.3, considering
different subset sizes and ensemble methods.

For the baselines implemented in the Scikit-feature repository, we use
the default settings, following Doquet and Sebag [16]. If a method demands the
number of clusters at input (MCFS, NDFS), we set it to the number of classes

12

188 Chapter 7. Feature Ranking for Unsupervised Learning

in the given data set. For AgnoS-S, we use the shape of the network and the
training parameters as reported by Doquet and Sebag [16].

6. Results

Below we discuss the results of the evaluation in light of our experimental
questions.

6.1. Which Ensemble Score is Better?

To answer this question, we directly compare the cross-validated MSE per-
formance of the 1NN classifiers that use the top-ranked features, as determined
by the Genie3 and RandomForest scores calculated from extra tree ensem-
bles. Their performance is reported in Table 2, together with the corresponding
average rank: for a given data set, the better score gets rank 1, and the other
gets rank 2.

Results suggest that Genie3 feature rankings are, on average, better than
RandomForest ones. The differences in performance between the two meth-
ods are also statistically significant (at the significance level of 0.05): The p-value
from the Wilcoxon’s test is 0.0397. This is why we will use the Genie3 feature
importance score in the main comparison of the methods presented below.

6.2. Are the Proposed Scores SOTA?

To answer this question, we compare the performance of Genie3 rankings,
URelief rankings, and the baseline rankings (or, rather, the performance of
the corresponding 1NN classifiers), on different data sets. The corresponding
MSE values are reported in Table 3.

Comparing the methods we propose (Genie3, URelief) to their competi-
tors in terms of average ranks, cf. Table 2, the best-performing feature-ranking
method is Genie3. URelief also performs well, as it has the second-best
average rank. To investigate whether the differences in performance among
the algorithms are statistically significant, we apply Friedman’s statistical test
(since we compare more than two methods). The null hypothesis is rejected
at the significance level of 0.05, since the p-value equals 9.4 · 10−8. Thus, we
can proceed to the Nemenyi’s post-hoc test that reveals where the differences
occur. The results of these tests are presented with the average rank diagram
in Figure 2.

In addition to the average ranks of the algorithms (the lower, the better), the
critical distance (CD) is reported. If the average ranks of two algorithms are at
least CD apart, the difference in the performance of the algorithms is considered
statistically significant. The groups of algorithms, for which this does not hold,
are connected by red lines.

The interpretation of the results is thus as follows. The top performing group
of algorithms, among which there are no statistically significant differences, con-
sists of Genie3 and URelief. Moreover, Genie3 is statistically significantly
better than all the remaining methods (i.e., those outside the top group). The

13

189

Table 2: The performance (in terms of MSE of the corresponding 1NN classifiers using the
16 top-ranked features) of Genie3 and RandomForest scores computed from ensembles of
extra trees. Additionally, the average ranks of both methods are reported.

Dataset Genie3 Random Forest
ALLAML 1.15 1.14
arcene 40.92 40.79
BASEHOCK 0.17 0.18
Carcinom 0.33 0.34
CLL-SUB-111 1726.00 2449.00
COIL20 0.12 0.10
colon 1.43 1.42
gisette 269.00 275.00
GLI-85 1516.00 1508.00
GLIOMA 0.23 0.24
Isolet 0.37 0.36
leukemia 1.84 1.87
lung 0.29 0.29
lymphoma 1.73 1.87
madelon 31.79 33.61
nci9 1.62 1.66
ORL 24.90 34.20
PCMAC 0.18 0.19
pixraw10P 6.65 6.19
Prostate-GE 0.22 0.21
RELATHE 0.22 0.23
SMK-CAN-187 0.34 0.34
TOX-171 206.00 217.00
USPS 0.33 0.48
warpPIE10P 16.90 22.30
Yale 46.70 51.80
Average Rank 1.31 1.69

1 2 3 4 5 6 7

Genie3
URelief
Laplace

SPEC
MCFS
NDFS

AgnoS-S

critical distance: 1.7669

Figure 2: Average rank diagram.

14

190 Chapter 7. Feature Ranking for Unsupervised Learning

Table 3: The performance of the 1NN classifiers that correspond to the Genie3, URelief and
the baseline rankings, for every data set. The best performance per dataset is given in bold
typeface. Additionally, the average rank for each of the feature ranking methods is given at
the bottom.

Dataset Genie3 URelief Laplace SPEC MCFS NDFS AgnoS-S
ALLAML 1.15 1.11 1.16 1.15 1.16 1.15 1.22
arcene 40.90 51.30 42.40 76.20 42.40 42.40 80.60
BASEHOCK 0.17 0.18 0.18 0.18 0.18 0.18 0.16
Carcinom 0.33 0.33 0.36 0.36 0.35 0.36 0.36
CLL-SUB-111 1726.00 1823.00 1735.00 2350.00 2429.00 1744.00 2374.00
COIL20 0.12 0.11 0.16 0.23 0.28 0.09 0.18
colon 1.43 1.49 1.50 1.50 1.50 1.50 1.49
gisette 269 278.00 291.00 315.00 291.00 291.00 304.00
GLI-85 1516.00 1759.00 1521.00 1783.00 1558.00 1655.00 1712.00
GLIOMA 0.23 0.23 0.24 0.27 0.23 0.24 0.27
Isolet 0.37 0.48 0.37 0.45 0.42 0.38 0.36
leukemia 1.84 1.83 1.91 1.90 1.91 1.91 1.94
lung 0.29 0.29 0.30 0.33 0.29 0.31 0.31
lymphoma 1.73 1.81 2.01 2.01 2.01 2.01 1.85
madelon 31.79 31.83 33.62 33.62 33.62 33.62 34.61
nci9 1.62 1.64 1.60 1.66 1.60 1.60 1.76
ORL 24.98 27.60 34.19 34.19 34.19 34.19 23.19
PCMAC 0.18 0.19 0.16 0.18 0.18 0.19 0.16
pixraw10P 6.65 7.93 9.30 8.48 9.30 9.30 6.48
Prostate-GE 0.22 0.23 0.22 0.30 0.23 0.22 0.24
RELATHE 0.22 0.22 0.23 0.24 0.23 0.23 0.32
SMK-CAN-187 0.34 0.35 0.35 0.34 0.35 0.35 0.38
TOX-171 206.00 212.00 207.00 221.00 237.00 219.00 209.00
USPS 0.33 0.35 0.33 0.38 0.40 0.29 0.34
warpPIE10P 16.97 16.45 30.28 30.28 30.28 30.28 15.30
Yale 46.77 51.29 56.76 56.76 56.76 56.76 42.73
Avevare rank 1.90 3.42 4.04 5.25 4.60 4.46 4.33

15

191

5 10 15 20 30 40
URelief neighbors

0.
1

0.
25

0.
5

0.
75

1.
0

U
R

el
ie

f
it

er
at

io
n

s

10.0

12.5

15.0

17.5

20.0

Figure 3: Average ranks (over the considered data sets) of the considered parameter configu-
rations of URelief feature ranking. Lower ranks correspond to better performance.

other two groups are i) URelief, Laplace, AgnoS-S, NDFS, and MCFS, and
ii) Laplace, AgnoS-S, NDFS, MCFS, and SPEC. Thus, the Genie3 method is
the new SOTA in unsupervised feature ranking, whereas URelief is closer in
performance to the previous SOTA methods.

6.3. Parameter Setting Influence on Ranking Performance

In the main line of experiments, we set the parameters of our feature ranking
methods to the most time-efficient values, where the time complexity critically
depends on them. For ensemble-based scores, we chose extra tree ensembles and
log2 n as the number of considered features in internal nodes. As for URelief,
we followed the previous findings since the (maximal) number of iterations is
not a problem.

In this section, we investigate how the quality of the produced rankings
depends on the parameters of the ranking methods. We start with URelief
and then proceed to ensemble-based scores.

URELIEF. The heat-plot in Figure 3 shows the average ranks of the feature
rankings computed by using all the pairs of different values for the number of
iterations I ∈ {0.1m, 0.25m, 0.5m, 0.75m, 1.0m} and the number of neighbors
K ∈ {5, 10, 15, 20, 30, 40}. We can see that more neighbors and more iterations
in general lead to better performance (lower ranks). Both observations are
somewhat expected, since i) more iterations mean more stable estimates of the
probabilities present in Eq. (4), and ii) a higher number of neighbors was also
a suitable choice for our semi-supervised experiments [15]. The explanation for
why the algorithm prefers a higher number of neighbors is that the number of
features can be really high, thus some noise is definitely present. Therefore,
having a higher number of neighbors averages out the noise at least to some
extent. Note that we did not lose much by choosing I = m and K = 30, since
this is the third-best option.

16

192 Chapter 7. Feature Ranking for Unsupervised Learning

Ensemble-based scores. Here, we investigate the influence of the ensemble
type (extra trees, random forests, bagging), and the feature subset size. Note
that it is enough to consider only extra trees and random forests, since we
consider the subset sizes of n′ ∈ {log2 n,

√
n, n}, and the bagging approach is a

special case of random forests when n′ = n. The heat-plots in Fig. 4 show the
performance of the rankings for both considered scores: Genie3 (Fig. 4a) and
Random Forest (Fig. 4b).

ET RF
ensemble type

lo
g
n

√
n

n
su

b
se

t
si

ze

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(a) Genie3

ET RF
ensemble type

lo
g
n

√
n

n
su

b
se

t
si

ze

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(b) RandomForest

Figure 4: Average ranks (across all data sets) of the considered parameter configurations
(three different subset sizes and two ensemble methods), when the feature ranking score is
fixed to one of two options (Genie3, RandomForest). Lower ranks correspond to better
performance.

The performance of both scores mostly increases when the subset size n′

decreases. A possible explanation for that is that such models overfit less to the
data given that the number of features is high. It seems that this parameter
is more important that the ensemble method, especially for the RandomFor-
est score. Again, we did not lose much (performance-wise) when choosing the
parameters for the main line of experiments to optimize for time complexity,
avoiding the potentially quadratic number of operations in the number of fea-
tures n.

6.4. Where in a Ranking are the Relevant Features?

Choosing a number of features to include in a model comes in handy when
one wants to evaluate different feature rankings over different domains and many
data sets. However, if a domain expert is interested in a particular data set, a
more global view on the ranking might be desirable to understand the problem
better. To achieve that, one can build predictive models that use the top 1,
2, 4, . . . , 2j , . . . , 2floor(log2 n), and n features and show the performance of the
obtained models as a curve. Using the geometric (rather than the linear 1, 2,
3,. . .) sequence of numbers of top-ranked features makes the curve construction

17

193

feasible (building, for example, more than 20 000 predictive models for the
GLI-85 data set for the linear sequence might be too time-consuming), while
still showing enough details at the beginning of the ranking, which is its most
interesting part.

1 2 4 8 16 32 64 128 256 512 1024 2048 3312

0.250

0.275

0.300

0.325

0.350

m
ea

n
sq

u
ar

ed
er

ro
r

lung

Genie3

URelief

AgnoS-S

Laplace

MCFS

NDFS

SPEC

(a)

1 2 4 8 16 32 64 128 256 512 1024 2048 3289

0.14

0.16

0.18

m
ea

n
sq

u
ar

ed
er

ro
r

PCMAC

Genie3

URelief

AgnoS-S

Laplace

MCFS

NDFS

SPEC

(b)

Figure 5: Error curves on two datasets (a) lung and (b) PCMAC for the feature rankings
produced by the competing unsupervised ranking methods. Lower placement of a curve
corresponds to better performance.

Here, we chose two data sets, for which the quality of the rankings is com-
pletely different6. Figure 5a shows the results for the lung data set, where with
the increasing number of features, the MSE of the models mostly decreases.
This means that, the rankings are mostly correct since relevant features have
the highest importance. After URelief and Laplace both discover the most rel-
evant feature, Genie3 quickly becomes the one (after four features) that ranks
the features best.

The situation in Fig. 5b is different. These are the rankings for the PCMAC

data set. We can see that all the algorithms successfully discover a few most
relevant features, but then, mostly useless and noisy features are placed in the

6The results for the rest of the curves are available at https://gitlab.com/Petkomat/

unsupervised-feature-ranking

18

194 Chapter 7. Feature Ranking for Unsupervised Learning

ranking after them. This is evident from the increasing MSE. Only after 32 or
64 features, the next relevant ones are positioned and MSE decreases again.

When a domain expert sees those two figures, the expert can locate the
position of the relevant features, which will help him understand the problem
better. Of course, when we use all the features (the last point of every curve),
MSE does not depend on the ranking and all the curves end at the same point.

7. Conclusions

In this work, we propose two novel approaches for unsupervised feature
ranking. The first approach uses ensemble-based scores (Genie3 and Random-
Forest), computed from ensembles of predictive clustering trees. The second
approach is an unsupervised version of the Relief algorithm (URelief).

After carefully choosing and discussing the evaluation procedure, we conduct
an extensive empirical evaluation. We determine how the parameters of both
approaches (ensemble-based scores and URelief) influence the quality of the
rankings they produce. We show that for the ensemble-based scores, where
parameters critically influence the time efficiency, the most efficient rankings
fortunately also have the highest quality.

The comparative evaluation shows that the Genie3 score works better than
the RandomForest score. We then compare Genie3 and URelief with five
baselines showing that, on average, both proposed methods outperform the
baselines. Since the difference in performance between Genie3 and the baselines
is statistically significant, we recommend, all in all, to use the Genie3 score.
This score can be efficiently computed from a parallelized ensemble of extremely
randomized PCTs, where the feature subset size is set to n′ = log2 n, which
typically results in the time complexity of O(mn logm log n), where m and n
are the numbers of examples and features.

Acknowledgements

The computational experiments presented here were executed on a comput-
ing infrastructure from the Slovenian Grid (SLING) initiative, and we thank
the administrators Barbara Krašovec and Janez Srakar for their assistance.

Funding

This work was supported by the Slovenian Research Agency via the grant P2-
0103 and a young researcher grant to MP and BŠ. SD and DK also acknowledge
the support by the Slovenian Research Agency (via grants J7-9400, J7-1815,
J2-9230, and N2-0128), and the European Commission (projects AI4EU (grant
number 825619) and TAILOR (grant number 952215)).

[1] European Commission, On Artificial Intelligence - A European ap-
proach to excellence and trust, https://ec.europa.eu/digital-single-
market/en/artificial-intelligence (2020).

19

195

[2] A. Barredo Arrieta, N. Dı́az-Rodŕıguez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila,
F. Herrera, Explainable Artificial Intelligence (XAI): Concepts, tax-
onomies, opportunities and challenges toward responsible AI”, Information
Fusion 58 (2020) 82 – 115. doi:https://doi.org/10.1016/j.inffus.

2019.12.012.

[3] A. Holzinger, G. Langs, H. Denk, K. Zatloukal, H. Müller, Causability and
explainability of artificial intelligence in medicine, WIREs Data Mining and
Knowledge Discovery 9 (4) (2019) e1312.

[4] M. Hoogendoorn, P. Szolovits, L. M. Moons, M. E. Numans, Utilizing
uncoded consultation notes from electronic medical records for predictive
modeling of colorectal cancer, Artificial Intelligence in Medicine 69 (2016)
53–61.

[5] D. Grissa, M. Ptra, M. Brandolini, A. Napoli, B. Comte, E. Pujos-Guillot,
Feature selection methods for early predictive biomarker discovery using
untargeted metabolomic data, Frontiers in Molecular Biosciences 3 (2016)
30.

[6] Y. Saeys, I. Inza, P. Larraaga, A review of feature selection techniques in
bioinformatics, Bioinformatics 23 (19) (2007) 2507–2517.

[7] B. Pes, N. Dess̀ı, M. Angioni, Exploiting the ensemble paradigm for stable
feature selection: A case study on high-dimensional genomic data, Infor-
mation Fusion 35 (2017) 132 – 147. doi:https://doi.org/10.1016/j.

inffus.2016.10.001.

[8] M. Tsagris, V. Lagani, I. Tsamardinos, Feature selection for high-
dimensional temporal data, BMC Bioinformatics 19 (1) (2018) 17.

[9] K. Bhardwaj, S. Patra, An unsupervised technique for optimal feature se-
lection in attribute profiles for spectral-spatial classification of hyperspec-
tral images, ISPRS Journal of Photogrammetry and Remote Sensing 138
(2018) 139–150.

[10] S. Galelli, G. B. Humphrey, H. R. Maier, A. Castelletti, G. C. Dandy, M. S.
Gibbs, An evaluation framework for input variable selection algorithms for
environmental data-driven models, Environmental Modelling & Software
62 (2014) 33 – 51.

[11] Y. Zhou, R. Zhang, S. Wang, F. Wang, Feature selection method based on
high-resolution remote sensing images and the effect of sensitive features
on classification accuracy, Sensors 18 (7).

[12] P. Kralj Novak, J. Smailović, B. Sluban, I. Mozetič, Sentiment of emojis,
PloS one 10.

20

196 Chapter 7. Feature Ranking for Unsupervised Learning

[13] J. A. DiMasi, R. W. Hansen, H. G. Grabowski, The price of innovation:
new estimates of drug development costs, Journal of Health Economics
22 (2) (2003) 151 – 185.

[14] M. Petković, S. Džeroski, D. Kocev, Ensemble-based feature ranking for
semi-supervised classification, in: P. Kralj Novak, T. Šmuc, S. Džeroski
(Eds.), Discovery Science, Springer International Publishing, 2019, pp. 290–
305.

[15] M. Petković, D. Sašo, D. Kocev, Feature ranking for semi-supervised learn-
ing, Machine Learning JournalSubmitted.

[16] G. Doquet, M. Sebag, Agnostic feature selection, in: Machine Learning and
Knowledge Discovery in Databases European Conference, ECML PKDD
2019, Wrzburg, Germany, September 1620, 2019, LNCS 11906, 2020, pp.
343–358. doi:10.1007/978-3-030-46150-8_21.

[17] B. Seijo-Pardo, V. Bolón-Canedo, A. Alonso-Betanzos, On developing an
automatic threshold applied to feature selection ensembles, Information
Fusion 45 (2019) 227 – 245. doi:https://doi.org/10.1016/j.inffus.

2018.02.007.

[18] H. Blockeel, D. L. Raedt, J. Ramon, Top-down induction of clustering
trees, ICML ’98 Proceedings of the Fifteenth International Conference on
Machine Learning (1998) 55–63.

[19] K. Kira, L. A. Rendell, The feature selection problem: Traditional methods
and a new algorithm, in: Proceedings of the Tenth National Conference on
Artificial Intelligence, AAAI’92, AAAI Press, 1992, pp. 129–134.

[20] I. Kononenko, M. Robnik-ikonja, Theoretical and Empirical Analysis of
ReliefF and RReliefF, Machine Learning Journal 55 (2003) 23–69.

[21] R. Zhang, F. Nie, X. Li, X. Wei, Feature selection with multi-view data: A
survey, Information Fusion 50 (2019) 158 – 167. doi:https://doi.org/

10.1016/j.inffus.2018.11.019.

[22] V. Bolón-Canedo, A. Alonso-Betanzos, Ensembles for feature selection: A
review and future trends, Information Fusion 52 (2019) 1 – 12. doi:https:
//doi.org/10.1016/j.inffus.2018.11.008.

[23] S. Solorio-Fernndez, J. Carrasco-Ochoa, J. Martnez-Trinidad, A review of
unsupervised feature selection methods, Artificial Intelligence Review 53
(2020) 907–948.

[24] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, H. Liu,
Feature selection: A data perspective, ACM Computing Surveys (CSUR)
50 (6) (2018) 94.

21

197

[25] X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, in: Proceed-
ings of the 18th International Conference on Neural Information Processing
Systems, NIPS05, MIT Press, Cambridge, MA, USA, 2005, p. 507514.

[26] Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised
learning, in: Proceedings of the 24th International Conference on Machine
Learning, ICML 07, Association for Computing Machinery, New York, NY,
USA, 2007, p. 11511157. doi:10.1145/1273496.1273641.

[27] D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster
data, in: Proceedings of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD 10, Associa-
tion for Computing Machinery, New York, NY, USA, 2010, p. 333342.
doi:10.1145/1835804.1835848.
URL https://doi.org/10.1145/1835804.1835848

[28] Z. Li, Y. Yang, J. Liu, X. Zhou, H. Lu, Unsupervised feature selection
using nonnegative spectral analysis, in: Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, AAAI12, AAAI Press, 2012, p.
10261032.

[29] E. Facco, M. dErrico, A. Rodriguez, A. Laio, Estimating the intrinsic di-
mension of datasets by a minimal neighborhood information, Scientific Re-
ports 7. doi:10.1038/s41598-017-11873-y.

[30] L. Breiman, J. Friedman, R. Olshen, C. J. Stone, Classification and Re-
gression Trees, Chapman & Hall/CRC, 1984.

[31] J. Levatić, Semi-supervised learning for structured output prediction, Ph.D.
thesis, Jožef Stefan Postgraduate School, Ljubljana, Slovenia (2017).

[32] D. Kocev, C. Vens, J. Struyf, S. Džeroski, Tree ensembles for predicting
structured outputs, Pattern Recognition 46 (3) (2013) 817–833.

[33] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.

[34] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123140. doi:

10.1023/A:1018054314350.
URL https://doi.org/10.1023/A:1018054314350

[35] P. Geurts, D. Erns, L. Wehenkel, Extremely randomized trees, Machine
Learning 36 (1) (2006) 3–42.

[36] D. Kocev, M. Ceci, T. Stepǐsnik, Ensembles of extremely randomized pre-
dictive clustering trees for predicting structured outputs, Machine learning
In press.

[37] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, P. Geurts, Inferring regulatory
networks from expression data using tree-based methods, PLoS One 5 (9)
(2010) 1–10.

22

198 Chapter 7. Feature Ranking for Unsupervised Learning

[38] M. Petković, D. Kocev, S. Džeroski, Feature ranking for multi-target re-
gression, Machine Learning JournalAccepted.

[39] J. H. Friedman, Greedy function approximation: A gradient boosting ma-
chine, The Annals of Statistics 29 (5) (2001) 1189–1232.

[40] M. Petković, D. Kocev, S. Džeroski, Feature ranking with relief for multi-
label classification: Does distance matter?, in: L. Soldatova, J. Vanschoren,
G. Papadopoulos, M. Ceci (Eds.), Discovery Science, Springer International
Publishing, 2018, pp. 51–65.

[41] O. Reyes, C. Morell, S. Ventura, Scalable extensions of the relieff algorithm
for weighting and selecting features on the multi-label learning context,
Neurocomputing 161 (2015) 168 – 182.

[42] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen-
riksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, Contributors, SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python, Nature Methods 17 (2020)
261–272. doi:https://doi.org/10.1038/s41592-019-0686-2.

[43] J. Demšar, Statistical comparisons of classifiers over multiple data sets,
Journal of Machine Learning Research 7 (2006) 1–30.

[44] D. Wettschereck, A study of distance based algorithms, Ph.D. thesis, Ore-
gon State University, USA (1994).

[45] P. Cunningham, S. J. Delany, k-Nearest Neighbour Classifiers, Tech. Rep.
UCD-CSI-2007-4, University College Dublin (2007).

[46] X. Zhu, A. B. Goldberg, R. Brachman, T. Dietterich, Introduction to Semi-
Supervised Learning, Morgan and Claypool Publishers, 2009.

[47] L. Hubert, P. Arabie, Comparing partitions, Journal of Classification 2 (1)
(1985) 193–218.

23

199

201

Chapter 8

Case Study: Predicting Mars
Express Thermal Power
Consumption

In this chapter, we present a case study where MTR feature ranking is used to explain the
MTR model that predicts the electrical energy (or rather, the electrical current) needed
for thermal regulation of the Mars Express (MEX) satellite – a European Space Agency
satellite that has been orbiting Mars since 2008. To plan and optimize the scientific
operations of MEX, its operators need to estimate in advance, as accurately as possible,
the power consumption of the thermal subsystem, since only the remaining power can be
allocated for scientific purposes. The energy allocated to the thermal subsystem is spent
by 33 heaters placed in the main cube of the satellite, which keep the instruments at their
working temperature.

A machine learning model for predicting the amount of the energy spent by the thermal
subsystem is needed since, over the years, the heat-consumption model of the satellite
has changed to the extent that the initial simulations do not suffice any more. Thus,
ESA organized its first data challenge (Lucas & Boumghar, 2017) to motivate teams from
around the globe to construct accurate models for predicting thermal power consumption
of MEX.

It is worth mentioning that ESA has provided the competitors with five types of data.
These were

• SAA (Solar Aspect Angles) data give the relative position of the satellite and the
Sun.

• DMOP (Detailed Mission Operations Plans) data contain information about the
execution of different subsystems’ commands at a specific time.

• FTL (Flight dynamics TimeLine events) data contain the pointing and action com-
mands that impact the position of MEX, such as pointing the spacecraft towards
Earth or Mars.

• EVT (Miscellaneous Events) data contain the time intervals during which MEX
was in Mars’s shadow or records of the time points when MEX is in an apsis of its
elliptical orbit.

• LTDATA (Long Term Data) contain the Sun–Mars distances and the solar constant.

All raw data entries were time-stamped (expressed in milliseconds) indicating when the
entry was logged. The time span between two consecutive entries varies from less than a

202 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

minute (SAA) to several hours (LTDATA). Thus, the data as given was not directly usable
to a machine learning algorithm due to the incompatible time resolutions of the different
components of the raw data, and the unstructured format of some of the entries given, for
example, as text.

The competitors had to first extract meaningful features out of the data, and only
then proceed to predictive modeling. Our team won the challenge by using random forests
of predictive clustering trees (Breskvar et al., 2017). However, in a thorough subsequent
analysis (Petković, Boumghar, et al., 2019), random forests were outperformed by gradient
boosting (Friedman, 2002).

Both random forests and gradient boosting ensembles are tree ensemble methods that
offer state-of-the-art predictive performance and can be explained by computing feature
rankings from them. The latter is of crucial importance for the operators of MEX to
understand and trust the developed machine learning models. After building the models,
we thus computed a feature ranking from each of them, so that the operators could –
in some sense – validate them. After the operators confirmed that the models follow
their intuition, we continued our collaboration on a MEX-related task, where the obtained
feature rankings played the main role.

More precisely, in April 2018, a new software was deployed to MEX, which reduces its
gyroscope usage by 90%. This considerably changed the way the operators fly the satellite.
Our task was to quantify the effects of gyroless flying on the thermal subsystem.

We approached this task by computing Genie3 feature rankings from two random
forests, which both predicted the electrical currents through the 33 heaters of MEX. The
first model was learned on the data from the time period before April 2018, when the
gyroscopes were still in full use. The second model was learned from the data after this
period, when the gyroscopes were mostly turned off.

When the obtained feature rankings were compared, some apparent differences popped
up. For example, the feature importance scores (of all features) for one of the heaters
located next to the gyroscopes were orders of magnitude lower than when the gyroscopes
were still in full use. The reason for this is that gyroscopes (when turned on) emit heat,
therefore, the heater located next to the gyroscope was mostly turned off. Moreover,
besides the different scales of the scores, the relative importances, i.e., the ranks of the
features are also quite different (Petković, Lucas, et al., 2019).

The papers included in this Chapter are:

• Petković M., Boumghar R., Breskvar M., Džeroski S., Kocev D., Levatić J., Lucas
L., Osojnik A., Ženko B., Simidjievski N., Machine Learning for Predicting Thermal
Power Consumption of the Mars Express Spacecraft. IEEE Aerospace and Electronic
Systems Magazine, 34(7), 46-60, 2019

• Petković, Lucas, L., Kocev, D, Džeroski, S., Boumghar, R., and Simidjievski, N.
Quantifying the Effects of Gyroless Flying of the Mars Express Spacecraft with
Machine Learning. In Proceedings of the 2019 IEEE International Conference on
Space Mission Challenges for Information Technology (SMC-IT), 9-16, Pasadena,
CA, USA, 2019.

The contribution of Matej Petković to these papers are as follows. MP imple-
mented the missing parts of the code for the experiments, participated in designing the
experiments, carried out most experiments, and processed their results. Together with NS,
he drafted the papers and revised them following the feedback from the co-authors and
reviewers.

Feature Article: DOI. No. 10.1109/MAES.2019.2915456

Machine Learning for Predicting Thermal Power
Consumption of the Mars Express Spacecraft
Matej Petkovi�c, Martin Breskvar, Sa�so D�zeroski, Dragi Kocev, Jo�zef Stefan
Institute, Slovenia, Jo�zef Stefan International Postgraduate School, Slovenia
Redouane Boumghar, European Space Agency, ESOC, Data Analytics Team for
Operations, Germany
Jurica Levati�c, Institute for Research in Biomedicine, Spain
Luke Lucas,Mars Express, Mission Planning and Spacecraft Operations,
Germany
Alja�z Osojnik, Bernard �Zenko, Nikola Simidjievski, Jo�zef Stefan Institute,
Slovenia

INTRODUCTION

MARS Express (MEX), a spacecraft operated by the Euro-

pean Space Agency (ESA), is Europe’s first spacecraft that

orbits Mars. During its science operations, since the begin-

ning of 2004, it has provided evidence of the presence of

water above and below the surface of the planet [1], an

ample amount of three-dimensional (3-D) renders of the

surface as well as the most complete map of the chemical

composition of Mars’s atmosphere [2].

MEX is powered by electricity generated by its

solar arrays and stored in batteries to be used during

the eclipse periods. The scientific payload of the MEX

consists of seven instruments that provide global coverage

of the planet’s surface, subsurface, and atmosphere.

The instruments and on-board equipment have to be kept

within their operating temperature ranges, spanning from

room temperature for some instruments, to temperatures

as low as -180 �C for others. In order to maintain these

predefined operating temperatures, the spacecraft is

equipped with an autonomous thermal system composed

of 33 heater lines as well as coolers. The thermal system,

together with the platform units, consumes a significant

amount of the total generated electric power, leaving a

fraction to be used for science operations.

Predicting the power consumption of the thermal

system is a nontrivial task. However, due to the aging

of the spacecraft and the decaying capacity of its batter-

ies, it is a very crucial one for optimal planning and

execution of science operations on MEX. The power

consumption is a dynamic process that changes through

time, depending on various external and internal fac-

tors, such as long-term exposure of the spacecraft to the

Sun or heat generated by the on-board instruments. For

instance, Figure 1 shows the effect of the radio trans-

mitter during a communication pass, with interpolation

between different temperature sensors of the �Y face

of the spacecraft. Temperatures fluctuate by up to 28 �C

due to these two different ON/OFFconditions. Current

attempts at modeling and predicting the power con-

sumption involve manually constructed models that are

based on simplified first-principle models, expert

knowledge, and experience. Given MEX’s current con-

dition, this prompts for a more accurate predictive

model of the thermal power consumption (TPC), which

would yield prolonged operating life.

This motivated the organization of the first ESA’s data

mining competition—the Mars Express Power Challenge

[3]. The focus of the challenge was the development of

Authors’ current addresses: M. Petkovi�c, M. Breskvar,
S. D�zeroski, D. Kocev, Jo�zef Stefan Institute 1000,
Ljubljana, Slovenia, Jo�zef Stefan International Postgradu-
ate School SI-1000, Ljubljana, Slovenia, E-mail: (matej.
petkovic@ijs.si). R. Boumghar, Data Analytics Team for
Operations, ESOC, European Space Agency, Cologne,
Germany. J. Levati�c, Institute for Research in Biomedicine
08028, Barcelona, Spain. L. Lucas, Mars Express, Mission
Planning and Spacecraft Operations 64293, Darmstadt,
Germany. A. Osojnik, B. �Zenko, N. Simidjievski, Jo�zef
Stefan Institute 1000, Ljubljana, Slovenia and also with
University of Cambridge, Cambridge CB3 0FD, United
Kingdom. E-mail: (nikola.simidjievski@ijs.si).
Manuscript received August 31, 2018, revised November
26, 2018, and ready for publication May 6, 2019.
Review handled by M. D. R-Moreno.
0885-8985/19/$26.00 � 2019 IEEE

46 IEEE A&E SYSTEMS MAGAZINE JULY 2019

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

203

specialized approaches for constructing models that are

able to accurately estimate and predict the MEX’s TPC

given only measured telemetry data. For this task of pre-

dictive modeling, machine learning approaches offer a dif-

ferent, yet more accurate solution to modeling the

complex relationship between the telemetry and the power

consumption than a human expert.

Machine learning is an area in the realm of artificial

intelligence, which studies algorithms with the ability to

learn, i.e., algorithms that improve their performance

through knowledge gathered from experience (data). Their

ability to capture and describe patterns in complex data

makes them a valuable asset for studying a variety of phe-

nomena in different domains from life sciences, earth sci-

ences, social and behavioral sciences. In the context of the

MEX challenge, machine learning algorithms for predic-

tive modeling aim at constructing a model that can capture

complex relationships in the data. In turn, such models

accurately estimate future values of power consumption

for each of the 33 heater lines and coolers (target varia-

bles/features) given measured telemetry data (descriptive

variables/features).

In our previous work [4], we presented the machine

learning pipeline solution that won the Mars Express

Power Challenge. The winning solution first transforms

the raw telemetry data into carefully constructed features

with 1-min time resolution between values, rendering a

massive dataset. Next, it uses the method of Random For-

est of Predictive Clustering Trees (RF-PCTs) [5] to con-

struct 33 predictive models for each of the 33 target

variables. Finally, it outputs a predicted value of each tar-

get variable for every hour of one Martian year in the

future (1.88 Earth years). The proposed solution per-

formed better than the �40 other competing solutions

while being more accurate than the models currently in

use at ESA by an order of magnitude.

Figure 1.
Interpolated thermal effects on the MEX’s �Y face, with radio transmitter turned on (left) and off (right).

Copyright ESA - Illustration by Medialab

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 47

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

204 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

However, the premium predictive accuracy of the win-

ning solution came at a cost of substantial computational

overhead. In this paper, we extend the work presented in

[4] to address this issue. In particular, we propose an

update to the winning solution which aims at efficiently

constructing predictive models of MEX’s TPC, while still

being able to maintain good predictive performance. More

specifically, we consider updates of the pipeline along two

dimensions: 1) constructing data with different data granu-

larity in the learning process and 2) using different

machine learning methods which can efficiently learn

accurate predictive models. The former considers engi-

neering features from the raw telemetry data at different

time resolutions coarser than 1 min, thus, reducing the

size of the dataset used in the learning phase. The latter

considers both local and global methods for multitarget

regression. Local methods construct a model for each tar-

get variable separately. Here, besides the winning method

RFs of PCTs [5], we also consider XGBoost [6], a recent

efficient implementation of Stochastic Gradient Boosting

[7]. In contrast, global methods produce a predictive

model able to predict several target variables simulta-

neously [8]. To this end, we consider global RFs of PCTs

for multitarget regression, an extension of the local ver-

sion, which can construct single model for all 33 target

variables, therefore, substantially reducing the computa-

tional time needed for obtaining a solution [5], [9].

In sum, the main task that we address is: Given three

Martian years of telemetry data (August 22, 2008 to April

14, 2014), use machine learning to efficiently construct

predictive model that accurately predicts the values of the

electric current through the 33 thermal power consumers

for the subsequent Martian year (April 14, 2014 to

March 1, 2016).

The remainder of this paper is organized as follows. In

Section “RELATED WORK,” we provide an overview of

the work related to machine learning applications for

space-exploration research. Section “DATA” presents and

discusses the tasks of data preparation and preprocessing.

Section “MACHINE LEARNING METHODS” presents

the machine learning methods used in this study. In

Section “EXPERIMENTAL SETUP,” we present the

experimental setup for evaluating the proposed extensions

of the machine learning pipeline. Section “RESULTS”

presents and discusses the results of the empirical evalua-

tion. Finally, Section “CONCLUSION” concludes the

paper and suggests directions for further work.

RELATED WORK

Machine learning offers an ample amount of methods that

tackle predictive tasks in real-life domains [10], [11].

These methods have been applied for predicting discrete

output values (classification), continuous output values

(regression), even structured outputs as in gene networks,

image classification, text categorization, etc., [12].

The challenges typically addressed in space-explora-

tion research are associated with high cost of failure [13].

For instance, the remote spacecraft are typically equipped

with processors and memory lagging decades behind the

state of the art. Next, the development and launch of a space

mission is expensive and there is little or no opportunity for

repair. In this context, the utility of machine learning

approaches has been proven to be a valuable asset. In partic-

ular, many applications of machine learning address the

task of anomaly detection in spacecraft, where a typical

task considers monitoring the status of the on-board equip-

ment. Such analyses of telemetry data are performed using

neural networks [14], relevance vector machine [15], or by

applying seasonal decomposition methods (linear regres-

sion together with the nearest neighbors) [16].

Machine learning can be used not only for estimating

the current state of a spacecraft, but also predicting its

future ones and therefore allowing for autonomous deci-

sions. In our previous work [4], we propose a solution for

predicting spacecraft’s power consumption, which can be

used for optimizing its operation. This works closely

relates to the one of [17], where the authors propose Ran-

dom Forests (RFs) for predicting temperature of the

instruments to optimize battery usage during eclipses.

Another important challenge relates to safe ground

movement of autonomous (space) rovers or robots.

Hern�andez et al. [18] address this issue by using support

vector machines to recognize and avoid dangerous

objects. In similar context, Giusti et al. [19] address the

task of image analysis for automated navigation systems.

Here, with deep neural networks as the underlying

machine learning method, autonomous drones are utilized

for tracking forests paths.

Finally, machine learning can be also utilized to learn or

simplify a physical model of a spacecraft or a model of its

environment. In [20], Finn et al. employ RFs to simplify the

exact physical model for complex and dynamic radiation

environment in the Van Allen belts. In a similar context,

McGovern and Wagstaff [13] outline several studies which

address the challenges of spacecraft operating in high-radia-

tion environments (beyond Earth’s magnetosphere and iono-

sphere) and the reliability of machine learning algorithms

applied in these scenarios. In particular, these studies pro-

pose variants of traditional ML approaches (k-means and

SVMs) robust to potential data corruption on the disks due

to the various levels of radiation.

DATA

In the typical machine learning setting, the input in a

learning algorithm is (training) data which embodies the

experience. The data consist of training examples (also

Machine Learning for Predicting Thermal Power Consumption of the Mars Express Spacecraft

48 IEEE A&E SYSTEMS MAGAZINE JULY 2019

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

205

referred to as instances or measurements) and their proper-

ties (also referred to as features or attributes). The fea-

tures, numerical (i.e., continuous), or nominal (i.e.,

discrete), can either describe the data or specify the

desired output of the algorithm. In the context of predict-

ing MEX’s TPC, an example is a time period, while fea-

tures are derived from context and observations data.

In this paper, we use data provided by ESA [3] that

consists of raw telemetry data (context data) and measure-

ments of the electric current of 33 thermal power lines

(observation data), for three Martian years of MEX opera-

tions. We refer to these data as the training data DTRAIN.

For the fourth Martian year of the operation, the context

part of the data was used for generating the predicted val-

ues, that in turn where evaluated using the real measured

observation data. We refer to these data as the test data

DTEST.

The observation data consists of the electric current

measurements of the 33 power consumers, recorded once

or twice per minute. The context data consists of five

components:

� Solar Aspect Angles (SAA) data contain the angles

between the Sun–MEX line and the axes of the

MEX’s coordinate system.

� Detailed Mission Operations Plans (DMOP) data

contain the information about the execution of dif-

ferent subsystems’ commands at a specific time.

� Flight dynamics TimeLine events (FTL) data con-

tain the pointing and action commands that impact

the position of MEX, such as pointing the spacecraft

toward Earth or Mars.

� Miscellaneous Events (EVTF) data contain time

intervals during which MEX was in Mars’s shadow

or records of the time points when the MEX is in

apsis of its elliptical orbit.

� Long Term Data (LTDATA) contain the Sun–Mars

distances and the solar constant.

All raw data entries are time-stamped (expressed in

milliseconds) indicating when the entry was logged. The

time span between the two consecutive entries varies from

less than a minute (SAA) to several hours (LTDATA). For

a detailed description of the task and the data, we refer the

reader to [3], [21].

The raw data are not directly applicable to a machine

learning algorithm due to two main reasons: i) incompati-

ble time resolutions of the different components of the

raw data, and ii) unstructured format of some of the

entries, such as text, that are not readily usable for

machine learning algorithms. Therefore, to construct an

appropriate dataset for a learning algorithm, we prepro-

cess the raw data in two phases: conveying data time reso-

lution (time interval between two consecutive examples)

and engineering new (more informative) features from dif-

ferent parts of the context data that may yield to better pre-

dictive performance.

The first phase relates to choosing an appropriate

time resolution Dt of the dataset, and divide the time

span ½tFIRST; tLASTÞ into subintervals ½ti; tiþ1Þ, where

tiþ1 ¼ ti þ Dt. Here, tFIRST is the first time-stamp in the

DTRAIN, and tLAST is the last time-stamp in the DTEST.

The second phase considers constructing more infor-

mative features. The value of a given feature for a particu-

lar time interval is obtained by aggregating measurements

from the time interval at hand that correspond to one or

more components from the raw telemetry data.

Due to issues with the spacecraft communication in

some periods, some measurements are missing from the

both the context and observations data. In principle, the

machine learning methods employed in this study can han-

dle data with missing values. However, longer periods

with contiguous missing values can substantially damage

the accuracy of the learned predictive models as well as

add an additional computational overhead. For this reason,

we remove examples with missing observation data for

time periods longer than 10 min. On the other hand, in the

context data, we interpolate the examples with missing

values for time periods shorter than 10 min, or leave them

intact otherwise.

In the following sections, we describe the groups of fea-

tures constructed in the preprocessing step of the pipeline.

ENERGY INFLUX FEATURES

There are seven features in this group: one for solar panels

and one for each of the six sides of the cuboid of MEX.

The features describe the amount of solar energy that is

collected through a given surface in a given time interval

½ti; tiþ1Þ. The solar energy collected by a side of cuboid

directly influence the amount of the energy used by the

thermal lines that maintain the temperature in that part of

the spacecraft. The solar energy collected by the solar pan-

els influence the amount of available energy that can be

stored in spacecraft’s batteries.

The amount of energy collected by a given surface is

proportional to the product of the effective area Aeff of the

surface and the solar constant c. If the area A is given, we

compute Aeff as Aeff ¼ A maxf cosa; 0g, where a is the

angle between the Sun–MEX line and the outer normal ~n

to the surface (see Figure 2). Without any loss of general-

ity, we assume A ¼ 1 for all surfaces, as the machine

learning methods that we use, are invariant to monotonic

transformations of features. The values of a for each of

the seven surfaces were computed directly from the SAA

data, while c was given in LTDATA. In addition to the

effective area and the solar constant, (pen)umbras have a

considerable impact on the energy influx. We define the

Petkovi�c et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 49

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

206 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

amount of the energy Ei
S that pass through the surface S at

time interval ½ti; tiþ1Þ as

Ei
S ¼

Z tiþ1

ti

AeffðtÞcðtÞUðtÞdt

where U is the umbra coefficient, an approximation of the

proportion of Sun visible from the spacecraft. U takes the

value UðtÞ ¼ 0 if the spacecraft is in an umbra, UðtÞ ¼ 0:5

if the spacecraft is in a penumbra, and UðtÞ ¼ 1 otherwise.

Instead of calculating exact integrals for Ei
S , we approxi-

mate the values using the trapezoid-rule.

HISTORICAL ENERGY INFLUX FEATURES

The thermal state of the spacecraft depends not only on the

current energy influx, but also on the energy influx in the

past. To capture this, we construct historical energy influx

features for each of the seven surfaces. A given historical

feature for surface S at time ti is computed as a sum of

energy influx during given historical time-frame:

Hi
S ¼

XH
j¼1

E
i�ðj�1Þ
S (1)

where H is the number of time intervals included in the

historical feature. To account for different impacts of the

historical energy influx, we construct historical features

with different time-frames for different values ofH, given

in Section “PARAMETER INSTANTIATION.”

DMOP FEATURES

The DMOP data contain log of commands issued to differ-

ent MEX subsystems. The names of commands have been

obfuscated; however, the available documentation reveals

two variants of events: 1) events that contain information

about the subsystem and command that has been executed

(e.g., ASXX383C) and 2) events that represent flight

dynamics events (e.g., MAPO.000005).

The first four characters of the first variant represent

the subsystem while the rest represent the command and

its parameters. In the second variant the first four charac-

ters represent the name of the event, followed by a number

that indicates the number of occurrences. Given that these

events have different impact on the temperatures of vari-

ous subsystems of the spacecraft, it is safe to assume that

they impact the thermal subsystems differently.

More specifically, we assume that there is a significant

delay between triggering of a subsystems’ command and its

actual effect on the thermal state of the spacecraft. There-

fore, from the raw DMOP data, we construct features that

encode this information of delayed effect in terms of “time

since last activation” of a specific subsystem command.

The values of the DMOP features are calculated as

follows:

fi
k ¼

0; if k is activated at ti
minðfi�1

k þ Dt; uÞ otherwise;

�

where fik denotes the value of feature corresponding to

event k at time ti. Note that, here we also assume that all

of the subsystems were deactivated at the first time point

(i.e., f0
k ¼ u). The u regulates the effect of a given event

diminishing with time, rendering its influence unimportant

at some point. We selected this threshold to be 1 day

(u ¼ 1440, the number of minutes in a day). Table 1

presents these calculations of features.

We construct such features for each flying dynamic

event (17 features), each subsystem–command pair (345 fea-

tures) and each subsystem in case different commands are

issued to it (15 features). We also construct binary indicators

for each subsystem and flying dynamic event (34 features in

total), where a feature fi
k has value of 1 if the subsystemwas

triggered within the time-step ti, and 0 otherwise.

FTL FEATURES

The FTL data contain logs of pointing events and their time

ranges, where simultaneous events are also possible. For

each pointing event in time interval ½ti; tiþ1Þ, a feature has
value that equals the proportion of the time in ½ti; tiþ1Þ, dur-
ing which the event is in progress. Since the duration of

events is typically longer than Dt, the values of the features

are mostly 1 (event is in progress), or 0 (event not in prog-

ress). This approach renders 23 FTL features in total.

FINAL DATASETS

Table 2 presents the important details regarding the final

constructed datasets used further in the experiments.1

Figure 2.
Illustration of the MEX spacecraft and its coordinate axes x, y,

and z, that correspond to front, left, and up sides of MEX, respec-

tively. ax denotes the SAA of the front side, i.e., the angle

between the normal ~nx and the Sun-MEX line. ~np denotes the

normal of the panels.

1 The data are accessible at http://spacelab.ijs.si/.

Machine Learning for Predicting Thermal Power Consumption of the Mars Express Spacecraft

50 IEEE A&E SYSTEMS MAGAZINE JULY 2019

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

207

MACHINE LEARNING METHODS

Considering predictive modeling, many machine learning

methods struggle with the problem of overfitting. Overfit-

ting occurs when a method learns a model with a very

good performance on the provided training data, but has

limited generalization power and performs poorly on data

unseen during learning. In machine learning, there is a

long tradition of developing methods that address this

problem by learning multiple (diverse) models and com-

bining their outputs instead of just learning a single model.

These methods are referred to as ensemble methods or

ensembles. An ensemble is a set of (base) predictive mod-

els constructed with a given algorithm, that is expected to

lead to predictive performance gain over an individual

model by combining the predictions of its constituents. In

this study, we employ two types of ensembles: RF-PCTs

(both local and global version of the algorithm for multi-

target regression) [5], [22] and Stochastic Gradient

Boosted Trees (XGBoost) [6], [7].

RF OF PREDICTIVE CLUSTERING TREES

RF [22] is an ensemble method that learns a set of tree-

based predictive models and combines their prediction.

The base models are learned from random bootstrap sam-

ples of the training set, where for each tree at each tree

node a random feature subset (with a user defined size) is

considered for selecting the best split. Such approach

allows for constructing a set of diverse predictive models

that can differ both in size and performance.

In this study, the RF ensembles consist of Predictive

Clustering Trees (PCTs) [23]. PCTs have a tree structure

that includes internal nodes and leaves. The internal nodes

contain tests on the descriptive variables (i.e., the different

features extracted with preprocessing), while leaves give

predictions for the target variable (i.e., power consump-

tion of a thermal line). PCT refers to a hierarchy of

clusters with each node corresponding to a cluster. In par-

ticular, the top-node of a PCT corresponds to one cluster

(group) containing all data points. This cluster is then

recursively partitioned into smaller clusters while moving

down the tree. The leaves represent the clusters at the low-

est level of the hierarchy and each leaf is labeled with its

cluster’s centroid/prototype (the average of the target vari-

able is the prediction made by the leaf).

RF of PCTs is a generalization of the traditional RF

ensemble of regression trees [24], in terms of addressing

structured output prediction tasks [5], [25]. While the tra-

ditional RF is able to predict values of a single numeric

target variable at a time (i.e., is a local method for Multi-

target Regression), the RF of PCTs ensemble allows also

for predicting several target variables simultaneously (i.e.,

is a global method for Multitarget Regression). The algo-

rithm for learning a RF of PCTs is presented in Algo-

rithm 1. Namely, it takes three inputs: 1) training data

DTRAIN, as well as two hyperparameters denoting, 2) the

number of trees M in the ensemble, and 3) the size of the

feature subset considered at each node split f . Each PCT

in the ensemble is learned with greedy recursive top-down

Table 2.

Properties of the Final Datasets Given Different

Granularity Dt

Dt [min] Number
of

examples

Number
of

features

Size [MB]

1 3922 895 459 10 090

5 784 773 459 2048

10 392 474 459 1045

15 261 697 459 702

30 130 900 459 353

60 65 493 445 168

Table 1.

Illustration of the DMOP Features that Encode the Time Since Last Activation of a Given Subsystem Command

Raw Data DMOP Features

t Command APSF28A1 ASXX383C ATTTF030A ASXX303A

t1 none 1440 1440 1440 1440

t2 ASXX383C 1440 0 1440 1440

t3 ATTTF030A 1440 Dt 0 1440

..

. ..
. ..

. ..
. ..

. ..
.

t14 ASXX303A 1440 12Dt 11Dt 0

Petkovi�c et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 51

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

208 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

induction algorithm on a random bootstrap sample of the

input dataset (line 3 of the Algorithm 1).2

The PCT-induction algorithm (lines 8–15 of the Algo-

rithm 1) starts in the root node of the tree by selecting a

test from set of candidate tests that are generated by a ran-

dom feature subset F of size f . The best test is greedily

chosen by a heuristic function that typically measures the

impurity of the target values of the examples in the subsets

Ei of the set E that this test results in. The goal of the heu-

ristic function is to guide the algorithm toward small trees

with good predictive performance. In the global MTR set-

ting, this heuristic function is the average variance of the

targets. In our case, with numeric features, every test is of

form xi < #, for some threshold #, and partitions the set

E into two subsets. These are the set E1 of test-positive

instances for which xi < # and the set E2 of test-negative

instances for which xi � #, i.e., P� ¼ fE1; E2g (line 9).
The procedure is recursively repeated on the subsets

Ei to construct the subtrees (line 12) until a stopping

criterion is satisfied (e.g., the minimal number of exam-

ples in a leaf is reached or the heuristic score no longer

changes, etc.). In turn, a leaf node is created and its pro-

totype is computed (line 15). In the global MTR setting,

the prototype is a vector of average target values of the

examples in the leaf. The prototypes are used for

prediction.

Algorithm 1: Random Forest of PCTs
(DTRAIN,M, f)

1: RF ¼ ;
2: form ¼ 1; 2; . . .;M do
3: E ¼ bootstrapSampleðDTRAINÞ
4: T ¼ inducePCT ðE; fÞ
5: add T toRF
6: returnRF
7: where inducePCT ðE; fÞ
8: F ¼ random sample of f features
9: ðt�;P�Þ ¼ findBestTestðE;FÞ
10: if t� 6¼ none then
11: for each Ei 2 P� do
12: subtreei ¼ inducePCT ðEi; fÞ
13: return N ðt�;

S
ifsubtreeigÞ // internal node

14: else
15: return L ðPrototypeðEÞÞ // leaf node

Finally, the RF of PCTs algorithm outputs a set of

PCTs, whose predictions are combined (averaged per value)

to obtain the final ensemble prediction. The reasons for

using RF of PCTs are twofold: its state-of the-art predictive

performance [5], and ability to calculate feature importance

scores, i.e., ranking of the features w.r.t. their importance

for the target variables.

Namely, RFs can measure how much each feature

contributed to the quality of the predictive model. For this

purpose, we used the Genie3 algorithm [26], for which the

motivation is the following. If a relevant feature xi is part

of a test xi < #, then the heuristic score h� (reduction of

the variance) of this split is high. Additionally, the features

that appear in the tests of nodes at lower depths, e.g., in the

root, influence more examples compared to the ones

appearing deeper in the tree, so the former are intuitively

more important. Therefore, the Genie3 importance score

is defined as

importanceGENIE3ðxiÞ ¼
1

jRFj
X

T 2RF

X
N 2T ðxiÞ

h�ðN ÞjEðN Þj

(2)

where T ðxiÞ is the set of nodes in the tree T in which xi is

part of the test, h�ðN Þ is the value of the variance reduc-

tion function in the node N , and jEðN Þj is the number of

examples that come to the node N .

Further in this paper, we denote the local and the

global versions of RF PCTs for multitarget regression

with L-RF and G-RF, respectively.

GRADIENT BOOSTED TREES

Gradient boosting [27] refers to a class of boosting ensem-

ble methods [10] which aims at learning a set of predictive

models focusing on difficult observations in the data. In

contrast to RF ensembles that first learn the ensemble con-

stituents from random parts of the dataset and in turn com-

bine their outputs, boosting ensembles are constructed

iteratively. At each boosting iteration, a new weak base

model that corrects the error made by the ensemble thus

far is learned and added to the set creating a stronger

model at each step. Typically, such weak models have

simple structure and thus perform slightly better than ran-

dom models.

In general, boosting methods differ in the type of base

models they employ and how the learning is performed.

The former is task related, where typical base models con-

sidered include: logistic regressors (for classification

tasks), linear regressors (for regression tasks), or decision

trees (for both classification and regression tasks). Regard-

ing how the learning is performed, boosting base models

are either constructed to focus on hard examples identified

in previous iterations [28] or by minimizing the empirical

risk via steepest gradient descent [27]. In this paper, we

focus on the latter category, referred to as Gradient

Boosting.

An outline of the gradient boosting algorithm for con-

structing ensembles with decision trees is presented in

Algorithm 2. The algorithm takes three inputs: 1) a train-

ing dataset DTRAIN, 2) number of boosting iterations M,

3) a loss function L, and 4) a learning rate h. First, an

2 The RF of PCT framework is implemented in the CLUS
system available at http://source.ijs.si/ktclus/clus-public.

Machine Learning for Predicting Thermal Power Consumption of the Mars Express Spacecraft

52 IEEE A&E SYSTEMS MAGAZINE JULY 2019

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

209

initial default (weak) model is learned on the whole data-

set that minimizes the loss function L. Given that the gra-

dient boosted method aims at optimizing the loss function,

it is important that L should be convex and differentiable.

A typical choice of L is L2 square-loss function [10]. In

turn, gradient boosting at each step m learns a new model

on the pseudo-residuals, i.e., the discrepancy value

between the true and the predicted value of the ensemble

in the previous iterations (line 4).

However, such straightforward approach can very eas-

ily overfit to the training data. In order to address the prob-

lem of overfitting, more sophisticated gradient boosting

methods implement two different mechanisms: a learning

rate and random data sampling procedure. The former reg-

ulates the influence of the prediction of each subsequent

model added in the ensemble set (line 6). The latter,

referred to as Stochastic Gradient Boosting [7], employs

additional random data sampling procedure: Each model

is learned and evaluated on different random subsamples

of the training data (line 3).

Algorithm 2: Stohastic Gradient Boosted Trees
(DTRAIN,M, L, h)
1: GBT; ¼ defaultModelðDTRAIN;LÞ
2: form ¼ 1; 2; . . .;M do
3: E ¼ randomSampleðDTRAINÞ

4: Rm ¼ @LðE;GBTm�1ðEÞÞ
@GBTm�1

// compute

pseudo-residuals

5: T ¼ induceðRm;LÞ
6: GBTm ¼ GBTm�1 þ hT
7: return GBT

In this study, we employ XGBoost [6]—a recent effi-

cient implementation of Stochastic Gradient Boosting [7]

that employs regression trees as proposed in [24] as base

models. In the paper, we denote the XGBoost ensembles

with XGB.

EXPERIMENTAL SETUP

PARAMETER INSTANTIATION

Granularity: The data granularity is defined by the length

Dt of the time interval that corresponds to one example in

the dataset. We construct the predictive models using

datasets with Dt 2 f1; 5; 10; 15; 30; 60g (measured in

minutes) where Dt ¼ 1 corresponds to the dataset used

in [4].

Historical features: For the dataset with finest

granularity Dt ¼ 1, we consider the following numbers H

of historical intervals from (1): H 2 f4; 16; 32; 64; 128g.
Consequently, the historical time span ranges from 4 min

to 128 min. The choices of the historical intervals in the

datasets with courser granularity are presented in Table 3.

In total, these values yield 35 features in the dataset with

Dt � 30 and 21 features dataset with Dt ¼ 60.

RF parameters: To constrain the size of the trees in

the RFs, we specify a minimal number of examples in the

leaves mLEAF for each tree. Since the number of instances

in the datasets is inversely proportional to Dt, we set the

minimal number of instances for the Dt ¼ 1 experiments

to 500, while for the others we set them to

mLEAF ¼ 500=Dt. Additionally, we set the total number

of trees in the RFs to 200, where one quarter of the fea-

tures is considered at every split when growing the trees,

i.e., f ¼ 0:25jF j in Algorithm 1.

XGBoost Parameters: Analogously, to constrain the

size of the trees, we set maximal depth of each tree in the

ensemble to 11. The learning rate parameter is set to 0.1.

Additionally, to address potential overfitting issues, for

every boosting iteration 60% of the features and 60% of

the examples are randomly chosen for training. The maxi-

mum number of boosting iteration (ensemble constituents)

is set to 200 with an early-stop option, i.e., if the newly

added trees in the ensemble do not improve the perfor-

mance of the ensemble over five consecutive boosting iter-

ations the algorithm stops.

EVALUATION PROCEDURE

The dataset D consists of examples ðxx; yyÞ where xx is a

vector of feature values (features are described in

Section “DATA”), and yy is a vector of 33 target values,

i.e., the electrical currents trough the heaters and coolers.

The dataset is divided into two parts: DTRAIN that

describes the state of the spacecraft throughout the first

three Martian years, and DTEST that describes the state of

the spacecraft throughout the fourth Martian year. All pre-

dictive models, i.e., the approximations ŷy : xx 7! ŷyðxxÞ of

the true mappings yy : xx 7! yyðxxÞ, were learned on DTRAIN.

Table 3.

Values of the Number of Historic IntervalsH and the

Corresponding Historic Time Spans, for Different

Granularities. Dt

Dt Values ofH Time spans

1 f4; 16; 32; 64; 128g f4; 16; 32; 64; 128g

5 f1; 3; 6; 13; 25g f5; 15; 30; 65; 125g

10 f1; 2; 3; 6; 13g f10; 20; 30; 60; 130g

15 f1; 2; 3; 4; 9g f15; 30; 45; 60; 135g

30 f1; 2; 3; 4; 5g f30; 60; 90; 120; 150g

60 f1; 2; 3g f60; 120; 180g

Petkovi�c et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 53

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

210 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

The ith component of vectors ŷyðxxÞ and yyðxxÞ, i.e., the pre-
dicted and true value for ith target, are denoted by ŷiðxxÞ
and yiðxxÞ.

The quality of the predictions ŷyðxxÞ is evaluated on a

separate test set DTEST not used for learning the models.

It is measured in terms of the average root mean squared

error RMSE, defined via the root mean squared errors of

each target variable, as follows:

RMSEðŷyÞ ¼

ffi
1

T

XT
i¼1

RMSE2ðŷiÞ

vuut (3)

RMSEðŷiÞ ¼
ffi

1

jDTESTj
X

ðxx;yyÞ2DTEST

yiðxxÞ � ŷiðxxÞð Þ2
s

(4)

where jDTESTj denotes the size of DTEST and T ¼ 33 is

the number of target variables.

We also compare the machine learning methods

in terms of their time efficiency (for constructing a predic-

tive model). By doing so, we estimate the tradeoff

between the predictive performance of the models and

time needed for constructing them, in turn determining the

optimal combination of time resolution in the data and

machine learning method. The time efficiency refers to

single-threaded runs of the algorithms, computed as

follows. First, only an a portion of the ensemble is

constructed where we measure the learning time ta.

Subsequently, the total learning time is estimated as

t ¼ ta=a. Such estimations were necessary, since some

methods do not allow for single threaded runs (as reported

in the next section).

RESULTS

The goal of the experiments is to determine whether we can

improve the efficiency of our approach for predicting TPC,

while retaining good predictive performance. In particular,

we evaluate tree different algorithms in terms of time effi-

ciency (for learning amodel) and predictive performance.

First, we report on the running times of the three

algorithms given training data with different granularity

as well as the impact on their predictive performance.

Next, we discuss different alternatives for improving both

the efficiency and the predictive performance of the

algorithms. Finally, we discuss the quality of the learned

predictive models using feature importance diagrams.

PERFORMANCE

We first focus on the learning times for different algo-

rithms given different data granularity Dt. Figure 3

presents the time needed for each algorithm to construct a

model for each target as well as the total time to complete

the task.

As expected, in general, for all approaches the learning

times decrease with the granularity Dt increasing. Never-

theless, the L-RF approach, that constructs an ensemble

model for each of the 33 target variables, has the longest

learning time of approximately 22 000 h (� 2:5 years). In

particular, learning an L-RF ensemble from the Dt ¼ 1

dataset takes approximately 60 times longer than construct-

ing an XGB ensemble which takes 450 h.

While the constituents of an XGB ensemble are con-

siderably smaller than the ones of an RF , constructing a

Figure 3.
Learning times for different algorithms and time granularity Dt. The crosses present the total learning time of the algorithm. Since L-RF and

XGB build a model for each target (power line) separately, the distribution of learning times per power lines is additionally presented with

the box plot. The per-target times add up to the total running time.

Machine Learning for Predicting Thermal Power Consumption of the Mars Express Spacecraft

54 IEEE A&E SYSTEMS MAGAZINE JULY 2019

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

211

XGB ensemble still takes approximately twice as much

time as constructing a G-RF ensemble (220 h). Note that

the constituents of both types of RF ensembles can be

constructed in parallel, thus, additionally reducing the

learning time for L-RF and G-RF by a factor of 100. In

contrast, the most resource friendly is the Dt ¼ 60 dataset,

where the estimated learning times of L-RF, XGB, and

G-RF are 330, 4.1, and 2.3 h, respectively.

Next, Figure 4 presents the impact of the data granu-

larity on the predictive performance of the models con-

structed with the three different methods. Note that there

is a tradeoff between learning-time efficiency and predic-

tive performance. In particular, the ability of G-RF to con-

struct predictive models in the shortest amount of time

comes at a cost of decreased predictive performance com-

pared to the other two methods. In this context, XGB per-

forms best in two cases (Dt 2 f15; 30g) while being

substantially more efficient than L-RF which performs

best in the remaining four cases (Dt 2 f1; 5; 10; 60g).
The predictive error of both RF methods increases

substantially with Dt > 15. In the case of XGB, however,

the best predictive performance is obtained with the

medium grained datasets Dt 2 f15; 30g. Note that, the

L-RF trained on Dt ¼ 1 dataset (as used in [4]) still has

some competitive advantage in terms of predictive perfor-

mance. However, similar (or slightly better) performance

can be obtained either by learning from the Dt 2 f5; 10g
which is considerably more efficient, or by constructing

XGB ensemble using the Dt ¼ 15 dataset.

FURTHER OPTIMIZATION

So far, we reported on ensembles consisting of 200 constitu-

ents. In general, the size of the ensemble has different effects

on the quality of the predictions in the case of RF ensembles

and Boosting ensembles. In the former case, a general rule-

of-thumb is that the predictive performance increases with

the ensemble size, until it (effectively) saturates at some

point. The reason for this is that every tree in RF is grown

independently of the others. Thus, a RF ensemble may only

be unnecessarily large.

In contrast, the boosting ensemble creation is differ-

ent. Here, every additional tree focuses on minimizing the

errors of the previously grown trees, therefore, such

ensembles have a tendency to overfit to the training data.

As a consequence, the ensemble size can have substantial

effect on the predictive performance.

We conjecture that such artefacts are also present

in the models evaluated thus far, and therefore we aim

to further optimize the learning methods. To estimate the

optimal number of trees in the ensembles, we take the

Dt ¼ 60 dataset and perform fivefold cross validation on

DTRAIN. More specifically, we randomly divide DTRAIN

into five equally sized parts Pi, 1 � i � 5. We train

ensembles with different sizes (1, ..., 200) on every group

of four parts, and estimate their performance on the

remaining part not used for training. The average error of

the five attempts (so called cross-validated error) is the

final score of a given ensemble. We perform the same pro-

cedures for the RF (G-RF) and XGB ensembles.

The results in Figure 5 show that both types of meth-

ods can achieve good performance with considerably

smaller ensembles. In particular, the RF method is able to

achieve good performance very early (which does not

drastically improve over time) due to accurate and deeper

trees. On the other hand, as expected, XGB starts with

very poor performance which considerably improves after

approximately 50 iterations.

Given these evidence, we once again evaluate the pre-

dictive performance of the three methods on the test data,

however, instead of constructing ensembles with 200 trees

we construct them with only 50.

Table 4 confirms our conjecture: The ensemble size in

the case of RF methods (L-RF and G-RF) has in general

Figure 4.
Predictive performance of the three ensemble methods given data with different granularity.

Petkovi�c et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 55

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

212 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

insignificant effect on the predictive performance. Note

that the RF method is comprised of random trees, hence in

some cases, like the G-RF constructed on the Dt ¼ 15

dataset, small ensemble sizes hurt the predictive perfor-

mance. Further analysis shows that in this case the

performance stabilizes with at least 100 constituents to

RMSE ¼ 0:087. In the case of XGB, the effect of the

ensemble size is more prominent and constant. More spe-

cifically, the predictive performance of an XGB ensemble

learned on a dataset with granularity Dt ¼ 15 yields the

best overall performance we obtained so far. Note that

obtaining such performance is also considerably faster

than the one reported in our previous study, i.e., L-RF

learned on Dt ¼ 1 dataset.

Nevertheless, in terms of time efficiency, all ensem-

ble methods benefit from the reduction of the ensemble

size. In particular, on average the learning time is

reduced by factor of 4 in the case of RF ensembles and

by a factor of almost 5 in the case of boosting. Figure 6

presents the results of the overall learning time and

the predictive performance of all three methods with

reduced ensemble size.

More specifically, here we aim at identifying the opti-

mal choice of algorithm given both criteria of predictive

performance and time efficiency. Therefore, the optimal

solution should be as close as possible to the lower left

Figure 5.
Effect of the ensemble size on the performance of a Gradient

Boosting ensemble (XGB), a local RF ensemble (L-RF), and

a global RF ensemble (G-RF), evaluated with fivefold cross

validation on the Dt ¼ 60 dataset.

Figure 6.
Tradeoff between the learning time and the predictive performance (RMSE) of the three ensembles with 50: Colors of the rectangles denote

the induction algorithm, while the numbers in the rectangles determine the time granularity Dt.

Table 4.

Predictive Performance (RMSE) of the Three Ensemble Methods with 50 Constituents

Method

�
Dt 1 5 10 15 30 60

L-RF 0.0825 0.0804 0.0812 0.0808 0.0844 0.0876

G-RF 0.0865 0.0869 0.0881 0.0989 0.0899 0.0954

XGB 0.0835 0.0796 0.0835 0.0785 0.0816 0.0889

Machine Learning for Predicting Thermal Power Consumption of the Mars Express Spacecraft

56 IEEE A&E SYSTEMS MAGAZINE JULY 2019

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

213

corner of the graph. A point A in the graph is dominated

by another point B in the graph if B is better than A in

both criteria. For example, the performance of L-RF on

Dt ¼ 10 is dominated by the performance of XGB with

both Dt 2 f5; 15g. The nondominated points form a so-

called Pareto front. In our case, the Pareto front consists

of the two XGB points (Dt 2 f15; 30g) and four G-RF

points (Dt 2 f5; 10; 30; 60g). All these points are consid-

ered optimal, unless we further specify our preferences

over the criteria: If one aims at obtaining the fastest

(but less accurate) solution one should consider G-RF

(Dt ¼ 60). On the other hand, XGB (Dt ¼ 15) yields the

most accurate (but less efficient) solution.

ENSEMBLE OF ENSEMBLES

The performance of an ensembles is a consequence of the

performance and diversity of its constituents. Moreover,

ensembles usually perform better when compared to each

individual constituent [29]. Given that in this study, we

consider different types of ensembles (RFs and XGB)

with good predictive performance, to further improve the

overall performance, we can also combine their outputs in

an Ensemble of Ensembles (EoE). As a proof-of-principle,

Figure 7 presents the predictions of XGB and G-RF during

sample time-period of 2 days for the 12th power line. We

can see that, while the XGB overestimates and G-RF

underestimates the measured data (red line), their combi-

nation performs better.

Given the results from Figure 6, we construct two

EoEs. The member ensembles are trained on Dt ¼ 15

dataset, since all results so far point to a good tradeoff

between efficiency and performance in this case. More-

over, both EoEs have one XGB member combined either

with G-RF (both methods are efficient) or L-RF (both

methods are accurate).

The results are summed up in Table 5. While the

XGB& G-RF ensemble is very efficient to construct, its

performance is only better than one of the members, G-

RF. On the other hand, the XGB&L-RF achieves the best

performance overall of RMSE ¼ 0:07779. However, in

practice, obtaining such an ensemble takes ten times more

than learning only a XGB ensemble that has practically

similar performance (RMSE ¼ 0:07853).

FEATURE IMPORTANCE

In our last set of experiments, we assess the importance

of the features obtained from the three methods. Typi-

cally, different features have different influence on the

target variables, which in turn affects the predictive per-

formance of the constructed models. Figure 8 illustrates

how different groups of features (energy influx,

DMOP and FTL) influence the 33 power consumers.

The feature importance diagrams were calculated using

the Dt ¼ 15 dataset. More specifically, in the case of L-

RF and XGB [see Figure 8(b) and (c)], the proportions

in the diagrams for each target were computed

according to (2). On the other hand, in the case of

G-RF [see Figure 8(a)] where the model predicts all

targets simultaneously, (2) leads only to the global fea-

ture importance (all diagram). The per-target impor-

tance diagrams were computed from the local models,

considering one target when computing the heuristic

function. Note that, for some targets, the feature impor-

tance diagrams are blank since all ensemble constitutes

in these cases are constant models (trees without inter-

nal nodes).

In the case of G-RF, the most important feature

group overall is DMOP. In particular, in the majority of

the power lines (27) their influence is at least 50%. The

Energy influx features have a major influence on five

power lines, while the FTL features have a considerable

impact only on the 13th power line. Similarly, L-RF

Figure 7.
Measured (red line) and predicted behavior on a sample time-

period of 2 days for the 12th power line, obtained from G-RF and

XGB ensembles as well as their combination.

Table 5.

Comparison of the Two Ensembles of Ensembles (EoE)

in Terms of Predictive Performance (RMSE) to the

Performance of the Individual Ensembles

Ensembles RMSE

XGB& G-RF 0.0803

XGB&L-RF 0.0778

G-RF(100) 0.087

L-RF(50) 0.0808

XGB(50) 0.0785

All models are learned on the Dt ¼ 15 dataset.

Petkovi�c et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 57

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

214 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

finds the DMOP features as most important overall.

However, as opposed to G-RF, here we can see more

power lines which are almost exclusively influenced by

energy influx features. These differences in the com-

puted feature importance between G-RF and L-RF is a

consequence of how the ensembles are constructed:

While the former is able to capture the global phenom-

ena across all power lines, the latter captures more

detailed behavior that relates to each individual power

line.

On the other hand, XGB mostly relates to the DMOP

features. Compared to the other two methods, in this case

their influence is considerably greater. In particular, the

Energy Influx features have some significant importance

(> 20%) on only four power lines, while the FTL features

do not contribute greatly. Additionally, XGB was not able

to produce feature importance diagrams for 5 of the target

variables.

CONCLUSION

In this paper, we propose a machine learning pipeline

for predicting the power of the thermal subsystem on

board the Mars Express spacecraft. More specifically,

we propose novel solutions in the machine learning

pipeline that focus on efficiently constructing predictive

models of MEX’s TPC, while still being able to main-

tain high predictive performance. More specifically, we

employ state-of-the-art feature engineering approaches

for transforming raw telemetry data, which in turn is

used for constructing accurate predictive models with

different machine learning methods. These solutions are

the main contribution of this paper, since they consider-

ably improve our competition-winning solution [4] in

two directions: efficiency and accuracy.

The proposed improvements in the pipeline consider

1) preparing training data with different time granularity,

as well as 2) employing different machine learning

methods for constructing accurate predictive models.

Regarding the former, we carefully transformed the

raw telemetry data at different time resolutions

(Dt 2 f1; 5; 10; 15; 30; 60g min) which resulted in signifi-

cant reductions of the size of the datasets used in the learn-

ing phase. Regarding the latter, we considered different

state-of-the-art local and global machine learning ensem-

ble methods for multitarget regression. These methods

include: local and global RFs of predictive clustering trees

(L-RF and G-RF) as well as stochastic gradient boosted

trees (XGB). We evaluated our proposed solutions on the

task of predicting hourly values of the electric current

through the 33 thermal power consumers on board MEX

for one Martian year, given raw telemetry data of three

preceding Martian years.

In terms of time efficiency, our empirical study

shows that the time resolution of the data has a signifi-

cant impact on both the construction time of the predic-

tive models as well as on their accuracy. The former is

an expected result, given that coarser granularity yields

a reduced dataset and therefore shorter learning time.

However, learning methods using coarser data usually

yield less accurate models. The latter result though pro-

vides a significant insight into this problem: Given a

dataset with moderate granularity (Dt 2 f10; 15g), all

three methods are able to obtain models with compara-

ble (or better) predictive performance, in substantially

shorter time as compared to models learned on dataset

with finer granularity.

In terms of predictive performance, the local ensem-

ble methods perform better than the global method. More

specifically, in most cases, L-RF and XGB have compa-

rable performance, with XGB being slightly better. While

Figure 8.
Distribution of different feature groups in the feature rankings produced by (a) G-RF, (b) L-RF and (c) XGB ensembles, for the 33 power

lines. In each of the individual diagrams, the presence of a given feature group type is proportional to the sum of Genie3 relevance over the

features from the group. The empty diagrams denote ensembles constructed from constant models. The G-RFmethod allows for the addi-

tional global feature importance denoted as all.

Machine Learning for Predicting Thermal Power Consumption of the Mars Express Spacecraft

58 IEEE A&E SYSTEMS MAGAZINE JULY 2019

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

215

both methods perform better than G-RF, the difference in

performance is neither substantial nor significant. Note

that learning a global model also takes considerably less

time than learning a local model. In the same context,

our results show that, while the size of the ensembles has

a significant effect on the learning time, it can also

improve the predictive performance. In particular, we

showed that with all methods we can obtain similar or

better (XGB) predictive performance with smaller ensem-

bles. Moreover, we also demonstrated that by further

combining the predictions of the different ensembles into

an ensemble-of-ensembles, we additionally improve the

predictive performance and obtain premium accuracy of

RMSEXGB&L�RF ¼ 0:07779.

Finally, our feature importance analysis indicates that,

for this particular problem of predicting TPC, the DMOP

have a significant role in the quality of the predictive mod-

els. Their importance is more prominent in the XGB

ensembles models than in the RF ensembles, which also

rely on the Energy Influx features when constructing a

model.

There are several directions to extend the work pre-

sented in this paper. Considering the data, note that

DMOP information is available only after a certain com-

mand is executed on the spacecraft and its effect measured

subsequently. This means that using these data for predict-

ing longer time horizons is not possible. Moreover, given

the findings of this paper, omitting them from the learning

process might have a severe consequence on the perfor-

mance of the predictive models. Therefore, an immediate

continuation of the work presented here is to further

optimize the constructed features as well as investigate

different approaches for engineering new (informative)

features. Finally, while the proposed methodology focuses

on the thermal subsystem of the MEX spacecraft, it can

also be readily applied to the other subsystems. Moreover,

it can also be extended to other spacecraft such as the

XMM Newton [17], Integral [20], and ExoMars as well as

rovers (such as Curiosity and ExoMars) exploring Mars.

ACKNOWLEDGEMENTS

We acknowledge the financial support of the Slovenian

Research Agency (via the grants P2-0103, J4-7362, L2-

7509, J2-9230 and the young researcher grants to MP and

MB).

REFERENCES

[1] R. Orosei et al., “Radar evidence of subglacial liquid

water on mars,” Science, vol. 361, pp. 490–493, 2018.

[2] A. Chicarro, P. Martin, and R. Trautner, “The Mars

express mission: An overview,” Mars Express, Sci.

Payload, vol. 1240, pp. 3–13, 2004.

[3] L. Lucas and R. Boumghar, “Machine learning for space-

craft operations support—The Mars express power

challenge,” in Proc. 6th Int. Conf. Space Mission Chal-

lenges Inf. Technol., 2017, pp. 82–87.

[4] M. Breskvar et al., “Predicting thermal power consump-

tion of the Mars Express satellite with machine learning,”

in Proc. 6th Int. Conf. Space Mission Challenges Inf.

Technol., 2017, pp. 88–93.

[5] D. Kocev, C. Vens, J. Struyf, and S. D�zeroski, “Tree

ensembles for predicting structured outputs,” Pattern Rec-

ognit., vol. 46, no. 3, pp. 817–833, 2013.

[6] T. Chen and C. Guestrin, “Xgboost: A scalable tree boost-

ing system,” in Proc. 22nd ACM SIGKDD Int. Conf.

Knowl. Discovery Data Mining, 2016, pp. 785–794.

[7] J. H. Friedman, “Stochastic gradient boosting,” Comput.

Statist. Data Anal., vol. 38, no. 4, pp. 367–378, 2002.

[8] H. Borchani, G. Varando, C. Bielza, and P. Larra~naga, “A

survey on multi-output regression,” Data Mining Knowl.

Discovery, vol. 5, no. 5, pp. 216–233, 2015.

[9] E. Spyromitros-Xioufis, G. Tsoumakas, W. Groves, and

I. Vlahavas, “Multi-target regression via input space

expansion: Treating targets as inputs,” Mach. Learn.,

vol. 104, no. 1, pp. 55–98, 2016.

[10] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of

Statistical Learning: Data Mining, Inference, and Predic-

tion, (ser. Springer Series in Statistics). New York, NY,

USA: Springer, 2013.

[11] I. H. Witten and E. Frank, Data Mining: Practical

Machine Learning Tools and Techniques. San Mateo, CA,

USA: Morgan Kaufmann, 2005.

[12] G. H. Bak{r, T. Hofmann, B. Sch€olkopf, A. J. Smola,

B. Taskar, and S. V. N. Vishwanathan, Predicting

Structured Data, ser. Neural Information Processing.

Cambridge, MA, USA: The MIT Press, 2007.

[13] A. McGovern and K. L. Wagstaff, “Machine learning in

space: Extending our reach,” Mach. Learn., vol. 84, no. 3,

pp. 335–340, 2011.

[14] Z. Li, “Machine learning in spacecraft ground systems,” in

Proc. 6th Int. Conf. Space Mission Challenges Inf. Tech-

nol., 2017, pp. 76–81.

[15] T. Yairi, Y. Kawahara, R. Fujimaki, Y. Sato, and

K. Machida, “Telemetry-mining: A machine learning

approach to anomaly detection and fault diagnosis for

space systems,” in Proc. 2nd IEEE Int. Conf. Space

Mission Challenges Inf. Technol., 2006, vol. 2006,

pp. 476–483.

[16] M. Mu~noz, Y. Yue, and R. Weber, “Telemetry anomaly

detection system using machine learning to streamline

mission operations,” in Proc. 6th Int. Conf. Space Mission

Challenges Inf. Technol., 2017, pp. 70–75.

[17] G. DeCanio, T. Godard, R. Boumghar, andU.Weissmann,

“Optimization of the battery usage during eclipses using a

machine learning approach,” in Proc. 15th Int. Conf. Space

Oper., Marseille, France, 2018, https://doi.org/10.2514/

6.2018-2607

Petkovi�c et al.

JULY 2019 IEEE A&E SYSTEMS MAGAZINE 59

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

216 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

[18] A. C. Hern�andez, C. G�omez, J. Crespo, and R. Barber,

“Adding uncertainty to an object detection system for

mobile robots,” in Proc. 6th Int. Conf. Space Mission

Challenges Inf. Technol., 2017, pp. 7–12.

[19] A. Giusti et al., “A machine learning approach to visual

perception of forest trails for mobile robots,” IEEE Robot.

Autom. Lett., vol. 1, no. 2, pp. 661–667, Jul. 2016.

[20] T. J. Finn, R. Boumghar, J. Martinez, and A. Georgiadou,

“Machine learningmodelingmethods for radiation belts pro-

file predictions,” in Proc. 15th Int. Conf. Space Oper., Mar-

seille, France, 2018, https://doi.org/10.2514/6.2018-2639

[21] R. Boumghar, L. Lucas, and A. Donati, “Machine

learning in operations for the mars express orbiter,” in

Proc. 15th Int. Conf. Space Oper., Marseille, France,

2018, https://doi.org/10.2514/6.2018-2551

[22] L. Breiman, “Random forests,” Mach. Learn., vol. 45,

no. 1, pp. 5–32, 2001.

[23] H. Blockeel, L. De Raedt, and J. Ramon, “Top-down

induction of clustering trees,” in Proc. 15th Int. Conf.

Mach. Learn., 1998, pp. 55–63.

[24] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone,

Classification and Regression Trees. London, U.K.;

Chapman & Hall, 1984.

[25] H. Blockeel, “Top-down induction of first order logical

decision trees,” Ph.D. dissertation, Katholieke Universiteit

Leuven, Leuven, Belgium, 1998.

[26] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and

P. Geurts, “Inferring regulatory networks from expression

data using tree-based methods,” PLOS ONE, vol. 5, no. 9,

pp. 1–10, 2010.

[27] J. H. Friedman, “Greedy function approximation: A gradi-

ent boosting machine,” Ann. Statist., vol. 29, no. 5,

pp. 1189–1232, 2001.

[28] Y. Freund and R. E. Schapire, “A decision-theoretic

generalization of on-line learning and an application to

boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139,

1997.

[29] L. K. Hansen and P. Salamon, “Neural network

ensembles,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 12, no. 10, pp. 993–1001, Oct. 1990.

Machine Learning for Predicting Thermal Power Consumption of the Mars Express Spacecraft

60 IEEE A&E SYSTEMS MAGAZINE JULY 2019

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on July 06,2020 at 16:24:32 UTC from IEEE Xplore. Restrictions apply.

217

Quantifying the effects of gyroless flying of the Mars Express Spacecraft
with machine learning

Matej Petković1,2,�, Luke Lucas3, Dragi Kocev1,2,4, Sašo Džeroski1,2, Redouane Boumghar5, Nikola Simidjievski1,4,6

e-mail: name.surname@ijs.si1

Jožef Stefan Institute, Slovenia1

Jožef Stefan International Postgraduate School, Slovenia2

e-mail: luke.lucas@lsespace.com3

Mars Express, Mission Planning & Spacecraft Operations, Germany3

Bias Variance Labs, Slovenia4

e-mail: redouane.boumghar@free.fr5

LibreSpace Foundation, Greece5

University of Cambridge, United Kingdom6

Abstract—The gyroscopes on-board the Mars Express
(MEX) spacecraft, responsible for orientation and pointing
actions, are slowly decaying. On 16th April 2018, a new
software was deployed to MEX which reduces gyroscope usage
by 90%. In this paper, we investigate the effect of gyroless
flight on the power consumption of MEX’s thermal subsystems.
In particular, we train predictive models from telemetry data
obtained before the event on 16th April 2018 and estimate
their performance on time periods before and after the event.
This offers the chance to evaluate machine learning models
on new situations (e.g., gyroless scenarios) while these models
have been trained on scenarios that were yet unencountered.

The results show that the predictive performance of the
models estimated in the gyroless period is lower when
compared to the estimated performance before the event.
Notwithstanding, the estimated performance in both scenarios
is very good and the differences are not practically significant.
Hence, the models can be utilized for accurate prediction of
the thermal power consumption in practical sense.

Given MEX’s new gyroless situation, which is likely to occur
also on any other long lasting mission, we investigate the
impact of the gyroscopes on the thermal power consumption
and quantify the effects. Such modelling and analysis provides
important insight into the spacecraft’s new behavior, and still
allows for planning optimization of MEX’s operations, despite
the radical change in the operational methodology.

Keywords-machine learning, Mars Express, gyroscopes,
ensemble learning, predictive modeling, feature engineering

I. INTRODUCTION

Mars Express (MEX), a spacecraft operated by the
European Space Agency (ESA), has been orbiting Mars
since the beginning of 2004. It has provided a wealth of
scientific data about Mars such as evidence of the presence
of water on and below the surface of the planet, three-
dimensional renders of the surface as well as data about
the chemical composition of the Martian atmosphere.

The scientific payload of MEX consists of a suite of seven
instruments that provide global coverage of the planet’s
surface, subsurface and atmosphere. The instruments and

on-board equipment must be kept within their operating
temperature ranges, spanning from +50◦C to temperatures
as low as −180◦C. In order to maintain these predefined
operating temperatures, the spacecraft is equipped with an
autonomous thermal control system composed of 33 heater
lines as well as coolers. Power is supplied by electricity
generated by its solar arrays and stored in batteries to be used
during the eclipses. The thermal control system, together
with the platform units, consumes a significant amount of
the total available electric power, leaving a fraction to be
used for science operations.

After more than 16 years in space, MEX’s components
are slowly decaying, leading to reduced functionality and
ever decreasing remaining lifetime, e.g., the batteries are
now over 60% degraded, making accurate planning and use
of the available power essential. In 2017, the gyroscopes
on-board the spacecraft critical for maintaining its attitude,
orientation and control were approaching end of life.
Without gyroscopes the mission would end. To extend
MEX’s life, a novel functionality was developed; new
software reduced gyroscope usage by 90% and enabled
gyroless flight. The new software was deployed on 16th
April 2018. A drastic effect on the thermal control subsystem
was immediately evident. Every electronic unit consumes
power and emits heat, when in operation, including
the gyroscopes. Consequently, once the gyroscopes were
switched off the thermal subsystem had to compensate for
the lack of the heat source the gyroscopes had been.

In addition, gyroless flight has also required new
spacecraft orientations, pointing the top face of MEX to the
Sun, unusually illuminating and warming it, adding further
unknowns to the thermal model. As thermal regulation
on MEX is a complex and interwoven system, a change
in any one area of the spacecraft may have unforeseen
and dangerous consequences in other areas. Since going
gyroless, the thermal subsystem’s performance has altered

9

2019 IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT)

978-1-7281-1545-0/19/$31.00 ©2019 IEEE
DOI 10.1109/SMC-IT.2019.00006

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on August 18,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

218 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

markedly, previously established patterns and behaviors are
no longer present.

This lifesaving move to gyroless flight resulted in a
conundrum. A new gyroless thermal model was required
yet there was not enough data to create an empirical model,
which requires a good understanding of the changed thermal
behavior. At the same time, an accurate model was essential
to plan observations without risking dangerously discharging
the batteries during eclipses. In contrast, an overcautious
model would maintain MEX safety but at the expense of
missed science opportunities.

In this paper, we thus investigate the effect of operating
MEX without its gyroscopes on its thermal power
subsystem. We first learn predictive models from telemetry
data obtained before the ”event” of 16th April 2018
and evaluate their performance on two periods spanning
before and after the event. Next, to assess the impact of
gyroless flight on the thermal subsystems, we analyze the
feature importance scores obtained from models learned
on data gathered before and after the event. Finally we
show that despite radical changes in MEX operations, the
models provide insight to thermal behavior and an accurate
predictive tool.

The remainder of the paper is organized as follows.
Section II presents the data pre-processing procedure and
the machine learning methods used in this study. Section III
elaborates the design of the experiments, the results of which
are reported and discussed in Section IV. Finally, Section V
concludes the paper.

II. MATERIALS AND METHODS

A. Data

We use data provided by the European Space Operations
Centre at ESA, which consists of raw telemetry data (context
data) and measurements of the electric current of 33 thermal
power lines (observation data), for one Martian year of
MEX operations. We refer to these data as the training data
DTRAIN as shown in Fig. 1. For estimating the performance
of the learned models, the context part of the data was
used for generating the predicted values, that in turn where
evaluated using the real measured observation data.

Since in this paper we investigate the effect of the
gyroscopes on the behavior of the spacecraft, we generate
two test data sets with equal length of approximately 1/3 of
a Martian year. The first test data set, referred to as DG (cf.
Fig. 1), spans in the period when the gyroscopes were fully
operational, i.e., between 17th August 2017 and 16th April
2018. The second data set, referred to as DGLESS (cf. Fig. 1),
spans in the gyroless period, i.e., between 17th May 2018
and 15th December 2018.

The observation data consists of the electric current
measurements of the 33 power consumers, recorded once
or twice per minute. The context data consists of five
components:

Gyroscopes
OFF

Figure 1: The three data sets that were extracted from the
data, together with the two 1-month pauses between them.
The lengths of the time intervals are proportional to the
actual time spans of the data sets.

SAA - (Solar Aspect Angles) data contain the angles
between the Sun–MEX line and the axes MEX’s coordinate
system.
FTL - (Flight dynamics TimeLine events) data contain the
pointing and action commands that impact the position of
MEX, such as pointing the spacecraft towards Earth or Mars.
EVT - (Miscellaneous Events) data contain time intervals
during which MEX was in Mars’s shadow or records when
MEX is at apoapsis of its elliptical orbit. Note that, some
of these events can also be present in the FTL.
LTDATA - (Long Term Data) contain the distances between
different bodies i.e., MEX, Earth, Mars, the Sun as well as
the solar constant.

All raw data entries are time-stamped indicating when
the entry was logged. The time span between the two
consecutive entries varies from less than a minute (SAA)
to several hours (LTDATA). For a detailed description of
the task and the data, we refer the reader to [1].

To construct an appropriate data set for a learning
algorithm, we pre-process the raw data by first applying
an appropriate time resolution Δt (time interval between
two consecutive samples). In particular, we divide the time
span [tFIRST, tLAST) into subintervals [ti, ti+1), where ti+1 =
ti +Δt, where tFIRST is the first time-stamp in the DTRAIN,
and tLAST is the last time-stamp in the DGLESS. The value
of a given feature for a particular time interval is obtained
by aggregating measurements from the time interval at hand
that correspond to one or more components from the raw
telemetry data. Following the findings from [2], in this paper
we set Δt = 15min.

Using these data, we next focus on engineering new (more
informative) features from different parts of the context
data that may yield better predictive performance. More
specifically, following [2], we constructed Energy influx
features that describe the amount of solar energy falling on a
given face of the spacecraft in a given time interval [ti, ti+1).
The solar energy falling upon a side of the spacecraft
cuboid directly influences the amount of energy used by
the thermal lines that maintain the temperature in that part
of the spacecraft. The solar energy collected by the solar
panels influence the amount of available energy for science
operations and for recharging the spacecraft’s batteries.

The amount of energy received by a given surface is
proportional to the product of the effective area Aeff of the

10

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on August 18,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

219

surface and the solar constant c. If the area A is given, we
compute Aeff as Aeff = Amax{cosα, 0}, where α is the
angle between the Sun–MEX line and the outer normal �n
to the surface. Without any loss of generality, we assume
A = 1 for all surfaces, as the machine learning methods
that we use, are invariant to monotonic transformations of
features. The values of α for each of the seven surfaces
were computed directly from the SAA data, while c was
given in LTDATA. In addition to the effective area and the
solar constant, (pen)umbras have a considerable impact on
the energy influx, as MEX is plunged into the darkness of
Mars’ shadow. We define the amount of energy Ei

S that is
received by the surface S at time interval [ti, ti+1) as

Ei
S =

∫ ti+1

ti

Aeff(t) c(t)U(t) dt,

where U is the umbra coefficient, an approximation of the
proportion of Sun visible from the spacecraft. U takes the
value U(t) = 0 if the spacecraft is in an umbra, U(t) = 0.5
if the spacecraft is in a penumbra, and U(t) = 1 otherwise.
Instead of calculating exact integrals for Ei

S , we approximate
the values using the trapezoid-rule.

Furthermore, the thermal state of the spacecraft depends
not only on the current energy influx, but also on the energy
influx in the past. To capture this, we construct Historical
energy influx features for each of surfaces. A given historical
feature for surface S at time ti is computed as a sum of
energy influx during given historical time-frame:

Hi
S =

H∑

j=1

E
i−(j−1)
S ,

where H is the number of time-intervals included in the
historical feature. To account for different impacts of the
historical energy influx we construct historical features
with different time-frames, for different values of H ∈
{1, 2, 4, 6, 8}

Finally, to construct the final data sets, we add features
extracted from both the FTL and the EVT data. The FTL
data contain logs of pointing events and their time ranges.
For each pointing event in time interval [ti, ti+1), a feature
has value that equals the proportion of the time in [ti, ti+1),
during which the event is in progress. The EVT data contain
logs of events and their duration referring to the relative
position of MEX to Mars. From these we construct features
that encode this information in terms of ”time since last
occurrence” of a specific event.

The data can be accessed at http://spacelab.ijs.si (after the
completion of the review process).

B. Methods

To learn the predictive models and analyze the data we
employ predictive clustering methods able to address the
task of multi-target regression (MTR). These methods can

learn both local and global models for multi-target regression
(Fig. 2). The former models are learned for each target
variable separately. In contrast, the latter models are able
to predict several numeric target variables simultaneously
[3]. In this paper, we consider Random Forest of Predictive
Clustering Trees (RF-PCTs) - an ensemble method with
state-of-the-art predictive performance [2, 4], which can
construct single model for all target variables, therefore
substantially reducing the computational time needed for
obtaining a solution. This ability is inherited from the base
models in the ensemble, Predictive Clustering Trees (PCTs),
a generalization of decision trees used for a variety of
structured output learning tasks. Besides its performance,
RF-PCT is able to produce feature importance scores, i.e.,
ranking of the features w.r.t. their importance for each of the
target variables. In the remainder, we describe the important
details of the employed methods.

Random Forest of PCTs1[5] is an ensemble method [6]
that learns a set of PCT predictive models and combines their
predictions. The base models are learned from bootstrap
samples of the training set, where for each tree at each tree
node a random feature subset (with a user defined size)
is considered for selecting the best split. Such approach
allows for constructing a set of diverse predictive models
that can differ both in size and performance. In particular, it
takes three inputs: (1) training data DTRAIN, as well as two
hyper-parameters denoting (2) the number of trees M in the
ensemble and (3) the size of the feature subset considered
at each node split f . Each PCT in the ensemble is learned
with greedy recursive top-down induction algorithm on a
bootstrap sample of the input data set (line 3 of the Alg. 1).

The PCT algorithm (line 7 of Alg. 1) starts at the root
node of the tree by selecting a split test from a set of
candidate tests that are generated by a random feature
subset F of size f . The best test is greedily chosen by a
heuristic function that typically measures the impurity of
the target values of the examples in the subsets Ei of the
set E that this test results in. The goal of the heuristic
function is to guide the algorithm towards small trees with
good predictive performance (Algorithm 2). The number of
features that are retained is given as a function of the total
number of descriptive features FALL, e.g., f = �√FALL�,
f = �log2(FALL)�, f = FALL/4, etc.

Note that, in the case of the global MTR task, the heuristic
function is the average variance of the T targets, while the
predictions ŷ of each tree are defined as the averages of the

1The RF of PCT framework is implemented in the CLUS system
developed at the Jožef Stefan Institute, and available at http://source.ijs.
si/ktclus/clus-public

11

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on August 18,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

220 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

LOCAL MULTI-TARGET REGRESSION GLOBAL MULTI-TARGET REGRESSION

M11 M21}

n nt
Mt1

M1 M2 Mn

y1 y2 yt

DATA
DESCRIPTIVE FEATURES TARGETS

y1 y2 yt

y1 y2 yt y1 y2 yt
y1 y2 yt

ENSEMBLE ENSEMBLE

Figure 2: An overview of the local and global models for multi-target regression. The former models M are learned for
each of the t target variables separately. The latter model is learned for all t target variables simultaneously. For constructing
ensembles, n models are learned on different samples of the training data. Subsequently, the predictions of the ensemble
constituents are combined to obtain the final ensemble prediction.

Algorithm 1 Random Forest of PCTs (DTRAIN, M, f)

1: RF = ∅
2: for m = 1, 2, . . . ,M do
3: E = bootstrapSample(DTRAIN)
4: T = inducePCT (E , f)
5: add T to RF
6: return RF

7: where inducePCT (E, f)
8: F = random sample of f features
9: (t∗,P∗) = findBestTest(E,F)

10: if t∗ �= none then
11: for each Ei ∈ P∗ do
12: subtreei = inducePCT (Ei, f)
13: return N (t∗,

⋃
i{subtreei}) // internal node

14: else
15: return L (ŷ(E)) // leaf node

target values, namely

impu(E) =
1

T

T∑

j=1

Varj(E)

ŷ(E) = [y1(E), . . . , yT (E)]

where Varj(E) denotes the variance of the target yj in
the subset E ⊆ DTRAIN and yj(E) denotes its average.
Finally, the RF-PCTs algorithm outputs a set of PCTs, whose
predictions are combined (averaged per value) to obtain the
final ensemble prediction.

Genie3 feature ranking score. Random forests can
measure how much each feature contributed to the quality

of the predictive model. For this purpose, we use the Genie3
algorithm [7, 8]. Genie3 considers the amount of variance
reduction when a subset E ⊆ DTRAIN is split given a
particular feature. More specifically, if a relevant feature xi

is part of a test xi < ϑ, then the heuristic score h∗ (reduction
of the variance) of this split is high. Greater emphasis is put
on the features higher in the tree, i.e., on the splits where
|E| is larger. The Genie3 importance IGENIE3 of the feature
xi is defined as

IGENIE3(xi) =
1

|RF|
∑

T ∈RF

∑

N ∈T (xi)

|E(N)| h∗(N),

where RF is a forest of trees T , E(N) is the set of
examples that come to the node N , and h∗(N) is the value
of the variance reduction function described in Algorithm 2.

III. EXPERIMENTAL SETUP

In this paper, we investigate the effect of gyroless flying
of MEX on its thermal power subsystems. Our experimental
questions are formulated as follows:

Algorithm 2 findBestTest(E,F)
1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each xi ∈ F do
3: for each candidate test t do
4: P = partition induced by t on E
5: h = |E|impu(E)−∑

Ei∈P |Ei|impu(Ei)
6: if h > h∗ then
7: (t∗, h∗,P∗) = (t, h,P)
8: return (t∗, h∗,P∗)

12

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on August 18,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

221

1) How much do the predictions of the MEX power
consumption change when one ceases to use the
gyroscopes?

2) Are our models robust enough to offer a good
predictive performance in both flight scenarios?

3) Which parts of the spacecraft are mostly affected by
the changes?

A. Evaluation Procedure

To properly address the afore-mentioned experimental
questions, we carry out two lines of experiments. The
first line of experiments considers analyzing the predictive
performance of models learned on the training set DTRAIN
and evaluated on both test sets DG (when the gyroscopes
were still in full use) and DGLESS (when the gyroscopes
turned off). More specifically, we first investigate whether
there is a change between the two modes of flight. Therefore,
we learn and evaluate the performance of global and local
PCTs. Next, using the same setup, we construct local and
global random forests and evaluate their performance on
both test data sets. Note that, to prevent data leaks, we
separate the three data sets with two 1-month gaps as shown
in Fig. 1.

The quality of the predictions ŷ(x) is measured in terms
of the average root mean squared error RMSE , defined as

RMSE (ŷ) =

√√√√ 1

T

T∑

i=1

RMSE 2(ŷi), where

RMSE (ŷi) =

√√√√ 1

|DTEST|
∑

(x,y)∈DTEST

(yi(x)− ŷi(x))
2

If the actual gyroless flying dynamics is different from the
standard flying dynamics, then the model predictions should
be less accurate on DGLESS as compared to DG. This gives
us an indirect comparison of the flying scenarios.

In the second line of experiments, we analyze the
influence of the individual features in the two flying
scenarios. In particular, we directly compare the feature
importance scores obtained from two random-forest
ensembles learned on the DG and DGLESS separately. For
each ensemble we compute the Genie3 feature ranking and
compare their rankings in terms of Fuzzy Jaccard Index
(FUJI). FUJI measures the similarity between the different
sets of top ranked features, where lower values indicate large
discrepancies between the two rankings.

FUJI is defined as follows. Given two rankings ri =
(xi

(1), . . . , x
i
(FALL)

), 1 ≤ i ≤ 2, where xi
(j) denotes the j-th

top-ranked feature in ranking ri, accompanied by the feature
importance scores f i

j = IGENIE3(x
i
(j)): We define the sets

F i
j = {xi

(1), . . . , x
i
(j)} as the sets of top-ranked features of

ranking ri, for 1 ≤ i ≤ 2 and 1 ≤ j ≤ FALL.

The membership function μ of the feature xi
(k) for the set

F i
j is defined as:

μ(F i
j , x

i
(k)) =

{
1 ; xi

(k) ∈ F i
j

f i
k/f

i
j ; otherwise

.

Finally, FUJI(F 1
j , F

2
j) is defined as

FUJI(F 1
j , F

2
j) =

∑
x∈F 1

j

⋃
F 2

j

min{μ(F 1
j , x), μ(F

2
j , x)}

∑
x∈F 1

j

⋃
F 2

j

max{μ(F 1
j , x), μ(F

2
j , x)}

We plot the curves that consist of points (j, FUJI(F 1
j , F

2
j)),

1 ≤ j ≤ FALL, as shown in Fig. 4b.

B. Parameter instantiation

In this paper we follow a similar experimental setup as in
[2] and set the hyperparameters as follows: When learning
a single PCT, the minimal number of samples in a leaf
was set to 33 and M5 post-pruning technique was used.
For constructing a random forest of PCTs, we learn 200
trees and consider 25% of the number of features at each
splitting node. We keep the minimal number of samples in
a leaf setting to 33 and we do not use post-pruning.

IV. RESULTS AND DISCUSSION

In the first line of experiments, we evaluate the predictive
performance of the models learned on DTRAIN. Tab. I
presents the performance of the global and local PCTs,
where we observe two important results. First, both global
and local PCTs exhibit degraded performance (by cca 30%)
when evaluated on DGLESS as compared to their performance
on DG. This confirms our first hypothesis: There is a
difference between the standard and the gyroless-flying
dynamic.

Second, when evaluated on both data sets, the global
model gives more accurate predictions than their local
counterpart. These results indicate that the local models tend
to overfit to the training data since most of the local models
(30 out of 33) are larger in size than the global model that
models all 33 targets simultaneously.

Table I: Predictive performance of global and local single
PCTs evaluated on DG and DGLESS.

test set local model global model
DG 2.98 · 10−2 2.83 · 10−2

DGLESS 3.75 · 10−2 3.62 · 10−2

However, in general, single models are prone to overfitting
and have a limited ability to accurately predict future
phenomena. In the next line of experiments, we address the
second experimental question. Tab. II presents the results
of random forest ensembles with 200 PCTs base models
each. As expected, the results show that the ensembles
perform better and are more robust than their single-model

13

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on August 18,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

222 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33
Influx
EVT
FTL

(a) Local model, DG

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 all
Influx
EVT
FTL

(b) Global model, DG

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33
Influx
EVT
FTL

(c) Local model, DGLESS

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 all
Influx
EVT
FTL

(d) Global model, DGLESS

Figure 3: Distribution of different feature groups in the
feature rankings, for the 33 power lines. The rankings were
produced by a) the local and b) global ensembles, learned
on DG, and c) the local and d) the global model, learned on
DGLESS. In each of the individual diagrams, the presence of a
given feature group type is proportional to the sum of Genie3
relevance over the features from the group. The global
models allow for the additional global feature importance
denoted as all.

counterparts. In terms of the performance of the ensembles
on the standard and gyroless periods, the ensembles still
exhibit better performance (by cca. 30%) when tested on
DG as compared to DGLESS. This indicates that more robust
models are also able to identify the difference between the
two flying modes. However, the difference in performance
is not practically significant and therefore such models
can be still utilized for accurate prediction of the thermal
power consumption regardless of the time period used in
the learning phase.

Table II: Predictive performance of global and local Random
Forest ensembles of 200 trees evaluated on DG and DGLESS.

test set local model global model
DG 2.51 · 10−2 2.50 · 10−2

DGLESS 3.27 · 10−2 3.21 · 10−2

To address our last experimental question in terms of
assessing where the differences occur, we evaluate the

feature rankings obtained from two different random forest
ensembles. In particular, we first report on these analyses
on a ”macro” scale where we depict the resulting feature
rankings for all 33 targets obtained from local and global
random forests learned on the DG and DGLESS. We then
inspect in more detail and compare the feature rankings of
two local ensemble models that model the behavior of two
particular power lines NPWD2531 and NPWD2851 which
are located close to the gyroscopes. We refer to this analysis
as a ”micro” scale analysis.

Macro Scale. We start our analysis of feature rankings
with the comparison of influence of three groups of features:
Influx, EVT and FTL. The group of influx features contains
42 energy influx features, including the historical influx
features. The second group, EVT, contains 24 features that
base only on the EVT data, while the third group contains
17 features that were constructed from the FTL data. The
diagrams that present the amount of influence of the three
groups on given target, are shown in Fig. 3.

The results show that, while there is no significant
difference between local and global ensemble models, there
are some obvious differences between the feature rankings
obtained from the different periods. In particular, in the
DGLESS period, the Influx features have a smaller influence
on some targets as compared to their influence in the DG
period. Moreover, FTL features have less influence on the
targets y2, y8 and y11, whereas EVT features have more
influence on the targets y29 and y30. The latter is explained
by the fact that (pen)umbras were 2.6-times more frequent
in the time span of DGLESS, making some features from the
EVT group more important.

This difference can be further analyzed on Fig. 4, that
depicts the difference of the rankings obtained from the two
global ensembles learned on DG and DGLESS respectively. In
particular, Fig. 4 a depicts the feature importance scores of
all features obtained from the two ensembles. Note that, they
are sorted in a descending order with respect to their score
on DG. It can be seen that the most substantial difference
between the rankings occurs at the beginning, i.e., the top
most relevant features. This result is also confirmed by the
FUJI plot, depicted in Fig. 4 b. It shows that the biggest
discrepancy between the feature rankings is in the top 20
features. This means that the global random forest method
mostly relates to the Influx features when learning a model
on DG period, while in the DGLESS period the FTL and
EVT features are more important. Note, however, that this
difference besides being influenced by the abundance of the
gyroscopes, is also likely to be influenced by the larger total
amount of penumbras in DGLESS as compared to DG.

Micro Scale. In our last set of experiments, we report
on the feature importance analysis of the two thermal
power lines NPWD2531 (y11) and NPWD2851 (y28) located
close to the gyroscopes. Fig. 5 ab depicts the results for
NPWD2531, while Fig. 5 cd for NPWD2851.

14

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on August 18,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

223

Features

10−3

10−2

10−1

100

101

F
ea
tu
re

im
p
or
ta
n
ce

DG

DGLESS

(a)

1 20 40 60 80

Number of features

0.2

0.4

0.6

0.8

1.0

F
u
ji

(b)

Figure 4: Comparison of the rankings obtained from global ensemble model on the datasets DG and DGLESS. Figure a) plots
all the feature importance scores sorted in descending order with respect to their score on DG. Figure b) plots the FUJI
values computed from the two rankings.

Features

10−11

10−9

10−7

10−5

10−3

10−1

101

103

F
ea
tu
re

im
p
or
ta
n
ce

DG

DGLESS

(a)

1 20 40 60 80

Number of features

0.2

0.4

0.6

0.8

1.0

F
u
ji

(b)

Features

10−3

10−2

10−1

100

101

102

F
ea
tu
re

im
p
or
ta
n
ce

DG

DGLESS

(c)

1 20 40 60 80

Number of features

0.2

0.4

0.6

0.8

1.0

F
u
ji

(d)

Figure 5: Comparison of the rankings, computed with the local model on the datasets DG and DGLESS, for the power line
NPWD2531 (first row) and NPWD2851 (second row). Figures a) and c) plot feature importances of the features, where
features are sorted by their importance on DG. Figures b) and d) give the values of FUJI, computed from these two rankings.

We first analyze the power line NPWD2531 and see that
feature importance score from DG are orders of magnitude
smaller than DGLESS. The reason for this is, that the heater
was turned off during the time span of DG, and it was
mostly used in the time span of DGLESS. Next, besides having
different scales of the scores, as shown in Fig. 5 b the

rankings of the features are also different. The FUJI value at
the beginning is very low, however, since both rankings have
(different) Influx at the top, the similarity starts to increase.
After that, the similarity decreases again since the model
learned on DG continues to relate to Influx feature while

15

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on August 18,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

224 Chapter 8. Case Study: Predicting Mars Express Thermal Power Consumption

the model learned on DGLESS finds the EVT features more
valuable.

On the other hand, the situation with the rankings for
NPWD2851 is a bit different. Here, Fig. 5c already reveals
that both rankings are quite similar having similar top ranked
features (Influx). This is confirmed by the high FUJI values
in Fig. 5d. The explanation for this is that the NPWD2851
power line was used throughout the whole time span of DG
and also in some periods of DGLESS, except for the period
when was changed with NPWD2531.

V. CONCLUSIONS

As MEX ages, operational methods continue to change
and the development of a reliable model of the thermal
subsystems becomes a repeating issue. On 16th April 2018
a new software, that reduces the usage of the decaying
gyroscopes, was deployed on MEX. While the effect on the
thermal control subsystem was immediately evident, the lack
of data made manual creation of accurate empirical model
virtually impossible.

In this paper, we employ state-of-the-art machine learning
methods to investigate the effects of gyroless flight on the
power consumption of MEX’s thermal subsystems. Using
these methods, able to adress both local and global multi-
target regression tasks, we first aim to identify and quantify
the difference between the two modes of operating MEX.
Next, we employ these machine learning methods that
address the data scarcity issues and are able to produce
robust and accurate predictive models.

The results show that, while the employed machine
learning methods perform very good in terms of predictive
performance. The difference in performance when evaluated
on periods with different flight modes has no practical
significance. More specifically, both local and global
ensemble models show better performance when evaluated
on the period with operational gyroscopes. When evaluated
on the gyroless period, the models exhibit slightly worse
performance. However, given the limited availability of
training data such performance deterioration, from an
engineering perspective, makes no substantial difference
to the total power predictions. Moreover, in terms of
comparing the predictive performance of the local vs. global
models, our experimental study shows that the global model
perform better than their local counterpart. And while this
difference in performance is not substantial, note that the
global ensemble models are significantly more efficient to
construct.

In addition to predictive power, the ensembles allow also
for the interpretation of the results via feature rankings. The
feature rankings detect that the conditions that MEX was
operating in, differ between DG and DGLESS. In particular,
we show that i) turning the gyroscopes off influences some
of the power lines, and ii) there are also other factors of
influence, such as the length of (pen)umbras. The former

can be particularly well observed in the case of the power
line NPWD2531 that is located right next to the gyroscopes,
and was turned off while the gyroscopes were fully working,
since it was more efficient to use power line NPWD2851
instead. However, in the gyroless scenario, it is more
efficient to use the power line NPWD2531, and the change
is clearly reflected in the feature rankings.

There are several directions to continue the work
presented in this paper. First, note that the FTL data is
available immediately after a certain operation has been
executed. This means that using such data in predictive
scenarios for longer time horizons is not possible. On
the other hand, omitting them from the learning process
might have a severe consequence on the performance of the
predictive models. Therefore an immediate continuation of
the work presented in this paper is to investigate different
approaches for engineering new features. Such features,
besides being used for learning accurate predictive models,
will also be used for investigating more complex relations
present in the data that influence the behaviour of the
spacecraft. Finally, the methods presented in this paper
can be extended to other subsystems of MEX and other
spacecraft.

The machine learning model’s robustness and accuracy
despite changing operational contexts, especially in
comparison to the empirical models inherent development
lag and inaccuracy, are push factors for the integration of
machine learning into the flight control team’s suite of
tools. The ultimate goal being to use these machine learning
methods for science observation planning.

ACKNOWLEDGMENT

We acknowledge the financial support of the Slovenian
Research Agency via the grants P2-0103, J2-9230, J4-7362,
L2-7509 and the young researcher grants for MP.

REFERENCES
[1] Luke Lucas and Redouane Boumghar. Machine learning for spacecraft

operations support - The Mars Express Power Challenge. In Sixth
International Conference on Space Mission Challenges for Information
Technology, SMC-IT 2017, pages 82–87, 2017.

[2] Matej Petković, Redouane Boumghar, et al. Machine learning for
predicting thermal power consumption of the mars express spacecraft.
IEEE Aerospace and Electronic Systems Magazine, 34(6), 2019.

[3] Hanen Borchani, Gherardo Varando, et al. A survey on multi-output
regression. Data Mining and Knowledge Discovery, 5(5):216–233,
2015.

[4] Martin Breskvar, Dragi Kocev, et al. Predicting thermal power
consumption of the mars express satellite with machine learning.
In Sixth International Conference on Space Mission Challenges for
Information Technology, SMC-IT 2017, pages 88–93, 2017.

[5] Dragi Kocev, Celine Vens, et al. Tree ensembles for predicting
structured outputs. Pattern Recognition, 46(3):817–833, 2013.

[6] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.
[7] Vân Anh Huynh-Thu, Alexandre Irrthum, et al. Inferring regulatory

networks from expression data using tree-based methods. PLOS ONE,
5(9):1–10, 09 2010.

[8] Matej Petković, Dragi Kocev, et al. Feature ranking for multi-target
regression. Machine Learning Journal, 2019. Under Review.

16

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on August 18,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

225

227

Chapter 9

Relational Feature Generation and
Ranking

In this chapter, we present in detail the fifth and final set of contributions of the thesis:
those concerning the relational learning setting. Our contributions in this context include:

1. An extension of decision trees for classification and ensembles thereof to the context
of classification in a relational setting.

2. An extension of ensemble-based feature ranking scores for classification from the
context of tabular data to the relational setting.

3. An extensive experimental evaluation of the newly proposed relational tree ensembles
and feature importance scores on a collection of benchmark datasets.

Chronologically, we first proposed an extension of classification trees and ensembles
thereof (together with a relational adaptation of the Genie3 score) in a paper presented at
the ISMIS-2020 conference (Petković, Ceci, et al., 2020). Somewhat different to the other
experiments presented in this thesis, we first extended the gradient boosting ensembles since
they tend to allow for shallower trees, which is beneficial in terms of the time-complexity
of the method. The main finding regarding the feature rankings was that they are relevant
and make sense, as long as the underlying model successfully learns the target concept.

We then extended this paper to a journal submission (Petković, Pio, et al., 2020).
We included the bagging and random forest ensembles, and experimented also with the
Symbolic ranking score. Moreover, we compared the performance of our (ensembles of)
relational trees to the performance of the other state-of-the-art relational classifiers, and
analyzed the sensitivity of boosting ensembles to their hyperparameters, since tuning all
of them takes a considerable amount of time if not parallelized.

The main findings are that the proposed classifiers achieve high accuracy and outper-
form the current state-of-the art. For many datasets, critical to achieving such performance
is the inclusion of aggregates in the tests in the internal nodes of the trees. Moreover, the
obtained models are explainable since the proposed two feature ranking scores (Genie3 and
Symbolic) yield intuitively correct feature rankings for the considered datasets.

The work presented in this Chapter refers to the following hypotheses (as defined in
the introduction):

H2: It is possible to extend ensemble-based approaches to classification and the corre-
sponding feature ranking methods to handle relational data.

H10: The proposed ensemble-based approaches to relational classification yield state-of-
the-art performance as well as relevant feature rankings.

228 Chapter 9. Relational Feature Generation and Ranking

These two hypotheses are confirmed with the design and implementation of the ensemble-
based approaches to relational classification and feature-ranking, presented in this Chapter,
and the experimental study comparing their performance.

The papers included in this Chapter are:

• Petković M., Ceci M., Kersting K., Džeroski S. Estimating the Importance of Rela-
tional Features by using Gradient Boosting. In Proceedings of the 25th International
Symposium on Methodologies for Intelligent Systems. Graz, 2020.

• Petković, M., Pio, G., Ceci, M., Škrlj, B., Kersting, K., and Džeroski, S. Relational
Tree Ensembles and Feature Rankings. Artificial Intelligence, 2020. To be submitted.

The contribution of Matej Petković to these papers are as follows. MP con-
tributed to the design of the ensemble-based relational classification and feature ranking
methods, and implemented these methods in computer code. He also participated in de-
signing the experiments, carried out the experiments, and processed their results. He
drafted the papers and revised them following the feedback from the co-authors and re-
viewers.

Estimating the Importance of Relational
Features by using Gradient Boosting?

Matej Petković1,2[0000−0002−0495−9046], Michelangelo
Ceci1,3[0000−0002−6690−7583], Kristian Kersting4[0000−0002−2873−9152], and Sašo

Džeroski1,2[0000−0003−2363−712X]

1 Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia
2 Jozef Stefan Postgraduate School, Jamova 39, Ljubljana, Slovenia

{matej.petkovic,saso.dzeroski}@ijs.si
3 Università degli Studi di Bari Aldo Moro, via E. Orabona 4, Bari, Italy

michelangelo.ceci@uniba.it
4 CS Department, TU Darmstadt, Hochschulstrasse 1, Darmstadt, Germany

kersting@cs.tu-darmstadt.de

Abstract. With data becoming more and more complex, the standard
tabular data format often does not suffice to represent datasets. Richer
representations, such as relational ones, are needed. However, a rela-
tional representation opens a much larger space of possible descriptors
(features) of the examples that are to be classified. Consequently, it is
important to assess which features are relevant (and to what extent) for
predicting the target. In this work, we propose a novel relational feature
ranking method that is based on our novel version of gradient-boosted
relational trees and extends the Genie3 score towards relational data. By
running the algorithm on six well-known benchmark problems, we show
that it yields meaningful feature rankings, provided that the underlying
classifier can learn the target concept successfully.

Keywords: feature ranking · relational trees · gradient boosting

1 Introduction

One of the most frequently addressed tasks of machine learning is predictive
modeling, where the goal is to build a model by using a set of known examples,
which are given as pairs of target values and vectors of feature values. The
model should generalize well to previously unseen combinations of feature values
and accurately predict the corresponding target value. In this paper, we limit
ourselves to classification, i.e., to the case when the target can take one of finitely
many nominal values. For example, when modeling the genre of a movie, the
possible values might be thriller, drama, comedy and action.

In the simplest and most common case, the data comes as a single table
where rows correspond to examples and columns to features, including the target.

? This is financially supported by the Slovenian Research Agency (grants P2-0103,
N2-0128, and a young researcher grant to MP).

229

2 M. Petković et al.

Fig. 1: The movies dataset consists of 5 tables and 4 relations among them.
Single and multiple ends on the connections among the tables represent one-to-
(or -to-one) and many-to- (or -to-many) relations, respectively. The task at hand
is to predict the property Category (genre) of a movie (shown in bold).

However, when predicting the genre of a movie, it might be beneficial to not only
know the properties of the movie (i.e., the feature values), but also to have access
to the properties of ratings of the movie (e.g., number of stars and date) on
some website. As a consequence, the data is now represented by two tables: one
describing the movies and the other one describing the ratings. A link between
them might then be the relation belongsTo(rating,movie) that tells which movie
a given rating rates. The actual movies dataset used in our experiments (shown
in Fig. 1) contains five additional tables and four relations among them.

In the era of abundance of data, such complex datasets are more and more
frequent in various domains, e.g., sports statistics, businesses, epidemiology [14],
among others. In biology, for instance, protein networks [18] encode complex
data about proteins and their functions, together with different protein-protein
interactions. Concrete examples are given in Sec. 5. In all these cases, relational
data are very much of interest because they offer a powerful representation lan-
guage where a broad spectrum of predictive modeling tasks can be applied. A
notable example is link prediction where the goal is to predict whether two ex-
amples are in a given relation or not [4], say, two researchers are co-authors of
a paper [16]. It is also possible to predict links of multiple types [3]. Another
prominent task is classification. For example, movies can be categorized into
different genres. Again, predicting multiple targets is possible [12,14].

The main focus of the present paper, however, is not predictive modeling, but
rather feature ranking. In the simplest case when the data is given as a single
table, the task of feature ranking is to estimate the importance of each descrip-
tive feature when predicting the target value. The features are then ranked with
respect to their importance. A possible motivation for performing feature rank-
ing is dimensionality reduction. Discarding the less relevant features from the
dataset (before proceeding to predictive modeling) results in lower time and
space complexity of learning the models, which may also be more accurate since
a lower number of features reduces overfitting. Moreover, feature ranking can

230 Chapter 9. Relational Feature Generation and Ranking

Importance of Relational Features using Gradient Boosting 3

explain black box models such as ensembles of decision trees [1,5] or neural
networks, which may be of crucial importance in domains such as medicine.

Feature ranking on relational data, however, is not a trivial task. In fact,
with two tables or more (and relations between them) at hand, the notion of
a feature is a more general concept. It can refer to a relation between tables
or to a descriptive attribute, which is part of the description of the objects in a
given table. Furthermore, the existing relations and descriptive attributes can be
combined into new ones. For example, the schema in Fig. 1 implicitly defines a
feature whose value for a given movie is the name of the nation which contributes
the highest number of ratings for the movie. Consequently, the feature space can
be extremely large, and discovering only the most relevant features for a given
predictive modeling task might have a high value. A feature ranking algorithm
can estimate the importance of the features explicitly given (such as release date
in the movies dataset), or it can use some heuristic to construct new features
from the ones existing in the descriptive relations.

In this paper, we propose a feature ranking algorithm that focuses on the
second approach, i.e., heuristically introduces new features. The novel heuristic
for building relational trees starts the search for relevant features at those which
are explicitly given, and gradually proceeds towards more and more complex
ones if needed. To improve the quality (and stability) of feature rankings, we use
gradient boosting ensembles [5] instead of a single tree. Once the ensemble is
built, feature ranking is seamlessly computed out of it by using the adaptation
of the Genie3 score [9].

The remainder of the paper is organized as follows. Sec. 2 explains the nec-
essary background and notation, Sec. 3 reviews related work, Sec. 4 introduces
our extension of gradient boosting to relational data and our novel feature rank-
ing algorithm, Sec. 5 gives the experimental setup, while Sec. 6 the results are
discussed. Finally, Sec. 7 concludes the work.

2 Background on Relational Predictive Modeling

Let X be a generic domain that identifies an object type and x be an example
(instance) of such type. Every object x ∈ X is represented in terms of its ID
(object identifier) and a list of attribute values. A relation r of arity t ≥ 1
is defined as a subset of a Cartesian product of the domains Xi of relation’s
arguments Xi, 1 ≤ i ≤ t. The fact that x1 ∈ X1, . . . , xt ∈ Xt are in a relation r,
is denoted either as (x1, . . . , xt) ∈ r or r(x1, . . . , xt).

If t = 1 the relation describes a property of a single object, e.g., isMale(user).
If t = 2, the relation is said to be binary. A binary relation is one-to-many if
each x1 ∈ X1 is in a relation with at least one x2 ∈ X2, and each x2 is in a
relation with exactly one x1. The other three cases (one-to-one, many-to-one
and many-to-many) are defined analogously.

The goal of the relational classification task is thus to learn a model that
uses descriptive relations to predict the target relation r(X0, Y) where the first
component corresponds to the example to be classified and the last component

231

4 M. Petković et al.

corresponds to the target values. For the link prediction task, the target relation
is of form r(X1

0 , X
2
0 , Y) where both X1

0 and X2
0 correspond to examples and

the last component corresponds to the target values. Thus, a relational repre-
sentation of the data elegantly unifies different classification tasks into the same
framework. However, in this work, we focus on the r(X0, Y) target relations only.

A dataset is typically stored as a group of tables and relations between them.
For example, the movies dataset in Fig. 1 contains five tables that describe five
different types of objects: movies, ratings, users, nations, and regions. Every
movie is given as a 5-tuple, consisting of movie ID, title, release date, url, and
category. Similarly, ratings are given as 4-tuples of user ID (the author of the
rating), movie ID (the movie that rating refers to), stars and date.

Since both the fist component of movies and the second component of ratings
are of the same type (movie ID), the dataset also implicitly defines the one-to-
many relation via which we can find, for example, all ratings of a given movie.
Similar links exist between users and ratings (connected via user ID columns),
between users and nations, and between nations and regions. Should there be a
relation among users, e.g., isARelative, we would need an additional table, e.g.,
relatives, that would contain two columns (both of the type user ID) and would
explicitly list all the pairs of relatives.

Prior to applying our algorithm (and also the majority of those discussed in
the related work), the data at hand should be converted into a pure relational
representation, coherent with the formal description above, where all facts are
given as relation elements r(x1, . . . , xt), e.g., gender(Ana, female).

3 Related Work

Since our feature ranking is embedded into a classifier [7], it is closely related to
relational ensemble techniques. Gradient boosting of relational trees is proposed
in [11]. It takes relations (given as sets of tuples) as the input and builds gradient-
boosted regression trees. As usual, multi-class problems demand 1-hot encoding
of the target variable, which converts the original dataset into a series of 1-versus-
all classification problems, and an ensemble is built for each of them separately.
In turn, a tree induction in an ensemble bases on the TILDE learner [17] and its
predecessor FOIL [13], which results in two possible limitations of the method.

First, it allows only for the nominal descriptive features, thus the numeric
ones (e.g., age of a user) should first be discretized into bins which results in the
loss of ordering of values. The second possible limitation are candidate tests in
the internal nodes of the trees. Without loss of generality, we assume that the
variable X0 that corresponds to the example ID whose target values is to be
predicted, always appears as the first component of a relation r. In this case, the
candidate splits are of two types. First, a split can be a conjunction of predicates

r1(X0, x
2
1, . . .)∧ · · · ∧ rj(X0, x

2
j , . . .)∧ rj+1(x1

j+1, x
2
j+1, . . .)∧ · · · ∧ r`(x1

` , x
2
` , . . .)

where ` ≥ 1, and xk
i is the value of the variable at position k for relation ri.

Second, some of the variables Xk
i may not be grounded yet (i.e., their value is

232 Chapter 9. Relational Feature Generation and Ranking

Importance of Relational Features using Gradient Boosting 5

not determined). In that case, a split is of the form

∃ Xk1
i1

. . . ∃ Xkn
in

: r1(X0, x
2
1, . . .) ∧ · · · ∧ r`(x

1
` , x

2
` , . . .) (1)

where n is the number of non-grounded variables. When the actual example ID
x0 reaches a split, X0 takes its value, the split is evaluated, and the example
follows the YES or NO branch accordingly. That means that having splits like Is
the average age of users that rated a movie, larger than 60? is not possible. That
was overcome by introducing aggregates into TILDE [17]. There, also constrained
aggregation is possible, e.g., Is the average age of users that have contributed at
least 5 ratings in total, and have rated the given movie, larger than 60?. For the
exact formulation of the possible split tests, we refer the reader to [17] where
the extension of the method to relational random forests is described.

Regarding relational feature ranking methods, there is only the FARS method
[8], which belongs to the group of filters [7], i.e., no predictive model is needed for
computing the ranking. As such, it cannot be used for explaining the decisions
of classifiers. It is suitable for classification datasets and is based on propagation
of the class values from the table that contains the target attribute to the other
tables. The method supports neither estimation of numeric attributes nor the
estimation of implicitly defined features.

4 Our Method

Here, we describe our two contributions. We first present the proposed test split
generation for relational trees (and boosting ensembles). Afterward, the proposed
feature ranking approach is introduced.

4.1 Relational Gradient Boosting with Aggregates

Relational trees are built with the standard top-down induction procedure [2]
whose main part is greedily finding the optimal test (according to a heuristic h
that is based on an impurity measure, e.g., Gini index [2]) that splits the data
into two subgroups. The point at which relational tree induction differs from the
standard one is how the candidate splits are created. Indeed, one option is using
TILDE with aggregates. However, also from the feature ranking perspective, we
find the following feature-value back-propagation splits more appropriate, since
by doing so (in contrast to TILDE), we can directly link the values of a given
feature to the given example ID, no matter which table is the feature present in.

Consider Fig. 2, which depicts our candidate test generation. Each test is
generated in two stages. First (as shown in Fig. 2a), we start from an example
ID x0, and follow any relation r1 where x0 can appear in. The group g1 of all
tuples xi

1 ∈ r1, which x0 is part of, is thus found. Then, for each of the tuples
xi
1, we recursively repeat the search from xi

1, thus finding the group of examples
gi2 by following any relation r2 that shares at least one input domain X with
relation r1. The search is finished after at most ` steps which is a user-defined

233

6 M. Petković et al.

x0 xi
1

x1
1

x1
n1

xi
2

x1
2

x2
n2

r1

r1

r1

...

...

g1

r2

r2

r2

...

...

gi2

a1(g1) a2(g
i
2)

a2(g
1
2)

a2(g
2
n1
)

xi
2

x1
2

x2
n2

a1

a1

a1

...

...

g1

a2

a2

a2

...

...

gi2

(a)

x0 xi
1

x1
1

x1
n1

xi
2

x1
2

x2
n2

r1

r1

r1

...

...

g1

r2

r2

r2

...

...

gi2

a1(g1) a2(g
i
2)

a2(g
1
2)

a2(g
2
n1
)

X2(x
i
2)

X2(x
1
2)

x2
n2

a1

a1

a1

...

...

g1

a2

a2

a2

...

...

gi2

(b)

Fig. 2: Candidate test generation: Finding related tuples by following descriptive
relations (a), and back-propagation of the feature values by aggregation (b).

parameter. In Fig. 2a, we have ` = 2. For example, following the schema of the
movie data set in Fig. 1, we might start from x0 = titanic, and find the group
g1 of all pairs xi

1 = (titanic, ratingIDi). For each such pair, a (singleton) group
gi2 of all pairs (ratingIDi, stars) is found.

After the search is finished, the back-propagation of feature values by ag-
gregation starts, by choosing one of the variables that were introduced in the
last step of the search. Let this be X`, i.e., X2. Its type defines possible starting
aggregates. We can always use count or countUnique. Additionally, we can use
max , min, mean, and sum if X2 is numeric, and mode if X2 is nominal. The
data type returned by the first aggregate in turn defines the possible options for
the next one in the chain. In general, we proceed form right to left (Fig. 2b).

By using aggregate a2, we aggregate every group gi2 over X2. Following the
example above, the variable at hand would be the number of stars. Then, the
tuple xi

1 ∈ g1 is effectively replaced by the aggregated value a2(gi2). After this is
done for all tuples xi

1, the group g1 is similarly aggregated into the final value
a1(g1). If we set a2 to mean and a1 to max , in the above example, we compute
the maximal rating of a movie (the mean of a single value is the value itself).

Finally, the procedure for generating candidate splits proceeds to finding the
optimal threshold ϑ the aggregated values are compared against, and chooses
the best test among the candidates. This covers also the existentially quantified
split tests in Eq. (1) if ϑ = 0 and the aggregates are set to count . This motivates
the idea to allow the algorithm to continue the search for a good split in the
YES-child at any of the steps from its parent node.

Therefore, the evaluation of the tests becomes more time-consuming deeper
in the tree, so gradient boosting [5] where the trees are shallower is more efficient
than, e.g., bagging [1] where bias-variance decomposition of the error reveals that
trees should be grown to a full depth.

234 Chapter 9. Relational Feature Generation and Ranking

Importance of Relational Features using Gradient Boosting 7

Using aggregates is necessary since the preliminary experiments (not part of
this work) show that this increases the expressiveness of the splits which reflects
in substantially improved predictive power of the models.

4.2 Feature Ranking

Now, we are ready to introduce our novel relational feature ranking. Let (R,A, ϑ)
be a triplet denoting a test in a node N in a tree T , where R and A are lists
of relations and aggregates used in the test. The size s of a test is defined as
s = |R| (= |A|). Let E(N) be the set of examples that reach the node N , and
h(N) the heuristic value of the split in N [2]. We write r ∈ N if r ∈ R. Then, a
natural extension of the Genie3 score [9] for the already existing relations r is

importance(r) =
∑

T

∑

N∈T

1[r ∈ N]

s(N)
h(N)|E(N)|, (2)

where 1 is the indicator function. The definitions says that all relations that
appear in a given node are rewarded equally and proportionally to the heuristic
value. The term |E(N)| assures that relations that appear higher in a tree (and
influence more examples) receive bigger award.

Please note that Eq. (2) is naturally extended to (parts of) lists R of rela-
tions by summing up the importances of their atomic parts. Note also that the
relations and combinations thereof that do not appear in the ensemble, have the
importance score with the value 0.

5 Experimental Setting

In order to investigate the performance of our relational feature ranking methods,
we computed feature rankings for six well-known datasets. In addition to the
movie dataset (shown in Fig. 1), these were: basket [10] (basketball players,
coaches, teams, etc.), IMDB [6] (movies, actors, directors, etc.), Stack [15] (user
posts, users and comments), and Yelp [19] (different businesses, their reviews,
users etc.). Additional statistics for the data are given in Tab. 1.

In our experiments, the quality of the underlying predictive model will be
used as a proxy for the quality of the ranking, thus 10-fold cross-validation (CV)
is performed. For each training set, internal 3-fold CV was performed to tune
the boosting parameters via grid-search. The parameters (and their possible
values) that were optimized are shrinkage ({0.05, 0.2, 0.4, 0.6}), proportion of
chosen examples ({0.6, 0.8, 1.0}), proportion of the evaluated tests in a node
({0.2, 0.4, . . . , 1.0, sqrt}), and maximal depth of trees ({2, 4, 6, 8}). Ensemble size
was set to 50 and the size of splits was ` ≤ 2.

6 Results and Discussion

The experimental results are summarized in Fig. 3. It shows the feature impor-
tances, averaged over the 10-folds of CV, and the three most relevant features,

235

8 M. Petković et al.

for each dataset. We observe two qualitatively different results: for the datasets
basket, Stack and UWCSE (and to some extend Yelp), it is evident that feature
importance score have mostly converged to their final values, meaning that the
Gini heuristic in the splits goes down to 0.0 and the trees with higher indices
do not influence the ranking or predictions of the model. This is confirmed by
the accuracy of the corresponding models: 0.98 (basket), 0.95 (Stack), 0.83
(basket) and 0.88 (Yelp). Since accuracy on the training sets are even higher,
this means that only a few training examples are being miss-classified and the
target values at 50-th iteration are mostly close to 0.0.

The two most prominent members of the second class of results are IMDB and
movie where the feature importance scores are still noticeably growing. On the
other hand, the order of the features is mostly fixed, so trees are similar to each
other, but unable to fully solve the predictive problem. Indeed, the accuracy of
the corresponding two models is 0.63 (IMDB) and 0.57 (movie) which is closer to
the default accuracy than in the previous cases (see Tab. 1).

The next observation is that for all six datasets, a group of 1–3 most im-
portant features is established. The difference between this group and the other
features is most notable for the UWCSE dataset. Here, the goal is to predict,
which discipline a given course belongs to, and the most important relation
is taughtBy(course,person, session). This is not surprising as it is also the link
to the advisedByDiscipline(person,person,discipline), ranked second. Since pro-
fessors typically work only in one discipline, the discipline a professor advises
someone in, is likely equal to a discipline that the professor teaches.

A similar difference between the top feature and the others is visible also in
the cases of the Yelp dataset (as well as for basketball). In the case of Yelp, the
goal is to predict the category of a business (e.g., restaurant, Health&Medical
etc.), and counting in how many tuples of the attributes relation a business
appears, is a good indication of the target value. For example, restaurants tend
to have a lot of attributes such as classy, hipster, romantic, dessert etc. whereas
Health&Medical places are sometimes described only by ByAppointmentOnly.

In the cases where the models are not that accurate, feature ranking is a way
of seeing whether the model overfits and if some relations should be excluded
from the descriptive space. This happens in the case of the IMDB dataset where

Table 1: Data characteristics: number of tables, number of relations in the final
representation, sum of relation sizes (number of descriptive facts), number of
target facts, number of classes, and the proportion of the majority class.

dataset tables relations descriptive facts target facts classes majority class

basket 9 118 630038 95 2 0.70
IMDB 21 57 614662 8816 4 0.58
movie 5 16 183469 1422 4 0.51
Stack 7 52 383040 5855 5 0.36
UWCSE 12 15 1961 115 5 0.25
Yelp 9 51 3348181 24959 4 0.57

236 Chapter 9. Relational Feature Generation and Ranking

Importance of Relational Features using Gradient Boosting 9

0 10 20 30 40 50
number of trees

0.0

0.1

0.2

0.3

fe
at

u
re

im
p

or
ta

n
ce coachSeasTeam

teamSeasD3pm

draftSelection

(a) basket

0 10 20 30 40 50
number of trees

0

2

4

fe
at

u
re

im
p

or
ta

n
ce movieAreaArea

movieCityCity

moviesTagsTagID

(b) IMDB

0 10 20 30 40 50
number of trees

0

5

10

fe
at

u
re

im
p

or
ta

n
ce ratingsIDMovie

moviesReleaseDate

ratingsStars

(c) movie

0 10 20 30 40 50
number of trees

0.0

0.1

0.2

0.3

fe
at

u
re

im
p

or
ta

n
ce postsParentID

postHistoryPostID

tagsExcerptPostID

(d) Stack

0 10 20 30 40 50
number of trees

0

1

2

fe
at

u
re

im
p

or
ta

n
ce taughtBy

advisedByDiscipline

authors

(e) UWCSE

0 10 20 30 40 50
number of trees

0

1

2

fe
at

u
re

im
p

or
ta

n
ce attributes

hoursClose

hoursOpen

(f) Yelp

Fig. 3: Development of feature importance values with the number of trees, for
different datasets. Every line corresponds to a feature that is present in an en-
semble. It’s color corresponds to the final feature importance at 50 trees. Addi-
tionally, the three most relevant features are listed.

the goal is to predict the genre of a movie but the most relevant feature is the
area where the movie was taken.

7 Conclusions and Future Work

We have proposed an adaptation of the Genie3 feature ranking to relational
data, using our adaptation of gradient boosting as the underlying ensemble,
and evaluated its appropriateness empirically. The main motivation for choosing
boosting was that the trees learned in boosting can be quite shallow as compared
to those learned in bagging. However, parameter-tuning for boosted relational
trees takes a considerable amount of time, so we plan to extend the proposed
approach to other ensemble methods, such as bagging and random forests (and
parallelize them). Also, the feature-ranking-motivated definition of the possible

237

10 M. Petković et al.

split tests will be evaluated in a predictive modeling scenario. Finally, we plan to
compare the different relational ensembles against each other and against other
learners.

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123140 (1996)
2. Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression

Trees. Chapman & Hall/CRC (1984)
3. Davis, D., Lichtenwalter, R., Chawla, N.V.: Multi-relational link prediction in het-

erogeneous information networks. In: 2011 International Conference on Advances
in Social Networks Analysis and Mining. pp. 281–288 (2011)

4. Dong, Y., Tang, J., Wu, S., Tian, J., Chawla, N.V., Rao, J., Cao, H.: Link prediction
and recommendation across heterogeneous social networks. In: 2012 IEEE 12th
International Conference on Data Mining. pp. 181–190 (2012)

5. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. The
Annals of Statistics 29(5), 1189–1232 (2001)

6. GroupLens Research: Imdb dataset, data retrieved from https://grouplens.org/

datasets/hetrec-2011/

7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3, 1157–1182 (2003)

8. He, J., Liu, H., Hu, B., Du, X., Wang, P.: Selecting effective features and relations
for efficient multi-relational classification. Computational Intelligence 26, 258–281
(2010)

9. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory net-
works from expression data using tree-based methods. PLOS ONE 5(9), 1–10 (09
2010). https://doi.org/10.1371/journal.pone.0012776

10. Moore, A.W.: Basket dataset, data retrieved from http://www.cs.cmu.edu/~awm/

10701/project/data.html

11. Natarajan, S., Kersting, K., Khot, T., Shavlik, J.: Boosted statistical relational
learners: From benchmarks to data-driven medicine, pp. 1–74. Springer (2014)

12. Pio, G., Serafino, F., Malerba, D., Ceci, M.: Multi-type clustering and classification
from heterogeneous networks. Information Sciences 425, 107–126 (2018)

13. Quinlan, J.R.: Boosting first-order learning. In: Arikawa, S., Sharma, A.K. (eds.)
Algorithmic Learning Theory. pp. 143–155. Springer Berlin Heidelberg (1996)

14. Serafino, F., Pio, G., Ceci, M.: Ensemble learning for multi-type classification in
heterogeneous networks. IEEE Transactions on Knowledge and Data Engineering
30(12), 2326–2339 (2018)

15. Stack Exchage: Stack dataset, data retrieved from https://archive.org/

details/stackexchange

16. Sun, Y., Barber, R., Gupta, M., Aggarwal, C.C., Han, J.: Co-author relationship
prediction in heterogeneous bibliographic networks. In: 2011 International Confer-
ence on Advances in Social Networks Analysis and Mining. pp. 121–128 (2011)

17. Vens, C.: Complex aggregates in Relational Learning. Ph.D. thesis, Faculteit In-
genieurswetenschappen, Katholieke Univeristeit Leuven (2007)

18. Škrlj, B., Kralj, J., Lavrač, N.: Targeted end-to-end knowledge graph decompo-
sition. In: Riguzzi, F., Bellodi, E., Zese, R. (eds.) Inductive Logic Programming.
Springer (2018)

19. Yelp: Yelp dataset, data retrieved from www.yelp.com/dataset_challenge

238 Chapter 9. Relational Feature Generation and Ranking

Relational tree ensembles and feature rankings

Matej Petkovića,b, Gianvito Pioc, Michelangelo Cecic,a, Blaž Škrlja,b,
Kristian Kerstingd, Sašo Džeroskia,b

aJozef Stefan Institute, Jamova 39, Ljubljana, Slovenia
bJozef Stefan Postgraduate School, Jamova 39, Ljubljana, Slovenia

cUniversità degli Studi di Bari Aldo Moro, via E. Orabona 4, Bari, Italy
dCS Department, TU Darmstadt, Hochschulstrasse 1, Darmstadt, Germany

Abstract

As the complexity of data increases, so does the importance of powerful rep-
resentations, such as relational and logical representations. The need for
machine learning methods that can learn predictive models in such represen-
tations is strong. A characteristic of these representations is that they give
rise to a huge number of features to be considered, thus drastically increasing
the difficulty of learning in terms of computational complexity and the curse
of dimensionality. Despite this, methods for ranking features in this context,
i.e., estimating their importance are practically non-existent.

Among the most well-known methods for feature ranking are those based
on ensembles, and in particular tree ensembles. To develop methods for
feature ranking in a relational context, we adopt the relational tree ensemble
approach. We thus first develop methods for learning ensembles of relational
trees, extending a wide spectrum of tree-based ensemble methods from the
propositional to the relational context, resulting in methods for bagging and
random forests of relational trees, as well as gradient boosted ensembles
thereof.

Complex relational features are considered in our ensembles: by using
complex aggregates, we extend the standard collection of features that cor-
respond to existential queries, such as ’Does this person have any children?’,
to more complex features that correspond to aggregation queries, such as
’What is the average age of this person’s children?’. We also calculate fea-
ture importance scores and rankings from the different kinds of relational
tree ensembles learned, with different kinds of relational features. The rank-
ings provide insight into and explain the ensemble models, which would be
otherwise difficult to understand.

Preprint submitted to Artificial Intelligence September 21, 2020

239

We compare the methods for learning single trees and different tree en-
sembles, using only existential qualifiers and using the whole set of relational
features, against 8 state-of-the-art methods on a collection of benchmark re-
lational datasets, deriving also the corresponding feature rankings. Overall,
the bagging ensembles perform the best, with gradient boosted ensembles
following closely. The use of aggregates is beneficial and in some datasets
drastically improves performance. In the latter cases, the aggregate-based
features clearly stand out in the feature rankings derived from the ensem-
bles.

1. Introduction

Nowadays, data are organized in complex structures, and the standard
tabular representation, where each row corresponds to an object and each
column corresponds to a characteristic, does not suffice anymore. Indeed,
in real-world scenarios, we can easily find objects of multiple types, possibly
described by different sets of characteristics, that are interconnected to each
other through multiple types of relationships. Finance, biology, epidemiol-
ogy and geography are just examples of application domains where such a
scenario is very common. In biology, for instance, protein networks [1] en-
code complex data about proteins and their functions, together with different
protein-protein interactions. Additional examples are reported in Sec. 5.1.

The application of standard machine learning methods to such data is not
straightforward, due to the additional complexity introduced by the need to
“navigate” the relationships. On the other hand, discarding the additional
information provided by connected objects may lead to learn weak models.
For example, if we are interested in learning a classification model for the
genre of a movie, the characteristics of movies themselves, e.g., titles and
release dates, might not be enough to discriminate among different genres.
On the other hand, if we include additional data about the ratings (with their
characteristics, e.g., date and value), as well as about users who provided such
ratings (with their characteristics, e.g., age, gender and job), the model may
have a better chance of accurately predicting the genre since, for example,
comedies attract different kinds of viewers as compared to dramas.

In this scenario, data can naturally be represented through a relational
database where data are stored in multiple tables, that are interconnected
via foreign keys that implicitly represent and define the relationships among
objects and their characteristics (i.e., columns). For example, the dataset

2

240 Chapter 9. Relational Feature Generation and Ranking

Movies (see Sec. 5.1) can be represented through the relational schema de-
picted in Fig. 1, where the table storing movies (that is the target of the
learning task) is linked to the table Ratings from which it is possible to
understand which Users provided such ratings as well as their characteris-
tics, spread over the table Users itself and other tables representing their
geographical location (Nations and Regions).

Figure 1: The relational schema of the Movies dataset, consisting of 5 tables. Fields shown
in bold represent primary keys (with a key symbol) and foreign keys (with an arrow). The
task at hand is to predict the property Category (genre) in the target table Movies.

A possible solution to analyze such data consists in the adoption of propo-
sitionalization approaches. They are mainly based on the transformation of
relational data into a propositional (or attribute-value or feature-based) form,
by constructing additional features that represent the relationships and the
properties of data related to target objects. This approach decouples the
construction of features from the phase of learning the predictive model [2],
in order to apply standard classification methods to transformed data [3].
Solutions based on propositionalization mainly resort to two different ap-
proaches, namely, database-oriented [4] or logic-oriented techniques [5]. The
former work by materializing joins according to foreign keys and allowing for
fast aggregations. The latter require data represented as Prolog facts and are
able to consider complex background knowledge. This aspect makes logic-
oriented propositionalization able to provide expressive first-order models by
constructing first-order logic features, at the cost of possible lower efficiency.

Differently, structural approaches take into account the structure of orig-
inal data and directly navigate the tables following the foreign keys. There-

3

241

fore, the whole hypothesis space is directly explored during the learning pro-
cess (see a more comprehensive overview in Sec. 2).

Following this line of research, in this paper, we propose a novel method,
called RE3PY1, to solve the classification task in the relational setting,
namely on the prediction of the value of a categorical attribute of previ-
ously unseen examples of a target table. RE3PY is based on the top-down
induction of decision trees [6], properly extended to the relational setting.
Split candidates are based on conditions on paths involving multiple tables
(following the foreign keys) and aggregates of attributes. Following the ex-
ample in Fig. 1, a path can convey information on: 1) the rating of a movie;
2) the author of the rating; 3) the age of the author, that can be aggregated
through the average, minimum, maximum aggregation functions, back to
the movie. In this case, we obtain new aggregated features associated to the
movie, representing the average, the minimum and the maximum age, respec-
tively, of the authors of the ratings of such movie. Similarly, we can generate
new features representing the nationality of the majority of the authors of
ratings associated to a given movie.

In RE3PY, by iterating over the possible combinations of relations and
aggregates, we construct multiple new features for the examples of the target
table during the learning phase and, once the most promising representa-
tion has been selected, others are discarded, making the process much more
space-efficient than approaches based on propositionalization [7]. Moreover,
RE3PY exploits different ensemble approaches such as Bagging, Random
Forests and Gradient Boosting, that have proven to provide a significant
contribution in terms of prediction accuracy [8, 9, 10].

An additional advantage of our method is the possibility to “motivate”
the returned predictions. This is in line with recent advances in machine
learning where the iterpretability of the models and the explainability of the
predictions are gaining increasing attention, especially in particular applica-
tion domains such as medicine [11, 12, 13]. Similarly to classical classification
and regression trees, models learned by RE3PY are inherently interpretable.
However, the adoption of ensemble techniques significantly compromises the
explainability of the predictions. Our method also considers this aspect by
providing interesting clues about the contribution provided by each feature
in the learned model. This is achieved by extending ensemble-based feature

1The implementation is available at https://github.com/re3py/re3py

4

242 Chapter 9. Relational Feature Generation and Ranking

ranking approaches [9, 14] to the relational setting. Feature ranking is a
task, tightly coupled with predictive modelling, which goal is that of deter-
mining to what extent a given descriptive attribute (feature) influences the
prediction of a target attribute. In the standard tabular setting, approaches
for feature ranking have been widely investigated [15] whereas, at the best of
our knowledge, this is the first work able to perform feature ranking in the
relational setting.

The remainder of the paper is organized as follows: Sec. 2 briefly describes
the work related to this paper; in Sec. 3 we provide the problem statement,
while in Sec. 4 we describe in detail the proposed method; in Sec. 5, we
describe the experimental setup, whereas in Sec. 6 we present and discuss
the results of our experimental evaluation; finally, Sec. 7 concludes the paper
and outlines some future works.

2. Related Work

The method proposed in this paper has its roots in the fields of relational
learning and heterogeneous network classification. In the following, we briefly
present existing work related to these research fields.

In the literature, we can find several historical methods, mainly based on
Inductive Logic Programming (ILP), that can solve the classification task
in the relational setting. Noteworthy approaches include Quinlan’s FOIL
[16], that learns function-free Horn clauses (a subset of first-order predicate
calculus), PROGOL [17], that combines inverse entailment with general-to-
specific search through a refinement graph that guarantees a solution with
the maximum compression in the search space, and TILDE [18], that learns
a predicate logic theory by means of a so-called logical decision tree, a first-
order logic upgrade of the classical decision trees. Such historical approaches,
although able to produce highly-interpretable and possibly accurate models,
easily turned out to be very inefficient in real-world scenarios.

The more recent method BoostSRL [19] extends TILDE towards the in-
duction of gradient boosting ensembles. However, in contrast to TILDE, it
does not exploit the aggregates, which makes tree (ensemble) induction faster
at the price of a lower quality of the models. Moreover, neither TILDE nor
BoostSRL, which can be considered the closest approaches to the method
proposed in this paper, offer the possibility to perform feature ranking. Ad-
ditional differences, mainly related to the language bias (that originate from

5

243

the strategy adopted to construct the splits in the internal nodes) are dis-
cussed in Sec. 4, where our method is presented.

A probabilistic approach is that followed by 1BC [20] and Mr-SBC [21][22],
that are based on the näıve Bayes classification method and use first-order
classification rules for the computation of the posterior probability for each
class. In addition, Mr-SBC exploits: i) logical factorization to simplify the
computation of the posterior probabilities [23]; ii) both discrete and contin-
uous attributes, that are discretized through a supervised approach; iii) the
database schema, during the generation of classification rules. In [24], two
relevant extensions of Mr-SBC have been proposed, namely ST-MrSBC (Self-
Training MrSBC), an ensemble-based approach that can capture autocorre-
lation phenomena by resorting to a self-training method, and MT-MrSBC
(Multi-Type MrSBC) that also predicts possible missing values and catches
dependencies among the models built for different relations.

In [25], the authors introduced the tool RelWEKA, which extends the
well-known WEKA toolkit in order to allow it to work in the relational
setting. In particular, it exploits specific relational distance measures (e.g.,
the Relational Instance-Based Learning (RIBL) measure [26]), and kernels
(e.g., the Minkowski RIBL set distance [27]) to implement the relational
variant of classical algorithms, such as k-NN and Support Vector Machines.

More recent approaches model relational data as information networks.
In this setting, tuples in a relational database correspond to nodes in the
network, while foreign keys correspond to edges [7]. Most of existing works
consider the within-network (or transductive) setting, that is, they model a
partially labeled network and estimate the label for unlabeled nodes. More-
over, initial works mainly focused on homogeneous networks, where all the
nodes are of the same type, related by one type of relationships. Approaches
in this area are mainly based on collective inference (see [28], [29], [30] and
[31]), active inference (see [32]), semi-supervised and transductive inference
(see [33], [34] [35] and [36]). One relevant example in the transductive clas-
sification setting is the work in [37], where the authors proposed GNetMine,
a graph-based regularization framework, that models the link structure in
arbitrary information networks, with an arbitrary number of types of objects
and links. GNetMine analyzes each sub-network associated with each type
of link and aims at preserving its consistency. Another relevant example is
RankClass [38], that combines ranking and classification tasks, by assum-
ing that highly-ranked objects within a class should play more important
roles in classification or, vice-versa, that class labels can be relevant to build

6

244 Chapter 9. Relational Feature Generation and Ranking

a good ranking. RankClass iteratively builds a graph-based ranking model
and, on the basis of the current ranking, adjusts the graph structure, in order
to strengthen the weights of links in the subnetwork corresponding to each
specific class, and to weaken links in the rest of the network.

Recently, in [39] the authors proposed a collective classification approach
which aims at classifying objects of the same type in a heterogeneous net-
work, on the basis of the analysis of meta-paths [40]. Meta-paths are se-
quences of link types connecting two objects to be classified, and are used
to effectively assign labels to groups of interconnected instances. Classifica-
tion is performed on a probabilistic fashion, on the basis of feature values
of the objects under analysis, on “relational features” associated with meta-
paths, and on the labels associated with objects appearing in meta-paths.
For further insights on this stream of research the reader can refer to [41].

Some recent works also proposed the adoption of the predictive cluster-
ing framework in the context of network data. However, most of them are
able to work only with homogeneous networks and, therefore, cannot ana-
lyze the possible heterogeneity of data and relationships, that is typical of
the relational setting. For example, in [42] the authors follow an approach
that combines a descriptive task (clustering) with a predictive task, and ar-
gue that using the network to represent data provides a unified framework
for identifying and characterizing patterns in climate data. The network is
actually built a-posteriori according to the Pearson’s correlation coefficient,
measured between pairs of nodes on the time series collected for the same
variable. A clustering algorithm then groups interconnected nodes, aiming to
minimizing the pairwise walking distance between nodes in the same cluster.
Finally, the prediction model is learned locally for each cluster. However,
this method tackles a regression task and, as clarified before, is not able to
work with heterogeneous networks.

In [43], the authors proposed to learn predictive clustering trees to classify
nodes in a network. Although the trees are learned with a classical top-down
procedure, the adopted heuristics exploits an autocorrelation-based measure,
thus explicitly taking autocorrelation into account. The same principle is
adopted in [44], where network predictive clustering trees are used to predict
gene functions. The difference is that, in this last work, a hierarchical multi-
label classification scheme is considered. However, both methods are not
able to work with heterogeneous networks and, therefore, cannot analyze
real-world scenarios, that show different types of entities, related through
multiple types of relationships.

7

245

The first attempt that really exploits a predictive clustering approach
for classification tasks in heterogeneous networks (and, equivalently, in the
relational setting) is the work proposed in [45]. The authors proposed the
algorithm HENPC, that is able to solve multi-type classification tasks on het-
erogeneous networks. Methodologically, HENPC extracts possibly overlap-
ping and hierarchically-organized heterogeneous clusters and exploits them to
classify unlabeled nodes according to labeled nodes falling in the same clus-
ters. Differently from the approach proposed in the present paper, HENPC is
not based on the induction of trees, but rather a bottom-up approach for the
identification of heterogeneous clusters, that generally leads to a non-optimal
computational efficiency.

In conclusion, multiple attempts have been done to solve the classification
task in the relational setting, but existing approaches are affected by one or
more limitations, namely they: i) are able to work only with a restricted
number of object types (often one type), ii) do not properly exploit the
information coming from related objects (discarding relevant information),
iii) suffer from a computational viewpoint, iv) do not appear highly accurate,
or v) are not able to provide clues about the motivations behind a given
prediction. In this respect, the work presented in this paper can be considered
the first attempt aiming to achieve all such characteristics simultaneously.

3. Problem Statement

Before presenting our method, we introduce some useful notations and defi-
nitions which are necessary to formally define the problem we solve.
Given:

• A training database D composed of a set of n relational tables T =
{T1, T2, . . . , Tn};

• A set of primary key constraints on tables in T ;

• A set of foreign key constraints on tables in T ;

• A target table Tt ∈ T ;

• A discrete target attribute y belonging to Tt, different from the primary
key of Tt, with values in Yt.

8

246 Chapter 9. Relational Feature Generation and Ranking

Find: a classification model ψt : Tt → Yt, which is able to classify all the
unlabeled instances (i.e., tuples) of the target table Tt in a database D′ which
has the same schema of D.

It is noteworthy that the learning setting we consider is not transductive,
i.e., the applicability of the learned classification model is not limited to
unlabelled instances which existence is known during the training, but can
be applied to any database D′, with the same schema of D, for which the
values of the target attribute y are unknown.

Example 1. Let us consider the database schema reported in Fig. 1 related
to the movies database. The target table Tt is the table Movies, the target
attribute y is the attribute Category and the foreign keys are represented by
the relationships among the tables.

The learner should exploit information from D, including non-target ta-
bles. To better clarify the way non-target tables are used, we introduce
the definition of task-relevant objects and reference objects. Intuitively, a
reference object ro corresponds to a tuple of the target table Tt, while a
task-relevant object tro corresponds to a tuple of a non-target table, which
is connected to ro by means of a foreign key path.

We formally introduce the concepts of foreign key path and task-relevant
objects by means of the following definitions:

Def. 1. A foreign key path is defined as an ordered sequence of tables
pi = 〈Ti1 , Ti2 , . . . , Tis〉, where: ∀j=1,2,...,s Tij ∈ T and ∀j=1,2...,s−1 Tij has a
foreign key to the table Tij+1

(or vice-versa). Note that the same table may
be traversed multiple times within the same path if it is involved in multiple
foreign keys.

Example 2. With reference to the database of Fig. 1, an example of for-
eign key path is 〈Movies, Ratings, Users, Nations, Regions〉. This foreign
key path is of length 5 (i.e., s = 5). It is noteworthy that also paths of smaller
length representing sub-sequences are valid, such as 〈Movies, Ratings, Users〉.

Def. 2. A task-relevant object tro ∈ Tk (Tk ∈ T) is 1-related to a reference
object ro ∈ Tt according to a foreign key path pi = 〈Ti1 , Ti2〉 if and only if all
the following conditions are satisfied:

• Ti1 = Tt;

9

247

• Ti2 = Tk;

• there exists a foreign key constraint from Tk to Tt (or vice-versa) such
that the foreign key of tro assumes the same value of the primary key
of ro (or vice-versa).

Def. 3. A task-relevant object tro ∈ Tk (Tk ∈ T) is l-related to a reference
object ro ∈ Tt according to a foreign key path pi = 〈Ti1 , Ti2 , . . . , Tis〉 if and
only if all the following conditions are satisfied:

• s = l + 1;

• Ti1 = Tt;

• Tis = Tk;

• there exists a task-relevant object newTro ∈ Tis−1 such that newTro is
(l − 1)-related to ro according to pi;

• there exists a foreign key constraint fk from Tis−1 to Ts (or vice-versa)
such that the foreign key of newTro assumes the same value of the
primary key of tro (or vice-versa).

Def. 4. A task-relevant object tro ∈ Tk is related to a reference object
ro ∈ Tt according to a foreign key path pi if and only if there exists l ≥ 1
such that tro is l-related to ro according to pi. We indicate as R(ro, l, pi),
the set of task-relevant objects l-related to the reference object ro according
to pi, and as R(ro, pi) the set of all the task-relevant objects related to the
reference object ro according to pi, for any l ≥ 1.

In Fig. 2, we report a small example of a database instance, which refers to
the schema of Fig. 1. From this figure, it is possible to identify the task-
relevant objects for two foreign key paths, namely 〈Movies, Ratings, Users〉
(on the left) and 〈Movies, Ratings, Users, Ratings, Movies〉 (on the right).
Following a path, it is possible to navigate the objects and their features
involved when analyzing a specific reference object.

Example 3. Considering the specific movie m1, the objects and their fea-
tures considered by following the foreign key path 〈Movies, Ratings, Users〉,
expressed in the logical formalism, are:

10

248 Chapter 9. Relational Feature Generation and Ranking

movies(m1),

movies title(m1, fourRooms1995),

movies releaseDate(m1, 19950101),

movies url(m1, httpusimdbcomMtitle-exactFour20Rooms201995),

movies category(m1,thriller),

ratings(r1),

ratings userID(r1, u1),

ratings movieID(r1, m1),

ratings stars(r1, 3),

ratings date(r1, 19950105),

ratings(r2),

ratings userID(r2, u3),

ratings movieID(r2, m1),

ratings stars(r2, 2),

ratings date(r2, 19950106),

users(u1),

users age(u1, 22),

users nationID(u1, us),

users gender(u1, m),

users occupation(u1, writer),

users(u3),

users age(u1, 62),

users nationID(u1, es),

users gender(u2, m),

users occupation(u1, engineer).

From this example, it is possible to see that, in the logical formalism, we
have two types of predicates: i) unary predicates (e.g., movies(·), and
ratings(·)), used to identify a row (object) in a table (e.g., the predi-
cate movies(·) is used to instantiate a row in the table movies); ii) binary
predicates (e.g., movies title(·,·) and ratings userID(·,·)), used to instan-
tiate attribute values (e.g., movies title(m1, fourRooms1995) is used to
instantiate the attribute title of the table movies, for the row m1). It is
noteworthy that binary predicates, by means of variables, are also able to
implicitly instantiate relationships (e.g. user u1 gave three stars to the movie
“fourRooms1995” in the rating r1).
Finally, since our method is strongly based on the concept of aggregates, as
introduced in Section 1, in the following we formally define them.

11

249

1

2

1

2 3

4

Figure 2: An example of a database instance, together with two possible foreign key paths:
〈Movies, Ratings, Users〉 (left) and 〈Movies, Ratings, Users, Ratings, Movies〉 (right).
In both cases, the reference object m1 is emphasized in light orange, whereas the corre-
sponding task-relevant objects that are found in two (left), respectively four steps (right),
are emphasized in pink.

Def. 5. Let pi = 〈Ti1 , Ti2 , . . . , Tis〉 be a foreign key path of length s, X be a
generic attribute of the table Tis, and agg = [aggr1(), aggr2(), . . . , aggrs−1()]
be a list of aggregate functions, all compatible with the type2 of X, where
aggrj applies to the j-related objects. The aggregate of X with respect to the
reference object ro and the path pi is defined as:

A(ro, pi, agg,X) = aggr1
tro1∈R(ro,1,pi)

(aggr2
tro2 ∈ R(ro, 2, pi),

tro2 _ tro1

(... aggrs-1
tros−1 ∈ R(ro, s-1, pi),

tros−1 _ tros−2

(tros−1.X)...))

(1)
where troj _ troj−1 indicates that there is a foreign key between the two
objects troj and troj−1.

It is noteworthy that aggregation functions may also be applied to one
single value, in the cases of many-to-one or one-to-one relationships from the
target table, while multiple values are actually aggregated into one value in
the case of one-to-many relationships.

Using these definitions, in the following section we describe the proposed
method RE3PY, which learns a classification function φt.

2Average, minimum, maximum, count, countDistinct for numeric types; mode, count
and countDistinct for categorical types.

12

250 Chapter 9. Relational Feature Generation and Ranking

ro troj1

tro11

tro1n1

troj2

tro12

tro2n2

...

...

R(ro, 1, pi)

...

...

Rj(ro, 2, pi)

f(ro)

a2(g
2
n1
)

troj1.X

tro11.X

x2
n2

a1

...

...

a2

...

...

(a) Finding task-relevant objects

ro troj1

tro11

tro1n1

troj2

tro12

tro2n2

...

...

R(ro, 1, pi)

...

...

Rj(ro, 2, pi)

f(ro)

a2(g
2
n1
)

troj1.X

tro11.X

x2
n2

a1

...

...

a2

...

...

(b) Aggregating the values

Figure 3: Two-step construction of a feature f in the internal nodes of a tree. In the
example, the the considered foreign-key path pi contains three tables. (a) Identification
of all 1-related (i.e., R(ro, 1, pi)) and 2-related (i.e., R(ro, 2, pi)) task-relevant objects
following pi. (b) Aggregation of the value of the feature X, back to the target object.

4. The proposed method RE3PY

In this section, we formally introduce the proposed method. We start
with the language bias and the role of aggregates, then we describe the tree
induction and finally we discuss the proposed ensemble approaches.

4.1. Language Bias and Aggregates

The core characteristic of our method is the on-the-fly construction of
new features according to Eq. (1), that are considered as candidate splits
by our algorithm for the top-down induction of decision trees (TDIDT) [6].
Such new features are constructed by navigating the foreign key paths, as
shown in Example 3.

Algorithmically, given a foreign-key path and a reference object ro, we
start navigating from the target table. Considering the database instance in
Fig. 2 and the path 〈movies, ratings, users〉, the first step is to identify
all 1-related task-relevant objects, e.g., all the ratings provided to a given
movie. For example, for the movie m1, we identify the ratings r1 and r2.
Then, for each of the 1-related task-relevant objects, the walk continues to-
wards the 2-related task relevant objects, namely the users u1 (accessed
from r1) and u3 (accessed from r2). The general schema of finding the
task-relevant objects is shown in Fig. 3a.

13

251

The features of the traversed objects are aggregated back into a single
value through a chain of aggregation functions, as shown in Eq. (1). In
other words, each (l − 1)-related object is replaced by the aggregated value
obtained by applying the function aggrl to the feature under consideration
of the corresponding group of l-related objects (see Fig. 3b).

The possible foreign key paths depend on the dataset at hand, while the
possible aggregation functions depend on the type of properties, namely:

• average (avg), minimum (min), maximum (max), count and countDis-
tinct, for numeric types;

• mode, count, countDistinct, for categorical types.

Any combination of foreign-key path, feature of the corresponding s-related
objects (where s is the length of the path), and list of aggregation functions,
defines a candidate feature f , i.e., a mapping ro 7→ f(ro).

Example 4. The path pi = 〈movies, ratings, users〉, the feature Age
of the table users, and the list of aggregates agg = [avg, avg] represent the
feature f corresponding to the average age of a user who rated a given movie.
More formally:

f(ro) = A(ro, pi, agg,Age) = avgtro1∈R(ro,1,pi)
(avg tro2 ∈ R(ro, 2, pi),

tro2 _ tro1

(tro2.Age))

In this particular case, R(ro, 1, pi) is the set of ratings of a given movie ro,
and R(ro, 2, pi) is the set of users who provided the ratings.

Note that the existence of related task-relevant objects, e.g., the existence
of some ratings associated to a given movie (that is the only aspect evaluated
by approaches like BoostSRL [19]), can be evaluated by adopting a count
aggregation function and the test f(ro) > 0.

4.2. Single Tree Induction

Our classification method is based on the top-down induction of decision
trees (TDIDT). In particular, both original features associated to the target
table and those generated through aggregates, as shown in the previous sec-
tion, are considered for the evaluation of possible splits in the internal nodes
of the tree.

14

252 Chapter 9. Relational Feature Generation and Ranking

Algorithm 1 Tree(examples E, current foreign-key path p)

1: (h∗, f ∗, S∗) = (0, none, none) # best quality, feature and splitting set
2: for all valid pairs (f, S), according to E and p do
3: if h(E, f, S) > h∗ then
4: (h∗, f ∗, S∗) = (h(E, f, S), f, S)
5: if f ∗ = none then
6: return Leaf (majority class(E))
7: else
8: E+, E− = splitToPositiveNegative(E, ro 7→ f ∗(ro) ∈ S∗)
9: tree+ = Tree(E+, path(f ∗))

10: tree− = Tree(E−, path(f ∗))
11: return Internal(ro 7→ f ∗(ro) ∈ S∗, tree+, tree−)

Tree induction starts with the call Tree(E, ∅), where E is the set of all
the examples of the target table. The pseudocode of the procedure Tree(·, ·)
is described in Algorithm 1, which describes how the decision tree is actually
induced.

First, all valid tests in the form “f(ro) ∈ S” are generated, based on the
possible features f and domain subsets S. A test is not valid if any of the
following stopping criteria applies: i) the maximum depth of tree is reached,
ii) the heuristic score of the test is too low, iii) the set of examples falling in
the positive or negative branch is too small.

Then, the best combination (f ∗, S∗) is selected, according to a given
heuristic h (line 2) that, in this work, corresponds to the GINI index [6].
If the set of candidate tests is not empty, the optimal test is of the form
f ∗(ro) ∈ S∗. If f is a numeric feature, then S∗ = (ϑ,∞) or (−∞, ϑ], for an
appropriate ϑ. Otherwise (i.e., when f ∗ is nominal), S∗ is a subset of the
domain of the attribute.

In Algorithm 1, p represents the current foreign key path. For the iden-
tification of valid features f during the first call, p contains only the target
table. From p, the algorithm can define a new path that starts from it, and
is able to perform up to ` steps. The algorithm follows a depth-first search
strategy and is able to perform backtracking, that is, it is able to consider
any (non-empty) prefix of the already defined path p and move forward, up
to at most ` steps. Note that ` defines the maximum look-ahead (i.e., depth)
from the current foreign-key path and does not correspond to the maximum

15

253

count
r∈R(m,1,pi)

r.Date > 213

dramaavg
r∈R(m,1,pi)

(
max

u∈R(m,1,pi), u_r
u.Age

)
> 42.2

thrillercomedy

Y
E
S N

O

YES
NO

x3 ∈ (−∞, 15)

x1 ∈ {married}

children: 1.80children: 2.30

YE
S NO

children: 0.02

YE
S NO

1

Figure 4: An example of tree built for the Movies dataset. In the root node, the reviews
of the input movie m are counted (for technical reasons, we still need a predicate from the
table Ratings, so the attribute Data was chosen). If the number of ratings is not greater
than 213, the genre is predicted as drama. Otherwise, the average age of a user u who
rated the movie m is computed (note that the age of a user is one single value and the
aggregation function, max in this case, does not affect the result). If the average age is
greater than 42.2, the predicted genre is comedy, otherwise it is thriller.

length of foreign-key paths.
If no valid test can be found, a leaf node with the majority class as the

prediction is returned (line 6). Otherwise, the examples are split into positive
(E+) and negative (E−), according to the identified test. In such a case, an
internal node with the selected test is created, and the left and right children
are created by recursively calling the algorithm Tree(E+, path(f ∗)) for the
positive (left) branch and Tree(E−, path(f ∗)) for the negative (right) branch,
where path(f ∗) is the foreign-key path of the selected test. An example of a
relational tree built from the Movies dataset is shown in Fig. 4.

4.3. Relational ensembles in RE3PY

In the literature, one well-known approach to improve predictive perfor-
mance of tree-based predictive models is that ensemble learning. Typical
solutions are based, among the others, on Bagging [8], Random Forests [9]
and Gradient Boosting [10].

The concept of a bag (a bootstrap replicate), used in Bagging and Ran-
dom Forests, is different from that in the standard tabular setting. The main
difference is that, in the relational setting, the objects are connected and ran-
dom sampling would lead to lose relationships. In RE3PY, bootstrapping is

16

254 Chapter 9. Relational Feature Generation and Ranking

performed only on the target table, while task-relevant objects are implicitly
sampled according to their relationships with the sampled reference objects.

In addition to sampling the instances, Random Forests also sample a
subset of features for each learned tree. In the specific relational setting con-
sidered by our system, possible features are represented by original features
associated to the target table, or additional features computed by following
a given foreign-key path and computing aggregates. Therefore, in RE3PY,
we extend the ensemble approach of Random Forests by sampling random
subsets of possible features from such an extended set of features. It is
noteworthy that this is a cheap operation from a computational viewpoint.
Indeed, for the purpose of selecting a sample, we simply enumerate the possi-
ble features without actually computing and evaluating their discriminatory
power through the heuristic h. In other words, possible tests are actually
evaluated only on sampled features.

Finally, boosting-based approaches come with their own randomization
mechanisms. Similarly to Random Forests, a subset of examples and features
is considered for each tree. The difference is that sampling happens without
replacement up to a predefined sample size. Random sampling is not the
only way adopted by boosting-based approaches to improve the predictive
power of a single tree. More precisely, trees are built in a sequential manner
where the first model φ1

t is built using the target values from the training
data, whereas each subsequent model φj+1

t , j ≥ 1, is built - loosely speaking
- on the gradient of the error of the previous model [10]. The final model is
then defined as:

φt =
∑

j

φjt (2)

4.4. Feature ranking in the relational setting

With the increasing complexity of data under analysis, as well as of the
application domains in which predictive models are adopted, the need to
explain the output is becoming crucial, especially in specific sectors like
medicine [11, 12, 13] and life sciences [46, 47, 48]. To explain black-box mod-
els, such as neural networks, typical approaches rely on permutation-based
feature scores: the importance of a given feature is estimated by evaluating
the relative increase of the error rate of the predictive model when the values
of the feature are permuted.

This strategy cannot be directly applied in the relational setting, since
the concept of permutation is not defined for a predicate. On the other hand,

17

255

we recall that single trees are inherently interpretable, and can naturally be
inspected to understand which aspects are influencing the predictions. This
is not true for their ensemble counterparts that, although generally appear
more accurate, lose this important characteristic. However, the tree induction
mechanism allows us to define an alternative strategy to compute feature
scores, that can be easily extended to ensembles thereof. In the following, we
first define our approach to compute a feature score in the relational setting
for single trees and then we extend it to ensembles.

Given a tree whose internal nodes contain tests based on predicates, as
described in Sec. 4, the number of occurrences for a predicate may be con-
sidered the most straightforward way to evaluate the importance of that
predicate. However, also the depth in the tree is important, since appearing
close to the root means that the predicate has been selected earlier during
the greedy search performed by the algorithm for TDIDT and, therefore, on
the basis of a larger subset of examples (reference objects).

Therefore, an occurrence of a predicate in the test of an internal node
should be weighted by the number of reference objects that reach the node.
Such intuitive intuition would be the direct extension of the concept of Sym-
bolic ranking [49] for the tabular data. However, it is not adequate in our
case due to the look-ahead parameter ` ≥ 1, which makes a chosen predicate
only a part of the feature constructed in the node. For example, a generic
feature given in Eq. (1) consists of s parts: s − 1 hops between the tables,
and the predicate on X. Although the condition expressed in a node N in-
volves the set of features f(N), only the last steps(N) of the condition are
constructed in the node N , where steps(N) (≤ `) represents the number of
steps added in the node N of the tree but not present in its parent node.

Thus, the symbolic importance of the feature X for a tree τ can be
formally defined as:

impS(X) =
∑

N ∈ τ
1[X ∈ f(N)]/steps(N) (3)

where 1 is the indicator function.
Symbolic ranking can appear coarse since the reward for a predicate that

appears in a given node is always a discrete “jump” that does not depend
on the actual quality of the split. This issue can be overcome by adopt-
ing the Genie3 score [14], that weights the contribution of each node, when
computing the importance of a feature, on the basis of the quality of the
split. Genie3 was originally designed for tabular data, but in the following

18

256 Chapter 9. Relational Feature Generation and Ranking

we extend it to the relational setting. Formally, let h∗(N) be the quality
of the split performed at node N measured through the heuristic h. The
importance of a predicate X measured through the Genie3 score extended
to the relational setting is therefore computed as follows:

impGenie3 =
∑

N ∈ τ
1[X ∈ f(N)] h∗(N)/steps(N). (4)

Note that, when data consist of only one table (containing the reference
objects) both measures boil down to their original counterparts designed for
tabular data.

The extension of such feature scores to the ensemble-based approaches is
quite straightforward. In particular, since the trees of Random Forests and
Bagging can be seen as independent realizations of the same random variable,
we can simply compute the average of the feature score observed over the
trees of the ensemble. On the other hand, the predictions of the trees in
Gradient Boosting ensembles need to be summed according to equation (2).
Coherently, the correct aggregation of per-tree scores feature rankings is also
the sum. However, since

∑n
i=1 xi >

∑n
i=1 yi ⇔ (

∑n
i=1 xi)/n > (

∑n
i=1 yi)/n,

for any numbers xi and yi, both averaging and summation lead to the same
feature ranking.

Note that computing partial results, while building the set of trees, may
reveal how the importance of a feature evolves with each additional tree.
In Sec. 6.5, we will show how feature rankings computed through Bagging,
Random Forests and Boosting converge with different running times.

4.5. Differences and advantages over TILDE and BoostSRL

As briefly introduced in Sec. 2, there have been several attempts in the
literature to build classification models from relational data. Among existing
approaches, TILDE and BoostSRL are the closest to RE3PY. Therefore, in
the following we highlight the main differences and advantages of RE3PY,
with respect to them.

First, RE3PY simultaneously exhibits the predictive performance of en-
sembles and the possibility to explain the predictions, thanks to its ability
to produce a ranking of the features.

Second, both TILDE and BoostSRL can handle only nominal values,
while RE3PY can also handle numeric attributes3.

3Actually, the values may be also ordinal, since the trees are invariant to the

19

257

Third, aggregates are not fully exploited by TILDE and BoostSRL. In
particular, BoostSRL is only based on the existence of related task-relevant
objects. This means that it is able to construct additional features that would
correspond to a particular case of our count aggregation function (with ϑ =
0). On the other hand, TILDE also uses additional aggregates like RE3PY,
but in a different way. In particular, RE3PY uses a sequence of aggregates
to compute complex aggregates on the values of variables introduced at the
last step of the foreign-key path, while the intermediate objects are only
used to reach the last object. On the contrary, TILDE uses the intermediate
steps for constraining the sets of task-relevant objects. For example, it can
produce4 tests like Is the average age of users that have provided at least 5
ratings in total, and have rated a given movie, greater than 60?, but can not
produce tests like Is the average rate provided by the user that have provided
at least 5 ratings in total and have rated a given movie, equal to five?. One
consequence of this aspect is that RE3PY is able to aggregate every variable
multiple times (see the example in Figure 4), but TILDE is not. For the
exact formulation of the possible tests in TILDE, we refer reader to [50].

Fourth, more operationally speaking, RE3PY, available as a Python pack-
age5, is able to build models based on single trees, Random Forests, Bagging
and Gradient Boosting ensembles. On the contrary, with BoostSRL, it is
possible to build only single trees and Gradient Boosting ensembles. Using
TILDE, we could not find any available implementations that allow for the
induction of ensembles.

4.6. Computational Complexity

In this section, we estimate the computational complexity of RE3PY,
starting from that of single trees and then extending it to ensembles thereof.
In the following, we work under the standard assumption that the induced
trees are balanced, i.e., their depth isO(n), where n is the number of reference
objects (i.e., rows in the target table). Moreover, we introduce the notation
for the following upper bounds. Let:

• F be denote the the maximal number of features in the internal nodes;

monotonous transformation of the attributes. Thus, only the order is important and
not the actual values.

4By combining test in a path from the root to the leaf of a decision tree.
5https://pypi.org/project/re3py/

20

258 Chapter 9. Relational Feature Generation and Ranking

• s be the maximum length of foreign-key paths;

• b be the branching factor, i.e., the maximum number of 1-related ob-
jects for a given object.

According to such assumptions, we can derive that the time complexity of
growing a single tree is O(Fnbs log n). A thorough derivation of the formula
is given in Appendix A.

In the case of ensembles, the time complexity can be estimated as follows:
bagging boils down to growing T trees, so the time complexity corresponds to
T times the time complexity of a single tree. However, T is a constant that
does not asymptotically affect the complexity. Moreover, trees are grown
independently and, as clarified by Breiman [8], bagging is almost a dream
procedure for parallel computing. Thus a bagging ensemble can be grown in
the same time as a single tree, provided we have enough computing units.

Similarly holds for Random Forests: sequential induction is T times more
expensive, but the procedure can be easily parallelized. Moreover, the algo-
rithm considers only F ′ ≤ F features at each internal node of a tree. Typical
values for F ′ are F ′ = d

√
F e or F ′ = dlog2 F e which can result in substantial

speed-ups when the number of features F is large.
Finally, for Gradient Boosting, trees are not grown independently, since

the target values are being updated according to the gradients of the predic-
tive errors of the ensemble built so far. However, similar to Random Forests,
they can focus on a subset of features and a subset of examples. More-
over, in contrast to the trees with Bagging and Random Forests, which are
fully grown (motivated by the bias-variance decomposition of the error [8]),
boosted trees are typically prepruned according to a maximum depth and/or
a minimum amount of examples per leaf.

5. Experimental evaluation

In this section, we describe the experiments we performed to evaluate the
performance of the proposed method. In particular, we will investigate the
following research questions:

Q1 Does the considered relational setting provide advantages over a clas-
sical propositional counterpart that only focuses on the target table?

Q2 Does the exploitation of the proposed aggregates provide advantages
over the exploitation of only existentially-qualified features?

21

259

Q3 Do the ensembles provide further advantages over single trees? If yes,
which ensemble strategy performs best?

Q4 How does the proposed method perform with respect to state-of-the-art
competitors?

Q5 Does the feature ranking provide real clues on the importance of the
features?

Q6 How is the proposed method sensitive to its input parameters?

In order to answer to the research questions Q2 and Q1 , we compared the
obtained results with those achieved with two different settings, namely, con-
sidering only existential qualifiers (to answer to research question Q2), and
discarding all the tables other than the target tables (to answer to research
question Q1). Moreover, to properly answer to the research question Q3 , we
evaluated the performance of our system with the three different ensemble
approaches introduced in Section 4.3, namely bagging, boosting and random
forests, and compared the results with those achieved when learning a single
decision tree.

All the experiments have been performed through a 10-fold cross valida-
tion and the results were measured in terms of classification accuracy.

In the following subsections, we first describe the adopted datasets and
the considered competitor systems. Finally, we report the results, together
with some statistical tests, and discuss them with respect to the each research
question.

5.1. Datasets

In the following, we briefly describe the datasets considered in our exper-
iments, while in Table 1, we report their quantitative characteristics.

• BASKET6. This dataset stores the statistics of basketball players of
NBA and ABA collected during the 2004 and 2005. It includes data
regarding the regular season, playoff and all star games, as well as data
related to coaches, players and drafts. The target table is teams and
the target attribute is league, which values can be national or american
(see Figure 5).

6http://www.cs.cmu.edu/˜awm/10701/project/data.html

22

260 Chapter 9. Relational Feature Generation and Ranking

• IMDB7. This dataset is an extension of the MovieLens10M dataset,
published by GroupLens. In particular, it includes data from the
Movielens dataset, data about the pages from Internet Movie Database
(IMDb) and reviews from Rotten Tomatoes. We kept only the users
with both rating and tagging information. The target table is movies,
and the target attribute is genre, which values can be comedy, thriller,
drama or action (see Figure 6).

• MOVIE. This dataset is built from MovieLens100k8 and contains the
ratings assigned to movies by users, collected through the movielens
recommender system. The target table is movies, and the target at-
tribute is category, which values can be comedy, thriller, drama or
action (see Figure 7).

• STACK9. This dataset is an anonymized dump of the Stack Exchange
network. We considered the data about the Stack Overflow website,
that consist of users, comments, posts, votes, history and links. The
target table is posts, and the target attribute is posttypeid, which val-
ues can be 1(Questions), 2(Answers), 3(Wiki), 4(TagWikiExcerpt) and
5(TagWiki) (see Figure 8).

• UWCSE10. This dataset contains data about the Department of Com-
puter Science and Engineering of the University of Washington, includ-
ing faculty members, projects, publications and the courses they teach.
Moreover, it also contains data describing the relationships among fac-
ulty members (professors, assistant professor, students’ adviser, etc.).
The target table is courses and the target attribute is discipline, which
values can be graphics, theory, ai, language or systems (see Figure 9).

• YELP11. This dataset contains data related to Yelp, that is a website
collecting reviews and comments about business activities. Data in-
clude businesses and their characteristics, users, check-in information,
friendship relationships, tips and reviews. The target table is business

7http://grouplens.org/datasets/hetrec-2011/
8http://grouplens.org/datasets/movielens/
9https://archive.org/details/stackexchange

10http://alchemy.cs.washington.edu/data/uw-cse/
11http://www.yelp.com/dataset_challenge

23

261

Table 1: Quantitative characteristics of the considered datasets. Predicates represents
the total number of predicates summed over all the tables in the dataset; Target facts is
number of reference objects (i.e., rows in the target table); Descriptive facts corresponds
to the number of facts describing object attributes and relationships through predicates.

Dataset Tables Predicates
Descriptive Target

Classes
Facts Facts

BASKET 9 118 630038 95 2
IMDB 21 57 614662 8816 4
MOVIE 5 16 183469 1422 4
STACK 7 52 383040 5855 5
UWCSE 12 15 1961 115 5
YELP 9 51 3348181 24959 4
WEBKB 6 9 36131 500 3
CARCINOGENESIS 6 12 64640 329 2
MUTAGENESIS 6 13 32942 188 2

and the target attribute is category, which values can be Restaurants,
Beauty & Spas, Health & Medical and Shopping (see Figure 10).

• WEBKB12. This dataset contains the textual content, links and an-
chors of webpages collected by the World Wide Knowledge Base project
of the CMU group. The target table is pages and the target attribute
is category, which value is student, faculty and course (see Figure 11).

• CARCINOGENESIS13. This dataset contains data about molecules,
e.g., their atoms, charge, etc., which are used to predict their carcino-
genicity. The target table is canc and the target attribute is class,
which value can be 1 (cancerous) or 0 (not cancerous) (see Figure 12).

• MUTAGENESIS13. Similarly to CARCINOGENESIS, this dataset
contains data about molecules, e.g., their atoms, charge, etc., which
are used to predict their mutagenicity. The target table is drugs and
the target attribute is active, which value can be 1 (active) or 0 (not
active) (see Figure 13).

12www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
13http://kt.ijs.si/janez_kranjc/ilp_datasets/

24

262 Chapter 9. Relational Feature Generation and Ranking

Figure 5: Schema of the dataset BASKET, showing the tables and the foreign keys. The
target table is emphasized in green.

Figure 6: Schema of the dataset IMDB, showing the tables and the foreign keys. The
target table is emphasized in green.

Figure 7: Schema of the dataset MOVIE, showing the tables and the foreign keys. The
target table is emphasized in green.

25

263

Figure 8: Schema of the dataset STACK, showing the tables and the foreign keys. The
target table is emphasized in green.

Figure 9: Schema of the dataset UWCSE, showing the tables and the foreign keys. The
target table is emphasized in green.

Figure 10: Schema of the dataset YELP, showing the tables and the foreign keys. The
target table is emphasized in green.

26

264 Chapter 9. Relational Feature Generation and Ranking

Figure 11: Schema of the dataset WEBKB, showing the tables and the foreign keys. The
target table is emphasized in green.

Figure 12: Schema of the dataset CARCINOGENESIS, showing the tables and the foreign
keys. The target table is emphasized in green.

Figure 13: Schema of the dataset MUTAGENESIS, showing the tables and the foreign
keys. The target table is emphasized in green.

27

265

5.2. Competitor Approaches

For comparison purposes, we compare the results of our approach with
8 state-of-the-art methods that are able to solve the classification task in a
relational setting, namely:

• RelIBk [25], that is the relational variant, available in RelWeka, of
the well-known k-nearest neighbors algorithm. As distance measure,
we adopted the Relational Instance-Based Learning (RIBL) measure
[26].

• RelSMO [25], that is the relational variant, available in RelWeka,
of the Platt’s Sequential Minimal Optimization algorithm [51]. This
algorithm is based on kernel Support Vector Machines and adopts the
Minkowski RIBL set distance [27].

• GNetMine [37], that is a graph-based regularization framework that
works in the transductive setting. It explicitly aims at preserving the
consistency over each relation and each link when assigning the label
to unlabeled instances.

• MrSBC [21]14, that is a method that induces a set of first-order rules
from the tables of the relational schema and exploits a näıve Bayes
classification method to classify unlabeled instances.

• ST-MrSBC (Self-Training MrSBC) [24]15, that is a method based on
MrSBC, that can capture autocorrelation phenomena by resorting to
a variant of the self-training method. It bases its predictions on the
ensemble of models built over all the self-training iterations.

• MT-MrSBC (Multi-Type MrSBC) [24]15, that is a method based on
MrSBC that iteratively analyzes instances of multiple relations, in or-
der to predict unknown labels in multiple target tables, in order to learn
multiple classification functions simultaneously. It builds an ensemble
of classifiers for each relation, and it is able not only to exploit auto-
correlation phenomena, but also dependencies among the models built

14www.di.uniba.it/~ceci/micFiles/systems/MURENA.html
15https://figshare.com/articles/Ensemble_MT-MrSBC_and_Ensemble_ST-MrSBC_

systems/4334048/7

28

266 Chapter 9. Relational Feature Generation and Ranking

for different target tables. Here we consider both its variants, namely
LexicographicMT-MrSBC, that analyzes the relations in a prede-
fined, lexicographic order, and RandomMT-MrSBC, that analyzes
the relations in a random order at each iteration.

• HENPC [45]16, that is a method that exploits the predictive clus-
tering framework on heterogeneous networks represented as relational
databases. In particular, it extracts a hierarchy of heterogeneous clus-
ters and exploit it for classification purposes in a transductive setting.

• BoostSRL (Boosting for statistical relational learning) [19] is a gen-
eralization of gradient boosting method towards relational data. As
introduced in Sec. 2, the tests in the trees are roughly similar to those
of our system when no aggregation is used (only existential qualifiers).

5.3. Parameter setting

As regards the parameters of RE3PY, we set ` = 2 and the number of
trees equal to 50 for its ensemble-based variants. For Bagging, no addi-
tional parameters are necessary since the bias-variance decomposition sug-
gests the induction of fully-grown trees [8]. As for Random Forests, we
set the number of features to sample for each tree equal to the square
root of the number of features, as suggested in [9]. As for the Gradient
Boosting and single trees, we performed a grid search via internal 3-fold
cross-validation. In particular, for Gradient Boosting, we searched over
shrinkage ∈ {0.05, 0.2, 0.4, 0.6}, chosen examples ∈ {0.6, 0.8, 1.0} (i.e., the
proportion of the examples that are randomly chosen for a tree induction),
chosen features ∈ {0.2F, 0.4F , 0.6F, 0.8F, F,

√
F} (where F is the total

number of features), and depth ∈ {2, 4, 6, 8}. For single trees, we searched
over leaf size ∈ {1, 5, 10, 15, 20} (minimum number of examples per leaf)
and impurity ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2} (minimal relative decrease of the
impurity in a split). Therefore, the configurations also include fully grown
trees.

We adopted the same grid search approach for BoostSRL, but focusing
only on shrinkage and depth, since the other parameters are not supported.
Moreover, since BoostSRL cannot operate with numeric variables, we used a
equal-width discretization into 10 bins wherever needed. As regards the other

16http://www.di.uniba.it/~gianvitopio/systems/henpc/index.html

29

267

competitors, we took their best results obtained in previous experiments on
the same datasets from [24, 45].

6. Results

In Table 3 we show the results obtained by RE3PY considering the fol-
lowing dimensions of analysis:

i) the dataset;

ii) the considered relational setting/aggregates: all aggregates (AGG-
All), existential aggregates only (AGG-Exist), target table only (NO-
Rel), i.e., by ignoring task-relevant objects;

iii) the adopted ensemble strategy.

Starting from the presented results, in the following subsections we illustrate
and discuss the different aspects covered by the research questions introduced
in Sec. 5.

6.1. Q1 - Contribution of the Relational Setting

In this section we focus on evaluating the advantages of analyzing related
data stored in additional tables (i.e., task-relevant objects and their relation-
ships to reference objects) with respect to focusing only on the target table.
This analysis allows us to evaluate the contribution provided, in general, by
the relational setting. In Table 3, we can evaluate this aspect by comparing
AGG-All and AGG-Exist with NO-Rel. From the results, we can see that
our full system that exploits all the aggregates (AGG-All) outperforms the
variant NO-Rel in 32 out of 36 cases (i.e., in all the cases except for the
combinations single trees and random forests on CARCINOGENESIS, and
Boosting on WEBKB that did not finish within two days).

Intuitively, the obtained results are reasonable. For example, the only
descriptive facts of the Movies table of the MOVIE dataset are the release
date, the url and the title. Clearly, they cannot reveal much about the
category of a movie. On the other hand, knowing something about the users
who provided some ratings on the movies (e.g., their gender or age) can
help. The general superiority of the variant AGG-All over AGG-All is also
confirmed by a Wilcoxon test, that revealed that the difference is statistically
significant (see Table 2 - AGG-All vs NO-Rel).

30

268 Chapter 9. Relational Feature Generation and Ranking

Table 2: Results of the Wilcoxon test at α = 0.05. P-values are corrected , with False
Discovery Rate correction.

AGG-All vs NO-Rel Winner p-value
Single trees AGG-All 2.09 · 10−2

RF AGG-All 1.52 · 10−2

Boosting AGG-All 1.10 · 10−1

Bagging AGG-All 7.69 · 10−3

AGG-Exist vs NO-Rel Winner p-value
Single trees AGG-Exist 8.59 · 10−1

RF AGG-Exist 7.22 · 10−1

Boosting AGG-Exist 6.36 · 10−1

Bagging AGG-Exist 6.78 · 10−1

AGG-All vs AGG-Exist Winner p-value
Single trees AGG-All 2.60 · 10−1

RF AGG-All 1.10 · 10−1

Boosting AGG-All 7.69 · 10−3

Bagging AGG-All 7.69 · 10−3

On the other hand, the variant exploiting only existential qualifiers (AGG-
Exist) outperforms NO-Rel in only 17 cases out of 36. Coherently, the
Wilcoxon test showed that AGG-Exist generally performs better than NO-
Rel, but the difference does not appear to be statistically significant (see
Table 2 - AGG-Exist vs NO-Rel).

Overall, these results confirm that the exploitation of additional informa-
tion conveyed by task-relevant objects is clearly beneficial, but that it may
introduce noise if not properly handled. In particular, the adoption of only
existential qualifiers appears to be not enough and can, on the contrary, neg-
atively affect the results in several situations. This becomes clear looking at
the Avg. Rank column in Table 3.

6.2. Q2 - Contribution of the Aggregates

In this subsection, we focus on evaluating the advantages of using aggre-
gates in the splits of the trees (the possible aggregates that we used are listed
in Sec. 4.1). In Table 3, we can evaluate this aspect by comparing AGG-All
with AGG-Exist.

31

269

Table 3: Accuracy measured for RE3PY on all the datasets, with different relational
setting/aggregates and with different ensemble strategies. The last column denotes the
average rank measured for the given relational setting/aggregates on the specific dataset
(the best result is emphasized in bold).

Single trees RF Boosting Bagging Avg. Rank

BASKET

AGG-All 0.968 0.958 0.979 0.979 1.5
AGG-Exist 0.979 0.968 0.968 0.968 1.5
NO-Rel 0.695 0.695 0.695 0.695 3

IMDB

AGG-All 0.587 0.612 0.632 0.628 1
AGG-Exist 0.578 0.576 0.577 0.574 3
NO-Rel 0.586 0.610 0.625 0.616 2

MOVIE

AGG-All 0.517 0.556 0.568 0.567 1
AGG-Exist 0.510 0.510 0.510 0.510 2
NO-Rel 0.508 0.495 0.507 0.493 3

STACK

AGG-All 0.963 0.950 0.951 0.951 1.13
AGG-Exist 0.950 0.950 0.950 0.950 1.87
NO-Rel 0.801 0.801 0.801 0.801 3

UWCSE

AGG-All 0.826 0.826 0.835 0.861 1
AGG-Exist 0.200 0.209 0.191 0.200 3
NO-Rel 0.252 0.252 0.243 0.252 2

YELP

AGG-All 0.670 0.779 0.879 0.855 1
AGG-Exist 0.588 0.587 0.579 0.588 2.75
NO-Rel 0.596 0.599 0.574 0.599 2.25

WEBKB

AGG-All 0.924 0.814 NA 0.932 2.25
AGG-Exist 0.966 0.968 NA 0.970 1.5
NO-Rel 0.456 0.388 0.488 0.430 2.5

CARCINO
GENESIS

AGG-All 0.523 0.547 0.562 0.562 1.25
AGG-Exist 0.535 0.538 0.550 0.538 2.25
NO-Rel 0.553 0.553 0.553 0.553 2.5

MUTA
GENESIS

AGG-All 0.910 0.920 0.872 0.904 1.25
AGG-Exist 0.665 0.665 0.665 0.665 3
NO-Rel 0.856 0.888 0.878 0.867 1.75

As anticipated in the previous subsection, using aggregates and, therefore,
a richer set of possible splits, turns out to be beneficial. Indeed, AGG-All
outperforms AGG-Exist in 30 out of 36 cases (i.e., all the combinations ex-
cept single trees and random forests induced from BASKET and WEBKB,
Bagging induced from WEBKB, and single trees induced from CARCINO-
GENESIS). These results are also confirmed by the Wilcoxon test, that shows
that the difference among them is statistically significant (see Table 2 - AGG-
All vs AGG-Exist).

A closer analysis of the results revealed that in the BASKET dataset
many trees show the test on coach seas team, count as aggregation and the
threshold 0 in their root. This means that, in terms of the adopted heuristic,
other (more complex) aggregates, possibly exploitable by AGG-All, did not
provide a relevant contribution. This situation was also observed for WEBKB
and CARCINOGENESIS.

32

270 Chapter 9. Relational Feature Generation and Ranking

On the contrary, on UWCSE, we noticed a significant improvement. In
this dataset, the goal is to determine what is the discipline a professor is
teaching. By looking at the models, we noticed that one of the splits identified
by AGG-All that filters out 18 professors in the ai field, is based on the
number of persons who had already taught this course, and checking if such a
number is less than 5. In this case, the adoption of only existential quantifiers
does not provide much information, since every course is taught by at least
one professor, and such a discriminative pattern could not be exploited.

6.3. Q3 - Effect of the ensemble

In this subsection, we evaluate the possible contribution provided by the
adoption of relational ensemble approaches, with respect to inducing one
single decision tree.

The bias-variance decomposition of the predictive error for Bagging and
Random Forests [8] shows that they are expected to exhibit better perfor-
mances than a single tree, since their bias is the same and the variance is
lower. A similar advantage has been (mostly empirically) shown for gradient
boosting [52]. In the case of relational data, the derivation of the decompo-
sition is the same. Therefore, the adoption of Bagging or Random Forests
is generally advisable. As for Boosting, growing many trees might be com-
putationally too expensive, especially since they cannot be grown in parallel
(see the missing results for the WEBKB dataset in Table 3).

Looking at the results of our experiments reported in Table 3 in a column-
wise fashion, we now discuss whether such observations also apply in our
relational setting with the considered datasets.

Comparing Bagging with single trees, the only difference would be the
bootstrapping of the training set. Therefore, the performance of Bagging
should never be substantially worse than that of single trees, provided that
the number of examples in the training set is not too small. Looking at the
results, we can observe that Bagging wins in 13 cases out of 27, with 11
ties. In the 3 cases in which single trees perform better, the difference is
always almost negligible (see, for example, 1% in the STACK dataset). On
the contrary, the improvement observed in some situations with the adoption
of Bagging may be substantial (see, for example, 19% on the YELP dataset).

As regards Random Forests, which additionally sample the features, a
possibly extremely large number of split candidates may lead to some per-
formance reduction if the sample size is too small and the majority of the
possible splits is irrelevant. This effect theoretically vanishes with an infinite

33

271

number of trees, but in practice the number of trees is finite. The experimen-
tal results show that, in comparison with single trees, the performances of
Random Forests are similar to those of Bagging. In particular, we observe 10
wins, 10 ties and 7 loses. A relevant exception is the WEBKB dataset, where
the number of possible splits is quite high, due to some nominal variables.
As a result, considering

√
F features per sample appears to be not enough,

and a single tree leads 11% advantage in terms of accuracy.
Looking at the results obtained with Boosting, we can observe 10 wins

and 6 ties with respect to single trees. Also in this case, we can see substantial
performance improvements for the winning cases (see, for example, the results
of the YELP dataset), and tiny differences when Boosting loses.

A general comparison among the different ensemble approaches is shown
in Table 4. Here, we report the rank of each ensemble approach on each
dataset, as well as the average rank.

Although the absolute differences are typically not large, Bagging and
Boosting consistently outperform Random Forests, which are ranked in the
last position in most of cases. The (average) ranks of the other two methods
are pretty similar and, performance-wise, it is hard to prefer one approach
over the other. However, it is noteworthy that every Boosting model is based
on 288 internal cross-validations used for determining the best parameter set-
ting. Moreover, as already emphasized, trees in Boosting cannot be induced
in parallel. On the contrary, Bagging has no hyperparameters to tune, and it
is easily parallelizable. Therefore, we can conclude that in our relational set-
ting, although RE3PY offers all the available options, learning an ensemble
based on Bagging should be generally preferred.

6.4. Q4 - Comparative evaluation

In this subsection, we compare the results obtained by RE3PY when ex-
ploiting all the aggregates (i.e., AGG-All) with Bagging, with those achieved
by state-of-the-art methods in their best configurations (see [24, 45]). The
results of such a comparison are shown in Table 5.

The comparison reveals that RE3PY outperforms all the competitors on
6 out of 7 datasets, and shows the second best result for the WEBKB dataset.
It is noteworthy that, except for BoostSRL, the results shown for competitors
can be considered over-optimistic, since they are the outcome of an aposte-
riori selection (on the testing set) of the best parameter configurations, and
not that of an internal cross-validation (on the training set).

34

272 Chapter 9. Relational Feature Generation and Ranking

Table 4: The ranks of the AGG-All version of the ensembles, for the considered data sets.
NA results in having rank 3

RF Bagging Boosting
BASKET 3 1.5 1.5
IMDB 3 2 1
MOVIE 3 2 1
STACK 3 1.5 1.5
UWCSE 3 1 2
YELP 3 2 1
WEBKB 2 1 3
CARCINOGENESIS 3 1.5 1.5
MUTAGENESIS 1 2 3
Average Rank 2.67 1.61 1.72

When the above two columns are passed to Friedman’s statistical test, it
reveals that the differences are also statistically significant (p = 0.0465).

6.5. Q5 - Feature Ranking

In this section, we show how feature ranking can provide clues on an oth-
erwise black-box model. Indeed, as introduced in Sec. 4.4, RE3PY includes a
feature ranking approach for the relational setting that allows us to identify
the contribution of predicates in the construction of ensemble-based models.

As an example, we take a detailed look at the YELP dataset (Fig. 14), for
which we show the rankings for the two best performing ensemble approaches,
i.e., Bagging and Boosting, and with AGG-All and AGG-Exist. We recall
that, in this dataset, the goal is to learn a predictive model that discrimi-
nates between Beauty and Spas, Health and Medical, Restaurants and
Shopping types of business.

For the Bagging-based models, the difference between AGG-All and AGG-
Exist is relevant. Indeed, the importance of the features when using aggre-
gates (Fig. 14a) converges quickly by increasing the number of trees, and the
top-ranked predicates are clearly meaningful (see businessReviewCount -
the number of reviews, or businessStars - the number of stars in a review).
On the other hand, the importance of the features for the model learned
without exploiting aggregates (Fig. 14b) does not converge quickly and the
top-ranked attributes appear to be meaningless for the task at hand. Indeed,
the neighborhood intuitively cannot determine the business type, nor can

35

273

Table 5: Best accuracy values of the models learned by RE3PY and its competitors. The
best result for each dataset is shown in bold.

ST MT MT Rel Rel Boost
MrSBC MrSBC MrSBC MrSBC HENPC Weka Weka SRL RE3PY

Lex Rand SMO IBk
BASKET 0.294 0.264 0.716 0.716 0.664 0.959 0.959 0.706 0.979
IMDB 0.612 0.586 0.588 0.585 0.599 0.554 0.581 0.570 0.628
MOVIE 0.433 0.469 0.467 0.462 0.562 0.510 0.510 0.510 0.567
STACK 0.810 0.758 0.755 0.754 0.597 0.127 0.876 0.428 0.951
UWCSE 0.274 0.289 0.289 0.289 0.545 0.205 0.152 0.230 0.861
YELP 0.460 0.581 0.527 0.581 0.628 0.593 0.538 0.253 0.855
WEBKB 0.585 0.570 0.570 0.570 0.978 0.612 0.606 0.504 0.932

the existence of the closingHours, since every business is located somewhere
and every business has a closing time. This difference is also confirmed by the
absolute values of the feature scores: they are much lower if the aggregates
are not used, meaning that the variance reduction in splits is typically low
and that the features cannot effectively discriminate among the classes.

Similar conclusions can be drawn for the Boosting-based models (see
Figures 14c and 14c). Note that although both versions of Boosting rank
hoursClose among the top-3 (probably due to a random chance), AGG-All
can exploit it more effectively thanks to the multiple possible aggregates that
can be computed on it.

As for the other data sets, we show the Genie3 feature importance score
computed from the Bagging-based models that exploits all the aggregates
(AGG-All) in Fig. 15.

6.6. Q6 Parameter Sensitivity

In this subsection, we aim to answer to the last research question, related
to the sensitivity of RE3PY to its parameters. Since Bagging is a special
case of Random Forests, whose only additional parameter is the size of the
subset of the features that is considered in internal splits and, in turn, it
is also one of the parameters of Boosting, in the following we only show a
detailed analysis for Boosting ensembles.

As described in Sec. 5.3, the analyzed parameters are: depth of the tree,
(proportion of) sampled features, (proportion of) sampled examples, and
shrinkage. In order to analyze the influence of a specific parameter, we

36

274 Chapter 9. Relational Feature Generation and Ranking

0 10 20 30 40 50
number of trees

0.0

0.2

0.4

fe
at

u
re

im
p

or
ta

n
ce business reviewCount

checkin day

business stars

(a) Bagging - AGG-All

0 10 20 30 40 50
number of trees

0.002

0.004

fe
at

u
re

im
p

or
ta

n
ce neighborhoods neighborhoods

attributes attributes

hours close

(b) Bagging - AGG-Exist

0 10 20 30 40 50
number of trees

0

1

2

fe
at

u
re

im
p

or
ta

n
ce attributes attributes

hours close

hours open

(c) Boosting - AGG-All

0 10 20 30 40 50
number of trees

0.00

0.01

0.02

0.03

fe
at

u
re

im
p

or
ta

n
ce review businessID

checkin day

hours close

(d) Boosting - AGG-Exist

Figure 14: Feature importance scores for the YELP data set, for different ensemble con-
figurations. The curve for a given feature relates the measured Genie3 feature importance
scores with the number of induced trees in the ensemble.

estimate the distribution of the accuracy values when such a parameter is
fixed to a chosen value and the other parameters vary, through the Python
module seaborn17. The bigger the differences among the distributions, the
larger the influence of the parameter.

In Fig. 16, we show the result of the analysis on the UWCSE dataset, that
mostly summarizes the results observed on all the datasets. The depth of
the trees typically does not play a major role, provided that it is higher than
2 (see Fig. 16a). As regards the number of sampled features (see Fig. 16b),
it is clear that taking

√
F generally does not suffice. Although the optimal

value of this parameter depends on the specific dataset, it is clearly beneficial
to diversify the trees and choose less then F features (i.e., a proportion less
than 1.0). As for the proportion of the sampled examples (see Fig. 16c),
typically, the more examples the better results. However, the differences
between the performances observed for the higher two values (0.8 and 1.0) are
almost negligible. On the other hand, taking only 60% of examples seems to
negatively affect the results. This is interesting since the expected proportion

17https://seaborn.pydata.org/

37

275

0 10 20 30 40 50
number of trees

0.000

0.005

fe
at

u
re

im
p

or
ta

n
ce coachSeas team

teamSeas 3PA

draft draftFrom

(a) BASKET

0 10 20 30 40 50
number of trees

0.0

0.2

0.4

fe
at

u
re

im
p

or
ta

n
ce movieArea area

movieCity city

moviesActors actorID

(b) IMDB

0 10 20 30 40 50
number of trees

0.2

0.4

fe
at

u
re

im
p

or
ta

n
ce ratings movieID

movies releaseDate

ratings stars

(c) MOVIE

0 10 20 30 40 50
number of trees

0.000

0.005

0.010

fe
at

u
re

im
p

or
ta

n
ce postHistory postID

posts parentID

tags excerptPostID

(d) STACK

0 10 20 30 40 50
number of trees

0.00

0.02

0.04

0.06

fe
at

u
re

im
p

or
ta

n
ce taughtBy taughtBy

advisedBy discipline

authors authors

(e) UWCSE

0 10 20 30 40 50
number of trees

0

1

fe
at

u
re

im
p

or
ta

n
ce page hasTerm

links alfaNumeric

anchors anchors

(f) WEBKB

0 10 20 30 40 50
number of trees

0.0

0.5

1.0

fe
at

u
re

im
p

or
ta

n
ce atoms atomType

atoms charge

bonds bondType

(g) MUTAGENESIS

0 10 20 30 40 50
number of trees

0

2

4

6

fe
at

u
re

im
p

or
ta

n
ce atom atomType

atom charge

sbond1 atomID

(h) CARCINOGENESIS

Figure 15: Feature importance scores returned by RE3PY (Bagging - AGG-All), for all
the datasets (except for the YELP dataset, which is already shown in Fig. 14a).

of examples sampled by Bagging (and Random Forests) is 1 − 1/e ≈ 0.63,
but Bagging still achieves state of the art results.

For the dataset at hand, the most influential parameter turns out to be

38

276 Chapter 9. Relational Feature Generation and Ranking

0.35 0.40 0.45 0.50 0.55 0.60
Accuracy

0

5

10

15

depth

2

4

6

8

(a) Tree depth

0.35 0.40 0.45 0.50 0.55 0.60
Accuracy

0

5

10

15

chosen features

0.2

0.4

0.6

0.8

1.0

sqrt

(b) Proportion of sampled features

0.35 0.40 0.45 0.50 0.55 0.60
Accuracy

0

5

10

15

chosen examples

0.6

0.8

1.0

(c) Proportion of sampled examples

0.35 0.40 0.45 0.50 0.55 0.60
Accuracy

0

5

10

15

20

25

shrinkage

0.05

0.2

0.4

0.6

(d) Shrinkage

Figure 16: Analysis of the parameter influence through histograms (together with the
estimated distributions) of the accuracy values measured on the UWCSE dataset.

the shrinkage (see Fig. 16d). Here, there is a clear preference towards lower
values which means that the dataset is quite hard to model and it is preferable
to converge to the final model in a slower manner.

The results of the parameter analysis for the other datasets are available
at https://github.com/re3py/re3py.

7. Conclusions

In this work, we addressed the need for machine learning methods that
can learn predictive models in powerful relational and logical representations.
A characteristic of these representations is that they give rise to a huge num-
ber of features to be considered, thus drastically increasing the difficulty of

39

277

learning in terms of computational complexity and the curse of dimensional-
ity. Despite this, methods for ranking features in this context, i.e., estimating
their importance are practically non-existent.

Among the most well-known methods for feature ranking are those based
on ensembles, and in particular tree ensembles. To develop methods for
feature ranking in a relational context, we adopt the relational tree ensemble
approach. We thus first develop methods for learning ensembles of relational
trees, extending a wide spectrum of tree-based ensembles methods from the
propositional to the relational context, resulting in methods for bagging and
random forests of relational trees, as well as gradient boosted ensembles
thereof.

The novel procedure for generating relational features in the (ensembles
of) trees covers two kinds of relational features. The first corresponds to
existential queries, such as ’Does this person have any children?’. The second
corresponds to aggregation queries, such as ’What is the average age of this
person’s children’. We also calculate feature importance scores and rankings
from the different kinds of relational tree ensembles learned, with different
kinds of relational features. The rankings provide insight into and explain
the ensemble models, which would be otherwise difficult to understand.

The proposed method covers the Cartesian product of aggregated/existential
splits and single trees/boosting/bagging/random forests. To some extent
similar methods cover this options only partially. For example, FOIL [16]
and BoostSRL [19] do not use aggregates, and relational random forests [53]
and BoostSRL implement only one ensemble method.

The implementations of such methods, except for BoostSRL, do not follow
the open science philosophy of reproducibility and reusability. They are not
fully forking (e.g., TILDE), or are not publicly available. The code for our
tree ensembles, on the other hand, is fairly easy to use and publicly available
for download. Also the data used in our experiments are freely available.

The main findings, regarding the experimental evaluation of the proposed
method, are the following:

• Ensembles outperform single trees, and the bagging ensembles perform
the best, with gradient boosted ensembles following closely.

• Learning trees in a relational setting, i.e., considering more than just
the target table, is clearly beneficial and can lead to substantial im-
provements (of even more than 50 percentage points) of the obtained
predictive models, e.g., on the data sets UWCSE and WEBKB.

40

278 Chapter 9. Relational Feature Generation and Ranking

• Similarly goes for the use of aggregates in feature construction. Using
them is beneficial, and drastically improves the quality of the obtained
models on some data sets, e.g., UWCSE.

• Taking the maximal quality of the state-of-the-art competitors, and
comparing it to our Bagging ensembles that use aggregation shows
that the proposed method uniformly outperforms the others. The only
case where this is not true is the WEBKB data set, where HENPC is
better. However, note that HENPC models are learned in a transduc-
tive setting, i.e., need to see the descriptive parts of testing examples
in advance.

• Our method yields models that are not only of high predictive perfor-
mance, but are also explainable. As in the propositional case, this is
achieved by defining feature ranking scores, for which we show that
they return meaningful results.

• Parameter sensitivity analysis for Boosting shows that the most critical
parameter is shrinkage, here - for the data at hand - smaller values
are preferred. As for the number of features, it does not have major
influence on the quality of the obtained models, provided it is high
enough.

As for further work, there are many directions to explore. First, the pro-
posed method, as implemented, is modular enough to handle not only clas-
sification, but also, e.g., regression. Moreover, by appropriately defining and
implementing the heuristics for choosing the best candidate split, we can go
beyond the primitive outputs, and also tackle structured outputs, such as
multi-target regression and (hierarchical) multi-label classification.

Second, tree-based methods can also handle missing values in the tar-
get part of the data, so we plan to extend the approach towards the semi-
supervised or unsupervised context. To achieve that, the tree induction al-
gorithm should be further modified, since the standard predictive clustering
approaches to learning in these two contexts can not be applied, due to the
high number of features.

Third, we can also think about quantitatively evaluating feature rankings
in a relational context. A possible approach from the propositional setting is
to weight the dimensions (features) in the distance used by nearest-neighbor
algorithm. However, even though relational NNs are one of the competitors

41

279

in this paper, including the estimated feature importances as distance weights
in the relational setting is a task on its own.

Next, another task that is easier to define or execute in the propositional
setting, is feature selection where only a subset of most relevant features is
selected to enter the subsequent experiments. However, in the relational set-
ting, features (that can be constructed) may depend on the learning method.
Thus, we plan to first formulate the problem correctly, and then evaluate our
method in this context.

Finally, we plan to extend the evaluation of relational ensembles to real-
world case studies, e.g., larger QSAR datasets.

Appendix A. Number of candidate features

When deriving the computational complexity of the method in Section
4.6, we assumed an upper bound for the number of features in internal nodes
equal to F . In this Appendix, we discuss this upper bound more thoroughly,
and explain the factor Fbs in the time complexity O(Fnbs log n), where, as
explained in Section 4.6, s is the length of the longest considered foreign-key
paths, b is the branching factor and n is the number of reference objects (i.e.,
rows in the target table).

First, we count the number of foreign-key paths. In the following, we
assume that each table contains K foreign keys, and that all predicates in
the tables are numeric (this leads to the worst-case scenario, because of the
additional sorting operation).

If the foreign key paths contain at most s tables, then the number of
possible paths is O(Ks). If a is the number of used (numeric) aggregates,
then every paths can be aggregated in as ways. This means that F = asKs =
(aK)s. Note that, potentially, this result can be infeasibly high. However, the
parameter s is indirectly controlled by the user-defined look-ahead parameter
`, that defines the maximal number of additional steps made in an internal
node of a tree. In our experiments, we have shown that we can achieve
state-of-the-art results with ` = 2.

The evaluation of a feature f(ro) for a given reference object ro proceeds
as follows. Our implementation makes finding all tros at a given step in
the path a constant operation (i.e., we store the pointers to all 1-related
sets). Every such set will be aggregated exactly once, so the total time
needed to evaluate a single split is proportional to the sum of the sizes of the
discovered 1-related sets. Given b the branching factor, the aggregation is

42

280 Chapter 9. Relational Feature Generation and Ranking

done in O(
∑s

i=1 b
i) = O(bs) operations (assuming b > 1). This step needs to

be performed for every reference objects, so the total time for evaluating a
single split is O(n′b`) where n′ is the number of reference objects that arrive
to a given node.

To sum up, the time needed for computing the value of a single feature
for a single reference object is O(bs). Therefore, summing over different tree
depths d ∈ {1, 2, . . . , log n} (assuming balancing), the total tree-induction
time corresponds to:

= O

logn∑

d=1

2d︸︷︷︸
number of nodes

at depth d

·

n

2d
· F · bs

︸ ︷︷ ︸
feature value computation
for all n/2d ros in a node

+F ·
(n

2d
log

n

2d
+
n

2d

)

︸ ︷︷ ︸
sorting the ros

with respect to a feature
+

evaluation of the splits

= O
(

logn∑

d=1

Fn[bs + log n]

)

(∗)
= O

(
logn∑

d=1

Fnbs

)

= O (Fnbs log n)

= O ((aK)snbs log n)

(∗) Note that s ≈ ` log n, since the number of additional hops increases by
at most ` at every depth, thus bs ≈ b` logn. Since the logarithms above are
binary and b ≥ 2, it also follows that b` logn ≥ 2` logn = n` and that n` ≥ log n.

References

[1] B. Škrlj, J. Kralj, N. Lavrač, Targeted end-to-end knowledge graph de-
composition, in: F. Riguzzi, E. Bellodi, R. Zese (Eds.), Inductive Logic
Programming, Springer, 2018.

[2] S. Kramer, N. Lavrač, P. Flach, Relational Data Mining, LNAI,
Springer-Verlag, Berlin Heidelberg Germany, 2001, Ch. Propositional-
ization Approaches to Relational Data Mining, pp. 262–291.

43

281

[3] M. Krogel, S. Rawles, F. Zelezny, P. Flach, N. Lavrac, S. Wrobel, Com-
parative evaluation of approaches to propositionalization, in: T. Hor-
vath, A. Yamamoto (Eds.), Proceedings of International Conference on
Inductive Logic Programming, Vol. 2835 of LNAI, Springer-Verlag, 2003,
pp. 197–214.

[4] J. Knobbe, M. Haas, A. Siebes, Propositionalisation and aggregates, in:
L. D. Raedt, A. Siebes (Eds.), Proceedings of PKDD 2001, Vol. 2168 of
LNAI, Springer-Verlag, 2001, pp. 277–288.

[5] N. Lavrač, S. Džeroski, Inductive Logic Programming: Techniques and
Applications, Ellis Horwood, Chichester, UK, 1994.

[6] L. Breiman, J. Friedman, R. Olshen, C. J. Stone, Classification and
Regression Trees, Chapman & Hall/CRC, 1984.

[7] N. Lavrač, B. Škrlj, M. Robnik-Šikonja, Propositionalization and em-
beddings: two sides of the same coin, Mach. Learn. 109 (7) (2020)
1465–1507.

[8] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996)
123–140.

[9] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.
doi:10.1023/A:1010933404324.
URL https://doi.org/10.1023/A:1010933404324

[10] J. H. Friedman, Greedy function approximation: A gradient boosting
machine, The Annals of Statistics 29 (5) (2001) 1189–1232.

[11] A. Holzinger, G. Langs, H. Denk, K. Zatloukal, H. Müller, Causability
and explainability of artificial intelligence in medicine, WIREs Data
Mining and Knowledge Discovery 9 (4) (2019) e1312.

[12] M. Hoogendoorn, P. Szolovits, L. M. Moons, M. E. Numans, Utilizing
uncoded consultation notes from electronic medical records for predic-
tive modeling of colorectal cancer, Artificial Intelligence in Medicine 69
(2016) 53–61.

[13] E. Tjoa, C. Guan, A survey on explainable artificial intelligence (xai):
Towards medical xai (10 2019).

44

282 Chapter 9. Relational Feature Generation and Ranking

[14] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, P. Geurts, Inferring regu-
latory networks from expression data using tree-based methods, PLOS
ONE 5 (9) (2010) 1–10. doi:10.1371/journal.pone.0012776.

[15] I. Guyon, A. Elisseeff, An introduction to variable and feature selection,
Journal of Machine Learning Research 3 (2003) 1157–1182.

[16] J. R. Quinlan, R. M. Cameron-Jones, Foil: A midterm report, in:
Proceedings of the 6th European Conference on Machine Learning,
ECML’93, Springer-Verlag, Berlin, Heidelberg, 1993, p. 1–20.

[17] S. Muggleton, Inverse entailment and progol, New Generation Comput-
ing 13 (3) (1995) 245–286.

[18] H. Blockeel, L. D. Raedt, Top-down induction of first-order logical de-
cision trees, Artificial Intelligence 101 (1) (1998) 285 – 297.

[19] S. Natarajan, K. Kersting, T. Khot, J. Shavlik, Boosted statistical rela-
tional learners: From benchmarks to data-driven medicine, 2014.

[20] P. A. Flach, N. Lachiche, Naive bayesian classification of structured
data, Mach. Learn. 57 (3) (2004) 233–269.

[21] M. Ceci, A. Appice, D. Malerba, Mr-sbc: A multi-relational näıve bayes
classifier, in: N. Lavrac, D. Gamberger, H. Blockeel, L. Todorovski
(Eds.), Knowledge Discovery in Databases: PKDD 2003, 7th Euro-
pean Conference on Principles and Practice of Knowledge Discovery
in Databases, Cavtat-Dubrovnik, Croatia, September 22-26, 2003, Pro-
ceedings, Vol. 2838 of Lecture Notes in Computer Science, Springer,
2003, pp. 95–106.

[22] M. Ceci, A. Appice, D. Malerba, Discovering emerging patterns in spa-
tial databases: A multi-relational approach, in: J. N. Kok, J. Ko-
ronacki, R. L. de Mántaras, S. Matwin, D. Mladenic, A. Skowron
(Eds.), Knowledge Discovery in Databases: PKDD 2007, 11th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in
Databases, Warsaw, Poland, September 17-21, 2007, Proceedings, Vol.
4702 of Lecture Notes in Computer Science, Springer, 2007, pp. 390–
397. doi:10.1007/978-3-540-74976-9 38.
URL https://doi.org/10.1007/978-3-540-74976-9_38

45

283

[23] M. Ceci, A. Appice, Spatial associative classification: propositional
vs structural approach, J. Intell. Inf. Syst. 27 (3) (2006) 191–213.
doi:10.1007/s10844-006-9950-x.
URL https://doi.org/10.1007/s10844-006-9950-x

[24] F. Serafino, G. Pio, M. Ceci, Ensemble learning for multi-type classifica-
tion in heterogeneous networks, IEEE Trans. Knowl. Data Eng. 30 (12)
(2018) 2326–2339.

[25] A. Woznica, A. Kalousis, M. Hilario, Learning to combine distances
for complex representations, in: Z. Ghahramani (Ed.), Machine Learn-
ing, Proceedings of the Twenty-Fourth International Conference (ICML
2007), Corvallis, Oregon, USA, June 20-24, 2007, Vol. 227 of ACM In-
ternational Conference Proceeding Series, ACM, 2007, pp. 1031–1038.

[26] M. Kirsten, S. Wrabel, T. Horváth, Distance Based Approaches to Re-
lational Learning and Clustering, Springer-Verlag, Berlin, Heidelberg,
2001, p. 213–230.

[27] J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis, Psychometrika 29 (1) (1964) 1–27.

[28] S. A. Macskassy, F. Provost, Classification in networked data: A toolkit
and a univariate case study, J. Mach. Learn. Res. 8 (2007) 935–983.

[29] B. Gallagher, H. Tong, T. Eliassi-Rad, C. Faloutsos, Using ghost edges
for classification in sparsely labeled networks, in: Proc. 14th ACM
SIGKDD Intl. Conf. Knowledge Discovery and Data Mining, ACM,
2008, pp. 256–264.

[30] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, T. Eliassi-Rad,
Collective classification in network data., AI Magazine 29:3 (2008) 93–
106.

[31] D. Jensen, J. Neville, B. Gallagher, Why collective inference improves
relational classification, in: Proc. 10th ACM SIGKDD, ACM, 2004, pp.
593–598.

[32] M. Bilgic, L. Getoor, Effective label acquisition for collective classifica-
tion, in: ACM SIGKDD, ACM, 2008, pp. 43–51.

46

284 Chapter 9. Relational Feature Generation and Ranking

[33] X. Zhu, Z. Ghahramani, J. D. Lafferty, Semi-Supervised Learning Using
Gaussian Fields and Harmonic Functions, in: Proc. 20th ICML, AAAI
Press, 2003, pp. 912–919.

[34] D. Malerba, M. Ceci, A. Appice, A relational approach to probabilistic
classification in a transductive setting, Eng. Appl. Artif. Intell. 22 (1)
(2009) 109–116. doi:10.1016/j.engappai.2008.04.005.
URL https://doi.org/10.1016/j.engappai.2008.04.005

[35] H. Rahmani, H. Blockeel, A. Bender, Predicting the functions of proteins
in protein-protein interaction networks from global information, Journal
of Machine Learning Research 8 (2010) 82–97.

[36] A. Appice, M. Ceci, D. Malerba, An iterative learning algorithm for
within-network regression in the transductive setting, in: Discovery Sci-
ence 2009, Springer, 2009, pp. 36–50.

[37] M. Ji, Y. Sun, M. Danilevsky, J. Han, J. Gao, Graph regularized trans-
ductive classification on heterogeneous information networks, in: J. L.
Balcázar, F. Bonchi, A. Gionis, M. Sebag (Eds.), Machine Learning
and Knowledge Discovery in Databases, European Conference, ECML
PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings,
Part I, Vol. 6321 of Lecture Notes in Computer Science, Springer, 2010,
pp. 570–586.

[38] M. Ji, J. Han, M. Danilevsky, Ranking-based classification of heteroge-
neous information networks, in: SIGKDD ’11, ACM, NY, USA, 2011,
pp. 1298–1306.

[39] X. Kong, P. S. Yu, Y. Ding, D. J. Wild, Meta path-based collec-
tive classification in heterogeneous information networks, in: X. Chen,
G. Lebanon, H. Wang, M. J. Zaki (Eds.), 21st ACM International Con-
ference on Information and Knowledge Management, CIKM’12, Maui,
HI, USA, October 29 - November 02, 2012, ACM, 2012, pp. 1567–1571.

[40] C. Yang, M. Liu, F. He, X. Zhang, J. Peng, J. Han, Similarity modeling
on heterogeneous networks via automatic path discovery, in: M. Berlin-
gerio, F. Bonchi, T. Gärtner, N. Hurley, G. Ifrim (Eds.), Machine Learn-
ing and Knowledge Discovery in Databases - European Conference,

47

285

ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceed-
ings, Part II, Vol. 11052 of Lecture Notes in Computer Science, Springer,
2018, pp. 37–54.

[41] Y. Dong, Z. Hu, K. Wang, Y. Sun, J. Tang, Heterogeneous network rep-
resentation learning, in: C. Bessiere (Ed.), Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI
2020, ijcai.org, 2020, pp. 4861–4867. doi:10.24963/ijcai.2020/677.
URL https://doi.org/10.24963/ijcai.2020/677

[42] K. Steinhaeuser, N. V. Chawla, A. R. Ganguly, Complex networks as
a unified framework for descriptive analysis and predictive modeling in
climate science, Statistical Analysis and Data Mining 4 (5) (2011) 497–
511.

[43] D. Stojanova, M. Ceci, A. Appice, S. Dzeroski, Network regression with
predictive clustering trees, Data Min. Knowl. Discov. 25 (2) (2012) 378–
413.

[44] D. Stojanova, M. Ceci, D. Malerba, S. Dzeroski, Using PPI network
autocorrelation in hierarchical multi-label classification trees for gene
function prediction, BMC Bioinformatics 14 (2013) 285.

[45] G. Pio, F. Serafino, D. Malerba, M. Ceci, Multi-type clustering and
classification from heterogeneous networks, Inf. Sci. 425 (2018) 107–126.

[46] D. Grissa, M. Pétéra, M. Brandolini, A. Napoli, B. Comte, E. Pujos-
Guillot, Feature selection methods for early predictive biomarker dis-
covery using untargeted metabolomic data, Frontiers in Molecular Bio-
sciences 3 (2016) 30.

[47] Y. Saeys, I. Inza, P. Larrañaga, A review of feature selection techniques
in bioinformatics, Bioinformatics 23 (19) (2007) 2507–2517.

[48] M. Tsagris, V. Lagani, I. Tsamardinos, Feature selection for high-
dimensional temporal data, BMC Bioinformatics 19 (1) (2018) 17.

[49] M. Petković, D. Kocev, S. Džeroski, Feature ranking for multi-target
regression, Machine Learning 109 (2020) 1179–1204.

48

286 Chapter 9. Relational Feature Generation and Ranking

[50] C. Vens, Complex aggregates in relational learning, Ph.D. thesis, Fac-
ulteit Ingenieurswetenschappen, Katholieke Univeristeit Leuven (2007).

[51] J. Platt, Fast training of support vector machines using sequential min-
imal optimization, in: Advances in Kernel Methods - Support Vector
Learning, MIT Press, 1998.

[52] Y. L. Suen, P. Melville, R. J. Mooney, Combining bias and variance
reduction techniques for regression trees, in: J. Gama, R. Camacho,
P. B. Brazdil, A. M. Jorge, L. Torgo (Eds.), Machine Learning: ECML
2005, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 741–749.

[53] A. Van Assche, C. Vens, H. Blockeel, S. Džeroski, A random forest
approach to relational learning, in: T. Dietterich, L. Getoor, K. Murphy
(Eds.), Proceedings of ICML 2004 workshop on Statistical Relational
Learning and its Connections to Other Fields, 2004, pp. 110–116.

49

287

289

Chapter 10

Conclusions and Further Work

In this thesis, we developed feature ranking methods tailored to a variety of learning set-
tings, bridging the gap between the ever more complex data on the one hand, and the lack
of feature ranking methods that would explain the models learned on these data on the
other hand. The developed feature ranking methods address complex machine
learning tasks from supervised, semi-supervised and unsupervised learning.
They learn feature rankings in the context of supervised and semi-supervised structured
output prediction (SOP), including multi-target regression (MTR), multi-label classifica-
tion (MLC), and hierarchical multi-label classification (HMLC). We have also extended
the feature ranking methods to relational learning, where the data representation
is even richer and more complex.

The developed feature ranking methods handle these various learning contexts in
an elegant and unified way. At the same time, the feature rankings computed by these
methods offer state-of-the-art performance in all the learning contexts, as proven
by extensive empirical studies presented in this thesis. Moreover, the developed feature
ranking methods scale-up well, since they are subquadratic in the number of features
and easily parallelizable.

There are two corner stones that make the unified and elegant approach to the various
problems possible. The first corner stone is that we follow the philosophy of predictive
clustering, where attributes in data are treated as descriptive, clustering and target ones,
and can belong to more than one of these groups. The second corner stone is the inherent
generality of the algorithms that we extend.

The generality of the considered tree-ensemble-based and distance-based feature rank-
ing methods originates from the fact that only a rather well-isolated part of the original
algorithm needs to be changed in order to extend it to another task. For tree-ensemble
based feature rankings, this is (mostly) the heuristic for assessing the quality of the splits,
whereas for the distance-based methods, this is the distance in the target (or clustering)
space. The impurity measures that are the main part of the tree-induction heuristics also
measure distances between the examples. On the other hand, a target space that prohibits
any metric definition is most probably a mathematical construct and, loosely speaking,
rather unrelated to real life. This gives us the intuition why the considered methods are
so widely applicable and extendable.

We have developed two groups of feature ranking methods. The first group of
feature ranking methods is tree-ensemble-based and contains the Symbolic, Genie3 and
Random Forest scores that are computed from different ensembles of predictive clustering
trees (PCTs), i.e., random forests, bagging, and ensembles of extremely randomized PCTs.
The second group of methods are distance-based methods that follow the Relief approach
for feature ranking.

290 Chapter 10. Conclusions and Further Work

The Symbolic score is calculated using the specific variant of the ensemble methods used
for the given task. For the extension of Genie3, one needs to understand that the score is
expressed in terms of the quality of the splits in the trees of an ensemble, as assessed by
the heuristic function. For the Random Forest score, one needs to adapt the error measure
(which is used in the score) to the task at hand. The distance-based scores are extended
by generalizing the original distance definitions on the target space (applicable to nominal
sets and R) in ReliefF to more general target spaces, such as RD, power-sets and partially
ordered power-sets of nominal values.

Once the extensions are defined in the supervised learning setting, one can proceed to
the semi-supervised versions of the above predictive modeling tasks, and to unsupervised
learning as well. This holds both for the ensemble- and distance-based approaches. The
extensions are made by following the philosophy of predictive clustering and appropriately
defining the groups of descriptive and clustering attributes.

Extending the tree-ensembles as predictive models, as well as the corresponding feature
ranking scores, from propositional to relational data, demands one step more, since only
the features from the table that contains the target attribute(s) can be used during tree
induction in the same way as in the propositional case. The values of the features from the
other tables have to be first passed to the examples from the target table. We additionally
had to define a procedure for constructing new, complex features whose building blocks are
the ones provided in the data. This is to some extent related to representation learning, as
we know it in the propositional setting. For example, when classifying images with neural
networks, the hidden layers of a neural network construct new complex features from the
original data representation. These features are then used to classify examples. Other
methods for representation learning also exist, e.g., sum-product networks (Vergari et al.,
2018). Moreover, we use UMAP (McInnes et al., 2018) to learn new representations of
high-dimensional data (Škrlj et al., 2020).

To keep the interpretability of the constructed relational models, feature ranking scores
should be calculated accordingly. Note that this is done only for the two tree-ensemble-
based feature ranking scores that can be computed only from the trees; Symbolic and
Genie3, since the Random Forest score cannot be easily extended to the relational setting.
For similar reasons, the Relief family is not extended to the relational setting: Defining a
distance in the relational case is possible, but is a line of research on its own.

In addition to the limitation mentioned in the above paragraph, the only notable weak-
ness of the developed methods is that they may yield suboptimal feature rankings when
the rankings are used to perform feature selection and there are redundant features among
the most important one. The reason for this is that the developed tree-ensemble-based
and distance-based methods assign similar scores to, for example, correlated features.

10.1 Summary of the Contributions

We summarize the contributions of this dissertation as follows:

• We have designed two novel groups of feature ranking algorithms for different tasks
(MTR, MLC, and HMLC) of (supervised) structured output prediction: a group of
ensemble-based and a group of distance-based algorithms. We started with MTR
problems extending the feature ranking methods that can handle both nominal and
numeric features. Regarding feature ranking for MLC, we first proposed the MLC-
Relief algorithm that outperformed a preexisting competitor that ignores label in-
teractions. Later, the ensemble-based scores achieved even better quality and at a
lower computational cost. As for feature ranking methods for HMLC, our methods
were the first that could handle such problems. In the cases of MLC and HMLC,

10.1. Summary of the Contributions 291

ensemble-based feature ranking scores performed better than distance-based scores,
whereas in the MTR case, there were no significant differences among them.

• In addition to the ability of the above feature ranking methods to handle nominal
and numeric features on the one hand, and various output types on the other hand,
they can also easily handle missing values both in the descriptive and target part
of a data set. Thus, we further extended the developed feature ranking methods for
SOP tasks to their semi-supervised versions, which is our next contribution. Since
semi-supervised learning (SSL) means a new layer of complexity on its own, we also
developed feature ranking methods that handle single target classification (STC) and
single target regression (STR).

The robustness of the proposed feature ranking methods came into play when we
showed that they can use unlabeled data to improve the ranking quality, even when
the basic clustering hypothesis of SSL is not satisfied. To the best of our knowledge,
in most cases (STC, MTR, MLC, HMLC), the proposed methods were the first that
could handle such problems. The exception was STR, where they outperformed the
competitor, which also cannot handle nominal features. An interesting finding that
holds regardless of the output type is that semi-supervised feature ranking captures
a more global picture of a data set, when compared to its supervised version. Again,
the ensemble-based approaches typically outperformed the distance-based ones.

• Our next contribution is the development of feature ranking methods for un-
supervised learning. Even though this setting could be seen as a special case of
SSL, the absence of the target attribute(s) simplifies matters to the extent that in
this setting, many more feature ranking methods exist, compared to SSL. However,
both our approaches, distance-based and ensemble-based, clearly outperformed all the
competitors, including AgnoS-S (Doquet & Sebag, 2020) that was awarded the best
paper award at the ECML 2019 conference.

• In the contributions listed above, we already covered two dimensions of data com-
plexity: the type of the output and the amount of supervision. To describe the next
contribution, we have to move along the third data complexity dimension, leave the
propositional setting and enter the relational one. The next contribution is a new
algorithm for inducing relational trees (and ensembles thereof). The inte-
gral part of the algorithm is the construction of the expressive features that consist
of combinations of descriptive relations, as given in a data set, and aggregates, which
– as proved in the experiments – make the features even better. We evaluated the
relational trees and ensembles thereof in the context of relational classification and
showed that they outperform the other competitors.

Moreover, we also explained the obtained relational models by computing
feature rankings out of them. This was done by extending the Symbolic and Genie3
scores to the relational setting. This is, to the best of our knowledge, the first feature
ranking approach in the relational setting. The obtained rankings were shown to be
meaningful when the learned relational model reflected the target concept well.

• The final contribution of this thesis is a case study that uses the developed ensemble-
based feature ranking algorithms for MTR to explain the models that predict the
thermal power consumption of ESA’s Mars Express spacecraft in two operating con-
ditions, with or without gyroscopes. Based on the obtained rankings, the spacecraft
operators can understand and verify the predictive models, and also quantify the
differences between them.

292 Chapter 10. Conclusions and Further Work

Following the philosophy of open, reproducible and transparent science, the imple-
mentations of the methods above are freely available, as well as the results, upon which the
analysis of their performance is made (the exact locations are given in the corresponding
papers). Note that the methods are always extensively evaluated on a number of data sets
that typically exceeds 20.

10.2 Further Work

The presented work is comprehensive in terms of the addressed machine learning tasks and
challenges. It answers the questions posed in the introduction, and opens new directions
for further research. The major directions of further research can be summarized as
follows.

First of all, although we carefully designed the distances and the impurity measures in
the proposed methods, we plan to further investigate the effect of the use of other distances
and impurity measures on the performance of the proposed methods. The distances can
be designed in a way to include some peculiarities of the output space under consideration
(e.g., in HMLC one can aggregate the contribution of the labels at the different levels in
a variety of ways). We will also explore the wealth of existing kernels for inclusion in the
core of the developed methods.

Second, in the SOP tasks, besides labeled and unlabeled examples, partially labeled
examples can also be encountered. An example is partially labeled if not all values for the
target variables are available (e.g., in QSAR, not always all compounds are tested for all
potential adverse effects), and some are. The proposed methods can be easily adapted to
learning from partially labeled examples: the ensemble-based ones already support this to
an extent (PCTs can be learned from partially labeled examples). In the distance-based
methods, the distance calculation could be updated to consider only the portions of the
target variables that are available. Once the scores are extended, we will evaluate and
benchmark them in a variety of SOP domains.

Third, the proposed methods (especially the ensemble-based ones) can be used to ex-
plain the predictions made for individual examples by the predictive models as well as to
explain the predictions made for a set of examples. The explanation will be provided as
feature rankings relevant for those specific examples. For example, the Symbolic and Ge-
nie3 scores can be calculated using only the splits reached by the examples in question, and
the Random forest score can be calculated by permuting the values only on the examples
in question.

Forth, in the context of relational learning, we plan to extend the proposed approach to
regression as well as to the SOP tasks considered in this dissertation. The proposed meth-
ods could also be extended towards semi-supervised and unsupervised relational learning.
Moreover, relational feature rankings could be used to improve the random-walk-based
graph embedding algorithm by guiding the random walks using the feature importance to
assign probability to every type of edge. This is possible since the constructed features in
our relational trees correspond to walks in the underlying network.

Last, but not least, since the developed methods cannot handle well redundant features,
we plan to investigate how these methods can be joined with other unsupervised feature
ranking methods into a chain, where we would first use our method to compute the ranking,
and then further filter this ranking with another method to remove redundant features from
the top-ranked ones.

293

References

Amaldi, E., & Kann, V. (1998). On the approximability of minimizing nonzero variables or
unsatisfied relations in linear systems. Theoretical Computer Science, 209, 237–260.

Arthur, D., & Vassilvitskii, S. (2007). K-Means++: The Advantages of Careful Seeding.
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 1027–1035.

Bakır, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., & Vishwanathan,
S. V. N. (Eds.). (2007). Predicting structured data. The MIT Press.

Barutcuoglu, Z., Schapire, R. E., & Troyanskaya, O. G. (2006). Hierarchical multi-label
prediction of gene function. Bioinformatics, 22 (7), 830–836.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practi-
cal and Powerful Approach to Multiple Testing. Journal of the Royal Statistical
Society., 57 (1), 289–300. https://doi.org/10.2307/2346101

Blockeel, H. (1998). Top-down Induction of First Order Logical Decision Trees (Doctoral
dissertation). Katholieke Universiteit Leuven. Leuven, Belgium.

Blockeel, H., & Raedt, L. D. (1998). Top-down induction of first-order logical decision
trees. Artificial Intelligence, 101 (1), 285–297.

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24 (2), 123–140.
Breiman, L. (2001). Random Forests. Machine Learning, 45 (1), 5–32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. J. (1984). Classification and Regression

Trees. Chapman & Hall/CRC.
Breskvar, M., Kocev, D., Levatić, J., Osojnik, A., Petković, M., Simidjievski, N., Ženko, B.,

Boumghar, R., & Lucas, L. (2017). Predicting Thermal Power Consumption of the
Mars Express Satellite with Machine Learning. Proceedings of the 6th International
Conference on Space Mission Challenges for Information Technology (SMC-IT),
88–93.

Cai, D., Zhang, C., & He, X. (2010). Unsupervised Feature Selection for Multi-Cluster
Data. Proceedings of the 16th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 333–342. https ://doi .org/10 .1145/1835804 .
1835848

Chicarro, A., Martin, P., & Trautner, R. (2004). The Mars Express mission: An overview.
European Space Agency, (Special Publication) ESA SP, 1240, 3–13.

Corani, G., Benavoli, A., Demšar, J., Mangili, F., & Zaffalon, M. (2017). Statistical com-
parison of classifiers through Bayesian hierarchical modelling. Machine Learning,
106, 1817–1837.

Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience.

Cristianini, N., & Shawe-Taylor, J. (2010). An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press.

Cunningham, P., & Delany, S. J. (2007). k-Nearest Neighbour Classifiers (tech. rep.). Uni-
versity College Dublin, Dublin, Ireland.

https://doi.org/10.2307/2346101
https://doi.org/10.1145/1835804.1835848
https://doi.org/10.1145/1835804.1835848

294 References

de Bruijne, M. (2016). Machine learning approaches in medical image analysis: From detec-
tion to diagnosis [20th anniversary of the Medical Image Analysis journal (MedIA)].
Medical Image Analysis, 33, 94–97. https://doi.org/https://doi.org/10.1016/j.
media.2016.06.032

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7, 1–30.

DiMasi, J. A., Hansen, R. W., & Grabowski, H. G. (2003). The price of innovation: new
estimates of drug development costs. Journal of Health Economics, 22 (2), 151–185.

Doquet, G., & Sebag, M. (2020). Agnostic Feature Selection. https://doi.org/10.1007/978-
3-030-46150-8_21

Elisseeff, A., & Weston, J. (2001). A Kernel Method for Multi-Labelled Classification.
Proceedings of the 14th International Conference on Neural Information Processing
Systems: Natural and Synthetic, 681–687.

Elkafrawy, P., Mausad, A., & Esmail, H. (2015). Experimental Comparison of Methods for
Multi-label Classification in different Application Domains. International Journal
of Computer Applications, 114, 1–9.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data
Analysis, 38 (4), 367–378.

Fürnkranz, J., Gamberger, D., & Lavrač, N. (2014). Foundations of Rule Learning. Springer
Publishing Company, Incorporated.

Geurts, P., Erns, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learn-
ing, 36 (1), 3–42.

Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. Jour-
nal of Machine Learning Research, 3, 1157–1182.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classi-
fication using support vector machines. Machine Learning, 46 (1), 389–422.

Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12, 993–1001.

He, X., Cai, D., & Niyogi, P. (2005). Laplacian Score for Feature Selection. Proceedings
of the 18th International Conference on Neural Information Processing Systems,
507–514.

Hoy, M. B. (2018). Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants
[PMID: 29327988]. Medical Reference Services Quarterly, 37 (1), 81–88. https://
doi.org/10.1080/02763869.2018.1404391

Hrbacek, K., & Jech, T. (1999). Introduction to set theory: Third Edition, Revised and
Expanded. Marcel Dekker, Inc.

Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., & Geurts, P. (2010). Inferring Regulatory
Networks from Expression Data Using Tree-Based Methods. PLoS One, 5 (9), 1–10.

Hyafil, L., & Rivest, R. L. (1976). Constructing Optimal Binary Decision Trees is NP-
Complete. Information Processing Letters, 5, 15–17.

International Organization for Standardization. (2007). ISO/IEC 11404:2007 - Informa-
tion technology — General-Purpose Datatypes (GPD) (tech. rep.). International
Organization for Standardization. https://www.iso.org/standard/39479.html

Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. ML92: Pro-
ceedings of the 9th international workshop on Machine learning, 249–256.

Kittler, J. (1978). Pattern Recognition and Signal Processing. Sijthoff; Noordhoff.
Kocev, D. (2011). Ensembles for predicting structured outputs (Doctoral dissertation). IPS

Jožef Stefan. Ljubljana, Slovenia.
Kocev, D., Ceci, M., & Stepišnik, T. (2020). Ensembles of extremely randomized predictive

clustering trees for predicting structured outputs. Machine learning, In press.

https://doi.org/https://doi.org/10.1016/j.media.2016.06.032
https://doi.org/https://doi.org/10.1016/j.media.2016.06.032
https://doi.org/10.1007/978-3-030-46150-8_21
https://doi.org/10.1007/978-3-030-46150-8_21
https://doi.org/10.1080/02763869.2018.1404391
https://doi.org/10.1080/02763869.2018.1404391
https://www.iso.org/standard/39479.html

References 295

Kocev, D., & Džeroski, S. (2013). Habitat modeling with single- and multi-target trees and
ensembles. Ecological Informatics, 18, 79–92.

Kocev, D., Vens, C., Struyf, J., & Džeroski, S. (2013). Tree ensembles for predicting struc-
tured outputs. Pattern Recognition, 46 (3), 817–833.

Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification Tech-
niques. Proceedings of the 2007 Conference on Emerging Artificial Intelligence Ap-
plications in Computer Engineering: Real Word AI Systems with Applications in
EHealth, HCI, Information Retrieval and Pervasive Technologies, 3–24.

Kralj Novak, P., Smailović, J., Sluban, B., & Mozetič, I. (2015). Sentiment of Emojis. PloS
one, 10 (12), 1–22.

Levatić, J. (2017). Semi-supervised Learning for Structured Output Prediction (Doctoral
dissertation). Jožef Stefan Postgraduate School. Ljubljana, Slovenia.

Li, Z., Yang, Y., Liu, J., Zhou, X., & Lu, H. (2012). Unsupervised Feature Selection Using
Nonnegative Spectral Analysis. Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence, 1026–1032.

Lucas, L., & Boumghar, R. (2017). Machine Learning for Spacecraft Operations Support
- The Mars Express Power Challenge. Proceedings of the Sixth International Con-
ference on Space Mission Challenges for Information Technology, SMC-IT 2017,
82–87.

Madjarov, G., Kocev, D., Gjorgjevikj, D., & Džeroski, S. (2012). An extensive experimental
comparison of methods for multi-label learning. Pattern Recognition, 45, 3084–3104.

McInnes, L., Healy, J., Saul, N., & Grossberger, L. (2018). UMAP: Uniform Manifold
Approximation and Projection. The Journal of Open Source Software, 3 (29), 861.

Mitchell, T. (1997). Machine learning. McGraw Hill.
Nemenyi, P. B. (1963). Distribution-free multiple comparisons (Doctoral dissertation).

Princeton University. Princeton, NY, USA.
Nielsen, F. (2016). Introduction to HPC with MPI for Data Science. Springer. https :

//doi.org/10.1007/978-3-319-21903-5_8
Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. Pro-

ceedings of the Royal Society of London, 58, 240–242.
Petković, M., Boumghar, R., Breskvar, M., Džeroski, S., Kocev, D., Levatić, J., Lucas, L.,

Osojnik, A., Ženko, B., & Simidjievski, N. (2019). Machine Learning for Predicting
Thermal Power Consumption of the Mars Express Spacecraft. IEEE Aerospace and
Electronic Systems Magazine, 34 (7), 46–60.

Petković, M., Ceci, M., Kersting, K., & Džeroski, S. (2020). Estimating the Importance of
Relational Features by using Gradient Boosting. Proceedings of the 25th Interna-
tional Symposium on Methodologies for Intelligent Systems, 12117, 362–371.

Petković, M., Džeroski, S., & Kocev, D. (2017). Feature Ranking for Multi-target Re-
gression with Tree Ensemble Methods. In A. Yamamoto, T. Kida, T. Uno, & T.
Kuboyama (Eds.), Discovery Science (pp. 171–185). Springer International Pub-
lishing.

Petković, M., Džeroski, S., & Kocev, D. (2018). Feature ranking for hierarchical multi-label
classification with tree ensemble methods. ETAI 2018 : proceedings of abstracts.

Petković, M., Džeroski, S., & Kocev, D. (2019). Ensemble-Based Feature Ranking for Semi-
supervised Classification. In P. Kralj Novak, T. Šmuc, & S. Džeroski (Eds.), Dis-
covery Science (pp. 290–305). Springer International Publishing.

Petković, M., Džeroski, S., & Kocev, D. (2020a). Feature Ranking for Hierarchical Multi-
Label Classification with Tree Ensemble Methods [In Press]. Acta Polytechnica
Hungarica.

https://doi.org/10.1007/978-3-319-21903-5_8
https://doi.org/10.1007/978-3-319-21903-5_8

296 References

Petković, M., Džeroski, S., & Kocev, D. (2020b). Feature Ranking for Semi-supervised
Learning [Under Review]. Machine Learning.

Petković, M., Džeroski, S., & Kocev, D. (2020c). Multi-label feature ranking with ensemble
methods [In press]. Machine Learning. https://doi.org/10.1007/s10994-020-05908-
1

Petković, M., Kocev, D., & Džeroski, S. (2018). Feature Ranking with Relief for Multi-
label Classification: Does Distance Matter? In L. Soldatova, J. Vanschoren, G.
Papadopoulos, & M. Ceci (Eds.), Discovery Science, LNCS (pp. 51–65).

Petković, M., Kocev, D., & Džeroski, S. (2020). Feature Ranking for Multi-Target Regres-
sion. Machine Learning, 109, 1179–1204.

Petković, M., Lucas, L., Kocev, D., Džeroski, S., Boumghar, R., & Simidjievski, N. (2019).
Quantifying the Effects of Gyroless Flying of the Mars Express Spacecraft with
Machine Learning. Proceedings of the 2019 IEEE International Conference on Space
Mission Challenges for Information Technology (SMC-IT), 9–16.

Petković, M., Pio, G., Ceci, M., Škrlj, B., Kersting, K., & Džeroski, S. (2020). Relational
Tree Ensembles and Feature Rankings [To be submitted]. Artificial Intelligence.

Petković, M., Škrlj, B., Kocev, D., & Džeroski, S. (2020). Feature Ranking for unsupervised
Learning [Under Review]. Information Fusion.

Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1, 81–106.
Quinlan, J. R., & Cameron-Jones, R. M. (1993). FOIL: A Midterm Report. Proceedings of

the 6th European Conference on Machine Learning, 1–20.
Reyes, O., Morell, C., & Ventura, S. (2015). Scalable extensions of the ReliefF algorithm

for weighting and selecting features on the multi-label learning context. Neurocom-
puting, 161, 168–182.

Robnik-Šikonja, M., & Kononenko, I. (2003). Theoretical and Empirical Analysis of ReliefF
and RReliefF. Machine Learning, 55, 23–69.

Rousu, J., Saunders, C., Szedmak, S., & Shawe-Taylor, J. (2006). Kernel–based learning of
hierarchical multilabel classification models. Journal of Machine Learning Research,
7, 1601–1626.

Ryan, T. P. (2008). Modern Regression Methods (2nd ed.). Wiley-Interscience.
Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical

Journal, 27 (3), 379–423.
Siedlecky, W., & Sklansky, J. (1988). On Automatic Feature Selection. International Jour-

nal of Pattern Recognition and Artificial Intelligence, 2 (2), 197–220.
Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J.,

Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham,
J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Grae-
pel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks
and tree search. Nature, 529, 484–489. https://doi.org/10.1038/nature16961

Škrlj, B., Džeroski, S., Lavrač, N., & Petković, M. (2020). ReliefE: High dimensional feature
ranking via manifold embeddings [Under review]. Machine Learning.

Slavkov, I. (2012). An Evaluation Method for Feature Rankings (Doctoral dissertation).
IPS Jožef Stefan. Ljubljana, Slovenia.

Stańczyk, U., & Jain, L. C. (Eds.). (2015). Feature Selection for Data and Pattern Recog-
nition. Springer Berlin Heidelberg.

Tsoumakas, G., & Vlahavas, I. (2007). Random k-Labelsets: An Ensemble Method for
Multilabel Classification. In J. N. Kok, J. Koronacki, R. L. d. Mantaras, S. Matwin,
D. Mladenič, & A. Skowron (Eds.), Machine Learning: ECML 2007 (pp. 406–417).
Springer Berlin Heidelberg.

https://doi.org/10.1007/s10994-020-05908-1
https://doi.org/10.1007/s10994-020-05908-1
https://doi.org/10.1038/nature16961

References 297

Vens, C. (2007). Complex aggregates in Relational Learning (Doctoral dissertation). Fac-
ulteit Ingenieurswetenschappen, Katholieke Univeristeit Leuven.

Vens, C., Struyf, J., Schietgat, L., Džeroski, S., & Blockeel, H. (2008). Decision trees for
hierarchical multi-label classification. Machine Learning, 73 (2), 185–214.

Vergari, A., Peharz, R., Di Mauro, N., Molina, A., Kersting, K., & Esposito, F. (2018). A
comparison of different data transformation approaches in the feature ranking con-
text. Proceedings of The Thirty-Second AAAI Conference on Artificial Intelligence,
4163–4170.

Welch, W. (1982). Algorithmic Complexity: Three NP-Hard Problems in Computational
Statistics. Journal of Statistical Computation and Simulation, 15, 17–25. https :
//doi.org/10.1080/00949658208810560

Wettschereck, D. (1994). A Study of Distance Based Algorithms (Doctoral dissertation).
Oregon State University. Corvallis, OR.

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning
Tools and Techniques, 3rd edition. Morgan Kaufmann.

Zhao, Z., & Liu, H. (2007). Spectral feature selection for supervised and unsupervised
learning. ACM International Conference Proceeding Series, 227, 1151–1157. https:
//doi.org/10.1145/1273496.1273641

Zhu, X., Goldberg, A. B., Brachman, R., & Dietterich, T. (2009). Introduction to Semi-
Supervised Learning. Morgan; Claypool Publishers.

https://doi.org/10.1080/00949658208810560
https://doi.org/10.1080/00949658208810560
https://doi.org/10.1145/1273496.1273641
https://doi.org/10.1145/1273496.1273641

299

Bibliography

Publications Included in the Thesis

Journal Articles

Petković, M., Boumghar, R., Breskvar, M., Džeroski, S., Kocev, D., Levatić, J., Lucas, L.,
Osojnik, A., Ženko, B., & Simidjievski, N. (2019). Machine Learning for Predicting
Thermal Power Consumption of the Mars Express Spacecraft. IEEE Aerospace and
Electronic Systems Magazine, 34 (7), 46–60.

Petković, M., Džeroski, S., & Kocev, D. (2020a). Feature Ranking for Hierarchical Multi-
Label Classification with Tree Ensemble Methods [In Press]. Acta Polytechnica
Hungarica.

Petković, M., Džeroski, S., & Kocev, D. (2020b). Feature Ranking for Semi-supervised
Learning [Under Review]. Machine Learning.

Petković, M., Džeroski, S., & Kocev, D. (2020c). Multi-label feature ranking with ensemble
methods [In press]. Machine Learning. https://doi.org/10.1007/s10994-020-05908-
1

Petković, M., Kocev, D., & Džeroski, S. (2020). Feature Ranking for Multi-Target Regres-
sion. Machine Learning, 109, 1179–1204.

Petković, M., Pio, G., Ceci, M., Škrlj, B., Kersting, K., & Džeroski, S. (2020). Relational
Tree Ensembles and Feature Rankings [To be submitted]. Artificial Intelligence.

Petković, M., Škrlj, B., Kocev, D., & Džeroski, S. (2020). Feature Ranking for unsupervised
Learning [Under Review]. Information Fusion.

Conference Papers

Petković, M., Ceci, M., Kersting, K., & Džeroski, S. (2020). Estimating the Importance of
Relational Features by using Gradient Boosting. Proceedings of the 25th Interna-
tional Symposium on Methodologies for Intelligent Systems, 12117, 362–371.

Petković, M., Kocev, D., & Džeroski, S. (2018a). Feature Ranking with Relief for Multi-
label Classification: Does Distance Matter? In L. Soldatova, J. Vanschoren, G.
Papadopoulos, & M. Ceci (Eds.), Discovery Science, LNCS (pp. 51–65).

Petković, M., Lucas, L., Kocev, D., Džeroski, S., Boumghar, R., & Simidjievski, N. (2019).
Quantifying the Effects of Gyroless Flying of the Mars Express Spacecraft with
Machine Learning. Proceedings of the 2019 IEEE International Conference on Space
Mission Challenges for Information Technology (SMC-IT), 9–16.

https://doi.org/10.1007/s10994-020-05908-1
https://doi.org/10.1007/s10994-020-05908-1

300 Bibliography

Publications Related to the Thesis

Journal Articles

Petković, M., Popovski, G., Koroušić Seljak, B., Kocev, D., & Eftimov, T. (2020). DI-
ETHUB: Dietary Habits Analysis through Understanding the Content of Recipes
[Under review]. Trends in Food Science & Technology.

Petković, M., Škrlj, B., Kocev, D., & Simidjievski, N. (2020). Fuzzy Jaccard Index: A
robust comparison of ordered lists [Under review]. Information Fusion.

Petković, M., Slavkov, I., Kocev, D., & Džeroski, S. (2020). Biomarker Discovery by Fea-
ture Ranking: Evaluation on a case study of Embryonal Tumors [Under review].
Computers in Biology and Medicine.

Škrlj, B., Džeroski, S., Lavrač, N., & Petković, M. (2020b). ReliefE: High dimensional
feature ranking via manifold embeddings [Under review]. Machine Learning.

Slavkov, I., Petković, M., Geurts, P., Kocev, D., & Džeroski, S. (2020). Error curves for
evaluating the quality of feature rankings [Under review]. PeerJ Computer Science.

Slavkov, I., Petković, M., Kocev, D., & Džeroski, S. (2018). Quantitative score for assessing
the quality of feature rankings. Informatica: An International Journal of Computing
and Informatics, 42 (1), 43–52.

Conference Papers

Breskvar, M., Kocev, D., Levatić, J., Osojnik, A., Petković, M., Simidjievski, N., Ženko, B.,
Boumghar, R., & Lucas, L. (2017). Predicting Thermal Power Consumption of the
Mars Express Satellite with Machine Learning. Proceedings of the 6th International
Conference on Space Mission Challenges for Information Technology (SMC-IT),
88–93.

Petković, M., Džeroski, S., & Kocev, D. (2017). Feature Ranking for Multi-target Re-
gression with Tree Ensemble Methods. In A. Yamamoto, T. Kida, T. Uno, & T.
Kuboyama (Eds.), Discovery Science (pp. 171–185). Springer International Pub-
lishing.

Petković, M., Džeroski, S., & Kocev, D. (2018a). Feature ranking for hierarchical multi-label
classification with tree ensemble methods. ETAI 2018 : proceedings of abstracts.

Petković, M., Panov, P., & Džeroski, S. (2015). Izboljšano ocenjevanje pomembnosti zveznih
značilk. In R. Piltaver & M. Gams (Eds.), Intelligent systems : proceedings of the
18th International Multiconference Information Society - IS 2015 (pp. 92–95).

Petković, M., Panov, P., & Džeroski, S. (2016). A comparison of different data transfor-
mation approaches in the feature ranking context. In T. Calders, D. Malerba, &
M. Ceci (Eds.), Discovery Science, LNCS (pp. 310–324).

Petković, M., Tanevski, J., Maver, A., Vidmar, L., Peterlin, B., & Džeroski, S. (2017).
Comparison of feature ranking approaches for discovery of rare genetic variants
related to multiple sclerosis. In M. Luštrek, R. Piltaver, & M. Gams (Eds.), Slove-
nian Conference on Artificial Intelligence : proceedings of the 20th International
Multiconference Information Society - IS 2017 (pp. 11–14).

Škrlj, B., Džeroski, S., Lavrač, N., & Petković, M. (2020a). Feature Importance Estimation
with Self-Attention Networks. 24th European Conference on Artificial Intelligence
(ECAI 2020).

301

Other Publications

Journal Articles

Eftimov, T., Popovski, G., Petković, M., Koroušić Seljak, B., & Kocev, D. (2020). COVID-
19 pandemic changes the food consumption patterns [In press]. Trends in Food
Science & Technology.

303

Biography

Matej Petković was born on 25 June 1991 in Ljubljana, Slovenia, where he finished primary
(OŠ Zalog) and secondary school (Gimnazija Bežigrad). In 2010, he started the bachelor’s
study of mathematics at the Faculty of Mathematics and Physics, University of Ljubljana.
In 2013, he was awarded Third Prize at the International Mathematics Competition for
University Students. After graduating with distinction in 2013 (GPA 10.00), he started
his master’s study at the same faculty. In 2014, he was awarded Second Prize at the
International Mathematics Competition for University Students, and Special distinction for
extraordinary study success at the University of Ljubljana (slo. Svečana listina za najboljši
študijski uspeh). He finished his master’s study with distinction in 2015 (GPA 10.00)
with the defence of the master’s thesis entitled “Estimation of the relevance of continuous
features with ReliefF” (slo. Ocenjevanje pomembnosti zveznih značilk z metodo ReliefF)
under the mentorship of Prof. Dr. Sašo Džeroski. The thesis was awarded the faculty
Prešeren prize.

In 2015, he started working as a young researcher at the Department of Knowledge
Technologies (Jožef Stefan Institute) under the supervision of Prof. Dr. Marko Bohanec,
and enrolled in the PhD program entitled Information and Communication Technologies at
the Jožef Stefan International Postgraduate School under the supervision of Prof. Dr. Sašo
Džeroski. In 2017, he became an assistant at the Faculty of Mathematics and Physics
(University of Ljubljana) in the field of mathematics.

During his studies, he took part in two EU funded projects including HBP (The Hu-
man Brain Project) and MAESTRA (Learning from Massive, Incompletely annotated, and
Structured Data), and two projects funded by the European Space Agency ESA: GalaxAI
– Machine Learning for Space Operations and AiTLAS – Artificial Intelligence Toolbox for
Earth Observation.

His research interest is in the area of machine learning, mostly in the area of feature
ranking for structured output prediction. He has published several scientific papers and
has presented his work at several international conferences and workshops, both in the
area of machine learning and the areas of applications.

	Title
	Acknowledgments
	Abstract
	Povzetek
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Goals and Hypotheses
	1.3 Methodology
	1.3.1 Development of Novel Feature Ranking Methods
	1.3.2 Evaluating the Quality of Feature Rankings
	1.3.3 Comparing the Performance of Feature Ranking Methods
	1.3.4 A Case Study of Predicting Thermal Power Consumption of the Mars Express Spacecraft

	1.4 Contributions
	1.5 Organization of the Thesis

	2 Background
	2.1 Data Representation
	2.1.1 Tabular Data
	2.1.2 Relational Data

	2.2 The Basic Learning Tasks
	2.2.1 Unsupervised Learning (Clustering)
	2.2.2 Supervised Classification and Regression
	2.2.3 Supervised Structured Output Prediction
	2.2.4 Semi-supervised Learning

	2.3 Feature Ranking
	2.3.1 Feature Ranking and Feature Selection
	2.3.2 Classification, Regression and Clustering Tasks
	2.3.3 Trees and Tree Ensembles
	2.3.4 Feature Ranking with Tree Ensembles
	2.3.5 Distance-based Feature Ranking with Relief

	2.4 Predictive Clustering and Structured Output Prediction
	2.4.1 Learning PCTs and PCT Ensembles
	2.4.2 MTR with PCTs
	2.4.3 MLC and HMLC with PCTs
	2.4.4 Semi-supervised and Unsupervised Learning with PCTs

	3 Extending Feature Ranking to Different Learning Tasks: Basic Notions
	3.1 Ensemble-based Feature Ranking for SOP and Unsupervised Learning
	3.1.1 Feature Ranking for SOP
	3.1.2 Unsupervised Feature Ranking
	3.1.3 Semi-supervised Feature Ranking

	3.2 Distance-based Feature Ranking
	3.2.1 Feature Ranking for SOP
	3.2.2 Unsupervised Feature Ranking
	3.2.3 Semi-supervised Feature Ranking

	3.3 Feature Ranking for Relational Classification
	3.3.1 Data Conversion
	3.3.2 Relational Feature Ranking Scores

	4 Feature Ranking for Multi-Target Regression
	Paper: Feature Ranking for Multi-target Regression

	5 Feature Ranking for Multi-Label Classification and HMLC
	Paper: Feature Ranking with Relief for Multi-label Classification: Does Distance Matter?
	Paper: Multi-label Feature Ranking with Ensemble Methods
	Paper: Feature Ranking for Hierarchical Multi-Label Classification with Tree Ensemble Methods

	6 Feature Ranking for Semi-Supervised Structured Output Prediction
	Paper: Ensemble-Based Feature Ranking for Semi-supervised Classification
	Paper: Feature Ranking for Semi-supervised Learning

	7 Feature Ranking for Unsupervised Learning
	Paper: Ensemble- and Distance-Based Feature Ranking for Unsupervised Learning

	8 Case Study: Predicting Mars Express Thermal Power Consumption
	Paper: Machine Learning for Predicting Thermal Power Consumption of the Mars Express Spacecraft
	Paper: Quantifying the Effects of Gyroless Flying of the Mars Express Spacecraft with Machine Learning

	9 Relational Feature Generation and Ranking
	Paper: Estimating the Importance of Relational Features by using Gradient Boosting
	Paper: Relational Tree Ensembles and Feature Rankings

	10 Conclusions and Further Work
	10.1 Summary of the Contributions
	10.2 Further Work

	References
	Bibliography
	Biography

