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Abstract

The work presented in this thesis is situated at the intersection of three research areas: sys-
tems and synthetic biology, mathematical modeling and machine learning. Systems biology
is concerned with understanding the principles of life and the emergence of its complexity
from a systems-level perspective. Synthetic biology is the application of knowledge learned
from systems biology for the purpose of design of novel living systems that behave in an
expected and bene�cial manner. Mathematical modeling is an important aspect of sys-
tems and synthetic biology. It is an established approach to acquiring knowledge about
the structure, function and behavior of dynamical systems. Process-based modeling is a
machine learning approach to computational scienti�c discovery that constructs complete
mathematical models of dynamical systems from knowledge and data.

The major limitations of process-based modeling are the coarse and deterministic for-
mal representation of models and domain knowledge, the limited use of knowledge for
model selection and the con�nement to completely data-driven scenarios. In this work,
we overcome these limitations of process-based modeling approaches and make them more
suitable for application to tasks of modeling and design of dynamical biological systems. In
particular, we extend process-based modeling towards representing and learning of stochas-
tic models, the use of complex and domain-speci�c model selection criteria and, �nally,
towards process-based design.

We present an improved formalism for process-based modeling, which uses a �ner
grained representation of models and domain speci�c modeling knowledge. This formalism
represents interactions, i.e., processes as sets of reaction equations. The new formalism
allows for both deterministic and stochastic interpretation of models and modeling knowl-
edge.

We address the problem of model selection by adapting regularization to the speci�cs of
process-based modeling. We further propose to strengthen the evaluation bias of the learn-
ing process by introducing domain-speci�c criteria and demonstrate that this outperforms
standard approaches to model selection in scenarios with limited observability.

We extend the scope of process-based modeling towards the task of designing dynamical
biological systems that can achieve a desired behavior. We relax the dependence of the
approach to data, make a shift towards completely knowledge-driven learning and take
advantage of methods for simultaneous optimization of multiple problem-speci�c objective
functions. This allows for process-based design of novel biological systems with desired
properties and behaviors.

The presented improvements are evaluated on multiple tasks of modeling and design
from the domains of systems and synthetic biology. The evaluation shows that the process-
based approach can successfully reconstruct, in an automated manner, results from the lit-
erature obtained by manual or related computational approaches. Our approach performs
well on both synthetic and real world problems of modeling and design of deterministic
and stochastic dynamical systems.
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Using the new formalism, our process-based modeling approach was successfully ap-
plied to the reconstruction of the structure and dynamics of gene regulatory networks with
global and local kinetic rates and the learning of compartmental epidemiological models for
the Eyam plague outbreak and the Tristan da Cunha in�uenza outbreak. The strength-
ening of the evaluation bias by domain-speci�c criteria was applied to solve the model
selection problem in the task of modeling the dynamics of the Rab5-Rab7 switch in endo-
cytosis. Finally, our process-based approach was also successfully evaluated by applying it
to two design tasks of constructing a stochastic toggle switch without cooperativity and a
deterministic oscillator.
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Povzetek

Delo, ki je predstavljeno v tej tezi, se ume²£a na sti£i²£e treh raziskovalnih podro£ij: sis-
temske in sintezne biologije, matemati£nega modeliranja in strojnega u£enja. Sistemska
biologija se ukvarja z razumevanjem na£el ºivljenja in z nastankom njihove kompleksnosti
na ravni sistema. Sintezna biologija uporablja znanje, pridobljeno iz sistemske biologije, za
snovanje novih ºivih sistemov, ki se obna²ajo v skladu z na²imi napovedmi in nam koristijo.
Matemati£no modeliranje je pomemben aspekt sistemske in sintezne biologije. To je dobro
uveljavljen postopek pridobivanja znanja o strukturi, funkciji in obna²anju dinami£nega
sistema. Procesno modeliranje je eden od na£inov, kako lahko s strojnim u£enjem pridemo
do znanstvenih odkritij, saj lahko s pomo£jo podatkov in znanja avtomati£no zgradi popoln
matemati£ni model dinami£nega sistema.

Najve£je omejitve procesnega modeliranja so grobi in deterministi£ni formalni opisi
modelov in znanja o domeni, omejena uporaba znanja pri izbiranju modela in uporaba
postopkov, ki so povsem podatkovno vodeni. V tem delu preseºemo omenjene omejitve
procesnega modeliranja, s £imer tak pristop postane primernej²i za uporabo pri modeli-
ranju in na£rtovanju biolo²kih dinami£nih sistemov. Natan£neje, v procesno modeliranje
vpeljemo stohasti£ne modele, kompleksne kriterije izbiranja modelov odvisne od domene,
in procesno na£rtovanje dinami£nih sistemov.

Predlagamo izbolj²an formalizem procesnega modeliranja s podrobnej²o predstavitvijo
modelov in znanja o modeliranju, ki je odvisno od domene. S takim formalizmom opi-
²emo procese oziroma interakcije kot mnoºice reakcijskih ena£b, ki opisujejo te interakcije.
Novi formalizem dopu²£a tako deterministi£no kot stohasti£no razlago modelov in znanja
o modeliranju.

Nalogo izbiranja modelov obravnavamo z regularizacijo, ki je prilagojena posebnostim
procesnega modeliranja. Nadalje predstavimo domensko odvisne kriterije, ki krepijo pri-
stranskost evaluacije u£nega procesa. Pokaºemo, da opisani pristop preseºe standardne
na£ine izbiranja modelov v primeru omejenih moºnosti opazovanja dinami£nega sistema.

Pove£amo domet procesnega modeliranja, ki ga zdaj lahko uporabimo za na£rtova-
nje biolo²kih dinami£nih sistemov, ki se obna²ajo po na²ih ºeljah. Odpravimo odvisnost
procesnega modeliranja od podatkov in naredimo korak proti u£enju, ki ga vodi zgolj zna-
nje, pri £emer izkoristimo metode za so£asno optimizacijo ve£ funkcij koristnosti odvisnih
od naloge. S tem omogo£imo procesno na£rtovanje novih biolo²kih sistemov z ºelenimi
lastnostmi in obna²anjem.

Predstavljene izbolj²ave so bile preizku²ene na ve£ nalogah modeliranja in na£rtovanja
iz domen sistemske in sintezne biologije. Preizkusi pokaºejo, da lahko s procesnim pri-
stopom pridemo po avtomatizirani poti do enakih rezultatov, kot jih sre£amo v literaturi
in so bili pridobljeni ro£no ali s sorodnimi ra£unalni²kimi pristopi. Na² pristop se dobro
odreºe tako pri sinteti£nih kot tudi pri resni£nih problemih modeliranja in na£rtovanja
deterministi£nih in stohasti£nih dinami£nih sistemov.
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Svoj pristop k procesnemu modeliranju z izbolj²anim formalizmom uspe²no uporabimo
pri razpoznavanju strukture in dinamike genskih regulatornih mreº z globalnimi in lo-
kalnimi reakcijskimi hitrosti ter pri u£enju kompartmentalnih epidemiolo²kih modelov za
izbruha kuge v Eyamu in gripe na otoku Tristan da Cunha. Okrepljena pristranskost pri
evalvaciji s pomo£jo domensko odvisnih kriterijev je bila uporabljena pri izbiranju modela
za dinamiko preklopa Rab5-Rab7 v endocitozi. Na² pristop je bil uspe²no preizku²en tudi
na dveh nalogah na£rtovanja, kjer je bilo treba konstruirati stohasti£no preklopno stikalo
brez kooperativnosti in deterministi£ni oscilator.
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Chapter 1

Introduction

The work presented in this thesis lies at the intersection of mathematical modeling, ma-
chine learning and biology. The presented methodology for modeling and design is based
on systems thinking. It is motivated by the ideas of understanding highly complex and dy-
namical phenomena, by analysis of the relationships and interactions of constituent parts of
a complex system, using the systems approach (von Bertalan�y, 1968). The methodology
is implemented as a machine learning (Mitchell, 1997) algorithm, i.e., the computational
simulation of the empirical scienti�c process of modeling as a tool for construction of
descriptive, representational models of physical systems (Langley, Simon, Bradshaw, &
Zytkow, 1992), intended for better understanding of the nature of the relationships and
interactions in them. We apply the proposed methodology in the domain of biology, more
precisely, within systems and synthetic biology, primarily at the molecular level.

1.1 Background

1.1.1 Systems biology

Systems biology takes a systems-theoretic approach to the study of biological systems. In
contrast to the traditional reductionist approach, systems biology goes beyond the study
of individual parts and towards system-level understanding of complex systems using a
holistic/emergentistic approach to biology.

The main approach to achieving a system-level understanding of biological processes
is the transfer of ideas and approaches from systems theory and systems engineering to
applications in biology (Wolkenhauer, 2001). Systems biology as a discipline within this
frame of reasoning can be considered to be formally established in the 1960s (Mesarovi¢,
1968). However, modeling e�orts and perspectives that can be considered as systems
approaches to biology date back to the 1950s. Notable examples are the development and
analysis of a dynamical model of neuronal action potential by Hodgkin and Huxley (1952),
for which they were awarded the Nobel Prize in Physiology or Medicine and the discovery
of feedback inhibition of amino acid biosynthetic pathways (Umbarger & Brown, 1957;
Yates & Pardee, 1957).

The rise to prominence and the subsequent rapid expansion of systems biology begins
with the 21st century, due to the great success of the Human Genome Project and the de-
velopment of a critical mass of high-throughput technologies in molecular biology, enabling
the generation of massive amounts of biological data (brie�y summarized in the histori-
cal perspective by Westerho� and Palsson (2004)). The large amount of generated data
and the subsequent shift of focus within the community, from the analysis of single con-
stituents of a biological system towards a more general and integrative system-level view
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of the dynamics and the emergent properties of biological systems, motivated the outreach
to and the tighter integration with the �elds of formal systems analysis, information the-
ory and computer science. This is evident from the accounts from this period by Kitano
(2000, 2002b) and Ideker, Galitski, and Hood (2001). The positive feedback between these
�elds led to the rapid development of computational tools and their use for formalization
and exchange of knowledge, computational modeling, simulation and analysis of models,
knowledge discovery, and data analysis (Kitano, 2002a).

1.1.2 Modeling dynamics in biology

From the earliest works in systems biology on, modeling as a tool for systems-level under-
standing of complex systems, has been, and still is, paramount to the �eld and its further
development. Within the scope of this work, a model is assumed to provide an exact
mathematical description of a dynamical system. We refer to the process of modeling of a
dynamical system, as descriptive scienti�c modeling.

A mathematical model provides insight into the constituents of the system and the
network of interactions between them (the structure) that give rise to the dynamical be-
havior over time and under di�erent conditions. At the lowest level of abstraction, which
allows for adequate interpretation (simulation of the dynamical system), the behavior of
the system is represented by the changes of its state as a function of time, which is often
nonlinear and complex. Mathematically this dynamical behavior is most appropriately
captured by di�erential equations.

Traditionally, the model is represented a set of coupled ordinary di�erential equations
(ODEs), describing continuous and deterministic system evolution. An alternative repre-
sentation of models uses a set of coupled stochastic di�erential equations (SDEs), explicitly
modeling the various sources of �uctuations, or more generally, taking into account the dis-
crete nature of the state of the system. Another alternative is the representation that uses
reaction equations with stochastic kinetic rates.

Model
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Figure 1.1: The cycle of descriptive modeling, control and design of dynamical systems in
biology.
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The descriptive modeling approach is central to the discovery of knowledge about the
structure, function and behavior of a complex dynamical system. The structure of a
complex dynamical system, most often, cannot be directly and completely observed. It is,
however, somewhat easier to observe and measure the behavior of the dynamical system.

Given measured behavior, the descriptive modeling approach, referred to as system
identi�cation (Ljung, 1999) and depicted in the upper part of Figure 1.1, is an e�cient
tool for the discovery and validation of knowledge about an observed dynamical system.
The induction of knowledge follows the next steps: First, postulate hypotheses about the
structure of the system and the functional form of the interactions within the structure,
i.e., models. Second, test each model against the measured data. Finally, select as best
the model that most adequately explains the measurements. The knowledge about the
system captured by a model is subject to experimental validation which can be performed
in vivo or in vitro. The obtained knowledge can be further used to guide the design of new
experiments that result in new observations and measurements, which can be subsequently
used to revise existing or generate new knowledge/models.

The insights gained through the identi�cation loop are crucial for the application of
control mechanisms to the system. The identi�cation of the structure of the system and the
speci�c form of its interactions allows for targeting speci�c system properties towards the
goal of achieving control over its behavior. The construction of appropriate controllers for
the control loop is thus another mechanism for the revision and generation of knowledge.
The application of system identi�cation and control approaches within systems biology has
resulted in an improved understanding of the basic functional building blocks and design
principles of dynamic biological systems (Alon, 2007; Tyson & Novak, 2010).

1.1.3 Synthetic biology

The construction (design) of novel systems that exhibit desired behavior, through the ap-
plication of knowledge gained from the system-level understanding of biological systems
(via the modeling and control loops), is the goal of synthetic biology. While the focus of
systems biology is on the problem of identi�cation of dynamical systems, in synthetic biol-
ogy the focus is shifted towards the design of dynamical systems (lower part of Figure 1.1).

Synthetic biology develops in parallel to the expansion of systems biology (Cameron,
Bashor, & Collins, 2014). Important �rst milestone applications of synthetic biology are
the development of the �rst synthetic toggle switch (Gardner, Cantor, & Collins, 2000) and
the repressilator (Elowitz & Leibler, 2000). These applications triggered a period of devel-
opment and analysis of parts (basic elements) and modules which are composed of parts
and have speci�c functions. This, in turn, led to many e�orts aimed at combining parts
and modules, towards real-world applications, resulting in one of the major achievements
of this period: the development of a registry of standard parts (Canton, Labno, & Endy,
2008). However, the predominantly manual (wet-lab) development of these parts by using
the available genetic engineering techniques (Carr & Church, 2009; Gaj, Gersbach, & Bar-
bas III, 2013), although achievable, is still a tedious and costly task. Further development,
towards the combination and integration of these parts into more complex system-level cir-
cuits (named the second wave of synthetic biology (Purnick & Weiss, 2009)), is therefore
conditioned by the move towards integrating the in-silico loop within the process, i.e., the
development and use of computational modeling approaches (Marguet, Balagadde, Tan, &
You, 2007; Kaznessis, 2007).

From a more recent perspective, as evident from the targeted applications of systems
and synthetic biology, especially within biotechnology and biomedicine (Khalil & Collins,
2010; Wolkenhauer, 2014), the task of modeling for knowledge discovery becomes more
demanding. The manual approach does not scale well with the current developments and
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needs, given the increasing complexity of the systems being considered and the need for
model re�nement in light of increased availability of data. Furthermore, synthetic biology
is witnessing rapid development of novel technologies for genome engineering and editing
(e.g., the recent identi�cation and exploitation of the CRISPR/Cas system (Jinek et al.,
2012; Cong et al., 2013; Doudna & Charpentier, 2014)). This leads to an increase in the
number and the complexity of designs that can achieve a desired behavior for the targeted
application (Kelwick, MacDonald, Webb, & Freemont, 2014), and need to be considered
and implemented for a given synthetic biology task.

The use of computational approaches would allow for many designs (models) to be
considered in-silico, while only a few selected candidate designs would make it to the
wet-lab stage.

1.1.4 Machine learning

Recent computational approaches to knowledge discovery automate the task of modeling
dynamical systems and bear a lot of potential for further advancement in the areas of
systems and synthetic biology. The process of knowledge discovery through descriptive
modeling, as previously described, can be cast into a learning task: Learn a model of a
dynamical system that adequately explains the observations of the behavior of the system.
This exactly matches the general paradigm of machine learning. Within computer science,
machine learning explores the development of algorithms that solve problems by learn-
ing, i.e. algorithms that improve their measurable performance with experience (Mitchell,
1997). Within machine learning, the algorithms that address the induction of functions
from observations belong to the paradigm of supervised learning. The task of modeling
from observations can be cast into a supervised learning task. In particular, this task in-
volves learning the structure (function) and the parameters of a model, guided (supervised)
by the observed outcome of the model in the form of numerical time-series.

However, the modeling of dynamical systems is a special form of supervised learning,
since it does not �t the standard framework for two reasons. First, the observations of
a system in machine learning are assumed to be independent and identically distributed
point observations of system properties or behavior (examples) clearly labeled with the
expected value of a conditional variable (target property or behavior). When considering
dynamical systems, this general independence assumption breaks down. The state of a
dynamical system changes as a function of time, dependent on the previous state(s) of the
system. Its observations therefore come in the form of time-series of measurements.

Second, in machine learning, the classes of functions that are most commonly consid-
ered correspond to broad families of functions, such as the family of linear or non-linear
functions, the family of logic formulas (rules/trees) or the family of discrete or continuous
probability functions (Hastie, Tibshirani, & Friedman, 2009). These broad families of func-
tions are preferred due to their ability to easily capture common patterns in observations
from di�erent domains, and their relatively low cost of training (optimization) and evalu-
ation. When considering the task of modeling dynamical biological systems, these general
classes of functions are not well suited. It is important to take into account that the
processes within the dynamical biological systems are intrinsically and physically guided
by a very speci�c form of interactions. Furthermore, these interactions that comprise the
system (and represent its structure), and their explicit functional forms (which guide the
dynamics of the system) need to establish a formal basis of knowledge about the system
and as such, they need to be easily understandable, interpretable and communicable by
and to domain experts.

Therefore, machine learning approaches to modeling dynamics rely on methods for
computational scienti�c discovery approaches (Langley et al., 1992). They are designed
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to allow for learning from both knowledge and time-series of observations. The use of
task speci�c knowledge provides a way to induce understandable and communicable mod-
els. Computational approaches to scienti�c discovery follow closely (mimic) and assist,
by automation, the manual empirical approach to modeling dynamical systems. These
approaches are based on the simulation of human cognitive processes dealing with problem
solving (Newell & Simon, 1972). Two basic concepts are at the foundation of problem
solving, upon which all further approaches build upon: The formal representation of the
problem space and search for the problem solution within this space as a selective process
guided by heuristics, as opposed to random trial and error.

Approaches to computational scienti�c discovery have been used in numerous domains
for diverse problems (Dºeroski & Todorovski, 2007). Historically, they have been applied
to rediscovery of laws in physics, chemistry, and ecology from observations. Later they
have been applied to model revision and discovery of new knowledge. Most recently,
process-based modeling (Dºeroski & Todorovski, 2002; Todorovski, Bridewell, Shiran, &
Langley, 2005; Bridewell, Langley, Todorovski, & Dºeroski, 2008; �erepnalkoski, Ta²kova,
Todorovski, Atanasova, & Dºeroski, 2012; Simidjievski, Todorovski, & Dºeroski, 2016) has
emerged as a quantitative computational scienti�c discovery approach speci�cally tailored
to modeling dynamical systems from knowledge and data. It has been successfully applied
to several case studies of reconstructing biochemical reaction networks (Dºeroski & Todor-
ovski, 2008), modeling aquatic ecosystems (�erepnalkoski et al., 2012; Simidjievski, Todor-
ovski, & Dºeroski, 2015) and watershed modeling (�kerjanec, Atanasova, �erepnalkoski,
Dºeroski, & Kompare, 2014).

1.2 Motivation

When modeling the dynamics of biological systems we are faced with several sources of
uncertainty. Regardless of whether the modeling goal is to explain a set of observations,
generate new insights, revise existing beliefs or achieve expected behavior, the uncertainty
may be fundamental and come from the (lack of) knowledge, i.e., the level of understanding
of the structure and the dynamical behavior of the biological system. The two fundamental
types of uncertainty in modeling dynamical systems concern the structure of the model
and its parameters.

Another source of uncertainty comes from the intrinsic properties of the system, such as
the stochastic nature of reactions at the molecular level. Since the modeling task is usually
guided by the available observations, further sources of uncertainty may come from the
experimental procedure used to obtain them. These may include noise due to variability
of external experimental conditions, measurement noise and limited observability of the
properties of the model. All of these sources of uncertainty have to be taken into account
during the modeling process in order to produce valid models: This makes modeling a hard
task.

In the following, we brie�y present the di�erent formalisms for representing models and
the fundamental uncertainties in model structure and parameters together with existing
approaches to resolving these uncertainties. We identify the limitations of the existing
approaches. We further identify the process-based modeling approaches as a good can-
didate for further development, aimed at addressing these limitations. A more detailed
overview of these formalisms and approaches, including process-based modeling, is given
in Chapter 2.
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1.2.1 Representing uncertainty

There is a lack of �exible formalisms for capturing the available knowledge and uncertainties
which at the same time are general enough to allow for di�erent interpretations of the
encoded models. The process-based modeling formalism is an example of a formalism that
allows for representing both uncertainty in the structure and in the parameter values of
a model. As such, it represents a good candidate for further development, mainly in the
direction of encoding stochastic models.

A mathematical description of a model of a dynamical system takes the form of a sys-
tem of coupled di�erential equations dxi

dt = fi(x, θi, t), where x represents the set of system
variables(i.e., variable properties of the constituent entities of the dynamical system) at
time t, functions f describe the structure of the system in terms of its processes, and θ is a
set of constant parameters. The formal representation of the structure of a model de�nes
the assumptions about the nature of the interactions between constituents, capturing the
intrinsic properties of the system. The fundamental structural uncertainty can be declar-
atively represented by hypotheses about the constituent entities, their properties and the
interactions between them in the system being modeled. The formal representation of
structural uncertainty requires means for de�ning the di�erent possible forms of functions
fi that re�ect the available knowledge about the system being modeled. The larger the
space of possibilities for f , the larger the structural uncertainty.

The model parameters additionally de�ne the speci�c interactions within the model.
Their values are also related to the model behavior. The second fundamental uncertainty
is therefore related to the values of the constant parameters in the models. The formal rep-
resentation of uncertainty in the parameter values requires means for de�ning the possible
range of values for each parameter (aji ≤ θ

j
i ≤ b

j
i , where a

j
i , b

j
i ∈ R, j = 1..|θi|). The wider

the range, the larger the uncertainty. In order to best capture the available knowledge,
a formalism for representing models of dynamical systems in biology should be able to
capture the fundamental uncertainty in model structure and parameter values.

An important property of a formalism is also its ability to represent the e�ect of the
stochasticity of the model interactions that are part of its structure. For example, to
allow for including the appropriate terms within fi that approximate the various sources
of intrinsic or extrinsic noise. Even further, at the intracellular level, the biochemical
reactions can be considered to be a result of random collisions of a discrete number of
constituents. The stochastic �uctuations in these systems are responsible for the emergence
of speci�c phenotypes or genetic activities on one hand, or divergence of behavior on the
other (McAdams & Arkin, 1997; Arkin, Ross, & McAdams, 1998; Samoilov, Plyasunov, &
Arkin, 2005). Deterministic representations fail to account for the underlying stochasticity
of biological systems, especially if the modeled system is observed at the molecular level
and contains only a small number of molecules.

At the level of representation of models with �xed structure and parameter values, the
most widely used formalisms are di�erential equations and the more abstract representation
of reaction equations. However, the low-level representation using a system of coupled
di�erential equations or a set of reaction equations cannot be used to directly and explicitly
represent structural uncertainty nor uncertainty in parameter values. Furthermore, the
direct representation using these mathematical formalisms is often rigid and complex, and
fails to communicate the common structural patterns within a dynamical system.

Many higher-level formalisms have been proposed focusing on di�erent aspects of the
structure of the modeled system, capturing di�erent properties of the system (Machado
et al., 2011; Bartocci & Lió, 2016). They are usually complementary to the mathematical
representation using di�erential equations. They aim at alleviating the process of modeling
complex systems by imposing a more intuitive, understandable and constructive approach.
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The formalisms used for systems biology applications focus primarily on the optimal
representation of a single model with a �xed structure. For example, a number of for-
malisms have emerged that deal with the need for compact representation arising from the
complexity of the space of the combinations of elementary interactions of a similar form
between entities observed in a given biological system. These formalisms allow for speci-
fying rules (constraints) that limit the space of potential interactions between entities on
the basis of their properties. There exist several classes of these formalisms, most notably
the class of rule-based modeling formalisms (Feret, Danos, Krivine, Harmer, & Fontana,
2009; Faeder, Blinov, & Hlavacek, 2009) and process algebras (Priami & Quaglia, 2004;
Ciocchetta & Hillston, 2009). Note that the encoded constraints do not address the issue
of structural uncertainty in any way.

For synthetic biology applications, a number of formalisms allow for the formal speci�-
cation of rules or constraints imposed on the space of possible model components and their
composition (Pedersen & Phillips, 2009; Bilitchenko et al., 2011). The model components
considered correspond to standardized biological parts with speci�c behaviors, such as those
de�ned in the registry of standard parts (Canton et al., 2008). Although combinations of
di�erent parts can be explored in order to satisfy the constraints, the composition-oriented
formalisms do not allow for explicit speci�cation of structural uncertainty. Additionally,
these parts have �xed interaction properties and parameter values.

Even though the process of descriptive modeling of dynamical systems requires the gen-
eration and testing of multiple competing structural hypotheses, only few computational
approaches formalize and systematically address this issue for systems and synthetic biol-
ogy applications. Some approaches come from the area of network reconstruction where
the structural uncertainty is de�ned by the probability of presence of edges (interactions)
between nodes (constituents) in a network (Bansal, Belcastro, Ambesi-Impiombato, & di
Bernardo, 2006; Penfold & Wild, 2011). Other, optimization-based approaches, encode
the structural uncertainty in the form of uncertainty in the parameter values of a more
general model (Rodrigo, Carrera, & Jaramillo, 2007; Dasika & Maranas, 2008; Marchisio
& Stelling, 2009; Sendin, Exler, & Banga, 2010) or in the form of a single integer param-
eter that represents di�erent manually enumerated structural hypotheses (Toni, Welch,
Strelkowa, Ipsen, & Stumpf, 2009; Barnes, Silk, Sheng, & Stumpf, 2011). It is worth
noting that these approaches, in addition to the ability to consider multiple structural
hypotheses, allow for the de�nition of uncertainty in the parameter values. However, only
a small number of them are �exible enough to allow for both deterministic and stochastic
interpretation of the models.

Process-based modeling formalisms use domain speci�c knowledge to represent con-
stituent entities and interactions between them (processes). The process-based formalisms
are complete, in the sense that they can e�ciently encode uncertainty in both model
structure and parameters. The formalism used by process-based approaches is based on
the notion that knowledge of a speci�c domain of application can be speci�ed in the form
of templates of system constituents and interactions, clearly de�ned by the domain, which
can be further organized in taxonomies. ProBMoT (Process-Based Modeling Tool), devel-
oped by �erepnalkoski (2013), is the most recent contribution to the area of process-based
modeling. Its formalism allows for the introduction of incompletely speci�ed process-based
models, also based on domain knowledge. The incomplete models are a way to de�ne the
space of possible candidate model structures. They impose additional constraints on the
uncertainty in the structure and the numerical parameters encoded in a general library of
domain knowledge.

However, the existing process-based formalisms are currently limited to only deter-
ministic interpretation of the dynamics of the modeled system. The description of the
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interactions between the system constituents within the process-based formalism relies on
the coarse representation using fragments of ordinary di�erential equations. A �ner grade
representation of processes is a desirable feature. It can broaden the possibilities of inter-
pretation in the direction of capturing the inherent stochasticity of dynamical systems in
biology.

1.2.2 Resolving uncertainty

Process-based modeling (PBM) o�ers an approach to identifying the structure and the
parameter values of a formally represented model. However, the existing PBM approaches
are data-driven. Additionally, they rely on a single goodness-of-�t criterion to resolve
the uncertainty in the structure and the parameter values. The process of resolving the
uncertainty has to be guided by a well de�ned modeling goal. As such, it should take into
account all the sources of knowledge and uncertainty in a most e�cient manner.

At the level of structural uncertainty, if a formal representation thereof is available,
it can be resolved by automated enumeration or search, guided by problem-speci�c con-
straints imposed on the formally de�ned general knowledge. By automation, this process
can be easily scaled in terms of the number of considered candidate structures.

Composition-oriented approaches do not require an explicit representation of uncer-
tainty. Instead, an objective of the task of resolving the uncertainty is de�ned based
on the expected input-output behavior of the system. The approaches then infer a se-
ries of intermediary logic gates and connections, necessary to produce the desired behav-
ior. The resulting logical circuit is then transformed into a model by using rule-based or
composition-oriented formalisms, which produce a valid composition of well-characterized
parts from a library.

The class of approaches that cast the problem of resolving structural uncertainty into
a task of network reconstruction are primarily concerned with the reconstruction of inter-
actions based on the statistically signi�cant dependence between observations of di�erent
constituents. They transform each candidate model structure into a system of di�erential
equations. However, the type of interactions between the constituents is considered to have
a single predetermined form.

The class of optimization-based approaches are able to consider a broader range of
objectives for resolution of the structural uncertainty. The objectives can consider the
goodness of �t of the model to the available observation, but also more general properties
of the behavior of the model. The optimization-based approaches cast models into the
formalism of ordinary di�erential equations or into a set of reaction equations. They
reduce the structural uncertainty to the level of uncertainty in the parameter values and
further solve the problem by applying parameter estimation.

If there is no formal representation of the structural uncertainty, the space of struc-
tural hypotheses can be also de�ned manually by enumeration of speci�c candidate model
structures. The set of structures can also be a result of the continuous manual revision of a
single candidate structure through trial and error. The manual enumeration or revision are
tedious tasks, which can be performed for a relatively small number of diverse candidate
model structures.

At the level of parametric uncertainty, a model cast into a system of di�erential equa-
tions or reaction equations requires the determination of the constant parameter values
(parameter estimation). The parameters are estimated by using a chosen objective func-
tion(s), which guides the optimization process towards prede�ned modeling goals. Many
di�erent optimization methods have been used for parameter estimation in systems biology
(Moles, Mendes, & Banga, 2003; Sun, Garibaldi, & Hodgman, 2012). In systems biology,
the objective function used for parameter optimization is based on the comparison of the
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observed time-course data to the simulations produced by the model structure with a set
of candidate parameter values. The aim of parameter estimation is then to minimize the
di�erence between the two. In contrast to systems biology, where observed behaviors are
available and used in the optimization process, in synthetic biology the desired behaviors
are not directly observed, but are rather speci�ed by using a criterion or a set of criteria
that the desired behavior has to satisfy (Rodrigo et al., 2007; Dasika & Maranas, 2008;
Barnes et al., 2011; Silk et al., 2011).

From a machine learning point of view, the task of resolution of uncertainty can be
solved by using a two-level learning approach. The resolution of uncertainty relies on the
formally encoded knowledge and the measured data (or a desired behavior), which are used
to re�ne the space of structure hypotheses into candidate model structures at the �rst level.
The optimization of the model parameter values for the candidate model structures takes
place at the second level. At the end of the learning process, a model is selected from the
list of candidates that most adequately �ts the designated modeling goals (optimization
objectives).

The learning strategy of PBM approaches is search within a well de�ned model space
constrained by domain knowledge, coupled with numerical optimization guided by a single
objective function. The objective function is based on goodness-of-�t to observations of
the modeled system, represented by the sum of squared errors. This objective function
does not always re�ect the goal of the modeling task, which can result in a hard model
selection problem. This is especially true for the task of design of dynamical systems where
this objective function cannot be used (due to the lack of observed data). Observations
should be replaced by a description of the criteria that need to be satis�ed in order for the
desired behavior to be achieved. Note that a suitable design might have to simultaneously
ful�ll multiple design objectives (expected properties of behavior), which, in general, can
be independent or even con�icting. A multi-objective optimization approach guided by
goal speci�c criteria would be the most general and adequate approach.

1.2.3 Model selection

The process of resolving uncertainty and its existing limitations (in general, and in PBM
in particular) is directly related to the ensuing problem of model selection. Within PBM,
especially in the most recent approaches, the problem of model selection has received little
attention. Model selection can be performed to choose the most suitable model based on
di�erent available criteria (Cedersund & Roll, 2009; Kirk, Thorne, & Stumpf, 2013). The
selection of the most appropriate model within PBM is performed only on the basis of
the achieved optimized performance of the candidate models obtained during the learning
process. This approach to model selection, especially when considering structurally diverse
candidate models, inevitably leads to over-�tted models.

A classical approach to over-�tting avoidance in machine learning and statistics is the
selection of a model with the least generalization error. If we consider the most common
tasks in machine learning, this approach requires an abundance of observations coming from
a large number of experiments. These observations can be used to both learn a model and
test its predictive performance. In a train-test type of approach, the models are learned
(trained) using a subset of observations. The power of generalization is then measured
(tested) by the error over observations that have not been used in the learning process.
The smaller the error, the better the model captures the relevant information within the
observations, and the better the generalization power of the model. However, this kind of
task is rarely considered within the domains of system and in synthetic biology, usually
due to the lack of quality observations, the price of repeating and maintaining experiments
for a longer time, or both.
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What remains as an important source of information for descriptive modeling tasks,
that can be used to approximate the generalization power of a model, is captured within the
bias introduced in the learning process. Formally, Mitchell (1997) de�nes bias as �any basis
for choosing one generalization over another, other than strict consistency with instances�.
There exist two types of bias: representational (language) bias and evaluation (procedural)
bias. The speci�c functional form of the interactions within the system, the uncertainty
in both structure and parameter values, and the constraints over the model space that the
uncertainties de�ne for a speci�c instance of a problem, correspond to the representational
bias. The measurements used for the evaluation of the suitability of a certain candidate
model, given observations or a target behavior, correspond to the evaluation bias.

Ideally, the knowledge encoded in both types of bias during the learning process can be
used to compensate for the lack of complete observations, or for observations with lower-
grade quality, and guide the model selection process. It is typical for model selection to
make use of additional knowledge about the desired properties of the structure in conjunc-
tion with the �t of the model in order to strengthen the evaluation bias and improve the
estimate of the generalization error of a candidate model. This approach to model selection
is typically based on the parsimony principle. Generally, it is based on regularization of
a goodness-of-�t or a likelihood function, such as the Akaike information criterion (AIC)
(Akaike, 1974), the Bayesian or Schwarz information criterion (BIC) (Schwarz, 1978) or
Minimum Description Length (MDL) (Grünwald, 2007). However, the e�ciency of model
selection (using these or related methods) is proportional to the amount of relevant as-
sumptions and information about the model structure and its behavior captured by the
biases.

While the process-based modeling formalisms can be e�ciently used to encode domain
knowledge, i.e., introduce the most relevant representational bias to the learning process,
it does not make use of the complete information in the process of optimization and model
selection. The evaluation of the performance of each candidate model is limited to the
single goodness of �t function of its simulation and the observations used for parameter
estimation. Therefore, the introduced evaluation bias is weak. The �rst step towards an
improved model selection is the strengthening of bias, following the parsimony principle
(Tanevski, Todorovski, Kalaidzidis, & Dºeroski, 2013). The next step is the strengthening
of the evaluation bias by the introduction of problem speci�c criteria related to the desired
properties of the simulated behavior of the system. In order to estimate the complete
structure and parameter values of a model of a complex biological system, one criterion in
the form of an error function is not su�cient. This is especially the case for applications in
the domain of synthetic biology, where the modeling task is completely knowledge-driven.

1.2.4 Synthesis

The area of computational biology lacks a uni�ed approach to automated modeling and
design of dynamical systems. We thus turn to machine learning approaches to compu-
tational scienti�c discovery, i.e., process-based modeling. Even though the current PBM
approaches can be used to encode and resolve uncertainty in both structure and parameters
in an automated manner, they are limited in their applicability to the domains of systems
and synthetic biology. We have identi�ed the following issues that need to be addressed:

• The PBM formalisms are coarse and limited to representing deterministic models. A
good process-based formalism should be close to the basic mathematical formulation,
and easily understandable by biologists/modeling experts, on one hand, and allow
for both deterministic and stochastic interpretation, on the other hand.
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• Model selection within PBM is an important problem that has received limited atten-
tion. The model selection problem in PBM stems from the explicit representation of
structural uncertainty. Known approaches to model selection should be adapted and
applied to the speci�cs of the PBM task. Furthermore, the use of domain knowledge
in the di�erent stages of the modeling process can be used to strengthen the bias and
alleviate the model selection problem.

• PBM approaches are completely data-driven and are not suitable for design appli-
cations. Based on the domain-speci�c strengthening of the evaluation bias, the shift
from a completely data-driven towards a predominantly knowledge-driven approach
can lead to process-based design of dynamical biological systems.

The purpose of the dissertation is the development of a complete approach to automated
process-based modeling and design of dynamical systems in systems and synthetic biology
by overcoming the limitations of the existing approaches.

1.3 Goals

The goals of the dissertation relate to the speci�cs of the design, implementation and
evaluation of the process-based approach to the automated construction of deterministic
and stochastic models in systems and synthetic biology:

• Improved process-based formalism. The �rst goal is concerned with the design of an
improved formalism for process-based modeling that extends the current formalisms
towards the modeling and interpretation of the stochastic, reaction-based nature of
the dynamical systems in the targeted application domains. This can be achieved by
extending the existing PBM formalism to support reaction equations. The interac-
tions between the entities in the system will remain in the form of template processes,
but will be extended to contain biochemical reactions. The reactions will represent
the discrete change of the properties of the constituent entities, parameterized with
a stochastic rate.

• Model selection and bias strengthening. The second goal is related to the problem
of model selection for process-based modeling. The model selection based on the
goodness-of-�t of each candidate leads to selection of over�tted models. Model se-
lection can be approached with standard regularization methods and will be further
improved by strengthening the evaluation bias using information about the structure
and the simulated behavior of the model.

• Process-based design. The third goal is to extend PBM approaches to completely
enable knowledge-driven modeling. We will develop an approach that does not re-
quire measured data, but is in turn based on objective functions that describe a
desired behavior, ful�lling the crucial precondition for the design of novel dynamical
systems. Depending on the complexity of the modeled system, the implementation
of a simultaneous optimization of multiple objective functions is required in order to
target speci�c properties of the behavior of a dynamical system. Subsequently, the
selection of a design has to be performed on the basis of the information available
from the multi-objective optimization of each candidate.

The improvements to the process-based approach to meet all of the aforementioned
goals require the development of a software tool. The tool should be aimed at allowing
biological experts to easily manipulate component combinations and develop explanatory
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models of biological systems from measured data, as well as discover/design of (new) bio-
logical networks based on descriptions of their desired behavior. This can be achieved by
the implementation of an internal stochastic representation of the process-based reaction
models and adaptation of state-of-the art stochastic simulators to the improved represen-
tation; integration of heuristic optimization of the parameter values of candidate models
based on adequate arbitrary objective functions for speci�c modeling tasks; and integration
of multi-objective optimization algorithms within the developed tool.

Finally, the proof of concept can be achieved by evaluation. The software tool can be
used to illustrate the utility and evaluate the performance of the developed approach. This
requires: the encoding of process-based knowledge for various real and benchmark modeling
problems in systems and synthetic biology by using the equation based and the newly
developed reaction based formalism, the de�nition of modeling tasks based on performed
experiments from the literature and benchmark modeling tasks; and the comparison of the
results obtained by the process-based approach to the published results, in a real-world
scenario, or to a previously chosen ground truth model in a benchmark scenario.

1.4 Contributions

The work presented in this thesis comprises several contributions to the areas of machine
learning (process-based modeling), systems biology and synthetic biology. A complete list
of publications related to this thesis is available in the back matter in the Bibliography
section. Each one of the following main contributions of the thesis is related to one of the
goals outlined above:

• A process-based formalism, for representing models and domain speci�c modeling
knowledge, that allows for both deterministic and stochastic interpretation; an al-
gorithm for learning models represented in this formalism and its implementation
within a process-based modeling tool; its evaluation in terms of reconstruction of
complete models of dynamical systems from both synthetic and real world data has
been published in a journal article (Tanevski, Todorovski, & Dºeroski, 2016a).

We present an improved and extended higher-level formalism for process-based mod-
eling and design of dynamic biological systems, addressing the limitations of previous
formalisms. The major improvement comes from the representation and interpreta-
tion of the stochastic nature of processes, i.e., interactions among constituent entities
in systems. The representation of process dynamics is based on reaction equations, a
powerful and �exible formalism for relating the temporal evolution of the properties
of reactant and product entities. The reaction-equation based representation is di-
rectly related to the basic understanding of the behavior of the constituent entities in
an interaction from a biological perspective. In addition to allowing for a determin-
istic representation of the dynamical behavior (by reduction of process-based models
to systems of ordinary di�erential equations), models represented in the formalism
are reducible to two di�erent mathematical representations that capture the stochas-
ticity of a biological system, i.e., to a chemical master equation or to a system of
stochastic di�erential equations.

• An approach to model selection in PBM that combines domain-independent and
domain-speci�c criteria and its application to the domain of modeling the dynamics
of the Rab5-Rab7 switch in endocytosis. This work has been presented at conferences
(Tanevski et al., 2013; Tanevski, Todorovski, & Dºeroski, 2013) and published in a
journal article (Tanevski, Todorovski, Kalaidzidis, & Dºeroski, 2015).
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We demonstrate that the model selection issue, so far largely neglected within PBM,
can be approached by regularization, i.e., by considering the complexity of the struc-
ture of a process-based model in addition to the goodness of �t criteria. Addition-
ally, we show that the strengthening of the evaluation bias of the learning process by
the introduction of domain-speci�c criteria outperforms the standard regularization
based approach to model selection for PBM. To this end, we consider a real world
problem of modeling the Rab5-Rab7 dynamics in endocytosis from noisy data and
limited observability. We encode domain-knowledge within the evaluation criteria, in
the form of objective functions that are not completely data-driven and accordingly
adapt the heuristic parameter estimation.

• A methodology for process-based design, its implementation and evaluation on task
of designing deterministic and stochastic dynamical biological systems. These have
been presented in conference proceedings (Tanevski, Simidjievski, & Dºeroski, 2012)
and a journal submission (Tanevski, Todorovski, & Dºeroski, 2016b).

We develop a methodology for process-based design of dynamical biological systems
by combining the reaction-equation based formalism and a multi-objective optimiza-
tion approach. This approach allows for learning within the process-based modeling
formalism by taking advantage of a completely data-free evaluation bias in combina-
tion with a domain-knowledge based representational bias. We have shown that it
can be used to design novel dynamical systems that can achieve desired behaviors.
Taking advantage of methods for parameter estimation by simultaneous optimiza-
tion of multiple, potentially con�icting, problem speci�c objectives, we develop an
approach to select among alternative designs. This approach uses the hyper-volume
indicator of the overall (multi-objective) quality and the complexity of the designs.

1.5 Organization

This introductory chapter has provided an overview of the development and the basic
concepts in the di�erent subject areas at the intersection of which the topic of this thesis
is situated. It has further identi�ed the limitations of the existing approaches that have
motivated our research on this topic, the goals we have set ourselves, related to overcoming
these limitations, and the scienti�c contributions resulting from the achievement of these
goals.

Chapter 2 gives an overview of the related work. Three di�erent aspects of the related
work are presented. First, we review the modeling formalisms that are commonly used for
representing dynamical models in the areas of systems and synthetic biology. Second, we
summarize the related methods that have been considered for inferring models of dynamical
biological systems. Third, we look at the process-based modeling approaches that are
closely related to the work presented in this thesis.

The following three chapters are dedicated to the three scienti�c contributions of the
thesis. They describe the work performed towards the achievement of each of the above
goals and the contribution resulting from the achievement of each goal.

Chapter 3 presents the formalism for stochastic process-based modeling of dynamical
systems, which bridges an existing gap between the process-based modeling approaches
and the standard approaches for modeling in systems biology. We present its use within
a process-based modeling tool, which is evaluated on four tasks of reconstructing system
structure and dynamics from synthetically generated and real world data. The tasks come
from two domains: two from the domain of gene regulatory networks and two from the
domain of epidemiology.
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Chapter 4 presents the bias strengthening approach to model selection, which uses
domain-speci�c criteria in addition to domain-independent ones. The evaluation of the
approach is performed by focusing in more depth on the model selection problem using
for the task of modeling the mechanism of Rab5 - Rab7 conversion switch during the
maturation of the endosome. The di�culty of this speci�c model selection problem is
due to the limited observability and presence of noise in the data which are frequent
issues in real-world modeling tasks from the domain of systems biology. We consider
and compare di�erent model selection criteria for this task, both domain-independent and
domain-speci�c, as well as combinations thereof.

Chapter 5 presents a methodology for process-based design of dynamical biological
systems that brings together process-based modeling and multi-objective optimization.
We describe the use of domain-speci�c knowledge for representing the uncertainty in the
structure and parameters of candidate models/designs. We also use such knowledge for the
description of di�erent objectives that can be simultaneously considered for optimization
and selection of models/designs that lead to the desired behavior. We illustrate the advan-
tages of process-based design on the tasks of designing a stochastic toggle switch (without
cooperativity) and a deterministic oscillator.

Finally, Chapter 6 concludes the dissertation. It sums up the performed research,
presents a summary of the contributions, and outlines several directions for further work.
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Chapter 2

Related Work

2.1 Modeling Formalisms for Systems and Synthetic Biology

A formalism is a well de�ned set of syntactic rules for representing entities and the interac-
tions between them. Apart from the syntax, formalisms convey the means of interpretation
of its representation. Various formalisms can represent the same biological model. The
interpretation of a formally represented model of a dynamical system is a realization of
its behavior trough time, often referred to as simulation. The modeling formalisms for
systems and synthetic biology di�er both in their syntax and semantics, due to the under-
lying assumptions about the physical properties of the biological system and the intended
application of the models that they represent.

The �rst di�erence is at the level of abstraction of the interpretation of the formally
represented model. The models can be qualitative or quantitative. Qualitative models
represent systems and their dynamical behavior in an abstract and descriptive manner.
Although they are most often built empirically, they do not require precise information
about the numerical properties of constituents and the interaction between them. Quan-
titative models o�er a more precise and detailed view of the dynamical system. They
incorporate complete mechanistic and kinetic details of the dynamical system and pre-
cisely represent the physical and chemical processes underlying the interactions. Their use
requires detailed knowledge about the system being modeled.

Another di�erence is in the properties of the state-space de�ned by the model. The
state space is the valid space of values for the variable properties of the interacting entities.
These properties can be represented and interpreted as discrete or continuous.

Dynamical systems change their state over time, so the interpretation of formally rep-
resented models can di�er in the treatment of the temporal properties of the interactions
between the entities. The interactions within the dynamical system can be considered as
occurring in discrete time intervals or continuously.

Finally the formalisms di�er by the interpretation of the determination of the state-
space as a function of time. The state of a system can be interpreted deterministically,
i.e., its temporal evolution is completely determined by the de�ned interactions and their
properties. It can also be interpreted stochastically i.e., its evolution is in�uenced by
stochastic interactions, probabilistically de�ned by their properties.

In the following subsections we make a brief overview of a selection of modeling for-
malisms frequently used in systems and synthetic biology in terms of the aforementioned
di�erences and their application. More detailed overviews are given by Machado et al.
(2011) and Bartocci and Lió (2016). We start by describing the important features of
purely qualitative modeling formalisms such as Boolean networks, and continue towards
the intersection of qualitative and quantitative formalisms, where we consider Petri nets
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and process algebras with their various extensions. Finally, towards the quantitative end,
we describe rule-based formalisms, reaction equations and di�erential equations.

It can be seen that the extensions of the initially qualitative formalisms aim at enabling
quantitative generalizations. The quantitative representations are further extended to
cover stochastic interactions. At the lowest level of abstraction, these generalizations result
in the representation of a dynamical system in the form of Markov processes, which allow
for numerical simulation (execution) under more realistic assumptions.

Quantitative modeling formalisms that enable �ne grained representation of the dynam-
ics of the interactions are preferred for synthetic biology applications. These applications
require detailed understanding of the mechanisms of interaction within the dynamical sys-
tem in order to make realistic predictions about the behavior of the design and generate
potential candidates for wet lab realization. Finally, enabled by the e�ort to standardize
biological parts, formal representations of synthetic biology constructs (designs) can be
highly abstract. Each part contains speci�c details about its compatibility and charac-
terization of its functional properties, therefore the formal representation of a dynamical
system may consist only of parts and their composition, resulting in �composition-oriented�
formalisms.

2.1.1 Boolean networks

Boolean networks a as formalism for modeling genetic regulatory networks has been in-
troduced by Kau�man (1969). It since has been applied also for modeling di�erent types
of regulatory systems in biology. A Boolean model is a network representation of a dy-
namical system, where each constituent (entity) is a node in a network represented by a
Boolean (1/0) state. For di�erent entities, such as genes, proteins or stimuli, the state rep-
resents qualitative properties, such as expression/inexpression, concentration above/below
threshold, modi�ed state (ex. change due to phosphorylation/dephosphorylation), or pres-
ence/absence of stimulus. The state of each node is a function of the states of other nodes
that are connected to it, constructed from basic logical operators, such as NOT, AND and
OR, de�ning the interactions within the network.

The Boolean networks are qualitative and discrete in terms of the representation of
state-space and time. Each state of a node can be updated at a discrete time interval,
resulting in a trajectory that represents the dynamical behavior of the node through time.
Although there exist modi�cations of Boolean networks that introduce a level of stochas-
ticity (Akutsu, Miyano, & Kuhara, 2000; Shmulevich, Dougherty, Kim, & Zhang, 2002;
Chaves, Albert, & Sontag, 2005), their interpretation is principally deterministic.

Boolean networks are appropriate for large scale systems with hundreds of entities
and interactions between them. Most often they are considered as �rst step of modeling
when there is an abundance of experimental data about a large set of entities obtained by
high-throughput omics methods, but lack of detailed knowledge of possible mechanisms
of interaction and kinetics. As such, they are appropriate for generation of hypotheses
by data-driven network inference or for representing global system properties arising from
the structure of the inferred networks. These properties can relate to the node centrality,
clustering and modularity of the network, or its stability, e.g., steady-states (attractor
states) (Jeong, Mason, Barabasi, & Oltvai, 2001; Basso et al., 2005; Klamt, Saez-Rodriguez,
Lindquist, Simeoni, & Gilles, 2006; Saez-Rodriguez et al., 2009).

Although Boolean networks can be used for conceptual planning and system design
in synthetic biology, their application is predominantly reserved for top-down modeling
approaches in systems biology. An overview of Boolean modeling and its applications is
given by Wang, Saadatpour, and Albert (2012).
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2.1.2 Petri nets

Petri nets, named after their creator Carl Gustav Petri, are a graphical and mathematical
formalism for representing concurrent systems (Petri, 1962).

A basic Petri net represents a system as a bipartite digraph consisting of two types
of elements, places and transitions. Places correspond to interacting entities or variable
physical quantities. Transitions correspond to interactions. Visually, places are represented
by circles, transitions by squares. The state-space is represented by a discrete distribution
of tokens across places in the graph. Tokens represent the current value of a variable
represented by a place. The places are connected (place to transition, transition to place)
to transitions by weighted arcs. The weights represent the number of tokens needed to
cross the arc (transit, �re the reaction), and the number of transfered tokens as a result
of the transit. For applications to modeling molecular biological systems, the weights of
the arcs on the input and output of a transition correspond to the stoichiometry of the
reactants and products. The transfers are assumed to be able to be executed concurrently,
however in �xed time intervals.

The models represented by basic Petri nets have discrete state-space and time and
their interpretation is deterministic. The application of models represented by basic Petri
nets is therefore limited to qualitative analysis of the modeled system (Reddy, Liebman,
& Mavrovouniotis, 1996; Kü�ner, Zimmer, & Lengauer, 2000; Zevedei-Oancea & Schuster,
2003). However, many extensions have been developed, bringing the formalism towards
the representation of quantitative models of dynamical systems (Hardy & Robillard, 2004).

Stochastic Petri nets, one of the �rst quantitative extensions, di�er from basic Petri
nets by the interpretation of the nature of the transitions within a model. They can be used
to adequately capture the stochastic nature of processes, in�uenced by intrinsic or extrinsic
noise. The transitions within a model, represented by a stochastic Petri net, are considered
to occur at time intervals drawn from an exponential distribution with predetermined rate
parameter. The rate parameter can also be calculated as a function of the state of the input
places, thus better capturing the stochastic kinetics of the interaction. The stochastic Petri
nets can therefore be considered as an alternative to the direct representation by using a
set of stochastic reaction equations.

Other extensions that allow for quantitative modeling using Petri nets are the contin-
uous, hybrid and functional Petri nets. The continuous and hybrid extensions a�ect the
state-space representation. In continuous Petri nets, the places can be assigned continuous
state values, representing continuous variables such as concentrations. Hybrid Petri nets
can have discrete or continuous states assigned to its places. Functional Petri nets allow for
the explicit de�nition of the speed of transition, corresponding to a kinetic rate, usually as
a function of the state of the input symbols. The continuous or hybrid and functional Petri
nets have therefore continuous representation of state-space and continuous representation
of time. They are interpreted deterministically and can be considered as an alternative to
the direct representation by using a system of coupled ordinary di�erential equations.

Due to their versatility, Petri nets can be used to perform both qualitative and quan-
titative analysis. They have been used to model di�erent types of dynamical systems in
biology and have been proposed as a formalism for design of novel systems for synthetic
biology (Chaouiya, 2007; Heiner, Gilbert, & Donaldson, 2008).
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2.1.3 Process algebras

Another family of formalisms initially developed for representing concurrent systems, later
adopted for modeling dynamical systems in biology, is the family of process algebras (Pri-
ami & Quaglia, 2004). The focus of process algebras (Milner, 1980) is the representation of
the distributed communication between independent agents (processes) interacting through
shared channels of communication by executing atomic actions. The sharing of channels
between processes de�nes the topology of the network of interactions.

One of the �rst formalisms to be adopted for use in biology was the π-calculus (Milner,
Parrow, & Walker, 1992). Regev, Silverman, and Shapiro (2001) demonstrated that the
π-calculus can be used to represent and qualitatively analyze the behavior of molecular
signalization pathways. In the π-calculus, the processes represent biological entities. The
channels through which a process can communicate represent the properties of these en-
tities. Finally, the communication between processes that share channels represents the
dynamical interactions within the system.

In contrast to other formalisms, process algebras have several features that allow for
the e�cient representation of models. First, they allow for the representation of sequence
of interactions, which a process (entity) can take part in. Second, they allow for the
representation of concurrent interactions between di�erent entities. Furthermore, they
allow for de�ning competitiveness by representing di�erent, uniformly distributed exclusive
interaction options. They also allow for representing interactions that e�ectively modify
the possibilities for interaction of di�erent entities, by means of sending and receiving
communication channels to and from other entities. Finally, they allow for representation
of compositionality. The behavior of a complex system can be represented by rules of
interaction, based on the properties of the entities, and their composition.

Similar to Petri nets, process algebras were initially used to represent qualitative models
of dynamical systems in biology. The π-calculus is used to represent systems with discrete
state-space. The actions within the system are instantaneous and the time is orthogonal to
them. Process algebras require further extensions to be more suitable for broader range of
applications within biology, and account for representing biological phenomena that are not
supported by the basic process algebras. These extensions are related to the representation
of compartments, bidirectional communications, reversibility and a�nity of actions.

Among approaches that extend the descriptiveness of process algebras are the Brane
Calculi (Cardelli, 2005), Beta binders (Priami & Quaglia, 2005) and CCS-R (Danos &
Krivine, 2007). One of the most important extensions is the encoding of quantitative
information related to the communication between processes. Therefore, a number of
approaches such as the BioSPI (Priami, Regev, Shapiro, & Silverman, 2001), and Bio-
PEPA (Ciocchetta & Hillston, 2009) have been developed that rely on stochastic variants of
process algebras such as the stochastic π-calculus and the Performance Evaluation Process
Algebra (PEPA). The stochastic process algebras rely on the continuous representation of
time and incorporate the temporal dimension within the communication by assigning a
rate of a performed action. The rate represents a parameter of an exponential distribution
that accounts for the duration of the action. As a result the available actions, given the
current state of the model, are assumed to be in a race condition in which only the fastest
action will be selected to proceed. This allows the generation of a continuous time Markov
chain from the system representation that can be further used for quantitative analyses.

The process algebras are powerful formalisms that can be used to represent complex
systems in biology in an abstract but compact manner. On the other hand, the main
downside is their understandability. The abstract but relatively complex representation of
dynamical systems o�ered by process algebras may be intuitive to computer scientists or
telecommunications engineers, however it may prove di�cult for adoption by biologists.
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2.1.4 Rule-based formalisms

Closely related to the process algebras and more recent are the rule-based formalisms. They
are used for indirect detailed speci�cation of (usually) large dynamical systems (Chylek
et al., 2014). The main concept is that instead of specifying the entire set of interactions
that comprise a dynamical system, a signi�cantly smaller set of rules can be speci�ed in the
form of classes of interactions (reaction generators), from which they can be reconstructed.
The development of rule-based formalisms is motivated by the tedious task of representing
a network of interactions between entities for which every conformation or state needs to
be explicitly enumerated and accounted for (e.g., by a di�erent variable). Their use is
therefore indicated for modeling dynamical systems for which the size of the set of rules
of interactions is signi�cantly smaller than the set of all interactions, such as signaling
pathways and protein-protein interaction networks.

The most general description of the representation of dynamical systems using rule-
based formalisms is based on graphs (Blinov, Yang, Faeder, & Hlavacek, 2006; Lemons, Hu,
& Hlavacek, 2011). The structure of each constituent of a dynamical system (or complex)
is represented by a colored and attributed graph (or connected set of graphs). The nodes
are the molecular components (e.g., protein domain) colored with the type of the molecule
they belong to, each associated with attributes that represent its state (e.g., conformation,
phosphorylation). The edges of the graph represent the noncovalent bindings between the
constituents. The interactions in the system are encoded by rules comprised of two parts:
a �reactants� side, a set of graph patterns to be matched, which represent the su�cient
conditions for an interaction to happen, and a �products� side, a set of graph patterns,
which represent the result from the interaction. A mapping of nodes between the reactant
and product patterns is assumed. The consequence of a rule is therefore the rewriting
of reactant and product graphs (physical change in the structure of the constituents) as
a result of an interaction. Each rule is followed by a constant rate which applies for all
interactions that will be generated as a result of rule matching.

In most domain speci�c instances, such as the κ (Feret et al., 2009), BioNetGen (Faeder
et al., 2009) and BIOCHAM (Fages, Soliman, & Chabrier-Rivier, 2004) languages, rule-
based modeling formalisms are used for quantitative modeling. The state of the system
is considered to be discrete and de�ned by the set of all graphs at a given time. The
interpretation of rules can be both deterministic and stochastic depending on the task.
Dynamical systems represented by using rule-based formalisms can be resolved using an
initial (seed) state and iterative application of rules, resulting in a network of reactions or
a system of ordinary di�erential equations.

2.1.5 Composition-oriented formalisms

Composition-oriented formalisms are high level formalisms applied to problems in synthetic
biology, designed to obscure as much detail as possible from the process of modeling.
The motivation comes from the computer aided design languages available for designing
electronic circuits. The focus is at the level of representing a construct by composition of
functional parts, trading-o� the concern of detailed de�nition of the structure or kinetics
of the interactions. The composition-oriented formalisms are based on the assumption
that a comprehensive list of well characterized design parts exist, such that can be used
interchangeably. Di�erent implementations trade o� the level of abstraction of di�erent
aspects of the design. Syntactically, the formalisms are diverse and range from domain-
speci�c implementations of formal languages to object-oriented programming languages.

The formalism employed by GenoCAD (Cai, Hartnett, Gustafsson, & Peccoud, 2007),
one of the �rst tools for synthetic biology, is based on a context-free grammar. Within
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the grammar, biological parts (e.g., part identi�cation number or genetic sequence of a
promoter, RBS, protein coding sequence, spacer, terminator) are de�ned as terminals, while
a complete hierarchy of constructs (e.g., Cistron, Operon, Device, System) can be de�ned
at the level of non-terminals in the grammar. At this level of abstraction, GenoCAD can
be used to only de�ne syntactically correct construct (valid ordering to enable correct gene
expression), while the function of the construct remains unde�ned. A further improvement
of the GenoCAD formalism includes attribute grammars, which contain information about
the structure-function relationship of the di�erent parts within the construct (Cai, Lux,
Adam, & Peccoud, 2009). This improvement allows for conversion of the construct into
a quantitative model with continuous state-space and interactions that can be interpreted
deterministically.

Eugene (Bilitchenko et al., 2011) is in�uenced by high-level hardware description lan-
guages. At the conceptual level it allows for de�nition of a list of Parts and their com-
position into Devices which can be collected into a System. Eugene enables de�nition
of speci�c Parts by instantiation of the part object with di�erent lower level properties
(e.g., part id, sequence, orientation, kinetic properties), which can be directly mapped to
a library of physical parts. The Devices are de�ned by a combination of compositional
rules and conditionals imposed on the list of Parts. Subsequently, the devices can de�ne
di�erent �nal constructs, composed of di�erent Parts that adhere to the rules, enabling
the possibility of exploration of the design space.

The GEC formalism (Pedersen & Phillips, 2009) adds another level of abstraction by
not requiring knowledge of speci�c parts and introduces the concept of part types. The
assumption is that two di�erent databases are available. First, a database of well de�ned
parts belonging to one of the possible types (promoter, RBS, protein coding regions, termi-
nator). The low-level properties are also de�ned for each part and may serve as constraints
(type of regulation, target of regulation, kinetic properties). Second, a database of pro-
totype reactions in the form of reaction equations that take into account the properties
of the parts. The construct representation is then based on de�ning the desired physical
composition based on part types and imposing property-based constraints.

2.1.6 Di�erential equations and reaction equations

Good high-level formalisms tend to capture, at a lower level, quantitative representation of
the dynamical behavior that is reducible to an exact mathematical representation. Under
the assumption that biological systems are well-stirred chemical systems in thermal equi-
librium, models in biology are represented mathematically as a set of continuous variables
that evolve through time deterministically, according to a system of coupled ordinary di�er-
ential equations. Modeling using a system of di�erential equations allows for encoding all
the details needed for their interpretation. Models represented using di�erential equations
are models represented at the lowest abstraction level, where every detail is fully speci�ed.
The formalism of ordinary di�erential equations (ODEs) is well accepted in the biologi-
cal community due to its historical relationship with related �elds such as (bio)chemistry,
ecology and epidemiology (Murray, 1993).

However, the representation using a system of ODEs is not adequate for molecular sys-
tems with a small number of copies (only few orders of magnitude above one) of the reactive
entities. The deterministic representation fails to account for the underlying stochasticity
of natural systems (Wilkinson, 2006; Lecca, Laurenzi, & Jordan, 2013). A more general
alternative to using a deterministic and continuous representation of these systems is a
representation by using reaction equations. The latter can treat the system as discrete in
terms of entities, but also stochastic in terms of the interactions between them. By using
a set stochastic reaction equations as a baseline representation, the system is considered
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to be composed of a set of molecular entities with a discrete number of copies that inter-
act through a number of coupled reactions. Together with the appropriate kinetic rates,
the model de�nes a network of possible transitions between system states with assigned
probabilities. The stochastic dynamical behavior of the system, resulting from the possible
state transitions through time, is captured by the evolution of the probability distribution
over all possible discrete states that the system can be in (Gillespie, 1992). This exact
representation of the dynamics of the system is referred to as the chemical master equa-
tion (CME) of the system (McQuarrie, 1967). It can be shown that under increasingly
restrictive assumptions the CME can be approximated by a system of stochastic di�eren-
tial equations (SDEs), representing the Langevin Equation of the system, and further by
a system of ODEs (Turner, Schnell, & Burrage, 2004; Gillespie, 2000).

Most of the approaches for systems and synthetic biology rely on modeling using re-
action equations and di�erential equations. The use of these formalisms allows for the
complete and most realistic analysis of the properties of the structure and the behavior
of a dynamical system, taking into account potential aberrations and the application of
control mechanisms.

2.2 Inferring Models of Dynamics in Biological Systems

Recall that the resolving of the fundamental structural and parametric uncertainties are
the two parts of the process of modeling and design of dynamical biological systems. Re-
gardless of whether the two types of uncertainties are formulated as a single problem that
can be solved to resolve both of them simultaneously, or as two consecutive and depen-
dent problems, they can be cast into the frame of �nding the best solution among a set
of possibilities. Within this frame, the problem can be approached by either search or
optimization strategies.

Both search and optimization have a long history, branching into a large number of
sub�elds, focusing on speci�c types of problems and the development of strategies for
their solution. Here, we focus only on a relatively small subset of approaches to resolving
uncertainty, applied to problems coming from the domains of systems and synthetic biology,
represented through examples of related work relevant to the topic of this thesis.

Search is the predominant problem solving strategy used in arti�cial intelligence and
machine learning (Russell & Norvig, 2010). A search problem is symbolically represented
using the following components: a state space S; an initial state s0 ∈ S; a mapping t, which
maps a state s to a subset of actions A = {ai|ai : S → S} applicable to s, representing a
transition model; a goal test function g : S → {true, false}, which determines if a state
ful�lls the prede�ned properties of the goal of the search, by making use of information
from the already explored states; and a cost function f : (S, t) → R, used to guide the
search towards a goal state. Multiple states in the search space can be goal states of the
search. The solution of a search problem is the path from the initial to a goal state, i.e.,
the set of actions taken to reach the goal.

Optimization (mathematical programming) is the task of �nding the best possible
solution to a problem, subject to an objective function, from a (constrained) space of
alternatives. Optimization is commonly applied to problems in various domains ranging
from science and engineering to �nance and management.

Mathematically, optimization is de�ned as the minimization or maximization of a func-
tion f : S → R, that maps the elements from a non-empty set of solutions S = {si|si ∈ D},
where D = D1 × · · · ×Dk is the domain of the variables comprising a solution, to a real
valued number, by �nding a solution s∗ such that ∀s ∈ S : f(s∗) ≤ f(s), if f is subject to
minimization or f(s∗) ≥ f(s), if f is subject to maximization. The set of solutions S is
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also known as a solution or a search space of the problem. Each solution s ∈ S is subject
to constraints {gi(s) ≤ 0, i = 1, . . . , n} ∪ {hi(s) = 0, i = 1, . . . ,m}, where n,m ≥ 0.

The function f is also known as objective, �tness, cost or utility function. The choice
of an objective function is central to the optimization problem. The shape of f in the
objective space given a set S de�nes the di�culty of an optimization problem and the type
of optimization algorithm that can be applied to solve the problem.

2.2.1 Approaches to complete model inference

The modeling formalisms for systems and synthetic biology are commonly used to encode
a model of a dynamical system with �xed structure and parameter values. Surprisingly
small amount of attention has been given to the problem of direct and formal encoding of
uncertainties in the structure and the parameter values of quantitative models. Among the
approaches to complete model inference where a reconstruction is performed of both the
causal interactions within a system, their speci�c form and the resulting dynamical behav-
ior, the following classes can be identi�ed: the class of composition-oriented approaches,
the class of network reconstruction based approaches, and the class of optimization-based
approaches.

The class of composition-oriented approaches are used for the task of design of biological
systems. These approaches cast the problem of complete model inference into a combina-
torial search problem. Given a collection of de�ned parts, constraints on their composition
can be imposed using rule-based formalisms, such as κ and BioNetGet (Marchisio, Co-
laiacovo, Whitehead, & Stelling, 2013; Wilson-Kanamori, Danos, Thomson, & Honorato-
Zimmer, 2015) or composition-oriented formalisms, such as GEC and Eugene. These
constraints de�ne a space of candidate compositions with valid physical implementations
(DNA sequence) for a single structure that can be enumerated by combinatorial search and
further analyzed by experts. Approaches such as Proto (Beal, Lu, & Weiss, 2011) and Cello
(A. A. K. Nielsen et al., 2016) make use of composition-oriented formalisms and implicitly
consider the possibility of structural uncertainty within the composition. They de�ne and
resolve structural uncertainty through a high-level description of design objectives. The
design objectives are formulated as a Boolean function of parts that are identi�ed as input
and output of the system by using a functional Lisp-like language (Proto) or a high-level
hardware description language (Cello). These approaches �rst infer an abstract network
representation of a composition of standard parts that implements all intermediary logic
functions needed to achieve the objective. These compositions are then resolved into a
speci�c physical construct using Eugene or more advanced methods, such as MatchMaker
(Yaman, Bhatia, Adler, Densmore, & Beal, 2012). All of these approaches infer models
by resolving only the structural uncertainty. The type of interactions among the model
components and the values of the parameters of these interactions are prede�ned and �xed.

A lot of work has been done on the topic of large-scale biological network reconstruction
from expression data (Bansal, Belcastro, et al., 2006; Penfold & Wild, 2011). However,
only few of the approaches to network reconstruction are exception from the standard
approaches that consider only the statistically signi�cant dependence between the obser-
vations as the evidence for interaction and neglect the dynamics of the interactions. The
approaches to complete model inference based on network reconstruction cast the net-
works into a system of ODEs and try to infer causal interactions between the entities.
These methods are applied to problems of structure identi�cation for large-scale networks.
Therefore additional assumptions and simpli�cations are taken into account that make
these approaches computationally feasible. All of these methods follow the assumption
that the same form of kinetics applies to all interactions, most frequently linear kinetics
with additional terms for degradation or external in�uence (Gardner, di Bernardo, Lorenz,
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& Collins, 2003; Bonneau et al., 2006; Bansal, Gatta, & di Bernardo, 2006). Since a
model represented by a system of di�erential equations requires computationally expen-
sive numerical integration, some approaches take into account only the steady states of the
entities (Gardner et al., 2003; Bonneau et al., 2006), and solve only for the steady state of
the system. Others try to discretize and reduce the dimensionality of the system (Bansal,
Gatta, & di Bernardo, 2006). When it comes to constraining the space of possible model
structures, some methods employ data-driven heuristics (Wahl, Haunschild, Oldiges, &
Wiechert, 2006; Bonneau et al., 2006), while some of them additionally limit the space
of structures based on the interactions already documented in the literature (Wahl et al.,
2006; Henriques, Rocha, Saez-Rodriguez, & Banga, 2015). In general, these methods are
adequate for generation of initial model structures, candidates for revision upon availability
of data and hypotheses about the speci�c types of interaction dynamics.

The third class of optimization based approaches require the rigid representation of
structural uncertainty as parameters. They also allow for speci�cation of broader class of
objectives related to the properties of the behavior of the model (Marchisio & Stelling,
2009). The di�erent possible structures can be encoded by rules for evolution of the struc-
ture of a dynamical system (François & Hakim, 2004), by simple manual enumeration of
equation-based models, or as parameters within a single, general equation-based model
that indicate the presence of individual fragments (interactions) within its structure. Once
formulated as an optimization problem, di�erent methods can be applied towards its solu-
tion. The target of the optimization can be a single objective (Rodrigo et al., 2007; Dasika
& Maranas, 2008; Toni et al., 2009) or multiple objectives (Sendin et al., 2010; Barnes
et al., 2011; Higuera, Villaverde, Banga, Ross, & Morán, 2012; Otero-Muras & Banga,
2014). These approaches are further discussed in the subsection that follows.

A recent work by Villaverde and Banga (2013) gives a general overview of the di�erent
methodological perspectives of the problem of model inference coming from di�erent areas.
It presents approaches coming from the aspect of network reconstruction and the aspect of
identi�cation of complete dynamical models that can be applied towards its solution, the
overlap of goals and ideas and the possibility of convergence.

In contrast to other approaches, process-based modeling approaches are compositional
and formulate the task of model inference as a two-level approach towards learning a
model of a dynamical system, i.e., search in a formally de�ned and domain-knowledge
constrained space of candidate model structures guided by the results from the optimization
of the constant parameters. These approaches are presented in more detail in the following
section.

2.2.2 Parameter estimation

Almost all approaches to complete model inference require resolving the uncertainty in the
constant parameter values of the model, by their estimation from observations (Jaqaman
& Danuser, 2006; Kirk, Silk, & Stumpf, 2016). The treatment of the parameters that
require estimation may di�er according to the approach taken for parameter estimation.
Namely, two classes of approaches that are most commonly considered are the Bayesian
(probabilistic) and the frequentist (e.g., Maximum Likelihood (ML)) approaches. Both
classes treat the constant parameters (θ) of the model as variables for the task of estima-
tion. However, the Bayesian approaches treat the parameters as random variables with
corresponding likelihood (probability density) over their value given the observations (d),
while the ML approaches treat the parameters as variables that can be assigned only a
single value that maximizes the likelihood of the observations.

Formally, the Bayesian approaches combine prior knowledge about the values of the
parameters P (θ) and the observations d, using a likelihood function f(d|θ) in order to
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obtain a posterior distribution of the parameter values after the observation of the data
P (θ|d) following the Bayes' rule:

P (θ|d) =
P (θ) · f(d|θ)

P (d)
≈ P (θ) · P (d|θ) (2.1)

However, Equation 2.1 does not always have a closed form solution and the process of
estimation must be performed by iterative updating of the posterior distribution by using
Markov Chain Monte Carlo sampling algorithms. Optimal candidate sets of parameter
values θ̂ for the model can then be obtained by sampling the posterior. A common choice of
candidate set of parameters is the mode of the posterior (maximum a posteriori estimate).

The ML approaches, as a popular example of a frequentist approach, are concerned with
obtaining a �xed set of values for the parameters θ̂ that are most likely to have produced
the observations d, by maximizing the likelihood function L(d|θ) = f(d|θ) =

∏n
i=1 f(di|θ),

where d is assumed to be consisted from independent and identically distributed observa-
tions:

θ̂ = argmaxθL(d|θ) (2.2)

For example, under the assumption that the observations follow a normal distribution,
the well known Least Squares (LS) estimator can be obtained by considering f(di|θ) =∏n
i=1

1√
2·π·σ2

· exp(− r2i
2·σ2 ), where ri is the residual ri = d̂i − di and d̂i is obtained by

simulating the model using parameters θ:

θ̂LS = argmaxθL(d|θ) = argmaxθ lnL(d|θ) ≈ argmaxθ −
1

2

n∑

i=1

r2i
σ2
≈ argminθ

n∑

i=1

r2i

(2.3)
However, in biology, due to the size and complexity of the models, the scarcity of

observations and the di�erent sources of noise for obtaining the data, the likelihood function
can be di�cult to calculate or even de�ne. Therefore, in general, the methods used for
parameter estimation rely on di�erent objective functions that are either approximations of
the likelihood function or on heuristic functions that capture the qualitative or quantitative
properties of the behavior of the models, with regards to the observations or expectations,
and guide the optimization.

Parameter estimation of dynamical biological models is in general a nonlinear opti-
mization problem with di�erential-algebraic constraints. The estimation of parameters of
dynamical biological models is a hard problem. The problem is frequently high dimen-
sional, the objective space is commonly multi-modal, and the evaluation of the objective
function can be time-consuming since it relies on the simulation of the model. Di�erent
Bayesian and frequentist approaches to parameter estimation that deal with these issues
have been applied to problems of modeling dynamical systems in biology.

Bayesian methods are �exible in terms of representation of the uncertainty in the
parameter values and the minimal amount of assumptions required for their execution.
Furthermore, the output from the Bayesian approaches capture the most amount of in-
formation about the estimated parameters in the form of a posterior distribution over the
values of the parameters, which can be used for further analysis and comparison of models.
However, the application of Bayesian methods comes with the cost of high computational
complexity and have therefore been applied only on a limited number of relatively small
problems (Wilkinson, 2007). More recently approaches based on approximate Bayesian
computation have been applied to estimate parameters from observations for the task of
modeling (Toni et al., 2009) and design (Barnes et al., 2011; Silk et al., 2011) of determin-
istic and stochastic dynamical biological systems.
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Frequentist approaches are more prominent for parameter estimation applications for
modeling and design of dynamical biological systems. Traditionally the parameter esti-
mation has been performed using gradient descent methods, especially the ones based
on optimization of the least squares function as shown in Equation 2.3, such as the
Gauss-Newton or the Levenberg�Marquardt method (Mendes & Kell, 1998; Ashyraliyev,
Fomekong-Nanfack, Kaandorp, & Blom, 2009). The main drawback of these methods is
their local nature. The objective function, for complex models with many parameters, can
have several local minima in which these optimization methods may get trapped. This
drawback resulted in their prompt replacement with global optimization methods (Moles
et al., 2003).

More recently, global stochastic optimization and hybrid algorithms, especially the
ones based on metaheuristics, have been considered as the most promising (Chou & Voit,
2009; Ashyraliyev et al., 2009). Metaheuristic approaches are able to handle e�ciently a
wide range of problems subject to optimization of arbitrary objective functions, by quickly
converging to a near-global optimum. Out of the many di�erent parameter estimation
approaches, the ones based on Evolutionary Strategies and Di�erential Evolution have
been recommended as the most successful for systems biology applications (Sun et al.,
2012).

It is worth noting that most of the parameter estimation methods applied to the prob-
lem of modeling dynamical biological systems, although able in general to optimize ar-
bitrary objective functions, consider frequently only the sum of squared errors between
the model simulation and the observations as a single objective function. There are
also, although few, examples of simultaneous optimization of multiple con�icting objective
functions as an approach to design of dynamical biological systems. Most of them are
optimization-oriented approaches to inferring complete models of dynamics, (Handl, Kell,
& Knowles, 2007; Sendin et al., 2010; Barnes et al., 2011; Higuera et al., 2012; Otero-Muras
& Banga, 2014) that consider resolving structural and parametric uncertainty as a single
optimization problem. The same multi-objective optimization methods can be applied to
the problem of parameter estimation for a single structure.

For the task of design of biological systems, due to the inability to consider observa-
tions within the objective function used for optimization of parameter values, the objectives
become more speci�c and relate to the behavior that the dynamical system has to opti-
mally satisfy. They range from adapting the sum of squared errors objective function by
replacing the observations with a target trajectory represented in a form of a function
(Rodrigo et al., 2007; Rodrigo & Jaramillo, 2013) to more speci�c objectives based on the
qualitative and quantitative properties of the behavior of the system. These objectives
can target, for example, the required expression levels of transcripts as response to di�er-
ent inducers (Dasika & Maranas, 2008) or the properties of the stability represented by
the Lyapunov exponents (Silk et al., 2011), eigenvalues and components from the Fourier
spectrum (Barnes et al., 2011).

2.3 Process-Based Modeling

Process-based modeling (also referred to as process modeling or inductive process model-
ing) is an approach to modeling dynamical systems that combines domain speci�c knowl-
edge and data (time-series of observations of a behavior). It has been de�ned as a machine
learning problem by Langley, Sanchez, Todorovski, and Dºeroski (2002).

This learning problem is motivated by related approaches to computational scienti�c
discovery (Langley et al., 1992), namely equation discovery, by automated learning of nu-
merical laws, both in the form of general algebraic equations and di�erential equations
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from time-series data. As an improvement to these approaches, PBM addresses the im-
portant issue of the explanatory power and communicability of the derived models, by
exploiting domain-speci�c knowledge in the speci�cation of the model space as a replace-
ment to the speci�cation using generic algebraic terms. This domain speci�c learning task
makes use of a knowledge generalized in the form of generic causal relations, i.e., repre-
sentations of physical (mechanistic) phenomena speci�c for the domain of interest, as a
means to strengthen the representational bias. The resulting models are therefore based
on established modeling concepts and theories in the domain of interest, formulated in a
modular fashion using the easily understandable notions of entities (model constituents)
and processes (set of interactions between entities representing a common occurrence). The
notions of entities and processes used to formally represent a model are ontologically well
grounded as continuants and occurrents, commonly and intuitively (Forbus, 1984) used in
the scienti�c and engineering domains.

The formalism used for PBM is orthogonal to the previously described formalisms. The
quantitative information conveyed by the processes can in principle be represented using
a range of formalisms that are able to quantify causal relations. The entities in PBM are
represented by a named set of variables and constants that represent their properties in a
hierarchy of types. The processes in PBM use a set of fragments of algebraic and ordinary
di�erential equations to relate the change of the variable properties of the entities to the
continuation of a process, assuming a deterministic and continuous state space represented
by the values of the entity variables in a continuous time frame.

The task of process-based modeling takes at input: domain-knowledge cast into a
library of domain-speci�c generic entities and processes, set of entities in the observed
system, optional constraints on the processes de�ned for groups of these entities, and time-
series of observations of properties of the behavior of the system being modeled, related
to the variable properties of the entities. At output it provides a complete quantitative
process-based model that adequately explains the observations.

A complete model is constructed by performing a constrained search through the space
of process components, provided by the library of domain knowledge, and by modular
composition by instantiation, taking into account the speci�c entities that comprise the
observed system. The merit of a candidate construct (model) is established by estimation
of the values of the constant parameters included in the processes of each candidate by
performing nonlinear least-squares optimization. The objective of the parameter estimation
is the minimization of the sum of squared errors between the model trajectories (obtained
by simulating the model with the candidate parameters) and the provided observation
data.

Di�erent implementations address the task of PBM by considering di�erent choices
for the speci�cs of the formal representation, the imposing of constraints, search and op-
timization. It is worth noting that each successive implementation or improvement of a
PBM approach tends to strengthen the representational bias as a mechanism to improve
the performance and the explanatory power of the process-based models. The method of
evaluation and the form of the evaluation bias, however, have remained unchanged.

The work presented in this thesis extends ProBMoT, the most recent implementation
of PBM. Therefore, we focus on its representation of domain-knowledge, constraints and
work�ow in more detail.

2.3.1 IPM

Inductive Process Modeling (IPM) (Bridewell et al., 2008) formalizes the domain knowledge
as a set of generic processes. The processes do not relate to speci�c entities, but to generic
entity types. The entity types are de�ned by a hierarchy of types with a common root
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� number. Each generic process contains a set of fragments of algebraic or di�erential
equations that capture the changes of the quantity of the related variables (entities) that
are the result of the process, the corresponding constant parameters and their value ranges.

The set of processes is unstructured, i.e., �at. All processes are at the only existing
system level, leading to underconstrained model search space. Given entity instances with
assigned types, IPM exhaustively generates the set of all valid instantiations of the generic
processes. The search through the model space is performed by composing candidate
model structures (generic models) using the powerset of the generated set of processes.
During the search, IPM takes a naïve approach and uses constraints in the form of a list
of processes that must be instantiated and an upper limit on the number of processes
involved in the model in order to address the combinatorial explosion. However, this
manner of composition is suboptimal in terms that it considers all process combinations
as plausible, which might result in consideration of faulty models during the search, e.g.,
a candidate model that contains multiple alternatives of the same process.

In order to perform optimization of the values of the constant parameters de�ned for
each process, the complete set of algebraic and di�erential equations for each candidate
model structure is derived by additive aggregation of the equation fragments at the level
of entities. The parameters are estimated by minimization of the sum of squared errors
between the model simulation and the observations using a local optimization method
based on gradient descent.

2.3.2 HIPM

Hierarchical Inductive Process Modeling (HIPM) (Todorovski et al., 2005) extends the
IPM formalism for encoding the library of domain-knowledge by extending the de�nition
of an entity and by imposing a structure on the generic processes.

Entities in the HIPM formalism are not represented simply as a type but are associated
with properties represented by a set of variables and parameters. HIPM additionally relaxes
the assumption of additive aggregation of entity variables and allows for de�nition of an
aggregation function at the level of entity variables.

In the HIPM formalism generic processes can be organized as a hierarchy of process
alternatives, each with a hierarchy of subprocesses, some of which may be marked as
optional. The process alternatives are considered to be mutually exclusive at the same
level of the hierarchy, while the subprocesses de�ne valid structure patterns. In this way,
HIPM replaces the assumption that any set of processes can be combined to compose a
valid candidate model structure with a more realistic one. The model search space is thus
constrained by both disjunctive and conjunctive rules and limited to more feasible models.

HIPM does not generate all valid instances of the generic processes but performs a
heuristic beam search guided by re�nement operators following the exclusivity and op-
tionality of processes de�ned in the hierarchy. The parameters are estimated by using
the same non-linear least-squares optimization method based on gradient descent as IPM.
However, the parameter estimation for each candidate model is performed multiple times
with random initialization in order to avoid local minima.

A drawback of HIPM is that its formalism is not independent from the implementation
of the induction algorithm. HIPM allows for encoding of domain knowledge only within
the internal structure of the algorithm, i.e., directly in its implementation using the Python
programming language, which might be disconcerting for some domain experts that are
not familiar with programming languages.
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2.3.3 SC-IPM

Satisfying Constraints to Induce Process Models (SC-IPM) (Bridewell & Langley, 2010) is
another implementation of PBM. It is an improvement of IPM and HIPM that extends the
formalism towards the representation of structural constraints, overcoming the problem of
considering faulty models.

The constraints are imposed on subsets of generic processes from the library of domain
knowledge and can be one of the following types: necessary, always-together, at-most-one
and exactly-one. The necessary constraint de�nes processes that must be instantiated in
every candidate model structure. The always-together constraint de�nes a subset of generic
processes that must be either instantiated together or not instantiated at all. The at-most-
one and exactly-one constraints de�ne mutually exclusive processes, where the at-most-one
is a less-strict constraint which allows for the possibility that no process is instantiated.

The search in the space of candidate models is performed by a modi�ed beam search
following a two part process: �rst, using constraint satisfaction methods, a minimal candi-
date structure that satis�es the constraints is generated; second, the structure is expanded
by including unconstrained processes. The parameter estimation procedure is the same as
in HIPM.

2.3.4 ProBMoT

The Process-Based Modeling Tool (ProBMoT) (�erepnalkoski et al., 2012; �erepnalkoski,
2013) is the most recent implementation of PBM. It represents a complete solution in
the form of integrated work�ow, which includes an improved formalism for representa-
tion of domain-knowledge and global meta-heuristic optimization methods for parameter
estimation.

The domain knowledge in ProBMoT is organized in a library de�ned in terms of tem-
plates which correspond roughly to the notion of generics used by the other formalism.
The term template captures the character and the treatment of these constructs, o�ering
a slightly di�erent but important point of view of the nature of organization of domain
speci�c knowledge and its use as a basis for the composition of models. A template is
a representation of a concept, i.e., a sample of knowledge that is general enough to be
reused in di�erent scenarios. Information within the templates is represented in relation
to other templates. An instantiation of a template is de�ned as a copy with replacement
by speci�cation.

A library is a named collection of template compartments, entities and processes.
Template compartments are containers used to organize named collections of template

compartments, entitites and processes. Template compartments can be considered as a
smaller scale library within a library, used for hierarchical organization of larger knowledge
bases and enabling multi-compartmental modeling.

Template entities are named collections of variable and constant templates. They are
used to represent common properties of the entity. The variable templates are represented
by a range and an aggregation function as in the HIPM formalism. The constant tem-
plates are represented only by their range. The constant templates are commonly used to
represent the constant parameters of an interaction, which the template entity takes part
in.

Template processes are used to represent causal relations between template entities.
Each template process is associated by arguments represented by entity types that are
involved in the processes which are used to constrain its instantiation. The template
process is de�ned by optional named collections of constant, equation and nested process
templates. The constant templates, as in the template entities, are de�ned by their range
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and usually represent constant parameters of the process that may be subject to estimation.
The equation templates quantify the relation between the entities in the form of fragments
of algebraic or ordinary di�erential equations, i.e., a function of the constants de�ned in
the template process they belong to and the constants and variables de�ned in the entity
templates associated as arguments to that process. The nested process templates allow for
decomposition of a larger process into a collection of smaller ones. All nested processes are
references to existing process templates. The nested processes must accept a subset of the
argument types of the process in which they are nested. The nested processes themselves
may contain nested processes, but cyclic nesting is not allowed.

Entity and process templates can be taxonomically organized in inheritance trees.
Namely, templates lower in the hierarchy inherit the properties of the ancestors. Enti-
ties inherit the variables and constants, while processes inherit the arguments, constants,
equations and nested processes. Additionally, templates at the same level in the tree are
considered to be mutually exclusive.

For example, let us consider a simple library of domain-knowledge for transcriptional
regulation and the use of this library to encode a model of a relaxation oscillator (Novak
& Tyson, 2008; Zhou, Zhang, Yuan, & Chen, 2008). The knowledge in the library is
simpli�ed to include up to second order linear reaction kinetics.

A relaxation oscillator is based on a combination of a fast positive and delayed negative
feedback mechanism. The basic structure of the oscillator is shown in Figure 2.1A. Each
of the two nodes in the basic structure corresponds to a regulated gene that expresses a
mRNA coding for a protein (transcription factor) as shown in Figure 2.1B.

The library contains �ve template entities shown in Table 2.1: Gene, Product, mRNA,
Protein and Complex. Each template entity is represented by a template variable property
named quantity. Note that both mRNA and Protein are child template entities in a
simple hierarchy, where Product is the parent template, and inherit the property quantity.
The template entity Complex represents the complex formed by binding a protein to the
regulatory region of a gene. Two of the template entities contain additional constants.
The template entity Gene contains a template constant ktx which corresponds to the
unregulated transcription rate of the gene. Similarly, mRNA contains a template constant
ktl which corresponds to the unregulated translation rate of the mRNA. Each property
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Figure 2.1: A) Topology of the genetic relaxation oscillator. Each node is an abstraction
of a structure consisting of a gene, mRNA and a protein. The green arrows (→) represent
positive regulation while the red arrow (a) represents negative regulation (inhibition) B)
The detailed structure of the nodes. The dark blue arrow represents the transcription of
mRNA from a gene. The light blue arrow represents translation of mRNA to a protein.
The orange arrows represent degradation of products.
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is represented by a corresponding range. The aggregation function is deliberately omitted
and left to the default - addition.

In the graphical representation of the model (representation of a model as a drawing
is a common practice in the biological community), the nodes in Figure 2.1A represent
abstraction of a more complex common structure. Each arc in both Figure 2.1A and B
is also an abstraction of a process guided by fundamental quanti�able interactions which
can and should be mathematically encoded (Tyson, 2007). Each type of color or an arrow
represents a speci�c type of process which can be encoded in the library of domain knowl-
edge, which has a common underlying mathematical representation, and as a template can
be reused each time a speci�c type of arrow appears in this drawing or another drawing of
a model from the same domain. This mapping is re�ected in the library as a collection of
template processes shown in Table 2.2.

Table 2.1: Template entities de�ned in the library of domain-knowledge for transcriptional
regulation.

library TranscriptionalRegulation;

template entity Gene {

vars: quantity{range: <1, 100>};

consts: ktx{range: <0.001, 10>};

}

template entity Product {

vars: quantity{range: <0, 100>};

}

template entity mRNA : Product{

consts: ktl{range: <0.001, 10>};

}

template entity Protein : Product {}

template entity Complex {

vars: quantity{range: <0, 100>};

}

The template process basic is a compound process putting together all the processes
that occur in a single node. It therefore represents a formal representation of each node,
as depicted in Figure 2.1B. The nested processes reference three other template processes.
The process of transcription of mRNA from a Gene, translation of a Protein from
a mRNA and degradation of both mRNA and protein. Note that the template process
degradation has assigned as argument an entity of the type Product, since mRNA and
Protein are both products in terms of the de�ned hierarchy of template entities, they
satisfy the type constraint.

The processes of regulation, representing interactions between two nodes, are encoded in
a hierarchy of template processes. At the top level the template process regulation de�nes
three constant properties and template equations that represent the change in the quantity
of a Gene, Protein and a gene-protein Complex that result from the reversible binding of
the protein to the regulatory region of the gene, thus regulating the expression of mRNA. The
template processes inhibition and activation represent mutually exclusive mechanisms
of positive and negative regulation correspondingly. Each of these two processes inherits
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Table 2.2: Template processes de�ned in the library of domain-knowledge for transcrip-
tional regulation. In the template equations, td is a keyword, denoting a time derivative,
recognized by ProBMoT and the dot separator is used to access the properties of an entity.

template process basic(g: Gene, m: mRNA, p: Protein){

processes:

transcription(g, m),

translation(m, p),

degradation(m),

degradation(p);

}

template process transcription(g: Gene, m: mRNA){

equations: td(m.quantity) = g.ktx*g.quantity;

}

template process translation(m: mRNA, p: Protein){

equations: td(p.quantity) = m.ktl*m.quantity;

}

template process degradation(d: Product){

consts: kd{range: <0.001, 10>};

equations: td(d.quantity) = -kd*d.quantity;

}

template process regulation(p: Protein, g: Gene, pg: Complex, m: mRNA){

consts:

kf{range: <0.001, 10>}, kr{range: <0.001, 10>}, km{range: <2, 1000>};

equations:

td(p.quantity) = -kf*p.quantity*g.quantity + kr*pg.quantity,

td(g.quantity) = -kf*p.quantity*g.quantity + kr*pg.quantity,

td(pg.quantity) = kf*p.quantity*g.quantity - kr*pg.quantity;

}

template process inhibition : regulation{}

template process activation : regulation{

equations: td(m.quantity) = km*g.ktx*pg.quantity;

}

template process dimerization(p: Protein, dp: Protein){

consts:

kf{range: <0.001, 10>}, kr{range: <0.001, 10>};

equations:

td(p.quantity) = -2*kf*p.quantity*p.quantity + 2*kr*dp.quantity,

td(dp.quantity) = kf*p.quantity*p.quantity - kr*dp.quantity;

}

the template equations and constants from the parent template. Therefore, the lack of
additional template equations in the inhibition process represents that the mechanism
of inhibition is based only on binding of a transcription factor that blocks the recruitment
of RNA Polymerase needed for transcription, while the activation mechanism is based
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on binding to a regulatory region that enhances the production of mRNA by km times, with
regards to the unregulated transcription rate.

Table 2.3: Entities instantiated for the process-based model of a genetic relaxation oscilla-
tor. Note that the �rst line in the model de�nition de�nes the model name and links the
library where the entity and process templates are de�ned.

model RelaxationOscillator : TranscriptionalRegulation;

entity g1 : Gene{

vars: quantity {role: endogenous; initial: 1;};

consts: ktx = 0.05;

}

entity m1 : mRNA{

vars: quantity {role: endogenous; initial: 0;};

consts: ktl = 0.1;

}

entity p1 : Protein{

vars: quantity {role: endogenous; initial: 0;};

}

entity g2 : Gene{

vars: quantity {role: endogenous; initial: 1;};

consts: ktx = 0.05;

}

entity m2 : mRNA{

vars: quantity {role: endogenous; initial: 0;};

consts: ktl = 0.1;

}

entity p2 : Protein{

vars: quantity {role: endogenous; initial: 0;};

}

entity p2dimer : Protein{

vars: quantity {role: endogenous; initial: 0;};

}

entity p1g1 : Complex {

vars: quantity {role: endogenous; initial: 0;};

}

entity p1g2 : Complex {

vars: quantity {role: endogenous; initial: 0;};

}

entity p2g1 : Complex {

vars: quantity {role: endogenous; initial: 0;};

}

Some forms of regulation require cooperative binding of transcription factors to the
regulating regions of the gene. As a candidate template process for the library we consider
the possibility that a dimer form of a transcription factor might be required for regulation.
Therefore we introduce the template process representing reversible dimerization.

The template entities and processes as shown in Table 2.1 and 2.2 completely de�ne
the library of domain knowledge, given as input to ProBMoT.
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Table 2.4: The process instances representing a process-based model of a genetic relaxation
oscillator.

process basic1(g1, m1, p1) : basic{

processes: txg1, tlm1, dm1, dp1;

}

process basic2(g2, m2, p2) : basic{

processes: txg2, tlm2, dm2, dp2;

}

process txg1(g1, m1) : transcription{}

process txg2(g2, m2) : transcription{}

process tlm1(m1, p1) : translation{}

process tlm2(m2, p2) : translation{}

process dm1(m1) : degradation{

consts: kd=0.2;

}

process dm2(m2) : degradation{

consts: kd = 0.2;

}

process dp1(p1) : degradation{

consts: kd = 0.4;

}

process dp2(p2) : degradation{

consts: kd = 0.4;

}

process dimer(p2, p2dimer) : dimerization{

consts: kf = 0.1, kr = 0.1;

}

process g1autoactivation(p1, g1, p1g1, m1) : activation {

consts: kf = 1, kr = 1, km = 300;

}

process g2activation(p1, g2, p1g2, m2) : activation{

consts: kf = 1, kr = 1, km = 100;

}

process g1inhibition(p2dimer, g1, p2g1, m1) : inhibition{

consts: kf = 1, kr = 0.1, km = 0;

}

Given a library of domain knowledge, a process-based model is a collection of instan-
tiated compartments, entities and processes. In order to model the structure depicted in
Figure 2.1 we instantiate 10 speci�c entities as shown in Table 2.3. For each node we in-
stantiate an entity representing a gene (g1 and g2), mRNA (m1 and m2) and a protein (p1
and p2). We further instantiate three entity complexes p1g1, p1g2 and p2g1 representing
the bound states of a combination of proteins and genes. Finally we instantiate a protein
entity p2dimer which represents the dimerized form of the protein p2. The entity instances
contain initial values for their state variable and constant properties and the role of each
variable property.

The role is an additional information required by ProBMoT to be de�ned for each
variable. The role of a variable for a speci�c model can be exogenous or endogenous. The
variables marked as exogenous are treated as inputs to the system that are not modeled,
but their behavior is mapped to external observations. The endogenous variables are
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modeled as a part of the system and must be assigned an equation that is a result of
process in�uences. We assume that the genetic relaxation oscillator is a closed system,
therefore we de�ne every entity to contain only endogenous variables.

The entity relationships for the model of a genetic relaxation oscillator are represented
by 14 processes as shown in Table 2.4. For each node we instantiate a basic process that in-
corporates four nested processes that de�ne the basic processes of transcription, translation
and degradation. The regulation is de�ned by four process instances: a g1autoactivation
process instance that corresponds to the positive regulation of the transcription of m1 by
the binding of p1 to g1 and formation of a p1g1 complex; a g2activation process that
corresponds to the positive regulation of the transcription of m2 by the binding of p1 to g2

and formation of a p1g2 complex; a process of dimerization of protein p2 to a p2dimer

protein; and a g1inhibition process that corresponds to the negative regulation of the
transcription of m1 by the binding of p2dimer to g1 and formation of a p2g1 complex.

The entity and process instances as shown in Table 2.3 and 2.4 completely de�ne a
process-based model that can be given as input to ProBMoT together with the corre-
sponding library of domain knowledge which de�nes the templates from which they are
instantiated.

For the genetic relaxation oscillator example shown in Table 2.3 and 2.4, ProBMoT
compiles the following set of ODEs from the complete model, where [x] denotes the quantity
of x:

d[g1]

dt
= −1 · [g1] · [p2dimer] + 0.1 · [p2g1]− 1 · [g1] · [p1] + 1 · [p1g1]

d[m1]

dt
= 0.05 · [g1]− 0.2 · [m1] + 300 · 0.05 · [p1g1]

d[p1]

dt
= −1 · [g2] · [p1] + 1 · [p1g2] + 0.1 · [m1]− 0.4 · [p1]− 1 · [g1] · [p1] + 1 · [p1g1]

d[g2]

dt
= −1 · [g2] · [p1] + 0.1 · [p1g2]

d[m2]

dt
= 0.05 · [g2]− 0.2 · [m2] + 100 · 0.05 · [p1g2]

d[p2]

dt
= −2 · 0.1 · [p2] · [p2] + 2 · 0.1 · [p2dimer] + 0.1 · [m2]− 0.4 · [p2]

d[p2dimer]

dt
= −1 · [g1] · [p2dimer] + 0.1 · [p2g1] + 0.1 · [p2] · [p2]− 0.1 · [p2dimer]

d[p1g1]

dt
= 1 · [g1] · [p1]− 1 · [p1g1]

d[p1g2]

dt
= 1 · [g2] · [p1]− 0.1 · [p1g2]

d[p2g1]

dt
= 1 · [g1] · [p2dimer]− 0.1 · [p2g1] (2.4)

If we de�ne a simulation task for the process-based model and de�ne as model output
as the time evolution of the quantity of unbound proteins p1 and p2, we obtain the time-
series shown in Figure 2.2 as output of ProBMoT.

A process-based model is complete if all initial values for the variable properties of each
instantiated entity and the values for all entity and process constants are assigned, and if
each process in the model is instantiated from a leaf in a template process tree.
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Figure 2.2: Simulation of the model of a genetic relaxation oscillator with structure and
parameter values as shown in Table 2.3, 2.4, Equation 2.4 and output de�ned by the
quantity of unbound proteins.

The model speci�cation in ProBMoT introduces a requirement for explicit constraints
based on instantiation of template processes. The model (complete or incomplete) cannot
contain processes that are not explicitly instantiated from a template.

An incomplete model for process-based modeling with ProBMoT is used to explicitly
de�ne uncertainties in the model structure and parameter values. The structural uncer-
tainty is re�ected by the formal representation of a constrained model search space, using
instances of non-terminal template processes. The uncertainty in the values of the pa-
rameters of a model is re�ected by not assigning values to the corresponding instance
parameters.

For example, when modeling a two node genetic oscillator with a partial knowledge of
the principles of design of genetic oscillators, we might not be completely certain of the
type of regulation mechanism between the two nodes. This uncertainty can be formally
represented by encoding an incomplete model where the g1activation and g2inhibition

instances are replaced by instances of the template processes regulation. The incomplete
model containing these process instances de�nes a space of four possible model structures
(the template process regulation has two mutually exclusive template process children),
each with a di�erent combination of regulatory processes. The values of the parameters of
the regulation processes can be completely assigned � the incomplete model is used to
de�ne only structural uncertainty, or they can be partially or completely unassigned � the
incomplete model de�nes uncertainty in both structure and parameter values.

Figure 2.3 depicts the most general ProBMoT work�ow. At input it requires a library of
domain knowledge, an incomplete model, a set of observations and a task speci�cation. The
task speci�cation is composed of the type of task that needs to be performed, mappings of
observations to process-based model variables, objective function speci�cation and detailed
settings for the model simulator and parameter estimator.

The only possible task for an input containing a complete model is the task of model
simulation as shown previously. For an incomplete model two types of tasks can be de�ned.
If the incomplete model contains at least one process instantiated from a non terminal
node in a template process tree, the task is model induction. Model induction is performed
by generating candidate model structures and estimating the parameter values for all
candidate model structures, followed by model ranking and selection. If the incomplete
model contains processes instantiated only from leaf nodes of a template process tree, but
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Figure 2.3: The ProBMoT work�ow.

values for some of the variables or parameters are missing and need to be optimized, the
task is parameter estimation.

Since the domain-knowledge is heavily exploited during the formalization of the search
space, ProBMoT can take an �uninformed�, naive approach towards a solution, i.e., search
by exhaustive enumeration using process re�nement. Processes are re�ned by their re-
placement with each leaf node from the subtree in which the template of the instantiated
process belongs.

An important information for parameter estimation and simulation of a process-based
model is contained within the observation-variable mappings. Apart from the mapping
of a subset of the observations to the variables de�ned as exogenous, ProBMoT also re-
quires explicit de�nition of the model output that relates system variables and constants
to observations by arbitrary algebraic equations. The model output is considered for com-
parison with observations during the parameter estimation step. For parameter estimation
ProBMoT uses the global meta-heuristic evolutionary optimization method Di�erential
Evolution (Price, Storn, & Lampinen, 2005). The objective function, subject to minimiza-
tion, used for parameter estimation is the sum of the root mean squared error between the
model output and the observations.

In order to obtain an output by simulation of a complete process-based model or a
candidate model structure with a candidate parameter set, the process-based model is �rst
converted to a representation of a system of algebraic and ordinary di�erential equations
by aggregation of speci�c process in�uences for each system variable, using the de�ned ag-
gregation function and the fragments de�ned by each process. The system of algebraic and
di�erential equations is then numerically solved using the CVODE implementation of the
SUNDIALS suite (Hindmarsh et al., 2005). In particular, ProBMoT uses the Backwards
Di�erentiation Formula and the generalized minimal residual method for a linear solver
within the Newton iterations.
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Chapter 3

Stochastic Process-Based Models of

Dynamical Systems

3.1 Problem Description

A key feature of process-based models is their understandability/communicability. Process-
based models provide a clear representation of the structure of a dynamical model in terms
of its constituent entities and processes. The representation of the dynamical behavior of
the processes is inherited from the library of domain-knowledge, where it is represented
in terms of fragments of di�erential equations, which con�nes the resulting models to a
coarse deterministic interpretation. The formalism used for encoding the library of domain
knowledge and incomplete models is aimed at domain experts and is designed to facilitate
the transfer of knowledge. However, encoding the knowledge by deriving speci�c fragments
of di�erential equations for each process requires substantial e�ort and is not optimal
in terms of understandability. Therefore, the existing formalism might not be the most
adequate for application to modeling problems coming from the domain of life sciences,
more speci�cally from systems and synthetic biology.

We address the issue of understandability and generality of interpretation by proposing
a formalism for process-based modeling of stochastic dynamical systems based on the rep-
resentation of processes by using reaction equations. The formalism retains the modularity
of knowledge representation from previous process-based formalisms, but improves their
understandability. It brings together the experts' �ner grained view of the causal e�ects
of interactions on one hand and the generality of process-based model on the other hand,
allowing for a more realistic interpretation of the models that includes endogenous and
exogenous stochastic e�ects.

Within the new formalism, the process templates are captured by a set of reaction
equations in the form Rs → Ps [rate]. Here Rs and Ps are sets of reactant and product
variables, i.e., variable properties of entities that are de�ned as arguments of the template
process. The reactant/product variables are delimited by the + operator, and rate is the
rate of the reaction that transforms the reactants into products.

Let us consider, for example, the relaxation oscillator from the previous chapter as
depicted in Figure 2.1. The new formalism requires changes only in the form of the template
equations within the library of domain knowledge. The template entities in the library of
domain knowledge encoded by using the new formalism retain the form shown in Table 2.1.
while the encoding of template processes by using reaction equations is shown in Table 3.1.

The representation of the model of the relaxation oscillator remains the same as shown
in Table 2.3 and Table 2.4. There is, however, a signi�cant change in the semantics of the
representation.
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The variable properties of an entity that take part as a reactant or a product in a reac-
tion equation are state (reaction) variables. The properties that are de�ned by fragments
of algebraic equations are auxiliary variables. An entity property cannot be a reaction and
an auxiliary variable at the same time.

Table 3.1: Template processes de�ned in the library of domain-knowledge for transcrip-
tional regulation using the formalism for representation of processes by reaction equations.

template process basic(g: Gene, m: mRNA, p: Protein){

processes:

transcription(g, m),

translation(m, p),

degradation(m),

degradation(p);

}

template process transcription(g: Gene, m: mRNA){

equations: g.quantity -> g.quantity + m.quantity [g.ktx];

}

template process translation(m: mRNA, p: Protein){

equations: m.quantity -> m.quantity + p.quantity [m.ktl];

}

template process degradation(d: Product){

consts: kd{range: <0.001, 10>};

equations: d.quantity -> [kd];

}

template process regulation(p: Protein, g: Gene, pg: Complex, m: mRNA){

consts:

kf{range: <0.001, 10>}, kr{range: <0.001, 10>}, km{range: <2, 1000>};

equations:

p.quantity + g.quantity -> pg.quantity [kf],

pg.quantity -> p.quantity + g.quantity [kr];

}

template process inhibition : regulation{}

template process activation : regulation{

equations: pg.quantity -> pg.quantity + m.quantity [km*g.ktx];

}

template process dimerization(p: Protein, dp: Protein){

consts:

kf{range: <0.001, 10>}, kr{range: <0.001, 10>};

equations:

p.quantity + p.quantity -> dp.quantity [kf],

dp.quantity -> p.quantity + p.quantity [kr];

}

The quantities of reaction variables are treated as discrete when considering the task
of modeling a stochastic dynamical system, while the auxiliary variables are treated as
continuous. The aggregation of in�uences for the reaction variables is not calculated for
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each variable/property separately, but is performed at the level of all interacting proper-
ties, by composing a list of all instantiated reaction equations for a given process-based
model. The in�uences for the auxiliary variables are aggregated according to the de�ned
aggregation function, which by default is the summation function.

The representation of a process-based model is composed of an optional set of algebraic
equations, one for each auxiliary variable, and a set of reaction equations. The process-
based model of the relaxation oscillator contains no algebraic equations and the set of 18
reaction equations shown in Table 3.2. The reactions are grouped by the process that they
represent.

Table 3.2: The set of reaction equations for the process-based model of a relaxation os-
cillator as shown in Table 2.3 and Table 2.4 derived by taking into account the library of
domain knowledge shown in Table 2.1 and Table 3.1.

Equation Rate Process
R1 g1.quantity → g1.quantity +m1.quantity 0.05 basic1.txg1
R2 m1.quantity → m1.quantity + p1.quantity 0.1 basic1.tlm1
R3 m1.quantity → ∅ 0.2 basic1.dm1
R4 p1.quantity → ∅ 0.4 basic1.dp1
R5 g2.quantity → g2.quantity +m2.quantity 0.05 basic2.txg2
R6 m2.quantity → m2.quantity + p2.quantity 0.1 basic2.tlm2
R7 m2.quantity → ∅ 0.2 basic2.dm2
R8 p2.quantity → ∅ 0.4 basic2.dp2
R9 p2.quantity + p2.quantity → p2dimer.quantity 0.1 dimer
R10 p2dimer.quantity → p2.quantity + p2.quantity 0.1 dimer
R11 p1.quantity + g1.quantity → p1g1.quantity 1 g1autoactivation
R12 p1g1.quantity → p1.quantity + g1.quantity 1 g1autoactivation
R13 p1g1.quantity → p1g1.quantity +m1.quantity 15 g1autoactivation
R14 p1.quantity + g2.quantity → p1g2.quantity 1 g2activation
R15 p1g2.quantity → p1.quantity + g2.quantity 1 g2activation
R16 p1g2.quantity → p1g2.quantity +m2.quantity 5 g2activation
R17 p2dimer.quantity + g1.quantity → p2g1.quantity 1 g1inhibition
R18 p2g1.quantity → p2dimer.quantity + g1.quantity 0.1 g1inhibition

The set of reaction equations can be decomposed into a stoichiometric matrix N , where
each row corresponds to the total change in quantity of the reaction variables as a result
of each reaction, and an array consisting of propensities of the reactions. The propensity
of a reaction can be calculated directly from the form of the reaction equation. Given
the state of the reaction variables x, the propensity aj(x) of each reaction Rj de�nes the
probability that the reaction will be active in the in�nitesimal time interval [t; t + dt) as
aj(x) = cj · hj(x) · dt, where cj denotes the reaction rate of the reaction Rj and hj(x)
denotes the number of distinct combinations of the reactant quantities in the state x. In
order not to restrict the expressiveness required for more complex or abstract models, in
the formalism, a bang (!) operator may be added before the squared bracket in the reaction
equation. The rate expression will then be treated as the propensity of the reaction, rather
than its reaction rate.

Gillespie (1992) explicitly derived the Chemical Master Equation (CME) of a system
from this representation. The CME represents a continuous time Markov chain that de�nes
the evolution of the probability P (x, t|x0, t0) that the system is in a state x at time t, given
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the initial state x0 at time t0. It has the following form:

d

dt
P (x, t|x0, t0) =

M∑

j=1

[aj(x− νj) · P (x− νj , t|x0, t0)− aj(x) · P (x, t|x0, t0)], (3.1)

where νj is a row from the stoichiometric matrix N corresponding to reaction Rj .
Under the assumption that the change of the state in a su�ciently small interval does

not signi�cantly a�ect the propensities of the reactions while, at the same time, the number
of reactions within this interval is much larger than 1, the CME of a dynamical system can
be approximated by the Langevin equation of the system (Gillespie, 2000). The Langevin
equation represents a system as a set of coupled It	o stochastic di�erential equations of the
form:

dx

dt
≈

M∑

j=1

νj · aj(x) +

M∑

j=1

νj ·
√
aj(x) · Γj(t), (3.2)

where Γj(t) are temporally uncorrelated, statistically independent Gaussian white noises.
Under the assumption that the stochastic �uctuations do not signi�cantly a�ect the

behavior of the system, the CME can further be reduced to a system of ordinary di�erential
equations representing the average behavior of the system:

dx

dt
≈

M∑

j=1

νj · aj(x). (3.3)

Although this is the most common representation of a dynamical system, the assump-
tion that a negligible amount of noise is present within a system containing a large number
of reactant molecules can still be considered as optimistic. For the model of a relaxation
oscillator, the representation shown in Equation 2.4, under this assumption, can be derived
from the encoding of the domain knowledge using the new formalism.

In addition to the improvement of the understandability and communicability of process-
based models, the improved generality of process-based modeling with the reaction equa-
tion based formalism is evident from the possibility to use each of the aforementioned
representations for learning and simulation of process-based models.

Within the implementation of the process-based modeling tool that includes the new
formalism, we make available to the domain expert the choice of each level of representation
allowing for both stochastic and deterministic interpretation. The simulation of a stochastic
process-based model can be performed by drawing realizations of the CME using a Monte
Carlo method such as the direct or the �rst reaction stochastic simulation algorithms
proposed by Gillespie (1976) or by the numerous improvements and adaptations of these
algorithms (Turner et al., 2004; Gillespie, 2007). For the simulation of process-based
models we make available the direct and the �rst reaction methods, the next reaction
method (Gibson & Bruck, 2000) and the τ -leaping algorithm (Gillespie & Petzold, 2003).
The simulators are based on the Dizzy stochastic simulation software package (Ramsey,
Orrell, & Bolouri, 2005) and are improved to be able to simulate models with external
(exogenous) in�uences. We have also implemented the Euler-Maruyama method for the
simulation of process-based models interpreted as a set of coupled stochastic di�erential
equations.

In the previous approaches, an assumption was made that the observations used for
model inference are obtained by a signi�cantly large number of repeated experiments. As
a result, the deterministic model simulation (which corresponds to the average behavior
of the system) can be directly compared and �tted to observations. Although in a labo-
ratory setting, the repeating of an experiment multiple times is an established practice,
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the assumptions of the deterministic approximation of the behavior of the system do not
hold, due to the small number of repeats or due to the nature and the properties of the
dynamical system.

When inferring a stochastic model of a dynamical system, in addition to the better
approximation of the nature and the properties of the dynamical system (available by
di�erent interpretations), the information about the experiment can be taken into account
within the objective function used for parameter estimation. For example, if the data was
obtained by averaging the observations from multiple repeats of an experiment, the same
number of realizations of a stochastic model can be averaged in order to obtain a simulation
that can be fairly compared to the observation. If the observations were obtained by a
single experiment, the objective function might take this into account by calculating the
�t of the model as the average of the �t of multiple single realizations of the model to the
observations. If information about the distribution of observed values from a population
of experiments is available at each point, the goodness of �t of the model can be then
calculated by comparing these observations to the distribution of simulated values from
a population of model realizations. In order to compensate for the stochastic nature of
the system and stabilize the estimate, the parameter estimation can be restarted multiple
times.

The evaluation of the method for learning stochastic process-based models of dynamical
systems from knowledge and data is performed on four stochastic modeling tasks coming
from the domain of genetic regulatory networks (GRNs) and epidemiology (Tanevski et al.,
2016a). These include the reconstruction of GRNs with global and local kinetic rates and
the learning of compartmental epidemiological models for the Eyam plague outbreak and
the Trista da Cunha in�uenza outbreak.

This work was published in a journal article which constitutes the remainder of this
chapter. The full bibliographic reference to the article is:

Tanevski, J., Todorovski, L., & Dºeroski, S. (2016a). Learning stochastic process-based
models of dynamical systems from knowledge and data. BMC Systems Biology, 10 (1), 1-
30.
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Background
Most systems in biology exhibit dynamical behavior.
Their properties change as a function of time and space
in a complex manner. Considering a dynamical biological
system to be a well-stirred mixture of its constituents,
the most commonly used mathematical model of its
dynamics takes the form of a system of coupled ordinary
differential equations, treating the entity properties as
continuous and assuming they evolve deterministically
through time. However, the deterministic nature of
ordinary differential equations renders them inadequate
for systems with a small number of copies (only few
orders of magnitude above one) of its constituents. Fur-
thermore, ordinary differential equations fail to account
for the underlying stochasticity of natural systems
[1, 2]. In molecular systems, stochastic fluctuations
are responsible for the divergence in phenotype and
genetic activities [3–5]. In such cases, models based on
stochastic kinetics are more suitable, as they allow for
treating of the modeled systems as either discrete or
continuous in terms of the properties of the observed
entities and stochastic in terms of the reactions between
them.
Establishing a deterministic or a stochastic model of

an observed biological system is an omnipresent and
often complex, tedious task. This task comprises the
two subtasks of structure identification, i.e., selecting an
appropriate model structure, and parameter estimation,
i.e., determining values of the model parameters that,
together with the selected structure, lead to accurate
reconstruction of the observed system behavior. While
many existing approaches integrate methods for simula-
tion and parameter estimation of a single model, only few
of them provide support for the task of structure iden-
tification [6, 7]. In this paper, we design and implement
a computational tool that can deal with uncertainty in
both model structure and the values of model parame-
ters for both deterministic and stochastic models. The
central component of our tool is the process-based
modeling formalism that allows for modular, compo-
sitional specification of the space of candidate model
structures.
Figure 1 puts the process-based modeling formalism in

the context of existing formalisms used for modeling bio-
logical systems. The figure sorts (along the vertical axis)
different formalisms according to their abilities to spec-
ify uncertainty with regard to the model parameter values
and uncertainty with regard to the model structure. The
vertical axis also refers to model specifications at differ-
ent abstraction levels, from low-level model implementa-
tion to high-level model specification [8]. The horizontal
axis refers to the possibilities of model interpretation:
some of the formalisms are focused on deterministic,
some on stochastic, while the third group of formalisms
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Fig. 1 The relation of the process-based modeling formalism to other
formalisms used for modeling dynamical systems in biology

allows for both deterministic and stochastic model
interpretation.
The formalisms of differential equations allow for

encoding models with all the details needed for their exe-
cution, i.e., simulation of the behavior of the correspond-
ing dynamical systems. Ordinary differential equations
are limited to deterministic model interpretation, while
stochastic differential equations are used for stochastic
modeling. Differential equations are models at the low-
est abstraction level, where every detail has to be fully
specified and are used to encode a single model; on
their own, they allow neither for parameter nor structural
uncertainty.
At a higher abstraction level, the models in the domain

of biology are often casted in the formalism of reaction
equations. Following this formalism, the biological system
is described as a reaction network. When coupled with
appropriate kinetic rates, the model defines a network
of possible transitions between system states. Reaction
equations allow for both deterministic and probabilis-
tic interpretation stemming from the propensity of each
reaction [9].
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The systems biology markup language, SBML [10], is a
standard modeling formalism in system biology. It allows
for encoding and exchange of individual models based
on ordinary differential equations or reaction equations.
Like equation-based formalisms, SBML focuses on encod-
ing a single model structure with parameter uncertain-
ties and does not support the specification of structural
uncertainties.
Furthermore, a number of formalisms have emerged

that deal with the issue of combinatorial complexity, i.e.,
the exponential complexity of the space of the combi-
nations of elementary interactions between the entities
observed in a given biological system. These formalisms
allow for specifying rules (constraints) that limit the space
of potential interactions between entities based on their
properties. Note that the encoded constraints do not
address the issue of structural uncertainty: Their applica-
tion in the context of a given observed system leads to a
single model structure. There are several classes of such
formalisms.
The first group of rule-based (also referred to as

interaction-based) languages, most notably BioNetGen
[11] and kappa [12], define the constituent entities of a
system at the level of objects with different properties.
The network of interactions between the system entities
is implicitly described by a set of rules that transform
properties or create new entities (by forming complexes
of existing entities). By defining the rules directly on
the properties, the rule-based modeling approach effi-
ciently deals with the problem of combinatorial com-
plexity, which may arise when modeling protein-protein
networks within complex signalization pathways. The
rules are encoded using formalisms based on reaction
equations.
The second group of agent-based formalisms, which

includes process algebras [13, 14], model individual enti-
ties as agents in a complex system that act according
to a set of predefined rules for communication with
other agents. The process algebras describe the behavior
of each agent through processes describing the inter-
agent communications via different channels. A biological
system described using process calculi is treated as a
constrained distributed system of communication. This
formal description allows for more detailed represen-
tation of the basic principles of interaction. Examples
of process algebra extensions that have been adapted
to and are being used in the domain of biology are
the stochastic pi-calculus [15], Bio-PEPA [16] and beta
binders [17].
Related to the process algebras group, the formalisms

in the third group are based on constraint programming
[18]. In contrast to the process calculi, the constraint pro-
gramming approaches allow for defining interactions not
only through specific communication channels, but by

concurrently posting global constraints on the properties
of the agent entities.
The limitation that is common to all aforementioned

formalisms is that they can not properly represent the
structural uncertainty. Uncertainty in parameter values is
typically addressed by various formalism extensions that
are complementary to the computational tools that offer
support for them. COPASI [19] is an example of a such
a tool that allows for introducing uncertainties in model
parameter values and performing parameter estimation
for models based on equations. The MathWorks SimBi-
ology toolbox [20] is a proprietary software for modeling
and analysis of dynamical systems in biology providing
features similar to the ones of COPASI. Both tools provide
a range of methods for the analysis of models (e.g., sensi-
tivity and identifiability of model parameters), but do not
provide computational methods for addressing structural
uncertainty; users can only perform manual comparative
analysis of different model structures.
Network inference methods [21] explicitly address

structural uncertainty: most often, given gene expres-
sion data, the methods seek for a network of interactions
between the observed genes. Since these methods focus
on the structure of the observed network of interactions,
they seldom deal with the reconstruction of the dynam-
ical behavior of the observed system. Several methods
are exception to this general rule and cast the recon-
structed networks into the formalism of ordinary differ-
ential equations [21–24]. In contrast to the process-based
modeling approach presented in this paper, thesemethods
are limited to deterministic models. Furthermore, these
methods follow the assumption that the same interac-
tion dynamics applies to all of the network interactions:
the process-based modeling formalism can encode dif-
ferent classes of model structures (interactions/processes)
with different assumptions about the interaction dynam-
ics. Finally, when it comes to constraining the space of
possible model structures, some methods employ data-
driven heuristics [22, 25], while some of them additionally
limit the search for plausible structures based on the inter-
actions already documented in the literature [22, 24]. The
method by Wahl et al. [22] also allows for user-defined
Boolean constraints specifying implausible network inter-
actions.
Finally, ABC-SysBio [6] is most closely related to

the process-based modeling approach presented here. It
builds on SBML and addresses structural uncertainty by
allowing the user to explicitly enumerate the alternative
model structures. The process-based modeling formalism
the we propose addresses exactly this limitation of the
existing formalisms, i.e., the ability to properly address
structural uncertainty. It allows for modular and flexible
specification of the space of candidate model structures
to be considered in the modeling process. Instead of
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specifying a fixed list of candidates, like ABC-SysBio [6],
our formalism allows users to specify model components,
which are then used in a compositional modeling set-
ting, where combinations of components correspond to
candidate model structures. Thus, we approach the struc-
ture identification task as a search problem [26], where
we search for the most appropriate combination of model
components.
This paper builds upon our previous work on inductive

process-based modeling that combines knowledge and
data to automatically build explanatorymodels of dynami-
cal systems [27–30]. While inductive process-based mod-
eling has been successfully applied to modeling tasks in
the domain of systems biology [7, 31, 32], its scope has
been limited to building deterministic models of dynami-
cal systems cast as ordinary differential equations.
Here, we extend the scope of the process-based model-

ing formalism to models cast as reaction equations, hence
the arrow in the top-right corner of Fig. 1. In this way, we
combine the benefits of process-based modeling (in terms
of addressing structural uncertainty) with the benefits of
different model interpretations (including the stochas-
tic interpretation). Finally, the formalism is implemented
within a computational tool ProBMoTs for automated
induction of models that combines domain knowledge
represented in our formalism with measurements of the
observed system behavior.
In the remainder of the paper, we first introduce

the process-based modeling formalism, its extensions
towards handling stochastic models of biochemical sys-
tems and the computational tool for process-based mod-
eling, ProBMoTs. We present then two examples of use of
the proposed computational tool, i.e. modeling gene reg-
ulatory networks and modeling the spread of pathogens,
illustrating the use of the proposed tool and evaluating its
utility. Finally, we discuss the results of the evaluation, put
them in the context of existing work and outline directions
for further research.

Methods
In this section, we introduce the notion of process-based
models and a formalism for their representation. We
illustrate the formalism use on an example of encod-
ing knowledge for modeling gene regulatory networks
and a process-based model of a specific network, the
repressilator [33]. We then introduce methods for induc-
ing process-based models from knowledge and data by
selecting appropriate model structures and parameters.

Process-based modeling
Scientists often describe dynamical systems in terms of
processes that govern the system dynamics and the enti-
ties involved in the processes1. Following this high-level
model description, modelers assign lower-level detailed

equation-based specifications of the dynamics to individ-
ual processes and combine them into a system of coupled
differential equations. The differential equations can be in
turn used to simulate the behavior of the observed system
or to extrapolate the simulation and predict future system
behavior. However, by transforming the high-level model
description into equations, its explanatory power is lost,
since the equations fail to reveal (in an accessible man-
ner) the structure of the observed system in terms of the
interacting entities and processes.
Process-based modeling (PBM) clearly relates a high-

level model description (entities and processes), that
carries significant explanatory power, and a lower-level
mathematical model (equations), that allows for simula-
tion and prediction. To build process-based models, we
first formalize the modeling knowledge by establishing
templates of generic (template) entities that appear in the
generic (template) processes that govern the dynamics
of systems in the particular domain. Each process-based
model then refers to these template components and
instantiates them into specific components of the studied
system.
Existing process-based formalisms rely on a coarse

description of dynamics, based on fragments of differen-
tial equations. The formalism introduced in this paper
relies on reaction equations, which are closer to the basic
principles of system biology and are more comprehensible
to biologists. A reaction equation Rs → Ps [rate] specifies
a set of reactants Rs and a set of products Ps, as well as
the reaction rate. Reaction equations are a powerful and
flexible formalism for modeling the temporal evolution of
dynamical systems.

Representation ofmodeling knowledge
Table 1 provides an example library of template compo-
nents for modeling gene regulatory networks. It includes
a template entity gene, whose instances represent nodes
in gene regulatory networks. We assume gene entities to
represent protein-coding genes and describe them using
five numerical properties. The variable properties (vars
section of the entity specification) denote two gene prop-
erties that change through time: Pmol is the number of
encoded protein molecules and mRNAmol is the number
of mRNA transcripts. The other three properties do not
change over time; they denote the constant kinetic rates
of the uncontrolled gene expression alpha0, the transla-
tion of mRNA into proteins and their degradation beta,
as well as the mRNA molecules degradation delta.
Furthermore, the library specifies templates for model-

ing the processes of gene interaction, gene translation into
proteins, and protein degradation. The degradation
template specifies two reaction equations that correspond
to the degradation of the encoded protein molecules with
the kinetic rate of g.beta (i.e., the degradation kinetic
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Table 1 Templates of entities and processes for modeling gene
regulatory networks. The template entity gene typifies network
nodes, while the process templates represent gene regulation, as
well as translation and protein degradation processes. The empty
set symbol ∅ denotes the absence of reactants or products

template entity gene {

vars: mRNAmol, Pmol;

consts: alpha0, beta, delta;

}

template process regulation(sg:gene, dg:gene) {

consts: alpha, n;

}

template process inhibition: regulation {

equations: ∅ -> dg.mRNAmol [alpha / (1 + sg.Pmoln)];

}

template process activation: regulation {

equations:

∅ -> dg.mRNAmol [alpha - (alpha / (1 + sg.Pmoln))];

}

template process translation(g:gene) {

equations:

∅ -> g.mRNAmol [g.alpha0],

g.mRNAmol -> g.Pmol + g.mRNAmol [g.beta];

}

template process degradation(g:gene) {

equations: g.Pmol -> ∅ [g.beta], g.mRNAmol ->

∅ [g.delta];

}

rate for the particular gene g) and the degradation of
the mRNA molecules with the rate of g.delta. Simi-
larly, the translation process integrates the reaction
equations of the gene transcription to mRNA and the
mRNA translation to protein molecules.
Finally, the regulation process template represents

gene interactions via their protein products. It has two
mutually exclusive alternatives of activation and
inhibition. The first corresponds to the case where
one gene increases the transcription rate of the other,
while the second alternative models repression, where
one gene decreases the transcription rate of the other by
binding the source gene protein to the promoter region
of the repressed gene. In both cases, the reaction rate
(specified between the brackets) is modeled using a Hill
function, derived as a steady-state approximation of the
biochemical kinetics [34].
The templates from Table 1 represent generic knowl-

edge on modeling gene regulatory networks. They can

be instantiated to entities and processes of an arbitrary
network model. Note the hierarchical structure of the
regulation template process: it constrains the space of
instantiations by rendering the two subordinate templates
of activation and inhibition mutually exclusive.
This reflects the simple fact that only one regulation type
applies to a given pair of genes. In the following, we will
illustrate the use of this knowledge for modeling a simple
regulatory network.

Process-basedmodels
The repressilator [33] is a regulatory network of three
genes interacting in a single feedback loop of inhibitions as
depicted in Fig. 2. The repressilator is a synthetic network
designed to exhibit a stable oscillatory behavior. Its in-vivo
implementation in E. coli has been proven to exhibit the
desired behavior. The three genes involved are TetR, often
used for fine regulation in synthetic gene networks, and
two repressor genes, cI and LacI.
Using the domain knowledge for modeling gene regu-

latory networks from Table 1, we can establish a process-
based model of the repressilator, presented in Table 2. It
provides a high-level representation akin to the graph-
ical network layout depicted in Fig. 2, where entities
correspond to network nodes, and processes are repre-
sented by arcs. The model does not give details about
the particular modeling choices for degradation, trans-
lation and inhibition, since they are inherited from the
corresponding process templates. Each entity specifies
the boundary conditions for the variables (declarations
of the initial value) and the parameter values, while
each process specifies the involved entities and the
parameter values. Note, for example, the value assign-
ments for the parameters alpha and n in the inhibition
processes.
The process-based model retains the understandability

of the graphical model representation and provides a clear,
high-level insight into the structure of the studied sys-
tem. At the same time, by using the detailed knowledge
of the reaction equations encoded in the templates, we

Fig. 2 Graphical representation of the repressilator gene regulatory
network
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Table 2 A process-based model of the repressilator built using
the templates for modeling gene regulatory networks from
Table 1

entity TetR:gene {

vars: Pmol { initial: 5; }, mRNAmol { initial: 0; };

consts: alpha0 = 0, beta = 9.75, delta = 1;

}

entity LacI:gene {

vars: Pmol { initial: 0; }, mRNAmol { initial: 0; };

consts: alpha0 = 0.27, beta = 10, delta = 1;

}

entity cI:gene {

vars: Pmol { initial: 15; }, mRNAmol { initial: 0; };

consts: alpha0 = 0.41, beta = 10, delta = 1;

}

process regualtion1(TetR, cI): inhibition {

consts: alpha = 407, n = 3;

}

process regulation2(cI, LacI): inhibition {

consts: alpha = 222, n = 4.7;

}

process regulation3(LacI, TetR): inhibition {

consts: alpha = 237, n = 1.95;

}

process translation1(TetR): translation {}

process translation2(LacI): translation {}

process translation3(cI): translation {}

process degradation1(TetR): degradation {}

process degradation2(LacI): degradation {}

process degradation3(cI): degradation {}

can automatically translate the high-level description into
a mathematical model and use it for simulation and anal-
ysis. Consider the process translation1 in Table 2:
By combining it with the template translation from
Table 1, we instantiate a set of two reaction equations
modeling the uncontrolled transcription of TetR to
mRNA (∅ -> TetR.mRNAmol with a kinetic rate of
TetR.alpha0 = 0) and the translation of the mRNA
to the TetR protein molecules (TetR.mRNAmol ->
TetR.Pmol + TetR.mRNAmol with a kinetic rate of
TetR.beta = 9.75).
Table 3 presents the mathematical model of the repres-

silator which includes the above two reaction equations,
as well as all other reaction equations obtained by

Table 3 List of reaction equations stemming from the
process-based model of the repressilator from Table 2

∅ -> TetR.mRNAmol [407 / (1 + cI.Pmol3)]

∅ -> LacI.mRNAmol [222 / (1 + TetR.Pmol4.7)]

∅ -> cI.mRNAmol [237 / (1 + LacI.Pmol1.95)]

∅ -> TetR.mRNAmol [0]

TetR.mRNAmol -> TetR.Pmol + TetR.mRNAmol [9.75]

∅ -> LacI.mRNAmol [0.27]

LacI.mRNAmol -> LacI.Pmol + LacI.mRNAmol [10]

∅ -> cI.mRNAmol [0.41]

cI.mRNAmol -> cI.Pmol + cI.mRNAmol [10]

TetR.Pmol -> ∅ [9.75]

TetR.mRNAmol -> ∅ [1]

LacI.Pmol -> ∅ [10]

LacI.mRNAmol -> ∅ [1]

cI.Pmol -> ∅ [10]

cI.mRNAmol -> ∅ [1]

combining the processes in Table 2 with their corre-
sponding templates from Table 1. The model is sim-
ulated by calculating the state of the system x(t),
a vector of the number of molecules of each reac-
tant at time t. The repressilator state includes six
variables: TetR.Pmol, TetR.mRNAmol, LacI.Pmol,
LacI.mRNAmol, cI.Pmol and cI.mRNAmol. In any
given state x, we can calculate the propensity, i.e., the
probability that the reaction Rj will be active in the
infinitesimal time interval [ t, t + dt), using the formula
aj(x) = cjhj(x)dt, where cj denotes the reaction rate
and hj(x) denotes the number of distinct combinations of
reactant molecules in state x.
The evolution of the probability P(x, t|x0, t0) that the

system is in a state x at a given time t, given the initial
state x0 at time t0, can be then defined using the following
ordinary differential equation (also known as the Master
Equation) [35]:

∂

∂t
P(x, t|x0, t0)

=
M∑
j=1

[aj(x − νj)P(x − νj, t|x0, t0) − aj(x)P(x, t|x0, t0)] ,

(1)

for dt → 0, where νj is a vector specifying the changes
of the number of reactant molecules after the reaction
Rj. We can then model the system dynamics using cou-
pled differential equations, where each equation models
the probability that the system state equals a unique com-
bination of values of the state variables x.
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For real biological systems, the Master Equation is too
complex to be solved analytically or numerically. To this
end, alternative approaches to estimating the exact or
approximate probabilities have been developed. One of
the most popular exact approaches is based on Monte
Carlo sampling and is known as the Stochastic Simula-
tion Algorithm (SSA) proposed by Gillespie, where others
include the Gibson-Bruckmethod of next reaction and the
class of τ -leaping methods [9].
If we assume that the propensity does not signifi-

cantly change in infinitesimal time intervals and that
the expected number of firings of each reaction is sig-
nificantly large (i.e., the number of reactant molecules
is large compared to the probability rate constant),
we can derive the Langevin Equation. It represents a
mathematical model of the reaction equations cast in
terms of coupled Itō stochastic differential equations
[36]. These stochastic differential equations can fur-
ther be reduced to ordinary differential equations,
under the assumption that we observe a negligible
amount of noise in a system with a large number of
reactants.
Thus, from a process-based model, we can automati-

cally infer the reaction equations and then simulate them
using the Gillespie algorithm or its improvements [9].
Alternatively, we can transform them to a system of ordi-
nary differential equations. Figure 3 shows the simulated
trajectories of the number of TetR molecules obtained
by simulating the reaction equations (left-hand side)
and the system of ordinary differential equations (right-
hand side) inferred from the process-based model of the
repressilator.
To summarize, process-based models have four impor-

tant properties that make them particularly suitable for
modeling dynamical systems. First, they retain the under-
standability and explanatory power of graphical model
representations by providing clear insight into the struc-
ture of the observed system. At the same time, they inherit
the utility of mathematical models for simulation and
analysis of system behavior. Third, process-based models
provide general model descriptions that support both

Fig. 3 Stochastic and deterministic simulation of the number of TetR
protein molecules using the process-based model of the repressilator

stochastic and deterministic approaches tomodeling, sim-
ulation and analysis. The fourth property is the modular-
ity provided by the knowledge representation formalism:
the templates can be instantiated into a number of model
components. This last property is particularly relevant for
the algorithms that induce process-based models from
data.

Inducing process-basedmodels
The formalized knowledge on modeling gene regulatory
networks brings another benefit. It represents a source of
constraints that limit the space of candidate model struc-
tures to be explored when modeling a particular gene reg-
ulatory network. Consider the repressilator model again
and assume that we are only provided with information
that it involves the three genes of TetR, LacI and cI. Now
we can infer all the instances of the process templates
from Table 1: the degradation process template that
involves one gene, leads to three process instantiations,
one for each gene. Similarly, the translation tem-
plate leads to three processes. Finally, each pair of genes
results in one instance of the activation and one instance
of the inhibition template. Thus, for the three repressila-
tor genes, we obtain six instances of the activation and
six instances of the inhibition template. In sum, the three
repressilator genes lead to 18 process instances.
Each of the process instances represents a valid model

component. Following a naïve approach, one can consider
any subset of components as a legitimate model struc-
ture, which yields 218 = 262, 144 candidates. However,
these include many implausible models, e.g., ones that do
not include gene translation for some of the genes. To
avoid implausible models, the inductive process model-
ing approach relies on the use of constraints that limit
the ways model components are combined. For example,
a constraint ruling out models that do not include trans-
lation and degradation processes for all the genes, reduces
the search space to 212 = 4096 candidates. Furthermore,
the constraint specifying the mutual exclusivity of the
activation and inhibition processes for a given ordered
pair of gene entities further reduces the number of can-
didates to 36 = 729 (for each of the six possible pairs
of repressilator genes, we consider three modeling alter-
natives: absence of regulatory influence; activation; and
inhibition).
The constraints discussed above can be classified in two

groups. First, the mutual exclusivity of the activation and
inhibition processes is specified in the domain knowledge
library shown in Table 1. Second, the constraint ruling
out models that do not include translation and degrada-
tion of individual gene/protein are defined at the level
of process instances. The constraints from the second
group are specified in the incomplete model, which is
one of the inputs to our software tool ProBMoTs. One
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such incomplete model is depicted graphically in Fig. 5
and shown in Table 4. The lower part of the table speci-
fies that the model must include both a translation and a
degradation process for each of the three genes/proteins

Table 4 An incomplete process-based model of a gene
regulatory network specifying the model structures as depicted
in Fig. 5

entity TetR:gene {

vars: Pmol { initial: 5; }, mRNAmol { initial: 0; };

consts: alpha0, beta, delta = 1;

}

entity LacI:gene {

vars: Pmol { initial: 0; }, mRNAmol { initial: 0; };

consts: alpha0, beta, delta = 1;

}

entity cI:gene {

vars: Pmol { initial: 15; }, mRNAmol { initial: 0; };

consts: alpha0, beta, delta = 1;

}

process regualtion1(TetR, cI): regulation {

consts: alpha, n;

}

process regulation2(cI, LacI): regulation {

consts: alpha, n;

}

processregulation3(LacI, TetR): regulation {

consts: alpha, n;

}

processregualtion4(TetR, LacI):regulation {

consts: alpha,n;

}

processregulation5(LacI, cI):regulation {

consts: alpha,n;

}

process regulation6(cI, TetR): regulation {

consts: alpha,n;

}

mandatory process translation1(TetR):translation {}

mandatory process translation2(LacI): translation {}

mandatory process translation3(cI):translation {}

mandatory process degradation1(TetR):degradation {}

mandatory process degradation2(LacI):degradation {}

mandatory process degradation3(cI): degradation {}

(note the mandatory qualifier in the process specifica-
tions). Figure 5 (and the upper part of Table 4) specifies
the three modeling alternatives for each of the six possible
pairs of genes.
Finally, the inductive process-based modeling approach

validates each candidate model structure by matching its
simulation against the observed system behavior. In order
to simulate the model (and assess its quality), we first have
to determine the values of its constant parameters. To this
end, we employ parameter estimation and find parame-
ter values that lead to a model reproducing the observed
behavior as closely as possible. We formulate the param-
eter estimation task as an optimization problem: We aim
at minimizing an objective function that measures the
goodness of fit of the model simulation to the observed
behavior using the maximum-likelihood estimator [37].
The algorithm for inducing process-based models, pre-

sented in Table 5, puts together the components outlined
above. Its input is a library of template entities and pro-
cesses, such as the one presented in Table 1, the specific
entity instances observed in the system at hand, a set of
constraints that limit the way we combine components
into models, and time-series data comprising measure-
ments of the system variables/outputs of observed system.
The algorithm first instantiates the templates from the
library using the entities of the observed system into a set
of model components. Then, taking into account the con-
straints, the algorithm enumerates the plausible combina-
tions of components as candidate model structures. For
each model structure, the algorithm performs parameter
estimation that fits the model simulation against observed
data. At output, the algorithm returns a list of mod-
els ranked with respect to their fit against the measured
data.
Different implementations of the induction algorithm

make different design choices. In the following, we pro-
vide a brief overview of the different implementations: A
detailed overview is given by Džeroski and Todorovski
[7]. Lagramge 2.0 [38] transforms the library and con-
straints into a grammar that enumerates candidate model

Table 5 Top-level outline of the algorithm for inducing
process-based models from knowledge and data

procedure IPM(library, entities, constraints, data):

components = Instantiate(library, entities)

for mstructure in Enumerate(components,

constraints):

(model, error) = ParameterEstimation(mstructure,

data)

append(model_list, (model, error))

sort(model_list, key = error)

return model_list
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structures. IPM [28] takes a naïve approach and uses
constraints on the number of components involved in
the model to address combinatorial explosion. HIPM
[29] encodes the constraints into a hierarchy of pro-
cess templates and approaches enumeration as a combi-
natorial search problem. SCIPM [39] explicitly encodes
the constraints and approaches the enumeration using
constraint satisfaction methods. Finally, ProBMoT [40]
extends HIPM with explicit constraints referring to the
particular system at hand and meta-heuristic optimiza-
tion methods for parameter estimation.
Note, however, that the above inductive process-based

modeling approaches have limited their focus on induc-
ing deterministic models cast as ordinary differential
equations. ProBMoTs, our extension of ProBMoT pre-
sented in this paper that allows for inducing stochastic
models of dynamical systems cast as reaction equations.
The extension is based on the novel formalism for encod-
ing a library of components that supports the specification
of reaction equations as models of individual processes.
ProBMoTs also integrates standard simulators for reaction
equations [41].
Both ProBMoT and ProBMoTs are released as open-

source software packages available for download at http://
probmot.ijs.si 2.

Experimental setup andmodel selection
To evaluate the algorithm for inducing stochastic process-
based models, we apply it to several problems of model-
ing dynamical behavior of biological systems at different
scales. We consider two synthetic modeling problems
from the domain of gene regulatory networks and two
real modeling problems from the domain of epidemi-
ology. In each domain, we first encode process-based
knowledge for modeling dynamical systems. In this paper,
our focus is limited to encoding domain knowledge in
two domains, covering models on fundamentally different
scales. Note, however, that the process-based modeling
approach can be applied to other domains as well, given
that modeling knowledge about the domain of interest is
encoded as a library of entity and process templates. For
example, when modeling metabolic networks, the cen-
tral entity templates will represent enzymes and metabo-
lites, while process templates would represent different
metabolic reactions (with different kinetics), formulat-
ing different models of the dynamical interactions among
them. For further examples of domain knowledge libraries
for process-based modeling, we refer the reader to the
ProBMoT web site. Second, for the synthetic modeling
problems, we select a target model and simulate it to
obtain a data set for inducing models. On the other hand,
the real modeling problems come with data sets of mea-
sured system behavior. Third, for each modeling problem,
we define an ordered list of plausible model structures

P. For the synthetic problems, this list includes the tar-
get model only, while for the real modeling problems, it
includes all the structures of the models that have been
reported in the literature as plausible explanations of the
measurements. Note that for all problems, the list of
candidate models considered by the induction algorithm
includes all the model structures from the list P.
To perform induction, for each modeling problem we

run ProBMoTs using the corresponding modeling knowl-
edge (including the constraints) and the data set as inputs.
Recall that the modeling knowledge defines the space
of candidate model structures. The values of the model
parameters are estimated by using the Differential Evo-
lution method [42] with the recommended parameter
settings: crossover probability of 0.9, differential weight of
0.8, population size 50 and the rand/1/bin strategy. We
set the number of evaluations of the objective function
to 1000 times the number of constant model parame-
ters. To assess the stability of the parameter estimator, we
use 10 restarts of the Differential Evolution method. For
simulating the reaction equations, ProBMoTs employs the
Gillespie direct method [9] to obtain 20 realizations.
The parameter estimationmethod in ProBMoTs can use

different objective functions for measuring the discrep-
ancy between the realizations and the observed data. The
first objective function we use in the experiments cor-
responds to a typical laboratory setting used in biology,
where the measurements from multiple replicates of an
experiment are averaged. Thus, the 20 realizations (K in
the equation) are averaged just as the observed data:

RMSEAR(m) =
∑
i

1√
N

‖xi−x̂i‖, x̂i = 1
K

∑
k

x̂ki , (2)

where m denotes the model, i iterates over the observed
variables xi and k iterates over the realizations, where x̂ki
denotes the k-th realization of xi, and N is the number of
observed time points.
Alternatively, in situations where the data are measured

within a single experiment, we use the second objective
function. Instead of averaging the realizations, we average
the error of each realization, i.e.:

RMSESR(m) = 1
K

∑
k

∑
i

1√
N

‖xi − x̂ki ‖. (3)

Recall that the result of ProBMoTs is a list of mod-
els ranked with respect to their descending fit against
the measured data, in our case, ascending model error.
The trivial model selection strategy would be to select
the model with the optimal value of the objective func-
tion. Note, however, that error-based estimates of model
performance tend to overfit observations, a problem espe-
cially relevant in the context of noisy experimental data.
To address the problem of overfitting, we use an alterna-
tive model selection approach that introduces a penalty
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for model complexity, measured as the number of reaction
equations in the model. To additively combine the model
complexity and the degree of fit into a single score, we nor-
malize both to the [0, 1] scale. The normalization is based
on the minimal and maximal values of the degree of fit
and complexity, respectively, over all the candidate model
structures considered by ProBMoTs.
We visualize the result of ProBMoTs (i.e., the ranked list

of models) using an error profile, as depicted in Fig. 4.
Each point of the error profile corresponds to a model
induced by ProBMoTs and the y-axis of the profile cor-
responds to the respective value of the model selection
criterion. In our experiments, we use the error profile to
evaluate the ProBMoTs results in two ways. The first one
selects the left-most model in the error profile, i.e., the
model with the lowest model selection score, as the most
appropriate model. We refer to this method as the sin-
gular method. This method is short-sighted since it only
considers the best model. As an alternative to the singular
method, we propose the inclusive method that consid-
ers models in the left-most plateau of the error profile.
We employ a simple heuristic to identify plateaus: a rela-
tive change of error between two consecutive error-profile
points that is above a threshold value of 0.1 indicates a
plateau end. The first (leftmost) plateau of the error profile
in Fig. 4 includes the cluster of ten points in the lower-left
corner of the graph. Note that it includes ten top-ranked
model structures that are indistinguishable in terms of the
model error and therefore better represent the results of
induction. The plateaus of the error profile lead to a partial
ordering of the models.
Finally, to evaluate the results of induction, we compare

the list of selected models to the list of plausible mod-
els P using a triple of metrics (recall, hit, plateau_size).
The recall is the proportion of the plausible models in the
first plateau of the error profile. The indicator hit tells us
whether the first plateau contains the first model structure
in P. The size of the plateau (plateau_size) indicates the

Fig. 4 An example error profile of a ProBMoTs output that includes
100 models ranked according to increasing model error

discriminative power of the inductionmethod: the smaller
the plateau, the larger the discriminative power. The ide-
ally performing induction method would lead to the triple
(100 %, true, |P|).

Results
In this section, we present the results of the evaluation
of ProBMoTs on the four problems of inducing stochastic
process-based models from knowledge and data. The first
two are from the domain of gene regulatory networks, the
other from the domain of epidemiology.

Gene regulatory networks
We first address the task of modeling the simple gene
regulatory network of the repressilator, introduced in the
previous section. We select the model from Table 3 as a
target model and set the list of plausible model structures
P to contain a single structure that corresponds to the
target model. We then perform two experiments. In the
first, we assume that the kinetic rates in processes belong-
ing to a single class of regulatory processes (degradation,
translation and regulation) have the same values. To this
end, we restructure the library of templates to introduce
an global template entity that declares the global kinetic
rates, which are then used by the process templates. In
the second experiment, we perform induction without the
assumption of global kinetic rates and therefore use the
library of templates as presented in the previous section.

Global kinetic rates
The model of the repressilator considered here has been
already addressed in other studies [6, 43]. Note, how-
ever, that both studies address only the task of param-
eter estimation from synthetic data assuming a single
model structure. In our experiment, we also aim at iden-
tifying the structure of the model. We select the single
model structure used in previous studies as our target
and use the following values of the global kinetic rates:
(alpha0, alpha, beta, delta, n) = (0.0, 250.0, 5.0, 1.0, 2.1).
To obtain experimental data, we average 20 realizations of
the target model in the time interval t ∈[0, 35]. Accord-
ingly, we use the RMSEAR objective function.
In order to define a structure identification problem, we

describe the space of possible model structures as repre-
sented in Fig. 5. Each rectangle represents a gene entity,
while the dashed lines represent a regulation interaction
between the entities. The interactions in the incomplete
model are instantiated from the regulation process
template from Table 1. This results in 36 = 729 possi-
ble model structures, one of which is the target model
structure of the repressilator.
Figure 6 depicts the error profile for the list of mod-

els obtained with ProBMoTs. First, note that the small
standard deviations across the restarts of the parameter
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Fig. 5 Graphical representation of the space of model structures
considered during the induction of the repressilator model. Note that
we do not assume fixed forms of the regulation interactions between
the genes

estimator show its stability. Furthermore, the first plateau
of the error profile is easy to identify in the lower-left cor-
ner of the figure: it contains a single model. The structure
of this model is a perfect match to the structure of the tar-
get model. Therefore, the recall is 100 %, the hit is true
and the plateau size is 1, or in other words, the perfor-
mance of ProBMoTs on this task is ideal. This result gives
proof-of-principle evidence that confirms the ability of
the developed process-based modeling method to induce
both the structure and parameters of stochastic models
from knowledge and data.

Local kinetic rates
To test the robustness of our method, we remove the
assumption of global kinetic rates from the modeling
scenario. Thus, we forget the changes we made to the
library in the previous experiment and use the library
as described in Table 1. Other than the different for-
malization of the domain knowledge, given the relaxed

assumptions, the task remains the same: we use the
same target model, the data set, the objective function
(RMSEAR) and the list of plausible models as in the first
experiment. The relaxed assumptions lead to an explo-
sion in the parameter space, while the structure space
remains the same. We want to test whether (and how) the
relaxed modeling assumption will influence (deteriorate)
the results of ProBMoTs.
The obtained error profile for the described task is

shown in Fig. 7; note again the small standard deviation
of the error over the parameter estimator restarts. The
first plateau of the error profile includes four models.
The second model has the structure that exactly matches
the structure of the target model leading to the perfor-
mance triple of (100 %, true, 4). The structures of the other
three models in the plateau contain the repressilator motif
and a number of additional gene regulation interactions,
indicating an overfit of the experimental data. Indeed,
Fig. 8 shows that if model complexity is taken into account
when selecting models, the first plateau of the error pro-
file includes only the target model, leading to the ideal
performance triple of (100 %, true, 1).

Compartmental epidemiological models
In the domain of epidemiology, we first formalize the
knowledge to be used for establishing stochastic models,
using the basic principles of compartmental modeling as
presented by Brauer et al. [44]. There, the spread of disease
ismodeled by the flows of individuals between healthy and
infected populations, referred to as compartments. Each
flow ismodeled using a reaction equation, where reactants
and products correspond to compartments.
Figure 9 graphically illustrates the general structure

of epidemiological compartmental models. We distin-
guish between six compartments corresponding to six

Fig. 6 Error profile for the task of inducing the repressilator model with global kinetic rates. Complete error profile (left). The top six models in the
first two plateaus with error bars showing the standard deviation across restarts. The gray horizontal lines depict plateaus (right)
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Fig. 7 Error profile for the task of inducing the repressilator model with local kinetic rates. Complete error profile (left). The top six models in the first
two plateaus with error bars showing the standard deviation across restarts. The gray horizontal lines depict plateaus (right)

subpopulations of individuals that are susceptible (S) to
the observed disease, latently infected (L), infected with
(I ) and without symptoms (A, i.e., asymptomatic), quar-
antined (Q) and recovered (or removed, in case of fatal
diseases, R). In the library of modeling knowledge, all
these compartments are represented with a single entity
template compartment which has the variable property
of noi, representing the number of individuals in the
compartment at a given time point.
At the point of introduction of a pathogen in the popu-

lation, the entire population can be considered to consist
of susceptible individuals (in the compartment S), except
for the individuals by whom the pathogen is introduced.
From this point on, we can observe different processes of
flow between compartments. One way to model the infec-
tion of individuals is to assume that all infected individuals

manifest the disease symptoms. In this case, the A com-
partment is not populated. An alternative, more complex,
model assumes that we can also have infected individu-
als that do not manifest the symptoms. In both cases, the
infection might cause a direct flow from S to I (and/or
A) or indirect flow through the L compartment of latently
infected individuals.
The recovery of individuals from a disease can either

cause flows from the A and I compartments to the pop-
ulation of recovered (or removed) individuals R or cause
flows from the A and I to the population of susceptible
individuals S. In any case, the recovery of the individuals
from I can be controlled by moving the infected individu-
als to the quarantine compartment Q. Finally, the general
model involves a flow of individuals from the recovery
compartment to the population of susceptible individuals.

Fig. 8 Error profile for the task of inducing the repressilator model with local kinetic rates based on a model selection score that takes into account
model complexity penalization. Complete error profile (left). The top seven models in the first three plateaus with error bars showing the standard
deviation across restarts. The gray horizontal lines depict plateaus (right)
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Fig. 9 Graphical representation of a general compartmental model in
epidemiology. The boxes correspond to compartments, i.e.,
subpopulations, and arrows denote the flows of individuals between
compartments

The general model can be instantiated to a number of
variants, ranging from the simple SIR model that assumes
only three compartments of susceptible, infected and
recovered individuals, through the SLIR model that intro-
duces the population of latently infected individuals, to
the most complex SLIAQRS model that comprises all the
compartments depicted in Fig. 9. For example, the SIR
model includes two processes. The first instantiates the
template process of infection_symptomatic that includes
a single reaction equation: S.noi + I.noi → I.noi + I.noi
[i], where i represents the rate of infection. The other
process represents the template of recovery_symptomatic
that includes the reaction equation I.noi → R.noi [r],
where r denotes the recovery rate.
In contrast to the previous synthetic tasks, here we use

two data sets of real measurements for induction. These
come from two epidemic outbreaks, the outbreak of the
Great Plague in Eyam in 1666 [45] and the outbreak of
influenza type A subtype H3N2 in Tristan da Cunha in
1967 [46, 47]. The measurements for the case of the out-
break in Eyam are taken bimonthly at seven time points in
the period from 3rd of July to 20th of October 1666. They
include two variables: number of healthy individuals and
the number of individuals that have complained of symp-
toms. Themeasurements fromTristan da Cunha are taken
daily at 21 time points in October 1967. They also include
two variables: number of individuals showing symptoms
of infection and the number of recovered individuals.
To match the compartment variables to the variables in

the data sets, we calculate the number of healthy (individ-
uals not showing any symptoms of infection) as the sum
of the number of individuals in the S, L and A compart-
ments, the number of infected as the sum of the number

of individuals in the I and Q compartments and the num-
ber of recovered as the number of individuals in the R
compartment.
In accordance with the experimental setting for obtain-

ing the measurements, we use the second objective func-
tionRMSESR. Since the experimental data comes from real
and therefore noisy measurements, we take into account
model complexity to obtain the model selection score.

Eyam plague outbreak
For this task, we consider all possible instances of the gen-
eral model as previously described, by introducing a small
set of constraints of mutual exclusivity of symptomatic
and asymptomatic infection, thus instantiating only the
corresponding recovery for each type of infection. The
total number of model structures under these constraints
is 24. The initial conditions at the first time point were
set to 254 individuals in the S, 7 individuals in the I and
0 in the other compartments, which exactly matches the
initial conditions from the original study by Ragget [45].
The same paper proposes two plausible model structures:
SIR, the structure that has been analyzed in the paper,
and SLIR, suggested as the most promising one for fur-
ther study. Thus, our list of plausible models structures P
is (SIR, SLIR).
The first plateau of the error profile, depicted in Fig. 10,

contains a single model that has the SIR structure. There-
fore the recall is 50 %, the hit is true and the plateau
size is 1. The model with the SLIR structure is ranked
as second and comprises the second error-profile plateau.
Thus, when considering the two models in the two left-
most plateaus, ProBMoTs successfully reconstructs the
two plausible model structures suggested before [45].
Note that the complexity-based model selection score
bears high discriminative power, since each model forms
its own plateau. The next four plateaus of the error pro-
file include the SIRS, SLIRS, SIQR and SLIQR models,
which render model structures that extend the basic SIR
and SLIR with the assumptions of survivors (return to
the susceptible compartment) or a quarantine compart-
ment to provide plausible explanations of the observed
data.

Tristan da Cunha influenza outbreak
For this task, we consider the same set of 24 model struc-
tures that instantiate the general model from Fig. 9. Based
on the data available, we set the initial number of infected
individuals to 1, other initial values to 0, except for the
initial number of susceptible individuals that was fitted as
a model parameter. We selected the two best performing
model structures from Toni et al. [6] as plausible and set P
to (SLIR, SIR). The other twomodel structures considered
in the study are a modified SLIR structure, that includes
time-delayed flow models, and a SIRS structure.
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Fig. 10 Error profile for the Eyam plague modeling task. The error bars show the standard deviation of the model selection score across the runs.
The gray horizontal lines depict plateaus

The first plateau of the error profile, depicted in Fig. 11,
contains the SLIR model that is the first model in P, lead-
ing to a recall of 50 %, the hit indicator is true and the
plateau size is 1. The second ranked model in the sec-
ond plateau has the SIR structure of the second model in
P. As in the case of the Eyam plague experiments, ProB-
MoTs perfectly reconstructed the results of the previous
modeling experiments reported by Toni et al. [6].

Discussion
The formalism for stochastic process-based modeling,
that we introduce in this work, retains the modular and
straight-forward specification of entire classes of model
structures from its deterministic counterpart. In contrast
to the formalisms commonly used in systems biology that
employ different levels of abstraction but focus primar-
ily on the efficient description of a single model structure
[10–13], the process-based formalism allows for describ-
ing uncertainty in both the structure and parameter

values of a model by representing classes of model
structures. The introduction of reaction-equation based
description of processes improves the understandability
of process-based models and allows for their stochastic
interpretation, improving the generality and utility of the
process-based modeling approach and bringing it closer
to the domain of biology.
The experimental evaluation shows that our approach

can be successfully applied to a range of problems of
learning stochastic models. These can come from dif-
ferent biological domains and represent phenomena at
different scales. Our approach exhibits excellent per-
formance on the considered tasks, producing accurate
and understandable models and successfully reconstruct-
ing the results of previous modeling efforts. The pro-
posed approach can be applied to an arbitrary domain
of interest by encoding an appropriate library of tem-
plate entities and processes encountered in the particular
domain.

Fig. 11 Error profile for the Tristan da Cunha influenza outbreak modeling task. The error bars show the standard deviation of the model selection
score across the runs. The gray horizontal lines depict plateaus

3.2. Related Publication 55



Tanevski et al. BMC Systems Biology  (2016) 10:30 Page 15 of 17

However, several limiting issues may arise during the
application of the proposed approach.
First, solving the parameter estimation task for each

model structure can lead to both identifiability and dis-
tinguishability problems. The identifiability of the model
parameters is a problem often encountered when mod-
eling biological systems [48]. Performing identifiability
analysis for each candidate structure is in principle pos-
sible. However, this can be challenging in terms of com-
putational complexity when considering a large number
of candidate model structures. A more tractable prob-
lem is the one of distinguishability of the candidate model
structures in terms of the applied model selection criteria.
Within process-based modeling, this problem presents
itself in the form of long plateaus in the error profile.
This problem has been studied for the task of learning
deterministic models of dynamical systems from data and
domain knowledge [32]. The study shows that the prob-
lem of distinguishability can be successfully addressed by
the introduction of problem specific, domain dependent
criteria for parameter optimization and model selection.
Although this study is limited to the case of determinis-
tic models, further work can extend its scope to stochastic
modeling.
Second, the encoding of very large and complex systems

in the proposed formalisms may be cumbersome. The use
of reaction equations to encode a system with many enti-
ties, that is comprised of a large number of simple and
repeating interactions might lead to excessively lengthy
descriptions. Following concepts from related work, the
issue of combinatorial complexity of composing models
from elementary interactions may be solved by rule- or
agent-based formalisms by introducing further abstraction.
Finally, the third limitation of our approach is related to

computational cost. The simulation of a candidate model
is the computationally most expensive step of the pro-
cess of model induction. Therefore, the computational
cost is proportional to the number of evaluations (and
the number of simulations per evaluation) needed for
each model during the parameter estimation task. Our
method requires exhaustive enumeration and optimiza-
tion of a number of candidate model structures defined by
entity/process templates organized in multiple-level hier-
archies of alternatives within a library of domain knowl-
edge. Subsequently, a combinatorial explosion is possible
if the problem is not well constrained. This is exactly why
the process-based modeling approach includes the facility
for imposing constraints on the space of possible model
structures by allowing for the definition of an incomplete
model.

Conclusion
The area of computational biology lacks a unifiedmethod-
ology for modeling dynamical systems that would include

a formalism for representing complex dynamics in a
manner easily understandable to biologists and modeling
experts. In this paper, we advocate the use of process-
based modeling for this purpose. It allows for understand-
able description of a space of candidate model structures
for a given modeling task. It allows for both determinis-
tic and stochastic interpretation of process-based models.
Also, it allows for automated induction of models from
data and knowledge.
In order to bridge the gap between the existing and

commonly used tools for modeling the dynamics of bio-
logical systems and the machine learning approaches to
computational scientific discovery, we have extended the
scope of process-based modeling approaches, specifically
ProBMoT, to include stochastic models. As an interme-
diate representation, our ProBMoTs formalism includes
the finer, more intuitive and easier to comprehend rep-
resentation of reaction equations, which should increase
the ease of use of process-based modeling in biology.
This finer-grained representation of processes is a feature
that broadens the possibilities of interpretation, mainly
in the direction of capturing the inherent stochasticity of
dynamical systems in biology.
Through the tasks considered in this work, we have

shown that our approach can deal with complex param-
eter and structure search spaces, in lightly constrained
settings, with synthetically generated tasks and in less
constrained real world problems. We have thus demon-
strated the potential of our approach for automated dis-
covery of novel scientific knowledge in domains that
require stochastic modeling of dynamical systems. Our
results also point at an array of possibilities for further
evaluation and improvement.
The presented extension of the process-based formal-

ism integrates reaction equations as a proxy that allows
for multiple interpretations of the process-based models.
However, we can continue this initial step by integrat-
ing other higher-level formalisms. Combining rule-based
modeling languages with the process templates from the
process-based modeling formalism can be considered as a
first direction for further work. The introduction of rule-
based constraints would allow for automated modeling of
more complex systems.
Another direction for further work stems naturally from

the formulation of the modeling task as a combinato-
rial search problem. It concerns the implementation of
incomplete, heuristics-based search strategies over the
space of candidate models. Although a comparative eval-
uation with the method using exhaustive search is needed
to establish its utility, this extension will scale-up our
approach towards applications to large-scale modeling
problems.
Other factors might also contribute to the overall suc-

cess of our approach, e.g., the choice of a parameter
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estimation method and a method for simulation. Exist-
ing literature offers comparisons of the performance of
different parameter estimation methods on single model
structures for modeling tasks from the domain of sys-
tems biology (both deterministic and stochastic) [49, 50].
A comparison of the performance of different parameter
estimation methods has also been performed in the con-
text of deterministic process-based modeling of aquatic
ecosystems [40]. The conclusions from these studies are
a good starting point to investigate their performance
in the context of stochastic process-based modeling
tasks.
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40. Čerepnalkoski D, Taškova K, Todorovski L, Atanasova N, Džeroski S. The
influence of parameter fitting methods on model structure selection in
automated modeling of aquatic ecosystems. Ecol Model. 2012;245:
136–65.

41. Ramsey S, Orrell D, Bolouri H. Dizzy: Stochastic simulation of large-scale
genetic regulatory networks. J Bioinforma Comput Biol. 2005;03(02):
415–36.

42. Price K, Storn RM, Lampinen JA. Differential Evolution: A Practical
Approach to Global Optimization. Berlin Heidelberg: Springer; 2005.

43. Tomshine J, Kaznessis YN. Optimization of a stochastically simulated gene
network model via simulated annealing. Biophys J. 2006;91(9):3196–205.

44. Brauer F, van den Driessche P, Wu J, Allen LJS. Mathematical
Epidemiology. Berlin Heidelberg: Springer; 2008.

45. Ragget GF. Modelling the eyam plague. IMA J. 1982;18:221–6.
46. Hammond BJ, Tyrrell DAJ. A mathematical model of common-cold

epidemics on tristan da cunha. J Hyg. 1971;69:423–33.
47. Shibli M, Gooch S, Lewis HE, Tyrrell DAJ. Common colds on tristan da

cunha. J Hyg. 1971;69:255–62.
48. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP.

Universally sloppy parameter sensitivities in systems biology models.
PLoS Comput Biol. 2007;3(10):1–8.

49. Moles CG, Mendes P, Banga JR. Parameter estimation in biochemical
pathways: a comparison of global optimization methods. Genome Res.
2003;13:2467–474.

50. Sun J, Garibaldi JM, Hodgman C. Parameter estimation using
metaheuristics in systems biology: A comprehensive review. IEEE/ACM
Trans Compu Biol Bioinforma. 2012;9(1):185–202.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

58 Chapter 3. Stochastic Process-Based Models of Dynamical Systems



59

Chapter 4

Domain-Speci�c Selection Criteria

for Process-Based Modeling

4.1 Problem Description

When considering multiple competing structural hypotheses for the task of inferring models
of dynamical systems, selecting the best among them is a problem that must be addressed.
The choice of the criteria and properties according to which a model can be considered
�best� should be ultimately left to expert judgment. From a statistical modeling, or ma-
chine learning perspective, the model selection problem is considered to be the problem
of selecting the model that has the lowest generalization error (Hastie et al., 2009). In a
data-rich scenario, the generalization error of a model is calculated by using independent
observations of the system that have not been used while training the model, i.e., by using
a test set.

The assumption that the error of the model measured on the observations used to infer
the model (training error) is a good estimate of generalization error is overly optimistic.
This is due to the adaptation of the model to the available observations and may result
in the selection of an over�tted model. A better estimate can be obtained by partitioning
the observations into a training set and a validation set. The models can then be trained
(optimized) using the training observations and be tested against the validation set to
obtain an estimate of the generalization error. Many methods in machine learning focus
on model selection based on variations of this approach.

However, the abundance of observational data for inferring a model of a dynamical
biological system is also an overly optimistic assumption. Additionally, the observations
used for modeling dynamical biological systems are in the form of time-series, which cannot
be always randomly and correctly sampled to obtain independent datasets. An exception
may be, for example, the case of collecting observations from a single dynamical system
under the in�uence of di�erent stimuli. Nevertheless, the sample size should be signi�cantly
large. Therefore, we turn to methods for estimating the generalization error in data-poor
scenarios without partitioning the set of available observations.

The expected generalization error may come from three sources: error due to model
bias, variance and irreducible error. The irreducible error cannot be estimated due to
the existence of noise within the modeled system or the impossibility to be adequately
captured observations. It represents a lower bound of the error. The estimation of the
generalization error is therefore performed by estimation of model bias and variance, using
the information captured by the structure of the model and the procedure used for its
inference. The subsequent model selection is performed based on the most desirable trade-
o� between bias and variance.
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The model bias comes from the model representation (representation bias) and from the
function that guides the model inference and evaluates the candidate models (evaluation
bias). The source of variance is the sensitivity of the inferred model to minor �uctuations
in the set of observations used for its inference.

A diverse family of functions considered for modeling and high uncertainty are related
to lower/weaker model bias, while a limited family of functions and low uncertainty in their
structure/parameters are related to higher/stronger bias. Generally, the more complex the
model, the lower the bias and the higher the variance error due to the strong adaptation
of the model to the optimization objectives (over�tting). Less complex models have higher
bias but lower variance error due to their in�exibility (under�tting). The choice of rep-
resentational bias requires knowledge of the domain and the appropriate space of model
hypotheses, and is orthogonal to the strength of the bias. A representational bias that de-
�nes a space that contains the exact family of functions that corresponds to the observed
phenomena will lead to the lowest bias and variance error.

Another source of bias is the process of model inference and in particular the function
that guides search and optimization. This bias comes from the bias property of a statistical
estimator, specifying how well the likelihood function for a model is approximated, if they
can be directly speci�ed and used in the process of inference. Alternatively, the evaluation
bias may come from the optimality and completeness of a speci�c heuristic function used
for search or optimization that compensates for the lack of complete observations or ob-
servations with lower-grade quality and directly relates the modelers expectations to the
realization of the model.

In both machine learning and biology, the most commonly adopted principle for select-
ing a model which o�ers the best bias-variance trade-o� is the parsimony principle. This
principle states that the best model is the one that has the simplest representation while
adequately describing the observations. In general, the parsimony principle comes in the
form of a complexity based regularization term that is added to a goodness-of-�t function
E that estimates the �t of the model realization to the observations:

Ereg = E(x, x̂|M, θ) + λ · R(θ), (4.1)

where x̂ is the realization obtained from the model M with parameter values θ, x is the
observation of the system, and λ is a hyper-parameter that can be set by an expert or
optimized at a meta-level.

Frequently, the parameters of a model are indicative of its complexity. Therefore,
the regularization term is a function of the parameters of the model. Commonly used
regularization terms are, for example, based on a norm of the parameters (such as the
Tikhonov regularization where R(θ) = ||θ||22 and the Lasso regularization where R(θ) =
||θ||1) or the number of parameters (such as the AIC, where R(θ) = |θ| and BIC, where
R(θ) = ln(N) · |θ|, N is the number of data points, and the errors are regularized based
on the logarithm of the likelihood function).

For model selection in systems and synthetic biology, regularization based approaches
are commonly considered for model selection among manually enumerated candidate model
structures (Cedersund & Roll, 2009; Kirk et al., 2013). Regularization has been shown to
improve the performance of parameter estimation methods for modeling tasks in biology
(Gábor & Banga, 2015) and may be su�cient for inferring models of dynamical systems
by optimization based design methods.

We are concerned with model selection for process-based modeling, where parameter
estimation is repeatedly performed in the context of selecting the model structure. The for-
malism of process-based modeling allows for capturing the most relevant domain knowledge
needed for the composition of model structures and for a �exible representation of the space
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of candidate models with various amounts of uncertainty in model structure/parameters.
At the level of model structure, a process-based model is a linear composition of process
instances, corresponding at a lower level to a set of instance equations. The regularized
error Ereg for learning process-based models can be de�ned by the following equation:

Ereg = E(x, x̂|MI , θ) + λ · R(θ′MI ) (4.2)

Here, as before, θ are the parameter values of the model M, but θ′ is the ordered set of
structural parameters (∀{t|t ∈ θ′MI

}(t ∈ {0, 1})) that indicate the presence of process or
equation instances in the model, implicitly de�ned for a candidate model structure MI
(with optimized parameter values) re�ned from an incomplete model I, during the process
of enumeration.

The parsimony principle may be underestimating the bias introduced by the minimiza-
tion of the discrepancy between observed system behavior and simulated model behavior,
when the observations are scarce or do not capture enough details of the true behavior
of the system. In such a context, models of any complexity can over�t. In this type of
scenario the parsimony principle may not o�er an informative insight and depending on the
choice of the hyper-parameter, model selection may result in choosing the least complex
model which may not be correct or resort to choosing randomly from a large set of models
that are indistinguishable according to their estimated generalization error.

We further conjecture that the strengthening of the evaluation bias by additional do-
main and knowledge based heuristics for process-based modeling can o�er an alternative
when regularization based on the complexity of the model does not alleviate the model
selection problem. The evaluation bias strengthening for PBM is performed by encoding of
additional domain knowledge in the form of domain-speci�c criteria. The domain speci�c
criteria are included in the regularized error score from Equation 4.2 as follows:

Ereg = E(x, x̂|MI , θ) + ξ · D(x, x̂|MI , θ) + λ · R(θ′MI ) (4.3)

The function D is lower bounded by 0 and is subject to minimization. It relates knowledge
about the desired behavior of the system to the properties of the model simulation and the
observations. It serves as an additional heuristic that guides the parameter estimation of
each model structure and ultimately the selection of the best model.

The parsimony principle is clearly insu�cient to solve the model selection problem in
the task of modeling the dynamics of the Rab5-Rab7 switch in endocytosis. As is the
case in other tasks of modeling highly non-linear systems using real world data, due to the
combination of limited observability and the high complexity of the considered structural
hypotheses, the problem of model selection becomes particularly hard. Regularization
based approaches such as the Bayesian information criterion fail to alleviate the problem
(Tanevski et al., 2013).

Our work (Tanevski et al., 2015) extends the work on this modeling problem by Del
Conte-Zerial et al. (2008) and the follow up work on parameter estimation focusing on
a speci�c model by Tashkova, Koro²ec, �ilc, Todorovski, and Dºeroski (2011). As an
e�cient alternative to the manual enumeration of candidate model structures considered
by Del Conte-Zerial et al. (2008), we develop a library of domain knowledge and de�ne a
space of candidate model structures in the form of an incomplete process-based model. We
further demonstrate that the bias strengthening approach using domain speci�c criteria
outperforms the standard model selection approach based on the parsimony principle.

This work was published in a journal article which constitutes the remainder of this
chapter. The full bibliographic reference to the article is:

Tanevski, J., Todorovski, L., Kalaidzidis, Y., Dºeroski, S. (2015). Domain-speci�c
model selection for structural identi�cation of the Rab5-Rab7 dynamics in endocytosis.
BMC Systems Biology, 9 (1), 1-31.
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Abstract

Background: Given its recent rapid development and the central role that modeling plays in the discipline, systems
biology clearly needs methods for automated modeling of dynamical systems. Process-based modeling focuses on
explanatory models of dynamical systems; it constructs such models from measured time-course data and formalized
modeling knowledge. In this paper, we apply process-based modeling to the practically relevant task of modeling the
Rab5-Rab7 conversion switch in endocytosis. The task is difficult due to the limited observability of the system
variables and the noisy measurements, which pose serious challenges to the process of model selection. To address
these issues, we propose a domain-specific model selection criteria that take into account knowledge about the
necessary properties of the simulated model behavior.

Results: In a series of modeling experiments, we compare the results of process-based modeling obtained with
different model selection criteria. The first is the standard maximum likelihood criterion based solely on least-squares
model error. The second one is a parsimony-based criterion that also takes into account model complexity. We also
introduce three domain-specific criteria based on domain expert expectations about the simulated behavior of an
endocytosis model. According to the first criterion, 90 of the candidate models are indistinguishable. Furthermore,
taking into account the complexity of the model does not lead to better model selection. However, the use of
domain-specific criteria results in a remarkable improvement over the other two model selection criteria.

Conclusions: We demonstrate the applicability of process-based modeling to the task of modeling the Rab5-Rab7
dynamics in endocytosis. Our experiments show that the domain-specific criteria outperform the standard
domain-independent criteria for model selection. We also find that some of the model structures discarded as
implausible in previous studies lead to the expected Rab5-Rab7 switch behavior.

Keywords: Process-based modeling, Dynamical systems, Structural identification, Model selection, Endocytosis

Background
The area of computational systems biology aims at pro-
viding computational methods and tools that help in
the processes of modeling biological systems, simulat-
ing the resulting models, and analyzing their behavior.
The modeling process begins with formulating struc-
tural hypotheses, i.e., the knowledge-driven identification
of the constituent system entities and the interactions
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between them. There are many modeling formalisms for
systems biology that have been developed for the purpose
of transformation of structural hypotheses into inter-
pretable and executable models [1, 2]. Since systems biol-
ogy focuses on dynamical behavior at the molecular level,
where change of properties of molecular constituents is
observed through time, ordinary differential equations are
most commonly used to formulate mathematical models.
In order to refine a conjectured model structure into

a complete model, one has to estimate the values of the
model parameters. The parameter estimation task is often
formulated as a nonlinear optimization problem [3, 4],
where the aim is to minimize the discrepancy between
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the model simulation and the measured behavior of the
observed system. Many of the commonly used systems
biology tools, such as COPASI [5], CellDesigner [6] and
others, focus on the parameter estimation task, consid-
ering a single model structure provided by the human
modeler.
Recently, computational methods for automated mod-

eling that address both structure identification and
parameter estimation, have emerged. On the one hand,
probabilistic methods [7] are intrinsically slow and inef-
ficient when applied to large classes of complex model
structures. On the other hand machine learning meth-
ods for equation discovery [8] are applicable in complex
modeling scenarios [9]. A notable recent development
is process-based modeling that allows for the integra-
tion of knowledge and measured data into the process
of inducing mathematical models of dynamical systems
[10–12]. These approaches have already been successfully
applied in systems biology [13, 14] to the tasks of mod-
eling the structure and dynamics of biological networks
from time-course measurement data.
In this paper, we apply process-based modeling to endo-

cytosis, an indispensable part of the cell immune response.
Endocytosis is the target of many modeling efforts in sys-
tems biology. Del Conte-Zerial et al. [15] present such an
effort focusing on the early phase of endocytosis, i.e., the
conversion of Rab5 domain proteins to Rab7 domain pro-
teins. They consider a number of alternative model struc-
tures, perform careful and extensive comparative analysis
thereof and propose a particular cut-out switch structure
as the most appropriate model of the Rab5-Rab7 conver-
sion. In a follow-up paper, Tashkova et al. [16] address the
task of estimating the parameters in this single cut-out
switch model structure.

Process-based modeling
Process-based modeling is concerned with inducing
explanatory models of dynamical systems from data
(measurements of the behavior of the observed system)
and knowledge (about modeling systems from the given
domain). A process-based model describes a dynami-
cal system at two levels of abstraction. At the higher

abstraction level, the model is cast as a set of entities
(that correspond to system variables) and processes (i.e.
interactions between the entities). At the lower abstrac-
tion level, each process includes a set of differential
and/or algebraic equations, whichmodels the correspond-
ing interaction between the entities involved in the pro-
cess. While the higher level bears the explanatory power
of a process-based model, revealing the structure of its
interactions, the lower-level allows for automatic transfor-
mation of the model into a set of differential equations
that can be used to simulate the dynamical behavior of the
observed system.
ProBMoT [17] is a recent implementation of the

process-based paradigm for automated modeling of
dynamical systems from knowledge and data. It is imple-
mented in Java.
It is still under active development, with the most recent

version available for download at http://probmot.ijs.si.
A graphical description of the process of automated

modeling using ProBMoT is presented in Fig. 1. ProBMoT
takes as input time-series data, i.e., measurements of the
dynamical behavior of the observed system. It also takes
as input modeling knowledge about the studied domain,
represented as a library of template model components,
i.e., entities and processes. Finally, it takes as input a set of
constraints, i.e., an incompletemodel, that correspond to
the particular modeling assumptions made for the specific
task at hand.
The library of domain knowledge is a collection of

template entities and processes that represent generic
components for building models of dynamical systems
in the domain of interest. For a particular model-
ing task, the user specifies an incomplete model that
includes a set of entities in the observed system and
constraints on the possible interactions between them.
The specific entities in the modeling task are instances
of the generic template entities in the library. Using
them, ProBMoT can enumerate all possible instances
of process templates in the library. Following the con-
straints from the incomplete model, ProBMoT com-
bines these process instances into candidate model
structures.

Fig. 1 The process of automated modeling with ProBMoT
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For each candidate model structure, parameter esti-
mation is performed to obtain a set of point estimates
of the unknown model parameters that most adequately
explains the observed system behavior. To achieve this,
parameter estimation in ProBMoT minimizes an objec-
tive function that measures the difference between the
observed and the simulated behavior. To this end, ProB-
MoT employs various meta-heuristic optimization meth-
ods from the jMetal framework [18] and the SUNDIALS
suite for simulating ordinary differential equations [19].
The output of the parameter estimation task represents a
candidate model. After the parameter values for all candi-
date model structures have been estimated, the resulting
candidate models are ranked by the minimized value of
the objective function. Finally, the ranked list of candidate
models represents the output of ProBMoT.

Model selection
Given the output of ProBMoT, i.e. a ranked list of can-
didate models, we face the model selection problem
of selecting the most appropriate candidate model. By
default, the top-ranked model is selected that corre-
sponds to the maximum likelihood criterion for model
selection; it only takes into account the least-squares
fit to the observed data. However, for the task at
hand, the limited observability of protein concentra-
tions and the noise in the measurements pose seri-
ous challenges to this default model selection method
[16, 20], and the selected model often overfits the
observed data.
To address this problem, various model selection cri-

teria have been considered in systems biology [7]. Many
of them follow the parsimony principle by combining
the least-squares model error with the complexity of the
model structure. In addition to this general criterion for
model selection, we consider here domain-specific criteria
that take into account the expected and necessary prop-
erties of model simulations in the particular context of
endocytosis. We conjecture that these task-specific cri-
teria for model selection will outperform the other two,
general criteria.
Note that the model selection problem is especially

important in the context of automated modeling, where
large classes of candidate models are being considered.
Few computational tools that address the structure iden-
tification task (e.g., ABC-SysBio) recast model selection
into a parameter estimation task [21]. However, this refor-
mulation requires the user to specify a list of candi-
date models, a demanding and tedious task for a human
modeler. In contrast, process-based modeling offers a
more flexible formalism for specifying complex spaces of
candidate model structures. Additionally, ProBMoT can
consider arbitrary objective functions that correspond to
various model selection criteria.

Methods
First, we are going to cast the task of modeling the
Rab5-Rab7 conversion in endocytosis as a process-based
modeling task. Then, we are going to formally define the
three model section criteria used in the study. Finally, we
are going to introduce the experimental setup used for
the empirical evaluation and the performance compari-
son of themodels obtained using differentmodel selection
criteria.

Process-based modeling of endocytosis
Process-based modeling formalizes domain-specific
knowledge describing entities, that correspond to the
variables of the dynamic systems in the domain at hand,
and processes, that correspond to interactions between
entities. In the particular context of modeling endocyto-
sis, entities correspond to protein domains and processes
refer to biochemical interactions between them. The
structure of the library is based on a modular formulation
of the system of differential equations for modeling the
conversion between the Rab5 and Rab7 protein domains
[15] of the form:

dr5
dt

= K1 − (k1 + GEF5(R5,R7)) · r5 + GAP5(R5,R7) · R5

dR5
dt

= GEF5(R5,R7) · r5 − GAP5(R5,R7) · R5

dr7
dt

= K2 − (k2 + GEF7(R5,R7)) · r7 + GAP7(R5,R7) · R7

dR7
dt

= GEF7(R5,R7) · r7 − GAP7(R5,R7) · R7

(1)

where the variables r5 and r7 represent the concen-
trations of GDP-bound (passive state) Rab5 and Rab7
domain proteins, whileR5 andR7 represent the concentra-
tions of GTP-bound (active state) proteins. Furthermore,
the parameters Ki and ki represent GDP Dissociation
Inhibitor (GDI) association rates and GDI dissociation
fluxes respectively. The Rab5-Rab7 interactions labeled
with GEF represent activating reactions which catalyze
the GDP/GTP exchange by guanine nucleotide exchange
factors, while the GAP interactions represent reactions
which catalyse the GTP hydrolysis by means of GTPase-
activating proteins. The rates of both (GEF and GAP)
interactions depend on (are functions of) the GTP-bound
state concentrations of Rab5 and Rab7.
Figure 2 provides a graphical representation of the

model structure [15], where the dashed lines repre-
sent optional interactions between the Rab5 and Rab7
protein domains, while the solid lines represent non-
optional (mandatory) interactions. The pointed arrows
represent the catalisation (activation) of the correspond-
ing exchange or hydrolysis, while the inhibition of the
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Fig. 2 A graphical representation of the Rab5-Rab7 interaction model structure as considered by del Conte-Zerial et al. [15]

GDP/GTP exchange by the GEF5Exchange Inhibitor is
represented by a truncated line. del Conte-Zerial et al.
[15] consider a different set of functional forms for mod-
eling each of the four (GEF and GAP) interactions; the
combinations of the different functional forms they con-
sider result in only 54 different model structures from the
possible 126.
Based on the model structure, we start the development

of the process-based library for modeling endocytosis by
encoding a single template entity, presented in Table 1,
that refers to a general protein domain. The first two
variables in the template represent the concentrations of
the active-state (GTP_bound_state) and passive-state
(GDP_bound_state) proteins. The template includes
declarations of two constant parameters that correspond
to the dissociation flux and the association rate of the
protein molecules in the domain. Note that the tem-
plate entity from Table 1 represents an arbitrary protein
domain. In the particular model of endocytosis from Eq. 1,
the template entity instantiates into the two specific enti-
ties of Rab5 and Rab7. In the process-based formalism,
the variable Rab5.GDP_bound_state_conc, i.e.,
the GDP_bound_state_conc of the entity Rab5,
corresponds to the model variable r5. Similarly,
Rab7.GDI_dissociation_flux corresponds to the
model constant parameter k2.

Table 1 Part of the developed library of domain knowledge.
Definition of the template entity Protein

template entity Protein {
vars:

GDP_bound_state_conc {range:<0,2>},
GTP_bound_state_conc {range:<0,2>},
GEF, GAP, t;

consts:
GDI_dissociation_flux {range: <0.001, 4>},
GDI_association_rate {range: <0.001, 4>};

}
// ...

When it comes to the process templates, the ProBMoT
library, depicted in Fig. 3, closely follows the general struc-
ture of the endocytosis model from Fig. 2. Each node
in Fig. 3 corresponds to a template process, where the
top node label denotes the template name, while the fol-
lowing lines within the node correspond to subprocesses.
The template process Root specifies the way that the
models of individual subprocesses are being combined
into the system of differential equations presented in
Eq. 1.
The hierarchy of process templates specifies the

mutually exclusive alternatives for modeling individual
subprocesses in terms of the functional forms of the
kinetic laws that govern the observed interaction. For
example, the process template GDI_GDP_membrane_
interaction refers to the interactions between
the protein domains and GDI; it contains two
subprocesses of Association_with_GDI and
Disassociation_with_GDI. The two corresponding
process templates specify the specific mass action kinetic
laws used in the model. While each of these two process
templates specifies a single kinetic law, the two process
templates of GAPProcess and GAPProcessPlus spec-
ify two and three alternatives for modeling the hydrolysis
of GAP7 and GAP5 respectively. These include an
Intrinsic_Hydrolysis process whichmodels a sim-
ple non-catalyzed hydrolysis from the active to the passive
state of the protein domain and a Michaelis_Menten
process in which the active state of the opposing pro-
tein catalyzes the hydrolysis, a process described by a
Micaelis-Menten rate. The GAPProcessPlus defines
an additional alternative in the form of a Sigmoidal
process which describes the catalysis using a kinetic rate
following a sigmoidal function.
Similarly, the GEFProcess template describes the

three alternatives for modeling the GEF5 interaction. Two
of them describe the auto-catalysis of the exchange, while
the Exchange_Inhibition process describes an alter-
native of the interaction where the second protein inhibits
the exchange. Table 2 presents a snippet from a process-
based library for modeling endocytosis that illustrates the
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Fig. 3 A schematic representation of the process hierarchy in the library. The label of each node denotes the process name, each line in the content
of the node denotes a subprocesses

formalization of individual process templates. It contains
specifications of the three mutually exclusive modeling
choices for the GEF5 interaction (i.e., the GEFProcess
process template).
Finally, the GEFCombined template describes the

seven alternatives for modeling the GEF7 interaction.
Note that this process has two components (represented
by two arrows in Fig. 2): auto-activation and activation by
the second protein, both of which catalyze the exchange

between the active and the passive state of the concerned
protein. Therefore, some of the alternatives contain sub-
processes which account for the auto-catalysis component
and have the same functional forms as the auto-activating
alternatives for the GEFProcess template.
The whole process-based library for modeling endo-

cytosis, the incomplete model and the task description
that have been used to perform all the modeling experi-
ments elaborated later in the empirical part of the paper is

Table 2 Part of the developed library of domain knowledge. Definition of interaction processes with alternative forms

template process GEFProcess(p1: Protein, p2: Protein){
consts: ke{range:<0.001,4>},kf{range:<0.001,4>},kg{range:<0.001,4>},

km{range:<0.001,4>},ki{range:<0.001,4>};
}
template process MMKinetics : GEFProcess {

equations:
p1.GEF = ke*p1.GTP_bound_state_conc/(kg + p1.GTP_bound_state_conc);

}
template process Sigmoidal_response : GEFProcess {

equations:
p1.GEF = ke/(1 + exp(kg - p1.GTP_bound_state_conc)*kf);

}
template process Exchange_inhibition : GEFProcess {

equations:
p1.GEF = ke*p1.GTP_bound_state_conc/(km*(1+p2.GTP_bound_state_conc/ki)

+ p1.GTP_bound_state_conc);
}
// ...
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available in Additional file 2. Given the library of domain
knowledge, ProBMoT enumerates 126 candidate model
structures for the particular endocytosis model of interac-
tion between the two protein domains of Rab5 and Rab7.
These 126 model structures correspond to the combi-
nations of modeling alternatives specified in the library;
the library specifies 2, 3, 3 and 7 alternatives for the
four subprocesses of GAPProcess, GAPProcessPlus,
GEFProcess and GEFCombined respectively, leading
to 2 · 3 · 3 · 7 = 126 combinations. Note that the candi-
datemodel structures considered by ProBMoT include the
54 structures analyzed by del Conte-Zerial et al. [15]. In
addition, ProBMoT considered 72 model structures that
the authors of [15] dismissed in their manual modeling
experiment as trivial and/or structurally flawed. In our
automated modeling experiment, we decided to minimize
the apriori modeling assumptions and consider all 126
model structures as valid alternatives. The distribution of
structure components in all 126 models can be seen in
Additional file 1: Figure S1.
Note finally, that the ranges specifying possible values

of the model parameters in the library closely follow the
ones used in previous studies: [ 0, 2] for the initial values
of the system variables (R5, R7, r5 and r7), [ 5, 195] for the
parameter td in the root process template, and [ 10−3, 4]
for all the other model parameters. We used the same
parameter estimation setting as the ones found to be most
suited to the endocytosis modeling task by Tashkova et al.
[16], i.e., the optimization method of Differential Evolu-
tion [22] with population size of 81, strategy rand/1/bin,
differential weight (F) of 0.942 and crossover probability
(Cr) of 0.915. The limit on the number of evaluations of
the objective function is 20 thousand times the number
of parameters, which amounts to about half a million of
evaluations per model structure.

Model selection
The standard approach to parameter estimation is the
one of least-squares, where we look for values of the con-
stant parameters that minimize the sum of squared errors
between the simulated model output and the observed
system behavior. In other words, we minimize a function
based on the sum of squared errors, which in the par-
ticular case of modeling endocytosis is calculated as the
average relative root mean squared error over the two
observed variables

E(m) = 1
2

·
⎛
⎝

√√√√∑
i(Rab5,i − R̂ab5,i)2∑
i(Rab5,i − Rab5)2

+
√√√√∑

i(Rab7,i − R̂ab7,i)2∑
i(Rab7,i − Rab7)2

⎞
⎠

(2)

where Rab5,i,Rab7,i and R̂ab5,i, R̂ab7,i denote the mea-
sured and simulated (using the model m) total concen-
trations of the corresponding Rab domain proteins at the
i-th time point, while Rab5,Rab7 denote the mean mea-
sured values of the corresponding concentrations across
all time points. The E measure normalizes the root mean
squared error, so that the value of 1 corresponds to the
error of a simple baselinemodel predicting the samemean
measured value of the output at each time point.
Note, however, that a sum of squared errors based crite-

rion might not be appropriate for use as a model selection
criterion for two main reasons. One is the limited observ-
ability of the system variables, which does not provide
enough information to discriminate among the different
model structures in the space of model structures. The
other reason is the risk of over-fitting the noisy data.
To address these two issues, we employ three additional
model selection criteria.
The following two are domain-dependent criterion

that take into account the desired behavior of the two
system variables that correspond to the concentrations of
the active-state Rab domain proteins in the endocytosis
model. Namely, when modeling endocytosis, the models
of cargo transport through conversion from Rab5 to Rab7
[15, 23] show that the dynamics of the system is con-
trolled by the active, GTP-bound state of the Rab domain
proteins, while the concentration of their inactive GDP-
bound state remains primarily constant throughout the
conversion. Therefore, one would expect that the simu-
lated concentration of the active-state Rab proteins should
be highly correlated to the corresponding model output
of total (active– and passive-state) protein concentration.
Given this expectation about the simulated model behav-
ior, one possible approach is to fit the concentrations of
the active-state Rab proteins against the data on total con-
centrations. This approach was used as an analysis tool
for the visual inspection of the model simulation against
observed behavior by del Conte-Zerial et al. [15]. How-
ever, Tashkova et al. [16] show that this approach fails for
parameter estimation, leads to over-fitting of the model to
the measured data, and poorly explains the true behavior
of the passive state Rab proteins. Here, we first propose an
alternative criterion formodel selection that discriminates
models based on the correlation between the simulated
values of the active-state Rab concentrations (̂R5, R̂7) with
the observed total concentrations (Rab5 and Rab7). In
particular, we measure

R(m) = 1
2

· (min(1 − r(̂R5,Rab5), 1)

+ min(1 − r(̂R7,Rab7), 1)),
(3)

where r(X,Y ) denotes the Pearson’s correlation coeffi-
cient between the time-series X and Y . The R measure
takes values in the range [ 0, 1]. The value indicates the
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degree of fit to the desired behavior of the hidden system
variables, where lower values indicate better correlation
between active-state and total protein concentrations.
Based on the same assumption, we introduce a second

domain-dependent criterion based on the time when the
switch between concentrations of Rab5 and Rab7 occurs:

X(m) = |ts − t̂s|
tmax − t0

(4)

where ts and t̂s are the switch time points observed in
the measured data and the model simulation respectively,
while t0 and tmax correspond to the first and the last
time point. Since we normalize the distance between the
switching point in the simulation and in the measured
data by the length of the entire observed time interval, the
X measure takes values in the range [ 0, 1].
We also consider a combination of the domain-

dependent criteria R(m) and X(m):

RX(m) = 1
2

· (R(m) + X(m)) (5)

To explore the trade-off between the error E(m) and
the different domain-dependent criteria, we introduce the
combined criteria,

ER(m) = α · E(m) + (1 − α) · R(m), (6)
EX(m) = α · E(m) + (1 − α) · X(m), (7)

ERX(m) = α · E(m) + (1 − α) · RX(m), (8)

where α is a trade-off parameter in the range [ 0, 1]. The
value of 0 leads to model selection based purely on the
domain-dependent criteria, while the value of 1 leads to
model selection based purely on the error E(m).
Finally, we also consider a general, domain indepen-

dent criterion commonly used to avoid overfitting, based
on the parsimony principle. Following this principle, from
a number of models with comparable error, we select
the simplest one. Model selection approaches that follow
the parsimony principle, such as the Akaike informa-
tion criterion or minimal description length [24], deal
with finding a trade-off between the model error and the
model complexity. In the particular case of process-based
models, we measure the complexity of a model as the
number of processes in the model structure, i.e., C(m) =
#processes(m). In turn, we introduce the β parameter
to trade-off between the model error (degree-of-fit) and
complexity, as follows:

EC(m) = β · E(m) + (1 − β) · C(m), (9)

where the value of the trade-off parameter β is in the range
of [ 0, 1].
A more complicated, domain-dependent, version of

this criterion can be derived from equations 6-8
and equation 9, which trade-off between the domain-
dependent criterion (instead of the error E(m)) and the

model complexity C(m)

ERC(m) = β · ER(m) + (1 − β) · C(m), (10)
EXC(m) = β · EX(m) + (1 − β) · C(m), (11)

ERXC(m) = β · ERX(m) + (1 − β) · C(m). (12)

For example, as ER(m) combines E(m) and R(m), ERC(m)

combines E(m), R(m), and C(m). When α = 1, R(m) is
not taken into account and the ERC(m) model selection
criterion becomes the (domain-independent) trade-off
between the model error and complexity, i.e., EC(m).

Evaluation of modeling performance
Before we test our central hypothesis that the domain-
specific model selection criteria are best suited for mod-
eling endocytosis, we define the metrics that we use to
measure the modeling performance of ProBMoT.
The first performance metric describes the ability of the

model selection method to discriminate between the 126
model structures considered by ProBMoT. Tomeasure the
discriminative power of a particular model selection cri-
terion, we run a ProBMoT experiment where the given
criterion is used to rank the models. We then depict the
error profile, i.e., plot the value of the given criterion for
each model against the increasing model rank; see Fig. 4
for an example. Furthermore, we refer to the initial flat
region of the error profile as the plateau; its length equals
the number of models it contains. A simple heuristic for
detecting the plateau is the test whether there is more than
10% error difference between two consecutive points. The
first such difference indicates the end of the plateau. For
example, the plateau of the error profile in Fig. 4 con-
tains 62models. Note that the plateau represents the set of
top-ranked model structures that are indistinguishable in
terms of the model selection criterion used to rank them.
The fewer models in the plateau, the better the perfor-
mance of the model selection criterion, i.e., its ability to
discriminate between the candidate model structures.
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Fig. 4 Error profile. Sorted ranking of the 126 models according to the
estimated values of the ER criterion. The trade-off parameter setting is
α = 0.5. Two long and two short plateaus can be identified in this
error profile
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Second, we compare the model structures in the first
plateau with the three groups of the models that have
been identified and grouped by their ability to produce
bistable behavior [15]. The first group includes 26 mod-
els that can reproduce the bistable switch behavior from
Rab5- to Rab7-dominated steady states, some of them fol-
low a toggle switch, others a cut-out switch. We will refer
to this first group of models as COT. The second group
includes 18 models that follow an in-phase switch; we
will refer to this second group of models as IP. The third
groups includes 10 models that can not reproduce a bi-
stable switch behavior; we will refer to this third group
of models as NOBS. For the model structures in the first
plateau, we are going to investigate the average rank of the
models in each of these three groups as an indicator of the
performance of our approach. We expect higher average
rank and number of models in the first plateau that belong
to the COT and IP groups, and relatively smaller aver-
age rank and number of models from the NOBS group. In
order to make a fair evaluation of the performance of our
approach and the chosenmodel selection criteria we com-
pletely exhaust all previously identified structural possi-
bilities. Since stability analysis has not been performed on
the remaining 72 model structures, we consider them to
be in a separate fourth group.
Third, we analyze the structure and behavior of the best

models. We aim at identifying the structure patterns for
the models in the first plateau: to this end, we analyze
the frequencies of the different modeling choices in the
first-plateau models for the four functions of GEF5, GAP5,
GEF7 andGAP7.We also report the structure and the sim-
ulated behavior of the top-ranked model. We repeat this
analysis for the models in the first plateau that also belong
to the COT and the IP groups.
Finally, we consider the problem of practical parameter

identifiability, i.e. the uniqueness of the estimated param-
eters for a candidate model given the available measured
data. A systematic study of a large number of systems biol-
ogy models [25] and previous studies of the problem of
identification of the model of the Rab5-Rab7 switch in
endocytosis [16], indicate identifiability problems: Param-
eters in models from the area of systems biology are
uncertain in general and the model proposed in the orig-
inal study has specific practical parameter identifiability
problems. Nevertheless, we investigate the possibility of
further discrimination of the models based on this prop-
erty, and the possible improvement of the identifiability
given the best found combination of domain-dependent
and independent criteria for optimization.
We follow the bootstrap method, proposed by Joshi

et al. [26], to perform the parameter identifiability analy-
sis, choosing it for several reasons. First, it provides more
reliable estimates of the parameter confidence intervals
compared to, for example, the Fisher-Information-Matrix

based method. Second, it is better suited for highly non-
linear models with high parameter-value uncertainties.
Third, the same method was used to perform parameter
identifiability of an endocitosys model [16]. Note however,
that the bootstrap method comes with a high computa-
tional cost since it requires a large number of parameter
estimations on the same model structure using different
data set with added random noise at a certain noise level.
The obtained parameter estimates are then used to ana-
lyze the distribution of the values of individual parameters
and the corresponding confidence intervals. We perform
the parameter identifiability for the three selected models:
the top-ranked model, the top-ranked COT model, and
the top-ranked IP model.

Ethics approval
No aspect of this study required ethics approval.

Results
In the experiments, we vary the values of the trade-off
parameters α and β in the range [ 0, 1] with a step of 0.1.
For each pair of values, we perform a single modeling
experiment by running ProBMoT with the correspond-
ing model selection criterion. We analyze the results of
the experiments in terms of the performance metrics
presented in the previous section.

Data
The data set used in the experiments of modeling endo-
cytosis is derived from the measurements used by del
Conte-Zerial et al. [15] and is available in Additional
file 3. These include measurements collected by tracking
early endosomes in three independent experiments that
lead to 28 time courses of Rab5 and Rab7 intensity. The
data from different experiments and time courses were
then aggregated by carefully performed manual scaling
and averaging into two time-series of length 10,571 time
points along the time interval of [-5, 300] seconds, where
the time point 0 corresponds to the Rab5-Rab7 conversion
switch point [15]. Finally, to use the same alignment of the
data against the model simulation as in previous studies
[15, 16], we shifted the time axis using the transformation
t ← t + 828.56.
Note that, due to the limitation of the measure-

ment equipment, only the total (that is active– and
passive-state) concentrations of the Rab5 and Rab7
domain proteins are observed: The observed values at
each time point correspond to Rab5 = R5 + r5 and
Rab7 = R7 + r7, respectively. Recall from Equation (1)
that R5,R7 and r5, r7 correspond to the concentrations
of the active (GTP-bound) and passive (GDP-bound)
state of the Rab domain proteins, respectively. To
deal with the limited observability of the system
variables in the ProBMoT model, we define its outputs

4.2. Related Publication 69



Tanevski et al. BMC Systems Biology  (2015) 9:31 Page 9 of 17

as (rab5.GDP_bound_state_conc + rab5.GTP_
bound_state_conc) * K and (rab7.GDP_
bound_state_conc + rab7.GTP_bound_state_
conc) * K, where K denotes a scaling factor that allows
for proper matching of the measured data against the
simulated model outputs. Note that the range of values of
K considered by ProBMoT is [ 103, 105] [16].

Domain-independent model selection
We start by analyzing the modeling results obtained with
the default ProBMoT selection criterion of E, which cor-
responds to the setting of the trade-off parameters α = 1,
β = 1. As expected, all model errors are in a very narrow
range, shown in the plateau and box-plot in Fig. 5. The
plateau of size 113 shows that almost 90 % of all candidate
models are indistinguishable in terms of the E criterion.
One of the approaches to distinguish between model

structures is to performmodel selection using both model
error and complexity, i.e., using the EC model selection
criterion. The distribution of the complexity of the mod-
els is shown in Additional file 1: Figure S2. Figure 6
shows the influence of the β trade-off parameter on the
plateau size (black line-points) and the average ranks of
the COT (green line-points), IP (yellow line-points) and
NOBS models (red line-points). Note that small β values
lead to short plateaus including only the simplest model
structures, i.e., those including six processes, indicating
a strong preference towards simple models. The simu-
lated behavior of these models differs significantly from
the expected bi-stable switch behavior. On the other hand,
high β values lead to modeling performance comparable
to or worse than the model selection criterion E.

Domain-dependent model selection
In a similar manner, we explore the performance of
the ER, EX and ERX model selection criteria that
trade-off between model error and model fit to the
desired behavior of the hidden system variables. We find

that the domain-dependent criteria lead to remarkable
improvement in discriminative power over the domain-
independent model selection criteria.
Figure 7 shows the influence of the change of the trade-

off parameter α on the plateau size and the average ranks
of the COT, IP and NOBS models in the list of models
ranked using the ER criterion. Small and large values of α

lead to large plateaus, with a significant drop of the plateau
size for α = 0.4 and a minimum at α = 0.5. Note that this
value also leads to the smallest average ranks of the plausi-
ble model structures. Additional file 1: Figure S3 provides
further details on the results of the modeling experiment
using the ER criterion with α = 0.5. The size of the plateau
is 62, i.e., less than 50 % of all the candidate models; a
significant improvement in discriminative power over the
90 % obtained with E. Out of these 62 models, 13 have
structures belonging to the COT group, 8 to the IP group,
and 6 to the NOBS group. The range of errors is tight
with a mean value of 0.42, a median of 0.45 and a stan-
dard deviation of 0.04. Note that the obtained behavior
of some of the models in the first plateau can be consid-
ered as unsatisfactory, for example, the simulation of one
of the active-state concentrations of the proteins can be
uncorrelated to the corresponding measured density even
though the correlation is taken into account within the ER
criterion during optimization. We believe that this is due
to the strong influence of the E component in the used cri-
terion, combined with the imperfect optimization and the
identifiability issues presented below.
Figure 8 shows the influence of the α value on the

plateau size and the average ranks of the COT, IP and
NOBS models in the list of models ranked using the EX
criterion. The curve corresponding to the plateau size has
a similar saddle-like shape as the one for the ER crite-
rion from Fig. 7. The smallest plateau size is obtained for
α = 0.9. The size of the plateau is 42, reducing the per-
centage of candidate models in the plateau to 33 %, which
represents a further improvement over the ER criterion.

Fig. 5 Error profile and a box plot of the error obtained using the criterion E. Sorted ranking of the 126 models according to the estimated values of
the E criterion
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Fig. 6 The size of the error-profile plateau (black line) and the average ranks of the structures belonging to the COT (green line), IP (yellow line) and
NOBS (red line) group obtained using the criterion EC. The plot is obtained by varying the values of the β trade-off parameter in the range [ 0, 1] with
an increment of 0.1

Fig. 7 The size of the error-profile plateau (black line) and the average ranks of the structures belonging to the COT (green line), IP (yellow line) and
NOBS (red line) group obtained using the criterion ER. The plot is obtained by varying the values of the α trade-off parameter in the range [ 0, 1] with
an increment of 0.1

Fig. 8 The size of the error-profile plateau (black line) and the average ranks of the structures belonging to the COT (green line), IP (yellow line) and
NOBS (red line) group obtained using the criterion EX . The plot is obtained by varying the values of the α trade-off parameter in the range [ 0, 1] with
an increment of 0.1
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Additional file 1: Figure S4 provides details on the results
of the modeling experiment using the EX criterion with
α = 0.9. For values of α = 0.7 and α = 0.9, we find no
structures belonging to the NOBS group in the plateau. In
the smallest plateau, out of the 42 models, 15 have struc-
tures belonging to the COT group, 11 to the IP group
and none to the NOBS group. The range of errors is
significantly wider in comparison to the best case using
the ER criterion with a mean equal to 0.65, a median
of 0.73 and a standard deviation of 0.33, which leads to
the overall conclusion of significantly improved discrim-
inative power. In contrast to the experiments using the
ER criterion, the behavior of the models in the plateau,
regarding the optimized point of switch, is within the
boundaries of the expected, i.e. there is no unsatisfactory
behavior.
Combining the two domain-dependent criteria brings

further improvements. Figure 9 shows the influence of α

on the plateau size and the distribution of the ranks of the
plausible model structures in the plateau using the ERX
criterion. We observe a smooth saddle like shape of the
plateau size as a function of α. The smallest plateau size is
obtained for α = 0.5. The size of this plateau is 33, reduc-
ing the percentage of candidate models in the plateau
down to 26 %. Additional file 1: Figure S5 provides details
on the results of the modeling experiment using the ERX
criterion with α = 0.5. There are no structures shown to
not achieve bistable behavior in the plateau for values of
alpha larger than 0.3 and smaller than 1.0. In comparison
to using the EX criterion, the use of the combined ERX
criterion leads to a slightly smaller number of models that
have been shown to reproduce bistable behavior, slightly
tighter range of error values and improved overall qual-
ity of the models regarding their fit to the data and the
dynamic behavior of the components of the system. In the
smallest plateau, out of the 33 models, 10 have structures
belonging to the COT group, 7 to the IP group and none

to the NOBS group. The range of errors has a mean equal
to 0.47, a median of 0.44 and a standard deviation of 0.27.
Using the combined criterion, no models in the plateau
produce unsatisfactory behavior.
Going one step further, we combined the best perform-

ing domain-dependent criterion ERX (for α = 0.4) with
the normalized model complexity, to experiment with the
combined ERXC criterion. Figure 10 shows the results
of the experiments with varying values of the trade-off
parameter β . They are similar to the case of using the EC
criterion.
For the problem of modeling the Rab5-Rab7 switch in

endocytosis, no further improvements of discriminative
power can be achieved by considering the complexity of
the model structure for model selection. The optimized
values for each of the used criteria are uncorrelated to
the complexity of the model structures. The distribution
of errors for each criterion for each possible complexity
of the model structures can be seen in Additional file 1:
Figure S6.
Overall, the comparisons of the modeling results

obtained using different values of α and β reveal that the
ERX modeling criterion with α = 0.5 has the best ability
to discriminate between the candidate model structures.
For completeness of the results, Additional file 1:

Table S1 presents the values of all the components of
the combined ERX criterion, i.e., E, R and X for the 33
models in the first plateau of the ERX error profile from
Additional file 1: Figure S5. Additional file 1: Table S2
presents the values of all the components of the ERX
criterion for the least complex and the most complex
models.

Analysis of the obtainedmodels
We begin the analysis of the best obtained models, i.e.,
those in the first plateau of size 33, by analyzing the
distribution of the components of their structures. The

Fig. 9 The size of the error-profile plateau (black line) and the average ranks of the structures belonging to the COT (green line), IP (yellow line) and
NOBS (red line) group obtained using the criterion ERX . The plot is obtained by varying the values of the α trade-off parameter in the range [ 0, 1]
with an increment of 0.1
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Fig. 10 The size of the error-profile plateau (black line) and the average ranks of the structures belonging to the COT (green line), IP (yellow line) and
NOBS (red line) group obtained using the criterion ERXC. The plot is obtained using the value α = 0.5 and by varying the values of the β trade-off
parameter in the range [ 0, 1] with an increment of 0.1

distribution is shown in Fig. 11. For the entire plateau
of models, it can be seen that there is a major shift
in distribution for the GEF5 functional forms in favor
of the Sigmoidal response, which is even more obvious
when considering the distribution in the major classes of

bistable models in the plateau. A minor shift in distri-
bution is present in the GAP5 functional forms favoring
the Sigmoidal response, which can be also observed in
the distribution for the major classes of bistable models.
In general, the evidence is in favor of positive regulation
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Fig. 11 Distribution of the structural components of the models in the plateau using the ERX criterion with α = 0.5. The distribution of the
components of all models (top left), the distribution of the components of the models in the plateau belonging to the COT group (bottom left) and
the distribution of components belonging to the IP group (bottom right)
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of the hydrolysis of active-state to passive-state Rab5 via
Rab7 as opposed to no regulation (intrinsic hydrolysis).
While there is no significant shift in distribution for the

GEF7 and GAP7 functional forms in the entire plateau,
there are important differences in the specific groups of
models. For the GEF7 process inmodels of the COT group
an auto-catalytic process of exchange must be present.
We observe a more frequent Sigmoidal than Michaelis-
Menten response to the active-state Rab7. Inmodels of the
IP group, the requirement for an auto-catalytic process is
not apparent. If it is present, however, it takes the form of
a Michaelis-Menten response to the active-state Rab7. It
can be also seen that the exchange of passive– to active-
state Rab7 is positively regulated by active-state Rab5 in
all cases.
For the GAP7 process, for both COT and IP group,

the Intrinsic hydrolysis alternative for the GAP7 process
is favored. This is indicative of an absence of regulation
of the hydrolysis of active-state to passive-state Rab7 via
Rab5, which is especially clear in the case of models from
the IP group.
We next take a closer look at a sample of three endocyto-

sis models from the plateau. We consider the top-ranked
model overall and the best locally ranked models in the
first plateau from each class of models.
Figure 12 depicts the structure of the top-ranked model

overall, its simulated output behavior compared with the
measurements, and the simulated behaviors of the hid-
den system variables (R5, R7, r5 and r7) representing the

concentrations of the active and passive states of the pro-
tein domains. The simulation of the total densities of the
protein domains has a reasonable fit to the measured data.
The structure of the model leads to a switch behavior due
to the strong influence of Rab5. However, there is no feed-
back mechanism which will allow for transition from one
to another stable behavior.
Figure 13 depicts the structure of the top-ranked model

having a structure belonging to the COT group. It is
ranked as fourth overall. The simulation of the total densi-
ties has a good fit to the measured data, both qualitatively
and quantitatively indistinguishable from the simulation
of the top-ranked model. The simulation of the active and
passive components of both protein domains achieve the
expected behavior. The dynamics of the active states of the
protein domains drives the dynamics of the system and
their switching time corresponds to the switching time
observed in the measurements. The passive state concen-
trations remain stable throughout the time of simulation.
The structure of the model allows for a cut-out switch

behavior due to the strong positive influence of Rab5 on
the exchange of passive to active-state Rab7 combined
with auto-activation of the exchange, which overpowers
the influence of Rab5 on the hydrolysis of Rab7 on one
hand, and the negative feedback fromRab7 to Rab5, which
leads to low concentrations of active-state Rab5 on the
other.
Figure 14 depicts the structure of the top-ranked model

having a structure belonging to the IP group. It is ranked

Fig. 12 The structure (top), the output behavior (bottom left) and the behavior of the active and passive state protein concentrations (bottom right)
of the top-ranked model, obtained using the ERX criterion with α = 0.5. The model has an error ERX = 0.126
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Fig. 13 The structure (top), the output behavior (bottom left) and the behavior of the active and passive state protein concentrations (bottom right)
of the best ranked model from the COT group, obtained using the ERX criterion with α = 0.5. The model is ranked fourth overall and has an error
ERX = 0.129

fifth overall. As with the previous models, the simulation
of the total densities has a good fit to the measured data.
The simulation of the active and passive state component
concentrations is qualitatively like the one of the previ-
ously discussed model. The structure reveals the reason
for the similar behavior.
Compared to the best COT model, the best IP model is

missing only a GAP7 interaction. The other present inter-
actions have the same functional forms. The dynamics
and the bistable behavior arise from the same sources dis-
cussed above, lacking only the negative feedback from the
active-state Rab5 via GAP7.
The practical parameter identifiability analysis per-

formed on the selected model structures shows, as

expected, parameter identifiability problems. Although
there is a slight improvement in the relative size of the
confidence interval to the mean and the estimates for all
models, overall the conclusions from our results corre-
spond with the conclusions from previous experiments
[16] on a related model.
The summarized statistics of the identifiability analysis

for each model can be seen in Additional file 1: Tables
S3–S5. The uncertainties (length of the 95 % confidence
interval) are large for a significant number of parame-
ters values for all functions, independent of the functional
alternative in the selected models.
The shape of the distribution of the parameters dif-

fers significantly in most of the cases from the normal
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Fig. 14 The structure (top), the output behavior (bottom left) and the behavior of the active and passive state protein concentrations (bottom right)
of the best ranked model from the IP group, obtained using the ERX criterion with α = 0.5. The model is ranked fifth overall and has an error
ERX = 0.129
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distribution, indicating non-linearity of the systems with
respect to their corresponding parameter values; see the
histograms shown in Additional file 1: Figures S8, S10
and S12. This difference is most evident in the top-ranked
model belonging to the IP group in contrast to the shapes
of the distributions of parameter values of the top-ranked
model structure. For the majority of the parameters, their
values were most frequently estimated to be in close
proximity to the bounds of the allowed range.
The correlation matrices for all model structures

(Additional file 1: Figures S7, S9 and S11) show high abso-
lute correlation values for certain sets of parameters. In
all three models, we observe high correlation of the asso-
ciation rate and the dissociation flux of the proteins with
GDI.
In the top-ranked model, there is high correlation

between the estimated values of the parameters of the
auto-catalysis component of GEF7 and between the
estimated values of the GAP7 intrinsic hydrolysis rate and
the maximum rate parameter in the Michaelis-Menten
term. There is a high positive correlation between the
estimated initial values of the active and passive states of
Rab5 and a high negative correlation between the esti-
mated initial values of the active and passive states of
Rab7.
In the top ranked model from the COT group, we

observe a high correlation between the intrinsic hydrolysis
rate and the maximum rate parameter in the Michaelis-
Menten term values in both the GAP5 and the GAP7
functions. As for the top-ranked model, there is a high
positive correlation between the estimated initial values of
the active and passive states of Rab5 and a high negative
correlation between the estimated initial values of the
active and passive states of Rab7.
In the top ranked model from the IP group, we observe

high correlation between all of the parameters of the
GEF5 and GAP5 function. There is a positive correla-
tion between the estimated initial values of the active and
passive states of Rab5.

Discussion
The combination of limited noisy observations, on one
hand, and the expectations about the behavior of the
unobserved system variables, on the other, poses a diffi-
cult model selection problem. We approach this problem
by combining several criteria for model selection. Two are
the standard model selection criteria of model error and
simplicity and three are based on the expected behavior of
hidden system variables.
The comparison of different criteria shows that the

simplicity-based criterion leads to little or no improve-
ment of discriminative power; the majority of the model
structures remain indistinguishable. This is also evident
from the low correlation of the optimized values for each

of the used criteria and the complexity of the model struc-
tures. The plateaus are not a result of over-fitting and
cannot be avoided by considering the principle of parsi-
mony. On the other hand, a combination of a domain-
independent least-squares based optimization criterion
with a simple problem-specific criterion is better suited
to the real-world problem at hand than the simplicity-
based criterion. In our experiments, the combination
of the domain-independent criterion with two different
domain-dependent criteria leads to additional improve-
ment. The introduction of domain-specific criteria leads
to significantly improved selectivity of the process-based
modeling algorithm. In the case of modeling endocyto-
sis, this improvement is evident from the absence of those
models which have been previously shown to havemonos-
table behavior (NOBS group), whose average rank (or lack
thereof) in the plateau we show in red color in the plots
for each criterion.
The simulation of the dynamics of both the observed

total density and the unobserved states of the protein
domains provides a good fit to the measured data and
expected dynamical behavior of the components of the
system. This property is consistent in the best ranked
models. Due to the existing parameter identifiability prob-
lems in all selected representative models, further dis-
crimination (based on the identifiability) cannot be made.
A number of models in the first plateau (even in the

experiment using the combination of criteria that has the
highest selectivity) do not belong to any of the COT,
IP or NOBS groups. Among these, there are some that
might be considered as structurally flawed under some
expectations for structural mechanisms as is the case
with the missing feedback mechanism in the top-ranked
model. The presence of these structures may be (in part)
a result of overfitting due to the complex representation
of processes, the number of free parameters, the limited
observability, and the quality of the data. Nevertheless,
some of these previously identified (but not considered)
models, given their performance, might lead to the recon-
sideration of parts of or their complete structure in further
studies.
We consider the introduction of domain-specific cri-

teria and the performed comparison to be an important
step towards improved automated modeling approaches
and a solution of the model selection problem. The major-
ity of model selection criteria employed in the domain
of systems biology are based either on likelihood, on
the Bayesian principle or a combination of the previ-
ous [7], due to their well-established reputation in other
areas. Most of them have the principle of parsimony
implicitly encoded. On the other hand, in biology, the
principle of parsimony should be sometimes set aside
in favor of selecting better (although more complex)
explanatory models [27]. We argue that knowledge-based,
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domain-specific criteria for model selection should be
considered prior to or in conjunction with approaches
based on the parsimony principle. These criteria can
offer solid alternative solutions for the model selec-
tion problem in scenarios with limited observability and
noisy data.
However, domain specific criteria for model selection

should always be carefully chosen, based on solid back-
ground, and their influence on the final selection deci-
sion should be carefully weighted. Combined with global
heuristic parameter estimation approaches, as used in
this study, inattentively chosen criteria might shift the
solution to an unwanted direction. Incorrect weight-
ing, on the other hand, might aggravate the selection
problem by under– or over-fitting of the candidate
models.

Conclusion
We have demonstrated the applicability of the automated
modeling tool ProBMoT to the real-world problem of
modeling the Rab5-Rab7 conversion switch in the impor-
tant cellular process of endocytosis. By using ProBMoT,
we improve upon the classical modeling approach by
using domain-specific knowledge, good practices, and
automation. While the applicability of ProBMoT and
other modeling approaches has been illustrated before
[13], this is the first study focusing on the problem of
model selection. In these terms, we go beyond the work
of Čerepnalkoski et al. [17] and Tashkova et al. [16] and
make a step further towards elucidating the problem of
model selection in the context of automated modeling of
dynamical systems.
Furthermore, we show that ProBMoT is able, in an auto-

mated fashion and using a combination of knowledge–
and data-driven modeling, to solve a complex, relevant
and challenging problem from the domain of systems biol-
ogy. We analyze its utility by comparing the results of
automated modeling with the ones obtained in a man-
ual modeling experiment. In this way, we evaluate both
the automated approach and the manual modeling pro-
cess. The results show that ProBMoT is able to recon-
struct the results of the manual experiment by using
limited and noisy observations of the modeled system.
The modeling experiments presented here confirm the
finding that a group of model structures able to achieve
a cut-out or toggle switch behavior explains the avail-
able data. We also show that another group of model
structures (IP group), previously considered less plausible,
and a number of previously not considered model struc-
tures, are still equally capable of reproducing the obser-
vations and expectations and should still be considered
as relevant.
We identify several points for further work. Addi-

tional criteria, more complex than the considered one,

which complement the information about the model
fit to the measured data should be considered. Such
criteria can be based on the properties of the model
structure: Del Conte-Zerial et al. [15] perform e.g. bifur-
cation and phase plane analysis on each model structure,
after which they dismiss the structures that lack certain
properties.
A similar effect can be achieved by apriori filtering

of candidate model structures based on their structural
properties. The constraining of the domain knowledge
based on valid assumptions and the introduction of spe-
cific knowledge related to the problem at hand, will result
in a reduced number of candidate models to be fitted. This
will reduce the computational time needed for the exper-
iments and facilitate the model selection problem. How-
ever, as shown trough our experiments, with the use of
a domain-specific criteria, the automated process-based
modeling achieves high selectivity even in the presence of
unfiltered model structures.
Finally, the automated modeling approach can be used

to gain knowledge about other dynamical systems, i.e.,
other parts of the endocytic pathway. The gained knowl-
edge can contribute to the development of a complete
explanatory model of endocytosis. By performing exper-
iments on other real-world problems, additional insight
into the process of automated modeling can be obtained.
This will further improve the used approaches, which can
in turn be used to discover better explanatory models.
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columns contain the lower and upper bound of the 95% confidence interval. The
CL and Csh columns contain the length and the shape of the confidence interval,

where CL = Clo − Chi and Csh = Chi−Mean
Mean−Clo . Assuming a confidence interval for

a normal distribution, Csh = 1 and the interval is symmetric about the mean, the
column outliers contains the number of outliers from a sample of 1000. . . . . . 15
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Table S5 – Summary of the identifiability analysis for the estimated parameter values
in the top-ranked model from the IP group using the bootstrap method. The
column estimate contains the values in the model obtained using ProBMoT. The
column Mean contains the mean of the outliers-filtered sample. The Clo and Chi

columns contain the lower and upper bound of the 95% confidence interval. The
CL and Csh columns contain the length and the shape of the confidence interval,

where CL = Clo − Chi and Csh = Chi−Mean
Mean−Clo . Assuming a confidence interval for

a normal distribution, Csh = 1 and the interval is symmetric about the mean, the
column outliers contains the number of outliers from a sample of 1000. . . . . . 18

3

4.3. Supplementary Material 81



GEF5 GAP5GEF7 GAP7

Process

F
re
qu
en
cy

0
20

40
60

80
10
0

GEF5: Sigmoidal response
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Figure S1: Distribution of the structural components of all 126 candidate models considered in the
experiments, as defined in the library.
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Figure S2: Plot of the sorted complexities of the 126 candidate models. C(m) represents the
normalized complexity of the model. The complexity in the histogram is expressed in terms of the
number of interactions present in the model.
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Figure S3: The error profile obtained using the ER criterion and a trade-off parameter setting
α = 0.5 (left). The box plot shows the distribution of error in the profile (right).
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Figure S4: The error profile obtained using the EX criterion and a trade-off parameter setting
α = 0.9 (left). The box plot shows the distribution of error in the profile (right).
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Figure S5: The error profile obtained using the ERX criterion and a trade-off parameter setting
α = 0.5 (left). The box plot shows the distribution of error in the profile (right).
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Figure S6: Box plots of the distribution of errors (top) E, ER, (bottom) EX and ERX relative to
the complexity C of the model structures. The correlations between the errors and the complexity
of the model structures are as follows: ρ(E,C) = −0.110, ρ(ER,C) = −0.159, ρ(EX,C) = 0.184,
ρ(ERX,C) = 0.168, where ρ is the Spearman’s rank correlation coefficient.
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Top ranked model:

dr5
dt

= K1 − (k1 +
ke,5

1 + e(kg,5−R5)·kf,5
) · r5 + kh,5 ·R5

dR5

dt
=

ke,5

1 + e(kg,5−R5)·kf,5
· r5 − kh,5 ·R5

dr7
dt

= K2 − (k2 +
ke,7

1 + e(kg,7−R7)·kf,7
+

kE,7

1 + e(kG,7−R5)·kF,7
) · r7 + kh,7 +

kH,7 ·R5

ky,7 +R5
·R7

dR7

dt
=

ke,7

1 + e(kg,7−R7)·kf,7
+

kE,7

1 + e(kG,7−R5)·kF,7
· r7 − kh,7 +

kH,7 ·R5

ky,7 +R5
·R7

(1)

Table S3: Summary of the identifiability analysis for the estimated parameter values in the overall
top-ranked model using the bootstrap method. The column estimate contains the values in the
model obtained using ProBMoT. The column Mean contains the mean of the outliers-filtered
sample. The Clo and Chi columns contain the lower and upper bound of the 95% confidence
interval. The CL and Csh columns contain the length and the shape of the confidence interval, where

CL = Clo − Chi and Csh = Chi−Mean
Mean−Clo . Assuming a confidence interval for a normal distribution,

Csh = 1 and the interval is symmetric about the mean, the column outliers contains the number of
outliers from a sample of 1000.

Parameter Estimate Mean Clo Chi CL Csh Outliers
r5(0) 2 1.892 1.555 2 0.445 0.318 143
R5(0) 1.603 1.511 1.308 1.747 0.438 1.164 191
K1 0.098 0.132 0.111 0.155 0.044 1.132 209
k1 0.119 0.139 0.122 0.158 0.036 1.094 163
r7(0) 0.097 0.187 0 0.485 0.485 1.590 27
R7(0) 0.305 0.107 0 0.310 0.310 1.888 5
K2 0.141 0.223 0.001 0.623 0.622 1.800 141
k2 0.093 1.132 0.001 3.772 3.771 2.333 0
td 31.744 104.918 5 195 190 0.901 0
ke,5 0.001 0.001 0.001 0.001 0.000 11.104 192
kf,5 0.744 2.750 0.001 4 3.999 0.454 0
kg,5 3.317 3.320 0.914 4 3.085 0.282 79
ke,7 2.488 1.888 0.001 4 3.999 1.118 0
kf,7 0.001 1.174 0.001 4 3.999 2.406 0
kg,7 0.675 1.868 0.001 4 3.999 1.141 0
kh,5 0.013 0.013 0.013 0.014 0.001 1.193 170
kH,7 3.144 0.710 0.001 2.071 2.070 1.919 19
ky,7 4 3.714 2.830 4 1.169 0.323 99
kh,7 2.946 0.497 0.001 1.218 1.217 1.450 3
kE,7 3.890 3.271 1.754 4 2.245 0.479 82
kF,7 3.821 2.007 0.001 4 3.999 0.992 0
kG,7 0.142 0.742 0.001 2.988 2.987 3.031 94
K 7946.916 8304.990 7287.316 9371.584 2084.267 1.048 107
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r7(0)−0.68 0.24 −0.28−0.30−0.28 0.39 0.36 −0.09 0.10 0.14 −0.17−0.16−0.03−0.03 0.02 0.06 −0.01−0.04 0.02 0.04 −0.04−0.00

R7(0)−0.36 0.36 0.31 0.32 −0.25−0.12 0.11 −0.29−0.19 0.16 0.11 −0.01−0.01−0.02−0.04 0.16 0.11 0.04 0.04 −0.07 0.01

kf.7 −0.51−0.47−0.42 0.31 0.17 −0.16 0.07 0.42 −0.14−0.07−0.02−0.04 0.03 0.01 −0.03−0.04−0.01−0.09 0.01 −0.07

ke.7 0.54 0.49 −0.25−0.20 0.17 −0.06−0.22 0.19 0.11 0.03 −0.00−0.04−0.03 0.12 0.16 0.10 0.10 −0.08 0.11

kh.7 0.91 −0.61−0.32 0.01 −0.24−0.26 0.19 0.32 0.04 0.01 0.02 −0.01 0.12 0.15 0.06 −0.01−0.00 0.06

kH.7−0.59−0.37 0.01 −0.39−0.26 0.23 0.25 0.02 −0.01−0.03−0.06 0.19 0.16 0.01 −0.06 0.07 −0.02

k2 0.77 −0.15 0.24 0.18 −0.20−0.20 0.04 −0.04 0.04 0.03 0.02 −0.01 0.04 0.07 −0.07 0.02

K2 −0.25 0.16 0.05 −0.18−0.11 0.00 −0.03 0.05 0.01 0.15 0.08 0.14 0.14 −0.14 0.10

kG.7−0.36−0.10 0.12 −0.02−0.02 0.06 0.05 0.07 −0.07−0.15−0.10−0.09 0.03 −0.03

kF.7 0.12 −0.10 0.01 −0.06 0.03 0.04 0.03 −0.21−0.09 0.10 0.16 −0.23 0.26

kg.7 −0.09−0.02 0.03 0.01 0.02 −0.02−0.11−0.03 0.03 0.02 −0.04 0.02

ky.7 0.16 0.03 −0.00 0.07 0.04 −0.05 0.01 −0.08−0.09 0.09 −0.08

kE.7 0.04 0.04 0.03 0.06 −0.04 0.05 −0.01−0.05−0.00 0.06

ke.5 −0.01−0.03−0.06 0.12 0.13 0.08 0.07 −0.04−0.03

td 0.10 0.07 −0.08−0.07−0.05−0.01 0.04 −0.02

kf.5 0.28 −0.17−0.11−0.06−0.21 0.18 −0.07

kg.5 −0.23−0.12−0.09−0.18 0.12 −0.08

kh.5 0.35 0.30 0.16 −0.19 0.05

k1 0.68 0.23 −0.12 0.04

K1 0.71 −0.60 0.62

R5(0)−0.73 0.74

K −0.73

r5(0)

Figure S7: Correlation matrix for the parameters of the overall top-ranked model obtained using
the bootstrap method. The names of the parameters for each row/column are shown in the main
diagonal. The matrix is symmetric. Above the main diagonal, the values of the correlations
correspond to the Pearson correlation coefficient.
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Figure S8: Histograms of the estimated parameter values of the overall top-ranked model obtained
using the bootstrap method. In each histogram, the yellow horizontal line represents the 95%
confidence interval and the green vertical line represents the mean of the outliers-filtered sample.
The width of the bins is calculated according to the Freedman-Diaconis rule.
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Top ranked COT model:

dr5
dt

= K1 − (k1 +
ke,5

1 + e(kg,5−R5)·kf,5
) · r5 + kh,5 +

kH,5 ·R7

ky,5 +R7
·R5

dR5

dt
=

ke,5

1 + e(kg,5−R5)·kf,5
· r5 − kh,5 +

kH,5 ·R7

ky,5 +R7
·R5

dr7
dt

= K2 − (k2 +
ke,7 ·R7

kg,5 +R7
+

kE,7 ·R5

kG,7 +R5
) · r7 + kh,7 +

kH,7 ·R5

ky,7 +R5
·R7

dR7

dt
=

ke,7 ·R7

kg,5 +R7
+

kE,7 ·R5

kG,7 +R5
· r7 − kh,7 +

kH,7 ·R5

ky,7 +R5
·R7

(2)

Table S4: Summary of the identifiability analysis for the estimated parameter values in the top-
ranked model from the COT group using the bootstrap method. The column estimate contains
the values in the model obtained using ProBMoT. The column Mean contains the mean of the
outliers-filtered sample. The Clo and Chi columns contain the lower and upper bound of the 95%
confidence interval. The CL and Csh columns contain the length and the shape of the confidence

interval, where CL = Clo −Chi and Csh = Chi−Mean
Mean−Clo . Assuming a confidence interval for a normal

distribution, Csh = 1 and the interval is symmetric about the mean, the column outliers contains
the number of outliers from a sample of 1000.

Parameter Estimate Mean Clo Chi CL Csh Outliers
r5(0) 1.201 1.491 0.085 2 1.914 0.361 10
R5(0) 1.173 1.217 0 2 2 0.643 0
K1 0.073 0.097 0.001 0.177 0.176 0.842 102
k1 0.156 0.138 0.099 0.180 0.081 1.088 322
r7(0) 0.100 0.236 0 0.800 0.800 2.391 72
R7(0) 0.132 0.089 0 0.345 0.345 2.884 51
K2 0.160 0.238 0.001 0.721 0.720 2.040 75
k2 0.222 1.199 0.001 3.985 3.984 2.324 0
td 20.169 87.954 5 195 190 1.290 0
ke,5 0.010 0.002 0.001 0.009 0.008 9.104 244
kf,5 0.714 2.481 0.001 4 3.999 0.612 0
kg,5 0.351 2.650 0.001 4 3.999 0.509 0
ke,7 0.096 1.233 0.001 4 3.999 2.245 0
kg,7 3.659 1.192 0.001 4 3.999 2.355 0
kH,5 0.002 0.005 0.001 0.015 0.014 2.128 180
ky,5 0.413 0.959 0.001 4 3.999 3.171 0
kH,7 1.695 0.579 0.001 2.212 2.211 2.825 78
ky,7 3.754 2.576 0.001 4 3.999 0.552 0
kh,7 0.739 0.215 0.001 0.840 0.839 2.916 36
kE,7 3.822 1.508 0.001 3.983 3.982 1.642 0
kG,7 1.229 2.021 0.001 4 3.999 0.979 0
kh,5 0.013 0.008 0.001 0.016 0.015 1.097 218
K 12330.653 9005.032 7121.954 15383.476 8261.522 3.387 200
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K −0.67−0.63−0.52−0.10−0.27 0.15 0.30 −0.17−0.18−0.11−0.11 0.16 −0.10 0.08 0.22 −0.16−0.05 0.15 0.02 0.01 −0.05 0.16

r5(0) 0.70 0.66 0.39 0.48 −0.39−0.53 0.29 0.31 0.15 0.31 −0.09 0.39 0.15 −0.08 0.34 0.21 −0.14 0.05 −0.02 0.12 −0.28

R5(0) 0.67 0.42 0.48 −0.31−0.44 0.25 0.23 0.12 0.23 −0.16 0.35 0.03 −0.17 0.39 0.21 −0.06 0.00 −0.03 0.15 −0.24

K1 0.65 0.40 −0.36−0.41 0.30 0.22 0.09 0.30 −0.12 0.39 0.04 −0.11 0.20 0.20 −0.13 0.06 −0.01 0.23 −0.05

k1 0.30 −0.31−0.36−0.02 0.01 −0.04 0.29 0.23 0.23 0.08 0.05 0.03 0.10 −0.06 0.17 −0.01 0.16 −0.11

kE.7−0.28−0.40 0.18 0.15 0.17 0.23 −0.11 0.51 0.23 −0.24 0.29 0.15 −0.17 0.18 −0.01 0.05 −0.16

kg.7 0.56 −0.36−0.31−0.21−0.33−0.01−0.37−0.25−0.12 0.04 −0.07 0.11 −0.15−0.00−0.13 0.21

ky.5 −0.51−0.47−0.32−0.29 0.06 −0.39−0.22−0.04−0.08−0.19 0.20 −0.07 0.01 −0.22 0.40

kg.5 0.55 0.32 0.05 −0.27 0.30 0.16 0.05 0.05 0.11 −0.03−0.03−0.03 0.02 −0.11

kf.5 0.32 0.05 −0.26 0.26 0.19 0.09 0.10 0.07 −0.04−0.03−0.03−0.01−0.07

td 0.05 −0.14 0.16 0.12 −0.01 0.03 0.04 −0.09 0.06 0.01 0.03 −0.07

K2 0.61 −0.18−0.24−0.23 0.04 0.09 0.09 0.19 0.06 0.08 −0.14

k2 −0.46−0.33−0.00−0.16 0.11 0.03 0.23 0.10 0.06 −0.12

kh.7 0.71 0.24 0.13 0.06 −0.27 0.14 −0.06 0.05 −0.05

kH.7 0.41 0.05 −0.05−0.24 0.21 −0.05 0.00 −0.02

ke.7 −0.32 0.20 −0.10−0.13−0.08 0.09 −0.05

r7(0)−0.41 0.12 −0.03 0.07 −0.05 0.01

R7(0)−0.30 0.06 −0.06 0.08 −0.16

kG.7−0.12 0.05 0.05 −0.02

ky.7 0.03 0.01 −0.09

ke.5 0.05 0.00

kH.5−0.70

kh.5

Figure S9: Correlation matrix for the parameters of the top-ranked model from the COT group
obtained using the bootstrap method. The names of the parameters for each row/column are
shown in the main diagonal. The matrix is symmetric. Above the main diagonal, the values of the
correlations correspond to the Pearson correlation coefficient.
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Figure S10: Histograms of the estimated parameter values of the top-ranked model from the COT
group obtained using the bootstrap method. In each histogram, the yellow horizontal line represents
the 95% confidence interval and the green vertical line represents the mean of the outliers-filtered
sample. The width of the bins is calculated according to the Freedman-Diaconis rule.
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Top ranked IP model:

dr5
dt

= K1 − (k1 +
ke,5

1 + e(kg,5−R5)·kf,5
) · r5 + kh,5 +

kH,5 ·R7

ky,5 +R7
·R5

dR5

dt
=

ke,5

1 + e(kg,5−R5)·kf,5
· r5 − kh,5 +

kH,5 ·R7

ky,5 +R7
·R5

dr7
dt

= K2 − (k2 +
ke,7 ·R7

kg,5 +R7
+

kE,7 ·R5

kG,7 +R5
) · r7 + kh,7 ·R7

dR7

dt
=

ke,7 ·R7

kg,5 +R7
+

kE,7 ·R5

kG,7 +R5
· r7 − kh,7 ·R7

(3)

Table S5: Summary of the identifiability analysis for the estimated parameter values in the top-
ranked model from the IP group using the bootstrap method. The column estimate contains
the values in the model obtained using ProBMoT. The column Mean contains the mean of the
outliers-filtered sample. The Clo and Chi columns contain the lower and upper bound of the 95%
confidence interval. The CL and Csh columns contain the length and the shape of the confidence

interval, where CL = Clo −Chi and Csh = Chi−Mean
Mean−Clo . Assuming a confidence interval for a normal

distribution, Csh = 1 and the interval is symmetric about the mean, the column outliers contains
the number of outliers from a sample of 1000.

Parameter Estimate Mean Clo Chi CL Csh Outliers
r5(0) 2 0.875 0 2 2 1.283 0
R5(0) 1.553 0.927 0 2 2 1.156 0
K1 0.092 0.088 0.001 0.345 0.344 2.950 192
k1 0.117 1.718 0.013 4 3.987 1.337 0
r7(0) 0.002 0.110 0 0.504 0.504 3.551 113
R7(0) 0.580 0.123 0 0.537 0.537 3.341 48
K2 0.114 0.349 0.001 1.520 1.519 3.356 53
k2 0.075 1.565 0.001 3.999 3.998 1.556 0
td 5 74.272 5 195 190 1.742 0
ke,5 0.001 1.019 0.001 4 3.999 2.924 0
kf,5 1.356 1.871 0.001 4 3.999 1.138 0
kg,5 3.399 2.125 0.001 4 3.999 0.882 0
ke,7 0.754 0.579 0.001 2.322 2.321 3.010 69
kg,7 0.001 2.937 0.001 4 3.999 0.362 0
kH,5 0.002 0.005 0.001 0.019 0.018 3.509 221
ky,5 4 1.501 0.001 4 3.999 1.664 0
kh,7 1.259 0.008 0.001 0.046 0.045 5.798 166
kE,7 3.422 0.025 0.001 0.278 0.277 10.573 222
kG,7 3.915 2.190 0.001 4 3.999 0.826 0
kh,5 0.009 0.015 0.001 0.048 0.047 2.478 186
K 8118.054 22189.124 7476.843 81297.686 73820.843 4.017 124
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td 0.39 0.41 −0.41 −0.37 −0.52 −0.35 0.08 −0.21 0.02 −0.08 −0.05 −0.08 −0.06 −0.11 −0.12 0.10 −0.05 0.14 0.01 −0.08

kg.5 0.56 −0.52 −0.31 −0.52 −0.42 0.13 −0.28 0.17 −0.02 −0.04 −0.03 −0.02 −0.20 −0.06 0.10 −0.09 0.23 −0.13 −0.17

kf.5 −0.55 −0.34 −0.50 −0.42 0.14 −0.26 0.10 −0.10 0.03 0.01 0.00 −0.13 −0.10 0.22 −0.15 0.25 −0.10 −0.15

k1 0.39 0.51 0.48 −0.09 0.38 −0.18 0.08 −0.03 −0.05 −0.11 0.19 0.17 −0.35 0.23 −0.22 0.01 0.08

ky.5 0.63 0.55 −0.30 0.12 0.15 0.19 0.05 −0.01 −0.08 −0.11 0.34 −0.36 0.10 −0.14 −0.16 −0.04

ke.5 0.72 −0.21 0.16 −0.06 0.14 0.13 0.15 0.05 0.11 0.19 −0.09 −0.02 −0.19 −0.02 0.12

kh.5 −0.53 −0.12 0.02 −0.02 0.03 0.13 0.07 0.28 −0.04 −0.11 0.11 −0.16 0.14 0.23

kH.5 0.19 −0.03 0.05 0.01 −0.10 0.06 −0.05 −0.04 0.09 0.01 0.02 0.01 −0.01

K1 −0.28 −0.01 0.06 0.03 0.09 0.26 −0.03 0.09 0.03 −0.00 −0.05 0.07

ke.7 0.27 −0.14 −0.17 0.13 −0.27 0.13 −0.28 −0.02 −0.01 −0.19 −0.04

kG.7 −0.22 −0.37 −0.17 −0.28 0.19 −0.26 0.14 0.01 −0.23 −0.30

kE.7 0.56 0.32 0.34 −0.12 0.32 −0.29 0.01 0.08 0.16

kh.7 0.49 0.51 −0.32 0.45 −0.60 0.24 −0.08 0.22

R7(0) 0.42 −0.33 0.37 −0.24 0.11 0.09 0.36

R5(0) −0.71 0.60 −0.32 0.25 0.12 0.22

K −0.65 0.17 −0.18 −0.25 −0.22

r5(0)−0.42 0.32 0.12 0.12

kg.7 −0.45 0.23 0.12

r7(0)−0.29 −0.30

K2 0.72

k2

Figure S11: Correlation matrix for the parameters of the top-ranked model from the IP group
obtained using the bootstrap method. The names of the parameters for each row/column are
shown in the main diagonal. The matrix is symmetric. Above the main diagonal, the values of the
correlations correspond to the Pearson correlation coefficient.
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Figure S12: Histograms of the estimated parameter values of the top-ranked model from the IP
group obtained using the bootstrap method. In each histogram, the yellow horizontal line represents
the 95% confidence interval and the green vertical line represents the mean of the outliers-filtered
sample. The width of the bins is calculated according to the Freedman-Diaconis rule.
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Chapter 5

Process-Based Design of Dynamical

Biological Systems

5.1 Problem Description

The newly developed ability to apply the PBM approach to problems of modeling both
deterministic and stochastic dynamical biological systems, combined with the possibility
of model selection (by using the bias strengthening approach) in scenarios with extremely
limited availability of data, motivated the development of a process-based approach to the
design of biological systems for synthetic biology applications.

In order to develop methods for process-based design of dynamical biological systems,
we need to �rst consider the speci�cs of the task of design that need to be addressed. The
issue of formally representing the components needed for the composition of novel systems
is explicitly addressed by the process-based formalism. The knowledge of the di�erent
available components, their properties, and interactions can be �exibly encoded within
the library of domain knowledge. The space of candidate design models can be de�ned by
imposing constraints that describe feasible compositions of components with an incomplete
process-based model.

The main issue preventing the direct use of the PBM approach to model inference for
the task of design is that PBM is, for the most part, data-driven. Due to the nature of the
task of modeling, the optimization of the parameter values of each candidate model struc-
ture is based on the minimization of the discrepancy between observed system behavior
and simulated model behavior. For the task of design, apart from the possibility of con-
sidering di�erent exogenous in�uences, such as stimuli and experimental or environmental
conditions, no observations can be given at input.

We have already relaxed this strict form of optimization by adding to the objective
function heuristic terms related to the expected behavior/properties of the systems. We
have shown that these can guide parameter estimation towards a more discriminative and
correct model selection. In the extreme case, due to unavailability of observed data for
comparison, this approach can be applied to the task of process-based design by dropping
the �rst term of Equation 4.3 and considering the following form of the heuristic score of
a model:

E = D(x, x̂|MI , θ) + λ · R(θ′MI ) (5.1)

When solving the task of design if the objective function is based on a single speci�c
desired property of the candidate models, the parameter inference, as in the case of less
informative observations and an objective function based on the discrepancy between ob-
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servations and model simulation, may result in over�tting or in a hard model selection
problem.

Therefore, the heuristic used for design is usually based on the optimization of multi-
ple, possibly con�icting objectives. There are two general approaches to solving a multi-
objective optimization problem. The �rst approach is the transformation of the multi-
objective problem into a single objective problem by scalarization. The most common
scalarization is based on a variation of the method of using a weighted sum of the indi-
vidual objectives, i.e., D(x, x̂|MI , θ) =

∑d
j=1wd · Od(x, x̂|MI , θ), where the weights wd

correspond to the importance of the objective functions Od. Another method of scalariza-
tion is the selection of a single objective for optimization, while de�ning acceptable upper
bounds on the others to serve as constraints to the optimization problem. The scalarization
of multiple objectives and the introduction of a subjective preference for one individual
objective causes information loss, especially in cases where con�icting objectives guide the
optimization and the Pareto front is non-convex.

The second approach is based on the simultaneous optimization of the objective func-
tions and the approximation of the entire Pareto front. For the task of design by opti-
mization, a single Pareto front for the entire space of candidate designs can be obtained
as a �nal output (Higuera et al., 2012; Otero-Muras & Banga, 2014). The �nal choice of
a single model structure with speci�c parameter values is left to the modeler.

However, while considering all candidate structures at the same time, the information
about the potential range of behaviors of each candidate structure for di�erent parameter
values is discarded, which may result in a problem of selection among over�tted models.
Namely, the multi-objective optimization of an individual candidate design results in a
Pareto front of sets of parameter values for the speci�c design structure which re�ects
the ability of the candidate structure to optimally achieve the desired properties. The
overall Pareto front obtained by design as optimization methods can be considered as
an aggregation of Pareto fronts for individual model structures by using the dominance
function.

Better model selection can be performed by making use of the complete information
available from the individual structures' Pareto fronts to quantify the quality of each
candidate design by using the quality indicator method. Zitzler, Knowles, and Thiele
(2008) review di�erent quality indicators for comparing Pareto fronts. For the process-
based design of dynamical biological systems, we argue that a model selection score based
on Equation 5.1, can be obtained by replacing D(x, x̂|MI , θ) with a quality indicator based
on the hyper-volume under the Pareto front (Lu & Anderson-Cook, 2013).

We demonstrate the adequacy of the process-based design method for both formulating
design tasks (by specifying the candidate designs and design objectives), and solving them
(by employing the hyper-volume measure as a design-selection strategy) by approaching
two design tasks involving a stochastic toggle switch without cooperativity and a deter-
ministic oscillator (Tanevski et al., 2016b).

This work, submitted for a review for publication as a journal article, constitutes the
remainder of this chapter. The full bibliographic reference to the article is:

Tanevski, J., Todorovski, L., Dºeroski, S. (2016b). Process-based design of dynamical
biological systems. Scienti�c Reports, Under review.
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ABSTRACT

The computational design of dynamical systems is an important emerging task in synthetic biology. Given desired properties
of the behaviour of a dynamical system, the task of design is to build an in-silico model of a system whose simulated
behaviour meets these properties. We introduce a new, process-based, design methodology for addressing this task. The new
methodology combines a flexible process-based formalism for specifying the space of candidate designs with multi-objective
optimization approaches for selecting the most appropriate among these candidates. We demonstrate that the methodology is
general enough to both formulate and solve tasks of designing deterministic and stochastic systems, successfully reproducing
plausible designs reported in previous studies and proposing new designs that meet the design criteria, but have not been
previously considered.

Introduction
Systems-based approaches to biology lead to better understanding of interactions in biological systems represented at different
organizational levels. They rely on formalizing a model of a given system by specifying its constituents at a chosen organizational
level, its structure, i.e. the interactions between the constituents, and the particular modelling assumptions for each interaction.
The model is often used as a tool for analysis of the complex dynamical behaviour of the system over time and under changing
internal and external conditions. Using models as analytical tools, we can obtain insights into the essential mechanisms that
lead to emergence of complex dynamics in biological systems. In turn, these insights can be employed when solving the task of
design, i.e. when constructing models of dynamical systems that exhibit a desired behaviour.

The most important input to the task of design is the knowledge about modelling dynamics in the domain of interest.
This knowledge includes the systematic categorization of constituents of dynamical systems in the domain and the potential
interactions between them. The second input to the design task are the design objectives, i.e. a set of expected properties of the
desired dynamical behaviour of the system. The output of the design process is a candidate design (or a set thereof), i.e. a
model with known structure and parameter values. To solve the design task specified above, we need to resolve two types of
uncertainties. The first type of uncertainty is related to the model structure: The more different model structures we need to
consider, the larger the uncertainty. To resolve the structural uncertainty, we need to select a model structure, i.e. to select a
proper set of model constituents, the interactions among them, and make specific modelling assumptions on the kinetics of the
interactions. The second type of uncertainty is related to the values of the constant parameters in the models, such as kinetic
rates and initial conditions. We call this type of uncertainty parametric uncertainty. Resolving these two types of uncertainties
leads to a candidate design (or a set thereof) that produces dynamical behaviour with expected properties.

In response to the increasing relevance of the task of designing biological systems for practical applications,1, 2 numerous
computational approaches addressing the design task have been proposed. The approaches differ in the way the inputs and the
uncertainties mentioned above are formalized and resolved. In particular, two classes of approaches are related to the work
presented in this paper. The first class includes approaches that follow the “design by composition” paradigm, where valid
compositions of standardized components with known types of interactions are sought for, given a design objective describing
the relationship between designated inputs and outputs. The approaches in the second class follow the “design by optimization”
paradigm, where the design objectives are transformed into objective functions that are then subject to optimization. This allows
for considering a broader class of design objectives related to the qualitative and quantitative properties of the desired dynamical
behaviour of the system. On the other hand, these approaches employ a rigid formalism for specifying the structural uncertainty
that requires users to provide an explicit and complete equation-based specification of the structure of each candidate design.

Composition-oriented approaches are built upon the concepts of rule-based modelling and computer-aided design of
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electronic circuits. Rule-based modelling formalisms (and the related approaches to automated composition of parts), such as
GEC3 and Eugene,4 are used to describe constraints for the composition of a single design. These constraints are an addition
to the domain knowledge specified in the form of a library of circuit components, based on standardised, well-characterized
biological parts. Circuit components have fixed properties and rules define fixed parameter values for interactions among
components. Thus, all parameters in a valid circuit have fixed values, which eliminates the parametric uncertainty. The structural
uncertainty in these formalisms comes from the availability of interchangeable parts for the desired physical composition.
However, these formalisms do not support automated resolution of the structural uncertainty. Instead, experts can use them to
manually generate and test different valid compositions of biological circuits to achieve a given design objective. Composition-
oriented approaches to automated resolution of structural uncertainty based on a design objective, such as Proto5 and Cello6

have been recently developed. The design objective in these approaches is formulated as a Boolean function of the defined
inputs and outputs of the circuit. These approaches infer an abstract network representation of a composition of standard parts.
The inference method is additionally constrained by the intended physical implementation of the circuit, i.e. the components
that can be used to implement the intermediary logic functions (logic gates) needed to achieve the design objective. The
final compositions produced by Cello and Proto can be resolved into a specific physical construct, i.e. DNA sequence of the
composition using Eugene or more advanced methods, such as MatchMaker.7 In any case, the application of these methods is
limited to the specific task of designing biological circuits that realize a given transition function based on a single form of
interactions between the connected components (represented by a sigmoidal transfer function).

In contrast, the approaches in the second class can handle more general design objectives, such as, for example, constrained
values of the components of the Fourier spectrum of the system trajectory that are indicators of oscillatory system behaviour.
However, they provide only simple tools for formalizing structural and parametric uncertainty by letting the user specify a list
of candidate designs in the form of model equations with unknown parameter values. These approaches transform structural
uncertainty into parametric uncertainty. ABC-SysBio8 requires the user to specify a list of equation-based models, each
corresponding to a candidate design. It further reformulates structural uncertainty as parametric uncertainty by introducing an
integer parameter whose value corresponds to the index of the candidate design in the list. Bayesian estimation methods are
then employed to resolve the parametric uncertainty, producing a posterior distribution over the candidate model structures
and the values of their parameters, which can be used for selecting designs that provide optimal fit to the design objectives.
Other optimization-oriented approaches9–13 require the user to specify equation fragments and integrate them within a single
equation structure using Boolean parameters that indicate the presence of individual fragments in the structure. The structural
uncertainty is thus transformed into parametric uncertainty that is then resolved by using parameter estimation. In both cases,
the formalization of domain knowledge and uncertainty is rigid and requires the users to directly encode complete mathematical
models of design candidates. Some of these approaches transform multiple design objectives into a single objective function
for optimization,9, 10, 12 while others8, 11, 13 use multi-objective optimization methods that can consider multiple objectives
simultaneously.

The central contribution of our work is a new approach to automated design that combines the flexibility of the design
by composition approaches with the generality of the design by optimization paradigm. Our approach allows for flexible
formalization of both structural and parametric uncertainty through a library of domain knowledge that specifies a taxonomy
of design constituents and processes that describe their interaction composition. At the same time, the approach is able to
handle a broad class of design objectives. In order to resolve the structural and parametric uncertainty, we bring together
methods for combinatorial search and multi-objective optimization. The search space of candidate model structures is inferred
from the specification of constituents and the potential interactions among them. The estimation of parameter values for
each model structure employs a method for simultaneous optimization of multiple design objectives. The solution in each
resulting Pareto front are aggregated by using a hypervolume based metric,14 that is in turn used for the ranking and selection
of candidate designs. Our approach builds upon the paradigm of process-based modelling15, 16 that integrates formalized
domain-specific knowledge and observed/measured data for automated modelling of dynamical systems. In the new setting, the
design objectives, representing the desired properties of the behaviour of the system replace the objective of fitting the observed
data. We adapt the process-based modelling paradigm to the design task where no measured/observed data are available. We
conjecture that the newly proposed approach is capable of reconstructing the results of previous design efforts. In addition, we
conjecture that the approach, due to the more flexible formalism for specifying domain knowledge and uncertainties, is also
capable of discovering new promising designs not considered before. To test the validity of the two hypotheses, we apply the
newly developed approach on two tasks with archetypical design objectives, i.e. designing a toggle switch and an oscillator.
The first is based on a stochastic model of a genetic switch without cooperation that can be used as a basic memory unit.17 The
second is a deterministic oscillator based on a negative-feedback loop of protein interaction.18

2/15
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From process-based modelling to process-based design

Process-based modelling15 is an automated modelling paradigm that takes two inputs: formalized knowledge about modelling
dynamical systems in the domain of interest and measurements of the observed system that is subject to modelling. The output
is a set of models ranked according to how well they correspond to the observed system (i.e. fit the measured data about the
system). The domain-specific knowledge about modelling is formalized as a library of entities (that represent constituents of the
dynamical systems in the domain) and processes (that correspond to interactions between the entities). The knowledge library,
when instantiated for a particular set of entities observed in a dynamical system at hand, provides a set of components for
building models of the observed system. Process-based modelling approaches make use of combinatorial search to explore the
space of candidate model structures that can be built from these components. The values of the parameters in these structures
are estimated by using optimization methods that minimize the discrepancy between the measured system behaviour and the
behaviour obtained by simulating the model. Following the search and optimization, process-based modelling approaches
provide at output a list of models ranked with respect to their likelihood of reconstructing the observed system behaviour.

Process-based modelling has been successfully applied to a variety of modelling tasks in biology16, 19, 20 and other domains.21

It has several advantages over other modelling paradigms that make it particularly suitable for adaptation to the task of design.
First, process-based models retain the understandability and explanatory power of graphical model representations by providing
clear insight into the structure of the observed system in terms of its constituents (entities) and interactions (processes) among
them. Second, at the same time, they inherit the utility of mathematical models for simulation and analysis of system behaviour.
Third, process-based models provide general model descriptions that support both stochastic and deterministic approaches to
modelling, simulation and analysis. Finally, the knowledge representation formalism facilitates modularity: the knowledge
library can be instantiated into a number of model components that are tailored to a particular modelling task at hand.

The most important and distinguishing aspect of process-based modelling is its ability to formally describe two different
kinds of modelling uncertainty: uncertainty in the model structure and uncertainty in the model parameters. The structural
uncertainty is captured in the formal description of domain knowledge (entities and processes) and is made explicit by
transforming the latter into a space of candidate model structures (as opposed to the case of considering a single structure where
we have no structural uncertainty). Process-based modelling approaches then employ combinatorial search methods to resolve
the structural uncertainty. The very same methods can be used for process-based design. On the other hand, the parametric
uncertainty is described by the formal specification of ranges of values for the model parameters. Given a model structure
and measurements of the system behaviour, the values of these parameters are estimated by using standard optimization
methods. The optimization objective functions (criteria) and the score for ranking the process-based models are derived from
the following components:

C1 Measured behaviour of the observed dynamical system.

C2 Model behaviour obtained by simulation.

C3 Model complexity, in terms of model entities, processes and parameters.

The basic, most commonly used objective function, stems from the maximum likelihood principle, and uses C1 and C2. It
measures the discrepancy between the measured system behaviour (xi) and the simulated model behaviour (x̂i),

RMSE(m) =
1√
N ∑

i
‖xi− x̂i‖, (1)

where i iterates over the observed system variables and N denotes the number of measurement time points. Another commonly
used objective function relies on the parsimony principle that takes into account model complexity C3. If the complexity of
the model is implicitly encoded by the values of the constant parameters, the objective function shown in equation (1) can be
regularized by adding a component that takes into account the magnitude of the model parameters. A more general objective
function can be obtained by following the minimum description length (MDL) principle,22

MDL(m) = L(m)+L(D|m),

that takes into account L(m), the length of the minimal code necessary to completely encode the model (based on C3), and
L(D|m), the length of the code describing the discrepancy between the simulated (C2) and measured behaviour (C1). The
criteria based on the parsimony principle are useful when there is a need to distinguish between the suitability of multiple
competing models with different structures.

For the design task, C1 cannot be used as a component of the objective function, since no measured data is available at
input. For the design task, a second input is available that can replace the measured data:
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C′1 Expected properties of the desired model behaviour.

Following this change, the RMSE criterion (equation (1)) is replaced with one that combines C1′ and C2. A suitable design
might have to fulfil multiple design objectives (expected properties), which (in general) can be independent or even conflicting.
The discrepancy between each expected property of the system behaviour and the same property of the model simulation can be
observed and used in the new criterion. Examples of multiple expected independent properties used for designing a system with
oscillatory behaviour include the oscillation frequency and amplitude.

The issue of satisfying/optimizing multiple objectives can be addressed either by aggregating the corresponding objectives
(i.e. the discrepancies between the expected and the actual value of the property of the behaviour) and using a single-objective
optimization method or by simultaneous optimization of the objectives using a multi-objective optimization method. The
aggregation of multiple objectives requires the introduction of a subjective weighting of the individual objectives in the
aggregation. The subjective weighting can cause loss of information, especially in cases where independent or conflicting
objectives guide the optimization. This makes a strong case for using multi-objective optimization methods to simultaneously
handle multiple design objectives.

Finally, note that we do not use C3 as a component of the objective function for parameter estimation, since the complexity
of the model structures in process-based modelling/design remains constant throughout the optimization of its parameter values.
However, we take into account the component C3 in the final ranking of the models, when models with varying structural
complexity are considered.

Process-based design
We developed (designed and implemented) ProBMoTd, a tool for process-based design, as an extension of the process-based
modelling tool ProBMoTs.16 The extension proceeded in the following directions. First, we made use of our recent upgrade to
the formalism for building process-based models from differential equations to reaction equations (also referred to as reaction
networks), a formalism commonly used for stochastic and deterministic modelling in systems and synthetic biology.23 Second,
following the discussion from the previous section, we employed multi-objective (instead of single-objective) optimization
methods for solving the parameter estimation task. Finally, we introduced a new model-selection score for ranking the candidate
models that takes into account the design objectives and the complexity of the model structure.

Following the process-based modelling paradigm, the task of process-based design takes as input a library of knowledge
about system constituents and interactions in the domain of interest, encoded by using template entities and processes. An
entity represents a constituent of an observed system with its constant and variable properties. For instance, in a simple model
of a system that involves protein binding, an entity corresponds to a protein with a single variable property mol denoting the
number of its molecules present in the system. A formal description of a template entity corresponding to a protein is given
at the top of Table 1: this template can be instantiated to multiple different proteins that need to be considered for a specific
dynamical system.

Similarly, in this example, processes describe the binding interaction between protein entities. The first template process in
Table 1 corresponds to an abstract binding interaction, while the following two template processes represent two more specific
types of binding: irreversible and reversible binding. The template process binding specifies that a binding interaction
involves three constituent entities, all of the same type — protein: p1 and p2 denote the binding proteins and pc denotes
the protein complex resulting from the binding process. The two subordinate processes irreversible binding and
reversible binding inherit the involved entity attributes (p1, p2, pc) as well as the constant parameter corresponding
to the binding rate (k1) from their parent (the template process binding). Each of the subordinate binding processes specifies
the final template reaction equations used to model the binding interactions; for a particular system being modelled, only one of
these two alternatives with specific values of the constant parameters will apply.

Given a specific system with three proteins A, B and AB, an incomplete model can be specified that contains a single process
instance binding(A, B, AB). Note that, by this specific instantiation, the incomplete model formalizes the structural
uncertainty: it defines a space of two candidate model structures, one containing a process of irreversible and the other a process
of reversible binding. While each of these structures contains a different form of the binding process the values of the constant
parameters k1 and/or k2 remain to be estimated in both; in other words, besides structural, we also have parametric uncertainty.
To resolve it, we employ parameter estimation, where the parameter values are optimized with respect to the design objectives,
i.e. the expected properties of the desired system behaviour. An example objective can aim at a specific steady-state of the
system. In particular, we observe the property of the behaviour of the system S(x) that corresponds to the number of molecules
of x when the system reaches a steady state. A possible formulation of the design objective is that O = (S(A)+S(B))/2−S(AB)
comes as close to the target value of 0 as possible. The parameter estimation will find optimal values of the model parameters
for each of the two candidate models. The optimal value of the objective would indicate the suitability of the model candidate.
In this simple example, the reversible binding is expected to be a more suitable alternative for achieving the selected objective.
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Table 1. Formal representation of modelling knowledge for protein binding.

template entity protein {
vars: mol {range: <0,100>};

}
template process binding

(p1: protein, p2:protein, pc: protein) {
consts: k1 {range: <0.1,5>};

}
template process irreversible_binding: binding

equations:
p1.mol + p2.mol -> pc.mol [k1];

}
template process reversible_binding: binding

consts: k2 {range: <0.1,5>},
equations:

p1.mol + p2.mol -> pc.mol [k1],
pc.mol -> p1.mol + p2.mol [k2];

}

In general, however, design tasks include a number of objectives corresponding to different expected properties of the desired
behaviour. In order to support multi-objective parameter estimation, we integrated within ProBMoTd the implementation
of Generalized Differential Evolution24 from the Java-based framework for multi-objective optimization.25 In contrast to a
single optimal point obtained in the case of a single objective, the result of multi-objective parameter estimation (for a given
model structure) is a set of Pareto-optimal points from the parameter space (referred to as the Pareto front) together with the
corresponding values for each objective. To rank the candidate model structures, we ranked the corresponding Pareto fronts. To
this end, we calculated the hyper-volume under each of the Pareto fronts, HVUPF,14 i.e. the volume between the set of points
on the Pareto front and the origin point (that corresponds to the optimal values of the objectives).26

To use HVUPF as a score for ranking the candidates, several assumptions (that do not limit the applicability of the approach),
should be met. First, each objective should have a finite domain of possible values that is known a-priori. Second, all the
objectives should be formulated in a manner that requires their minimization. Under these assumptions, a candidate model
structure with a smaller HVUPF outperforms the candidates with larger volumes. A simple design selection strategy is to
choose the model with the smallest HVUPF. However, as in the case of modelling, these estimates can be biased towards
more complex models. To address this issue, we introduced a selection score that penalizes complex model structures, where
complexity is measured as the number of reaction equations. For finite spaces of candidate model structures, M, both HVUPF
and the model structure complexity were normalized to the [0,1] interval and combined in an MDL-like score for a single
model structure m as follows:

MDLscore(m|M) = αHVUPF(m|M)+(1−α)C(m|M), (2)

where α is a parameter in the interval [0,1] used to trade-off between the HVUPF and the model structure complexity (C). At
output, ProBMoTd reports the list of the candidate models ranked with respect to the descending value of the score. When
reporting the results of the empirical evaluation, we visualized the score profile of the ProBMoTd output as a bar plot, where x-
and y-axes correspond to the candidate model ranks and the model scores (on a logarithmic scale), respectively.

Results
Methodological contribution
Before reporting the results of the empirical evaluation of the proposed approach (in terms of its ability to reconstruct known
results of previous design efforts and propose new designs), we summarize the methodological contribution of the paper and
restate its position within the context of related approaches to automated design. In particular, we present the workflow used to
formalize and resolve structural and parametric uncertainties with the process-based design approach.

Figure 1 recapitulates the workflow of the process-based design approach that was introduced in the previous section. Given
the two inputs to the design task, the domain-specific modelling knowledge and the expected properties of the desired behaviour,
an expert has to prepare the input to ProBMoTd. First, following the composition-oriented approach to design, the domain
knowledge is encoded in a library in the form of a taxonomy of template entities and processes that can be used for modelling
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Figure 1. The workflow of our process-based design approach. At input, it takes domain-specific knowledge about modelling
systems in the study domain and expected properties of the desired behaviour. The knowledge is formalized as a taxonomy of
modelling templates and a specification of an incomplete model. The incomplete model uses inner nodes in the taxonomy to
specify a set of alternative design choices; during the enumeration of the candidate model designs, these are instantiated with
leaf nodes in the taxonomy that correspond to specific design choices. The parameters of each candidate model are estimated
using multi-objective optimization with objectives corresponding to the expected properties of the desired system behaviour,
yielding a Pareto front of solutions for each candidate. Finally, at output, the candidate designs (model structures) are ranked
according to the hyper-volumes under their Pareto fronts obtained with multi-objective optimization. For each design, the
output contains its structure, parameters and simulated behaviour.

any system in the domain at hand. Next, for the particular design task, constraints are specified on how entity and process
templates from the library of domain knowledge can be instantiated and composed into candidate designs. This is done by
the specification of an incomplete model, which formalizes the structural uncertainty. To resolve the structural uncertainty,
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ProBMoTd enumerates the candidate model structures by combining the incomplete model specification with the library of
entity and process templates. Components of the incomplete model that correspond to the inner nodes of the template taxonomy
are instantiated with their subordinate leaves, leading to multiple candidate model structures. For example, position 1 in the
incomplete model can be replaced by instances of two alternatives (j and k; see the incomplete model and library of templates
visualization in Fig. 1). The instance of the alternative (j) appears in the candidate structures I, III and V. Components with
dashed borders (such as component h) are optional. Position 2 in the incomplete model can thus either be instantiated using the
template h (as in model structures I, III, IV) or omitted (as in model structures II and V).

The design objectives, i.e. the expected properties of the desired system behaviour, are reformulated as objective functions
for optimization (following the optimization-oriented approaches to design). For each candidate model structure, a multi-
objective optimization method is used to fit the parameter values (so as to minimize the objective functions) resulting in a
Pareto front of sets of parameter estimates and their corresponding values for the objective functions. In turn, the HVUPF score
is used to aggregate the values of the objective functions for the points on the Pareto front into a single score of the design
that is used to rank the candidates (equation (2)). Experts can then analyse the ProBMoTd output, i.e. the score profile of the
(top ranked) candidate designs and select some of them for further exploration. To obtain a simulation for a selected candidate
design, the user has to select a single point from the Pareto front: the points on the Pareto front are by definition such that none
of them is better/worse than all of the others on all design objectives. Note, however, that the decision making requirement for
the user has been maximally postponed to the point where complete information is available about the best design structure and
its possible parametrizations. This information characterizes the design’s ability to achieve the desired behaviour and allows the
user to make an informed choice. By default, it may be useful to select a point from the Pareto front positioned in a region in
the objective space that is as close as possible to the origin point, for which the design can be considered to achieve satisfactory
behaviour, but the user may select alternative points from the Pareto front based on their preferences.

Stochastic toggle switch without cooperativity
The synthetic toggle switch27 is one of the first synthetically designed systems that can achieve bistable switch-like behaviour.
The importance of a simple synthetic switch is its potential use as a basic memory unit able to hold one bit of information. Its
simple design contains two genes coding for proteins that mutually inhibit their production. The system can be controlled by
inducer molecules that change the steady state of the system from a state where one protein has a low number of molecules
while the other has high to the opposite one. In our work, we approached the task of designing a toggle switch without
cooperative binding. Lipshtat et al.17 showed that the basic toggle switch without cooperativity might not always be able
to achieve a switching behaviour, due to the possibility of a deadlock state where both the number of proteins A and B in
the system is zero. They proposed different mechanisms to improve the design in order to achieve a more robust switch like
behaviour. In a later study, Barnes et al.8 considered the task of selecting a most suitable model among four candidates, which
contain one of the proposed mechanisms by using a Bayesian approach. In both studies, the candidate model structures were
explicitly and manually enumerated.

We next describe in detail the process of preparing the input to the task of process-based design, i.e. the library of templates
and the incomplete model, which uses domain knowledge from the previous studies. The formal representations of the library of
domain knowledge and the incomplete model are shown in Supplementary Table S1 and Supplementary Table S2, respectively.
The system is composed of constituents that we described using five template entities: gene, protein, bound factor
(describing a protein bound to the promoter region of a gene), inducer (describing an external inducer controlling the
number of molecules of a specific protein in the system) and complex (describing a complex formed by binding of an inducer
to a protein). Each template entity has a single variable property mol, which represents the number of molecules of the
corresponding entity present in the system in a given state at a given time. Additionally, in the template entity protein,
we defined two constant properties (trate and drate) which correspond to the rates of production of a protein from its
corresponding gene (accounting for both transcription and translation) and the rate of its degradation.

Figure 2 depicts the taxonomy of all template processes used to describe the (possible) interactions within the system.
To represent the basic processes for a single gene coding for a protein we specified the template process basic. This
template contains two subprocesses, a process of production of a protein product from its coding gene in an unbound state,
and a process of protein degradation. Furthermore, we defined a template process (single reversible binding)
describing a single reversible binding of a protein to the promoter region of a gene, forming a bound factor complex and thus
inhibiting the production of the protein which the bound gene codes for. We made this template process optional: An optional
template process represents a two level hierarchy in which the top-level template process has two subordinate (child) template
processes; one describing an empty process (representing the absence of interaction) and the other representing the presence of
interaction. To account for the function of the inducer, we defined a template process complex formation which describes
the irreversible binding of an inducer with a free protein and the formation of an inducer-protein complex.
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reversible_binding(p1 : protein, g2 : gene, p2:protein,  g1 : gene, 
                                  p1g2 : bound_factor, p2g1: bound_factor, e : protein)

Figure 2. Taxonomy of template processes included in the library of domain knowledge for designing a stochastic toggle
switch. The arrows in the taxonomy point from the child process template to the parent process template. The template process
properties include a list of nested processes (components of the process in which they are nested), constants (usually
corresponding to local kinetic rates) and equations (list of reaction equations describing the process). The template processes
defined in a box with a dashed border represent optional processes.

In the library of domain knowledge, we next introduced the mechanisms suggested by Lipshtat et al.17 as alternative or
optional processes. First, we introduced an alternative to the simple reversible binding that allows for modelling exclusive
binding (reversible binding exclusive). The exclusive binding assumes that both genes share a single binding site.
Following Barnes et al.,8 we introduced in the template process a protein entity e to which a protein should bind to before binding
to the corresponding gene. Second, we introduced an optional template process describing reversible protein binding of
repressor proteins. Finally, we introduced two optional template processes that describe the degradation of a repressor protein
while bound to the gene (bound decay and bound decay e). These optional template processes define 2 modelling
alternatives each, like the protein-protein binding template process.

Given the basic structure of the toggle switch, we were interested to find whether it has the optimally complex structure
needed for achieving switching behaviour. Therefore, we explored the possibility of a simpler model structure (presence/absence
of inhibitory interactions). An additional point of interest, which has not been addressed previously, is the possibility of
achieving a better switch-like behaviour by considering combinations of the proposed mechanisms. To this end, we instantiated
the specific constituent entities and processes as depicted in Fig. 3A. We instantiated two genes gA and gB from the template
entity gene, two proteins A and B, two inducers S and R, the bound factors AgB and BgA, and the complexes SA, RB and AB.

The instantiation of the basic and the complex formation template processes, for the gene-protein pairs gA-A and gB-
B, and for the inducer-protein pairs S-A and R-B respectively, describes only one possible alternative of interaction. The instan-
tiation of the top-level reversible binding template process leads to 10 different alternatives of the process. Its mutually
exclusive child template processes reversible binding simple and reversible binding exclusive describe
2×2×2= 8 and 2 alternatives correspondingly by their nested subprocesses: The subprocesses single reversible bind-
ing, bound decay and bound decay e are optional and describe 2 alternatives each. The final instantiated top-level
template process is the protein binding optional process (2 alternatives) which finally led to definition of a space of
1×1×1×1×10×2 = 20 possible candidate model structures. By taking advantage of the knowledge available in the library,
these 20 candidate model structures include, in addition to the four candidate models manually enumerated in the previous
experiments, 16 other viable alternatives with simpler or more complex structure, containing some or all of the suggested
mechanisms for achieving a switch-like behaviour. The reaction equations for the exclusive switch are shown in Fig. 3C, while
the reaction equations for all candidate design structures are presented in the Supplementary Section 2.2.

Our experimental setup built on the experimental setups defined in previous work: We interpreted each model stochastically,
i.e. the network of reaction equations with stochastic kinetic rates was automatically transformed into a continuous-time Markov
chain with a finite state space. During each step of the optimization process for each model, we performed 100 realizations in
the time frame 0≤ t ≤ 100, sampled at each integer time point, which we used to calculate the values of the objective functions
more accurately. The objective functions guiding the multi-objective optimization were defined as:
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Figure 3. (A) Graphical representation of the toggle-switch interaction structure composed of instantiated templates from the
library of domain knowledge. The colors of the instantiated components correspond to the color of the template processes from
Fig. 2. (B) The expected behaviour of the observed output variable (number of molecules of protein B) and the input provided
to the system (number of molecules of the inducers S and R) as a function of time. (C) The instantiated reaction equations for a
single candidate design corresponding to the exclusive switch, where the symbol in the rectangular brackets denotes the rate
(constant parameter) of the corresponding reaction.

O1 =
√

∑
t∈α

(40− x̂t)2/|α|,

O2 =

√
∑
t∈β

(0− x̂t)2/|β |,

where x̂t is the average simulated number of protein B molecules at time t, α = {t : 30 < t ≤ 60}, β = {t : 0 < t ≤ 10∨80 <
t ≤ 100}, and |α| and |β | are the lengths of the intervals α and β . A model with optimal values for the objective functions
(O1 = 0,O2 = 0) would have an ideal expected behaviour (as shown in Fig. 3B). Each candidate model structure has different
complexity (number of reactions), which ranges from 6 for the least complex to 14 for the most complex structure. Therefore,
the score used for ranking of each model structure was obtained by using the function from equation (2).

Figure 4A shows the obtained score profile. Considering the ranking of only the four candidate model structures considered
in previous studies (bottom of Fig. 4A), the best ranked candidate (rank 1) has a structure containing an exclusive switch, the
second best ranked candidate (rank 3) has a structure containing a protein-protein interaction, while the toggle switch with
bound degradation and the original toggle switch have similar performance (being ranked 12 and 13, respectively). Our relative
ranking of the four designs corresponds to the ranking obtained by Barnes et al.8 and confirms the validity of our approach.

We further analysed the ranking and the structures of the models that perform better than the original toggle switch in
relation to the aforementioned four models. Overall, the model structure containing an exclusive switch is ranked first, while
the model structure with a protein-protein interaction is ranked third. Ranked second is the model structure containing both an
exclusive switch and a protein-protein interaction, a model that has previously not been considered as a possible candidate
model that can achieve the expected behaviour. It is worth noting that this model performs best in terms of HVUPF. The
obtained Pareto fronts and simulations of these three models are shown in Fig. 4B and 4C. The model with bound degradation
and the original toggle switch are ranked 12th and 13th. The Pareto fronts and simulations of the latter models are shown in
Supplementary Fig. S1-S2.

Other than the fourth ranked model that contains exclusive binding and bound degradation, in between (rank 5 to 12)
we observed models that could be structurally separated into two clusters, i.e. a cluster of model structures that contain a
protein-protein interaction and a cluster of model structures that contain processes of bound degradation. Considering the
better ranking of the model structure containing a protein-protein interaction, we noticed that this mechanism represents a good
alternative to the inhibition by protein-gene binding (regarding the ability of the system to achieve toggle switch behaviour).
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Figure 4. (A) Score profile containing all model structures ranked from the most appropriate to the least appropriate, for the
stochastic toggle switch without cooperativity, according to the logarithm of the obtained score that takes into account
complexity (lower score is better) (top). Sample candidate models containing structures considered in previous studies: from
left to right according to their ranking, exclusive switch, switch with a protein-protein interaction, switch with bound repressor
degradation, basic switch (bottom). (B) Pareto fronts of the three best performing models. (C) Simulations of the observed
output variable (average of 100 realizations) of the three best performing models (using an arbitrarily selected point from the
Pareto front).

Additionally, in both clusters we observed structures that contain only inhibition of the production of protein B by binding
protein A to gene gB. This is due to the experimental design in which we defined an expected property of the behaviour that is
dependent only on the number of protein B molecules observed in the system.

Robust negative feedback oscillations
Systems that can achieve stable oscillating behaviour are basic control parts that are critical for many biological systems.
Therefore, the study of such systems, their improvement and implementation is an important task. Tsai et al.18 studied a small
set of five oscillating networks, based on a design consisting of three proteins and a negative feedback loop. The main point of
interest there was whether adding a single auto interaction will lead to improved robustness of the system. In the study, the
robustness of a candidate model was defined by its operational range of frequencies. The operational range was established by
first taking a limited sample of the space of parameter values for each candidate model, then examining the frequency and the
amplitude of the oscillations (if oscillation was achieved) for each set of parameter values and finally calculating the differences
of the minimal and maximal achieved frequency. Given the high nonlinearity of the models, the relationship between the space
of parameters and behaviours is complex. Consequently, a sampling approach might not accurately approximate the operational
range.

In a follow up study, using a Bayesian design approach, Barnes et al.8 focused on selecting a design out of five available
candidates that can most likely achieve a fixed frequency and point-to-point amplitude. The Bayesian design approach considers
concurrently different objective functions that guide the Markov chain Monte Carlo sampling process used to establish posteriors
over the parameter values and model structures. However, it is computationally very demanding and therefore not feasible for
use in the wide range of experiments that need to be performed to establish the robustness of oscillatory behaviour.

As shown in Fig. 5A, we encoded the knowledge available from the aforementioned studies into a library of domain
knowledge by using the process-based formalism. In order to model a negative feedback loop of interacting proteins, we first
introduced a template entity representing a protein with two variable properties: active concentration and passive concentration.
We next introduced two top level processes: Interaction and AutoInteraction. The former describes a directed
interaction between two protein entities. For modelling a negative feedback loop, we required only an inhibition interaction
between two entities. Hence, we described the interaction as a change of the form of the protein (affected by the inhibition) from
active to inactive, following a Michaelis-Menten rate law with cooperation (catalysed by the active form of the affecting protein).
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template entity Protein {
vars:
aconc {range:<0,1>},
iconc {range:<0,1>};

}

template process Interaction(x: Protein, y: Protein) {
  consts: k {range: <0, 1000>}, K {range: <0, 4>}, n {range: <1, 4>};
  equations:

y.aconc -> y.iconc ![k*y.aconc*pow(x.aconc,n)/(pow(x.aconc,n) + pow(K,n))];
}
template process AutoInteraction(x:Protein){
consts: kw {range: <0,100>}, ks {range: <500,600>}, K {range: <0, 4>}, n {range: <1, 4>};

}

template process NoAuto : AutoInteraction {}
template process WeakAuto : AutoInteraction{}
template process StrongAuto : AutoInteraction{}

template process WeakActivation : WeakAuto{
equations:
x.iconc -> x.aconc ![kw*x.iconc*pow(x.aconc,n)/(pow(x.aconc,n) + pow(K,n))];

}
template process WeakInhibition : WeakAuto {
equations:
x.aconc -> x.iconc ![kw*x.aconc*pow(x.aconc,n)/(pow(x.aconc,n) + pow(K,n))];

}

template process StrongActivation : StrongAuto {
equations:
x.iconc -> x.aconc ![ks*x.iconc*pow(x.aconc,n)/(pow(x.aconc,n) + pow(K,n))];

}

template process StrongInhibition : StrongAuto {
equations:
x.aconc -> x.iconc ![ks*x.aconc*pow(x.aconc,n)/(pow(x.aconc,n) + pow(K,n))];

}

template process Conversion(x: Protein) {
consts: k {range: <0, 10>};
equations:
x.iconc -> x.aconc [k];

}

A

D

Figure 5. (A) The library of domain knowledge used for designing systems with robust negative feedback oscillations
encoded in the process-based formalism (template entity and processes). (B) Graphical representation of the incomplete
structure of the models as instantiated using components from the library of domain knowledge. (C) The five candidate model
structures enumerated by the incomplete model. The thin loops in models 2 and 4 represent weak auto-interaction while the
thicker lines in models 3 and 5 represent strong auto-interaction. The green lines represent auto-activation, while the orange
lines represent auto-inhibition. (D) The system of coupled ordinary differential equations for the candidate design structure M2.

The latter was also used to describe an interaction loop for a single entity. In order to encode all possibilities as described by
Tsai et al.,18 we defined a taxonomy of template processes. The AutoInteraction template process is inherited by three
second level template processes: NoAuto, which describes the case where there is no interaction loop; WeakAuto, which
describes a weak interaction; and StrongAuto, which describes a strong interaction. The WeakAuto and StrongAuto
template processes are inherited by leaf template processes which describe the corresponding weak and strong activation and
inhibition interactions.

Using the described library of domain knowledge, we were able to define an incomplete model that can be refined to obtain
all five candidate model structures described by Tsai et al.18 The incomplete model is graphically depicted in Fig. 5B. The
formal representation of the incomplete model is shown in Supplementary Table S3. We instantiated the template entity into
three protein entities A, B and C. We defined an inhibitory loop by instantiating the Interaction template process into the
three required inhibitory interactions. Finally, we instantiated the top-level AutoInteraction template process with protein
A as its argument, effectively defining the space of possible candidate model structures. The five model structures described
by the incomplete model are depicted in Fig. 5C. The system of coupled ordinary differential equations for the candidate
design structure M2 is presented in Fig. 5D; the differential equations for the other four candidate designs are presented in the
Supplementary Section 3.2.

To evaluate the performance of our approach and (at the same time) establish the most robust negative feedback oscillator
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structure (in terms of its ability to achieve oscillations over a range of exact frequency - amplitude pairs), we performed two
sets of nine design tasks. In order to compare our results to those of the previous studies, we considered (as target expected
properties of the behaviour) the frequency-amplitude pairs formed by the Cartesian product of frequencies ft = {0.1,1,10} and
amplitudes At = {0.01,0.1,1}, for the active concentrations of protein A and C (protein B is included by symmetry). Each
candidate model was interpreted deterministically by automatically transforming the set of reaction equations to a system of
ordinary differential equations, followed by a simulation in the time frame 0≤ t ≤ 28 (sampled with a frequency of 40Hz). The
objective functions guiding the multi-objective optimization were defined as:

O1 = | ft − f̂ |,
O2 = |At − Â|,
O3 = ∑

n
|x̂t0+nT − ̂xt0+(n−1)T |,

where ft is the target frequency, f̂ is the frequency obtained by calculating the largest component of the Fourier spectrum of the
simulated trajectory of the model, At is the target amplitude, Â is the amplitude determined from the simulated trajectory of the
model, x̂t is the simulated active concentration of the target protein x at time t, n ∈ Z∗ and T = f̂−1. All values were calculated
using t0 = 2s in order to remove initial transients.

Figure 6 shows the HVUPF for each model for each design target. All of the models have the same number of reactions
(considering M1 to contain an auto-interaction with k = 0). Therefore, the complexity component of the function used for
scoring (equation (2)) is the same for all candidate models. Subsequently, we ranked the models only by their HVUPF. From
both Fig. 6A and 6B, it is evident that the candidate models M2 and M3 consistently dominated the other models in all
experimental setups, confirming the conclusions from the study by Tsai et al.18 regarding the wide operational range (tunable
frequency and constancy of amplitude), i.e. the robustness of the model structures containing an auto-activation loop and further
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Figure 6. Unordered score profiles containing the logarithm of the HVUPF values obtained for each model structure under
different experimental conditions (target frequency (Hz) and amplitude (conc.)) for observed active concentrations of (A)
protein A and (B) protein C (a lower value is better). Each of the nine bar plots (score profiles) shows the obtained HVUPF
(y-axis of the bar plots) of each model structure for the specific pair of target frequency and amplitude. The model enumeration
(x-axis of the bar plots) is the same as in Fig. 5C. The obtained median ranks for (M1, M2, M3, M4, M5) are (4, 2, 1, 3, 4.5)
and (3, 1, 2, 4, 5) for the observed target active concentrations of proteins A and C, respectively.
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confirming the validity of our approach. For the model structures M2 and M3, the frequency operational range is extended
towards the lower frequencies and the amplitude constancy range towards the higher end. The influence of the auto-activation
loop is more expressed in the experiments where the target is the active concentration of protein A. The model structures
containing auto-inhibition (M4, M5) do not offer significant improvement and extension of the operational range over the basic
model structure M1.

The rankings for target frequency 1Hz and amplitude 0.1 correspond to the rankings obtained in the study by Barnes et al.8

for the target expected properties of the behaviours of both proteins A and C. The difference in the rankings in both cases is the
ranking of model structure M1 (negative feedback without auto-interaction) and model structure M4 (negative feedback with
weak auto-inhibition). In our results, for this specific pair of target frequency and amplitude, M4 performs better than M1. Note
that the two-dimensional projections of the Pareto front and the simulations for the best performing model structures M2 and
M3, obtained using target amplitude At = 0.1 and different target frequencies, are given in the Supplementary. Supplementary
Figures S3-S5 show those obtained for scenarios with observed target active concentrations of protein A and Supplementary
Fig. S6-S8 show those obtained for scenarios with observed target active concentrations of protein C.

Discussion
The paper introduces process-based design, a novel approach to designing dynamical biological systems that exhibit desired
behaviours. The process-based formalism we use allows for flexible and modular representation of modelling knowledge in
the domain of interest, formalized as a taxonomy of template entities (constituents) and processes (interactions). We present
ProBMoTd, an automated design tool that can make use of such knowledge by instantiating the templates into reusable
components for building candidate models, which are put together into model structures in a manner similar to the one used
by composition-based approaches.5, 6 It automatically resolves the structural uncertainty by enumerating and exploring the
space of candidate models. Furthermore, ProBMoTd resolves the parametric uncertainty by using standard multi-objective
optimization methods, as the ones used by optimization-based approaches.8, 11, 13 It fits the values of the model parameters
to the expected properties of the desired behaviour, obtaining a Pareto front on non-dominated optimal solutions. Finally,
ProBMoTd combines the hyper-volume under the Pareto front with the complexity of the model structure to obtain a single
score used for ranking the candidate designs. The process-based design is closely related to TinkerCell,28 which employs a
hierarchical representation of domain knowledge, but, in contrast to our approach, limits its focus to manual resolution of the
structural and parametric uncertainties of the design task.

We illustrate the utility and generality of the process-based design approach on two design tasks. In the first, we design a
stochastic toggle switch without cooperativity, while in the second, we design a deterministic oscillator. The experiments show
that our approach is general enough to handle design tasks based on either deterministic or stochastic models. Furthermore,
in both experiments, the ranking of candidate models based on the hyper-volume under the Pareto front of optimal solutions
resembles the rankings reported in previous studies. This shows the utility of the hyper-volume measure as a design-selection
strategy: It successfully summarizes the set of optimal solutions, produced by optimizing multiple competing objectives, into a
single ranking score. In contrast to existing optimization-based approaches, process-based design facilitates modular knowledge
representation, allowing for flexible specification of arbitrarily complex spaces of candidate model structures. This allowed us
to easily specify a superset of the space of candidate model structures considered in previous studies, which subsequently led us
to the discovery of previously unconsidered candidate designs of a stochastic toggle switch without cooperativity. Subsequently,
we gained additional knowledge about the influence of the different choices of component processes on the overall model
performance. Finally, when designing a robust oscillator, due to the automation of the complete ProBMoT workflow, we were
able to efficiently perform a range of experiments with different setups, the results of which improved the confidence in the
generality and robustness of the designs reported in previous studies.

The work presented in this paper lays the foundation for further development of process-based design. The first direction for
further development concerns the use of heuristic search in resolving the structural uncertainty, i.e. efficient exploration of the
space of candidate design. Composition-based approaches have been using parsimony heuristics for optimizing the complexity
of logic circuits,6 while optimization-based approaches have been using incomplete search strategies based on transforming
the structural uncertainty into a parametric uncertainty.12 This line of development will make our approach scalable to large
spaces of candidate model structures by replacing the exhaustive enumeration of candidate designs with incomplete, heuristic
strategies29 for searching the space of candidate designs. Another direction of further work is the integration of our approach
to process-based design with synthetic biology standards. Currently, process-based models produced by ProBMoTd can be
recoded into the Systems Biology Markup Language.30 We plan to develop computational methods for transferring knowledge
from registries of standard parts31 or similar standardization efforts32 to process-based libraries of domain knowledge. This
will allow for creating designs partly or completely composed of readily available biological components. It will also allow for
translation of process-based models into standard formats specific to synthetic biology, such as the Synthetic Biology Open
Language.33
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1 Availability of software
The ProBMoTd tool is an extension of ProBMoT that addresses the task of process-based design as described
in the manuscript. Both ProBMoTd and ProBMoT are released as open-source software packages available
for download at http://probmot.ijs.si. They are available under the terms of the three-clause BSD
license ( http://probmot.ijs.si/licence.html )

2 Stochastic toggle switch without cooperativity

2.1 Formal representation of the library and incomplete model
The complete library used for the task of design of a stochastic toggle switch without cooperativity (graphi-
cally depicted in Fig. 2 in the manuscript) is shown in Table S1. The incomplete model used to enumerate
the 20 candidate models considered in this task is shown in Table S2.

Table S1: Formal representation of the library of domain knowledge used for the design of a stochastic toggle
switch without cooperativity.

library ToggleLibrary;

template entity gene{
vars: mol {range:<0,100>};

}

template entity protein{
vars: mol {range:<0,100>};
consts:
trate {range: <0.001,50>},
drate {range: <0.001,5>}

}

template entity complex{
vars: mol {range:<0,100>};

}

template entity inducer{
vars: mol {range:<0,100>};

}

template entity bound_factor{
vars: mol {range:<0,100>};

}
continued . . .
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Table S1: Formal representation of the library of domain knowledge used for the design of a stochastic toggle
switch without cooperativity.

template process basic(g: gene, p: protein){
processes:
production(g, p),
degradation(p);

}

template process production(g: gene, p: protein){
equations:
g.mol -> g.mol + p.mol [p.trate];

}

template process degradation(p: protein){
equations:
p.mol -> [p.drate];

}

template process reversible_binding(p1: protein, g2: gene,
p2:protein, g1: gene, p1g2: bound_factor,

p2g1: bound_factor, e: protein){
consts:
k1{range: <0.001, 50>},
k2{range: <0.001, 50>},
k3{range: <0.001, 50>},
k4{range: <0.001, 50>};

}

template process reversible_binding_simple : reversible_binding{
processes:
single_reversible_binding(p1, g2, p1g2),
single_reversible_binding(p2, g1, p2g1),
bound_decay(p1g2, g2, p2g1, g1);

}

template process reversible_binding_exclusive
: reversible_binding{

processes:
bound_decay_e(p1g2, g2, p2g1, g1, e);

equations:
p1.mol + g2.mol + e.mol -> p1g2.mol [k1],
p1g2.mol -> p1.mol + g2.mol + e.mol [k2],
p2.mol + g1.mol + e.mol -> p2g1.mol [k3],
p2g1.mol -> p2.mol + g1.mol + e.mol [k4];

}
continued . . .
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Table S1: Formal representation of the library of domain knowledge used for the design of a stochastic toggle
switch without cooperativity.

template process single_reversible_binding(p: protein, g: gene,
pg: bound_factor){

consts:
k1{range: <0.001, 50>},
k2{range: <0.001, 50>};

}

template process single_reversible_binding_none
: single_reversible_binding{}

template process single_reversible_binding_simple
: single_reversible_binding{

equations:
p.mol + g.mol -> pg.mol [k1],
pg.mol -> p.mol + g.mol [k2];

}

template process bound_decay(p1g2: bound_factor, g2: gene,
p2g1: bound_factor, g1: gene){

consts:
k1{range: <0.001, 50>},
k2{range: <0.001, 50>};

}

template process bound_decay_none : bound_decay{}

template process bound_decay_present : bound_decay{
equations:
p1g2.mol -> g2.mol [k1],
p2g1.mol -> g1.mol [k2];

}

template process bound_decay_e(p1g2: bound_factor, g2: gene,
p2g1: bound_factor, g1: gene, e: protein){

consts:
k1{range: <0.001, 50>},
k2{range: <0.001, 50>};

}

continued . . .
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Table S1: Formal representation of the library of domain knowledge used for the design of a stochastic toggle
switch without cooperativity.

template process bound_decay_e_none : bound_decay_e{}

template process bound_decay_e_present : bound_decay_e{
equations:
p1g2.mol -> g2.mol + e.mol [k1],
p2g1.mol -> g1.mol + e.mol [k2];

}

template process complex_formation(i: inducer, p: protein,
ip: complex){

consts:
k{range: <0.001, 50>};

equations:
i.mol + p.mol -> ip.mol [k];

}

template process protein_binding(p1: protein, p2: protein,
p1p2: complex){

consts:
k1{range: <0.001, 50>},
k2{range: <0.001, 50>};

}

template process protein_binding_none : protein_binding {}

template process protein_binding_present : protein_binding{
equations:
p1.mol + p2.mol -> p1p2.mol [k1],
p1p2.mol -> p1.mol + p2.mol [k2];

}
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Table S2: Formal representation of the incomplete model used for the design of a stochastic toggle switch
without cooperativity.

incomplete model ToggleSwitch : ToggleLibrary;

entity gA : gene{
vars: mol{role: endogenous; initial: 1;};

}

entity gB : gene{
vars: mol{role: endogenous; initial: 1;};

}

entity A : protein{
vars: mol{role: endogenous; initial: 0;};
consts: trate, drate;

}

entity B : protein{
vars: mol{role: endogenous; initial: 0;};
consts: trate, drate;

}

entity P : protein{
vars: mol{role: endogenous; initial: 1;};
consts: trate, drate;

}

entity SA : complex{
vars: mol{role: endogenous; initial: 0;};

}

entity RB : complex{
vars: mol{role: endogenous; initial: 0;};

}

entity AB : complex{
vars: mol{role: endogenous; initial: 0;};

}

entity S : inducer{
vars: mol{role: exogenous; initial: 0};

}
continued . . .
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Table S2: Formal representation of the incomplete model used for the design of a stochastic toggle switch
without cooperativity.

entity R : inducer{
vars: mol{role: exogenous; initial: 0};

}

entity AgB : bound_factor{
vars: mol{role: endogenous; initial: 0;};

}

entity BgA : bound_factor{
vars: mol{role: endogenous; initial: 0;};

}

process basicA(gA, A) : basic {}
process basicB(gB, B) : basic {}

process complex_formationSA(S, A, SA) : complex_formation{
consts: k;

}

process complex_formationRB(R,B,RB) : complex_formation{
consts: k;

}

process reversible_bindingAgBBgA(A, gB, B, gA, AgB, BgA, P)
: reversible_binding{

consts: k1, k2, k3, k4;
}

process protein_bindingAB(A, B, AB) : protein_binding {
consts: k1, k2;

}
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2.2 Candidate model equations
Below we give the complete descriptions of the reactions and the corresponding rates for all candidate
models considered for the task of designing a stochastic toggle switch without cooperativity.

Model 1: HVUPF=0.712234502, Complexity=6, Rank=15

Reaction Rate
A.mol→ A.drate
B.mol→ B.drate
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 2: HVUPF=0.426312245, Complexity=8, Rank=6

Reaction Rate
A.mol +gB.mol→ AgB.mol single reversible binding.k1
A.mol→ A.drate
AgB.mol→ A.mol +gB.mol single reversible binding.k2
B.mol→ B.drate
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 3: HVUPF=0.698638372, Complexity=8, Rank=17

Reaction Rate
A.mol→ A.drate
B.mol +gA.mol→ BgA.mol single reversible binding.k1
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol single reversible binding.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k
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Model 4: HVUPF=0.457644189, Complexity=10, Rank=13

Reaction Rate
A.mol +gB.mol→ AgB.mol single reversible binding AgB.k1
A.mol→ A.drate
AgB.mol→ A.mol +gB.mol single reversible binding AgB.k2
B.mol +gA.mol→ BgA.mol single reversible binding BgA.k1
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol single reversible binding BgA.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 5: HVUPF=0.837428418, Complexity=8, Rank=19

Reaction Rate
A.mol→ A.drate
AgB.mol→ gB.mol bound decay.k1
B.mol→ B.drate
BgA.mol→ gA.mol bound decay.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 6: HVUPF=0.392625279, Complexity=10, Rank=11

Reaction Rate
A.mol +gB.mol→ AgB.mol single reversible binding.k1
A.mol→ A.drate
AgB.mol→ A.mol +gB.mol single reversible binding.k2
AgB.mol→ gB.mol bound decay.k1
B.mol→ B.drate
BgA.mol→ gA.mol bound decay.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k
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Model 7: HVUPF=0.810606879, Complexity=10, Rank=20

Reaction Rate
A.mol→ A.drate
AgB.mol→ gB.mol bound decay.k1
B.mol +gA.mol→ BgA.mol single reversible binding.k1
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol single reversible binding.k2
BgA.mol→ gA.mol bound decay.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 8: HVUPF=0.294097735, Complexity=12, Rank=12

Reaction Rate
A.mol +gB.mol→ AgB.mol single reversible binding AgB.k1
A.mol→ A.drate
AgB.mol→ A.mol +gB.mol single reversible binding AgB.k2
AgB.mol→ gB.mol bound decay.k1
B.mol +gA.mol→ BgA.mol single reversible binding BgA.k1
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol single reversible binding BgA.k2
BgA.mol→ gA.mol bound decay.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 9: HVUPF=0.173166305, Complexity=10, Rank=1

Reaction Rate
A.mol +gB.mol +P.mol→ AgB.mol reversible bindingAgBBgA.k1
A.mol→ A.drate
AgB.mol→ A.mol +gB.mol +P.mol reversible bindingAgBBgA.k2
B.mol +gA.mol +P.mol→ BgA.mol reversible bindingAgBBgA.k3
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol +P.mol reversible bindingAgBBgA.k4
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k
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Model 10: HVUPF=0.159207006, Complexity=12, Rank=4

Reaction Rate
A.mol +gB.mol +P.mol→ AgB.mol reversible bindingAgBBgA.k1
A.mol→ A.drate
AgB.mol→ A.mol +gB.mol +P.mol reversible bindingAgBBgA.k2
AgB.mol→ gB.mol +P.mol bound decay e.k1
B.mol +gA.mol +P.mol→ BgA.mol reversible bindingAgBBgA.k3
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol +P.mol reversible bindingAgBBgA.k4
BgA.mol→ gA.mol +P.mol bound decay e.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 11: HVUPF=0.414773371, Complexity=8, Rank=5

Reaction Rate
A.mol +B.mol→ AB.mol protein bindingAB.k1
A.mol→ A.drate
AB.mol→ A.mol +B.mol protein bindingAB.k2
B.mol→ B.drate
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 12: HVUPF=0.331451333, Complexity=10, Rank=7

Reaction Rate
A.mol +B.mol→ AB.mol protein bindingAB.k1
A.mol +gB.mol→ AgB.mol single reversible binding.k1
A.mol→ A.drate
AB.mol→ A.mol +B.mol protein bindingAB.k2
AgB.mol→ A.mol +gB.mol single reversible binding.k2
B.mol→ B.drate
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k
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Model 13: HVUPF=0.363104873, Complexity=10, Rank=9

Reaction Rate
A.mol +B.mol→ AB.mol protein bindingAB.k1
A.mol→ A.drate
AB.mol→ A.mol +B.mol protein bindingAB.k2
B.mol +gA.mol→ BgA.mol single reversible binding.k1
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol single reversible binding.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 14: HVUPF=0.153544691, Complexity=12, Rank=3

Reaction Rate
A.mol +B.mol→ AB.mol protein bindingAB.k1
A.mol +gB.mol→ AgB.mol single reversible binding AgB.k1
A.mol→ A.drate
AB.mol→ A.mol +B.mol protein bindingAB.k2
AgB.mol→ A.mol +gB.mol single reversible binding AgB.k2
B.mol +gA.mol→ BgA.mol single reversible binding BgA.k1
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol single reversible binding BgA.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 15: HVUPF=0.384784585, Complexity=10, Rank=10

Reaction Rate
A.mol +B.mol→ AB.mol protein bindingAB.k1
A.mol→ A.drate
AB.mol→ A.mol +B.mol protein bindingAB.k2
AgB.mol→ gB.mol bound decay.k1
B.mol→ B.drate
BgA.mol→ gA.mol bound decay.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k
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Model 16: HVUPF=0.339729811, Complexity=12, Rank=14

Reaction Rate
A.mol +B.mol→ AB.mol protein bindingAB.k1
A.mol +gB.mol→ AgB.mol single reversible binding.k1
A.mol→ A.drate
AB.mol→ A.mol +B.mol protein bindingAB.k2
AgB.mol→ A.mol +gB.mol single reversible binding.k2
AgB.mol→ gB.mol bound decay.k1
B.mol→ B.drate
BgA.mol→ gA.mol bound decay.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 17: HVUPF=0.40783702, Complexity=12, Rank=16

Reaction Rate
A.mol +B.mol→ AB.mol protein bindingAB.k1
A.mol→ A.drate
AB.mol→ A.mol +B.mol protein bindingAB.k2
AgB.mol→ gB.mol bound decay.k1
B.mol +gA.mol→ BgA.mol single reversible binding.k1
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol single reversible binding.k2
BgA.mol→ gA.mol bound decay.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 18: HVUPF=0.347634959, Complexity=14, Rank=18

Reaction Rate
A.mol +B.mol→ AB.mol protein bindingAB.k1
A.mol +gB.mol→ AgB.mol single reversible binding AgB.k1
A.mol→ A.drate
AB.mol→ A.mol +B.mol protein bindingAB.k2
AgB.mol→ A.mol +gB.mol single reversible binding AgB.k2
AgB.mol→ gB.mol bound decay.k1
B.mol +gA.mol→ BgA.mol single reversible binding BgA.k1
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol single reversible binding BgA.k2
BgA.mol→ gA.mol bound decay.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k
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Model 19: HVUPF=0.093538518, Complexity=12, Rank=2

Reaction Rate
A.mol +B.mol→ AB.mol protein bindingAB.k1
A.mol +gB.mol +P.mol→ AgB.mol reversible bindingAgBBgA.k1
A.mol→ A.drate
AB.mol→ A.mol +B.mol protein bindingAB.k2
AgB.mol→ A.mol +gB.mol +P.mol reversible bindingAgBBgA.k2
B.mol +gA.mol +P.mol→ BgA.mol reversible bindingAgBBgA.k3
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol +P.mol reversible bindingAgBBgA.k4
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k

Model 20: HVUPF=0.106389079, Complexity=14, Rank=8

Reaction Rate
A.mol +B.mol→ AB.mol protein bindingAB.k1
A.mol +gB.mol +P.mol→ AgB.mol reversible bindingAgBBgA.k1
A.mol→ A.drate
AB.mol→ A.mol +B.mol protein bindingAB.k2
AgB.mol→ A.mol +gB.mol +P.mol reversible bindingAgBBgA.k2
AgB.mol→ gB.mol +P.mol bound decay e.k1
B.mol +gA.mol +P.mol→ BgA.mol reversible bindingAgBBgA.k3
B.mol→ B.drate
BgA.mol→ B.mol +gA.mol +P.mol reversible bindingAgBBgA.k4
BgA.mol→ gA.mol +P.mol bound decay e.k2
gA.mol→ gA.mol +A.mol A.trate
gB.mol→ gB.mol +B.mol B.trate
R.mol +B.mol→ RB.mol complex f ormationRB.k
S.mol +A.mol→ SA.mol complex f ormationSA.k
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2.3 Supplementary figures
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Figure S1: (left) Pareto front for the model structure with added bound degradation only (ranked 12th).
(right) Simulation of the observed output variable (average of 100 realizations) using the model structure and
an arbitrarily selected set of optimal parameter values from the Pareto front (single point).
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Figure S2: (left) Pareto front for the model structure describing a simple double repressed toggle switch
without cooperativity (ranked 13th). (right) Simulation of the observed output variable (average of 100
realizations) using the model structure and an arbitrarily selected set of optimal parameter values from the
Pareto front (single point).
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3 Robust negative feedback oscillations

3.1 Formal representation of the library and incomplete model
The complete library is shown on Figure 4A in the manuscript. The incomplete model is shown in Table S3.

Table S3: Formal representation of the incomplete model used for the design of a robust negative feedback
oscillatior.

incomplete model RobustOscillator : OscillatorNetworks;

entity A : Protein{
vars:
aconc{role: endogenous; initial: 0},
iconc{role: endogenous; initial: 1};

}
entity B : Protein{
vars:
aconc{role: endogenous; initial: 0},
iconc{role: endogenous; initial: 1};

}
entity C : Protein{
vars:
aconc{role: endogenous; initial: 0},
iconc{role: endogenous; initial: 1};

}

process linkAB(A, B) : Inhibition { consts: k, K, n; }
process linkBC(B, C) : Inhibition { consts: k, K, n; }
process linkCA(C, A) : Inhibition { consts: k, K, n; }

process linkAA(A) : AutoInteraction {
consts: kw, ks, K, n;

}

process AConv(A) : Conversion { consts: k; }
process BConv(B) : Conversion { consts: k; }
process CConv(C) : Conversion { consts: k=1; }
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3.2 Candidate model equations
Model1

dA.aconc
dt

= k1A.iconc− k2C.aconcn1
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Model 3
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dt
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Model 5
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dt
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3.3 Supplementary figures
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Figure S3: (top) Three two-dimensional projections of the Pareto front for the best performing models:
(left) Model 2 and (right) Model 3, considering the behavior of the target active concentration of protein
A described by a target frequency ft = 0.1Hz and a target amplitude At = 0.1. (bottom) Simulation of the
active concentration of protein A using the structure of (left) Model 2 and (right) Model 3, and an arbitrarily
selected set of optimal parameter values from the corresponding Pareto front (single point).
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Figure S4: (top) Three two-dimensional projections of the Pareto front for the best performing models:
(left) Model 2 and (right) Model 3, considering the behavior of the target active concentration of protein
A described by a target frequency ft = 1Hz and a target amplitude At = 0.1. (bottom) Simulation of the
active concentration of protein A using the structure of (left) Model 2 and (right) Model 3, and an arbitrarily
selected set of optimal parameter values from the corresponding Pareto front (single point).
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Figure S5: (top) Three two-dimensional projections of the Pareto front for the best performing models:
(left) Model 2 and (right) Model 3, considering the behavior of the target active concentration of protein
A described by a target frequency ft = 10Hz and a target amplitude At = 0.1. (bottom) Simulation of the
active concentration of protein A using the structure of (left) Model 2 and (right) Model 3, and an arbitrarily
selected set of optimal parameter values from the corresponding Pareto front (single point).
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Figure S6: (top) Three two-dimensional projections of the Pareto front for the best performing models:
(left) Model 2 and (right) Model 3, considering the behavior of the target active concentration of protein
C described by a target frequency ft = 0.1Hz and a target amplitude At = 0.1. (bottom) Simulation of the
active concentration of protein C using the structure of (left) Model 2 and (right) Model 3, and an arbitrarily
selected set of optimal parameter values from the corresponding Pareto front (single point).
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Figure S7: (top) Three two-dimensional projections of the Pareto front for the best performing models:
(left) Model 2 and (right) Model 3, considering the behavior of the target active concentration of protein
C described by a target frequency ft = 1Hz and a target amplitude At = 0.1. (bottom) Simulation of the
active concentration of protein C using the structure of (left) Model 2 and (right) Model 3, and an arbitrarily
selected set of optimal parameter values from the corresponding Pareto front (single point).
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Figure S8: (top) Three two-dimensional projections of the Pareto front for the best performing models:
(left) Model 2 and (right) Model 3, considering the behavior of the target active concentration of protein
C described by a target frequency ft = 10Hz and a target amplitude At = 0.1. (bottom) Simulation of the
active concentration of protein C using the structure of (left) Model 2 and (right) Model 3, and an arbitrarily
selected set of optimal parameter values from the corresponding Pareto front (single point).
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Chapter 6

Conclusion

In this thesis, we have presented an approach to the automated modeling and design of
dynamical biological systems that bring together and extend machine learning approaches
for process-based modeling (PBM), on one hand, and well established modeling approaches
to systems and synthetic biology on the other hand. We have addressed several limitations
of process-based modeling that have limited their use in the domains of systems and syn-
thetic biology. These limitations concern the understandability and interpretability, model
selection and dependence on data availability.

From a machine learning viewpoint, we have extended the scope of the formalism used
in PBM to represent models and spaces of candidate models towards representing stochastic
models (and domain knowledge). We extended the existing PBM tools to learn stochastic
models represented in the new formalism from data and domain knowledge. We improved
the PBM approach by adopting a regularization-based model selection scheme. We further
improved the robustness of the PBM approach to limited observability, by using domain
speci�c model selection criteria for bias strengthening. Finally, we completely relaxed
the dependence of the PBM approach on observations, allowing for process-based design
of novel systems by simultaneous optimization of multiple criteria related to the desired
properties of the model system behavior.

From the perspective of systems and synthetic biology, the formalism allows for encod-
ing domain speci�c knowledge and models with uncertainty in the structure and the values
of the parameters in an understandable and easily communicable manner. The improved
PBM approaches we have developed use the new formalism, resolve the structural and
parametric uncertainty and select appropriate models.

The models encoded using the new process-based formalism can be interpreted both
deterministically and stochastically. We performed proof of principle empirical evaluation
of the new PBM approaches on multiple tasks of modeling and design from the domain
of systems and synthetic biology. Through the results of the evaluation, we show that
our approach is able to deal with complex parameter and structure search spaces in an
automated fashion and produce reliable models and novel designs. The process-based
modeling and design approach is successful in reconstructing results from the literature
obtained by manual modeling and design or by using related approaches. It performs well
on both synthetic and real world problems and is applicable to tasks of modeling and
design of deterministic and stochastic systems.

6.1 Summary of Contributions

By improving the existing methods towards achieving the goals we have set, we have made
the following contributions:



142 Chapter 6. Conclusion

• We have broadened the scope of the formalisms used for process-based modeling of
dynamical systems. We have extended the possibilities for interpretation of such
models, mainly in the direction of capturing the inherent stochasticity of dynam-
ical systems in biology. We have adapted for use within process-based modeling
a formalism for representing complex dynamics that is both �ne-grained and intu-
itive/comprehensible. Each process is represented by atomic interactions in the form
of simple reaction equations. This allows for multiple deterministic and stochastic
interpretations of process-based models. We have evaluated the approach to stochas-
tic process-based modeling on four tasks coming from two domains, using synthetic
and real world data.

• We have addressed the problem of model selection for process-based modeling. We
have proposed a regularization based approach to model selection, based on the par-
simony principle, adapted to the distinguishing characteristics of the task of process-
based modeling. We have further proposed a bias strengthening approach to model
selection, based on the use of domain-speci�c criteria, for tasks with limited and
noisy observability. We have demonstrated on a modeling task concerning the dy-
namics of the Rab5-Rab7 conversion switch during the early stages of endocytosis,
that additional bias strengthening based on domain-speci�c criteria, can alleviate the
hard model selection problem and outperform the standard regularization approach.

• We have extended the scope of process-based modeling to cover the task of design of
biological systems that can achieve desired behavior. We have developed a method-
ology for completely knowledge-driven process-based design of dynamical biological
systems. We make use of the complete information available from the set (Pareto
front) of optimal solutions obtained by optimizing multiple competing objectives,
which correspond to the desired properties of candidate designs. We have evaluated
the approach on two tasks concerning the design of a bistable switch and an oscilla-
tor. We have demonstrated the utility of the hyper-volume (under the Pareto front)
indicator for overall ranking (and selection) of candidate process-based designs.

6.2 Further Work

During the process of development and evaluation of the approach for deterministic and
stochastic process-based modeling and design of dynamical biological systems, we have
identi�ed several issues that lead to the following directions for further work.

The �rst direction is related to the potential improvement of the formalism for repre-
senting models and libraries of modeling domain knowledge, the integration of additional
information within the formalism and the exploitation of other sources of knowledge. The
process-based modeling formalism, in principle, allows for the integration of a range of
other formalisms able to quantify the causal relations between entity properties within a
self-contained process. Among the modeling formalisms for systems and synthetic biology,
process algebras and rule-based formalisms are the most likely candidates to integrate with
PBM, promising improvement of the e�ciency and scalability of the knowledge represen-
tation. Both classes of formalisms are generalizations of the reaction-equation-based repre-
sentation and are well accepted within the community. Integration with these formalisms
would require the template entities to have more structured representations/additional
properties. The template processes could then be used to de�ne common structures by
di�erent sets of rules that transform these properties.

Another improvement of the formalism used to represent libraries of domain-knowledge
would be to allow the annotation (Le Novére et al., 2005) of libraries and models. This
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would lead to the enrichment of instantiated model components with information about the
biological context, such as entity properties and compatibility, parameter ranges, or process
alternatives from various biological databases. This would improve their understandability
and communicability. A step further would be to develop methods for automated extraction
and reuse of domain knowledge from publicly available repositories of models, such as
BioModels (Le Novère et al., 2006) or CellML (Lloyd, Lawson, Hunter, & Nielsen, 2008).

The second direction of further work is closely related to the �rst and concerns the
constraints on the search space of candidate models entailed by the library of domain
knowledge.

The constraints currently used in process-based modeling are e�cient, but limited. The
incomplete model includes a set of instantiated entities which constrain the selection and
instantiation of processes to be included in the model. The incomplete model is further
constrained by the mutual exclusivity relations within the hierarchy of template processes
from which the processes included in the model are instantiated. More expressive con-
straints can be considered that will assess the suitability/feasibility of models for further
optimization, such as constraints based on knowledge of design principles (Alon, 2007;
Tyson & Novak, 2010) and other structural properties. This will reduce the required com-
putational time and facilitate the model selection problem, thus improving the e�ciency
of solving the overall modeling task. Topology based constraints could also be considered,
expressed using a �rst-order predicate calculus or a more expressive higher order formalism
that takes into account available annotations, compatibility issues or, in the case of design,
the availability of standard parts and modules.

Another direction of further research is concerned with the process of parameter esti-
mation and model selection. As discussed in the second chapter, there is an abundance
of methods available for the estimation of parameters of dynamical biological systems.
Their performance has been evaluated on tasks concerning a limited number of �xed and
unrelated model structures. Although the performance of process-based modeling tasks
is in the most part reliant on the e�ciency of the parameter estimation step, a limited
e�ort to understand this dependence has been made only in the context of deterministic
process-based modeling of aquatic ecosystems (�erepnalkoski et al., 2012). A more ex-
tensive comparison of the di�erent available parameter estimation methods is needed for
di�erent tasks of process-based modeling and design from the domains of systems and syn-
thetic biology. The tasks should have various amounts of structural uncertainty, involve
both single and multiple objectives, and consider both deterministic and stochastic inter-
pretation of models. The conclusions from previous studies point towards the consideration
of global metaheuristic methods and their hybridization with local optimization methods.

The model selection method considered in this work is partly based on regularization.
An analysis of di�erent model selection schemes can (and should) be performed in the
context of process-based modeling. Additionally, we have shown that various properties
of model behavior can be optimized and used to improve model selection. An important
aspect of the modeling problem is the analysis of how the di�erent properties of behavior
are related to the model structure (Kaltenbach, Dimopoulos, & Stelling, 2009; Shinar
& Feinberg, 2010; Babtie, Kirk, & Stumpf, 2014). This further includes practical and
structural parameter identi�ability (Chis, Banga, & Balsa-Canto, 2011; Raue, Karlsson,
Saccomani, Jirstrand, & Timmer, 2014) and robustness of the model (Stelling, Sauer,
Szallasi, Doyle III, & Doyle, 2004; Kitano, 2007; Komorowski, Costa, Rand, & Stumpf,
2011). The results from such analyses are an important source of relevant information that
can be considered within the model selection process.

The search based on exhaustive enumeration of and parameter optimization for every
candidate model structure is computationally expensive and does not scale well with the
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number of candidate models. In order to be able to apply process-based modeling to
problems with a larger space of candidate models, it is necessary to develop new and
better representations for model spaces and integration of methods for heuristic search
through such space of candidate models in PBM.

There are two possible approaches to resolve this issue. One approach is in the devel-
opment of better representations for the structural uncertainty currently encoded within
an incomplete process-based model that could be directly considered by an optimization
method. In this way, process-based modeling and design would become a completely
optimization-driven approach. Another approach is the de�nition of structural re�nement
operators that can be applied to an incomplete process-based model and can be used by
standard search methods to e�ciently explore the space of candidate models. In order
to establish their utility, a comparative evaluation of di�erent approaches to search and
optimization should be performed where the current results obtained with exhaustive enu-
meration would serve as a baseline.

Finally, an important direction is the further evaluation and application of the de-
veloped approach. In the domain of systems and synthetic biology, various real-world
problems of identi�cation and design of biological systems with desired behaviors, with
increasing complexity, can be tackled by process-based modeling and design. The in-silico
evaluation should be ideally complemented by wet lab experiments.

The systems approach to biology has had an immense impact on the development of
the systems approach to medicine (Medina, 2012; Wolkenhauer, Au�ray, Jaster, Steinho�,
& Dammann, 2013) and pharmacology (Iyengar, Zhao, Chung, Mager, & Gallo, 2012; E. I.
Nielsen & Friberg, 2013). The application of process-based modeling to di�erent problems
from these domains is a �nal direction for proposed further work. Such applications will
undoubtedly open up new directions for improvement of the methods we have proposed,
which can in turn lead to more e�cient inference of new, better models and designs.
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Appendix A

Additional Information for

Stochastic Process-Based Models of

Dynamical Systems

A.1 Libraries of Domain Knowledge

All libraries are part of the supplementary data and materials for the contribution presented
in Chapter 3 (Tanevski et al., 2016a).

A.1.1 Library of domain knowledge for modeling gene regulatory net-

works with global kinetic rates

library SyntheticNetworkGlobal;

template entity gene{

vars:

Pmol{range: <0, 200>},

mRNAmol{range: <0, 200>};

}

template entity global{

consts:

alpha0{range: <0, 10>},

alpha{range: <0, 500>},

beta{range: <0, 10>},

delta{range: <0, 10>},

n{range: <0, 10>};

}

template process regulation(p1: gene, p2: gene, g: global){}

template process none : regulation {}

template process inhibition : regulation{

equations:

-> p2.mRNAmol ![g.alpha/(1 + pow(p1.Pmol,g.n))];

}
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template process activation : regulation{

equations:

-> p2.mRNAmol ![g.alpha * pow(p1.Pmol,g.n)/(1 + pow(p1.Pmol,g.n))];

}

template process translation(p: gene, g: global){

equations:

-> p.mRNAmol [g.alpha0],

p.mRNAmol -> p.Pmol + p.mRNAmol [g.beta];

}

template process degradation(p: gene, g: global){

equations:

p.Pmol -> [g.beta],

p.mRNAmol -> [g.delta];

}

A.1.2 Library of domain knowledge for modeling gene regulatory net-

works with local kinetic rates

library SyntheticNetworkLocal;

template entity gene{

vars:

Pmol{range: <0, 200>},

mRNAmol{range: <0, 200>};

consts:

alpha0{range: <0, 10>},

beta{range: <0, 10>},

delta{range: <0, 10>};

}

template process regulation(p1: gene, p2: gene){

consts:

alpha{range: <0, 500>},

n{range: <0, 10>};

}

template process none : regulation {}

template process inhibition : regulation{

equations:

-> p2.mRNAmol ![alpha/(1 + pow(p1.Pmol,n))];

}

template process activation : regulation{

equations:

-> p2.mRNAmol ![alpha * pow(p1.Pmol,n)/(1 + pow(p1.Pmol,n))];

}
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template process translation(p: gene){

equations:

-> p.mRNAmol [p.alpha0],

p.mRNAmol -> p.Pmol + p.mRNAmol [p.beta];

}

template process degradation(p: gene){

equations:

p.Pmol -> [p.beta],

p.mRNAmol -> [p.delta];

}

A.1.3 Library of domain knowledge for compartmental epidemiological

modeling

library Epidemiology;

template entity pop_compartment{

vars:

noi{range: <0, 300>};

}

template process root(S: pop_compartment, L: pop_compartment, A: pop_compartment,

I: pop_compartment, Q: pop_compartment, R: pop_compartment){

equations:

L.noi -> [0],

A.noi -> [0],

Q.noi -> [0],

R.noi -> [0];

}

template process symptomatic : root{

processes:

infection_symptomatic(S, L, I),

recovery_symptomatic(S, I, Q, R),

control(I, Q);

}

template process asymptomatic : root{

processes:

infection_asymptomatic(S, L, A, I),

recovery_asymptomatic(S, A, I, Q, R),

control(I, Q);

}
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template process infection_symptomatic(S: pop_compartment, L: pop_compartment,

I: pop_compartment){

consts:

i1{range:<1e-4, 10>},

i2{range:<1e-4, 10>},

i3{range:<1e-4, 10>};

}

template process si : infection_symptomatic{

equations: S.noi + I.noi -> I.noi + I.noi [i1];

}

template process sli : infection_symptomatic{

equations:

S.noi + I.noi -> L.noi + I.noi [i2],

L.noi -> I.noi [i3];

}

template process recovery_symptomatic(S: pop_compartment, I: pop_compartment,

Q:pop_compartment, R:pop_compartment){

consts:

r1 {range:<1e-4,10>},

r2 {range:<1e-4,10>};

}

template process is : recovery_symptomatic{

equations:

I.noi -> S.noi [r1],

Q.noi -> S.noi [r1];

}

template process ir : recovery_symptomatic{

equations:

I.noi -> R.noi [r1],

Q.noi -> R.noi [r1];

}

template process irs : recovery_symptomatic{

equations:

I.noi -> R.noi [r1],

Q.noi -> R.noi [r1],

R.noi -> S.noi [r2];

}
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template process infection_asymptomatic(S: pop_compartment, L: pop_compartment,

A: pop_compartment, I: pop_compartment){

consts:

i1a{range: <1e-4, 10>},

p{range: <1e-3, 1>},

n{range: <1, 10>},

i2a{range: <1e-4, 10>},

i3a{range:<1e-4, 10>};

}

template process sia : infection_asymptomatic{

equations:

S.noi + I.noi -> I.noi + I.noi [p*i1a],

S.noi + I.noi -> A.noi + I.noi [(1-p)*i1a],

S.noi + A.noi -> I.noi + A.noi [p*n*i1a],

S.noi + A.noi -> A.noi + A.noi [(1-p)*n*i1a];

}

template process slia : infection_asymptomatic{

equations:

S.noi + I.noi -> L.noi + I.noi [i2a],

L.noi -> I.noi [p*i3a],

S.noi + A.noi -> L.noi + A.noi [n*i2a],

L.noi -> A.noi [(1-p)*i3a];

}

template process recovery_asymptomatic(S: pop_compartment, A: pop_compartment,

I: pop_compartment, Q: pop_compartment, R: pop_compartment){

consts:

r1a{range: <1e-4, 10>},

r2a{range: <1e-4, 10>};

}

template process ias : recovery_asymptomatic{

equations:

I.noi -> S.noi [r1a],

A.noi -> S.noi [r1a],

Q.noi -> S.noi [r1a];

}

template process iar : recovery_asymptomatic{

equations:

I.noi -> R.noi [r1a],

A.noi -> R.noi [r1a],

Q.noi -> R.noi [r1a];

}
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template process iars : recovery_asymptomatic{

equations:

I.noi -> R.noi [r1a],

A.noi -> R.noi [r1a],

Q.noi -> R.noi [r1a],

R.noi -> S.noi [r2a];

}

template process control(I: pop_compartment, Q: pop_compartment){

consts: q{range: <1e-4, 10>};

}

template process control_none : control{}

template process control_quarantine : control{

equations: I.noi -> Q.noi [q];

}

A.2 Incomplete Models

All incomplete models are part of the supplementary data and materials for the contribu-
tion presented in Chapter 3 (Tanevski et al., 2016a).

A.2.1 Incomplete model of a gene regulatory network with global kinetic

rates

incomplete model SyntheticNetworkGlobal : SyntheticNetworkGlobal;

entity TetR : gene{

vars:

Pmol{role: endogenous; initial: 5;},

mRNAmol{role: endogenous; initial: 0;};

}

entity LacI : gene{

vars:

Pmol{role: endogenous; initial: 0;},

mRNAmol{role: endogenous; initial: 0;};

}

entity cI : gene{

vars:

Pmol{role: endogenous; initial: 15;},

mRNAmol{role: endogenous; initial: 0;};

}
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entity g : global{

consts: alpha0, alpha, beta, delta = 1, n;

}

process regulation1(TetR, cI, g) : regulation{}

process regulation2(cI, LacI, g) : regulation{}

process regulation3(LacI, TetR, g) : regulation{}

process regulation4(TetR, LacI, g) : regulation{}

process regulation5(LacI, cI, g) : regulation{}

process regulation6(cI, TetR, g) : regulation{}

process TetRtranslation(TetR, g) : translation{}

process LacItranslation(LacI, g) : translation{}

process cItranslation(cI, g) : translation{}

process TetRdegradation(TetR, g) : degradation{}

process LacIdegradation(LacI, g) : degradation{}

process cIdegradation(cI, g) : degradation{}

A.2.2 Incomplete model of a gene regulatory network with local kinetic

rates

incomplete model SyntheticNetworkLocal : SyntheticNetworkLocal;

entity TetR : gene{

vars:

Pmol{role: endogenous; initial: 5;},

mRNAmol{role: endogenous; initial: 0;};

consts: alpha0, beta, delta = 1;

}

entity LacI : gene{

vars:

Pmol{role: endogenous; initial: 0;},

mRNAmol{role: endogenous; initial: 0;};

consts: alpha0, beta, delta = 1;

}

entity cI : gene{

vars:

Pmol{role: endogenous; initial: 15;},

mRNAmol{role: endogenous; initial: 0;};

consts: alpha0, beta, delta = 1;

}

process regulation1(TetR, cI) : regulation{

consts: alpha, n;

}

process regulation2(cI, LacI) : regulation{

consts: alpha, n;

}
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process regulation3(LacI, TetR) : regulation{

consts: alpha, n;

}

process regulation4(TetR, LacI) : regulation{

consts: alpha, n;

}

process regulation5(LacI, cI) : regulation{

consts: alpha, n;

}

process regulation6(cI, TetR) : regulation{

consts: alpha, n;

}

process TetRtranslation(TetR) : translation {}

process LacItranslation(LacI) : translation {}

process cItranslation(cI) : translation {}

process TetRdegradation(TetR) : degradation {}

process LacIdegradation(LacI) : degradation {}

process cIdegradation(cI) : degradation {}

A.2.3 Incomplete model of the Eyam plague outbreak

incomplete model Eyam : Epidemiology;

entity S : pop_compartment{

vars: noi{role: endogenous; initial: 254;};

}

entity L : pop_compartment{

vars: noi{role: endogenous; initial: 0;};

}

entity A : pop_compartment{

vars: noi{role: endogenous; initial: 0;};

}

entity I : pop_compartment{

vars: noi{role: endogenous; initial: 7;};

}

entity Q : pop_compartment{

vars: noi{role: endogenous; initial: 0;};

}

entity R : pop_compartment {

vars: noi{role: endogenous; initial: 0;};

}

process eyam_root(S,L,A,I,Q,R) : root{}
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A.2.4 Incomplete model of the Tristan da Cunha in�uenza outbreak

incomplete model TdC : Epidemiology;

entity S : pop_compartment{

vars: noi{role: endogenous; initial: null;};

}

entity L : pop_compartment{

vars: noi{role: endogenous; initial: 0;};

}

entity A : pop_compartment{

vars: noi{role: endogenous; initial: 0;};

}

entity I : pop_compartment{

vars: noi{role: endogenous; initial: 1;};

}

entity Q : pop_compartment{

vars: noi{role: endogenous; initial: 0;};

}

entity R : pop_compartment {

vars: noi{role: endogenous; initial: 0;};

}

process tdc_root(S,L,A,I,Q,R) : root{}
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Appendix B

Additional Information for Domain

Speci�c Criteria for Process-Based

Modeling

B.1 Library of Domain Knowledge for Modeling the Rab5-

Rab7 Dynamics in Endocytosis

Part of Additional �le 2 from the contribution presented in Chapter 4 (Tanevski et al.,
2015).

library EndocytosisLibrary;

template entity Protein{

vars:

GDP_bound_state_conc{range: <0, 2>},

GTP_bound_state_conc{range: <0, 2>},

GEF,

GAP,

t;

consts:

GDI_dissociation_flux{range: <0.001, 4>},

GDI_association_rate{range: <0.001, 4>};

}

template process Root(p1 : Protein, p2: Protein){

consts: td{range: <5, 195>};

processes:

GDI_GDP_membrane_interaction(p1),

GDI_GDP_membrane_interaction(p2),

GEFProcess(p1, p2),

GEFCombined(p1, p2),

GAPProcessPlus(p1, p2),

GAPProcess(p2, p1);
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equations:

td(p1.GDP_bound_state_conc) = -p1.GEF * (p1.t/(p1.t+td))*p1.GDP_bound_state_conc

+ p1.GAP * p1.GTP_bound_state_conc,

td(p1.GTP_bound_state_conc) = p1.GEF * (p1.t/(p1.t+td))*p1.GDP_bound_state_conc

- p1.GAP * p1.GTP_bound_state_conc,

td(p2.GDP_bound_state_conc) = -p2.GEF * p2.GDP_bound_state_conc + p2.GAP

* p2.GTP_bound_state_conc,

td(p2.GTP_bound_state_conc) = p2.GEF * p2.GDP_bound_state_conc - p2.GAP

* p2.GTP_bound_state_conc;

}

template process GDI_GDP_membrane_interaction(p: Protein){

processes:

Disassociation_from_GDI(p),

Association_with_GDI(p);

}

template process Disassociation_from_GDI(p: Protein){

equations: td(p.GDP_bound_state_conc) = p.GDI_dissociation_flux;

}

template process Association_with_GDI(p: Protein){

equations:

td(p.GDP_bound_state_conc) = -p.GDI_association_rate * p.GDP_bound_state_conc;

}

template process GEFProcess(p1: Protein, p2: Protein){

consts:

ke{range: <0.001, 4>}, kf{range: <0.001, 4>}, kg{range: <0.001, 4>},

km{range: <0.001, 4>}, ki{range: <0.001, 4>};

}

template process MMKinetics : GEFProcess{

equations: p1.GEF = ke*p1.GTP_bound_state_conc/(kg + p1.GTP_bound_state_conc);

}

template process Sigmoidal_response : GEFProcess{

equations: p1.GEF = ke/(1 + exp(kg - p1.GTP_bound_state_conc)*kf);

}

template process Exchange_inhibition : GEFProcess{

equations: p1.GEF = ke*p1.GTP_bound_state_conc/(km*(1+p2.GTP_bound_state_conc/ki)

+ p1.GTP_bound_state_conc);

}

template process GEFCombined(p1: Protein, p2: Protein){

consts:

ke{range: <0.001, 4>}, kf{range: <0.001, 4>}, kg{range: <0.001, 4>},

km{range: <0.001, 4>}, ki{range: <0.001, 4>}, kE{range: <0.001, 4>};

}
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template process MMActivation : GEFCombined{

processes: MMKinetics(p2, p1);

equations: p2.GEF = ke*p1.GTP_bound_state_conc/(kg + p1.GTP_bound_state_conc);

}

template process MMAuto_Sigmoidal : GEFCombined{

processes: MMKinetics(p2, p1);

equations: p2.GEF = ke/(1 + exp(kg - p1.GTP_bound_state_conc)*kf)

}

template process Sigmoidal_MMActivation : GEFCombined{

processes : Sigmoidal_response(p2, p1);

equations : p2.GEF = ke*p1.GTP_bound_state_conc/(kg + p1.GTP_bound_state_conc);

}

template process Sigmoidal_Sigmoidal : GEFCombined{

processes: Sigmoidal_response(p2, p1);

equations: p2.GEF = ke/(1 + exp(kg - p1.GTP_bound_state_conc)*kf)

}

template process Sigmoidal_only : GEFCombined{

processes: Sigmoidal_response(p2,p1);

}

template process NoAct_MM : GEFCombined{

equations: p2.GEF = ke + kE*p1.GTP_bound_state_conc/(kg + p1.GTP_bound_state_conc);

}

template process NoAct_Sigmoidal : GEFCombined{

equations: p2.GEF = ke + kE/(1 + exp(kg - p1.GTP_bound_state_conc)*kf);

}

template process GAPProcessPlus(p1: Protein, p2: Protein){

consts: kh{range: <0.001, 4>}, kH{range: <0.001, 4>}, ky{range: <0.001, 4>};

}

template process GAPProcess : GAPProcessPlus{}

template process Sigmoidal : GAPProcessPlus{

equations: p1.GAP = kh/(1 + exp(kH - p2.GTP_bound_state_conc)*ky);

}

template process Intrinsic_Hydrolysis : GAPProcess{

equations: p1.GAP = kh;

}

template process MM : GAPProcess{

processes: Intrinsic_Hydrolysis(p1, p2);

equations: p1.GAP = kH*p2.GTP_bound_state_conc/(ky + p2.GTP_bound_state_conc);

}
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B.2 Incomplete Model of the Rab5-Rab7 Dynamics in Endo-

cytosis

Part of Additional �le 2 from the contribution presented in Chapter 4 (Tanevski et al.,
2015).

incomplete model EndocytosisModel : EndocytosisLibrary;

entity rab5 : Protein{

vars:

GDP_bound_state_conc{role: endogenous; initial: null;},

GTP_bound_state_conc{role: endogenous; initial: null;},

GEF{role: endogenous},

GAP{role: endogenous},

t{role: exogenous};

consts:

GDI_dissociation_flux,

GDI_association_rate;

}

entity rab7 : Protein {

vars:

GDP_bound_state_conc{role: endogenous; initial: null;},

GTP_bound_state_conc{role: endogenous; initial: null;},

GEF{role: endogenous},

GAP{role: endogenous},

t{role: exogenous};

consts:

GDI_dissociation_flux,

GDI_association_rate;

}

process root(rab5, rab7) : Root{

consts: td;

processes:

GDI_GDP_membrane_interaction5,

GDI_GDP_membrane_interaction7,

GEF5Process,

GEF7Process,

GAP5Process,

GAP7Process;

}

process GDI_GDP_membrane_interaction5(rab5) : GDI_GDP_membrane_interaction{

processes: Disassociation_from_GDI5, Association_with_GDI5;

}

process GDI_GDP_membrane_interaction7(rab7) : GDI_GDP_membrane_interaction{

processes: Disassociation_from_GDI7, Association_with_GDI7;

}
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process Disassociation_from_GDI5(rab5) : Disassociation_from_GDI{}

process Association_with_GDI5(rab5) : Association_with_GDI{}

process Disassociation_from_GDI7(rab7) : Disassociation_from_GDI{}

process Association_with_GDI7(rab7) : Association_with_GDI{}

process GEF5Process(rab5, rab7): GEFProcess{

consts: ke,kf,kg,km,ki;

}

process GEF7Process(rab5, rab7): GEFCombined{

consts: ke,kf,kg,km,ki,kE;

}

process GAP5Process(rab5, rab7) : GAPProcessPlus{

consts: kh,kH,ky;

}

process GAP7Process(rab7, rab5) : GAPProcess{

consts: kh,kH,ky;

}
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