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Abstract

This dissertation deals with supervised learning, an area within the �eld of machine learn-
ing, where the goal is to learn predictive models. We focus on the challenging task of
multi-target prediction (MTP). Contrary to classical predictive modeling, where the goal
is to predict the value of one target, MTP requires the prediction of values of multiple
targets.

The central premise of MTP is that the target variables are parts of a structure, where
the structure is seen as a set of connected building blocks that individually carry infor-
mation, but jointly represent a meaningful concept. We focus on solving tasks where all
target attributes are either continuous (multi-target regression, MTR) or binary (multi-
label classi�cation, MLC).

MTP tasks can be solved either locally or globally. Local approaches decompose the
original MTP problem into a set of single-target problems, which are then solved by ap-
plying existing methods that do not account for the possible relations between the target
variables. Alternatively, global approaches learn a single model that predicts all target
variables simultaneously and explicitly or implicitly take into account interrelations be-
tween the target variables.

Ensemble models are often used to obtain premium predictive performance. An en-
semble is a collection of base models, whose predictions are combined to obtain an overall
prediction. Base models are often built by using the same learning algorithm on variations
of the provided data. Variations are typically made by sampling data instances, input
variables or both. We focus on ensemble methods for MTP that introduce such variations
in the input space and use predictive clustering trees (PCTs) as base predictive models.

When solving MTP tasks, data variations are also possible in the target space. We
extend tree ensemble methods by introducing Random Output Selections (ROS) to learn
ensembles of PCTs for MTP on subsets of target variables and thus consider interrelations
(within each PCT) only among the selected subset of target variables.

The proposed method was implemented for several types of tree ensembles for MTP. We
have applied tree ensembles with ROS to MTR as well as MLC tasks and have extensively
evaluated our method on a variety of benchmark datasets from various domains. Moreover,
a novel approach to combining base model predictions has been introduced. Usually, all
ensemble members give predictions for all target variables, but in ROS ensembles, for a
given target, we can choose to combine only the predictions of base predictive models,
learned by using that target variable. Tree ensembles with ROS outperform current state-
of-the-art MTR methods and perform comparably to current MLC methods.

Ensembles of PCTs are the state-of-the-art in MTP, but are generally not considered
interpretable. Consequently, less powerful, but more interpretable models are often used
instead. Fitted rule ensembles for MTR use ensembles of PCTs to derive a large pool of
candidate rules of which only a small set is retained after optimization. We extend this
approach by using tree ensembles with ROS to generate candidate rules. This approach
performs slightly better than state-of-the-art rule-based methods for MTR.
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Povzetek

Pri£ujo£a disertacija se ukvarja z nadzorovanim u£enjem, podro£jem strojnega u£enja, ka-
terega cilj je u£enje napovednih modelov. Osredoto£amo se na re²evanje naloge ve£ciljnega
napovedovanja (VCN). V nasprotju s klasi£nim napovednim modeliranjem, kjer napove-
dujemo vrednost ene, v VCN napovedujemo vrednosti ve£ih ciljnih spremenljivk.

Osrednja predpostavka VCN je, da so ciljne spremenljivke del strukture, kjer je struk-
tura razumljena kot mnoºica med seboj povezanih gradnikov, ki posami£no vsebujejo infor-
macije, skupaj pa tvorijo smiseln koncept. Re²ujemo naloge, kjer so vse ciljne spremenljivke
ali ²tevilske (ve£ciljna regresija, VCR) ali binarne (ve£ozna£na klasi�kacija, VOK).

Naloge VCN se lahko re²ujejo z uporabo lokalnih ali globalnih pristopov. Lokalni pri-
stopi razgradijo prvotni problem VCN v mnoºico problemov napovedovanja ene vrednosti,
ki se nato re²ujejo z uporabo obstoje£ih metod, ki pa ne upo²tevajo morebitne povezanosti
ciljnih spremenljivk. Po drugi strani, se z globalnimi pristopi u£imo samo en napovedni
model, ki napoveduje vse ciljne spremenljivke hkrati ter neposredno ali posredno upo²teva
morebitno medsebojno povezanost ciljnih spremenljivk.

Ansambelske metode se uporabljajo za doseganje najvi²je napovedne mo£i. Ansambel
je zbirka osnovnih modelov, katerih napovedi so zdruºene v eno samo napoved. Osnovni
modeli v ansamblu so pogosto nau£eni z uporabo enega u£nega algoritma, pri £emer vsak
osnovni model u£imo na vzor£enih u£nih podatkih. Obi£ajno se posluºujemo vzor£enja pri-
merov, vhodnih spremenljivk ali obojega. V tej disertaciji se osredoto£amo na ansambelske
metode za VCN, ki se uporabljajo omenjena vzor£enja podatkov na vhodnih spremenljiv-
kah ter kot osnovne modele uporabljajo drevesa za napovedno razvr²£anje (DNR).

Pri re²evanju nalog VCN je vzor£enje moºno tudi v izhodnem prostoru. Ansambelske
metode na osnovi DNR za VCN raz²irjamo z vpeljavo Naklju£nega Izbiranja Izhodnih
Podprostorov (NIIP). Posamezna DNR se u£imo na podmnoºici ciljnih spremenljivk, kar
morebitno povezanost ciljnih spremenljivk omeji le na izbrane ciljne spremenljivke.

NIIP je integriran v ve£ metod za grajenje ansamblov DNR za VCN. Ansamble z NIIP
smo uporabili na problemih VCR in VOK, ter jih temeljito ovrednotili na vrsti podatkovij iz
razli£nih domen. Predlagan je tudi nov na£in zdruºevanja napovedi v ansamblih. Osnovni
modeli v ansamblu obi£ajno napovedujejo vse ciljne spremenljivke. Z uporabo NIIP, lahko
za vsako ciljno spremenljivko zdruºujemo samo napovedi tistih dreves v ansamblu, ki so se
to spremenljivko u£ila. Rezultati pokaºejo, da imajo ansambli DNR z uporabo NIIP vi²jo
napovedno mo£, kot trenutno najbolj²e metode za re²evanje nalog VCR, ter primerljivo
napovedno mo£, kot trenutno najbolj²e metode za re²evanje nalog VOK.

Ansambli DNR, sicer najmo£nej²i napovedni modeli za VCN, so v splo²nem nerazlo-
ºljivi. Posledi£no se uporabljajo modeli z manj²o napovedno mo£jo, katerih obrazloºitev je
mogo£a. Metoda za grajenje ansamblov pravil za VCR gradi mnoºico kandidatnih pravil
z uporabo ansamblov DNR, katerih ²tevilo je po optimizaciji ob£utno manj²e. Metodo
raz²irjamo tako, da kandidatna pravila gradimo z NIIP ansambli. Rezultati pokaºejo, da
predlagana metoda dosega primerljivo napovedno mo£ v primerjavi z znanimi metodami
za u£enje pravil za VCR.
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Chapter 1

Introduction

Mankind has technologically advanced from being able to understand the potential of using
computers to an era where a large portion of business is done online and many people
cannot imagine their lives without smartphones. The times when one computer occupied
an entire room are long over and several orders of magnitude more powerful computers
now �t into our pockets. Such technological breakthroughs and changes in global social
dynamics were bound to introduce many opportunities and challenges.

Nowadays digitally centered organizations understand that perpetually monitoring and
improving on all key areas as well as experimenting and occasionally even failing are the
necessary ingredients for success. All mentioned activities are at least partially supported
by niche software systems and analysts because correctly interpreting and leveraging the
increasingly complex and abundant data has never been so overwhelming and important as
it is today. Substantial e�orts have been made to address this problem but the technological
progress keeps pushing the boundaries of the possible. Today, it is no longer only a matter
of using the right tools for the job: It is also (and very much so) about speed. The
uncharted territories are expanding faster than they are being tackled and the rate at
which data is generated and upon which decisions have to be made is non-trivially high.
Another important aspect we need to mention is the global trend of tailoring services and
products to individuals. All of this directly in�uences the amount of generated data that
further deepens the problem of scale and puts additional pressure on the data analytics
teams.

For quite some time, it is clear that automated approaches for data analysis are needed.
However, mere automation is not enough to cope with the dynamics of the modern world.
The potential of using arti�cial intelligence (Russell & Norvig, 2009) (AI) is greater than
ever and some applications of it are well-known to the general public, such as the chess
match between the then reigning world chess champion Garry Kasparov and Deep Blue, a
chess-playing computer. AI is often equated with physical objects, such as humanoids, self-
organizing industrial robotic systems or self-driving vehicles. But in its essence, AI boils
down to computer algorithms that perceive the environment and utilize mathematical and
statistical approaches to make decisions that ultimately lead to achieving the prede�ned
goals.

Data mining (Witten & Frank, 2005) is the process of exploiting the available data in or-
der to extract useful information, which often includes usingmachine learning (ML) (Mitchell,
1997) approaches. This dissertation falls within the scope of ML, a sub�eld of AI, con-
cerned with the development and evaluation of computer algorithms that are able to learn
from experience. According to Dºeroski (2007a), data mining tasks are divided into four
major groups: probability distribution estimation, predictive modeling, clustering and pat-
tern discovery. In this dissertation, we are particularly interested in predictive modeling,
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which focuses on �nding models that predict speci�c properties of data instances. In ML,
these properties of interest are often called targets and are used to guide the model learning
procedure. The guidance is commonly known as supervision, because the model-building
decisions are made based on the values of properties of interest, i.e., models are tailored
towards making predictions for speci�c properties of interest.

In supervised learning, a major area of ML, the goal is to exploit the provided labeled
data for learning a predictive model, which can provide predictions on previously unseen
data. Traditionally, models predict a single scalar value, be it numerical or categorical.
Many real-life problems can be represented as single target (value) predictive modeling
tasks and a multitude of ML algorithms has been developed to solve them. However, all
challenges are not easily mapped into problems of predicting a single scalar value. The need
for more advanced analytical approaches has thus emerged, necessitating the development
of methods that can model data with higher complexity on the output side. In that sense,
we need to transition from classical predictive modeling, where a single value is predicted,
to the more challenging area of structured output prediction (SOP). In this dissertation,
we focus on the tasks of predicting multiple targets, i.e., multi-target prediction (MTP).

There are many practically relevant MTP problems. As an illustration, we highlight
one problem from the domain of environmental studies and another one from the domain
of image recognition. In the �rst example, water samples are collected from Slovenian
rivers (Dºeroski, Dem²ar, & Grbovi¢, 2000). Each water sample is analyzed and the
information about the chemical properties of the sampled water and abundances of animal
and plant species are extracted. The abundance of animal or plant species is represented
with a numeric value � one numeric value for each species. The goal is to �nd a model that
predicts abundances of all plant and animal species based on the chemical properties of the
water. The MTP task from this example is commonly known as multi-target regression
(MTR), because the goal is to predict a tuple of numeric values.

In our second MTP example, the goal is to detect objects shown in an image. Here,
the target attributes are boolean values that indicate the presence or absence of an object
in the image. Consider, as an example, a set of wildlife images, where the goal is to detect
which animal species are shown in the image. Note, that more that one animal can be
present in the image. Each species is represented with a boolean target attribute, e.g.,
bear (yes/no), �sh (yes/no), etc. Such MTP tasks are known as multi-label classi�cation
(MLC) tasks, because the image is either labeled (tagged) with a given animal species
or not. Ontologically, MTP tasks fall within the scope of structured output prediction.
Solving such tasks is important in many domains and has been listed as one of the most
challenging problems in ML (Kriegel et al., 2007; Q. Yang & Wu, 2006).

1.1 Motivation

Machine learning is becoming common in many domains and a plethora of methods exists
that solve the traditional tasks of supervised learning, namely classi�cation and regression.
A similar trend is observed with methods for solving MTP tasks. The main premise
behind MTP (and SOP in general) is the potential relatedness between the components
in the target structure. The building blocks of the target structure are not considered
isolated from each other, i.e., they are in relation to each other. Methods for SOP usually
assume such relatedness and directly aim to exploit it in order to achieve better predictive
performance. In this dissertation, we challenge this assumption. Before we can explain the
idea, we need to mention the two contrasting approaches to solving MTP tasks: local and
global.

The local approach is the simplest way of solving MTP tasks. It generates models for



1.1. Motivation 3

predicting each component of the target structure separately, thus ignoring the relatedness
between them. This gets the job done, but has two main de�ciencies. The �rst one is
the computational cost, which increases linearly with the number of target attributes,
because one model is learned for each target attribute. The second one is the fact that this
approach does not exploit the potential relations between the target attributes. However,
this approach does also have its bene�ts, such as the ability to use any of the many
appropriate existing o�-the-shelf methods to learn the individual predictive models. Models
yield predictions for the corresponding target attributes, which are then combined into the
�nal prediction � a vector, where each component represents the prediction for one target
attribute.

With the global approach, a single model for predicting all components of the tar-
get structure simultaneously is learned. The methods that are capable of doing this are
explicitly designed for solving MTP tasks and assume that all target attributes are inter-
related. This results in learning only one predictive model, which can reduce over�tting,
that yields a prediction for the whole target structure. Using the global approach typically
produces predictive models in a more e�cient manner in terms of computational complex-
ity, because only one model is learned instead of many. It also explicitly aims to exploit
the relations between the components of the target structure, potentially improving the
predictive performance over local approaches.

We generally do not learn models that predict semantically unrelated things, so the
relatedness assumption makes sense. But, does this still make sense when the relations are
weak or even nonexistent? Assuming that all targets are always related seems optimistic.
The idea of this dissertation is to explore what happens if the relatedness assumption is
relaxed. Instead of assuming that all target attributes are related, we want to design an
approach that considers subsets of target attributes and resides between local and global
approaches.

The main goal of predictive modeling is to build models with good predictive per-
formance. To that end, ensemble models are often used to obtain a premium predictive
performance. An ensemble model is a set of base predictive models. In ensemble learning,
predictions are made by combining predictions of individual base predictive models. Gen-
erally, two types of ensemble models exist: homogeneous, where one algorithm is used on
di�erent variants of provided data, and heterogeneous, where di�erent algorithms are used
on the same data. Homogeneous ensembles typically sample the provided data in terms of
data instances, attributes or both.

Recently, the �eld of MTP has gained substantial attention and many ensemble meth-
ods have been extended towards MTP. Within this dissertation, we focus on those ensem-
ble methods that use decision trees as base predictive models. In particular, bagging and
random forest ensembles (Kocev, Vens, Struyf, & Dºeroski, 2013) as well as ensembles
of extremely randomized decision trees (Kocev & Ceci, 2015) are used to learn the tree
ensemble models for MTP.

This dissertation presents a tree ensemble extension method for MTP - Random Output
Selections (ROS) - where randomly selected subsets of target attributes are considered by
each tree in the ensemble. This is analogous to the random subspaces method (Ho, 1998),
which builds a forest of decision trees, where each tree considers a randomly selected subset
of input attributes for learning. This approach has not yet been considered in the MTP
setting.

Rule models are one of the most expressive and interpretable model types. A rule
learning algorithm for MTR was proposed by Aho, �enko, Dºeroski, and Elomaa (2012)
(Fitted rule ensembles for MTR � FIRE for MTR) that internally uses random forest
ensembles of PCTs to generate candidate MTR decision rules from MTR decision trees.



4 Chapter 1. Introduction

We extend the existing FIRE algorithm to consider candidate rules obtained with a forest of
MTR decision trees with ROS extension. With rule ensembles a small amount of predictive
performance is sacri�ced in favor of interpretability.

1.2 Goals, Hypotheses and Methodology

The goals of this dissertation are divided into two categories: (i) the design and imple-
mentation of new algorithms, and (ii) the evaluation of the implemented algorithms. The
ROS ensembles, by design, operate in the context of multi-target prediction. The goals of
the dissertation are de�ned in more detail below.

Design and implementation goals

Goal 1 Adapt and implement the existing TDI of PCTs algorithm to induce single
PCTs that can use only a subset of the target structure components in their
search heuristics.

Goal 2 Extend and implement decision tree ensemble methods (bagging and random
forests of PCTs and ensembles of extremely randomized PCTs) with ROS, to
learn PCTs that focus on subsets of the target structure.

Goal 3 Extend and implement the FIRE (�tted rule ensembles) for MTR method that
uses ensembles of PCTs to generate candidate rules, to use ROS ensembles of
PCTs.

Goal 4 Implement a novel mechanism for ensemble voting, i.e., for combining the
predictions of individual models in ROS ensembles, where individual ensemble
constituents vote only for the target components that have been used in the
search heuristic during learning.

Evaluation goals

Goal 5 Evaluate the ROS ensemble extension in the context of PCT ensembles, con-
structed by using bagging and random forests of PCTs and ensembles of ex-
tremely randomized PCTs.

Goal 6 Evaluate the FIRE rule ensemble method for MTR with bagging and ex-
tremely randomized PCTs (not using the ROS extension).

Goal 7 Evaluate the ROS ensemble extension in the context of rule ensembles (FIRE
for MTR method), constructed by using bagging and random forests of PCTs
and ensembles of extremely randomized PCTs.

We explore the e�ects of using random subsets of the output space with di�erent
machine learning model types. Based on that, we form several hypotheses, which address
di�erent aspects of the proposed approach. The hypotheses investigated in this dissertation
are:

Hypothesis 1 The existing supervised ensemble methods for MTP available in the pre-
dictive clustering framework can be adapted to consider subsets of the
output space.

Hypothesis 2 The ROS extension improves predictive performance of tree and rule en-
sembles for MTP.
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Hypothesis 3 The optimal output subspace size depends on the considered domain/dataset.

In order to achieve the above goals of the dissertation and con�rm or reject the hy-
potheses, we use the following methodology:

Design and implementation

1. In order to adapt the existing algorithms for TDI of PCTs, we change the way the
impurity is calculated. We rewrite the part of the heuristic function that calcu-
lates the variance reduction, making it consider only a speci�c subset of the target
components.

2. We extend the existing tree ensemble methods for MTP with ROS, by changing how
individual PCTs in the ensemble are learned. Originally, all PCTs in the ensemble
predict the whole target structure. We change this by randomly sampling the output
space (similar to what the random subspaces algorithm does in the input space) and
then provide the heuristic function with only the sampled subspace of the output
space to learn from. The learned PCTs are able to predict only the parts of the
target structure used in learning, as well as the whole target structure.

3. We extend the existing MTR rule-learning system FIRE in several directions. First,
we replace the tree building method with one that uses the ROS extension. Then, we
modify the calculations of covariance within FIRE to take into account the fact that
(depending on the parameters) not all rules give predictions for all target attributes:
Namely, FIRE calculates and uses the covariances between the predictions of di�erent
rules within the ensemble.

4. The ensemble methods considered are bagging (Breiman, 1996), random forests
(Breiman, 2001) and extremely randomized trees (Geurts, Ernst, & Wehenkel, 2006).
All three ensemble methods have been extended towards SOP in (Kocev & Ceci, 2015;
Kocev et al., 2013). We develop extended versions of these. First, we implement a
parametrized sampler of the output space, where the user is able to select the amount
of original output space to sample. Then, we integrate the sampling into the ensemble
learning procedure by adding an additional parameter to the induction of individual
PCTs in the ensembles, i.e., the sampled output space.

5. The �tted rule ensembles (FIRE) algorithm for MTR internally learns a random
forest ensemble of PCTs that is used to generate candidate rules. We introduce
ROS-extended random forest ensembles as well as bagging ensembles of PCTs and
ensembles of extremely randomized PCTs as methods to generate candidate rules.

6. For both tree and rule ensemble methods for MTP, we implement a novel base model
aggregation function, i.e., voting mechanism. With tree ensembles, the individual
base models get the capability to vote for only those components of the target struc-
ture that were used during the learning of that particular base model. The �nal
predictions are, as is the case with the original ensembles, the arithmetic mean of all
the votes. Now, however, the arithmetic mean for each individual target component
is calculated only for the predictions of the base models that use that target compo-
nent during learning. With rule ensembles, the novel voting mechanism is applied in
an indirect manner. The individual candidate rules give predictions only for a subset
of the target structure, but the optimization procedure decides whether such rules
are relevant or not. In other words, we provide the optimization procedure with the
possibility to select such rules, but we do not force it to use them.
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7. All proposed methods are implemented within an open-source machine learning sys-
tem CLUS, available at http://source.ijs.si/ktclus/clus-public/.

Evaluation

1. To evaluate the tree-based ROS ensembles, we use various output subspace sizes (a
ROS parameter) as well as the original and the novel voting mechanisms. This is
done for all three considered ensemble methods: bagging and random forests of PCTs
and extremely randomized PCTs.

2. We compare the tree-based ROS ensembles to their original (non-extended) counter-
parts as well as their single-target variants and state-of-the-art methods.

3. To evaluate the rule-based ensembles with ROS, we use various output subspace sizes
(a ROS parameter). To further explore the bene�ts of output space sampling, we
allow the optimization procedure to select from not only fully-predictive rules (rules
that predict the whole target structure), but also from partially-predictive rules (rules
that predict only parts of the target structure).

4. We evaluate the FIRE rule ensemble method for MTR with candidate rules obtained
from bagging ensembles of PCTs and ensembles of extremely randomized PCTs that
do not use ROS, which has not been considered so far.

5. We compare the FIRE rule-based ensembles with ROS to their respective counter-
parts without ROS, as well as with other rule-based methods for MTR.

1.3 Contributions

In this dissertation, we propose a novel methodology for multi-target prediction. In par-
ticular, we address the tasks of multi-target regression and multi-label classi�cation. The
methods we propose are ensemble methods for MTP that learn ensemble constituents by
considering subsets of the output space.

The contributions of this dissertation, described in this section, have been either pub-
lished or submitted for publication at international conferences and in journals. The rele-
vant publications are listed in the Bibliography section at the end of this dissertation. We
summarize the contributions of this dissertation as follows:

Contribution 1 A novel methodology for learning tree ensembles with Random Output
Selections (ROS) in the context of the predictive clustering framework.

We propose a novel ensemble method for solving MTP tasks. In particular, we introduce
a tree ensemble method for solving MTR and MLC tasks, which we call Random Output
Selections (ROS). The proposed ensemble method builds on top of the existing family of
predictive clustering (PC) ensemble methods, where predictive clustering trees (PCTs) are
used as base predictive models.

Two commonly used approaches to solving MTP tasks exist. The �rst approach is
called local, because it learns a predictive model for each target variable. The second
approach is called global, because only one predictive model is trained to predict all target
variables. When learning ensembles, the local approach learns an ensemble for each target
variable, whereas the global approach learns an ensemble of global predictive models. The
proposed method is an ensemble approach that works on the spectrum between these two
approaches, while still yielding a predictive model capable of global predictions. Individual

http://source.ijs.si/ktclus/clus-public/
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base predictive models in the ensemble are learned on randomly selected subsets of the
original target space.

The proposed methodology also introduces a new way of aggregating predictions in
an ensemble. Usually, all base predictive models in an ensemble take part in the overall
ensemble prediction by contributing their respective predictions (votes) to the prediction
aggregation function. The same logic transfers to ensembles for MTP: predictions are
made by aggregating the votes of individual base predictive models on a per-target basis.
In this dissertation, we propose to use ROS ensembles, where individual base models
are learned on subsets of target variables. In addition to that, we also propose a new
prediction aggregation function which calculates global predictions based on ROS subsets
of target attributes. In particular, only those base predictive models that have learned a
speci�c target attribute are allowed to contribute their votes to the overall prediction of
the ensemble for that target attribute.

Contribution 2 A novel methodology for learning rule ensembles for multi-target re-
gression with Random Output Selections (ROS) in the context of the
predictive clustering framework.

Fitted rule ensembles for MTR (FIRE for MTR) is an ensemble method within the pre-
dictive clustering framework, where base predictive models are predictive clustering rules
(PCRs). The model is obtained in three steps. First, a forest of PCTs is learned. Second,
the individual PCTs in the forest are decomposed into a set of candidate predictive clus-
tering rules (PCRs). Optionally, linear terms are added to the set of candidate rules. The
last step is optimization of weights of individual rules and linear terms in the candidate
set. The result is a rule set, containing PCRs and linear terms with nonzero weights.

The FIRE model originally uses random forests of PCTs to generate candidate rules.
In this dissertation, we propose to use ROS ensembles to generate the candidate rules. In
addition to the ROS-extended random forest ensembles of PCTs, we also use bagging of
PCTs and ensembles of extremely randomized PCTs to derive candidate rules.

FIRE models make predictions by summing the per-target predictions of triggered deci-
sion rules. Similarly to the tree ensembles, rule ensembles can also use di�erent prediction
strategies. In particular, there are three possibilities: (i) summing per-target predictions
of decision rules that predict all target variables, (ii) summing per-target predictions of
decision rules that predict only those target variables that were used during the learning
of the respective decision rule, or (iii) the combination of both previous approaches. The
idea is to let the optimization procedure decide which rules are bene�cial and which are
not.

The optimization procedure itself requires changes. The calculations of covariances
between two decision rules, between two linear terms and between a decision rule and a
linear term must be adapted accordingly. In particular, the new calculations must take into
account that two decision rules do not necessarily share the same set of target variables
when making predictions. It is therefore necessary to adjust these pairwise calculations so
that only the overlapping target variables are included in the calculation. Consequently,
two decision rules with completely disjoint sets of target attributes have zero covariance.

Contribution 3 Extensive empirical evaluation of the developed methods across bench-
mark problems from various domains, including a comparison to
state-of-the-art supervised approaches for multi-target prediction, which
shows better or comparable performance of the proposed approaches.

We perform an extensive empirical evaluation of the proposed methods on a series of bench-
mark datasets, gathered from various application domains. In particular, we focus on the
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predictive performance and size of the obtained predictive models. We use three di�erent
ROS-extended ensemble methods: bagging, random forests and ensembles of extremely
randomized PCTs. All three ensemble methods are used in the context of learning tree
ensembles for MTP as well as rule ensembles for MTR.

ROS-extended methods have parameters additional to those of the original ensemble
methods, namely: target subset size and selection of the prediction aggregation function.
Before we could compare the proposed method to the state-of-the-art method, we had
to select the best performing parameters for ROS. We have done so, by evaluating the
proposed methods on the benchmark datasets, and selecting the parameter values that,
on average, performed best. We give recommendations for ROS parameter values for all
three ensemble methods.

We show that tree ensembles extended with ROS can outperform their original coun-
terparts. Moreover, we show that the tree ensembles perform best by using ensembles of
extremely randomized PCTs extended with ROS. Rule ensembles originally use random
forest ensembles of PCTs. We con�rm that this ensemble method performs best also when
extended with ROS.

We also compare the proposed methods to the state-of-the-art MTP methods. More
speci�cally, the best performing tree ensembles with ROS for MTR are compared to other
output space transformation methods. We selected the three most closely related methods
to compare with. The �rst is the Random Linear Target Combinations method (Tsoumakas,
Spyromitros-Xiou�s, Vrekou, & Vlahavas, 2014), where the authors construct new target
variables via random linear combinations of existing ones. The second and the third meth-
ods are two variants of ensembles with multi-output regression trees as base predictive
models, proposed by Joly (2017). There, the authors use a similar approach to the one
presented in this dissertation. However, instead of omitting parts of the target space,
they transform it by using projections. Results show that the ROS ensembles outperform
all other compared methods in terms of predictive performance, but the di�erences in
performance are not statistically signi�cant.

Tree ensembles with ROS for MLC are also compared to three methods for solving MLC
tasks. The �rst method, called Random k-Labelsets (RAkEL) (Tsoumakas & Vlahavas,
2007), transforms a MLC task into a classical classi�cation task by considering randomly
selected sets of k target attributes as a single class. The second method, proposed by Joly,
Geurts, and Wehenkel (2014), uses a random forest ensemble of multi-output classi�cation
trees with random projections that transform the output space. The third method we
compare with is a random forest ensemble of PCTs (Kocev, 2011). The results show that
ROS ensembles perform comparably to the models obtained with the existing methods.

Rule ensembles with ROS for MTR (FIRE-ROS) were compared to predictive clustering
trees (PCTs) (Blockeel, Raedt, & Ramon, 1998), predictive clustering rules (PCRs) (�enko,
2007) and original FIRE rule ensembles. In addition to that, we also compared the proposed
method to tree ensembles with ROS, random forest ensembles with random projections and
Random Linear Target Combinations. Results show that FIRE-ROS outperform PCRs
with statistical signi�cance. PCTs and the original FIRE ensembles are outperformed
without statistical signi�cance. Other competing methods all produce models that perform
better than FIRE-ROS rule ensembles. These results are in line with previous research
related to FIRE ensembles.

1.4 Organization of the Thesis

The current chapter is introductory and starts with the motivation for this dissertation,
followed by a general outline of the pursued goals and tested hypotheses. The methodology
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used to achieve the set goals and to investigate the hypotheses is also described. Follow-
ing these introductory preliminaries, the main scienti�c contributions are described. The
remainder of the dissertation is organized as follows.

Chapter 2 describes predictive data mining. The description of this important and well-
researched �eld of machine learning would not be complete without the formal de�nitions
and descriptions of predictive data mining tasks. In order to aid this task, we also describe
some data mining concepts that are used throughout this dissertation. We mention the
classical single-target predictive data mining tasks and then move to the more general
area of predicting multiple target attributes. This chapter also gives an overview of other
research related to this dissertation.

Chapter 3 describes the predictive clustering (PC) framework. This chapter describes
methods that are most closely related to this dissertation and form the basis for our work.
The �rst part describes predictive clustering trees and their use for solving MTP tasks.
The second part of this chapter is dedicated to ensemble learning. Speci�cally, we describe
ensembles of predictive clustering trees and ensembles of predictive clustering rules. All
methods described in this chapter are subject to adaptations as a direct result of this
dissertation.

Chapter 4 describes the central part and main contribution of this dissertation: a
novel approach for learning ensembles of predictive clustering trees with random output
selections � ROS. The proposed approach can be placed between the two generally accepted
approaches for solving MTP tasks: local and global. Here, we describe both approaches and
how ROS ensembles di�er from them. This chapter also includes the previously mentioned
adaptations of the original tree ensemble methods towards using ROS. We conclude this
chapter with a computational complexity analysis of the proposed approach.

Chapters 5 and 6 describe the evaluation of the proposed approach of tree-based ROS
ensembles for solving the tasks of multi-target regression and multi-label classi�cation,
respectively. Here, we present the experimental design, the results of the experiments and
their discussion.

Chapter 7 describes the approach of using ROS for learning rule ensembles. In par-
ticular, we take the �tted rule ensembles (FIRE) approach for multi-target regression and
describe the necessary adaptations for ROS integration. The result of using this method
is an ensemble of predictive clustering rules. The second part of this chapter describes
the experimental evaluation of the FIRE-ROS approach. In particular, it presents the
experimental design, results and their discussion.

Chapter 8 concludes this dissertation. We �rst present a summary of the dissertation
and its original contributions. We then outline several directions for possible further work.
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Chapter 2

Predictive Data Mining

The process of data mining (Witten & Frank, 2005) connects several technical areas such as
statistics, databases and data storage related technologies, soft computing, pattern recog-
nition, data visualization, language technologies, text mining and �nally machine learning
(ML) (Mitchell, 1997) with the goal to tackle the challenge of knowledge extraction from
the provided data. More precisely, ML is a sub�eld of arti�cial intelligence (AI) (Russell
& Norvig, 2009) aiming to design and develop computer algorithms able to learn from
experience. Generally, ML methods expect some data to learn from and ultimately yield a
model. The interpretation of the model as well as the model type is highly dependent on
the type of ML task we are solving. In this dissertation, we focus on predictive modeling
tasks, which are the ones most widely known and researched, next to the clustering and
pattern mining tasks.

In predictive modeling, the goal is to induce a model capable of making predictions. The
idea is to learn a model using the provided data and later use it for making predictions on
unseen data. If we are predicting a discrete value from a prede�ned set of possible values or
classes, the task at hand is (multi-class) classi�cation. A special case of this task is binary
classi�cation, where the number of possible classes is exactly two. If the predicted value is
numeric, the task is called regression. A wide range of real-life problems can be represented
as one of the mentioned predictive modeling tasks and a multitude of ML algorithms have
been developed to solve such predictive modeling tasks. In this dissertation, we consider
more challenging problems, where several values need to be predicted. This particular
area of ML is called multi-target prediction. The ML tasks belonging to this area are
multi-target regression (MTR) and multi-label classi�cation (MLC).

This chapter is divided into three sections. We begin with some preliminaries regarding
the composition of the input data. In particular, we formally describe data types and how
they form data examples, which ultimately constitute a dataset - the input to ML methods.
Next, we give formal descriptions for the MTR and MLC tasks. Here, we also present two
illustrative datasets often used for benchmarking. The last section in this chapter describes
the related work.

2.1 Data Types, Data Examples and Datasets

ML methods require data to learn from. The data is available in its entirety at learning
time. This type of ML is called batch learning. Another �eld of ML is concerned with
online learning, i.e., learning data examples from high-frequency and theoretically in�nite
data sources. In this dissertation, we do not address such tasks. Therefore, the reader
should assume the batch learning setting throughout this dissertation.

Nowadays, many di�erent structured formats are used to transport, store and process
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data. However, in its core, data is represented with data types. The purpose of this section
is to provide formal de�nitions of data types. A generally accepted nomenclature is needed
to describe the technical properties of data. The acceptability and generality are important
not only from the data re-use point of view but also because it helps in determining the
applicability of ML methods to datasets, i.e., ML methods are usually designed to solve
one of many possible ML tasks. Here, we describe only a relevant subset of the general-
purpose data types otherwise described in the OntoDT data type taxonomy, a part of
OntoDM - ontology for data mining (Panov, Soldatova, & Dºeroski, 2016). OntoDT is
based on the ISO/IEC 11404, the international standard for representing data types in
computer systems (International Organization for Standardization, 2007).

Technically, a data example is a record with one or more properties. Properties can be
thought of as placeholders with certain constraints, which apply to the values that a given
property of a data example can take. Each data property must therefore specify its own
constraints on the values which is done through the use of data types.

Data types can be either primitive or generated. Primitive data types used in data
mining are the boolean data type, the real and the discrete data type. A boolean data
type can take only two values: a true (>) or a false (⊥) value. A real data type takes
values from the set of real numbers R. A discrete data type can take the value of one
of the items, speci�ed by a prede�ned �nal set of possible values. This makes the discrete
data type somewhat special, because it can only be fully de�ned when the possible values
are speci�ed. An example of a discrete data type is discrete(A,B,C,D), denoting that a
property, restricted to the values of this data type, can only store values A,B,C or D.

The di�erence between primitive and generated data types is that generated data types
are de�ned partially or fully by primitive data types. There are many generated data types.
In this dissertation, we will only de�ne the tuple data type. A tuple is an ordered list
of data types. An example of a tuple would be tuple(real, discrete(A,B,C)). This
speci�es a tuple that takes two values. The �rst value must be numeric and can take any
value from the set R. The second value of the tuple must be one of the three speci�ed
letters A, B or C. Examples of such tuples are: (1.23, B) and (2.72, A).

Datasets are bags of data examples 1. Examples that belong to a dataset share the
same tuple data type. There are many ways of how data can be represented. Consequently,
ML methods should have the ability to consume any given data representation, which is
obviously intractable. In ML, this problem is often bridged by providing the learning data
in a tabular data format. Such representation is easily understood by humans and can
be e�ciently processed by machines. Rows of the table represent di�erent data examples,
whereas the columns denote the properties of said examples. Moreover, in ML, columns
of such datasets are typically referred to as features or attributes. Each attribute can take
values from the assigned data type.

The attributes in a dataset do not have a speci�c purpose, for which they can or should
be used. However, in predictive modeling, attributes are divided into two special disjunct
sets. The �rst set contains all the attributes that need to be predicted. Traditionally, this
set only contains one attribute but in this dissertation we address SOP tasks, where this
set contains at least two attributes. We use the terms target attributes or outputs to refer
to this set and its members. The other attributes belong to the set of descriptive attributes
or inputs because they are used by the model to "describe" the decisions that ultimately
lead to predictions.

1We purposely use the word bag instead of set because repetitions of data examples in the dataset are
possible.
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2.2 Predicting Multiple Outputs

Multi-target prediction tasks actually belong to a broader area of structured output predic-
tion (SOP) (Dºeroski, 2007a). Predictive modeling tasks that could be considered as SOP
tasks are those, where the predicted value is not primitive. With this in mind, we are left
with a vast number of possible combinations of predicted values. Semantically, predicting
several concepts that are not in any way connected, does not give competitive advantage.
In practice, however, anything goes and one can jointly model completely unrelated con-
cepts. Nevertheless, the central assumption of SOP is that the predicted values are in fact
parts of a structure. In particular, structures are seen as a set of well-connected building
blocks that individually carry information but jointly represent a meaningful concept.

Unlike with predictive modeling tasks that consider only one predicted value, SOP
tasks do not have special names. However, some SOP tasks are frequently tackled and
consequently do have generally accepted and recognizable names, such as MTR and MLC.
This dissertation focuses solely on MTP tasks which we describe next.

2.2.1 Predicting multiple continuous variables

The MTP task, where the goal is to predict several continuous values, is called multi-target
regression (MTR). Many such methods exist and they are surveyed in Borchani, Varando,
Bielza, and Larrañaga (2015). We de�ne the MTR task as follows:
Given:

� A descriptive (input) space X, with tuples of dimension d, containing values of
primitive data types, i.e., ∀xi ∈ X,xi = (xi1 , xi2 , ..., xid),

� A target (output) space Y , with tuples of dimension t, containing real values, i.e.,
∀yi ∈ Y, yi = (yi1 , yi2 , ..., yit), where yik ∈ R and 1 ≤ k ≤ t,

� A set of examples S, where each example is a pair of tuples from the descriptive and
the target space, i.e., S = {(xi, yi)|xi ∈ X, yi ∈ Y, 1 ≤ i ≤ N} and N is the number
of examples in S (N = |S|),

� A quality measureM, which rewards models with high predictive accuracy and low
complexity.

Find: A function f : X → Y such that f maximizesM. In this dissertation, function f
will be represented by ensembles of predictive clustering trees and ensembles of predictive
clustering rules.

An example dataset used to benchmark MTR methods is presented in Figure 2.1. The
data is about water quality of Slovenian rivers (D. Dem²ar et al., 2006), where water sam-
ples are used to determine the chemical properties of the water and abundance of certain
plants and animals. The learning goal is to generate a model that predicts abundances
based on the chemical properties of water samples.

2.2.2 Predicting multiple discrete variables

The MTP task, where the goal is to predict several binary values, is called multi-label clas-
si�cation (MLC). Many such methods exist and they are surveyed in Gibaja and Ventura
(2014), Madjarov, Kocev, Gjorgjevikj, and Dºeroski (2012). We de�ne the MLC task as
follows:



14 Chapter 2. Predictive Data Mining

Descriptive attributes Target attributes

# KMnO4 CO2 · · · K2Cr2O7 Baetis rh. Tubifex sp. · · · Simulium sp.

1 0.66 0.15 · · · 2.7 3 0 · · · 3
2 2.05 0.56 · · · 2.8 0 0 · · · 5
...

...
...

...
...

...
...

1060 1.3 1.23 · · · 1.1 5 3 · · · 1

Figure 2.1: The Water quality dataset: An example dataset used for benchmarking MTR
methods.

Given:

� A descriptive space X, with tuples of dimension d, containing values of primitive
data types, i.e., ∀xi ∈ X,xi = (xi1 , xi2 , ..., xid),

� A label space L = {λ1, λ2, . . . , λq} that holds tuples of length q, where each tuple
contains only binary values, i.e., ∀λi ∈ {>,⊥} and 1 ≤ i ≤ q,

� A set of examples S, where each example is a pair of tuples from the descriptive and
the label space, i.e., S = {(xi, yi)|xi ∈ X, yi ∈ L, 1 ≤ i ≤ N} and N is the number of
examples in S (N = |S|),

� A quality measureM, which rewards models with high predictive accuracy and low
complexity.

Find: A function f : X → 2L such that f maximizesM. In this dissertation, function f
will be represented by ensembles of predictive clustering trees.

An example dataset used to benchmark MLC methods is presented in Figure 2.2.
The data is about detecting bird species in noisy environments from short audio record-
ings (Briggs et al., 2013).

Descriptive attributes Target attributes
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1 0.016 0.039 · · · 1 ⊥ ⊥ · · · ⊥
2 0.006 0.035 · · · 1 ⊥ > · · · >
...

...
...

...
...

...
...

322 0.030 0.014 · · · 17 ⊥ > · · · ⊥

Figure 2.2: The Birds dataset: An example dataset used for benchmarking MLC methods.
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2.3 Related Work

This dissertation focuses on predictive modeling. In particular, solving multi-target pre-
diction (MTP) tasks. A generally accepted grouping of existing methods divides them into
local and global methods (Bak�r et al., 2007). This division stems from the approach that
the methods take when solving MTP tasks. Recall that in MTP, the goal is to predict
several target variables. The �rst group of methods tackles this problem by learning a
separate predictive model for each target attribute. This group of methods is called local
because, when learning a model for predicting a single target attribute, they purposely
ignore the available information contained in other target attributes, i.e., they operate lo-
cally. An opposite approach is taken by the global methods that learn a single model for all
target attributes. Such an approach can be advantageous because it can take advantage of
potential relations between the target attributes and can thus lead to models with better
predictive performance.

In this section, we give an overview of methods for multi-target prediction. Speci�cally,
we describe the methods for multi-target regression in Section 2.3.1 and methods for multi-
label classi�cation in Section 2.3.2.

2.3.1 Multi-target regression

Recently, a plethora of methods have been proposed that address the multi-target regres-
sion (MTR) task. MTR, also referred to as multi-target, multi-variate or multi-response
regression, is a machine learning task, where the goal is to predict multiple real-valued
variables simultaneously. Borchani et al. (2015) divide MTR methods into two categories:
problem transformation methods and algorithm adaptation methods.

Problem transformation methods

These methods transform the initial multi-target problem into several single-target prob-
lems. Each single-target problem is then modelled separately and the predictions of individ-
ual models concatenated to form a multi-target prediction. This straightforward method is
often referred to as one-vs-all or binary relevance. The main drawback of this approach is
that the models are learned individually. This makes exploiting potential relations between
the target variables impossible. However, a very nice property that this approach exhibits
is that any existing regression method can be applied to model individual target variables.
Another bene�t of this local approach is the possibility to add target variables without
having to rebuild all models.

In the work of Spyromitros-Xiou�s, Tsoumakas, Groves, and Vlahavas (2012, 2016),
the ideas from several MLC approaches (Godbole & Sarawagi, 2004; Read, Pfahringer,
Holmes, & Frank, 2009) have been transferred to MTR. In multi-target regressor stacking
(MTRS), a ST approach is applied in the �rst phase. In the second phase, the training
dataset is augmented by adding additional input variables. The values of original input
variables remain untouched. The values of the newly generated variables are obtained by
taking the original input variables and applying the ST models on them. The predictions
of the ST models on the jth example are added as values of the new input variables to the
jth example. The number of added variables is the same as the number of target variables
in the original dataset. At this point, another round of training is applied. Authors
believe that this stacking approach corrects the errors made by the training in the �rst
phase. The second approach that the authors propose are regressor chains (RC), where
ST models are chained, i.e., learned in a particular sequence. The chaining sequence is a
random permutation of target variables. For every item in the chain a ST model is learned.
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Here, similarly as with MTRS, predictions of ST models are added to the training data
before learning the next ST model (�st ST model uses only the original input variables). In
addition to that a corrected variant was proposed (RCC), where cross-validated estimates
were added instead of actual predictions. Results showed that the order of the target
variables in the chain is important, which lead to another extension of this method, this
time in the form of an ensemble. Each ensemble member was learned with the RC/RCC
methods, but this time, chain sampling was done for each ensemble member separately.
The approaches are called ensembles of RC/RCC (ERC/ERCC).

In the work of W. Zhang, Liu, Ding, and Shi (2012), a multi-output support vector
regression method is proposed. This approach builds a multi-output model that uses the
vector virtualization method that captures correlations between the target variables. The
multi-target problem is transformed into a single-target problem by introducing additional
input variables. The number of new variables d is the same as the number of original target
variables. This transforms one example from the original dataset into d examples in the
new dataset. In addition to that, the values of new variables are all zero, except for the
value di, where i corresponds to the ith original target variable. The generated single-target
problem is then solved by applying the least-squares support vector regression.

Tsoumakas et al. (2014) propose an ensemble method called Random Linear Target
Combinations. They propose to construct new target variables via random linear combi-
nations of existing ones. The output space is transformed in such a way that each linear
combination consists of k original output features. Each combination is then considered
for learning one ensemble member. The transformation of the output space is achieved via
a coe�cient matrix �lled with random values. This method approaches MTR locally but
also models dependencies between target attributes in the process. It could be considered
as a method working on the spectrum between the local and global approaches.

Algorithm adaptation methods

Algorithm adaptation methods are global in their capability to handle multi-target tasks
naturally, i.e., no transformation of the training data is needed. Methods of this kind can
exploit the potential relatedness among the target variables in order to learn models with
better predictive performance.

Statistical methods. The statistical approaches are considered to be one of the �rst
attempts towards multi-output regression. The early work of Izenman (1975) introduces
reduced-rank regression. Later, Brown and Zidek (1980) propose adaptive multi-target
ridge regression � an extension of the standard single-target ridge regression (Hoerl &
Kennard, 1970). Almost two decades later, Breiman and Friedman (1997) proposed the
Curds &Whey method, where they address the problem of taking advantage of correlations
between the target variables in order to gain predictive accuracy w.r.t. to taking the
single-target regression approach for each target variable. Abraham, Tan, Winkler, Zhong,
Liszewska, et al. (2013) present a framework for multiple output regression that preserves
the relationships among the response variables while minimizing the residual errors of
prediction by coupling regression methods with geometric quantile mapping. Recently,
Gillberg et al. (2016) proposed a Bayesian reduced-rank regression method that tackles
the problem of structured noise in MTR.

Support vector machines. Traditionally, support vector machines were used to model
single-target classi�cation problems. This has been extended towards regression problems
with support vector regression (SVR). Many kernel-based methods for modeling multi-
target regression problems have been proposed (Alvarez, Rosasco, Lawrence, et al., 2012;
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Brouwer, Kubicki, Sofo, & Giles, 2014; Cai & Cherkassky, 2009; Chung, Kim, Lee, &
Kim, 2015; Sánchez-Fernández, de-Prado-Cumplido, Arenas-García, & Pérez-Cruz, 2004;
Vazquez & Walter, 2003; S. Xu, An, Qiao, Zhu, & Li, 2013; Yanyan Yang, Chen, &
Dong, 2015; W. Zhang et al., 2012) as a consequence of extending the SVR to multi-target
support vector regression. The listed methods mainly focus on the problem of modeling
the dependencies between the target variables. For example, Vazquez and Walter (2003)
adapted the Kriging method to exploit correlations between the targets, while Yanyan Yang
et al. (2015) used an additional regularization term to capture the e�ect of correlations
among the targets.

Instance-based methods. Pugelj and Dºeroski (2011) have introduced a k-Nearest
neighbour method extended towards structured prediction. This method can be applied
to MTR as well as MLC. The authors show that the proposed method, although simple,
performs comparably to more complicated methods such as decision trees and rules.

Tree methods. A substantial amount of tree-based methods have been proposed. One
of the earliest works is by De'Ath (2002), where a well-known CART method (Breiman,
Friedman, Olshen, & Stone, 1984) was transferred to multi-output prediction. The process
of tree induction is identical to CART, only the impurity function was changed to be the
sum of squared error over the multi-variate response.

Hothorn, Hornik, and Zeileis (2006) proposed a uni�ed framework for recursive par-
titioning which embeds tree-structured regression models into a well de�ned theory of
conditional inference procedures. Statistical tests are used internally to make decisions
regarding tree growth. The method is applicable to single- and multi-target regression
problems.

Several methods from the family of predictive clustering have been proposed. Struyf
and Dºeroski (2006) proposed a method that introduces constraints into learning multi-
target regression trees. This approach is an adaptation of the work of Blockeel et al. (1998).
The method is capable of inducing trees with the size or accuracy constraint. Constrained
trees can be used to obtain better interpretations.

This work was later extended by Appice and Dºeroski (2007), where they use model
trees. Model trees are decision trees that contain models within leaf nodes. Typically, a
linear model is used, but other more complex model types can be used. In this particular
work, several linear models are possible in each leaf node. The learning process determines
whether to split a node or introduce a new regression variable. Each linear model in the
leaf node then uses the introduced regression variables.

Ensembles of multi-target regression trees have been proposed by Kocev (2011), Kocev
and Ceci (2015), Kocev, Dºeroski, White, Newell, and Gri�oen (2009), Kocev et al. (2013).
In particular bagging, random forests and ensembles of extremely randomized predictive
clustering trees were used.

Joly et al. (2014) propose ensembles of multi-output regression trees, where each in-
dividual tree is built by using a projected output space. Their approach uses Johnson-
Lindenstrauss lemma. If the output space projection matrix satis�es the lemma, the vari-
ance computations in the projected space will be ε-approximations of the variance in the
original output space. Gaussian, Rademacher, Hadamard and Achlioptas projections are
used. The goal is to truncate the output space in order to reduce the number of calcula-
tions needed to �nd the best split, which is the main computational burden while building
a decision tree. While learning the ensemble, each tree is given a di�erent output space
projection. They use two di�erent ensemble methods: Random forests and Extra trees. A
similar approach is proposed in Joly (2017), where they use gradient boosting with random
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projections and multi-target regression trees as base models. The idea is to use random
projections to automatically adapt to the output correlation structure at each boosting
iteration.

Recently, Van Wolputte, Korneva, and Blockeel (2018) introduced multi-directional
ensembles of regression and classi�cation trees. This method is an extension of random
forest ensembles towards multi-directional prediction. The base models can be (but do
not need to be) multi-output decision trees. The idea is to build a general model that is
capable of answering any possible query of the data of the form "predict Y from X".

Rule methods. Of all described MTR methods, rule methods are the least researched.
To the best of our knowledge, two approaches exist. The �rst approach was proposed by
�enko (2007) and is called Predictive Clustering Rules (PCRs). As the name suggests, this
method belongs in the predictive clustering family of methods. The proposed approach,
loosely based on the CN2 method (Clark & Niblett, 1989), is a generalization of the
standard sequential covering approach that uses a general-to-speci�c beam search to �nd
candidate rules. The space of possible rule conditions is exhaustively traversed and each
potential rule condition expansion is evaluated using a heuristic function. The heuristic
function considers several rule quality measures which can be enabled/disabled according to
the requirements. The rule quality measures used by the heuristic function are dispersion,
to control for the accuracy of the rule, coverage, to make rules as general as possible,
distance to existing rules, to not prefer rules that cover the same examples as existing rules,
and prototype dissimilarity, which should be di�erent from the dissimilarity of the whole
training set. This method can be used for single- and multi-target regression/classi�cation.
The method is capable of learning ordered and unordered rule sets.

The other existing method is called Fitted Rule Ensembles and has been proposed by
Aho, �enko, and Dºeroski (2009), Aho et al. (2012). This method also belongs in the
family of predictive clustering methods. In contrast to PCRs, where the rules are learned
directly, this method learns rule sets in an indirect manner. The process starts by learning
an ensemble of predictive clustering trees (PCTs). Then, all PCTs in the ensemble are
decomposed into PCRs and each rule is assigned an initial weight. At this point, an
optimization procedure is used to optimize the weights of the rules to obtain a smaller,
more concise rule set. Optionally, simple linear functions (linear terms) can be added to
the rule set to improve overall predictive performance.

2.3.2 Multi-label classi�cation

Compared to multi-target regression, multi-label classi�cation (MLC) is a substantially
more researched �eld. MLC is a machine learning task, where the goal is to predict multiple
binary variables simultaneously. Tsoumakas and Katakis (2007) divide MLC methods
into two categories: problem transformation methods and algorithm adaptation methods.
Several other survey papers have been published (Gibaja & Ventura, 2014; Madjarov,
Kocev, et al., 2012; Tsoumakas, Katakis, & Vlahavas, 2009; M.-L. Zhang & Zhou, 2014).

Problem transformation methods

Binary relevance. Binary relevance is the simplest approach to solving MLC tasks. The
initial multi-label problem is decomposed into single-label problems. Then, each problem
is solved separately. This approach does not account for possible label dependencies, it
can introduce sample imbalance and is borderline useful in high dimensional output spaces.
The listed disadvantages were the cause of criticism (Zhou, Tao, & Wu, 2012) but Read,
Pfahringer, Holmes, and Frank (2011) highlight the advantages of using this method, such
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as linear scaling with the increase of labels and the ability to add labels/models without
losing previous e�orts.

Classi�er chains. The classi�er chains B. Chen, Li, Zhang, and Hu (2016), Enrique
Sucar et al. (2014), Read et al. (2009, 2011) method builds upon the binary relevance
approach. It generates a model by chaining single-target (ST) models. The chaining
sequence is a random permutation of labels. For every item in the chain a ST model is
learned. The predictions of ST models are added to the training data before learning
the next ST model (�st ST model uses only the original input variables). Recently, Alali
and Kubat (2015) proposed a method that stacks two layers of classi�ers. The BR models,
representing the �rst layer, make predictions which are inputs to the classi�er at the second
layer. To address the scalability issues, Read, Martino, Olmos, and Luengo (2015) propose
an approach that can be used to e�ciently learn thousands of labels.

Label powerset methods. The label powerset approaches (Boutell, Luo, Shen, &
Brown, 2004; Read, Pfahringer, & Holmes, 2008; Tsoumakas & Vlahavas, 2007) trans-
form a MLC problem into a multi-class classi�cation problem. Each possible subset of
labels that appear in the dataset becomes a new meta-class. This approach has issues
with scalability because label powersets grow combinatorially in size. The individual base
models can be learned by using any of the existing multi-class classi�cation methods. The
shortcoming of scalability has been tackled by Read (2008) with pruning the powerset.
Tsoumakas, Katakis, and Vlahavas (2008) approach this problem di�erently by organiz-
ing labels into hierarchies and then training classi�ers that predict the labelsets for each
node of the hierarchy. Another approach (Szyma«ski, Kajdanowicz, & Kersting, 2016)
exists, where the authors propose to extend the work of Tsoumakas and Vlahavas (2007)
by not using the original random partitioning of subsets, but rather a data-driven ap-
proach. They use community detection approaches from social networks to partition the
label space, which can �nd better subspaces than random search.

Binary pairwise methods. When using the binary pairwise method, a binary classi�ca-
tion model is trained for each possible pair of labels (Fürnkranz, Hüllermeier, Loza Mencía,
& Brinker, 2008). The individual models are learned from an augmented dataset where
the examples labelled with the �rst label are deemed as positive and examples labelled
with the second label as negative. A majority vote is applied over all label pairs to obtain
predictions. This approach is computationally intensive which is why its use quickly be-
comes intractable. Madjarov, Gjorgjevikj, and Dºeroski (2012) propose to use a two-stage
approach, where the �rst stage learns BR models and the second one consists of pairwise
models. Madjarov, Gjorgjevikj, Dimitrovski, and Dºeroski (2016) also use a data-driven
approach. They use label hierarchies which they obtain from hierarchical clustering of �at
label sets by using annotations that appear in the training data.

Algorithm adaptation methods

Rule methods. �enko (2007) proposed Predictive Clustering Rules (PCRs). This method
is applicable to MTR as well as MLC tasks and has been described with MTR methods.
Loza Mencía and Janssen (2016) propose two approaches: a stacking and a separate-and-
conquer approach to learn single-label rules. The condition part of a rule can contain tests
on the predictions of other labels, making this an approach that models label dependencies.
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Bayesian networks. The approach proposed by Wang, Wang, Wang, and Ji (2014)
can be used to enhance the performance of any multi-label classi�cation method. The
idea is to model the label dependencies with a Bayesian network. Nodes in the network
represent labels, connected by edges with conditional probabilities. The edges simulate
label dependencies.

Neural networks. M.-L. Zhang and Zhou (2006) propose an adaptation of the stan-
dard backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986) by using an error
function that ranks the labels according to presence within examples. M.-L. Zhang (2009)
adapt the radial basis function neural network towards MLC. Recently, Yeh, Wu, Ko, and
Wang (2017) proposed deep neural networks with multiple hidden layers.

Instance-based methods. The ML-kNN method was introduced by M.-L. Zhang and
Zhou (2005, 2007) and is an adaptation of the method proposed by Cover and Hart (1967).
This method was later extended by Liu and Cao (2015) which did not assume indepen-
dence between labels and examples. Binary relevance was used together with kNN by
Spyromitros, Tsoumakas, and Vlahavas (2008). A kNN method is used by Cheng and
Hüllermeier (2009), where they add a separate step of using neighbouring instances to get
their labels which are then fed into a logistic model. Pugelj and Dºeroski (2011) proposed
a method (described in the MTR section) also applicable to MLC.

Support vector machines. Many approaches use some kind of combination of support
vector machines and binary relevance (Boutell et al., 2004; W.-J. Chen, Shao, Li, & Deng,
2016; Elissee� & Weston, 2002; E. C. Gonçalves, Plastino, & Freitas, 2013; T. Gonçalves
& Quaresma, 2004) A recent improvement (J. Xu, 2014) of the ranking-based support
vector machine substantially contributed to the applicability of the method by reducing
its computational time. Jayadeva, Khemchandani, and Chandra (2007) implemented a
support vector machine method that allows for non-parallel separating hyperplanes.

Tree methods. Predictive clustering trees (Blockeel & De Raedt, 1998) support vari-
ous SOP tasks, including MLC. A modi�ed entropy de�nition was used with decision trees
(Clare & King, 2001) to make predictions for multi-label gene expression data. The method
De Comité, Gilleron, and Tommasi (2003a) produces sets of rules that can be viewed as
a decision tree. Madjarov and Gjorgjevikj (2012) introduced a method that �rst learns a
multi-label model tree, where each leaf node holds binary relevance SVMs for each of the
labels. Gjorgjevikj, Madjarov, and Dºeroski (2013) propose a combination of SVMs and
decision trees, where a multi-output decision tree is trained and then SVMs are used to
learn individual labels in the leaf nodes. Decision trees that capture local label dependen-
cies at each node of the tree were proposed by (Al-Otaibi, Kull, & Flach, 2014; Al-Otaibi,
Kull, & Flach, 2016). For a set of dependent labels, a single (global) tree is constructed,
while for independent labels, one (local) tree per-label is built. Q. Wu, Ye, Zhang, Chow,
and Ho (2015) learn decision trees that use SVMs internally. Each tree node trains a
one-vs-all SVM classi�er which is then used to evaluate candidate splits. This method has
problems with scalability due to the computational costs of learning SVMs.

Ensemble approaches. Two extensions of the boosting algorithm have been proposed
by Schapire and Singer (2000). Alternating decision trees (Freund & Mason, 1999) were
adapted by De Comité, Gilleron, and Tommasi (2003b) for multi-label classi�cation. Kocev
et al. (2013) propose to use bagging and random forests ensembles of predictive clustering
trees. Su and Rousu (2015) proposed an ensemble of maximum margin graph labelling
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classi�ers, where a graph is de�ned over a set of labels to model possible dependencies.
The bagging method was recently modi�ed by Q. Wu, Tan, Song, Chen, and Ng (2016).
The proposed method automatically keeps track of relevant labels for given examples during
the learning process.

2.4 Summary

This chapter begins with the introduction of the basic terminology related to machine
learning. We describe data types, data examples and datasets � concepts that we use
throughout this dissertation.

We introduce predictive modeling, where the idea is to learn a model using the provided
data and later use the learned model for making predictions on unseen data. Typically,
two predictive modeling tasks are addressed: classi�cation and regression. The former is
concerned with classifying examples into one of the prede�ned classes whereas the latter
is concerned with predicting a continuous value.

Many real-life problems can be formulated as a regression of a classi�cation task. How-
ever, more challenging problems exist where more than one value must be predicted. The
area within machine learning, concerned with solving such problems of predicting multiple
outputs, is called multi-target prediction (MTP). We introduce two speci�c and widely-
studied MTP tasks: multi-label classi�cation (MLC) and multi-target regression (MTR).
The former is concerned with predicting presence of individual labels which are represented
as binary values. The latter is concerned with predicting several continuous values.

We conclude the chapter with a short description of related work. In particular, we
describe state-of-the-art methods for MLC and MTR.
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Chapter 3

Predictive Clustering Framework and

Multi-Target Prediction

The predictive clustering (PC) paradigm has been introduced by Blockeel (1998). It can
be seen as a generalization of supervised and unsupervised learning. The two approaches
are traditionally considered as two completely distinct machine learning tasks. However,
there are supervised methods that partition the instance space into subsets, which makes it
possible to interpret them as clustering approaches (Langley, 1996). Examples of models
built with such methods are decision trees and rules. The primary goal of supervised
learning is to build models capable of making predictions whereas in unsupervised learning,
the goal is to group examples similar in nature into groups (clusters). The PC paradigm
connects the supervised and unsupervised learning into one streamlined approach. Next
to the obvious bene�t of using one approach over two, the resulting clusters are also
symbolically described.

Predictive modeling techniques explore the descriptive space of available data in order
to �nd good models that can make predictions for unseen examples. Models are often built
by using a heuristic search function that estimates the quality of model-constructing steps
during learning 1. It does so by querying the target space of provided data. In other words,
the search through the descriptive space is supervised by values in the target space. If the
querying part is omitted, the task becomes a clustering task, i.e., unsupervised. Many
methods are capable of solving either supervised or unsupervised tasks but not both.

In Chapter 2, we already mentioned the two groups of descriptive (Ad) and target
(At) attributes used in traditional predictive modeling which correspond to the descriptive
and target spaces respectively. The PC paradigm introduces the third group of attributes
called clustering attributes. The conceptual understanding of the learning process remains
the same as with traditional predictive modeling. Now, however, the heuristic queries the
clustering space instead of the target space, i.e., the resulting clusters are homogeneous
in the clustering space and described within the descriptive space. Finally the predictions
are calculated in the target space, completely detached from the learning process. Another
important di�erence between the PC paradigm and traditional predictive modeling is that
in PC, overlap between the three groups of attributes is allowed which opens up many new
possibilities of knowledge extraction from data. In this dissertation, however, we do not
address such scenarios. The reader should therefore assume that the groups of clustering
and target attributes are equal and that they have zero overlap with the group of descriptive

1The words heuristic search function are often abbreviated to heuristic. This can sometimes be con-
fusing, because the result of a heuristic search function (the actual calculated value) is also often called
"heuristic". Although not encouraged, the meaning of the word heuristic can appear in several contexts.
The actual meaning therefore depends on the context that the word is used in.
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attributes. In other words: We train our models against the same set of attributes that
are eventually predicted by the model.

The PC paradigm distances itself from specifying the data mining task. It does so
by generalizing over all of them. The generalization is achieved by �rst recognizing that
all single-value predicting tasks are in fact special cases of MTP tasks (Dºeroski, 2007b).
Next, the heuristic functions that guide the search through the descriptive space calculate
many di�erent candidate options. Usually, one of those options is then used to re�ne the
current model 2. At the level of solving a speci�c task, these calculations can no longer
be abstract but need to be explicitly de�ned, e.g., classi�cation and regression problems
are handled di�erently. In order to become general, the PC paradigm introduces three
non-optional parameters:

1. the heuristic search function, responsible for guiding the search process,

2. the impurity function, used to calculate the homogeneity of a given set of data in-
stances,

3. the prototype function, applied in order to calculate the predictions for a given data
instance.

For now, let us only state that the three mentioned parameters instantiate the learning
method within the PC paradigm and adapt it to address the ML task at hand. The actual
examples of parameter values will be explained in the following sections.

The PC paradigm has been initially implemented with generalized decision trees, called
predictive clustering trees (Blockeel et al., 1998). Later, it has been extended towards rule
learning with predictive clustering rules (�enko, 2007). Both model types can also be used
for ensemble learning (Aho et al., 2012; Kocev, 2011; Kocev & Ceci, 2015). All PC methods
are implemented and readily available for use in the CLUS software package.3

The approaches mentioned in this chapter are the basis of this dissertation, which are
later extended. In Section 3.1, we describe the predictive clustering trees. Sections 3.2 and
3.3 pertain to learning ensembles of predictive clustering trees and ensembles of predictive
clustering rules for multi-target prediction respectively.

3.1 Predictive Clustering Trees for Multi-Target Prediction

Decision trees are one of the most recognizable, interpretable and widely used model types
in ML, applied to solving classi�cation as well as regression tasks (Breiman et al., 1984).
In this dissertation, we use them in the context of PC paradigm. From the PC point of
view, decision trees are a hierarchy of non-overlapping clusters and are consequently called
predictive clustering trees (PCTs).

Figure 3.1 depicts a standard PCT which consists of two types of nodes: (i) split nodes
and (ii) leaf nodes. The topology of a PCT is the same as the topology of a standard
decision tree. Split nodes typically have one data in�ow and two data out�ows. Decision
trees containing split nodes with more data out�ows do exist, but are not used in this
dissertation and are therefore not discussed. The uppermost split node is also called the
root node as it represents the beginning of the decision tree. There, the in�ow is not
visible but it should be assumed that the data enters there. Split nodes contain tests or
conditions, which partition the incoming data into smaller chunks. Nodes without tests

2A greedy search is often used in the heuristic functions. There, the best heuristic value determines the
best option. However, other approaches exist, where more than one option is retained, e.g., beam search.

3CLUS software package is available at http://source.ijs.si/ktclus/clus-public/.

http://source.ijs.si/ktclus/clus-public/
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are called leaf nodes. They have only one data in�ow and are responsible for specifying
predictions for the examples that end up reaching them.

Test1

Test2

Prototype1 Prototype2

Prototype3

NO

NO YES

YES

Figure 3.1: A standard predictive clustering tree. Blue and orange rectangles represent
split nodes and leaf nodes respectively. The test condition Test1 is in the root node. Each
leaf node contains a prototype function for calculating predictions.

Once a PCT is trained, it can be used for making predictions. Predictions are made
by using the tree in a top-to-bottom manner. A data example enters at the root node
and travels through the tree until a leaf node is reached. The paths between two nodes
are mutually exclusive directions that an example can take. The decision regarding which
path an example will follow is based on the values of example's descriptive attributes. The
decision process is such that the incoming examples are tested against the conditions in
the split nodes. The outcome of each individual test can either be positive or negative,
causing the example to take the positive (yes) or negative (no) path. Considering a numeric
attribute A, an example of a condition in a split node could be A > 2.72, indicating that
data examples with value of attribute A higher than 2.72 should take the yes path and no
otherwise. This process is known as decision tree traversal.

3.1.1 Learning a single predictive clustering tree

The main advantage of using PCTs over standard decision trees is that PCTs can be
instantiated to solve several di�erent tasks. In the introductory paragraphs of this chapter,
we have mentioned that the PC paradigm introduces three non-optional parameters which
adapt the general PC approach to the task at hand. Here, we demonstrate how PCTs can
be used for solving the tasks of multi-target regression and multi-label classi�cation by
de�ning all three parameters.

PCTs are induced using the standard top-down induction of decision trees (TDIDT)
algorithm (Breiman et al., 1984). The function PCT, depicted by Algorithm 3.1, takes
as input a dataset S, sets of descriptive (Ad) and target (At) attributes and a sampling
function δ(X) that samples uniformly at random and without replacement attributes from
the attribute set X. The result of this algorithm is a predictive model called predictive
clustering tree. The model consists of split nodes, containing tests on descriptive attributes
Ad, and leaf nodes, specifying predictions for the target attributes At.

The induction starts with sampling of the descriptive attributes by using δ function.
This step is ensemble-speci�c and is not a part of the standard PCT induction setup.
We include it here because we later describe ensemble methods that use this algorithm
to generate their base predictive models and some of the ensemble methods require such
descriptive attribute sampling. This will be further explained in Section 3.2. Nevertheless,
please note that δ is passed to the PCT function as a reference in order for it to be used
within the PCT function. In other words: When we write δ, we refer to the actual function.
When we write δ(•), we refer to applying δ to the input set • and expect as a result a set
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Algorithm 3.1: The top-down induction of predictive clustering trees.
Function: PCT

Input: A dataset S, a set of descriptive attributes Ad, a set of target attributes
At, an attribute sampling function δ

Output: A predictive clustering tree
A'd ← δ(Ad)
(t∗, h∗,P∗)← BestTest(S,A'd,At)
if t∗ = none then

return Leaf(Prototype(S,At))
else

foreach Si ∈ P∗ do
treei ← PCT(Si,Ad,At, δ)

end

return Node(t∗,
⋃
i{treei})

end

of randomly sampled items from that set.
The next step of the PCT induction constitutes a greedy search encapsulated within

the function BestTest and is depicted by Algorithm 3.2. The search for an acceptable
split is done within the dataset S and is constrained to the descriptive attributes A'd and
internally evaluated against the target attributes At. If a test is not found (t∗ = none), the
algorithm returns a leaf node, initialized to predict values for attributes At, based on the
currently examined data S and indicating that the search within this particular subspace
of the original data S should stop. If a test is found, the BestTest function returns a non-
empty test t∗, a heuristic score of said test h∗ and a partitioning P∗. The partitioning is a
direct result of dividing the data S according to the test t∗. The induction then continues
with the algorithm recursively calling itself for every discovered partition in P∗ in order
to �nd additional tests. When the function eventually returns from recursion, it creates a
node with test t∗ and child nodes treei.

Algorithm 3.2: The search for the best test within the provided set of data
examples and constraints, used with standard PCTs.
Function: BestTest

Input: A dataset S, a set of sampled descriptive attributes A'd, a set of target
attributes At

Output: The best test t∗, heuristic score h∗ of test t∗ and the partitioning P∗
induced by t∗ on dataset S

(t∗, h∗,P∗)← (none, 0, ∅)
foreach attribute a in A'd do

foreach possible test t on attribute a in S do

P ← partitioning induced by t on S

h← Impurity(S,At)−
∑

Si∈P
|Si|
|S| Impurity(Si,At)

if (h > h∗) ∧Acceptable(t,P) then
(t∗, h∗,P∗)← (t, h,P)

end

end

end

return (t∗, h∗,P∗)
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The default heuristic search function used with predictive clustering trees is the
impurity reduction (IR) heuristic shown by Equation 3.1, where S is the dataset before
it is partitioned (Si are the partitions) and Impurity(X,Y ) is the function measuring the
impurity of dataset X according to the target attributes in set Y . The idea is to reward
those candidate splits during learning of the PCT that reduce the impurity of the resulting
partitions the most.

IR = Impurity(S)−
∑

Si∈P

|Si|
|S|

Impurity(Si) (3.1)

The de�nition of impurity di�ers depending on the ML task but it generally connects
to the concept of homogeneity between the data examples. When examples are similar
enough for them to be indiscernible, the evaluated set of data examples has the highest
possible purity. The impurity reduction heuristic is used by the BestTest function depicted
in Algorithm 3.2.

3.1.2 Predictive clustering trees for predicting multiple continuous variables

Equation 3.2 de�nes the impurity function Impurity(S,At), where S represents a set of
data examples and At represents the set of attributes, against which the calculations are
made. In the case of predicting multiple continuous variables, the impurity is calculated
as the arithmetic mean of variances of individual target attributes.

Impurity(S,At) =
1

|At|

At∑
a

Vara(S) (3.2)

Vara(S) =
1

|S|

|S|∑
i=1

(ai − a)2 (3.3)

The variance of individual target attribute is calculated as shown by Equation 3.3,
where Vara(S) represents the variance of the attribute a on dataset S, ai represents the
value of the attribute a in the ith data example of dataset S, and a represents the mean
value of attribute a in the dataset S. The prototype function for the standard PCT
predicting multiple continuous variables is de�ned as a vector ŷ, where each component of
the vector (ŷa) represents a placeholder for the prediction for a target attribute a (a ∈ At).
An individual component ya of the prototype vector is calculated as an arithmetic mean
of values in the dataset S for attribute a, i.e., ŷa = a. An example of a PCT that predicts
multiple continuous variables is depicted in Figure 3.2.
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Figure 3.2: An example of a predictive clustering tree for predicting multiple continuous variables. This predictive clustering tree was obtained
from the ADNI dataset (Alzheimer's Disease Neuroimaging Initiative), which is described in Breskvar, �enko, and Dºeroski (2015). It predicts
the diagnosis and various scores in connection to everyday cognition of Alzheimer's patients and their corresponding study partners.
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3.1.3 Predictive clustering trees for predicting multiple nominal variables

Equation 3.4 de�nes the impurity function Impurity(S,At), where S represents a set of
data examples and At represents the set of attributes, against which the calculations are
made. In the case of predicting multiple nominal variables, the impurity is calculated as
the arithmetic mean of Gini indices of individual target attributes.

Impurity(S,At) =
1

|At|

At∑
a

Ginia(S) (3.4)

Ginia(S) = 1−
|Classes(a)|∑

j=1

p2j (3.5)

The Gini index of individual target attribute is calculated as shown by Equation 3.5,
where Ginia(S) represents the Gini index of the attribute a on dataset S, function Classes(a)
returns the classes contained within attribute a of dataset S, and pj represents the prob-
ability of a class cj (cj ∈ Classes(a)). Probability is estimated with the proportion of
examples in S belonging to the class cj . If the number of classes in |Classes(a)| equals
two, modeling target attribute a becomes a binary classi�cation problem.

The prototype function for the standard PCT predicting multiple discrete variables
is de�ned as a vector ŷ, where each component of the vector (ŷa) represents a placeholder
for the prediction for a target attribute a (a ∈ At). An individual component ya of the
prototype vector holds probabilities for each class cj (cj ∈ Classes(a)). At this point,
thresholding can be applied to determine the predicted class or the majority class can be
used. In this dissertation, we use the latter. An example of a PCT that predicts multiple
nominal variables is depicted in Figure 3.3.
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Figure 3.3: An example of a predictive clustering tree for predicting multiple discrete variables. This predictive clustering tree was obtained from
the Water quality dataset, which is described in Dºeroski, Dem²ar, and Grbovi¢ (2000). It uses chemical properties obtained from water samples
to predict the presence of plant and animal species in Slovenian rivers. Leaf nodes with the content none do not predict any plant or animal
species.
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3.2 Ensembles of Predictive Clustering Trees for Multi-Target

Prediction

An ensemble is a set of models, called base predictive models, where each model contributes
to the overall prediction. It is a common practice to use ensembles to lift the predictive per-
formance of the base predictive models and thus obtain premium predictive performance.
This goal is achievable if the base predictive models are accurate and diverse (Hansen &
Salamon, 1990). A predictive model is considered to be accurate when it performs better
than random guessing. It does not make sense to use any kind of trained model, when
�ipping a coin produces better predictions.

As mentioned, base predictive models must also be diverse. Diversity of models is
quanti�ed indirectly. Two predictive models are diverse when they make predictions with
di�erent error rates. Note that two completely distinct predictive models can, on average,
have the same error rate. The topological/logical di�erences between the two models with
such properties do not constitute as diversity, making one of the two models redundant.
Retaining both models does therefore not contribute to the overall diversity within the
ensemble. In such cases, the Occam's razor principle should be applied and one of the two
models should be removed or replaced with a di�erent one.

We have de�ned ensembles as sets of models. However, we have not constrained the
elements that can belong to such sets. Generally, two types of ensembles exist: homoge-
neous and heterogeneous. The former comprise models that have been learned by using
the same learning algorithm. Examples of methods that produce such ensembles are Bag-
ging (Breiman, 1996), Boosting (Freund & Schapire, 1996), Random subspaces (Ho, 1998),
Random forests (Breiman, 2001) and ensembles of extremely randomized trees (Geurts et
al., 2006). On the other hand, heterogeneous models can be combined within an ensemble
with the stacking approach (Wolpert, 1992), where di�erent learning algorithms are used
on the same data.

Figure 3.4 depicts the �ow of learning a homogeneous ensemble and obtaining predic-
tions with it. The typical process is such that the preprocessed and sanitized dataset is
presented to the ensemble learning method. Internally, the ensemble method distributes
the data to di�erent instances of the same base learning algorithm. Each instance produces
a predictive model. Note that the input data can optionally be internally manipulated be-
fore it is presented to the learning algorithm. In particular, bootstrap aggregations of the
dataset can be used to make perturbations within the dataset with the goal of making
the learning more robust to potential noise in the data. When a prediction for an unseen
data instance is to be made, each ensemble model is queried to produce a prediction for
it. The predictions of the individual base predictive models are then combined by using
an aggregation function. The aggregation function can internally treat predictions of in-
dividual base predictive models equally, or it can introduce bias, such as weighting of the
individual ensemble models.

Typically, there are as many predictions as there are models in the ensemble although
ensemble models exist, where predictions can be expected to arrive only from a subset of
base predictive models in the ensemble. An example of such ensembles are rule ensembles,
where individual rules in the ensemble can be viewed as base models. In those cases,
individual rules are triggered only if the conditions are met, thus making it possible for a
rule not to be triggered at all and consequently not yielding a prediction.

Ensemble models are generally not considered interpretable, because they hide the
logic behind the predictions of base models and due to the fact that the predictions are
aggregated, thus losing "individuality" of base models. However, ensemble models gener-
ally achieve better predictive performance than individual base predictive models, making
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Figure 3.4: The process of learning a homogeneous ensemble and obtaining predictions with
it. A training dataset is presented to the ensemble method (bounded with the black dotted
rectangle) which produces several base predictive models. When an ensemble prediction
for an unseen data instance has to be made, each learned base predictive model is queried
for a prediction. Predictions of base predictive models are aggregated with an aggregation
function and the ensemble produces a prediction.

them a popular weapon of choice. In contrast to what has just been stated, rule ensembles
are an exception to this rule because they are interpretable. It will be made clear that
the interpretability of rule ensembles comes with a price: The predictive power of rule
ensembles is lower than that of tree ensembles. Regardless of ensemble type and method,
another downside of using them is their computational complexity. The cost of learning
and an ensemble model is the sum of the corresponding costs of all base models.

All mentioned ensemble methods were extended towards MTP within the PC frame-
work. Consequently, PCTs and PCRs have also been used in the ensemble setting. PCTs
have been used with bagging, random forests, random subspaces, bagging of subspaces (Ko-
cev, 2011; Kocev et al., 2013) and ensembles of extremely randomized PCTs (Kocev & Ceci,
2015). Ensembles of PCRs were learned indirectly by �rst transcribing a random forest
ensemble of PCTs to a set of PCRs and then using an optimization procedure to select
only the relevant rules as members of the rule ensemble (Aho et al., 2012).

In this chapter, we describe the tree and rule-based ensemble methods for solving MTP
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tasks. The presented methods are implemented within the predictive clustering framework
and are presented in Sections 3.2 and 3.3, respectively.

An ensemble makes predictions by combining the predictions of its base models. When
a prediction for an example has to be made, each base predictive model is queried for its
prediction or vote for the given example. The votes are passed to the aggregation function,
which then combines them and yields the �nal prediction of the ensemble. In general, the
aggregation function is a parameter and there are many ways to combine the votes of the
base predictive models. When solving regression tasks, the arithmetic mean is the most
common. For classi�cation tasks, majority and probability distribution voting (Bauer &
Kohavi, 1999) are often used. In addition to how the votes are aggregated, the aggregation
function can also use other information, such as preferences based on domain knowledge
or (optimization derived) weights for individual base models (Kuncheva, 2004).

In our work, we use PCTs and variants thereof to solve MTP tasks. The aggregation
functions therefore have to be appropriately extended towards MTP. For MTR tasks, the
arithmetic mean is calculated on a per-target basis. The per-target probability distribution
voting is used for MLC tasks. Note that all base learners provide predictions for all target
attributes. The relevance of this statement will become evident in Chapter 4, where we
describe ROS � the proposed approach.

The remainder of this section describes the three ensemble methods relevant to this
dissertation. All three methods have been used in the context of predictive clustering trees.

3.2.1 Bagging

Bagging is short for bootstrap aggregating. It is an ensemble method that uses bootstrap
replication (also known as bootstrapping) of the training data to introduce randomization
in the learning dataset. A bootstrap replicate S∗ of a dataset S is again a dataset that
has been randomly sampled from S. Sampling with replacement is repeated until both
datasets are of equal size (i.e., |S| = |S∗|). Such perturbations of the learning set have
proven useful for unstable base models, such as decision trees, but can generally be used
by any model type. Base models use the whole descriptive space D while searching for the
best splits. The descriptive attribute sampling is not required by the bagging ensemble
method. We therefore de�ne the descriptive attribute sampling function as: δ(Ad) = Ad,
i.e., no sampling is done and all descriptive attributes are available to all instances of the
learning algorithm during learning. Algorithm 3.3 shows the bagging induction algorithm,
which has been extended towards MTP and uses PCTs as base predictive models.

Algorithm 3.3: Bagging of PCTs.
Function: Bagging
Input: Dataset S, number of base models b, a set of descriptive attributes Ad, a

set of target attributes At, a dummy attribute sampling function δ
Output: Forest of PCTs
F← ∅
for i← 1 to b do

S∗ ← Bootstrap(S)
Ti ← PCT(S∗,Ad,At, δ)
F ← F ∪ {Ti}

end

return F
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3.2.2 Random forests

Random forest algorithm works similarly to bagging. This ensemble method also starts
with the introduction of randomization in the instance space by applying the bootstrap-
ping technique. However, random forest algorithm additionally introduces randomization
in the descriptive attribute space. It does so by internally randomizing the PCT induction
algorithm. The randomization is such that the BestTest function considers only a subset of
randomly selected descriptive attributes from the set of all descriptive attributes Ad. The
process of random selection of descriptive attributes yields di�erent subsets of descriptive
attributes at each split node. The randomization is achieved by using the random at-
tribute sampling function δ(Ad). The recommended subset size of descriptive attributes
for regression is

√
|Ad| and b0.1 · |Ad|c + 1 for classi�cation tasks. Algorithm 3.4 shows

the random forest induction algorithm, which uses internally randomized PCTs as base
predictive models.

Algorithm 3.4: Random forest of PCTs.
Function: RandomForest
Input: Dataset S, number of base models b, a set of descriptive attributes Ad, a

set of target attributes At, an attribute sampling function δ
Output: Forest of PCTs
F← ∅
for i← 1 to b do

S∗ ← Bootstrap(S)
Ti ← PCT(S∗,Ad,At, δ)
F ← F ∪ {Ti}

end

return F

3.2.3 Extremely randomized trees

Extremely randomized trees or extra-trees are very unstable decision trees. It therefore only
makes sense to use them in the ensemble setting. They di�er from the other two ensemble
methods by not perturbing the input data with bootstrapping and by randomizing the
test selections. Extra-trees select at random k descriptive attributes and for each of them
randomly select a split point. This di�ers from the usual BestTest function which considers
all possible split points for each descriptive attribute, before selecting the one with the
best heuristic score. The random selection of k attributes is achieved by using the random
attribute sampling function δ(Ad). The recommended number of attributes to sample is
k = |Ad|. Each randomly selected split is evaluated and the one with the best heuristic
value h∗ is selected. Algorithm 3.5 shows the procedure for the induction of extra-tree
ensembles, which has been extended towards MTP and uses extra-PCTs as base models.

At this point, we must also address the particularities of extremely randomized PCTs
with respect to how they �nd best tests. The BestTest function depicted by Algorithm 3.2
is used for inducing standard PCTs, used within bagging and random forest ensembles.
Ensembles of extremely randomized PCTs use a di�erent BestTest function, depicted by
Algorithm 3.6. Algorithm 3.7 describes the SelectRandomTest function, responsible for
generating random tests for a given attribute a within a dataset S. If attribute a is
numeric, a random split point is selected between the lowest and highest value of attribute
a in the dataset S. Based on this, a test is created, stating that the value of attribute a
should be lower than the selected cut point acut. If attribute a is nominal, a (sub)set is
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Algorithm 3.5: Random forest of extremely randomized PCTs.
Function: ExtraTrees
Input: Dataset S, number of base models b, a set of descriptive attributes Ad, a

set of target attributes At, an attribute sampling function δ
Output: Forest of extremely randomized PCTs
F← ∅
for i← 1 to b do

Ti ← PCT(S,Ad,At, δ)
F ← F ∪ {Ti}

end

return F

randomly selected from the original possible values for attribute a from Va. Based on this,
a test is created, stating that the value of attribute a should be contained in the randomly
selected set V ′a.

Algorithm 3.6: The search for the best test within the provided set of data
examples and constraints, used with extremely randomized PCTs.
Function: BestTest

Input: A dataset S, a set of sampled descriptive attributes A'd, a set of target
attributes At

Output: The best test t∗, heuristic score h∗ of test t∗ and the partitioning P∗
induced by t∗ on dataset S

(t∗, h∗,P∗)← (none, 0, ∅)
foreach attribute a in A'd do

t← SelectRandomTest(a, S)
P ← partitioning induced by t on S

h← Impurity(S,At)−
∑

Si∈P
|Si|
|S| Impurity(Si,At)

if (h > h∗) ∧Acceptable(t,P) then
(t∗, h∗,P∗)← (t, h,P)

end

end

return (t∗, h∗,P∗)
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Algorithm 3.7: Random test selection when using extremely randomized PCTs.
Function: SelectRandomTest

Input: A dataset S, an attribute a to make the test for
Output: A randomly selected test t
Va ← GetAttributeValues(a, S)
if IsNumeric(a) then

amax ← Max(Va)
amin ← Min(Va)
acut ← RandomBetween(amin, amax)
return Test(”a < acut”)

else if IsNominal(a) then
V ′a ← RandomNonEmptySet(Va, S)
return Test(”a ∈ V ′a”)

end

return none

3.3 Rule Ensembles for Multi-Target Prediction

The predictive clustering framework was extended towards rule learning with predictive
clustering rules (PCRs, �enko (2007)). This method is a generalization of the standard
sequential covering approach that uses general-to-speci�c beam search to �nd candidate
rules. It is capable of learning single-target as well as multi-target decision rules and has
been applied to MTR as well as MLC tasks. PCRs have not been used in an ensemble
setting. However, a di�erent method for learning PCRs has been proposed and we describe
this alternative method in the rest of this section.

Predictive learning with rule ensembles was �rst introduced with the method RuleFit,
proposed by J. H. Friedman and Popescu (2008). The idea behind this approach is to
generate a large pool of candidate decision rules, assign an initial weight of zero to all
of them and then optimize the weights towards the smallest possible model with good
predictive performance. The candidate rules are generated with an ensemble, built with
the importance sampled learning ensemble � ISLE (J. H. Friedman, Popescu, et al., 2003).
The authors used the proposed approach to learn rule ensembles for solving both regression
and classi�cation tasks. Moreover, they also extended their approach towards determining
the importance of the descriptive (input) attributes.

3.3.1 Learning rule ensembles with FIRE

The RuleFit approach has been extended towards MTP. In particular, it has been extended
towards MTR (Aho et al., 2012) and dubbed Fitted Rule Ensembles for MTR or FIRE
for short. The rule model takes the form given by Equation 3.6. The model consists of
three parts: (i) an average vector avg, providing predictions for all target attributes (At),
(ii) M weighted decision rules, triggered only when the conditions of individual rules are
met, and (iii) optional weighted linear terms, one for every descriptive-target attribute pair
(t, d) where d ∈ Ad and t ∈ At. Linear terms have been introduced in order to improve the
predictive power of induced models.

f(x) = w0avg +

M∑
i=1

wiri(x) +

At∑
t

Ad∑
d

w(t,d)x(t,d)︸ ︷︷ ︸
optional

(3.6)
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Algorithm 3.8: The FIRE algorithm: Induction of rule ensembles for multi-
target regression.
Function: FIRE

Input: Dataset S, number of base models in the tree ensemble b, a set of
descriptive attributes Ad, a set of target attributes At, an attribute
sampling function δ

Output: An ensemble of rules and linear terms F with their corresponding
weights W

RF← RandomForest(S,Ad,At, δ)
F← ConvertForestToRules(RF)
F← F ∪GenerateLinearTerms(Ad,At) // Optional
ERRmin ←∞
for τ ← 1.0 to 0.0 with step do

(Wτ , ERRτ )← OptimizeWeights(F, S, τ)
if ERRτ < ERRmin then

(Wopt, ERRmin)← (Wτ , ERRτ )
else if ERRτ > threshold · ERRmin then

break

end

end

(F, W)← RemoveZeroWeightedTerms(F, Wopt)
return (F, W)

FIRE models are induced in several steps which are depicted by Algorithm 3.8. First, a
random forest (RF) ensemble of PCTs (Kocev et al., 2013) is learned. Next, a large quantity
of decision rules is generated by transcribing individual PCTs from the tree ensemble to
decision rules. A decision rule is obtained by concatenating all tests from the root node to
the last non-leaf node of the PCT. The leaf node holds the predictions which are copied
to the decision rule. Every PCT therefore decomposes into as many decision rules as there
are leaf nodes in it. The acquired decision rules are given the same initial weight of zero
and are put in the pool of candidate rules. Next comes the most computationally complex
step of this approach: the optimization. Gradient directed optimization is used to set
as many candidate weights to zero as possible by minimizing the squared loss, de�ned as
Lsqrd(f(x), y) = 1

2(f(x)− y)2, where f(x) and y correspond to predicted and true values,
respectively. However, this loss function is only applicable to single-target problems. Aho
et al. (2012) transfer it to the multi-target regression scenario. The appropriate convex
multi-target loss function is shown by Equation 3.7 and corresponds to the average loss
over all target attributes. Before the optimization, the predictions of candidate rules must
be normalized in order to equalize the importance of individual rules and targets. This
is done in three steps: (i) The targets are zero-centered, (ii) the rule's predictions are
scaled to equalize the e�ect of it on the optimization process and (iii) the di�ering scales of
target attributes are normalized. These pre-processing steps, along with the optimization
procedure itself, are explained in detail in Aho et al., 2012.

L(f(x), y) =
1

T

T∑
t=1

Lsqrd(ft(x), yt) (3.7)
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3.3.2 Making predictions with FIRE models

Historically, decision rules take the form: IF condition THEN consequence. An example
of a decision rule that predicts many numerical target attributes is depicted in Figure 3.5.
The example is taken from the same dataset as the one used to showcase an example PCT
in Figure 3.3. This time, however, the data was interpreted as being numeric4.
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IF O2 > 3.52 AND CO2 > 0.27 THEN (0.61, 0.41,. . . , 1.13)

Figure 3.5: An example decision rule for predicting several numerical variables.

We can see that the example rule in Figure 3.5 predicts several numerical values, in
contrast to standard decision rules, where only one value is predicted. The interpretation
of this example decision rule is the following: If O2 levels are above 3.52 and at the same
time CO2 levels are above 0.27, the rule should be triggered and the prediction should
be made. Note that nothing is speci�ed in case when the conditions of the decision rule
are not ful�lled. With rule ensembles, it is certainly possible that the input data instance
does not trigger any rules. In those cases, mechanisms must be in place to still provide
predictions, because the model is incomplete if it does not always yield a prediction. FIRE
models inherently solve this problem with the average prediction vector (the �rst term in
Equation 3.6).

The model produced by FIRE comprises decision rules and optional linear terms. With
tree ensembles, it is clear that each base predictive model will receive a data instance for
which a prediction has to be made. The data instance will traverse through all base
predictive models and each traversal will result in a prediction. In other words, all base
models always yield a prediction for any kind of (valid) input. With rule ensembles, things
are somewhat di�erent. Let us examine how, by examining the structure of FIRE models
through the eyes of making predictions.

We have already established that the FIRE models contain two mandatory terms and
an optional one. The �rst term is the average prediction vector. The second and third
terms represent the learned rules and optional linear terms, respectively. We can consider
the average prediction vector as well as each decision rule or linear term in the ensemble
as a separate base predictive model. The �nal prediction is the result of a function that
sums the contributions of individual base predictive models, as opposed to ensembles of
decision trees for MTR, where the aggregation function predicts the arithmetic mean over
all predictions of base predictive models. Since the average prediction vector and linear
terms do not have any conditions, they are always triggered, i.e., their condition is always
evaluated to true. This immediately solves the problem of model completeness, because
now, the predictions will always be yielded, regardless of whether any of the decision rules
are triggered or not.

The prediction for a data instance comes in the form of a numerical prediction vec-
tor, where each component corresponds to one target variable. The prediction vector is
calculated as the per-component wighted sum of the average prediction vector and predic-

4Many predictive modeling problems can be converted from regression to classi�cation or vice versa.
This does not make sense for all problems but this particular one allows for such transformations.
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Figure 3.6: A part of the example rule ensemble model for predicting the abundance of
animal and plant species in Slovenian rivers. The prediction vectors have been shortened
in order to �t the model on the page. Due to space limitations, the majority of decision
rules and linear terms has also been omitted.

tion vectors of individual decision rules and linear terms. Figure 3.6 depicts a part of an
otherwise large rule ensemble.

3.3.3 Linear terms in FIRE models

Optionally, linear terms can be added to the set of candidate rules. A linear term is a
simple linear model where only numeric descriptive attributes can appear in the function.
One linear term is created for each target attribute-input attribute pair. Thus, the number
of linear terms is at most |Ad| · |At|. The linear terms are represented with the double sum
in Equation 3.6.

x(t,d) = (0
1
, ..., 0

t−1
, xd
t
, 0
t+1
, ..., 0

T
) (3.8)

Each linear term can be perceived as a decision rule without a triggering condition
which means that they are always triggered. A linear term in�uences the prediction of
the ensemble by introducing a linear model that applies to target t and uses a descriptive
attribute d, as depicted in Equation 3.8.

The idea of using linear terms is to improve overall predictive performance of the rule
ensemble. Each linear term is assigned a weight (exactly as with decision rules) that is
subject to optimization. Contrary to the average vector, which is a constant, linear terms
give di�erent predictions based on the values of the descriptive attributes of the instance
being predicted. Consequently, the �nal prediction of the rule ensemble does not only
depend on constant predictions of the average vector and (triggered) decision rules but
also on the descriptive values of the predicted instance.

Let us consider a �ctional MTR problem with ten descriptive and three target variables
and an example rule ensemble with the following properties:

� an average prediction vector (C1, C2, C3),

� two decision rules R1 and R2 with corresponding weights w1 and w2, and

� four linear terms: x(1,5), x(2,1), x(3,9), x(3,3) with corresponding weights w3, w4, w5 and
w6.
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This example rule ensemble is shown below. Note that the linear terms can be stacked
together and combined with the average prediction vector. It can be seen that the ensemble
predictions contain decision rules as well as linear models that in�uence the predictions
based on the values of descriptive attributes.

Model =(C1, C2, C3)

+w1 ·R1 + w2 ·R2

+w3 · (x5, 0, 0) + w4 · (0, x1, 0) + w5 · (0, 0, x9) + w6 · (0, 0, x3)
=(C1 + w3 · x5, C2 + w4 · x1, C3 + w5 · x9 + w6 · x3)
+w1 ·R1 + w2 ·R2

3.4 Summary

In this chapter, we introduced the predictive clustering framework for MTP. We described
two types of machine learning models, namely decision trees and decision rules.

We described the predictive clustering trees (PCTs) � generalized decision trees for
MTP. We use PCTs as individual models as well as base predictive models in tree-based
ensembles. We described several ensemble methods that will later be used for building
predictive models. In particular, we described three algorithms for building tree-based
ensemble models: Bagging, Random forest and ensembles of extremely randomized trees.
All three ensemble methods have been extended towards MTP.

The described rule-based ensemble models use predictive clustering rules (PCRs) as
base predictive models. We describe the algorithm called Fitted rule ensembles for MTR,
an extension of the RuleFit algorithm towards MTR. In contrast to the high-performing
and uninterpretable tree-based ensemble models, rule-based ensemble models have lower
predictive power but can be highly interpretable. The predictive performance of rule
ensembles for MTR is comparable to that of a single PCT. In order to lift the performance
of rule ensembles, one can optionally include linear terms into the ensemble model. These
terms augment the predictions of the rule ensemble by using the input values rather than
the knowledge obtained during the training of the ensemble model.
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Chapter 4

Random Output Selections � ROS

In this chapter, we introduce an ensemble extension method called Random Output Selec-
tions (ROS) that can be applied to solving MTP tasks. The idea of ROS is to force the
individual members of the ensemble into learning only from subsets of the target space.
In particular, we extend the ensemble methods described in Section 3.2 to learn predictive
clustering trees (PCTs) on randomly selected subsets of the target space. This approach
has shown promise as it was able to outperform state-of-the-art MTP methods (Breskvar,
Kocev, & Dºeroski, 2017, 2018a).

Decision trees are obtained by using the top-down induction algorithm (TDIDT). The
driving force behind the building process is a greedy heuristic function responsible for
�nding the most appropriate sub-partitions of input data according to some criteria. The
sub-partitions are usually not obtained directly but as a consequence of applying a test,
which is in fact represented in the form of a condition. All examples that meet the condition
travel along a di�erent path than the examples that do not meet that condition. In general,
the input data can be partitioned in many di�erent ways. One of the most commonly used
approaches is to use a greedy heuristic function to evaluate all the candidate tests and
select the one with the highest heuristic score as the best.

Greedy approaches, including the one used for inducing PCTs, exhibit a property that
is best described as myopia. This simply means that the algorithm purposely ignores the
fact that the candidate splits with the best heuristic scores are not necessarily optimal
and could actually push the induction process onto a suboptimal path. When using the
top-down approach to building decision trees, we must therefore accept the risk that the
algorithm can select a suboptimal split. Due to the hierarchical nature of the induction
process itself, it is obvious that if we select a suboptimal split in the early stages, we cannot
recover from this mistake. This problem is present in all decision tree methods that use
the top-down induction approach and becomes even more challenging when the heuristic
score is calculated against several target attributes, as is the case with MTP tasks.

This chapter is structured as follows. First, we describe the two approaches to solving
MTP tasks. Next, we describe how the individual ensemble members subset the output
space. Then, we present the method for learning ROS ensembles with PCTs. Finally, we
provide a computational complexity analysis of the proposed approach.

4.1 Approaches to Multi-Target Prediction

Before we describe the intricacies of ROS, we must �rst talk about the two commonly used
approaches to solving MTP tasks: local and global. The majority of existing methods can
be classi�ed as either local or global but ROS operates on the spectrum between these two
extremes.
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Each target of the multi-target structure can be considered as a separate building block
that one would like to predict. It is therefore obvious that the most straightforward way
of solving a MTP task is to learn a separate predictive model for each target attribute of
the multi-target structure. As it was already pointed out in Chapter 2.2, the main premise
of SOP is the relatedness among the components of the target structure. Consequently, if
we model each component separately, we do not take advantage of the potential relations
among the components, which can lead to learning models with inferior predictive power.
Nevertheless, this approach is known as local and is widely used.

On the other hand, the complete target structure can be predicted with only one pre-
dictive model, considering the target structure as a set of connected problems rather than
many unrelated subproblems. This approach is known as global or �big bang�, because
the algorithms have the opportunity to see and exploit the information in all components
of the target structure as well as the potential relations among them. This can lead to
improved predictive performance, simpli�cation of the learned model(s), higher computa-
tional e�ciency and reduced over�tting as compared to local methods (Kocev et al., 2009;
Kocev et al., 2013; Levatic, Kocev, & Dºeroski, 2014).

These two polarized approaches both have their advantages as well as some drawbacks.
Local approaches are simple to implement and they often outperform the global approaches,
albeit not always with statistical signi�cance. Another important advantage of the local
approach to MTP is the abundance of available methods. When a MTP task is decomposed
into individual single-target prediction subtasks, one can use many available single-target
methods to solve them. However, the main problem with this approach is its computational
complexity, which increases linearly with the number of target attributes.

Substantially less methods of global nature exist. The ones that do, however, are
usually computationally more e�cient as compared to using the local approach. The
global methods produce one model that predicts all target attributes. This can greatly
improve interpretability, which inherently depends on several key factors. First, the model
type itself must be interpretable, such as decision trees or rules. Second, if the models are
grouped into an ensemble, the interpretability is again lost. There are cases, where this is
not true (e.g., with rule ensembles) but it generally holds. And lastly, if the models are
too big, interpretation is di�cult but still considerably less tedious in comparison with the
interpretation of local models.

The main drawback of global methods is that they explicitly focus on exploiting the
relations among the target attributes. When used appropriately, these relations can in-
�uence the model-learning process in a very bene�cial way. In particular, the resulting
models can have better predictive performance. However, the relations among the target
attributes are often weak. In addition to this, they can even be �ctional, i.e., they can
appear to exist due to noisy data. Most global methods do not address this issue explicitly
and force the "relatedness agenda" throughout the whole learning process. We therefore
propose a new global ensemble approach that learns and combines localized models with
the goal to increase the overall predictive performance of the ensemble by reducing the
e�ects of weak and noisy relations among the target attributes.

4.2 Generating Random Subspaces

We have mentioned that the relations among the target attributes can potentially be weak
or nonexistent. Such properties of the data can negatively in�uence the learning process
in global methods because of their inherent assumption of relatedness among all target
attributes. ROS aims to constrain this problem by learning a specially crafted ensemble
of decision trees, in particular, PCTs.
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Until now, we have not discussed a very important part of ROS: the localization of
base models in the ensemble. We purposely use the term localized over local because of
two reasons: (i) the term local indicates a di�erent approach, which we explain below and
(ii) because ROS ensembles are in fact global in nature. The di�erence between global
and ROS ensembles is that individual base models in a ROS ensemble do not learn from
all target attributes but a subset of them. Although individual base models could be
instantiated to learn from only one target attribute, ROS ensembles were designed to use
base models that were learned from two or more target attributes, making them localized
towards the target attributes used for learning.

Figure 4.1 depicts three strategies that can be applied when solving a generic MTP
task with four target variables: local (left), global (right) and ROS (middle). All three
approaches are presented in the context of learning ensembles, where the number of base
models in the ensemble is n. A global ensemble would contain n base models, where each
base model would be trained on all available target attributes. A ROS ensemble would
also contain n base models. In this case, however, the base models would have each been
trained on a di�erent subset of target attributes. Finally, the local approach is in fact an
"ensemble of ensembles". Here, an ensemble of size n is trained for each target attribute.
Note that the number of models using the local approach linearly increases with the number
of target attributes.
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Figure 4.1: The local approach (far left) learns one ensemble model for each target at-
tribute. The global approach (far right) does exactly the opposite: it learns one base
predictive model for all target attributes (for this �gure, the subset size is 75% of the
number of targets). The approach in the middle is ROS. It can be seen that ROS ensem-
ble contains base models that consider only a subset of all target attributes. The �gure
also illustrates that individual base models in the ROS ensemble use di�erent subspaces of
target attributes.

It is at this point that we address the issue of selecting target subspaces. The subsets
of the target space must be selected in such a way that the resulting ensemble model will
have better predictive power compared to the non-ROS ensemble. Let us assume that
target attributes y1 and y2 are highly related. If we learn a global ensemble, we will be
able to model y1 and y2 better than if we model them with a local approach. However,
local approach will most likely outperform the global one on the attribute y3, because the
global approach is forced to also consider y1 and y2, thus deviating from the purpose of
�nding a good �t for y3. This issue with the global approach actually worsens, if the target
variables are in fact completely unrelated. By using a ROS ensemble, we aim to reduce or
completely eliminate such noise otherwise overlooked by traditional global ensembles.

Subspaces of the target space can be crafted in (at least) three ways:

1. A computational approach could be used to determine the (non-)linear relations
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Algorithm 4.1: Algorithm for generating ROS subspaces.
Function: GenerateSubspaces

Input: Number of subspaces to generate b, function θ(X, v) that samples
uniformly at random and without replacement a subset of the set X, set of
target attributes At, percentage v to sample

Output: A list G of length b, containing sampled target subspaces
G← emptyList()
AddToList(G,At) // The �rst model predicts all target attributes
for i← 2 to b do

AddToList(G, θ(At, v))
end

return G

among the target attributes. With that information, the target space subsets could
be generated by always coupling (highly) related attributes together.

2. Semantics of the data could be taken into account by asking a domain expert to
suggest the appropriate target subspaces.

3. The subspaces could be created in a randomized manner.

The proposed ROS ensemble approach generates the subspaces with random sampling from
the pool of target attributes. Whereas regular PCTs simultaneously consider the whole
target space in the heuristic used for tree construction, ROS considers a di�erent random
subset of it for each base model in the ensemble. Each base model is consequently learned
by considering only those targets that are included in the randomly generated partition
provided to it.

ROS creates the output space partitions (subspaces) in advance, i.e., the partitions
are independent of the algorithm using them. ROS generates a di�erent subspace for
every ensemble constituent. Thus, the number of generated subspaces must be the same
as the number of base models in the ensemble. We refer to this number with variable b.
Algorithm 4.1 depicts the construction process of the target subspaces.

In the �rst step, we create an empty list that will eventually contain all the generated
subspaces, i.e., G = [G1,G2, . . . ,Gb]. The �rst generated subspace is the set At and includes
all target variables, i.e., the �rst PCT in the ensemble considers all target attributes. This
is needed to ensure that all targets are being considered at least once. We generate the
remaining b − 1 subspaces with the θ function, which has a parameter v. An example of
a θ function could return a random selection of 25% (v = 1

4) of items in the set provided
as input. If one de�nes θ(X, v) = X, then all ensemble constituents will always consider all
targets, which is what a regular ensemble of PCTs does. This function is a parameter of
our overall ensemble learning algorithm.

Algorithm 4.2 describes the random sampling θ function used in our experiments. The
function θ(X, v) samples uniformly at random and without replacement dv · |X|e items from
the set X, where v represents the percentage of X we want to sample. This algorithm
always samples a �xed number of attributes. We use this sampling function on the set of
target attributes At, consequently obtaining subsets of the target space.
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Algorithm 4.2: A sampling function that returns a percentage of elements pro-
vided in the input set.
Function: θ
Input: A set X to sample from, the desired percentage of items to sample v
Output: A subset of items Q (Q ⊆ X)
Q← ∅
while |Q| < dv · |X|e do

a← RandItemFromSet(X \ Q)
Q← Q ∪ {a}

end

return Q

4.3 Predictive Clustering Trees with ROS

We have already described the processes of learning regular single PCTs and ensembles
thereof in Sections 3.1 and 3.2, respectively. In order to use ROS, the algorithm for inducing
a single PCT as well as ensemble algorithms require changes. In this section, we describe
the required changes pertaining to the PCT induction algorithm. Changes are required in
the PCT function, which in turn a�ects the BestTest function and impurity calculations
therein. Algorithm 4.3 depicts the new PCT induction algorithm, adapted for using ROS.
Additional input parameter G is introduced, which is passed to the PCT and BestTest

functions.

Algorithm 4.3: The top-down induction of predictive clustering trees with ROS.
Function: PCT

Input: A dataset S, a set of descriptive attributes Ad, a set of target attributes
At, an attribute sampling function δ, ROS subspace G (G ⊆ At)

Output: A predictive clustering tree
A'd ← δ(Ad)
/* Injection of ROS subspace instead of At */
(t∗, h∗,P∗)← BestTest(S,A'd,G)
if t∗ = none then

/* Predictions are still calculated for all target attributes */
return Leaf(Prototype(S,At))

else

foreach Si ∈ P∗ do
/* Recursively passing the ROS subspace G */
treei ← PCT(Si,Ad,At, δ,G)

end

return Node(t∗,
⋃
i{treei})

end

The BestTest procedure enumerates all possible candidate tests and calculates their
heuristic scores. The original implementation calculates the heuristic score h∗ against the
provided target attributes. This part of the procedure remains the same. However, now,
ROS forces the individual PCTs to learn from provided ROS subspace G rather than from
the original set of all target attributes At.
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4.4 Learning ROS Ensembles

With all preliminaries laid out, we can now describe the overall process of learning ROS
ensembles. This dissertation uses three di�erent ensemble building methods (bagging,
random forests and extremely randomized trees) that have been extended to MTP (Kocev
et al., 2013) and use PCTs (dubbed Bag and RF) and extremely randomized PCTs (dubbed
ET) as base models.

Algorithm 4.4: A generic wrapper algorithm for building ROS ensembles.
Function: ROSEnsemble

Input: A dataset S, a set of descriptive attributes Ad, a set of target attributes
At, function γ(X) that perturbes the dataset X, an attribute sampling
function δ, ROS percentage v to sample from At

Output: Forest of PCTs with ROS
G← GenerateSubspaces(b, θ,At, v)
F← ∅
foreach Gi ∈ G do

S∗ ← γ(S)
treeGi

← PCT(S∗,Ad,At, δ,Gi)
F← F ∪ {treeGi

}
end

return F

Algorithm 4.4 is a generic wrapper demonstrating how the ROS ensembles are instan-
tiated. We use the values in Table 4.1 to describe the values of initialization parameters
used by the generic algorithm to instantiate the three mentioned ensemble methods with
random output selections. Note that the PCT function is now called with an additional
parameter Gi, specifying the ROS sampled subspace.

Table 4.1: Parameters for building ROS ensembles.

Ensemble method δ(X) γ(X) BestTest

Bagging of PCTs X Bootstrap(X) Alg. 3.2

Random forest of PCTs For MTR: θ
(
X, 1√

|X|

)
For MLC: θ

(
X, b0.1·|X|c+1

|X|

) Bootstrap(X) Alg. 3.2

Random forest of extra-PCTs X X Alg. 3.6

4.5 Making Predictions with ROS Ensembles

We have described the process of making predictions with tree ensembles in Section 3.2. In
this section, we propose a new aggregation function. To that end, we introduce a naming
convention to di�erentiate between the original aggregation function and the proposed one.
We refer to the original aggregation function as total averaging. The name stems from the
fact that all base predictive models contribute a prediction for all target attributes. Hence
the word total. In contrast to total averaging, we propose subspace averaging. As the name
suggests, only a subset of predictions is considered in the overall voting procedure.
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Figure 4.2: Visual di�erences between total and subspace averaging.

Figure 4.2 visually demonstrates the di�erence between total and subspace averaging.
Both sides of the �gure represent an ensemble with �ve base predictive models. The stan-
dard approach to prediction aggregation (total averaging) is shown on the left side. Rows
correspond to �ve considered subspaces (G1 . . .G5), each marked with its own color, belong-
ing to their corresponding base predictive models. Each base predictive model (subspace)
considers �ve target attributes (y1 . . . y5). Consequently, each target attributes is predicted
based on �ve votes: one from each base predictive model. The right side of the �gure de-
picts a di�erent behavior, used when voting with subspace averaging. There, not all base
predictive models give predictions for all target attributes, e.g., model with subspace G4

does not give a prediction for target attributes y3 and y5. Note that the subspaces used
with subspace averaging are the same as those used for learning the base predictive models,
which we discuss in Section 4.2. It can also be seen that the �rst base predictive model
(G1) gives a prediction for all target attributes. This behavior is by design, as shown by
Algorithm 4.1. Next, we describe both prediction mechanisms in a more formal manner.

Total averaging combines the predictions of all base models for all target attributes.
In case the task is MTR, the predictions are averaged. We calculate the average as the
arithmetic mean: Final prediction of the ensemble for the ith target attribute (ŷi) is com-
puted as ŷi = 1

b

∑b
j=1 y

j
i , where y

j
i represents the prediction of jth base model for the ith

target attribute in an ensemble with b base predictive models. In case the task is MLC,
the predictions are combined using probability per-target distribution voting (Bauer &
Kohavi, 1999).

Subspace averaging considers only the predictions made by the base predictive mod-
els for the targets used to learn them. In other words, the prediction for a given target is
averaged over only those base models, for which that target was considered in the heuristic
during learning. In an ensemble with b base predictive models, a prediction for the ith

target attribute is computed as shown by Equation 4.1.

ŷi =

∑b
j=1 1(ti ∈ Gj) · yji∑b
j=1 1(ti ∈ Gj)

(4.1)

The indicator function 1(•) evaluates to 1, if the argument • is true and 0 otherwise. Gj is
the subspace of target attributes, which was considered during learning of the jth ensemble
base predictive model. The symbol ti denotes the ith target attribute. The denominator
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is the number of ensemble constituents for which ti was considered during learning and is
non-zero because every target attribute is considered by at least the �rst base predictive
model (subspace G1).

4.6 Computational Complexity Analysis

From the work of Kocev et al. (2013) and the assumption that the decision tree is balanced
and bushy (Witten & Frank, 2005), it follows that the computational complexity of learning
a single multi-target PCT is O(dNlog2N) + O(dtNlogN) + O(NlogN), where N is
the number of instances, d is the number of predictive attributes and t is the number
of target attributes in the dataset. Similarly, from the work of Kocev and Ceci (2015)
and with the same assumption, it follows that the computational complexity of learning a
single multi-target extra-PCT is O(ktNlogN) +O(NlogN), where k is the number of
randomly sampled predictive attributes at each split. In general, learning an ensemble

of b base models has the complexity of learning all of its constituents. In our case, that
amounts to b(O(dNlog2N) +O(dtNlogN) +O(NlogN)) for bagging and random forests
of PCTs and b(O(ktNlogN) +O(NlogN)) for random forests of extra-PCTs.

The computational complexity also depends on the use of bootstrapping and the
amount of predictive and/or target attributes considered for each base model. Computa-
tional cost of bootstrapping is O(N) and the number of instances considered in that case
equals N ′ = 0.632 ·N (Breiman, 1996). Bootstrapping is not used for learning extremely
randomized PCTs.

Taking into account the fact that random forests also sample the input space

(through the sampling function δ), the number of predictive variables actually consid-
ered by the base models is d′ (d′ < d). The sampling of predictive variables happens at
every split node, so the complexity of data subsampling is O(d′logN ′).

ROS proposes additional sampling of the target space. The function θ(X, v) (see
Algorithm 4.2) is used to sample from the target space. The sampled subsets are always
of equal cardinality, which is controlled by the parameter v ∈ (0.0, 1.0). However, the
�rst subset always includes all target attributes. We de�ne the variable t′ as the average
target subspace cardinality considered by the base models as: t′ = 1

b

(
(b − 1) · dv · te + t

)
.

The complexity of the sampling function θ(X, v) is low. All operations of the sampling
algorithm are in the order of a constant (O(1)). The while loop is executed dv · |X|e-times.
Each randomly sampled attribute a has equal probability of being included in the resulting
set Q. Thus, the complexity of the sampling algorithm, which samples b−1 times, is linear
and proportionate to (b− 1) · O(v · t). Considering all of the above, the complexity of the
ROS ensembles is:

Bag-ROS or RF-ROS = b ·
[
O(d′N ′log2N ′) +O(d′t′N ′logN ′)

+O(N ′logN ′) +O(d′logN ′) +O(N)
]

+(b− 1) · O(v · t)

ET-ROS = b ·
[
O(d′t′NlogN) +O(NlogN)

+O(d′logN ′)
]

+ (b− 1) · O(v · t).

(4.2)

The ratio between the full output space size and the one considered by ROS is constant
and is proportionate to t′

t = (b−1)·v·t+t
b·t = lim

b→∞
(b−1)·v+1

b = v. The overall complexity of

ROS is consequently reduced in the parts that correspond to the selection of the best
split. We expect a linear decrease in complexity in those terms. Otherwise, the overall
complexity is still as described by Kocev and Ceci (2015), Kocev et al. (2013).



4.7. Summary 49

Ensembles usually contain many base models which results in longer times to make a
prediction. Therefore, we also address the complexity of making predictions. Under
the previously mentioned assumption about decision trees being balanced and bushy, the
average depth of a decision tree is actually the average length of the path that has to
be traversed by an instance in order to get to the prediction. The complexity of making
a prediction with a single-target decision tree is therefore O(log(N)). When we use the
global approach to MTP, all target variables are predicted simultaneously with the same
complexity as that of making a prediction with a single-target tree. When we switch to the
ensemble setting, the complexity increases linearly with the number of base models in the
ensemble to b · O(log(N)). If we approach the MTP task locally, each target is predicted
with its own ensemble and that additionally increases the complexity in proportion to the
number of target variables to bT · O(log(N)).

4.7 Summary

This chapter introduces a novel global ensemble extension approach for addressing MTP
tasks. The proposed method randomly selects subsets of targets for learning individual
base models. This can yield better predictive performance and shorter learning times. The
proposed method is called Random Output Selections � ROS.

A novel ensemble prediction aggregation function for joining the predictions of base
models in ROS ensembles was also introduced. By default, each tree in the ensemble
learns from and consequently gives predictions for all targets. With the newly-proposed
aggregation function, only targets that were considered during the learning of an individual
tree contribute to the �nal predictions.

We conclude the chapter with a theoretical computational complexity analysis of the
proposed ensemble extension method.





51

Chapter 5

Evaluation of Tree Ensembles with

Random Output Selections for

Multi-Target Regression

In this chapter, we address the task of multi-target regression (MTR), described in Sec-
tion 2.2.1. We solve the task of MTR by learning ensembles of predictive clustering trees
(PCTs). In particular, we learn three di�erent types of ensembles of PCTs that use ROS:
the proposed ensemble extension method, described in Chapter 4.

The main focus of this study is to determine whether the proposed method can improve
the predictive performance and shorten the learning times of the considered ensemble meth-
ods. An extensive empirical evaluation over a variety of benchmark datasets is performed
in order to determine the e�ects of using ROS on predictive performance. In addition to
this, we also perform an analysis with respect to time and space complexity. The results
show that the proposed ensemble extension can yield better predictive performance, reduce
learning time or both, without a considerable change in model size. The newly proposed
aggregation function gives best results when used with ensembles of extremely randomized
PCTs.

We perform an extensive empirical evaluation of the three di�erent ensemble methods
on 17 benchmark datasets, which provide performance assessment for the original and ex-
tended ensemble methods, as well as individual multi-target regression trees and ensembles
of single-target regression trees (all over a range of ensemble sizes). The study also includes
parameter setting recommendations for the proposed method. Moreover, we compare the
performance to other competing methods that also transform the output space.

This chapter is composed of two sections. The �rst section provides details regarding
the experimental design. We start by posing experimental questions. We also explain and
describe the evaluation measures used in this chapter. Then, we describe the benchmark
datasets used for the evaluation of the proposed method. Finally, we describe the exper-
imental setup, speci�cally designed to answer the posed questions. The second section of
this chapter contains results of the experiments and a comparison with the other output
space transformation methods.

5.1 Experimental Design

To evaluate the performance of the ROS ensembles for MTR, we performed extensive
experiments on benchmark datasets. This section presents: (i) the experimental questions
addressed, (ii) the evaluation measures used, (iii) the benchmark datasets and (iv) the
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experimental setup (including the parameter instantiations for the methods used in the
experiments).

5.1.1 Experimental questions

In our experiments, we construct PCT ensembles for MTR by using the described ensemble
extension method ROS. In order to better understand the e�ects of ROS, we investigate
the resulting ensemble models across three dimensions.

First, we are interested in the convergence of their predictive performance as we
increase the number of PCTs in the ensemble. We want to establish the number of base
models needed in an ensemble to reach the point of performance saturation. We consider an
ensemble saturated, when adding additional base models to it would not bring statistically
signi�cant improvement in terms of predictive power.

Next, we are interested, whether the proposed extension can improve the predictive
performance over the performance of the original ensembles. Learning on subsets of
targets could exploit additional structural relations that may be overlooked by the original
ensemble approaches.

Finally, as we have theoretically derived in Section 4.6, we expect that the dimension-
ality reduction of the output space will yield improvements in terms of computational
e�ciency. Speci�cally, we are interested in the running times of the ROS ensemble ap-
proaches and the sizes of the resulting models.

The speci�c experimental questions we pose relate to the above three dimensions we are
interested in. The experiments and their evaluation have been designed with the following
research questions in mind:

1. How many base models do we need in ROS ensembles in order to reach the point of
performance saturation?

2. What is the best value for the portion of target space to be used within such ensem-
bles? Is this portion equal for all evaluated ensemble methods?

3. Does it make sense to change the default aggregation function of the ensemble that
uses the prediction for all targets? Can this improve predictive performance?

4. Considering predictive performance, how do ROS ensemble methods compare to the
original ensemble methods?

5. Is ROS helpful in terms of time e�ciency?

6. Do ROS models use less memory than the models trained with the original ensemble
methods?

7. How the ROS models compare to other output transformation methods?

5.1.2 Evaluation measures

In order to understand the e�ects that ROS has on the learning process, we �rst need
to evaluate the models induced by the ROS ensemble approaches. In machine learning,
empirical evaluation is most commonly used to achieve this goal that assesses the perfor-
mance of a given model in terms of evaluation measures. Below we describe the measures
that we use for assessing predictive power, time and space complexity.

The predictive performance of a MTRmodel is assessed by using the average relative
root mean squared error (aRRMSE), which averages the relative root mean squared errors
(RRMSE) for the individual target variables. RRMSE is a relative measure calculated
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against the baseline model that predicts the arithmetic mean of all values of a given target
in the learning set. Speci�cally, the value yi in Equation 5.1 is the prediction of the baseline
model for the ith target variable, while the value ŷ(e)i represents the predicted value for the
ith target variable of the example e.

aRRMSE =
1

t

t∑
i=1

RRMSEi =
1

t

t∑
i=1

√√√√∑Ntest
e=1 (y

(e)
i − ŷ

(e)
i )2∑Ntest

e=1 (y
(e)
i − yi)2

(5.1)

We also monitor how much our models over�t the training data by calculating their
relative decrease of performance on the testing data with respect to that on the training
data. Smaller values mean less over�tting, with zero being the ideal score. We calculate
the over�tting score with Equation 5.2.

OS =
aRRMSEtest − aRRMSEtrain

aRRMSEtrain
(5.2)

The e�ciency is measured in terms of execution times and sizes of the induced models.
Time e�ciency is measured with the CPU time needed to induce (train) the model (i.e.,
learning time). For ROS ensembles, this includes the target space decomposition. We
also measure the average time needed to make a prediction (i.e., prediction time). Space
e�ciency is measured with the total number of nodes in the tree model (intermediate and
leaf nodes): the smaller the better. Induction times and model sizes are summed over all
ensemble constituents.

5.1.3 Data description

To evaluate the proposed method, we use 17 benchmark datasets that contain multiple
continuous target attributes. Datasets come from various domains. Table 5.1 shows the
main characteristics of the considered datasets. In order to have as general evaluation
as possible, we use datasets of di�erent sizes in terms of number of instances, number of
predictive and number of target attributes.

ADNI. The dataset comes from Alzheimer's Disease Neuroimaging Initiative (ADNI)
database. ADNI is an international observational study of healthy, cognitively normal
elders, people with mild cognitive impairment and people with Alzheimer's disease. It
collects a wide range of clinical and biological data for each patient at multiple time
points. We used the ADNIMERGE table, which is a joined dataset from multiple ADNI
data collection domains (Gamberger, �enko, Mitelpunkt, Shachar, & Lavra£, 2016). Each
patient is described with biological and clinical attributes. We use the biological attributes
to predict 14 clinical target attributes related to everyday cognition of patients and their
study partners.

ATP 1D and ATP 7D. These datasets contain Airline Ticket Prices (Spyromitros-
Xiou�s et al., 2016). The goal is to predict prices of airline tickets for the following day
(ATP 1D) or to predict the minimal price in the next seven days (ATP 7D). We predict
prices of six di�erent �ight preferences: any airline, any non-stop airline, and four di�erent
airline companies.

Forestry Kras. The data in this dataset was derived from multi-spectral multi-temporal
Landsat satellite imagery and 3D LIDAR recordings of a part of the Kras region in Slove-
nia (Dºeroski, Kobler, Gjorgjioski, & Panov, 2006). Each example corresponds to a rect-
angular region of interest (spatial unit). Attributes for a speci�c spatial unit were obtained
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Table 5.1: Properties of the considered MTR datasets with multiple continuous targets:
number of examples (N), number of descriptive attributes (|Ad|), and number of target
attributes (|At|).

no. Dataset Domain N |Ad| |At|

1 ADNI Medicine 659 232 14
2 ATP 1D Economy 337 441 6
3 ATP 7D Economy 296 441 6
4 Forestry Kras Ecology 60607 160 11
5 OES 10 Economy 403 298 16
6 OES 97 Economy 334 263 16
7 PPMI Medicine 713 148 35
8 Prespa lake top 10 Ecology 218 16 10
9 RF 1 Ecology 9125 64 8
10 RF 2 Ecology 9125 576 8
11 Sales Economy 639 401 12
12 SCM 1D Economy 9893 280 16
13 SCM 20D Economy 8966 61 16
14 Soil resilience Ecology 26 7 8
15 Vegetation clustering Ecology 29679 65 11
16 Vegetation condition Ecology 16967 39 7
17 Water quality Ecology 106 16 14

from the Landsat and LIDAR recordings of that unit. The goal is to predict eleven targets,
corresponding to properties of the vegetation in the observed spatial unit.

OES 10 and OES 97. The Occupational Employment Survey datasets were obtained
from the US Bureau of Labor Statistics (Spyromitros-Xiou�s et al., 2016). The datasets
contain data for the years 1997 (OES 97) and 2010 (OES 10). Each row represents an
estimated number of full-time equivalent employees across many employment types for
a speci�c metropolitan area. The input variables are a randomly sequenced subset of
employment types (e.g. doctor, dentist, car repair technician, etc.) observed in at least
50% of the cities. The 16 targets for both years are randomly selected from the entire set
of categories above the 50% threshold.

PPMI. This dataset was collected within the Parkinson's Progression Markers Initiative
(PPMI). It contains the regions of interest (ROIs) of the patients' fMRIs, DaT (dopamine
transporter) scans and the motor assessment scores (MDS-UPDRS). The time interval
between the date of scoring and the date of fMRI scans is smaller than 6 months. The
task is to predict all of the scores for the motor impairment assessments from the extracted
ROIs and the DaT scans features (Marek et al., 2011).

Prespa lake top 10. This dataset contains measurements of the e�ects of the environ-
mental conditions of Lake Prespa on diatom communities (Kocev, Naumoski, Mitreski,
Krsti¢, & Dºeroski, 2010). The data represents water samples taken from the lake dur-
ing the EU project TRABOREMA in the period of one and a half year. The descriptive
attributes of the samples include temperature, dissolved oxygen, conductivity, alkalinity,
nitrogen compounds, Secchi depth, sulphur oxide ions, sodium, potassium, magnesium,
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copper, manganese and zinc. The task is to predict the relative abundances of the top ten
most abundant diatoms.

RF 1 and RF 2. These datasets concern the prediction of river network �ows for 48h
in the future (Spyromitros-Xiou�s et al., 2016). They were obtained from the US National
Weather Service and contain hourly sampled data of river �ows at 8 sites in the Mississippi
River network in the United States. Each row includes the most recent observation for
each of the 8 sites as well as time-lagged observations. In RF1, each site contributes 8
attribute variables to facilitate prediction. The RF2 dataset extends the RF1 data by
adding precipitation forecast information for each of the 8 sites. The two datasets contain
over 1 year of hourly observations collected from September 2011 to September 2012.

Sales. This is a pre-processed version of the dataset used in Kaggle's "Online Prod-
uct Sales" competition (Kaggle, 2008) that concerns the prediction of the online sales of
consumer products. Each row in the dataset corresponds to a di�erent product that is
described by various product features as well as features of an advertising campaign. The
target variables correspond to the monthly sales in the �rst 12 months after the product
launches (one target for each month).

SCM 1D and SCM 20D. The Supply Chain Management datasets are derived from
the Trading Agent Competition in Supply Chain Management (TAC SCM) tournament
from 2010 (Spyromitros-Xiou�s et al., 2016). Each row corresponds to an observation
day in the tournament. The input variables in this domain are observed prices for a
speci�c tournament day. In addition, 4 time-delayed observations are included for each
observed product and component to facilitate some anticipation of trends going forward.
The datasets contain 16 regression targets, where each target corresponds to the next day
mean price (SCM 1D) or mean price for 20 days in the future (SCM 20D) for each product
in the simulation.

Soil resilience. This dataset (Debeljak et al., 2009) deals with the biological and physical
resilience of soil. It consists of attributes describing physical properties of the soil such
as texture (sand, silt, clay), chemical properties (pH, C, N, soil organic matter), FAO
soil classi�cation and the goal is to predict the eight indicators of physical resistance and
resilience soil properties such as resistance and recovery from compression, recovery from
overburden stress, as well as heat and copper.

Vegetation clustering. This dataset concerns the prediction of di�erent plant species
in Victoria State, Australia (Gjorgjioski, Dºeroski, & White, 2008). It comes from the
Arthur Rylah Institute for Environmental Research, Department of Sustainability and
Environment (DSE) in Victoria, Australia and is provided by the Arthur Rylah Institute
for Environmental Research, Department of Sustainability and Environment (DSE).

Vegetation condition. This dataset concerns the prediction of the vegetation condi-
tion (Kocev et al., 2009). It comes from the Arthur Rylah Institute for Environmental
Research, Department of Sustainability and Environment (DSE) in Victoria, Australia
and is provided by the Arthur Rylah Institute for Environmental Research, Department
of Sustainability and Environment (DSE).
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Water quality. This dataset contains information about water quality of Slovenian
rivers. The goal is to predict abundances of plants and animals based on the chemical
properties of the water (Dºeroski et al., 2000). The data covers the period from 1990 to
1995 and is provided by the Hydrometeorological Institute of Slovenia.

5.1.4 Experimental setup

We designed the experimental setup according to the experimental questions posed in
Section 5.1.1. First, we describe all parameter settings of the ROS ensemble methods. We
then outline the procedures for statistical analysis of the results.

We consider three types of ensembles: bagging and random forests of PCTs and
extremely randomized PCTs. In order for Algorithm 4.4 to simulate these three ensemble
methods, we set its parameters to the values given in Table 4.1. Following the recom-
mendations from (Bauer & Kohavi, 1999), the trees in the ensembles are unpruned. Our
experimental study considers di�erent ensemble sizes, i.e., di�erent numbers of base
models (PCTs) in the ensemble, in order to investigate the saturation of ensembles and to
select the saturation point.

First, we construct ensembles without ROS (Bag, RF, ET) that use the full output
space for learning the base predictive models. This means that the list G contains b
sets, where each set contains all the attributes from the set At (target attributes), i.e.,
G = {At,At, . . . ,At, }, where |G| = b.

The second part of our experiments is concerned with the proposed extension. We start
with the parametrization of the GenerateSubspaces function (Algorithm 4.1), which takes
as input b, At, the sampling function θ(X, v) (see Algorithm 4.2) and sampling percent-
age v. We consider four values for v in the allowed range (0.0, 1.0), namely 1√

|At|
, 14 ,

1
2 ,

3
4 .

Additionally, we use two ensemble predictions aggregation functions: total averaging and
subspace averaging. Table 5.2 summarizes the parameter values considered in our experi-
ments.

The third part of our study focuses on the comparison of our ROS ensemble methods to
baseline methods. To that end, we also train multi-target PCTs and ensembles of single-
target PCTs on each of the 17 benchmark datasets. F-test pruning is applied to single
multi-target PCTs. The F value is selected using internal 3-fold cross-validation. We build
one ensemble for each target variable. Ensembles contain 100 base models and are built
by using the same parameters as the original ensembles.

Table 5.2: Parameter values used to build ensembles with ROS.

Location of use Parameter Used values

ROSEnsemble(S,Ad,At, γ, δ, v) γ, δ see Table 4.1

GenerateSubspaces(b, θ,At, v) b 10, 25, 50, 75, 100, 150, 250

θ(X, v) v 1
4 ,

1
2 ,

3
4 ,

1√
|At|

making predictions averaging function total, subspace

We estimate the predictive performance of the considered methods by using 10-
fold cross-validation. All methods use the same folds. For statistical evaluation of the
obtained results, we follow the recommendations from (J. Dem²ar, 2006). The Friedman
test (M. Friedman, 1940), with the correction by (Iman & Davenport, 1980), is used to
determine statistical signi�cance. In order to detect statistically signi�cant di�erences, we
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calculate the critical distances (CD) by applying the (Nemenyi, 1963) or (Dunn, 1961) post-
hoc statistical tests. Both post-hoc tests compute critical distance between the ranks of
considered algorithms. The di�erence is that Nemenyi post-hoc test compares the relative
performance of all considered methods (all vs. all), whereas Bonferroni-Dunn post-hoc
test compares the performance of a single method to other methods (one vs. all). The
results of these tests are presented with average rank diagrams (J. Dem²ar, 2006), where
methods connected with a line have results that are not statistically signi�cantly di�erent.
All statistical tests were conducted at the signi�cance level α = 0.05. Statistical tests have
been calculated for two variants of the results: per dataset (using aRRMSE value for each
dataset) and per target (using the RRMSE values for all targets of all datasets). We used
the Bonferroni-Dunn (CD is shown as a dotted blue line) post-hoc test to present results
in Section 5.2.4 and Nemenyi post-hoc test otherwise (CD is shown as a solid red line).

The experiments were executed on a heterogeneous computing infrastructure, i.e., the
SLING grid, which can a�ect time-sensitive evaluations. To avoid having incomparable
measurements of running times, we run time-sensitive experiments separately by using a
single computational node.

5.2 Results and Discussion

Here we present the results of our comprehensive experimental study. Considering a large
number of datasets (17) and several ensemble methods, we present the results in terms of
predictive performance (aRRMSE, over�tting score � OS), time complexity (learning and
prediction time) and space complexity (model size). In the presentation of time complexity
results, we focus on two datasets (Forestry Kras and OES 10 ) that have relatively large
output spaces (11 and 16 targets, respectively). The selected datasets also di�er in the
number of examples: Forestry Kras has many whereas OES 10 has few. For reference, all
other results are available in Appendix A.

The presentation and discussion of the results follows the experimental questions from
Section 5.1.1. First, we examine the convergence of original and ROS ensembles. Next, we
focus on selecting the output space size. We experiment with four di�erent output space
sizes (see Table 5.2) that have consequently been used. This parameter is crucial because it
introduces additional point of randomization in all three considered ensemble methods. In
that sense, ROS can also be seen as a localization process: the constructed base models are
tailored to a speci�c output subspace. We recommend values for this parameter for each
ensemble learning method. Furthermore, we show the e�ects of changing the aggregation
functions in our ensembles. Finally, we use the recommended parameters for ROS and
provide an overall evaluation, by comparing the extended ensembles to the original ones.
We compare the ROS methods to the baseline methods in terms of predictive power,
running times and model sizes.

5.2.1 Ensemble convergence

The saturation points of the original ensembles (Bag, RF and ET) are located between 50
and 75 base models (Figure 5.1). These �ndings are in line with the work of (Kocev et al.,
2013), where Bag and RF saturate with 50 base models and (Kocev & Ceci, 2015), RF
and ET saturate with 100 and 75 base models, respectively. We attribute this di�erence
to two factors: (i) we use a di�erent and larger number of datasets, and (ii) the number
of target attributes per dataset in our study is considerably larger. All in all, we consider
the original ensembles with 75 base models saturated.

We next investigate the saturation of the ROS ensembles (denoted with -ROS post�x).
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Figure 5.1: Saturation of original ensemble methods. The average rank diagrams compare
the performance (aRRMSE) of ensembles with di�erent size. Lower ranks are better. The
saturation point is the lowest number of trees in the ensemble for which the performance
is not signi�cantly di�erent than the best: This is 75 trees for Bag and RF and 50 trees
for ET.

A subset of the results for ensembles with 50, 100, 150 and 250 models is reported in
Figure 5.2 and illustrates the saturation of ROS ensembles for all three considered ensemble
methods. Lines on the plots represent di�erent output space sizes. Values in brackets
indicate the value for the v parameter. Left and right sides of the plots depict voting
with total averaging and subspace averaging respectively. The y axis shows aRRMSE
values averaged over all considered datasets. The results show that Bag-ROS and ET-ROS
ensembles saturate between 50 and 100 base models while RF-ROS ensembles saturate a
bit later, between 75 and 100 base models. Figure 5.2 suggests that ROS ensembles
saturate at a large number of base models when subspace averaging is used to aggregate
the predictions of the base models. Performance in terms of aRRMSE and over�tting
scores of all discussed ensembles with 100 trees (multi-target and single-target variants)
and single multi-target regression trees is presented in Appendix A.3.

5.2.2 ROS parameter selection

This section describes the selection of the best performing output subspace size and ag-
gregation function. The considered ensemble methods introduce di�erent randomizations
in their learning processes, so we cannot assume that ROS has the same in�uence on all
three types of ensemble methods. Figure 5.2 also suggests that the choice of the aggrega-
tion function has a direct e�ect on performance. We therefore analyze the e�ect of output
subspace size and aggregation function for each ensemble type separately.

We selected candidate values for the ROS parameters based on the curves given in
Figure 5.2. With both aggregation functions, candidate parameter values for subspace
sizes are v = 1

2 for Bag-ROS and v = 3
4 for RF-ROS and ET-ROS. We selected these

values because they exhibit the lowest aRRMSE averaged over all datasets used in this
study. The averaged saturation curves in Figure 5.2 sometimes intertwine and make it
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(c) Ensemble of extremely randomized PCTs

Figure 5.2: Saturation of all three ensemble methods extended with ROS. The di�erent
(color) lines on the plots represent di�erent output space sizes. The values in the brackets
after an ensemble method name indicate the value for the v parameter. The left and right
panels of the plots show results for voting with total averaging and subspace averaging,
respectively. The y axis shows aRRMSE values averaged over all 17 considered datasets.

di�cult to make this decision. In those cases, we selected the parameter values based
on the averaged performance of ensembles with 100 trees. Next, we performed a simple
analysis by comparing the wins of the two considered aggregation functions using the
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candidate output space size. For Bag-ROS, it turned out that total averaging had most
wins, whereas subspace averaging was dominant for RF-ROS and ET-ROS. Our �nal
parameter recommendation is therefore to use total averaging with v = 1

2 for Bag-ROS
and subspace averaging with v = 3

4 for RF-ROS and ET-ROS.

5.2.3 Predictive performance and computational e�ciency

Here, we compare the original ensemble methods (Bag, RF, ET) to the ones that use the
ROS extension. In addition, ROS is also compared to multi-target PCTs and ensembles of
single-target PCTs. We show the relative performance of the di�erent methods by using
the average rank diagrams shown in Figure 5.3.
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Figure 5.3: Overall average rank diagrams for predictive performance. Lower ranks are
better.

Figure 5.3 depicts two average rank diagrams: one per dataset and one per target. The
per dataset diagram is based on aRRMSE value, one per dataset. Both analyses show that
ensembles statistically signi�cantly outperform individual multi-target PCTs, i.e., multi-
target PCTs perform signi�cantly worse than the ensemble methods. The per dataset
analysis shows no statistically signi�cant di�erence in terms of predictive performance
among the other methods. We can however note that Bag-ROS and ET-ROS outperform
their original counterparts and ensembles of single-target PCTs. RF-ROS performs on par
with the original bagging and random forest ensembles, but worse than the other ROS
ensembles (Bag-ROS and ET-ROS). The best performing of all methods is ET-ROS.

The per target analysis detects two statistically signi�cant di�erences in performance.
First, with the exception of ET-ST, ET-ROS outperforms all other methods with statistical
signi�cance. Second, Bag-ROS outperforms RF-ROS, which performs worst of all ensem-
ble methods. All original ensembles (Bag, RF and ET) show no statistically signi�cant
di�erences in performance. All in all, looking at the big picture, ROS ensembles generally
perform better than their original counterparts, with the exception of random forests.

In Table 5.3, we show the predictive performance (aRRMSE) for two highlighted
datasets: Forestry Kras and OES 10 . The table contains results for the baseline ensem-
bles (Bag, RF and ET) as well as the extended ROS ensembles, individual multi-target
PCTs and ensembles of single-target PCTs. All ensembles contain 100 base models. The
ensembles of single-target PCTs contain 100 base models per target.

For the Forestry Kras dataset, the proposed ROS methods do not have a notable e�ect
on the predictive performance (aRMMSE) of the three ensemble methods. Similar �ndings
are observed when calculating the over�tting score (OS): the ROS ensembles over�t the
training data to the same extent as their original counterparts. Next, multi-target PCTs
and ensembles of single-target PCTs have the worst predictive performance. The di�erence
in predictive performance between ensembles of single-target PCTs and other ensembles
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Table 5.3: Performance of ensembles and single trees on two datasets (Forestry Kras and
OES 10 ) measured in terms of aRRMSE, over�tting score, average learning times, average
per-instance prediction time and model complexity (total number of nodes).

Dataset Method aRRMSE OS LT [s] PT [µs] Complexity

F
o
re
st
ry

K
ra
s

Bag 0.55 0.476 394 272 3.22 · 106

Bag-ROS 0.548 0.471 267 274 3.20 · 106

Bag-ST 0.551 0.494 34500 3960 34.61 · 106

RF 0.545 0.44 34.15 259 3.16 · 106

RF-ROS 0.546 0.44 36.87 273 3.15 · 106

RF-ST 0.546 0.457 2250 2300 17.13 · 106

ET 0.557 0.575 450 264 3.67 · 106

ET-ROS 0.557 0.579 281 274 3.67 · 106

ET-ST 0.56 0.611 73780 3450 39.96 · 106

multi-target PCT 0.61 0.169 76.68 2.39 2.59 · 103

O
E
S
1
0

Bag 0.531 1.114 19 157 3.15 · 104

Bag-ROS 0.527 1.052 17 159 3.14 · 104

Bag-ST 0.487 1.556 412 3960 21.5 · 104

RF 0.517 1.093 1.59 189 3.15 · 104

RF-ROS 0.518 1.132 1.49 208 3.16 · 104

RF-ST 0.492 1.525 69 4760 43.51 · 104

ET 0.514 0.986 18.27 180 3.48 · 104

ET-ROS 0.496 1.156 18.57 201 3.50 · 104

ET-ST 0.467 2.654 480 4410 51.29 · 104

multi-target PCT 0.616 0.704 0.80 2.81 0.45 · 103

is minimal. However, notable di�erences exist in terms of time needed for learning the
model and making predictions. Namely, the multi-target ensembles have signi�cantly lower
learning and prediction times than the single-target ensembles. The ROS ensembles train
the ensembles faster (for Bagging and Extra trees) but still in the same order of magnitude
as the original methods. Not surprisingly, single multi-target PCTs have the shortest
learning times at the cost of lowest predictive performance. Similar �ndings are observed
when considering model complexity (measured as total number of nodes in all of the trees
in an ensemble or in a multi-target PCT). Average prediction times per instance do not
di�er across the di�erent approaches. This is expected since all base models are trees
and no additional computation overhead is needed to calculate the predictions. Ensembles
of single-target PCTs always have an order of magnitude higher learning and prediction
times, as well as model complexity as a separate ensemble is learned for predicting each
target.

For the OES 10 dataset, improvements in predictive performance are present. The
proposed ROS ensembles outperform their original counterparts. Furthermore, the original
ensembles were outperformed by the ensembles of single-target PCTs. The predictive
performance gain with ET-ROS w.r.t. ET is substantial. This is an interesting observation
and suggests that ROS could lift predictive performance on smaller datasets with larger
output spaces, especially for heavily randomized methods such as extra trees. One possible
explanation is that the sampling of input variables in ET, coupled with the small number
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of examples in the dataset and absence of bootstrapping, introduces a relatively high level
of noise in the learning process. The ROS ensemble then actually reduces the e�ect of
this noise at the level of individual base models by specializing them for a smaller output
space. This can also explain the small gains for bagging and random forests with the ROS
extension on this dataset, because the bootstrapping actually negatively impacts the overall
ensemble performance. By inspecting the over�tting score, we note that ROS ensembles
consistently exhibit a decreased score w.r.t. ensembles of single-target PCTs and perform
comparably w.r.t. ensembles of multi-target PCTs. Learning and prediction times, as well
as model complexity, follow similar patterns as for the Forestry Kras dataset.

5.2.4 Comparison with other output space transformation methods

In order to put ROS in the broader context of MTR methods with output space transfor-
mations, we compare the predictive performance of ROS ensembles and ensembles built
with the competing methods proposed in (Joly et al., 2014) and (Tsoumakas et al., 2014).
We have selected these speci�c methods because they all specialize individual models in
the ensemble to a subset of target variables.

Joly et al. (2014) propose ensembles of multi-output regression trees, where each indi-
vidual tree is built by using a projected output space. Gaussian, Rademacher, Hadamard
and Achlioptas projections are used. The goal is to truncate the output space in order to
reduce the number of calculations needed to �nd the best split, which is the main compu-
tational burden while building a decision tree. While learning the ensemble, each tree is
given a di�erent output space projection. They use two di�erent ensemble methods: Ran-
dom forests of multi-output trees and ensembles of extremely randomized multi-output
trees. We dubbed their method Random projections and its two variants as RP-RF and
RP-ET. Note that Random projections cannot handle nominal attributes and missing
values. Hence, the nominal attributes have been converted to numeric scales and missing
values have been imputed with the arithmetic mean of that feature.

Tsoumakas et al. (2014) propose an ensemble method called Random Linear Target
Combinations for MTR (RLC). They construct new target variables via random linear
combinations of existing ones. The data must be normalized in order for the linear com-
binations to make sense, i.e., to prevent targets on larger scales dominating over the ones
with lower scales and thus deteriorating the learning process. The output space is trans-
formed in such a way that each linear combination consists of k original output features.
Each combination is then considered for learning one ensemble member. The transforma-
tion of the output space matrix Y (m × q) is achieved via a coe�cient matrix C of size
q × r �lled with random values uniformly chosen from [0, 1]. Columns of the matrix C
represent coe�cients of the linear combination of the target variables. By multiplying the
two matrices, we get the transformed output space Y ′ = Y C (m × r) that is then used
for training. A user-selected regression algorithm can then be applied on the transformed
data.

Data preprocessing. In order to run the experiments, we had to preprocess the data.
Random projections do not know how to handle nominal attributes and missing values.
Nominal attributes have been converted to numeric scales. Missing values have been im-
puted with the arithmetic mean of that feature.

Method parameters. All ensembles contain 100 base models. ROS ensembles were
parametrized as described in Section 4.1. Random projections variants (RP-RF, RP-ET)
use m = log(|At|) components in the projected output space where At is the set of target
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attributes. In addition, Rademacher random projections were used for output space trans-
formations. RP-RF used k =

√
|Ad| randomly chosen input features to calculate splits

where Ad is the set of all input features. RP-ET used k = |Ad|. Minimal number of al-
lowed instances in a leaf node was set to 1 for both variants. The code for both variants of
Random projections is available online1. RLC was parametrized to use gradient boosting
with 4-terminal node regression tree as the base regressor with learning rate of 0.1 and
100 boosting iterations. Number of targets that participate in the random linear combina-
tions was set to k = 2. RLC is implemented as part of the MULAN library2(Tsoumakas,
Spyromitros-Xiou�s, Vilcek, & Vlahavas, 2011). All competing method were parametrized
according to the recommendations of their respective authors.

Table 5.4: Predictive performance of ROS ensembles, ensembles of Random projections
variants (RP-RF, RP-ET) and RLC ensembles in terms of aRRMSE. Lower values mean
better performance. Underlined numbers denote the best performing method on a given
dataset.

no. Dataset R
P

-R
F

R
P

-E
T

R
L

C

B
ag

-R
O

S

R
F

-R
O

S

E
T

-R
O

S

1 ADNI 0.941 0.936 0.94 0.923 0.918 0.916
2 ATP 1D 0.435 0.427 0.415 0.38 0.412 0.374
3 ATP 7D 0.413 0.326 0.358 0.467 0.517 0.436
4 Forestry Kras 0.558 0.583 0.629 0.548 0.546 0.557
5 OES 10 0.468 0.467 0.447 0.527 0.518 0.496
6 OES 97 0.535 0.513 0.513 0.572 0.528 0.518
7 PPMI 0.73 0.757 0.767 0.739 0.75 0.746
8 Prespa lake top 10 0.831 0.827 0.811 0.937 0.939 0.928
9 RF 1 0.14 0.136 0.238 0.145 0.152 0.147
10 RF 2 0.145 0.151 0.241 0.147 0.168 0.153
11 Sales 0.646 0.647 0.707 0.69 0.733 0.698
12 SCM 1D 0.311 0.285 0.376 0.305 0.31 0.281
13 SCM 20D 0.366 0.324 0.595 0.354 0.379 0.316
14 Soil resilience 0.847 0.845 0.761 0.872 0.872 0.873
15 Vegetation clustering 0.702 0.702 0.79 0.699 0.703 0.696
16 Vegetation condition 0.605 0.603 0.647 0.603 0.603 0.599
17 Water quality 0.902 0.901 0.91 0.899 0.899 0.894

Win count 3 3 4 0 1 7

We present the results using average rank diagrams in Figure 5.4, while the complete
experimental results are available in Appendix (A.1, A.2). Figure 5.4 depicts two average
rank diagrams: one per dataset and one per target. The per dataset diagram is based on
the aRRMSE values, one per dataset. The per target diagram is based on RRMSE values
with multiple targets per dataset. The per dataset analysis shows no statistically signi�cant
di�erences between the predictive performances of the considered ensemble methods. We
can however note that performances of ET-ROS and RP-ET ensembles seem to be on par
(with a minimal advantage of the ET-ROS ensemble). The per target analysis detects two

1Random projections code is available at https://github.com/arjoly/random-output-trees.
2MULAN library is available at http://mulan.sourceforge.net

https://github.com/arjoly/random-output-trees
http://mulan.sourceforge.net
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statistically signi�cant di�erences. First, ET-ROS statistically signi�cantly outperforms
all other methods with the exception of RP-ET. Second, RLC and RF-ROS ensembles
are on par and both are statistically signi�cantly outperformed by the other methods.
Third, Bag-ROS, RP-RF and RP-ET perform equally well. All in all, ET-ROS ensembles
generally perform better than the other considered ensemble methods.

6 5 4 3 2 1

ET100-ROS

RP-ET

Bag100-ROSRP-RF

RF100-ROS

RLC

Critical Distance = 1.65299

(a) Per dataset (aRRMSE)

6 5 4 3 2 1
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RP-ET

RP-RF

Bag100-ROSRF100-ROS

RLC

Critical Distance = 0.465895

(b) Per target (RRMSE)

Figure 5.4: Average rank diagrams showing the predictive performance of ROS (ET-ROS,
Bag-ROS and RF-ROS), Random projections (RP-ET and RP-RF) and RLC ensembles.
Lower ranks are better.

5.3 Case Study: Predicting the Power Consumption of the

Mars Express Probe

Mars Express (MEX) is a spacecraft operated by the European Space Agency (ESA). It
has been orbiting around the planet Mars since the end of 2003 and is scheduled to do so
until (at least) 2022. MEX carries a payload of seven state-of-the-art scienti�c instruments
that are used to record data for at least one Martian year (687 Earth days). The recorded
data and spacecraft control parameters are transmitted from/to Earth using the on-board
data relay system. The MEX mission facilitated some major discoveries, such as evidence
of liquid water above and below the surface of the planet (Orosei et al., 2018), an ample
amount of three-dimensional renders of its surface as well as the most complete map of the
chemical composition of its atmosphere (Chicarro, Martin, & Trautner, 2004).

Science operations on MEX are possible when the scienti�c instruments have enough
power to run. The spacecraft runs on electric power coming from the solar arrays. A certain
amount of produced electricity is used to charge the batteries (used during eclipses). As
is the case with all scienti�c equipment, instruments on MEX were designed to work in
prede�ned temperature ranges. In space, temperature changes drastically and rapidly. To
meet the temperature requirements of the installed instruments, MEX is equipped with a
thermal subsystem, responsible for maintaining the temperature of the whole spacecraft
within its operating range. The thermal subsystem must operate in a very e�cient manner
due to power limitations. This is a challenging task, especially when we take into account
the power needed for scienti�c research. The produced power is �rst and foremost spent
on running the spacecraft. If the remaining power allows for running the instruments,
scienti�c work is possible. It is immediately obvious that poor decisions of the operators,
malfunctions, or eclipses can substantially reduce the amount of possible scienti�c work.

Experiments must be carefully planned and optimized before they are sent to MEX. A
crucial step of this process pertains to the estimation of required power. If the available
power is overestimated, experimental plans will not be executed. In those cases, MEX
cannot provide enough power. In contrast, if the available power is underestimated, the
spacecraft is not fully utilized.
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This case study is inspired by the Mars Express Power Challenge organized by the
European Space Agency in 2016. The challenge was to predict the consumption of the
electric current at 33 di�erent thermal heaters in MEX. The data for 3 Martian years
was provided as a training set, while the data from the fourth Martian year served as
the testing/evaluation set. The raw data was composed of information about the spatial
orientation and alignment of the probe with regards to the Sun, Mars and the Earth
including eclipses (umbras), as well as of the MEX's �ight dynamics and information
about the activations and deactivations of subsystems.

5.3.1 Dataset

For the purpose of the Mars Express Power Challenge, telemetry data of MEX was made
publicly available. The data consisted of electric current measurements of the 33 power
consumers and context data consisting of �ve components:

� SAA (Solar Aspect Angles) data contain the angles between the Sun�MEX line and
the axes of the MEX's coordinate system.

� DMOP (Detailed Mission Operations Plans) data contain the information about
the execution of di�erent subsystems' commands at a speci�c time.

� FTL (Flight dynamics TimeLine events) data contain the pointing and action com-
mands that impact the position of MEX, such as pointing the spacecraft towards
Earth or Mars.

� EVTF (Miscellaneous Events) data contain time intervals during which MEX was in
Mars's shadow or records of the time points when the MEX is in apsis of its elliptical
orbit.

� LTDATA (Long Term Data) contain the Sun�Mars distances and the solar constant.

All raw data entries are time-stamped (expressed in milliseconds) indicating when the
entry was logged. The time span between the two consecutive entries varies from less than
a minute (SAA) to several hours (LTDATA). Detailed description of the data is available
in Boumghar, Lucas, and Donati (2018), Lucas and Boumghar (2017). The raw telemetry
is not directly usable with the ML methods described in this dissertation. Therefore, a
new dataset had to be constructed, containing carefully crafted features generated from
the raw telemetry data. The newly-generated features include: (i) energy in�ux features,
estimating the in�ux of solar energy based on solar angles and MEX position with respect
to the Sun, (ii) historical energy in�ux features, representing energy in�ux estimations
calculated in the previous point for several time intervals, (iii) DMOP and FTL features,
encoding several events that were triggered in MEX. The original dataset has a resolution
of 1 minute. In our experiments, we use the time resolution of 15 minutes. The resampling
process of the train and test datasets is described in Petkovi¢ et al. (2019). The train and
test datasets contain 49118 and 16375 examples, respectively. Each example is described
with 448 descriptive features.

5.3.2 Experimental design

In this case study we focus on learning ensembles of PCTs for MTR. We will be using the
features described in the previous section to predict the electric current of the 33 power
consumers at 15-minute intervals.

The current state-of-the-art in MTR are random forest ensembles of PCTs (RF, Kocev
et al. (2013)) that also performed well in the MEX Power Challenge (Breskvar, Kocev,
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Levati¢, et al., 2017). The previous chapters of this dissertation presented tree ensembles
with ROS. In this chapter, we use ET-ROS, tree ensembles of extremely randomized PCTs
whose models were shown to outperform the models of competing methods, including RF.
We will compare the predictive performance of RF and ET-ROS in terms of aRRMSE (see
Equation 5.1).

Both ensemble methods were instantiated to use minimally 8 examples in leaf nodes.
RF uses 1

4 of the descriptive space whereas ET-ROS uses all descriptive attributes. ROS
ensembles were parametrized to use four di�erent subspace sizes (v ∈ (14 ,

1
2 ,

3
4 ,

1√
|At|

)) and

two di�erent prediction aggregation functions, namely total and subspace averaging.
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Figure 5.5: Performance of RF and di�erent variants of ET-ROS in terms of aRRMSE.
Each sub�gure presents the performance of ET-ROS models with a di�erent ROS output
subspace size (v), using one of the two possible prediction aggregation functions, as com-
pared to RF. Horizontal axes represent ensemble sizes in terms of number of trees in the
ensemble.

5.3.3 Results

The results of the comparison between the current state-of-the-art in MTR (RF) and
ET-ROS variants are presented in Figure 5.5. Each sub�gure represents the performance
of ET-ROS models with a di�erent ROS output subspace size (v), using one of the two
possible prediction aggregation functions, compared to RF. The RF results are the same
across all four sub�gures, i.e., ROS subspace size does not apply to this method. Horizontal
axes represent ensemble sizes in terms of number of trees in the ensemble. Vertical axes
represent aRRMSE.

The �rst thing to notice is the saturation of all ensembles. The results suggest conver-
gence at 150 base models in the ensembles. Next, results show that all variants of ET-ROS
ensembles outperform RF ensembles. Moreover, ET-ROS ensembles with subspace aver-
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aging perform better than the ET-ROS ensembles with total averaging, which is in line
with the recommendation for this parameter in Section 5.2.2. The recommended ROS
output space size (v = 3

4) performs better than RF, but is in fact the worst performing
ROS output space size. The optimal choice for this dataset is v = 1

4 , which actually had
the worst average performance in the benchmark experiments (see Figure 5.2). This does
not come as a surprise and con�rms the mentioned volatility of this parameter. Ideally,
this parameter would have been tuned for each dataset separately.

5.4 Summary

We summarize the main �ndings of the extensive experimental work presented in this
chapter by answering the experimental questions posed in Section 5.1.1.

1. How many base models do we need in ROS ensembles in order to reach

the point of performance saturation?

The saturation point of the original PCT ensembles is between 50 and 75 base mod-
els. Bag-ROS and ET-ROS ensembles saturate between 50 and 100 base models.
Especially RF-ROS ensembles saturate a bit later, at 75 to 100 base models learned.
In the comparative analysis of performance, we consider ensembles with 100 base
models (in order to make the comparison fair for all considered methods).

2. What is the best value for the portion of target space to be used within

such ensembles? Is this portion equal for all evaluated ensemble methods?

The most appropriate size of the portion of target space to be used varies with the
ensemble method. The results suggest to use v = 1

2 for Bag-ROS and v = 3
4 for

RF-ROS and ET-ROS. However, the best value of v may be problem-dependent.

3. Does it make sense to change the default aggregation function of the

ensemble that uses the prediction for all targets? Can this improve pre-

dictive performance?

Changing the aggregation function changes the behaviour of the ROS ensembles. For
Bag-ROS, it can even decrease the predictive performance, so we recommend using
the standard aggregation function, i.e., total averaging. For RF-ROS and ET-ROS
we recommend making predictions with subspace averaging.

4. Considering predictive performance, how do ROS ensemble methods com-

pare to the original ensemble methods?

Using ROS can improve the predictive performance of PCT ensembles. This is espe-
cially notable when using ET-ROS with small datasets with larger output spaces.

5. Is ROS helpful in terms of time e�ciency?

The observed learning times for ROS methods can be substantially lower than the
ones of their original counterparts. This especially holds for large datasets. Prediction
times, however, do not change.

6. Do ROS models use less memory than the models trained with the original
ensemble methods?

Ensemble models obtained with ROS have sizes comparable to the ensemble models
produced by the original ensemble models.

7. How the ROS models compare to other output transformation methods?

ET-ROS ensembles generally perform better than ensembles of other competing out-
put transformation methods.
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We also illustrate the practical usability of the proposed tree ensembles with ROS
on the case study of the Mars Express Power Challenge dataset. The results show that
ET-ROS yield better predictive performance than the state-of-the-art method (RF) on this
dataset.
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Chapter 6

Evaluation of Tree Ensembles with

Random Output Selections for

Multi-Label Classi�cation

In this chapter, we address the task of multi-label classi�cation (MLC), described in Sec-
tion 2.2.2. We solve the task of MLC by learning ensembles of predictive clustering trees
(PCTs). In particular, we learn random forest ensembles of PCTs that use ROS: the
proposed ensemble extension method, described in Chapter 4.

The main focus of this study is to determine whether the proposed method can improve
the predictive performance and shorten the learning times of the considered ensemble meth-
ods. An extensive empirical evaluation over a variety of benchmark datasets is performed
in order to determine the e�ects of using ROS on predictive performance. In addition
to this, we also perform an analysis with respect to time and space complexity. The re-
sults show that the proposed ensemble extension can yield better predictive performance,
reduce learning time or both, without a considerable change in model size. The newly pro-
posed aggregation function gives the best results when used with ensembles of extremely
randomized PCTs.

We perform an extensive empirical evaluation on 13 benchmark datasets, which pro-
vides performance assessment for the original and extended ensemble method over 12 dif-
ferent evaluation measures. The study also includes parameter setting recommendations
for the proposed method. Moreover, we compare the performance to other competing
methods that also transform the output space. The details on this item are available in
this chapter.

This chapter is composed of two sections. The �rst section provides details regarding
the experimental design. We start by posing experimental questions. We also explain and
describe the evaluation measures used in this chapter. Then, we describe the benchmark
datasets used for the evaluation of the proposed method. Finally, we describe the exper-
imental setup, speci�cally designed to answer the posed questions. The second section
of this chapter contains results of the experiments and a comparison with the competing
methods.

6.1 Experimental Design

To evaluate the performance of RF-ROS, we performed experiments for the considered
task of MLC. This section presents: (i) the experimental questions posed, (ii) benchmark
datasets, (iii) the experimental setup, and (iv) the evaluation measures used.
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6.1.1 Experimental questions

We designed the experimental evaluation having the following research questions in mind:

1. What is the recommended label subspace size to use with RF-ROS ensembles?

2. Does it make sense to change the aggregation function, i.e., can subspace averaging
improve the predictive performance of RF-ROS models?

3. Considering predictive performance, how do RF-ROS ensembles compare to other
competing methods?

6.1.2 Evaluation measures

In order to determine the predictive performance of the induced models, we empirically
evaluate them with 12 di�erent measures that belong to two groups: example and label-
based measures. Results in terms of di�erent measures suggest the same conclusions. We
therefore present results only in terms of Example-based F1 (more is better) and Hamming
loss (less is better). The results for remaining evaluation measures are in Appendix B.

We evaluate our models based on the measures presented in Madjarov, Kocev, et al.
(2012). In the de�nitions below, Yi denotes the set of true labels of example xi and h(xi)
denotes the set of predicted labels for the same examples. All de�nitions refer to the
multi-label setting. N represents the number of examples in the dataset. Q represents the
number of all possible labels, i.e., Q = |L|.

Example-based measures

Hamming loss. This measure evaluates how many times an example-label pair is mis-
classi�ed, i.e., label not belonging to the example is predicted or a label belonging to the
example is not predicted. The smaller the value of HammingLoss(h), the better the per-
formance. The performance is perfect when HammingLoss(h) = 0. This metric is de�ned
as:

HammingLoss(h) =
1

N

N∑
i=1

1

Q
|h(xi)∆Yi| (6.1)

where ∆ stands for the symmetric di�erence between two sets.

Accuracy. The accuracy for a single example xi is de�ned by the Jaccard similarity
coe�cient between the label sets h(xi) and Yi, i.e., |h(xi)

⋂
Yi|

|h(xi)
⋃
Yi| . Accuracy over N examples

is averaged over all accuracies of single examples.

Accuracy(h) =
1

N

N∑
i=1

|h(xi)
⋂
Yi|

|h(xi)
⋃
Yi|

(6.2)

F1 measure. The F1 measure is de�ned as the harmonic mean of precision and recall.
Precision is de�ned as:

Precision(h) =
1

N

N∑
i=1

|h(xi)
⋂
Yi|

|Yi|
(6.3)

Recall is de�ned as:

Recall(h) =
1

N

N∑
i=1

|h(xi)
⋂
Yi|

|h(xi)|
(6.4)
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Finally, F1 is de�ned as:

F1 =
1

N

N∑
i=1

2 · |h(xi) ∩ Yi|
|h(xi)|+ |Yi|

(6.5)

F1 is an example-based metric and its value is an average over all examples in the dataset.
F1 reaches its best value at 1 and worst score at 0.

Subset accuracy. Subset accuracy, also called classi�cation accuracy, is a very strict
evaluation measure as it requires the predicted set of labels to be an exact match of the
true set of labels. Here, 1 is an indicator function with the following behavior: 1(true) =
1 and 1(false) = 0. Subset accuracy is de�ned as:

SubsetAccuracy(h) =
1

N

N∑
i=1

1(h(xi) = Yi) (6.6)

Label-based measures

Macro-averaged measures. Here, TPj ,FPj and FNj denote the number of true pos-
itives, false positives and false negatives respectively. The index j refers to the label λj ,
i.e., λj ∈ L.
Macro-averaged precision is de�ned as:

Precisionmacro =
1

Q

Q∑
j=1

TPj
TPj + FPj

(6.7)

Macro-averaged recall is de�ned as:

Recallmacro =
1

Q

Q∑
j=1

TPj
TPj + FNj

(6.8)

Macro-averaged F1 is de�ned as the harmonic mean of precision and recall, where the
average is calculated on a per label basis and is then averaged across all labels. If pj and
rj are the precision and recall for all λj ∈ h(xi) from λj ∈ Yi, the macro-averaged F1 is
calculated as:

F1macro =
1

Q

Q∑
j=1

2 · pj · rj
pj + rj

(6.9)

Micro-averaged measures. Micro-averaged precision is de�ned as:

Precisionmicro =

∑Q
j=1 TPj∑Q

j=1 TPj +
∑Q

j=1 FPj
(6.10)

Micro-averaged recall is de�ned as:

Recallmicro =

∑Q
j=1 TPj∑Q

j=1 TPj +
∑Q

j=1 FNj
(6.11)

Micro-averaged F1 is de�ned as the harmonic mean of micro-averaged precision and micro-
averaged recall. The micro-averaged F1 is calculated as:

F1micro =
2 · Precisionmicro · Recallmicro
Precisionmicro + Recallmicro

(6.12)
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6.1.3 Data description

To evaluate the proposed and existing methods, we use 13 publicly available benchmark
datasets from four di�erent domains: multimedia, biology, text and audio. Table 6.1 shows
the main characteristics of the considered datasets. In order to have as general evaluation
as possible, we use datasets of di�erent sizes in terms of the number of instances, number
of descriptive and number of target attributes. All datasets come predivided into train and
test sets and we use them as such.

Table 6.1: Properties of the datasets: number of train/test examples (Ntrain/Ntest), number
of descriptive attributes (|Ad|), and number of target labels (|At|).

no. Dataset Domain Ntrain Ntest |Ad| |At|

1 Bibtex Text 4880 2515 1836 159
2 Birds Audio 322 323 260 19
3 Bookmarks Text 60000 27856 2150 208
4 Corel Multimedia 4500 500 499 374
5 Delicious Text 12920 3185 500 983
6 Emotions Multimedia 391 202 72 6
7 Enron Text 1123 579 1001 53
8 Genbase Biology 463 199 1185 27
9 Mediamill Multimedia 30993 12914 120 101
10 Medical Text 645 333 1449 45
11 Scene Multimedia 1211 1159 294 6
12 TMC 2007 Text 21519 7077 500 22
13 Yeast Biology 1500 917 103 13

Bibtex. The data (Katakis, Tsoumakas, & Vlahavas, 2008) is based on the data from the
ECML/PKDD 2008 discovery challenge. It contains bibtex entries from the BibSonomy
social bookmark and publication sharing system, annotated with a subset of the tags
assigned by users (e.g. statistics, quantum, data mining etc.). The title and abstract of
entries were used to construct features using the boolean bag-of-words model.

Birds. The dataset contains audio recordings of vocalizing birds (Briggs et al., 2013).
Each recording is 10 seconds long and can contain simultaneous vocalizations of several
bird species. The goal is to detect the set of bird species that are present in the audio
recording.

Bookmarks. The data (Katakis et al., 2008) is based on the data from the ECML/PKDD
2008 discovery challenge. It contains metadata of bookmark entries from the BibSonomy
system such as the URL of the web page, an URL hash, a description of the web page, etc.
The descriptive attributes represent terms in the document.

Corel. The data (Barnard et al., 2003) is based on 5000 Corel images. Images were
segmented and then only regions larger than a threshold were clustered into 499 blobs
using k-means, which are the features used to describe the image.
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Delicious. This dataset contains textual data from the Delicious website, along with
their tags such as academia, airline, algorithm, etc. (Tsoumakas et al., 2008). This dataset
is a modi�ed tagging problem where the label space was not de�ned prior to labeling and
the size of the label space is greater than the size of the input space. Attributes are binary
and represent the presence of a word in the document.

Emotions. This is a small dataset concerning classi�cation of music into the emotions
that it evokes (Trohidis, Tsoumakas, Kalliris, & Vlahavas, 2008). The emotions are de-
scribed according to the Tellegen-Watson-Clark model of mood: amazed-surprised, happy-
pleased, relaxing-clam, quiet-still, sad-lonely, and angry-aggressive.

Enron. This is a subset of the Enron email text corpus (Klimt & Yang, 2004). It is based
on a collection of emails exchanged between the Enron Corporation employees, which were
made available during a legal investigation. It contains emails that were categorized into
53 topic categories, such as company strategy, humor and legal advice.

Genbase. This is a dataset for classi�cation of protein functions (Diplaris, Tsoumakas,
Mitkas, & Vlahavas, 2005). Instances are protein chains represented by using a motif
sequence vocabulary of �xed size. Each sequence is encoded as a binary array where each
bit is 1 if the corresponding motif is present and 0 otherwise. Each label identi�es the
functional family of the sequence.

Mediamill. This is a multimedia dataset for generic video indexing (Snoek, Worring,
Van Gemert, Geusebroek, & Smeulders, 2006). It was extracted from the TRECVID
2005/2006 benchmark. The dataset contains 85 hours of international broadcast news
data categorized into 101 semantic concepts (e.g. car, golf, bird, etc.), and each video
instance is represented as a numeric vector of 120 features including visual and textual
information.

Medical. This dataset is based on the data made available during the Computational
Medicine Center's 2007 Medical Natural Language Processing Challenge (Pestian et al.,
2007). It consists of clinical free-text radiology reports labelled with ICD-9-CM disease
codes.

Scene. This dataset contains information on images that were annotated with up to 6
concepts, such as beach, mountain, etc. (Boutell et al., 2004). Each image is described in
terms of visual numeric features corresponding to spatial color moments in the LUV space.

TMC 2007. The SIAM Text Mining Competition (TMC) 2007 dataset is a subset of
the Aviation Safety Reporting System (ASRS) dataset (Srivastava & Zane-Ulman, 2005).
The dataset contains free text form reports on aviation safety that the �ight crews submit
after completion of each �ight. The goal is to label the documents with respect to what
types of problems they describe.

Yeast. This dataset contains features about microarray expressions and phylogenetic
pro�les for 2417 yeast genes (Elissee� & Weston, 2002). Each gene is annotated with a
subset of 14 functional categories (e.g. metabolism, energy, etc.) from the top level of the
functional catalog (FunCat3).
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6.1.4 Experimental setup

We designed the experiments to answer the experimental questions which we pose in Sec-
tion 6.1.1. To evaluate the performance of the RF-ROS models, we generated ensembles
with di�erent output space sizes: v ∈(14 ,

1
2 ,

3
4 ,

1√
|At|

, log |At|
|At| ). We also experimented with

two prediction aggregation functions, namely total and subspace averaging.
In order to evaluate the predictive performance of RF-ROS ensembles in a broader

context, we also compare their performance to the performance of: (i) Random forests of
standard PCTs, dubbed RF (Kocev et al., 2013), (ii) Random k-Labelsets models, dubbed
RAkEL (Tsoumakas & Vlahavas, 2007), and (iii) Random projections with Gaussian sub-
spaces, dubbed RP-RF (Joly et al., 2014).

Parameter selection. RF and RF-ROS ensembles used 100 PCTs, which is the point
at which the ensembles are typically saturated. The size of descriptive space randomly
sampled was set to |A'd| = b0.1 · |Ad|c + 1, following the suggestion from Kocev et al.
(2013). The trees in ensembles were not pruned (Bauer & Kohavi, 1999).

RAkEL models were initialized with the k parameter (size of labelset) set to k = |At|/2.
The number of models was set tomin(2·|At|, 100). Support vector machine (SVM) classi�er
was selected as learning algorithm with a linear kernel and the complexity constant C = 1.
All parameter settings were set according to the suggestions in Tsoumakas and Vlahavas
(2007).

RP-RF ensembles were built with 100 decision trees in the ensemble. The number of
Gaussian subspace components was set to m = log |At|. Minimal number of examples in
a leaf node was set to nmin = 1. The size of descriptive space randomly sampled was set
to k =

√
|Ad|. All parameter settings were initialized according to the suggestions in Joly

et al. (2014).

Environments. The compared methods are implemented in di�erent environments.
RAkEL is implemented in Java programming language and can be run from the MULAN
library (Tsoumakas et al., 2011).1 RF and RF-ROS are also implemented in Java and can
be run from the CLUS software package. Random projections with Gaussian subspaces
are implemented on top of scikit-learn: a library written in Python programming lan-
guage 2. Evaluation of listed methods was done by collecting predictions from all models
and then calculating all evaluation measures separately in order to avoid mistakes due to
implementation di�erences.

All methods were run on a computing infrastructure where each job had 60 GB of
available memory and one week to produce a model for one dataset. The CPUs on the
computing infrastructure are AMD Opteron 6134 @ 800 MHz or better, running Fedora
Linux operating system.

Statistical evaluation. A statistical evaluation of the results was performed according
to the guidelines in (J. Dem²ar, 2006). Friedman test with the correction was used to
determine the statistical signi�cance (M. Friedman, 1940; Iman & Davenport, 1980). Ad-
ditional post-hoc test has been applied to detect statistically signi�cant di�erences between
considered methods (Nemenyi, 1963). Results are presented with average rank diagrams,
where a line connects methods that do not di�er with statistical signi�cance (J. Dem²ar,
2006). All statistical tests were conducted at the signi�cance level α = 0.05 using three
decimal places. Not all RAkEL models managed to produce results on all benchmarking

1MULAN library is available at http://mulan.sourceforge.net.
2Random projections code is available at https://github.com/arjoly/random-output-trees.

http://mulan.sourceforge.net
https://github.com/arjoly/random-output-trees
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datasets. We did not want to discard the results of other methods on those datasets, so
we gave RAkEL the worst possible score before the statistical evaluation (1 for Hamming
loss and 0 for all other measures).
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Figure 6.1: Example-based F1 results for Delicious, Bibtex, Yeast and Scene datasets.
Total averaging with 100% output space size represents the RF method without ROS.

6.2 Results

In this section, we present the experimental results. We divide the presentation into two
parts. Section 6.2.1 focuses on parametrization of the proposed method whereas Sec-
tion 6.2.2 shows how RF-ROS models perform against competition. We also revisit the
experimental questions at the end of this section.

6.2.1 ROS parameter selection

The proposed method has two degrees of freedom: subspace size and prediction aggre-
gation function. We experimented with di�erent values for both. Figure 6.1 shows the
performance of RF-ROS on four datasets with various label and example counts. Plots
also show a speci�c data point (total averaging, 100% target space, always the rightmost
data point) which represents the performance of RF model on that dataset.

The results suggest that subspace averaging outperforms total averaging which is espe-
cially true for subset sizes below 50%. Moreover, considered aggregation functions exhibit
inverse behavior w.r.t. the target space size. Total averaging performs better with larger
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spaces while subset averaging bene�ts from smaller ones. When the target space size in-
creases, both variants converge to similar performance as the original RF method. This
behavior is expected because larger subset size leads to larger overlap between all target
variables and subsets of them. Conversely, with smaller subset sizes, the overlap is smaller
and the randomization e�ect is larger, hence the di�erences are larger.

We also observe that the performance of models with di�erent aggregation functions
converges at di�erent rates. Although we observe convergence towards RF on all datasets,
we speculate that the convergence rate is dataset dependent. For instance, on the De-
licious dataset, both variants already converge with target subspace size of 25%. On
Bibtex dataset, this number is a bit higher (50%) and on Yeast and Scene datasets even
higher (75%). This suggests that smaller output space sizes should be favored for subspace
averaging and large for total averaging. When the output space size approaches 100%,
convergence toward the original ensemble performance is inevitable.

Figures 6.2 and 6.3 show average rank diagrams that con�rm our speculations. Fig-
ures 6.2a and 6.3a show some statistically signi�cant di�erences so we recommend the
bigger subspace size (v = 3

4) when using total averaging which is still computationally
more e�cient than using the whole output space. Figures 6.2b and 6.3b do not show any
statistically signi�cant di�erences between the considered RF-ROS variants. Nevertheless,
we recommend the smallest evaluated subspace size (v = log |At|

|At| ) to be used with subspace
averaging.
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Figure 6.2: Average rank diagrams for RF-ROS in terms of Example-based F1 measure.
Lower ranks are better.
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Figure 6.3: Average rank diagrams for RF-ROS in terms of Hamming loss measure. Lower
ranks are better.
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Figure 6.4: Average rank diagrams for RF-ROS. Lower ranks are better.

6.2.2 Comparison with competing methods

We compared model performances of RF-ROS variants using the recommended parameters
to RF, RAkEL and RP-RF ensembles. The average rank diagrams are shown in Figure 6.4.
We generated them from results shown in Tables 6.2 and 6.2. The diagrams do not show
any statistical signi�cance in terms of Example-based F1.

Table 6.2: The performance of considered methods in terms of Example-based F1 (more is
better). DNF (did not �nish) denotes algorithms that did not produce results. Numbers
in bold denote the best performance. Tot-75 denotes ROS ensembles with total averaging,
using v = 3

4 . Sub-LOG denotes ROS ensembles with subspace averaging, using v = log |At|
|At| .

no. Dataset RAkEL RP-RF RF RF-ROS

Tot-75 Sub-LOG

1 Bibtex DNF 0.173 0.211 0.209 0.305

2 Birds 0.658 0.51 0.566 0.556 0.579
3 Bookmarks DNF 0.2 0.206 0.203 0.175
4 Corel DNF 0.018 0.007 0.009 0.089

5 Delicious DNF 0.237 0.194 0.193 0.202
6 Emotions 0.637 0.534 0.574 0.582 0.588
7 Enron 0.562 0.508 0.527 0.518 0.559
8 Genbase 0.996 0.991 0.981 0.981 0.986
9 Mediamill DNF 0.545 0.549 0.547 0.541
10 Medical 0.789 0.515 0.673 0.669 0.683
11 Scene 0.681 0.413 0.574 0.558 0.591
12 TMC 2007 0.81 0.992 0.908 0.902 0.926
13 Yeast 0.64 0.573 0.587 0.583 0.602

It is immediately visible that RAkEL performs very well. Although it did not �nish on
�ve datasets, it can still be considered as a serious competitor on datasets with smaller label
spaces. However, its predictive performance comes with a big computational cost. This
method is hindered by the fact that it uses label powersets and SVMs to generate models,
which makes running times of RAkEL substantially longer than those of other methods
considered in this study. RAkEL is not the clear winner w.r.t. the average rank diagrams
because the method was penalized for not �nishing as we described in Section 6.1.4. If we
take RAkEL out of consideration, the average rank diagrams in Figure 6.4 suggest that
the proposed method performs at least as good as the competition.

RF-ROS-Sub-LOG is ranked better than RF in terms of Example-based F1 measure
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Table 6.3: The performance of considered methods in terms of Hamming loss (less is
better). DNF (did not �nish) denotes algorithms that did not produce results. Numbers
in bold denote the best performance. Tot-75 denotes ROS ensembles with total averaging,
using v = 3

4 . Sub-LOG denotes ROS ensembles with subspace averaging, using v = log |At|
|At| .

no. Dataset RAkEL RP-RF RF RF-ROS

Tot-75 Sub-LOG

1 Bibtex DNF 0.014 0.013 0.013 0.013

2 Birds 0.05 0.048 0.044 0.044 0.043

3 Bookmarks DNF 0.009 0.009 0.009 0.009

4 Corel DNF 0.009 0.009 0.009 0.01
5 Delicious DNF 0.018 0.018 0.018 0.021
6 Emotions 0.205 0.2 0.197 0.196 0.198
7 Enron 0.049 0.047 0.046 0.046 0.045

8 Genbase 0.001 0.001 0.002 0.002 0.001

9 Mediamill DNF 0.03 0.03 0.03 0.032
10 Medical 0.01 0.016 0.013 0.013 0.012
11 Scene 0.098 0.111 0.09 0.093 0.088

12 TMC 2007 0.033 0.001 0.015 0.016 0.012
13 Yeast 0.2 0.199 0.198 0.198 0.199

and equally ranked in terms of Hamming loss measure. RF-ROS-Tot-75 also performs well
in terms of Hamming loss measure but is ranked last w.r.t the Example-based F1 measure.
Moreover, we observe that RF-ROS-Sub-LOG is ranked better than RP-RF and RAkEL.

6.3 Summary

We summarize the main �ndings of the extensive experimental work presented in this
chapter by answering the experimental questions posed in Section 6.1.1.

1. What is the recommended label subspace size to use with RF-ROS ensem-

bles? We recommend that RF-ROS should be instantiated with v = log |At|
|At| and should

use subset averaging. It could be bene�cial to use a slightly larger label subspace size
on datasets with larger label spaces (i.e.,

√
|At| ≤ v · |At| ≤ |At|

2 ).

2. Does it make sense to change the aggregation function, i.e., can subspace

averaging improve the predictive performance of RF-ROS models? The answer
to the �rst question already partially answered the second one. Subspace averaging is
preferred because total averaging seems to degrade the predictive performance of the
models and it, with larger label subspace sizes, converges to the performance of the
original method (RF), i.e., even if we do not use the optimal value for the subspace
size, the model performance is lower-bounded by RF.

3. Considering predictive performance, how do RF-ROS ensembles compare

to other competing methods? RF-ROS ensembles perform well compared to the
competition, which especially holds for RF-ROS-Sub-LOG variant. The average rank
diagrams show some advantage, but without statistical signi�cance.
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Chapter 7

Learning and Evaluation of Rule

Ensembles with Random Output

Selections for Multi-Target

Regression

Rule and decision tree models are one of the most interpretable model types. With the
rise of black-box models (e.g., deep learning), data scientists are facing a hard-to-overcome
obstacle when they are tasked with explaining the predictions made by such models. There
have been many attempts to unbox such models by using various approaches to provide
descriptions for models that are otherwise not interpretable. The ability to adequately
explain the predictions helps with user acceptance (e.g., in medicine) as well as conforms
to legislation regarding fairness, equal opportunities, privacy, etc. Learning rule-based pre-
dictive models is therefore a natural choice, when the end result should be an interpretable
model.

We propose a new rule-learning method for the task of MTR, called Fitted Rule Ensem-
bles with Random Output Selections (FIRE-ROS) (Breskvar, Kocev, & Dºeroski, under
review). The method learns an ensemble of predictive clustering trees (PCTs) with random
output selections which is then decomposed to individual predictive clustering rules. An
optimization approach is used to �nd the best-performing rule set by changing the weights
of individual rules. We show that using partially-predicting rules (i.e., rules that give
predictions for only a subset of targets) can improve the overall predictive performance.
An extensive empirical evaluation is performed over a variety of benchmark datasets to
systematically determine whether the ROS extension improves the predictive performance
of the models induced with the FIRE method.

We summarize the main contributions of this work as follows:

� An extension of a rule-learning approach for addressing the MTR task that selects
random subsets of target attributes in order to generate candidate rules more focused
on speci�c target attributes.

� A novel approach where rule ensembles can contain rules that only give partial pre-
dictions.

� An extensive empirical evaluation of the proposed method on 17 benchmark datasets,
including the usage of three di�erent approaches to build the candidate rules. The
evaluation provides a performance assessment of the original and proposed rule-based
method as well as individual multi-target regression trees and predictive clustering



80 Chapter 7. Learning and Evaluation of Rule Ensembles with ROS for MTR

rules. The analysis also includes parameter setting recommendations for the proposed
method.

� A comparison with state-of-the-art and other interpretable MTR methods.

This chapter is organized in the following way. First, we describe the required changes
to the FIRE method in order to integrate ROS. Next, we describe the experimental design,
including experimental questions, evaluation measures and the actual experimental setup.
This is followed by the description of the results. We conclude this chapter with the
summary of the results.

7.1 Learning Rule Ensembles for Multi-Target Regression

with FIRE-ROS

This section describes the integration of ROS tree ensembles into the Fitted Rule Ensemble
(FIRE) for MTR rule learning system. FIRE method was proposed by Aho et al. (2012).
The integration consists of two main steps. First, we replace the tree ensemble building
method with the one that uses the ROS extension. Then, we modify the covariance cal-
culations within the optimization function to take into account the fact that not all rules
give predictions for all target attributes. We call such rules partially-predicting rules, as
opposed to the original fully-predicting (predicting all target attributes) rules. Three types
of pairwise covariance calculations are used: (i) between two rules and (ii) between two
linear terms and (iii) between one rule and one linear term.

To integrate partially predicting rules, we need to modify the covariance calculation
between two rules. As in the original FIRE method, we calculate the average covariance
between two rules by averaging covariances of individual targets. While iterating over the
target attributes, we check if both rules give a prediction for a speci�c target attribute.
If they do not, we skip that target attribute. When calculating the average covariance,
we average only over the target attributes that were predicted by both rules, i.e., we use
the number of joint target attributes |Rr1 ∩ Rr2 |, where Rx represents the set of target
attributes considered by rule x. If the two rules have a completely disjoint set of target
attributes, the returned covariance is evaluated to zero.

Size of candidate decision rules. With tree ensembles, one should not restrict growing
of individual base learners in order to obtain better predictive performance. Here, however,
we focus also on the interpretability. If we consider a decision tree of depth 10, the rules
that we would get from that tree would have 10 conditions. Although a manageable number
of such decision rules is considerably more transparent than a tree ensemble, it borders
on interpretability. Rules with many conditions are not easily comprehended by humans.
A considerable cognitive e�ort is required to visualize how that many conditions actually
partition the input space. Moreover, having many such rules represents an additional
problem, since one also has to visualize the interplay of di�erent rules that are triggered.
We accept that there are use cases, where even more than 10 attributes would be perfectly
acceptable for the domain experts but for the situations, where this is not desired, the
size of the PCTs in the ensemble should be restricted by limiting their depth. This makes
rules shorter and thus easier to process by a human. Individual PCTs in the ensemble are
allowed to grow only to a certain depth. The depth is not �xed across all PCTs but is
determined in a randomized fashion. The number of leaf nodes t is determined for each
PCT in the ensemble with a random variable: t = 2 + bγc, where γ is drawn from an
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exponential distribution with probability

Pr(γ) =
e−γ/(L−2)

L− 2
,

where L is the average number of leaf nodes in all PCTs. The depth of a PCT can now
be computed as d = dlog2(t)e, assuming the root node is at depth 0. L is the parameter
of the algorithm. This tree pruning approach has been proposed by J. H. Friedman and
Popescu (2008) and is already used by the original FIRE algorithm.

Generating candidate rules. As we have already previously stated, all PCTs in the
ensemble are converted into rules. The individual rules must give predictions but these
predictions need not be for all target attributes, as is the case with the method FIRE.
We have learned PCTs that are able to give predictions for only a subset of all target
attributes. Converting such PCTs to rules results in more target-oriented decision rules
that are easier to explain and understand by a domain expert. Before we make the �nal
decision on what kind of decision rules we would like to declare as candidates, we must
�rst think about the way that we will optimize the weights of individual rules. The FIRE
method always selects from rules that give predictions for all targets because it has nothing
else to select from. Our initial experiments show that if we populate the pool of candidate
rules with only partially-predicting rules, we end up with much more rules because we have
to satisfy the requirement for a well performing model in terms of predictive performance.
However, giving the optimization procedure the ability to select partially predicting rules
without forcing it into doing so, is a good idea. Ideally, the optimization would be guided
into producing an optimized rule set that contains fully-predicting decision rules (that
predict all target attributes) which globally cover the target space and then possibly also
partially-predicting rules (that predict only a subset of target attributes) which make local
adaptations for speci�c target attributes � depending on the problem. This brings us to
the �nal decision regarding which decision rules should be used in the candidate pool: we
use fully-predicting as well as partially-predicting rules to populate the candidate pool of
decision rules.

Before we continue with the description of the experimental design, we present an
example of a FIRE-ROS rule model. Figure 7.1 depicts a rule model built on the same
benchmark dataset as the rule model from Figure 3.6. This time we can see a di�erence in
the learned rules. In addition to the fully-predicting rules, partially-predicting rules have
also been selected into the �nal set. The letters NP denote the absence of prediction (NP =
Not Predicted). As we have already explained, FIRE and FIRE-ROS models calculate the
predictions by adding the predictions of individual rules and linear terms to the average
rule. Therefore, in the case of FIRE-ROS models, we can easily substitute NP with the
number zero.

7.2 Experimental Design

To evaluate the performance of the FIRE-ROS ensembles for MTR, we perform extensive
experiments on various benchmark datasets. This section presents: (i) the experimental
questions addressed, (ii) the evaluation measures used, and (iii) the experimental setup
(including the parameter instantiations for the methods used in the experiments).

7.2.1 Experimental questions

In our experiments, we construct rule-based models by using the PCT ensembles for MTR
to populate the initial pool of candidate rules. The goal of this work is to establish
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Figure 7.1: A part of the example rule ensemble model for predicting the abundance of
animal and plant species in Slovenian rivers. The prediction vectors have been shortened in
order to �t the model on the page. Due to space limitations, the majority of decision rules
and linear terms has also been omitted. This rule ensemble contains rules learned with
ROS ensemble extension. Moreover, the presented rule ensemble also contains partially-
predicting rules.

whether output space specializations a�ect the resulting predictive models and how. We
investigate the resulting models in terms of their predictive performance. We focus
on (i) predictive performance of the proposed models w.r.t. that of models produced by
the original approach (FIRE) and (ii) comparison to other MTR methods. In addition
to predictive performance, we also take interest in the interpretability of the resulting
models. Rule-based models have an inherent trait of being readable by humans, which
results in better understandability of how the predictions are made. The experiments and
their evaluation have been designed with the following research questions in mind:

1. What is the best value for the portion of target space to be used with the proposed
ensembles? Are there any di�erences among the evaluated ensemble methods?

2. Are there di�erences in the ROS output space size with respect to the ROS tree en-
sembles?

3. Do partially predicting rules improve the predictive performance?

4. How do FIRE-ROS ensembles compare to the original FIRE ensembles in terms of
predictive performance?

5. How do FIRE-ROS models compare to state-of-the-art MTR methods?

7.2.2 Evaluation measures

In order to understand the e�ects that FIRE-ROS has on the rule learning process, we
�rst need to evaluate the models induced by the FIRE approach. In machine learning,
empirical evaluation in terms of desired evaluation measures is most commonly used to
achieve this goal. Below, we describe the measures used for assessing predictive power and
interpretability.
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Predictive performance. The predictive performance of a MTR model is assessed by
using the average relative root mean squared error (aRRMSE), which averages the relative
root mean squared errors (RRMSE) for the individual target variables. RRMSE is a
relative measure calculated against the baseline model that predicts the arithmetic mean
of all values of a given target in the learning set. Speci�cally, the value yi in Equation 7.1
is the prediction of the baseline model for the ith target variable, while the value ŷ(e)i
represents the predicted value for the ith target variable of the example e.

aRRMSE =
1

t

t∑
i=1

RRMSEi =
1

t

t∑
i=1

√√√√∑Ntest
e=1 (y

(e)
i − ŷ

(e)
i )2∑Ntest

e=1 (y
(e)
i − yi)2

(7.1)

Over�tting. We also monitor how much our models over�t to the training data by
calculating their relative decrease of performance on the testing data with respect to that
on the training data. Smaller values mean less over�tting. We calculate the over�tting
score with Equation 7.2.

OS =
aRRMSEtest − aRRMSEtrain

aRRMSEtrain
(7.2)

Interpretability. The interpretability is measured in terms of sizes of the induced mod-
els. Speci�cally, we measure the number of rules and number of linear terms for rule-based
models. For tree-based models, interpretability is measured by the total number of nodes
in the tree model (intermediate and leaf nodes). In both cases smaller values are better.
For other model types, interpretability is not evaluated.

Data. To evaluate the proposed method, we use 17 benchmark datasets that contain
multiple continuous target attributes and are mainly from the domain of ecological mod-
eling. The datasets have already been described in Chapter 5, Section 5.1.3. In order to
have as general evaluation as possible, we use datasets of di�erent sizes in terms of the
number of instances, number of predictive and number of target attributes.

7.2.3 Experimental setup

We designed the experimental setup according to the experimental questions posed in
Section 7.2.1. First, we describe all parameter settings of the FIRE-ROS method and then
outline the procedures for statistical analysis of the results.

We estimate the predictive performance of the considered methods by using 10-
fold cross-validation. All methods use the same folds. For statistical evaluation of the
obtained results, we follow the recommendations from (J. Dem²ar, 2006). The Friedman
test (M. Friedman, 1940), with the correction by (Iman & Davenport, 1980), is used to
determine statistical signi�cance. In order to detect statistically signi�cant di�erences, we
calculate the critical distances (CD) by applying the (Nemenyi, 1963) or (Dunn, 1961) post-
hoc statistical tests. Both post-hoc tests compute critical distance between the ranks of
considered algorithms. The di�erence is that Nemenyi post-hoc test compares the relative
performance of all considered methods (all vs. all), whereas Bonferroni-Dunn post-hoc test
compares the performance of a single method to other methods (one vs. all). The results
of these tests are presented with average rank diagrams (J. Dem²ar, 2006), where methods
connected with a line have results that are not statistically signi�cantly di�erent. All
statistical tests were conducted at the signi�cance level α = 0.05. The lower the average
rank, the better performance it signi�es. Tests have been calculated for two variants of
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the results: per dataset (using aRRMSE value for each dataset) and per target (using the
RRMSE values for all targets of all datasets). In both cases, lower values are better. We
used the Bonferroni-Dunn (CD is shown as a dotted blue line) post-hoc test to present
results in Section 7.3.3 and Nemenyi post-hoc test otherwise (CD is shown as a solid red
line).

Methods. We experiment with several methods that solve the MTR task. Here, we
describe the parameters used to run the di�erent methods. For FIRE-ROS, we consider
three types of ensembles: bagging and random forests of PCTs and ensembles of Extra-
PCTs. All ensembles consist of 100 base learners (PCTs or Extra-PCTs). Random forests
and Extra-PCT ensembles use sampling of the descriptive space. The former use

√
|Ad|

and the latter |Ad| (i.e., the k parameter) attributes sampled from the set of all descriptive
attributes (Ad) when searching for the best split within a given node. These values are
recommended by the authors of the two ensemble methods. Random forests and bagging
ensembles use bootstrap replication whereas ensembles of Extra-PCTs do not. The original
FIRE method was parametrized with the same parameters but was only used with the
original random forest ensembles for MTR. FIRE-ROS experiments consider four values
for the output space sizes: 1

4 ,
1
2 ,

3
4 , Random. With v = Random, the ROS ensembles

use a di�erent (randomly selected) subspace size for every PCT in the ensemble. All
ensembles are allowed to grow to the average depth of 3. We consider two types of candidate
rules sets: fully-predictive (F) and mixed (M). The former rule set type consists only
of rules that always predict all target attributes. The latter rule set type also contains
partially-predicting rules, which give predictions for only a subset of target attributes.
Both methods use linear terms. Predictive clustering rules (PCRs) were executed with the
default parameter values. We trained unordered rules using the multiplicative variant of
the search heuristic. Covering weight was set to 0.1 with the covering weight threshold
of 0.1. Maximal number of rules was set to 1000. Target attributes weight was set to
1.0. When using multi-target regression trees (PCTs), F-test pruning was applied. The
threshold was computed using 3-fold cross-validation. Random projections with Random
forests (RP-RF)1 use m = log(|At|) components in the projected output space where At
is the set of target attributes. In addition, Rademacher random projections were used
for output space transformations. We used k = |Ad| randomly chosen input features to
calculate splits. Minimal number of allowed instances in a leaf node was set to 1. Random
Linear Combinations (RLC) algorithm2 was parametrized to use gradient boosting with
4-terminal node regression tree as the base regressor with learning rate of 0.1 and 100
boosting iterations. Number of targets that participate in the random linear combinations
was set to k = 2. Ensembles of Extra-PCTs with ROS (ET-ROS) use 100 trees with
k = |Ad| randomly chosen input features to calculate splits. ROS was initialized with
subspace size of 3

4 and subspace averaging. All competing method were parametrized
according to the recommendations of their respective authors.

7.3 Results and Discussion

Here, we present results of our extensive experimental evaluation of the proposed and
competing methods. Results are presented in terms of predictive performance (aRRMSE,
over�tting score) and interpretability (model sizes). First, we present results regarding
FIRE-ROS variants with di�erent output space sizes and ensemble methods for generating
candidate rules (Sections 7.3.1, 7.3.2). Next, we compare models induced with FIRE-ROS

1Random projections source code is available at https://github.com/arjoly/random-output-trees.
2Random linear combinations source code is available at http://mulan.sourceforge.net.

https://github.com/arjoly/random-output-trees
http://mulan.sourceforge.net
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to the models induced by state-of-the-art MTR methods (Section 7.3.3). Then, we ex-
amine the over�tting score of FIRE-ROS (Section 7.3.4). Furthermore, we address the
interpretability of learned models (Section 7.3.5). Finally, we summarize the results (Sec-
tion 7.4). ROS models induced from only fully-predictive candidate rules are denoted
with the letter F. Otherwise, ROS models are induced from mixed candidate rules and are
denoted with the letter M.

7.3.1 FIRE-ROS parameter selection

In this section, we analyze the predictive performance of FIRE-ROS variants. Figure 7.2
depicts average predictive performance with the average rank diagrams for FIRE-ROS
models. We used three di�erent ensemble methods to generate the candidate rules and we
analyze each of them separately. We have also experimented with two types of candidate
rule sets: only fully-predictive (F) rules and mixed-predictivity (M) rules.
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Figure 7.2: Average rank diagrams comparing predictive performance of FIRE-ROS models
in terms of aRRMSE. Lower ranks are better. Bag, RF and ET denote models where the
candidate rules were generated using the bagging, random forests and extra tree ensembles,
respectively. M and F stand for mixed and fully-predictive candidate rules, respectively.
Labels 0.25, 0.5, 0.75 and Random denote various output space sizes. The best performance
of the proposed method is, on average, achieved with fully-predictive rules originating from
ROS ensembles that use 1

4 of target attributes (i.e., label 0.25, denoting 25% of all target
attributes).

We can immediately see that the performance of models induced from mixed rules is
worse than that of fully-predictive rules (Figure 7.2). Models induced from mixed rules (M)
exhibit the same pattern regarding the improvement/degradation of predictive performance
with all three ensemble methods. Larger ROS subspace sizes perform better. Varying the
ROS subspace size (i.e., Random) performs worst. Conversely, fully-predictive variants (F)
exhibit a slightly di�erent behavior, depending on the ensemble method used. Regardless
of that, all three ensemble methods perform best when subspace size is set to 1

4 . We
therefore conclude that the recommended parameter setting for FIRE-ROS ensembles is
to use fully-predictive candidate rules generated from ROS tree ensemble with output space
size of 1

4 .



86 Chapter 7. Learning and Evaluation of Rule Ensembles with ROS for MTR

Table 7.1: The best performing FIRE-ROS variants. F and M denote fully-predictive and
mixed candidate rule sets. The numbers in brackets represent the output space size.

Ensemble method F (14) F (12) F (34) F (Random) M (14) M (12) M (34) M (Random) Total

Bagging 10 0 1 2 0 3 1 0 17
Random forest 8 2 2 1 0 3 1 0 17
Extra trees 9 1 2 1 0 2 2 0 17

Total 27 3 5 4 0 8 4 0 51

Table 7.1 shows the best performing FIRE-ROS variants. The majority of the winning
parameter settings are indeed fully-predictive rules (F) with output space size of 0.25.
However, some datasets also bene�t from using mixed candidate rules. It is interesting
that in those cases, all three ensemble methods perform best with the same output space
size of 0.5. Only one model parameter setting deviates from this: the Soil resilience
dataset induced from candidate rules generated with the ensemble of extra trees, where
the best output space size is 0.75. This does not come as a surprise. Ensembles of Extra-
PCTs are heavily randomized and pruned (for the purpose of learning FIRE-ROS models).
It is therefore likely the case that a too small output space size leads to the selection
of suboptimal tests resulting in lower predictive performance. In fact, the exact same
output space size (34) was also determined as optimal for ET-ROS decision tree ensembles
in Breskvar et al. (2018a).

7.3.2 Rule set size restrictions for FIRE-ROS

In order to make FIRE-ROS models even more interpretable, we have carried out additional
experiments, where we restricted the number of rules. We induced rule sets with maximal
number of 30, 50 and 100 rules. The graphics are not included but the results show that
generating more rules yields models with better predictive power. This is in line with the
�ndings in (Aho et al., 2012). In addition to that, fully-predictive rules always outperform
mixed candidate rules. We also investigated whether the recommended ROS subspace
size remains the same as with the full rule ensembles. The best performing subspace size
for random forest and Extra-PCTs is 1

4 for all three reduced rule set sizes, which is the
same as with the full rule ensembles. A small deviation was observed with bagging, where
Random is the best choice, when restricting to only 30 or 50 rules. Per target analysis
shows statistically signi�cant di�erences.

7.3.3 Comparison to existing methods

In order to put FIRE-ROS in the broader context of MTR methods, we compare the
best variant (we use the recommended parameter settings) to other MTR methods. Fig-
ure 7.3 shows the obtained results by means of average rank diagrams. All parameters are
explained in detail in Section 7.2.3.

FIRE-ROS outperforms PCRs with statistical signi�cance and PCTs and FIRE without
statistical signi�cance. All state-of-the-art MTR methods (ET-ROS, RP-RF, RLC) out-
perform all interpretable models. Di�erences are statistically signi�cant only with ET-ROS
and RP-RF. In per target analysis, FIRE-ROS additionally outperforms PCTs with sta-
tistical signi�cance. All three state-of-the-art MTR methods outperform all interpretable
models with statistical signi�cance.
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Figure 7.3: Average rank diagrams comparing aRRMSE performance of FIRE-ROS with
aRRMSE of the competing methods. Lower ranks are better. The proposed approach
performs best in the group of interpretable methods. Methods that produce models that
are not interpretable are considered state-of-the-art in MTR and, to no surprise, outperform
all interpretable models.

7.3.4 Over�tting

Figure 7.4 depicts the over�tting comparison of interpretable models. Smaller models
over�t less, which is an expected result. With statistical signi�cance, PCT models over�t
the most. If we ignore the size-restricted models, PCR models are least over�tted. Without
statistical signi�cance, the proposed models over�t marginally more than models generated
with FIRE.
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Figure 7.4: Average rank diagrams comparing over�tting score of FIRE-ROS models com-
pared to FIRE, PCRs and PCTs. Lower ranks are better.

7.3.5 Comparison of interpretabiliy

We compare model sizes of interpretable models generated with the following methods:
PCRs, PCTs, FIRE and FIRE-ROS (with the recommended settings from Section 7.3.1).
The graphics are not included but the results show that the smallest models are produced by
PCRs and PCTs. FIRE and FIRE-ROS generate statistically signi�cantly larger models.
We also compare predictive power of smaller FIRE-ROS models (30, 50 and 100 rules) to
that of PCTs and PCRs.

Figure 7.5 shows that FIRE-ROS achieves the best predictive performance while main-
taining a small number of rules in the ensemble. FIRE-ROS with 50 and 100 rules performs
better than PCRs with statistical signi�cance. FIRE-ROS with 100 rules outperforms
PCTs although not statistically signi�cantly di�erently, while FIRE-ROS models with
50/100 rules perform worse/better than PCTs without statistical signi�cance.
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Figure 7.5: Average rank diagrams comparing predictive performance of smaller FIRE-ROS
models to PCRs and PCTs in terms of aRRMSE. Lower ranks are better.

7.4 Summary

We summarize the main �ndings of the extensive experimental work presented in this
chapter by answering the experimental questions posed in Section 7.2.1.

1. What is the best value for the portion of target space to be used with the

proposed ensembles? Are there any di�erences among the evaluated en-

semble methods? The recommended subspace size is 1
4 . All three ensemble methods

perform best with this setting.

2. Are there di�erences in the ROS output space size with respect to the

ROS tree ensembles? Yes. ROS tree ensembles perform best with Extra-PCTs with
subspace size of 3

4 . FIRE-ROS performs best with the same ensemble method but with
a much smaller subset size of 1

4 . On datasets, where mixed candidate rules perform
best, larger subspace sizes (12 ,

3
4) should be considered.

3. Do partially predicting rules improve the predictive performance? On aver-
age, the best performing rule ensembles use only fully-predicting rules. However, we
have shown that rules with partial predictions are bene�cial for some problems and
lead to better predictive performance.

4. How do FIRE-ROS ensembles compare to the original FIRE ensembles in

terms of predictive performance? In terms of predictive performance, the pro-
posed ensembles outperform the original FIRE ensembles, but the di�erences are not
statistically signi�cant.

5. How do FIRE-ROS models compare to state-of-the-art MTR methods? All
state-of-the-art MTR methods outperform all interpretable models with statistically
signi�cant di�erences in performance. FIRE-ROS outperforms PCRs, PCTs and the
original FIRE method. The per target analysis shows statistically signi�cant improve-
ment of FIRE-ROS over PCRs and PCTs.
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Chapter 8

Conclusions

We propose a novel methodology for learning tree and rule ensembles for multi-target
prediction (MTP). The proposed methods are an extension of the predictive clustering
framework. The presented methodology builds ensembles by learning the individual base
predictive models that focus on subsets of target variables.

The remainder of this chapter contains a summary of the scienti�c contributions of this
dissertation, a discussion with respect to the goals and hypotheses listed in Chapter 1 and
an outline of several directions for future work.

8.1 Contributions to Science

The work presented in this dissertation contributes to the �eld of supervised learning and
in particular MTP. We introduce Random Output Selections (ROS), a novel ensemble
learning methodology that learns individual ensemble members by focusing on di�erent
subsets of all available target variables. The subsets are sampled at random. The size
of an individual randomly sampled subset is a user-speci�ed parameter. The proposed
methodology extends the ensemble methods implemented within the predictive clustering
framework, which use predictive clustering trees (PCTs) and predictive clustering rules
(PCRs) as base learners.

The algorithms for building ensembles required modi�cations. The ROS extension
generates subsets of target attributes prior to learning the base predictive models. Each
base predictive model is then learned by focusing on one of the generated subspaces.
Consequently, the learning of base predictive models also required changes. In particular,
the algorithm for the top-down induction of PCTs was modi�ed in the part, where the
algorithm searches for the best test to split the input data on. The introduced changes
guide the search by focusing only on the restricted target space. The learning on subsets
of target variables raised the question whether predictions of the base predictive models
should be made only for the variables in the learning subset or for all target variables.

The empirical evaluation showed that the models obtained with the proposed approach
have better predictive performance as compared to MTP ensemble models without using
ROS. Moreover, tree ensembles with ROS can outperform the current state-of-the-art in
multi-target regression tasks and perform comparably in multi-label classi�cation tasks.
Rule ensembles with ROS, on average, also outperform two interpretable model types:
predictive clustering rules and predictive clustering trees. The ROS methodology has been
used for solving multi-target regression (MTR) tasks (Breskvar et al., 2018a) as well as
multi-label classi�cation (MLC) tasks (Breskvar, Kocev, & Dºeroski, 2017). In addition to
the benchmark datasets, we also applied ROS to a dataset from a case study. In particular,
we use the Mars Express Power Challenge dataset (Breskvar, Kocev, Levati¢, et al., 2017)
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and build models that predict 33 continuous target variables.
The ROS methodology was also applied in the context of learning rule ensembles. The

existing method, called Fitted Rule Ensembles (FIRE) for MTR, internally uses a random
forest ensemble of PCTs to generate candidate PCRs. An optimization procedure then
selects a small subset of rules from this large pool of candidate rules. The integration of
ROS with the FIRE algorithm was done in several steps. The �rst step was to learn ROS
ensembles of PCTs instead of original ensembles. This step does not change the FIRE
algorithm in any way as it just introduces a di�erent set of candidate rules. The next
step is optimization. Here, changes were required because an individual rule can predict
either a subset or all of the target variables. An individual rule, obtained from a ROS
ensemble, can be fully-predicting (predicting all target variables) or partially-predicting
(predicting a subset of target variables). This is important, because the optimization
procedure internally calculates covariances between the candidate rules. The candidate
pool of rules contains both types and we let the optimization procedure decide which
combination works best. The empirical evaluation showed that the models obtained with
the proposed approach have better predictive performance as compared to the ensemble
models without using ROS. The approach was evaluated on solving MTR tasks (Breskvar,
Kocev, & Dºeroski, 2018b, under review).

In sum, the major scienti�c contributions of the dissertation are as follows:

� A novel methodology for learning tree ensembles with Random Output Selections
(ROS) in the context of the predictive clustering framework.

� A novel methodology for learning rule ensembles for MTR with ROS in the context
of the predictive clustering framework.

� Extensive empirical evaluation of the developed methods across benchmark prob-
lems from various domains, including a comparison to state-of-the-art supervised ap-
proaches for multi-target prediction, which shows better or comparable performance
of the proposed approaches.

8.2 Discussion

Goals

The goals of this dissertation were divided into two categories: the design and implemen-
tation of new algorithms and evaluation of the implemented algorithms. However, the
overall main goal of this dissertation was to contribute to the �eld of machine learning.
In particular, bring novelty to the area of supervised learning for multi-target prediction.
With the introduction and publication of the ROS tree ensemble extension, this goal was
achieved.

Design and implementation goals. In more detail, we estimate that the group of
design and implementation goals has been achieved in its entirety. The algorithm for
TDI of PCTs was adequately extended and can now consider prede�ned target variables
in the heuristic calculations. No changes were required in the prediction mechanism of
a single PCT. The reason for this is that ROS works in context of ensemble models,
i.e., ROS is an ensemble extension method. This means that ROS ensembles handle the
aggregation of predictions of base predictive models and internally hold the information to
make decisions on which attributes should or should not contribute to the overall prediction
of the ensemble. The ensembles contain information about ROS subspaces of all base
predictive models and can therefore make the appropriate calculations when votes need to
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be omitted. In other words, PCTs continue to predict all target variables. The predictions
for individual target variables are considered or discarded within the ensemble prediction
aggregation function and depend on the user-de�ned input parameters. The last design
goal pertains to the extension of the FIRE method, which is now able to use ROS ensembles
to generate the candidate rules. In addition to that, the resulting rule sets can now contain
fully-predicting and partially-predicting PCRs.

The ROS extension is implemented in the publicly available CLUS software. The three
considered ensemble methods can now learn individual base predictive models by using
only subsets of target variables. With tree ensembles, the predictions can be made by
using total averaging or subspace averaging. The former prediction aggregation function
calculates predictions based on all target variables whereas the latter only considers pre-
de�ned subsets of them. With rule ensembles, partially-predicting rules are added to the
pool of candidate rules. At that point, the weights of all rules are optimized and if the
optimization procedure selects a partially-predicting rule into the �nal rule set, it will work
without any modi�cations. The reason for this is that the model produced by the FIRE
method is a simple function that makes per-component sums of numerical values in pre-
dicted vectors. If a partially predicting rule is �red, the prediction for each omitted target
is the number zero, which (in the case of FIRE models) is the same as not predicting
anything but simpli�es the implementation.

Evaluation goals. The evaluation goals relate to the evaluation of the proposed ensem-
ble models for MTR and MLC. Tree ensembles for MTR were evaluated by using bagging
and random forests of PCTs and ensembles of extremely randomized PCTs. We observed
degradation of model performance when using random forest of PCTs with ROS. The
other two ensemble methods did bene�t from using ROS and the resulting models out-
performed their original counterparts. Furthermore, ensembles of extremely randomized
PCTs with ROS and subspace averaging outperformed the competing methods that use
transformations of the output space. Tree ensembles for MLC were evaluated by using
random forests of PCTs with ROS and compared to methods that use transformations of
the output space. Results show that the proposed models perform comparably to models
produced by other methods.

The performance of rule ensembles for MTR was evaluated with all three considered
ensemble methods. The original FIRE method uses random forest ensembles of PCTs to
generate candidate rules. Results show that rule ensembles with ROS also perform best
when using random forest ensembles of PCTs. This is in contrast to tree ensembles, where
ensembles of extremely randomized PCTs perform best. FIRE models were also built
by using candidate rules from bagging of PCTs and ensembles of extremely randomized
PCTs. The ensembles without ROS were built in order to also compare the e�ect of ROS
on bagging and extra trees ensembles.

Hypotheses

We posed several hypotheses, which we will now address in light of the dissertation results.
The �rst hypothesis states that the existing ensemble MTP methods within predictive
clustering can be adapted to sample the output space, which has been con�rmed and
demonstrated in detail in this dissertation.

The second hypothesis relates to the predictive performance of ROS-extended methods.
It was con�rmed partially. More speci�cally, our results show that tree ensembles with ROS
for MTR can outperform their original counterparts with the exception of random forest
ensembles, where the predictive performance degrades. Moreover, tree ensembles with ROS
outperform the state-of-the-art models for MTR in terms of predictive performance. The
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predictive performance improvements of tree ensembles of extremely randomized PCTs
with ROS for MLC are not entirely clear.

Rule ensembles (FIRE method) for MTR were initially implemented to use candidate
rules obtained from an ensemble generated with the random forest of PCTs. We show
that using candidate rules obtained from ROS extended random forest ensembles of PCTs
outperforms the original approach without statistical signi�cance. Other ensemble methods
(bagging of PCTs and ensembles of extremely randomized PCTs) with or without using
the ROS extension did not show promise in the rule learning setting.

The last hypothesis states that the optimal subset size of the output space depends
on the domain. Results of using ROS were often statistically insigni�cant. However, by
inspecting the performance on the individual datasets, substantial di�erences could be
observed depending on the dataset. The optimal ROS output space size also di�ers across
the three ensemble methods. The results suggest using v = 1

2 for Bag-ROS and v = 3
4

for RF-ROS and ET-ROS. Regarding the rule ensembles, all three ensemble methods
perform best with v = 1

2 . This leads us to believe that the appropriate ROS subspace
size and prediction aggregation function are dataset speci�c and would ideally be tunable
parameters. This hypothesis is thus con�rmed.

To summarize, ROS ensembles can have a positive e�ect on the model-learning pro-
cess. In the case of tree ensembles, the ROS ensembles o�er a state-of-the-art predictive
performance for MTR and a performance comparable to that of other output transforma-
tion methods for MLC. Rule ensembles with ROS for MTR perform slightly better than
state-of-the-art rule learning methods for MTR.

8.3 Further Work

The most immediate extension of the work presented in this dissertation is related to rule
ensembles. In particular, Fitted rule ensembles (FIRE) were only extended to MTR. The
extension towards solving MLC tasks is possible by changing the loss function used by
the optimization function. RuleFit ensembles (J. H. Friedman & Popescu, 2008) use the
squared-error ramp loss for solving classi�cation problems. This loss function could be
extended to MLC in a similar manner as was done in the case of MTR tasks. When
learning rule ensembles for MTR, the data is normalized prior to the optimization. This
step is unnecessary in case of MLC, because all target attributes (and therefore predictions
of individual rules) are on the same scale. The result of this would be a novel method for
learning rule ensembles for MLC within the predictive clustering paradigm. Continuing
along this line, learning rule ensembles for MLC with ROS is immediately possible.

An interesting research direction would be an extension towards semi-supervised learn-
ing. Learning ensembles of semi-supervised PCTs is already possible within the predictive
clustering framework (Levati¢, Ceci, Kocev, & Dºeroski, 2014). An extension towards
semi-supervised PCTs with ROS is possible without modi�cations in any of the existing
algorithms. The amount of missing values in the target space has a signi�cant in�uence on
the predictive performance of the resulting models. It would therefore make sense to adapt
the function for generating ROS subspaces so that it takes into account weakly-populated
target attributes. Obtaining semi-supervised rule ensembles for MTR is therefore also
possible, because the FIRE algorithm internally uses ensembles of PCTs. After extend-
ing FIRE towards MLC, semi-supervised rule ensembles for MLC are also immediately
possible.

As we have already hinted in the previous paragraph, the ROS subspaces could be
generated in a smarter way. If we exclude the obvious choice of manually selecting the
subspaces by either consulting with domain expert or leveraging other prior knowledge
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regarding the problem at hand, there are several other ways that the ROS subspaces could
be generated. The current approach generates target subspaces at random, which is not
necessarily the best approach. The relations between target variables could be exploited
in order to generate a smaller set of more sensible subspaces. One approach would be to
transpose the dataset, cluster the target attributes and then learn ROS ensembles by using
the obtained clusters of target attributes.

All proposed approaches could be extended towards hierarchical multi-label classi�ca-
tion (HMLC) tasks. In HMLC tasks, examples can have more than one class (same as with
MLC tasks), with the additional complexity of each class being a part of a hierarchical
structure. When an example belongs to a target class, it automatically also belongs to all
of its parent classes (superclasses). An HMLC hierarchy can be either tree-shaped or in the
form of a directed acyclic graph. An example of a HMLC task with a tree-shaped hierarchy
is annotation of X-ray images, where each target attribute represents a taxonomy of body
parts that can be identi�ed in an X-ray image. An example of a HMLC task with DAG
hierarchy is gene function prediction, where each gene can have multiple functions and
each function can have multiple parent functions/processes. This extension introduces an
interesting problem of selecting the ROS subspaces. One can sample the actual hierarchy
on a per-target basis, the bottom-most nodes in the tree/graph, or both. HMLC tasks also
introduce an additional dimension of complexity, because the datasets are usually very
sparse.

An extension towards solving hierarchical multi-target regression (HMTR) tasks is also
possible. Here, hierarchies are introduced in the form of arbitrary aggregations of target
attributes according to a prede�ned hierarchical structure imposed on them. As PCTs for
HMTR already exist (Mileski, Dºeroski, & Kocev, 2017), ensembles thereof are possible
and consequently the ROS extension can be used. With or without ROS, HMTR can be
implemented without major modi�cations to the existing algorithms for both, tree and
rule ensembles.

For the tasks of MTR and HMLC, ensembles of PCTs are already being used (Petkovi¢,
Dºeroski, & Kocev, 2017, 2018) to obtain rankings of input features. ROS could improve
these approaches, by considering subsets of the set of target attributes in the process of
producing ranks. Another approach would be to use rule ensembles to obtain importances
of input features, as described by J. H. Friedman and Popescu (2008). This approach
would �rst have to be evaluated in the context of MTP tasks in general. If such rankings
would show promise, an extension with ROS would be immediately possible.
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Appendix A

Additional Details on the Evaluation

of Tree Ensembles with Random

Output Selections for Multi-Target

Regression

A.1 Saturation Curves

Below we provide saturation curves of original and ROS ensembles in terms of aRRMSE.
Each dataset is represented with two plots. The left and right plots in each �gure repre-
sent saturation curves for ROS ensembles with total and subspace averaging, respectively.
Horizontal and vertical axes denote the number of ensemble members and aRRMSE re-
spectively. Each ensemble variant is represented with a di�erent color as shown in the
legends. Numbers in brackets represent di�erent ROS subspace sizes.

A.1.1 Bagging ensembles
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Figure A.1: Per-dataset saturation curves for Bag-ROS ensembles.
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Figure A.2: Per-dataset saturation curves for RF-ROS ensembles.



A.1. Saturation Curves 103

A.1.3 Extremely randomized tree ensembles

●

●
●

● ● ● ●

●

●
●

● ● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250

0.92

0.94

0.96

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

ADNI (14T−659)

(a) ADNI

● ●

●
●

●
● ●

● ●

●
●

●
● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250
0.37

0.39

0.41

0.43

0.45

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

ATP 1D (6T−337)

(b) ATP 1D

●

●

●

●

● ● ●

●

●

●

●

● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250
0.44

0.48

0.52

0.56

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

ATP 7D (6T−296)

(c) ATP 7D

●

●

●
● ● ● ●

●

●

●
● ● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250

0.565

0.570

0.575

0.580

0.585

0.590

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

Forestry Kras (11T−60.607)

(d) Forestry Kras

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)



104 Appendix A. Additional Details on the Evaluation of Tree Ensembles with ROS for MTR

●
● ● ● ● ● ●

●
● ● ● ● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250
0.5

0.6

0.7

0.8

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

OES 10 (16T−403)

(e) OES 10

●

●
●

●

● ●
●

●

●
●

●

● ●
●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250

0.52

0.54

0.56

0.58

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

OES 97 (16T−334)

(f) OES 97

●
●

●

●

● ●
●

●
●

●

●

● ●
●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250

0.76

0.77

0.78

0.79

0.80

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

PPMI (35T−713)

(g) PPMI

● ● ● ● ● ● ●
● ● ● ● ● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250

0.80

0.85

0.90

0.95

1.00

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

Prespa top 10 (10T−218)

(h) Prespa lake top 10

●

●
●

●
●

●

●

●

●
●

●
●

●

●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250

0.33

0.34

0.35

0.36

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

RF 1 (8T−9125)

(i) RF 1

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)



A.1. Saturation Curves 105

●

●

●
● ● ● ●

●

●

●
● ● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250
0.335

0.340

0.345

0.350

0.355

0.360

0.365

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

RF 2 (8T−9125)

(j) RF 2

●

● ●
● ● ● ●

●

● ●
● ● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250
0.55

0.60

0.65

0.70

0.75

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

Sales (12T−639)

(k) Sales

●

●
● ● ● ● ●

●

●
● ● ● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250

0.28

0.30

0.32

0.34

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

SCM 1D (16T−9.893)

(l) SCM 1D

●

●
● ● ● ● ●

●

●
● ● ● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250

0.33

0.36

0.39

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

SCM 20D (16T−8.966)

(m) SCM 20D

●

● ●
● ●

● ●

●

● ●
● ●

● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250

0.900

0.925

0.950

0.975

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

Soil resilience (8T−26)

(n) Soil resilience

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)



106 Appendix A. Additional Details on the Evaluation of Tree Ensembles with ROS for MTR

●

●
● ● ● ● ●

●

●
● ● ● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250

0.725

0.750

0.775

0.800

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

Vegetation clustering (11T−29.679)

(o) Vegetation clustering

●

●
● ● ● ● ●

●

●
● ● ● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250
0.60

0.62

0.64

0.66

0.68

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

Vegetation condition (7T−16.967)

(p) Vegetation condition

●

●
● ● ● ● ●

●

●
● ● ● ● ●

Total averaging Subspace averaging

0 50 100 150 200 250 0 50 100 150 200 250
0.89

0.91

0.93

0.95

0.97

Ensemble size

aR
R

M
S

E

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

Water quality (14T−106)

(q) Water quality

● ET ET−ROS (0.25) ET−ROS (0.5) ET−ROS (0.75) ET−ROS (sqrt)

Figure A.3: Per-dataset saturation curves for ET-ROS ensembles.

A.2 Average Rank Diagrams for Saturation of ROS Ensem-

bles

Below we provide average rank diagrams for all considered ROS variants (Bag-ROS,

RF-ROS, ET-ROS) for all considered values of the parameter v ∈
{

1
4 ,

1
2 ,

3
4 ,

1√
At

}
and

the two types of prediction averaging functions. One average rank diagram corresponds
to one choice of a combination of values of the above parameters, for which it compares
ensembles of di�erent sizes (10, 25, 50, 75, 100, 150, 250) base models. The saturation
point is the lowest number of trees in the ensemble for which the performance is not sig-
ni�cantly di�erent than the best. Saturation points are shown in brackets next to value
for parameter v. Lower ranks are better.
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A.2.1 Bag-ROS saturation.
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Figure A.4: Bag-ROS saturation with total averaging.
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Figure A.5: Bag-ROS saturation with subset averaging.
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A.2.2 RF-ROS saturation.
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Figure A.6: RF-ROS saturation with total averaging.
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Figure A.7: RF-ROS saturation with subset averaging.
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A.2.3 ET-ROS saturation.
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Figure A.8: ET-ROS saturation with total averaging.
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Figure A.9: ET-ROS saturation with subset averaging.
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A.3 Predictive Performance Results in Tabular Form

A.3.1 Bag-ROS aRRMSE and over�tting scores.

Table A.1: Predictive performance of bagging ensembles in terms of aRRMSE. PCT
represents multi-target PCTs. Bag-ST represents ensembles of single-target PCTs. Bag
are original bagging ensembles. Bag-ROS are the ROS variants. Ensembles contain 100
trees (ST ensembles contain 100 trees/target).
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Table A.2: Predictive performance of bagging ensembles in terms of OS. PCT represents
multi-target PCTs. Bag-ST represents ensembles of single-target PCTs. Bag are original
bagging ensembles. Bag-ROS are the ROS variants. Ensembles contain 100 trees (ST
ensembles contain 100 trees/target).
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A.3.2 RF-ROS aRRMSE and over�tting scores.

Table A.3: Predictive performance of random forest ensembles in terms of aRRMSE. PCT
represents multi-target PCTs. RF-ST represents ensembles of single-target PCTs. RF are
original random forest ensembles. RF-ROS are the ROS variants. Ensembles contain 100
trees (ST ensembles contain 100 trees/target).
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Table A.4: Predictive performance of random forest ensembles in terms of OS. PCT
represents multi-target PCTs. RF-ST represents ensembles of single-target PCTs. RF are
original random forest ensembles. RF-ROS are the ROS variants. Ensembles contain 100
trees (ST ensembles contain 100 trees/target).
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A.3.3 ET-ROS aRRMSE and over�tting scores.

Table A.5: Predictive performance of extremely randomized tree ensembles in terms of
aRRMSE. PCT represents multi-target PCTs. ET-ST represents ensembles of single-
target PCTs. ET are original extra tree ensembles. ET-ROS are the ROS variants. En-
sembles contain 100 trees (ST ensembles contain 100 trees/target).
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Table A.6: Predictive performance of extremely randomized tree ensembles in terms of OS.
PCT represents multi-target PCTs. ET-ST represents ensembles of single-target PCTs.
ET are original extra tree ensembles. ET-ROS are the ROS variants. Ensembles contain
100 trees (ST ensembles contain 100 trees/target).
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Appendix B

Additional Details on the Evaluation

of Tree Ensembles with Random

Output Selections for Multi-Label

Classi�cation

B.1 Per-Dataset Predictive Performance Results

Below we provide �gures that show the performance of RF-ROS on the 13 benchmark
datasets in terms of 12 di�erent evaluation measures. Each dataset is represented with
one plot that contains two curves: one for each prediction aggregation type (see legend for
color coding). Horizontal and vertical axes denote ROS subspace sizes and values of one
of the 12 calculated evaluation measures, respectively. All points on the plots represent
the performance of RF-ROS ensembles except for the right-most point on all plots (with
subspace size 100%). Those points represent the original RF ensembles which always use
the whole output space.
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B.1.1 Example-based measures
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Figure B.1: RF-ROS performance in terms of example-based accuracy.
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Figure B.2: RF-ROS performance in terms of example-based F1.
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Figure B.3: RF-ROS performance in terms of example-based precision.
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Figure B.4: RF-ROS performance in terms of example-based recall.
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Figure B.5: RF-ROS performance in terms of hamming loss.
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Figure B.6: RF-ROS performance in terms of subset accuracy.
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B.1.2 Label-based measures
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Figure B.7: RF-ROS performance in terms of macro-averaged precision.
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Figure B.8: RF-ROS performance in terms of macro-averaged recall.
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Figure B.9: RF-ROS performance in terms of macro-averaged F1.
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Figure B.10: RF-ROS performance in terms of micro-averaged precision.
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Figure B.11: RF-ROS performance in terms of micro-averaged recall.
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Figure B.12: RF-ROS performance in terms of micro-averaged F1.
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B.2 Average Rank Diagrams for all Evaluation Measures
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Figure B.13: Average rank diagrams for all evaluation measures. Lower ranks are better.



131

Appendix C

Additional Details on the Evaluation

of Rule Ensembles with Random

Output Selections for Multi-Target

Regression

C.1 Average Rank Diagrams of Predictive Performance with

Fixed ROS Subspace Size

Below we provide �gures that show the average rank diagrams of predictive performance
of FIRE-ROS rule ensembles. The diagrams have been calculated on a per-dataset and
per-target basis. For the per-dataset and per-target analyses, we used aRRMSE and
RRMSE values, respectively. Each average rank diagram compares predictive performance
of di�erent-sized FIRE-ROS rule ensembles, while keeping the ROS subspace size the
same for all sizes of ensembles. The value for the parameter v is given in brackets in
the caption of each average rank diagram. The individual ensemble in the average rank
diagram is represented as such: FIRE-A-B-ROS-C-maxD, where A, B, C and D represent
the ensemble method, rule type, ROS output space size and maximal number of rules,
respectively. Ensemble methods are abbreviated as such: Bag (bagging of PCTs), RF
(random forests of PCTs), ET (ensembles of extremely randomized PCTs). Rule types: F
(fully-predicting rules) and M (mixed rules). ROS subspace size: 0.25 (14), 0.5 (12), 0.75
(34), Rnd (Random). Number of rules: 30, 50, 100 rules in the ensemble. Lower ranks are
better.
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Figure C.1: FIRE-ROS performance in terms of aRRMSE (per dataset) and RRMSE (per
target). The initial rules were generated with the bagging ensembles of PCTs.
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Figure C.2: FIRE-ROS performance in terms of aRRMSE (per dataset) and RRMSE (per
target). The initial rules were generated with the random forest ensembles of PCTs.
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Figure C.3: FIRE-ROS performance in terms of aRRMSE (per dataset) and RRMSE (per
target). The initial rules were generated with the ensembles of extremely randomized
PCTs.
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