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Abstract

The thesis addresses the development of an innovative data mining platform ClowdFlows
and novel knowledge discovery scenarios implemented therein as executable data mining
workflows. The ClowdFlows platform is implemented as a cloud-based web application
with a graphical user interface which supports the construction, execution and sharing of
data mining workflows. Big data analytics is supported by several algorithms, including
novel ensemble techniques implemented using the MapReduce programming model, and
a special stream mining module for real-time analysis using continuous parallel workflow
execution.

The adaptability of ClowdFlows is demonstrated through descriptions of two platforms
that expand the usage of the web-based workflow environment to fields other than data
mining. The ConCreTeFlows platform is a novel platform for computational creativity,
while TextFlows is focused mainly on text mining and natural language processing. The
ConCreTeFlows platform is demonstrated with a conceptual blending use case, while fea-
tures of TextFlows are demonstrated on three use cases: comparison of document classifiers
and different part-of-speech taggers on a text categorization problem, and outlier detection
in document corpora.

We present novel use cases in Inductive Logic Programming (ILP) and Relational Data
Mining (RDM). The main novelty is a propositionalization technique called wordification
which can be seen as a transformation of a relational database into a corpus of text docu-
ments. The wordification methodology and the evaluation procedure are implemented as
executable workflows in ClowdFlows. The implemented workflows include several other
ILP and RDM algorithms, as well as the utility components that enable access to these
techniques to a wider research audience.

The real-time analysis and data stream mining capabilites are demonstrated on a novel
active learning scenario for dynamic adaptive sentiment analysis, which is able to handle
changes in data streams and adapt its behavior over time. Established stream mining
techniques are transferred to the visual programming paradigm and demonstrated through
the sentiment analysis use case, using active learning of microblogging data streams with
a linear Support Vector Machine.

The thesis contributes to open-source scientific software. The ClowdFlows platform, its
adaptations ConCreTeFlows and TextFlows, and all the described use cases are publicly
available. This enables experiment reproducibility, as well as workflow adaptations and
enhancements.
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Povzetek

Disertacija obravnava razvoj inovativne platforme za podatkovno rudarjenje, imenovane
ClowdFlows, ter nove načine odkrivanja znanja, implementirane v platformi v obliki izvr-
šljivih delotokov. Platforma ClowdFlows je izdelana kot spletna aplikacija v oblaku, njen
grafični uporabniški vmesnik pa omogoča izdelavo, izvedbo in objavo delotokov za podat-
kovno rudarjenje. Analiza velikih podatkov je mogoča s pomočjo več algoritmov, med
drugim z inovativnimi ansambelskimi tehnikami, ki uporabljajo paradigmo MapReduce,
in z modulom rudarjenja podatkovnih tokov v realnem času, ki uporablja neprekinjeno
vzporedno izvajanje delotokov.

Prilagodljivost platforme ClowdFlows je prikazana z opisom dveh izpeljanih platform,
ki širita uporabnost delotokov spletne platforme na druga področja. Platforma ConCreTe-
Flows je namenjena računalniški ustvarjalnosti, medtem ko se platforma TextFlows osredo-
toča na tekstovno rudarjenje in procesiranje naravnega jezika. Platforma ConCreTeFlowa
je prikazana s primerom uporabe konceptualnega povezovanja, medtem ko so posebnosti
platforme TextFlows prikazane na treh primerih uporabe: s primerjavo klasifikatorjev do-
kumentov in različnih označevalcev besednih vrst ter z odkrivanjem osamelcev v zbirkah
besedil.

V disertaciji so predstavljeni novi primeri uporabe na področjih induktivnega logičnega
programiranja in relacijskega podatkovnega rudarjenja. Novost je metoda transformacije
relacijskih podatkovnih baz v zbirke besedil, imenovana wordification (besedizacija). Eval-
vacija razvite metode je vključena v platformo ClowdFlows kot izvršljiv delotok. Poleg
opisane evalvacije so kot delotoki dostopni tudi drugi algoritmi za relacijsko podatkovno
rudarjenje in induktivno logično programiranje, prav tako pa tudi pomožne komponente,
ki omogočajo dostopnost teh tehnologij širši javnosti.

Možnosti analiz v realnem času in rudarjenje podatkovnih tokov je prikazano na pri-
meru uporabe aktivnega učenja za dinamično prilagajanje analize sentimenta v podat-
kovnih tokovih. Uveljavljene tehnike za rudarjenje podatkovnih tokov smo uporabili po
načelu vizualnega programiranja in prikazali na primeru uporabe analize sentimenta na
podatkovnih tokovih kratkih spletnih sporočil.

Disertacija prispeva tudi k odprtokodni programski opremi. Vsi delotoki in izvorna
koda opisanih primerov uporabe, platform ClowdFlows, ConCreTeFlows in TextFlows so
javno dostopni. S tem omogočimo ponovljivost eksperimentov in prilagoditve ter izboljšave
delotokov.
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Chapter 1

Introduction

We first describe the problem addressed in the thesis, explain the line of reasoning for
choosing the given research topic and list the contributions to science. After defining
the problem, we explain the purpose, hypotheses, goals and scientific contributions of the
thesis. We describe the dissemination of software developed as part of this thesis. The
chapter concludes with a structural overview of the thesis.

1.1 Problem Definition

Computer-assisted data analysis has gone a long way since its humble beginnings on first
digital computers with stored programs. The 1962 paper entitled “The future of data anal-
ysis” [1] stated that the availability of electronic computers for some tasks is surprisingly
‘important but not vital’ and ‘vital’ for others. Without doubt, the situation has changed
profoundly and any serious attempt to mine knowledge from real-world data must take
advantage of modern computing methods and modern computer organization. However,
while most scientists claim that the today’s main challenge in data mining is the size of
data and their rate of production, it is often forgotten that the developments in the field
of computer data analysis have also produced an almost unimaginable amount of meth-
ods, algorithms, software and architectures. They are available to anyone; however, their
complexity and various requirements prevent the general public and especially domain
specialists to use them effectively on their data without knowing the internal details.

This problem has been recognized years ago, and the development of modern program-
ming languages, programming paradigms and operating systems initiated the research on
computer platforms for data mining. Such platforms offer a high level of abstraction, which
enables the users to focus their efforts on the analysis of results rather than on ways of
obtaining them. In the beginning, single algorithms were implemented as complete solu-
tions to specific data mining problems, e.g., the C4.5 algorithm [2] for the induction of
decision trees. Later developments took advantage of the operating system independent
languages such as Java to produce complete solutions which also include data preprocessing
methods and visual representation of results. Today’s data mining platforms like Weka [3],
RapidMiner [4], KNIME [5] and Orange [6] provide a large collection of generic algorithm
implementations, usually coupled with an easy-to-use graphical user interface, following
the visual programming paradigm [7].

Visual programming is an approach to programming where a procedure or a program
is constructed by arranging program elements graphically instead of writing the program
as text. This paradigm has also become widely recognized as an important element of an
intuitive interface to complex data mining procedures. The popularity of existing knowl-
edge discovery tools can be attributed to this paradigm as it eliminated the need for
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understanding the internal design and APIs, and has enabled expression of knowledge dis-
covery processes as a sequence of processing steps in a visually appealing manner. Visual
representations of sequences of processing steps are referred to as workflows in this thesis.

All advanced modern knowledge discovery systems offer some form of workflow con-
struction and execution, as this is of crucial importance for conducting complex scientific
experiments, which need to be reproducible and verifiable at an abstract level and through
experimental evaluation. However, while the ability to execute data mining workflows
and operating system independence was the most distinguished feature of data mining
platforms a decade ago, today’s data mining software is confronted with the challenge
of implementing a service-oriented architecture [8], how to make use of newly developed
paradigms for big data processing [9], and how to effectively employ modern technologies,
such as a distributed cloud-based architecture [10].

Big data is widely regarded as data that is so large and complex that traditional tools
and methods for data processing become insufficient [11]. Due to social media, sensors,
internet of things, and user generated content, the rate at which data is produced is growing
steadily, creating larger and larger streams of continuously evolving data. Steady growth
of data leads to growing needs for specialized methodologies and open-source software
for mining big data as a combination of two approaches: mining evolving data streams
(low-latency processing) [12] and batch processing of static data of large proportions [13].
Low-latency processing requires processing of examples one at a time (and only once), using
a limited amount of memory, working for a limited amount of time, and being ready to
predict at any time [9]. On the other hand, a key design pattern in batch processing is the
MapReduce programming model [14] for processing large data sets with parallel distributed
algorithms on clusters by implementing solutions in two steps—map and reduce. Currently,
there are no environments or frameworks that utilize both real-time low-latency processing
and batch-processing on a single cluster that are available through a visual programming
paradigm.

To summarize, knowledge discovery of big data, including evolving data streams, pose a
problem for traditional data mining and knowledge discovery environments and platforms
as does a thorough implementation of a service-oriented architecture. A novel data mining
platform should not only enable a full utilization of cloud-based and service-oriented archi-
tectures that expose functional workflows as services, but also enhance the user experience
with tools previously unavailable in big data processing systems. The platform should
implement the visual programming paradigm and a way to share data, experiments and
workflows through the web and social media.

1.2 Purpose of the Dissertation

The main purpose of the dissertation is to develop a framework and an implementation of a
cloud-based knowledge discovery platform for creating, executing and sharing data mining
workflows. With the developed framework we wish to address big data mining and real-
time data analytics, and demonstrate its abilities and unique features which distinguish it
from the existing solutions.

The developed platform described in this thesis, named ClowdFlows, is a new, open-
source, web-based data mining platform that supports the design and composition of sci-
entific procedures implemented as executable, reusable workflows. The platform is im-
plemented as a cloud-based web application, meaning that it can be deployed on clusters
of machines of varying sizes. The platform is simple to use (i.e. implements visual pro-
gramming, is web-based and requires no installation), and enables workflow sharing. The
platform enables combining workflow components (called ‘widgets’) from different soft-
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ware libraries to create previously unavailable unified workflows. The platform is capable
of processing big data using MapReduce algorithms and processing infinite data streams by
utilizing its always-online cloud-based architecture. Moreover, the platform is extensible
in two ways: either the tools provided by the service-oriented architecture of the platform
are used to create workflow components from web service endpoints during run-time, or
new components can be developed from provided templates.

The dissertation also provides several novel knowledge discovery scenarios developed
using the proposed methodology and the developed reference implementation of the plat-
form, and their evaluation on real-world data mining tasks.

1.3 Goals of the Dissertation

The main goal of the dissertation is to develop a framework and a reference implementation
of a cloud-based knowledge discovery and data mining platform for big data to fulfill the
requirements of ever-growing heterogeneous streams of continuously evolving data. This
reference platform integrates:

• a visual programming paradigm with a graphical user interface accessible from a web
browser on a computer or mobile device,

• a framework for sharing data and workflows and making them publicly available to
a broad audience,

• a framework for service-oriented computing enabling both consumption and genera-
tion of SOAP 1.1. compatible web services,

• a cloud-based architecture that allows distributed computing on a cluster of machines,

• an integration of a distributed file system that allows storing and processing of ar-
bitrary large amounts of data with the MapReduce programming model applied to
scientific workflows,

• a real-time processing system for the consumption and processing of heterogeneous
data streams from the web.

The dissertation also aims to provide novel knowledge discovery scenarios that demon-
strate the usefulness of the cloud-based knowledge discovery framework and the practical
abilities of the implemented reference platform. The goal is to develop a framework that
combines two modes of big data processing: batch processing and real-time analysis in
real-world scenarios combining data stream mining and processing vast amounts of data
using a unified graphical interface and hosted on the same cluster. These scenarios include:

• a knowledge discovery scenario featuring implementations of methods from several
knowledge discovery platforms in a unified workflow environment,

• a relational data mining and an inductive logic programming scenario to exploit
public, semantically annotated data sources,

• a streaming text mining scenario featuring various text mining components (language
detection, stemming, lemmatization, document visualization, sentiment analysis from
texts) and active learning on data streams.
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1.4 Hypotheses

The main hypothesis of the thesis is that big data can be efficiently processed with a system
that implements the visual programming paradigm and utilizes cloud computing by means
of distributed hardware and software resources to improve scalability and adaptation to
data of large proportions. We hypothesize that larger data sets can efficiently be processed
and the through-put of the real-time data stream analysis can be increased to match the
rate of incoming data by adding more computing power to the cluster of computing nodes.

The hypothesis of this thesis is also that the developed platform can be effectively
utilized in real-life application scenarios and that the platform will prove to be useful also
by 1) developing separate adapted versions of the platform, dedicated to different data
processing scenarios, and 2) providing necessary tools and documentation for modification
of the platform without the intervention of the authors. These modifications will simplify
the knowledge discovery process to non-experts and scientists from different domains of
research, e.g., biologists and natural language processing experts.

We hypothesize that by unifying functionalities of different knowledge discovery plat-
forms and adding features to facilitate big data mining conjoined with real-time data
analytics, we will be able to address novel scenarios which were not possible within the
same platform until now, such as the introduction of the MapReduce programming model
to scientific workflows and an active learning sentiment analysis.

1.5 Scientific Contributions

The main scientific contributions of the thesis are the following:

Contribution 1 A framework and a reference implementation of a web-based knowledge
discovery platform ClowdFlows that encompasses:

• a browser-based workflow editor and facility for workflow sharing on the web,
• numerous data mining algorithms available as workflow components,
• a service-oriented architecture enabling an incorporation of remote web services

into workflows and vice-versa, exposing workflows as stand-alone web services,
• cloud deployment of the platform and data analysis with distributed data,
• big data analytics in batch or real-time, including on-line processing of big data

streams.

The work related to the development of the methodology and reference implementa-
tion of the web-based knowledge discovery platform is covered in Chapter 2 and was
published in the following publications:

Journal Article

J. Kranjc, R. Orač, V. Podpečan, N. Lavrač, and M. Robnik-Šikonja, “ClowdFlows:
Online workflows for distributed big data mining,” Future Generation Computer
Systems, vol. 68, pp. 38–58, 2016.

Conference Papers

J. Kranjc, V. Podpečan, and N. Lavrač, “ClowdFlows: A cloud based scientific work-
flow platform,” in Planning to Learn and Service-Oriented Knowledge Discovery,
PlanSoKD’11, Springer, 2012, pp. 816–819.
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J. Kranjc, V. Podpečan, and N. Lavrač, “Real-time data analysis in ClowdFlows,”
in Proceedings of the 2013 IEEE International Conference on Big Data, IEEE,
2013, pp. 15–22.

J. Kranjc, V. Podpečan, and N. Lavrač, “Knowledge discovery using a service ori-
ented web application,” in Proceedings of the 4th International Conference on
Information, Process, and Knowledge Management, IARIA, 2012, pp. 82–87.

J. Kranjc, V. Podpečan, and N. Lavrač, “A browser-based platform for service-
oriented knowledge discovery,” in Proceedings of the 23rd European Conference on
Machine Learning and Knowledge Discovery in Databases, Springer, 2011, pp. 30–
35.

Contribution 2 A demonstrated extensibility of the platform to other fields of expertise.
The adapted platforms include:

• a specialized platform for text mining and natural language processing,
• a dedicated platform for computational creativity.

The work related to the development of the adaptations of ClowdFlows for use in
other fields of expertise covered in Chapter 3 was published in the following publica-
tions:

Journal Article

M. Perovšek, J. Kranjc, T. Erjavec, B. Cestnik, and N. Lavrač, “TextFlows: A visual
programming platform for text mining and natural language processing,” Science
of Computer Programming, vol. 121, pp. 128–152, 2016.

Conference Papers

M. Perovšek, V. Podpečan, J. Kranjc, T. Erjavec, S. Pollak, N. Q. Do Thi, X. Liu,
C. Smith, M. Cavazza, and N. Lavrač, “Text mining platform for NLP workflow
design, replication and reuse,” in Proceedings of the IJCAI Workshop on Repli-
cability and Reusability in Natural Language Processing: From Data to Software
Sharing, AAAI Press, 2015, pp. 12–20.

M. Žnidaršič, A. Cardoso, P. Gervás, P. Martins, R. Hervás, A. O. Alves, H. G.
Oliveira, P. Xiao, S. Linkola, H. Toivonen, J. Kranjc, and N. Lavrač, “Compu-
tational creativity infrastructure for online software composition: A conceptual
blending use case,” in Proceedings of the 7th International Conference on Com-
putational Creativity, ICCC, 2016, pp. 371–378.

Contribution 3 Workflow-based solutions for novel knowledge discovery scenarios, ex-
ploiting the features of the developed platform:

• Relational Data Mining (RDM) and Inductive Logic Programming (ILP) on the
web, enabling the reuse of existing ILP components (covered in Chapter 4),

• on-line sentiment analysis from various big data sources supported by the active
learning module (covered in Chapter 5).

The work related to the workflow-based solutions for novel knowledge discovery sce-
narios, exploiting the novel features of the developed platform was published in the
following publications:
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Journal Articles

J. Kranjc, J. Smailović, V. Podpečan, M. Grčar, M. Žnidaršič, and N. Lavrač, “Ac-
tive learning for sentiment analysis on data streams: Methodology and workflow
implementation in the ClowdFlows platform,” Information Processing & Man-
agement, vol. 51, no. 2, pp. 187–203, 2015.

M. Perovšek, A. Vavpetič, J. Kranjc, B. Cestnik, and N. Lavrač, “Wordification:
Propositionalization by unfolding relational data into bags of words,” Expert Sys-
tems with Applications, vol. 42, no. 17, pp. 6442–6456, 2015.

Conference Papers

J. Smailović, J. Kranjc, M. Grčar, M. Žnidaršič, and I. Mozetič, “Monitoring the Twit-
ter sentiment during the Bulgarian elections,” in Proceedings of the 2015 IEEE In-
ternational Conference on Data Science and Advanced Analytics (DSAA), IEEE,
2015, pp. 1–10.

S. Pollak, A. Vavpetič, J. Kranjc, N. Lavrač, and Š. Vintar, “NLP workflow for
on-line definition extraction from English and Slovene text corpora.,” in Proceed-
ings of the 11th Conference on Natural Language Processing, Österreichischen
Gesellschaft für Artificial Intelligende, 2012, pp. 53–60.

1.6 Dissemination of the Developed Software

The reference implementation of the ClowdFlows platform as well as the related adapted
platforms were released as open-source software and are available to the general public.
The source code is released under the permissive MIT license.

A public installation of the ClowdFlows platform is hosted and maintained by the
authors. At the time of writing the live installation of the platform hosts more than eight
thousand workflows by more than a thousand registered users. The live installation is
available at http://www.clowdflows.org/.

The source code is hosted on the popular Git repository hosting service GitHub at
https://github.com/xflows/clowdflows/. It is available under the permissive MIT li-
cense. The platform has been forked1 several times and is actively maintained by inde-
pendent software developers and open-source enthusiasts. Instructions for installation of
the platform are provided with the sources. Information about the workflow components
and all necessary documentation required for adaptation of the platform is available at
http://clowdflows.readthedocs.io/.

The sources of the Disco Machine Learning Library for machine learning with MapRe-
duce paradigm are available under the permissive Apache 2.0 license at https://github.
com/romanorac/discomll/.

The ConCreTeFlows platform is available at http://concreteflows.ijs.si/. The
public roster of computational creativity workflows is available at http://concreteflows.
ijs.si/existing-workflows/.

Likewise, the presented TextFlows platform is released under the MIT license, available
at https://github.com/xflows/textflows/. Its documentation is available at http:

1According to the GitHub terminology, a fork is a copy of a repository. Forking a repository allows
developers to freely experiment with changes without affecting the original project. Most commonly, forks
are used to either propose changes to the parent project or to use a project as a starting point for new
software.

http://www.clowdflows.org/
https://github.com/xflows/clowdflows/
http://clowdflows.readthedocs.io/
https://github.com/romanorac/discomll/
https://github.com/romanorac/discomll/
http://concreteflows.ijs.si/
http://concreteflows.ijs.si/existing-workflows/
http://concreteflows.ijs.si/existing-workflows/
https://github.com/xflows/textflows/
http://docs.textflows.org/
http://docs.textflows.org/
http://docs.textflows.org/
http://docs.textflows.org/
http://docs.textflows.org/
http://docs.textflows.org/
http://docs.textflows.org/
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//docs.textflows.org/. A public installation of the platform is available for online use
at http://textflows.org/.

The Wordification source code is accessible as part of the Python Relational Data
Mining package implemented as ClowdFlows workflow components and is available at
https://github.com/xflows/rdm/ under the MIT license.

The workflows developed within the platform are publicly accessible in the public in-
stallation and their URLs may be published in scientific papers or shared via conventional
methods.

1.7 Organization of the Thesis

In Chapter 1 we placed the thesis in the context of data mining and big data platforms and
provided the problem definition as well as the hypotheses, goals and scientific contributions.
The rest of the thesis is structured as follows.

Chapter 2 presents the ClowdFlows platform, which is a novel web-based data mining
platform utilizing visual programming paradigms to allow creation and sharing of complex
data mining workflows. The chapter begins with a description of related platforms and
tools, and identifies their important features. The main part of this chapter is a journal
publication which presents the related work, the platform itself, two big data mining aspects
of the platform, and provides three use cases to demonstrate the developed features.

Chapter 3 describes the derivative works of ClowdFlows. It mentions three ClowdFlows
adaptations and describes their purpose and usage. This chapter features a conference
paper which describes ConCreTeFlows, a ClowdFlows adaptation for computational cre-
ativity, and a journal publication which describes the development of TextFlows, which is
an adaptation of ClowdFlows focused on text mining.

Chapter 4 demonstrates how ClowdFlows can be used as a test bed for validating
new methodologies by comparing them to existing algorithms in a unified workflow for
validation. The journal publication in this chapter describes the wordification methodology
which is a propositionalization technique used in relational data mining. In the publication,
the methodology is validated using ClowdFlows.

Chapter 5 presents an active learning use case for sentiment analysis on data streams.
This use case demonstrates the ability of ClowdFlows to run experiments indefinitely and
continuous improvement of models via active learning.

Chapter 6 concludes the thesis and summarises the presented work while pointing out
possible directions for further research.

http://docs.textflows.org/
http://docs.textflows.org/
http://docs.textflows.org/
http://textflows.org/
https://github.com/xflows/rdm/
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Chapter 2

The ClowdFlows Platform

This chapter presents the ClowdFlows platform. First we describe related platforms and
tools, and identify their important features and deficiencies. This is followed by a brief
introduction to big data analytics. Both, the batch mode and the streaming mode of
big data mining are presented. This serves as a motivation to design a new platform
that tries to integrate the useful features and overcome some of the drawbacks of the
existing platforms and implement functionalities for big data analytics. An overview of
the platform design which highlights its most important features is presented. This is
followed by a related journal publication that constitutes the core of the chapter. The
enclosed paper describes the development of the platform in detail along with several use
cases. The results and scientific contributions of the paper are highlighted and presented
before its inclusion.

2.1 Data Mining Platforms

At the time when data mining algorithms, such as C4.5 [2] and CN2 [15], were invented and
implemented, each implementation of a data mining algorithm was a standalone program
and used incompatible file formats. This spawned a need for unified data mining plat-
forms that allow practitioners to assemble different data mining algorithms into complex
procedures known as data mining workflows.

In order to make use of a vast variety of existing data analysis methods, it is essential
that such data mining platforms are easy and intuitive to use, allow quick and interactive
changes to the analytic process and enable users to visually explore results. The plat-
forms shall therefore follow a visual programming paradigm where the composition of a
workflow is done visually by dragging and dropping components onto a canvas and adding
connections which are represented by curves or lines on the canvas.

The early major data mining platforms, such as WEKA [3], RapidMiner [4], KNIME [5]
and Orange [6], support workflow construction via graphical user interfaces. Their com-
ponents typically include database connectivity, data loading from files, data and pattern
mining algorithms, performance evaluation and visualizations. The platforms are instal-
lable applications and the requirement of the platforms to be installed on a particular
hardware and software is in some cases considered a drawback.

Existing web-based workflow construction environments are mostly too general and not
coupled to any data mining library. For example, Oryx Editor [16] can be used for modeling
business processes and workflows, while the genome analysis tool Galaxy [17] (implemented
as a web application) is limited to workflow components provided by the project itself. An
exception is the ARGO project [18], where the aim was to develop an online workbench
for analysis of textual data. It is based on a standardized architecture, supporting inter-
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active scientific workflow construction and user collaboration through workflow sharing.
ARGO provides a selection of data readers, consumers and some components for text an-
alytics (mostly tagging, annotation and feature extraction). Finally, the OnlineHPC web
application, which is based on the Taverna server as the execution engine, offers an online
workflow editor, which is mostly a user-friendly interface to Taverna [19].

New tools were created to benefit from service-oriented architecture concepts, which
utilize web services and access large public databases. Examples of such platforms are
Weka4WS [20], Orange4WS [21], Web Extension for RapidMiner and Taverna [19], which
allow integration of web services as workflow components. With the exception of Or-
ange4WS and Web Extension for RapidMiner, most of these platforms are focused on
specific scientific domains and do not offer general purpose machine learning and data
mining algorithm implementations.

Remote workflow execution (on machines different from the one used for workflow
construction) is employed by KNIME Cluster execution and RapidMiner using the Rapid-
Analytics servers. This allows data sharing with other users, with the requirement that the
client software is installed on the user’s machine. The client software is used for designing
workflows, which are executed on remote machines, while only the results can be viewed
using a web interface.

Grid workflow systems such as Pegasus [22], DAGMan [23] and ASKALON [24] were
developed with the aim of simplifying intensive scientific processing of large amounts of data
where the emphasis is on distribution of independent command line applications (grid jobs
or tasks) and summarization of results. As the interactive analysis and graphical interfaces
are not their most important features, some of them do not implement graphical interfaces
to workflows but provide flexible programming interfaces instead.

Sharing data and experiments has been implemented in the Experiment Database [25],
which is a database of machine learning experimentation results. Instead of a workflow en-
gine it features a visual query engine for querying the database, and an API for submitting
experiments and data.

Recent additions to the family of machine learning software are Google’s Tensor-
Flow [26] and the Machine Learning Service from Microsoft Azure [27]. TensorFlow is
an implementation of machine learning algorithms on thousands of computational devices
such as GPU processors. The system can be used for problems in speech recognition, com-
puter vision, robotics, and natural language processing. The system lacks a conventional
graphical user interface and is invoked as a software library. The Machine Learning Ser-
vice from Microsoft Azure provides an easy-to-use and intuitive graphical user interface to
construct data mining workflows on a canvas, but it is proprietary and requires users to
subscribe to Microsoft’s cloud services.

By examining the related work we have determined that the useful common features
include: an implementation of the visual programming paradigm (i.e. a graphical user
interface that allows construction of visual workflows), the ability to import web services
as workflow components, the ability to share workflows and results, and executing data
on different machines than the workflow is designed on. We also observe that there is a
lack of interoperability between the platforms and implementations of algorithms in said
platforms.

2.2 Big Data Mining

Big Data is a term used to identify data sets that, due to their large size, we can not
manage with our current methodologies or data mining software tools [28]. The extraction
of useful information from these large datasets or streams of data is called Big Data Mining.
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The origin of the term ‘big data’ stems from the year 1998 when it was mentioned in
a book about data mining [29]. The term originated due to the fact that we are creating
large amounts of data every day.

The problem of Big Data management can best be described with 5 V’s [30]:

Volume There are more data than ever before, their size continues to increase, but not
the percent of data that our tools can process.

Variety There are many different types of data, such as text, sensor data, audio, video,
graph, and more.

Velocity Data is arriving continuously as streams of data, and we are interested in ob-
taining useful information from it in real time.

Variability There are differences in the structure of the data and how users want to
interpret that data.

Value Business value that gives organizations a compelling advantage, due to the ability
of making decisions based on answering questions that were previously considered
beyond reach.

As a response to the ever increasing amounts of data several new distributed software
platforms have emerged. In general, such platforms can be categorized into two groups:
batch data processing and data stream processing.

2.2.1 Batch data processing

Batch data processing deals with analysis of data that is too big to use conventional
methods. To perform analyses of such data new tools and software libraries have emerged.
In this section we list selected relevant tools.

Apache Hadoop [13] is a tool for data-intensive distributed applications implemented
in Java, based on the MapReduce programming model and a distributed file system
called Hadoop Distributed Filesystem (HDFS). Hadoop allows writing applications
that rapidly process large amounts of data in parallel on large clusters of machines. A
MapReduce job divides the input dataset into independent subsets that are processed
by map tasks in parallel. This step of mappings is followed by a step of reducing
tasks. The reduce tasks use the output of the maps to obtain the final result of the
job. Hadoop is used in many environments and several modifications and extensions
exist, also for online (stream) processing [31], e.g., parallelization of several learning
algorithms using an adaptation of MapReduce [32].

The Disco Project [33] is an alternative to Apache Hadoop. It is a lightweight open-
source framework for distributed computing based on the MapReduce paradigm and
written in Erlang and Python.

Apache Mahout [34] is a scalable machine learning and data mining open-source soft-
ware based on Hadoop. It implements a wide range of machine learning and data
mining algorithms: clustering, recommendation mining, classification, collaborative
filtering and frequent pattern mining.

Apache Spark [35] is a recent alternative to Hadoop. Spark was developed to overcome
Hadoop’s shortcoming that it is not optimized for iterative algorithms and interactive
data analysis, which performs multiple operations on the same set of data.

Radoop [36] is a commercial big data analytics solution. It is based on RapidMiner and
Mahout, and uses RapidMiner’s data flow interface.
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2.2.2 Data stream mining

Data stream mining is the process of extracting knowledge structures from continuous,
rapid data records [37]. A data stream is an ordered sequence of instances that can be
read only once or a small number of times using limited computing and storage capabilities.

To solve the challenge of data stream mining several tools have emerged. In this section
we briefly describe selected relevant tools.

Apache S4 [38] (Simple Scalable Streaming System) is a general-purpose, distributed,
scalable, fault-tolerant, pluggable platform that allows programmers to develop appli-
cations for processing continuous, unbounded streams of data. The stream operators
are defined by user code and the configuration jobs described with XML.

Apache Storm [12] is an open-source distributed real-time computation system similar
to S4. The user constructs workflows in different programming languages such as
Python, Java, or Clojure. Storm makes it easy to reliably process unbounded streams
of data. Storm markets itself as doing for real-time processing what Hadoop does for
batch processing.

MOA [9] is a stream data mining open-source software platform for performing data
mining in real time. It has implementations of classification, regression, clustering
and frequent item set mining and frequent graph mining. It started as a project of
the Machine Learning group of University of Waikato, New Zealand (the authors of
WEKA). MOA does not support visual programming of workflows but the ADAMS
project [39] provides a workflow engine for MOA, which uses a tree-like structure
instead of an interactive canvas.

SAMOA [10] is an example of a new generation platform that targets processing of big
data streams. In contrast to distributed data mining tools for batch processing using
MapReduce (e.g., Apache Mahout), SAMOA features a pluggable architecture on top
of S4 and Storm for performing common tasks, such as classification and clustering.
The platform does not support visual programming with workflows.

2.3 Development of the ClowdFlows Platform

The ClowdFlows platform was first concieved as a successor to the Orange4WS plat-
form [21]. Orange4WS is a service-oriented data mining platform that is based on Or-
ange [6]. The purpose of these platforms is to enable an easy composition of data mining
workflows and to ease the sharing of experiments and results. These platforms achieve this
purpose, but with several drawbacks.

To design and develop a suitable data mining platform we have reviewed the existing
related platforms, libraries, tools and environments for knowledge discovery and identified
all their distinguishing useful features. We have determined that there is a need for a data
mining platform that offers the following features:

• remote execution of workflows,

• utilization of remote web services as workflow components,

• sharing workflows and reproduction of results of published experiments,

• mining continuous data streams, and

• processing big data that cannot be processed using conventional methods.
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Since its inception the ClowdFlows platform distinguished itself from other platforms
in the fact that it can be accessed from a web browser and does not need to be installed on
users’ computers [40]. This was achieved by designing ClowdFlows as a web application.
The data model of ClowdFlows consists of workflows, workflow components (entitled wid-
gets), connections and users. Each user can create a multitude of workflows that consist
of multiple widgets and connections. All workflow, widget, and user data are stored in an
arbitrary RDBM system. The platform features a graphical user interface that is accessible
from a web browser and facilitates visual programming operations.

The platform can import any Web Service Description Language (WSDL) described
web service as a workflow component [41]. A special interface integrated in the platform
allows users to enter the URL of a web service during run time. Upon doing so, the
WSDL is parsed by the platform and widgets are generated for corresponding web service
operations. These widgets can be reused multiple times in the user’s workflows.

The platform also features a roster of public workflows which can be contributed to by
registered users. This allows for easy sharing of data mining workflows [42]. Workflows that
are made public can be accessed by other users. Whenever a public workflow is accessed, a
copy is made so that it can be modified by anyone without harming the original workflow.
This allows for reproduction of experiments and results, and is a step towards solving the
executable paper challenge [43].

To provide real-time analytics, the ability to mine infinite streams of data was added
to the platform by introducing a different type of workflow that is executed simultaneously
many times over to handle incoming data with a minimum latency [44]. This is achieved
by a special mechanism that starts and stops workflow execution depending on the data.
With this mechanism it is possible to create widgets that implement many classical stream
mining approaches such as sliding windows, data aggregation, data selection and joining
data instances in batches.

Finally, to provide a complete data mining platform with capabilities for mining big
data, MapReduce data mining algorithms were added to the ClowdFlows platform [45].
This was achieved by implementing a new data mining library—DiscoMLL. The library
uses the Disco framwork for big data mining and features re-implementations of data mining
algorithms in the MapReduce paradigm. The library features bindings that can be exposed
as ClowdFlows workflow components—widgets. By using these widgets in a workflow it
is possible to construct big data mining workflows. It is important to note however that
even though there are several widgets that do support big data mining using MapReduce,
the majority of widgets in ClowdFlows still utilize data analysis in the classical sense.

2.4 Related Publication

The implementation details of the platform along with a review of related work, description
of big data mining in batch mode and in streaming mode are described in the following
publication:

J. Kranjc, R. Orač, V. Podpečan, N. Lavrač, and M. Robnik-Šikonja, “ClowdFlows: Online
workflows for distributed big data mining,” Future Generation Computer Systems, vol.
68, pp. 38–58, 2016.

In this publication we achieve the following:

• We review and present the existing platforms and environments for data mining with
a visual programming paradigm and present libraries and tools for mining big data
both in batch mode and in a streaming setting.
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• We present a cloud-based platform for big data and stream processing with workflows
entitled ClowdFlows. The design decisions taken to implement the platform are
argumented and presented. The implementation is presented in detail.

• We show empirically that the ClowdFlows platform enables processing of multiple
concurrent data streams.

• We present a novel use case that constructs a semantic graph from a stream of news
articles in real time.

• Several machine learning algorithms were implemented in the MapReduce paradigm
and made available for use in the ClowdFlows platform.

• We show that using all data in distributed mode is better than using a subset in
non-distributed mode.

• We show empirically that the ClowdFlows platform handles big data sets with nearly
perfect linear speedup.

• In each major section of the publication we present a novel use case that is imple-
mented as a re-usable workflow. The use cases demonstrate the following: the use of
data mining algorithms from different platforms in a unified way, mining continuous
data sources and visualizing them in novel ways, applying a MapReduce algorithm
on big data sets in a workflow-based environment.

The authors’ contributions are as follows. The ClowdFlows platform was designed and
implemented by Janez Kranjc with helpful insights from Vid Podpečan (the author of the
Orange4WS platform). Janez Kranjc implemented the big data mining aspects of Clowd-
Flows (both in batch mode and streaming mode). The MapReduce implementations of
various algorithms were implemented by Roman Orač and integrated in the DiscoMLL
library. Nada Lavrač contributed the idea of developing a web-based platform for big data
mining and supervised the work, while Marko Robnik Šikonja supervised the implemen-
tation of data mining algorithms in MapReduce mode and provided ideas for distributed
ensemble methods.
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a b s t r a c t

The paper presents a platform for distributed computing, developedusing the latest software technologies
and computing paradigms to enable big data mining. The platform, called ClowdFlows, is implemented
as a cloud-based web application with a graphical user interface which supports the construction
and execution of data mining workflows, including web services used as workflow components. As
a web application, the ClowdFlows platform poses no software requirements and can be used from
any modern browser, including mobile devices. The constructed workflows can be declared either as
private or public, which enables sharing the developed solutions, data and results on the web and in
scientific publications. The server-side software of ClowdFlows can be multiplied and distributed to
any number of computing nodes. From a developer’s perspective the platform is easy to extend and
supports distributed development with packages. The paper focuses on big data processing in the batch
and real-time processing mode. Big data analytics is provided through several algorithms, including
novel ensemble techniques, implemented using the map-reduce paradigm and a special stream mining
module for continuous parallel workflow execution. The batch mode and real-time processing mode are
demonstrated with practical use cases. Performance analysis shows the benefit of using all available data
for learning in distributed mode compared to using only subsets of data in non-distributed mode. The
ability of ClowdFlows to handle big data sets and its nearly perfect linear speedup is demonstrated.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computer-assisted data analysis has come a long way since
its humble beginnings on first digital computers with stored
programs. In his 1962 paper entitled ‘‘The future of data
analysis’’ [1] J. W. Tukey stated that the availability of electronic
computers for some tasks is surprisingly ‘‘important but not

∗ Corresponding author at: Jožef Stefan Institute, Ljubljana, Slovenia.
E-mail address: janez.kranjc@ijs.si (J. Kranjc).

vital’’ and ‘‘is vital’’ for others. Without doubt, the situation has
changed profoundly and any serious attempt to mine knowledge
from real world data must take advantage of modern computing
methods and modern computer organization. However, while
most scientists claim that the size of data and their rate of
production is one of today’s main challenges in data mining [2],
it is often forgotten that developments in the field of data analysis
have also produced an almost unimaginable amount of methods,
algorithms, software and architectures. They are available to
anyone, but their complexity and specific requirements prevent
the general public and also research specialists to use them
effectively without knowing the internal details. This problem has

http://dx.doi.org/10.1016/j.future.2016.07.018
0167-739X/© 2016 Elsevier B.V. All rights reserved.
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been recognized years ago [3]; in his seminal work John Chambers
noted that ‘‘there should not be a sharp distinction between users
and programmers’’ and that language, objects, and interfaces are
key concepts that make computing with data effective [4].

The development of modern programming languages, pro-
gramming paradigms and operating systems initiated research on
computer platforms for data analysis and development of modern
integrated data analysis software. Such platforms offer a high level
of abstraction, enabling the user to focus on the analysis of results
rather than on the ways to obtaining them. In the beginning, sin-
gle algorithmswere implemented as complete solutions to specific
datamining problems, e.g., the C4.5 algorithm [5] for the induction
of decision trees. Second generation systems like SPSS Clementine,
SGI Mineset, IBM Intelligent Miner, and SAS Enterprise Miner were
developed by large vendors, offering solutions to typical data pre-
processing, transformation and discovery tasks, and also providing
graphical user interfaces [6]. Many of the later developments took
advantage of the operating system independent languages such as
the Java platform to produce complete solutions, which also in-
clude methods for data preprocessing and visual representation of
results [7].

Visual programming [8], an approach to programming, where
a procedure or a program is constructed by arranging program
elements graphically instead of writing the program as a text, has
become widely recognized as an important element of an intuitive
interface to complex datamining procedures. Allmodern advanced
knowledge discovery systems offer some form of workflow
construction and execution, as this is of crucial importance for
conducting complex scientific experiments, which need to be
repeatable, and easy to verify at an abstract level and through
experimental evaluation. The standard data mining platforms like
Weka [7], RapidMiner [9], KNIME [10] and Orange [11] provide
a large collection of generic algorithm implementations, usually
coupled with an easy-to-use graphical user interface. While the
operating system independence and the ability to execute data
mining workflows was the most distinguished feature of standard
data mining platforms a decade ago, today’s data mining software
is confronted with the challenge how to make use of newly
developedparadigms for big data processing andhow to effectively
employ modern programming technologies.

This paper presents a data mining platform called Clowd-
Flows [12] and focuses on its capabilities of big data processing.
ClowdFlows was developed with the aim to become a new gener-
ation platform for data mining, using the latest technologies in the
implementation. It implements the following advanced features.

Most notably, the ClowdFlows platform runs as a web
application and poses no software requirements to the users—
e.g., ClowdFlows can also be accessed frommodernmobile devices.
Its server side software is easily multiplied and distributed to any
number of processing nodes. As a modern data mining platform,
ClowdFlows supports interactive dataminingworkflowswhich are
composed, inspected and executed by using the ClowdFlows web
interface. ClowdFlowsworkflows can be private or public, the later
offer a unique way of sharing implemented solutions in scientific
publications thus solving the Executable paper challenge [13].Web
services are supported and can be used as workflow components
in an intuitive way. Processing of big data in batch mode is
enabled by integrating the Disco framework, a lightweight, open-
source framework for distributed computing using themap reduce
paradigm [14]. In order to process big data in batch mode, we
have developed a new machine learning library for the Disco
MapReduce framework and included it in ClowdFlows. The library
includes several standard algorithms as well as new ensemble
techniques, which we evaluate and show the benefit of exploiting
all available data in distributed setting compared to using only

subsamples in a single node. Finally, ClowdFlows is developer-
friendly as its server-side is written in Python, easily extensible,
and supports distributed development using packages.

The ClowdFlows platform is released under an open source
license and is publicly available on the web [12]. Users can
choose either to use the publicly deployed version available at
http://clowdflows.org, or clone the sources and deploy the system
on their own machine or cluster of machines [15].

The rest of the paper is structured as follows. Section 2 presents
the related work on data mining platforms and modern data pro-
cessing paradigms. In Section 3 we present a motivational use
case followed by the presentation of the design and implementa-
tion of the ClowdFlows platform. Section 4 presents the real-time
analysis features of the ClowdFlows platform and demonstrates
the ClowdFlows stream mining capabilities with a use case of dy-
namic semantic analysis of news feeds. The processing of big data
in batch mode and the development of a machine learning library
for the Map Reduce paradigm is presented in Section 5 which also
includes a practical use case. Section 6 presents newly developed
distributed random forest based ensemble methods. The batch
processing mode is evaluated and validated in Section 7. In Sec-
tion 8 the ClowdFlows platform is compared to related platforms
and options for their integration are presented. Section 9 summa-
rizes the work and concludes the paper by suggesting directions
for further work. In the Appendix, summation form algorithms in
DiscoMLL are described.

2. Related work

Visual construction and execution of scientific workflows is one
of the key features of the majority of current data mining software
platforms. It enables the users to construct complex data analysis
scenarios without programming and allows easy comparison of
different options. All early major data mining platforms, such as
Weka [7], RapidMiner [9], KNIME [10] and Orange [11] support
workflow construction. The most important common feature
is the implementation of a workflow canvas where complex
workflows can be constructed using drag, drop and connect
operations with available components. The range of available
components typically includes database connectivity, data loading
from files and pre-processing, data and patternmining algorithms,
algorithm performance evaluation, and interactive and non-
interactive visualizations.

Even though such data mining software solutions are user-
friendly and offer a wide range of components, some of their
deficiencies severely limit their utility. Firstly, all available
workflow components are specific and can be used in only one
platform. Secondly, the described platforms are implemented as
standalone applications and have specific hardware and software
dependences. Thirdly, in order to extend the range of available
workflow components in any of these platforms, knowledge of
a specific programming language is required. This also means
that they are not capable of using existing software components,
implemented as web services, freely available on the web.

In order to benefit from service-oriented architecture concepts,
software tools have emerged, which are able to use web
services and access large public databases. Environments such as
Weka4WS [16], Orange4WS [17], Web Extension for RapidMiner
and Taverna [18] allow the integration ofweb services asworkflow
components. However, with the exception of Orange4WS and
Web Extension for RapidMiner, these environments are mostly
focused on specific scientific domains such as systems biology,
chemistry, medical imaging, ecology and geology and do not offer
general purpose machine learning and data mining algorithm
implementations.

16 Chapter 2. The ClowdFlows Platform
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Remote workflow execution (on machines different from the
one used for workflow construction) is employed by KNIME
Cluster execution and RapidMiner using the RapidAnalytics server.
This allows the execution of local workflows on more powerful
machines and data sharing with other users, with the requirement
that the client software is installed on the user’s machine.
The client software is used for designing workflows, which are
executed on remotemachines,while only the results can be viewed
using a web interface.

All the above mentioned platforms are based on technologies
that are becoming legacy and do not benefit from modern
web technologies, which enable truly independent software
solutions. On the other hand, web-based workflow construction
environments exist, but they are mostly too general and not
coupled to any data mining library. For example, Oryx Editor [19]
can be used for modeling business processes andworkflows, while
the genome analysis tool Galaxy [20] (implemented as a web
application) is limited to workflow components provided by the
project itself. An exception is the ARGO project [21], where the
aim was to develop an online workbench for analyzing textual
data based on a standardized architecture (UIMA), supporting
interactive scientific workflow construction and user collaboration
through workflow sharing, providing a selection of data readers,
consumers and some components for text analytics (mostly
tagging, annotation and feature extraction). Finally, the OnlineHPC
web application, which is based on the Taverna server as the
execution engine, offers an onlineworkfloweditor,which ismostly
a user friendly interface to Taverna.

Grid workflow systems such as Pegasus [22], DAGMan [23]
and ASKALON [24] were developed with the aim of simplifying
intensive scientific processing of large amounts of data where
the emphasis is on distribution of independent command line
applications (grid jobs or tasks) and summarization of results.
As the interactive analysis and graphical interfaces are not
their most important features, some of them do not implement
graphical interface toworkflows but provide flexible programming
interfaces instead. These platforms contain one or more grid
middleware layers, which enable the execution on computer grids
such as HTCondor and Globus.

Some platforms support more than one model of computa-
tion (see the analysis of workflow interoperability by Elmroth
et al. [25]) and enable the use of web services, grid services as well
as other execution environments (e.g., custommodules via foreign
language interfaces). Kepler [26], Triana [27] and Taverna [18] are
the most well known examples of such platforms.

As a response to the ever increasing amount of data several
new distributed software platforms have emerged. In general,
such platforms can be categorized into two groups: batch data
processing and data stream processing.

A well known example of a distributed batch processing frame-
work is Apache Hadoop [28], an open-source implementation of
the MapReduce programming model [14] and a distributed file
system called Hadoop Distributed Filesystem (HDFS). It is used in
many environments and several modifications and extensions ex-
ist, also for online (stream) processing [29] (e.g., parallelization of
several learning algorithms using an adaptation of MapReduce is
discussed by Chu et al. [30]). ApacheHadoop is also the base frame-
work of Apache Mahout [31], a machine learning library for large
data sets, which currently supports recommendationmining, clus-
tering, classification and frequent itemset mining. A more recent
alternative to Hadoop is Apache Spark. Spark was developed to
overcome Hadoop’s shortcoming that it is not optimized for it-
erative algorithms and interactive data analysis, which performs
multiple operations on the same set of data [32]. Radoop [33], a
commercial big data analytics solution, is based on RapidMiner
and Mahout, and uses RapidMiner’s data flow interface. The Disco

project [34] that we use is an alternative to Apache Hadoop. It
is a lightweight open source framework for distributed comput-
ing based on the MapReduce paradigm and written in Erlang and
Python.

For data stream processing, two best known platforms are
S4 [35] and Storm [36]. The S4 platform is a fully distributed
real-time stream processing framework. The stream operators are
defined by the user code and the configuration jobs describedwith
XML. Storm is a stream processing framework that focuses on
guaranteed message processing. The user constructs workflows in
different programming languages such as Python, Java, or Clojure.
Neither of these two platforms features an easy to use graphical
user interface.

SAMOA [37] is an example of a new generation platform
that targets processing of big data streams. In contrast to dis-
tributed data mining tools for batch processing using MapReduce
(e.g., ApacheMahout), SAMOA features a pluggable architecture on
top of S4 and Storm for performing common tasks, such as classi-
fication and clustering. The platform does not support visual pro-
gramming with workflows. MOA (Massive On-line Analysis) is a
non-distributed framework for mining data streams [38]. It is re-
lated to theWekaproject and a bi-directional interaction of the two
is possible. MOA does not support visual programming of work-
flows but the ADAMS project [39] provides a workflow engine for
MOA,which uses a tree-like structure instead of an interactive can-
vas.

Sharing data and experiments has been implemented in the
Experiment Database [40], which is a database of standardized
machine learning experimentation results. Instead of a workflow
engine it features a visual query engine for querying the database,
and an API for submitting experiments and data.

Substantial efforts have also been invested in developing
systems for streamlining experimentation and data analysis in
multi agent based systems, particularly for game-playing, in
distributed systems [41]. In such systems distributed-computing
applications can be customized by a human monitoring expert
who controls the execution of an experiment through aweb-based
graphical user interface.

More recent additions to the family of machine learning soft-
ware are Google’s TensorFlow [42] and the Machine Learning Ser-
vice from Microsoft Azure [43]. TensorFlow is an implementation
for executing machine learning algorithms on thousands of com-
putational devices such as GPU cards. The system can be used to
express a wide variety of algorithms for problems in speech recog-
nition, computer vision, robotics, and natural language processing.
However, the system lacks a conventional graphical user interface
and is invoked as a software library. The Machine Learning Ser-
vice from Microsoft Azure provides an easy to use and intuitive
graphical user interface to construct data mining workflows on a
canvas, but it is proprietary and requires the user to subscribe to
Microsoft’s cloud services.

3. ClowdFlows platform

Software technologies that were used to implement the
ClowdFlows platform allow an easy integration of very diverse
programming libraries and algorithm implementations. Various
wrappers allow the Pythonprogramming language environment to
connect to software written in Java, C, C++, C#, Fortran, etc. Several
libraries for web service interoperability are also available. The
ClowdFlows platform currently integrates three major machine
learning libraries: Weka [7], Orange [11] and scikit-learn [44].
Integration of Orange and scikit-learn is native as both are written
in Python/C++. Weka algorithms are implemented as web services
using the JPype [45] wrapper library.
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Fig. 1. A ClowdFlows workflow for comparison of algorithms from two different machine learning libraries (Weka and Orange). Algorithms are evaluated on a UCI data set
using the leave one out cross validation and their performance is visualized using VIPER charts. This workflow is publicly available at http://clowdflows.org/workflow/6038/.

Fig. 2. Visual performance evaluation of several machine learning algorithms
implemented in ClowdFlows.

3.1. Illustrative example

We first demonstrate the use of the platformwith an illustrative
use case followed by the design and architecture of ClowdFlows.

The goal of this simple use case is to present a few basic
features of ClowdFlows. To this end,wehavedeveloped aworkflow
for evaluating and comparing several machine learning algorithm
implementations. Decision tree, Naive Bayes and Support Vector
Machines algorithms from Weka and Orange are evaluated with
the leave-one-out cross-validation method on several publicly
available data sets from the UCI repository [46] and the results of
the evaluation are presented using the VIPER (Visual Performance

Evaluation) [47] interactive performance evaluation charts. The
interactive workflow demonstrates the use of web services as
workflow components, as the employed Weka algorithms have
been made available as web services.

The sample workflow for the evaluation and comparison of
several machine learning algorithm implementations is shown in
Fig. 1. This workflow is publicly available at http://clowdflows.
org/workflow/6038/.

The workflow performs as follows. First, instances of the se-
lected machine learning algorithm implementations are created
from the libraries (Weka and Orange) and concatenated into a list.
Second, a UCI data set is selected, loaded, and transformed into two
different data structures, one for each library. Validation is per-
formedusing the leave-one-outmethodon three pairs of algorithm
implementations from different libraries. Confusion matrices are
computed, and the results are prepared for visualization. In the fi-
nal step, the VIPER chart (Visual performance evaluation) is shown.
The chart offers interactive visualization of algorithm results in the
precision–recall space thus allowing a visual comparison of several
algorithms and export of publication quality figures. This perfor-
mance visualization is shown in Fig. 2.

The public ClowdFlows installation features many other exam-
ple workflows including workflows that demonstrate regression1

and clustering.2

3.2. Platform architecture and technologies

ClowdFlows is a cloud-based web application that can be
accessed and controlled from anywhere using a web browser,
while the processing is performed in a cloud of computing nodes.

The architecture of the ClowdFlows platform is shown in
Fig. 3. The platform consists of the following components: a
graphical user interface, a core processing server, a database, a

1 http://clowdflows.org/workflow/7539/.
2 http://clowdflows.org/workflow/7492/.
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Fig. 3. An overview of the ClowdFlows platform architecture. A similar figure (without the big data analytics components) has appeared in our previous publication [48].

stream mining daemon, a broker that delegates execution tasks,
distributed workers, web services, and a module for big data
analysis in batch mode.

3.2.1. Graphical user interface
Users interact with the platform primarily through the graphi-

cal user interface in a web browser. We implemented the graphi-
cal user interface in HTML and JavaScript, with an extensive use of
the jQuery library [49]. The jQuery librarywas designed to simplify
client-side scripting, and is the most popular JavaScript library in
use [50]. The user interface is served from the primary ClowdFlows
server.

As illustrated in Fig. 1, the graphical user interface provides
a workflow canvas where workflow components (widgets) can
be added, deleted, re-positioned and connected with one another
to form a coherent workflow. The graphical user interface is
synchronized with the ClowdFlows server using asynchronous
HTTP requests, which notify the server of any and all user actions.

The job of the graphical user interface is to also render results
in a meaningful representation. Each widget that can produce
visualized results does so by sending the represented data in HTML
and JavaScript to the graphical user interface, which in turn shows
it to the user in a non-obtrusive pop-up dialog.

Aside from the workflow construction and results visualization
capabilities, this layer of the application also displays a list of public
workflows that can be copied by the currently logged in user.

All the graphical user interface code resides on the server but is
executed in the users’ browsers.

3.2.2. ClowdFlows server
The ClowdFlows server software is written in Python and uses

the Django web framework [51]. The Django framework is a high
level Python web framework that encourages rapid development
and provides an object-relational mapper and a powerful template
system.

The ClowdFlows server consists of a web application and the
widget repository.

The web application defines the models, views, and templates
of ClowdFlows. The integral part of the ClowdFlows platform
is the data model, which consists of an abstract representation
of workflows and widgets. Workflows are executable graphical
representations of complex procedures. Aworkflow inClowdFlows
is a set of widgets and their connections. A widget is a single
workflow processing unit with inputs, outputs and parameters.
Eachwidget performs a task considering its inputs and parameters,
and stores the results of the task to its outputs. Connections are
used to transfer data between two widgets and may exist only

between an output of a widget and an input to another widget.
Data is transferred through connections, so inputs can only receive
data from connected outputs. Parameters are similar to inputs, but
need to be entered by the user. Inputs can be transformed into
parameters and vice-versa, depending on the user’s needs.

Data from the data model are stored in the database. It should
be noted that there are two representations of widgets in the
data model and database. The abstract widget is a description of
a specific widget in the repository and holds no other information
than the inputs, outputs, parameters and function of the widget.
The non-abstract widget is a separate entity that represents a
particular instance of an abstract widget and contains information
about the data inputs and outputs, and its spatial position in
a specific workflow. To summarize, when the user constructs a
workflow, she chooses from a set of abstract widgets to create
instances of non-abstract widgets that can process data. This
design decision was made to allow user customization of widgets
and to ensure the functionality of workflows, even when the
abstract widgets change over time.

The ClowdFlows application also implements a workflow
execution engine which executes widgets in the workflow in the
correct order. The engine issues tasks to the workers to execute
widgets. Initially only the widgets that have no predecessors are
executed (a predecessor is a widget that is connected on the
input of a widget). Once these widgets have successfully executed
the engine searches for widgets whose predecessors have been
successfully executed and issues tasks to the workers to execute
them. When there are no more widgets to execute, a workflow is
considered successfully executed.

The ClowdFlows widget repository consists of four groups
of widgets: regular widgets, visualization widgets, interactive
widgets and workflow control widgets.

Regular widgets are widgets that take data on the input and
return data on the output. Visualization widgets do the same with
the addition that they provide an HTML/JavaScript view which
can be rendered by the graphical user interface to display results.
Interactivewidgets arewidgets that serve a view to the user during
execution time. Interactive widgets can show data on the input to
the user and can process the user interaction in its function which
affects the data on the output.

Workflow control widgets are special widgets that allow
creation of subworkflows (workflows encapsulated inwidgets that
contain a workflow), creation of for loops and special types of for
loops that are used for cross validation. With the workflow control
widgets, the workflows can also be exposed as REST API services.
These REST API services provide HTTP endpoints that can be called
from anywhere to invoke the execution of a workflow and fetch
the results.
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The functions of regular widgets, visualization widgets, and
interactive widgets are stored in the widgets libraries. The widget
libraries are packages of functions that are called when a widget
is executed. These functions define the functionality of each
particular widget.

By default, ClowdFlows comes with a set of widgets that can
be expanded. The initial set of widgets encompasses solutions
to many data mining, machine learning and other tasks such
as: classification, clustering, regression, association rule learning,
noise detection, decision support, text analysis, natural language
processing, inductive logic programming, graph mining, visual
performance evaluation, and others.

3.2.3. Database
The database is the part of the system that stores all the

information about the workflows and all the user uploaded data.
The object-relational mapper implemented in Django provides

an API that links objects to a database, which means that the
ClowdFlows platform is database agnostic. PostgreSQL, MySQL,
SQLite and Oracle databases are supported. MySQL is used in the
public installation of ClowdFlows. The database installation can be
deployed on a cluster to ensure scalability of the system.

3.2.4. Worker nodes
Worker instances are instances of the ClowdFlows server that

do not serve the graphical user interface and are only accessed by
a broker that delegates execution tasks. They execute workflows
and workflow components. The workers report success or error
messages to the broker and feature timeouts that ensure fault
tolerance if a worker goes offline during the run-time. The number
of workers is arbitrary and they can be connected or disconnected
during run-time to ensure scalability and robustness. Workers
subscribe to the message broker system, which can be deployed
on multiple machines. The ClowdFlows system offers support for
several message broker systems. RabbitMQ [52] is used in the
ClowdFlows public installation.

3.2.5. Web services
In order to allow consumption of web services and import

them as workflow components, the PySimpleSoap library [53] is
used. PySimpleSoap is a light-weight library written in Python
and provides an interface for client and server web service
communication, which allows importing WSDL (Web Service
Definition Language) web services as workflow components, and
exposing entire workflows as WSDL web services.

3.2.6. Scaling and process distribution over cloud resources
The ClowdFlows platform can scale horizontally in a very

straight forward way. The four components that need to be scaled
are the ClowdFlows server, the database, the broker, and the
worker nodes.

Scaling the ClowdFlows server is done simply by installing it
on multiple machines and running it behind a web server with
load balancing capabilities such as Nginx. Horizontally scaling the
ClowdFlows server is required when there are many simultaneous
users accessing the platform at once. The requests are then routed
round robin to different ClowdFlows server instances to reduce the
load.

As the ClowdFlows platform is database agnostic it is entirely
dependent on the scaling ability of the selected database software.
Popular database solutions such as MySQL and PostgreSQL can
be transformed into distributed scaled-out systems, however as
the ClowdFlows platform does not normally perform demanding
database operations (apart from simple insertions and selections)
this is not likely to require scaling.

The scalability of the broker also depends on the choice of
its implementation. Both RabbitMQ and Redis, which are popular
broker solutions, can be easily deployed into clusters where nodes
are added and removed. Scaling the broker is required if the data
that passes from one workflow component to another is large.

Similarly to the ClowdFlows server, the worker nodes (which
are just headless instances of the ClowdFlows server) can easily
be executed in parallel on multiple machines as long as they all
connect to a single broker (or broker cluster). The broker ensures
that tasks are distributed evenly across the workers. Increasing
the number of workers is by far the most frequently required
scaling operation. Each worker can execute a set number of
widgets in parallel at any given time. If there are more workflows
executed than available workers some workload will be delayed
until workers finish tasks of active workflows.

The scaling of the stream mining deamon and the batch
processing module is handled separately and is explained in
Sections 4 and 5, respectively.

3.3. Public workflows

Since workflows in the ClowdFlows platform are processed and
stored on remote servers they can be accessed from anywhere over
the internet. By default, each workflow can only be accessed by its
author.Wehave implemented an option that allows users to create
public versions of their workflows.

The ClowdFlows platform generates a URL for each workflow
that is defined as public. Users can share their workflows by
publicizing this URL. Whenever a public workflow is accessed by
the user, a copy of the workflow is created on the fly and added
to the user’s private workflow repository. The workflow is copied
with all the data to ensure the reproducibility of experiments. Each
such copied public workflow can be edited, augmented or used as
a template to create a newworkflow, which can be made public as
well.

3.4. Extensibility and widget development

There are twoways to addwidgets to the ClowdFlows platform.
A widget can be either implemented as a Python function and
included in a ClowdFlows package or bemanually imported via the
graphical user interface as a WSDL Web service.

In the ClowdFlows platform the widgets are grouped into
packages. Each package consists of a set of widgets with common
functionalities. A package can be bundled with the code of the
platform or released as a separate Python package, which can
be installed on demand. An example of such a package is the
Relational Data Mining (RDM) package for ClowdFlows.3 This
package exists as a stand alone Python package but can also
be included in ClowdFlows. Upon doing so the widgets are
automatically discovered by the ClowdFlows platform and added
to the repository.

Creating a custom package for ClowdFlows requires the devel-
oper to have ClowdFlows installed locally. The local installation
of ClowdFlows provides several command line utilities for dealing
with packages. These utilities create bare-bones packages that in-
clude skeleton code for widgets. A ClowdFlows widget is a Python
function that receives a dictionary of widget inputs on the input
and returns a dictionary of outputs as its output. The body of the
function needs to be filled in by the developer of the widget to
transform the inputs into the outputs as expected. The widget’s
inputs and outputs need to be described in the JSON format in or-
der to be shared with other installations of ClowdFlows (including

3 https://github.com/xflows/rdm.
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the public installation). This JSON file can be written manually or
by using the ClowdFlows administration interface, which provides
simple forms where widget details can be entered. The JSON files
are then generated from the database using command line utilities
bundled with the local installation of ClowdFlows.

In a multiple worker setting each worker node needs to have
all the available external packages installed. Fig. 4 shows a worker
node with external packages installed and its JSON description of
widgets imported using the administration tools.

Another way of adding widgets is by using the graphical user
interface and entering the URL of a WSDL described Web service.
This can be done without altering the code of the platform which
makes it easy to use. The Web service description file is consumed
by ClowdFlows and parsed to determine the inputs and outputs of
the functions of the Web service. Each function of a Web service is
represented as a single widget in ClowdFlows that can be used and
reused in any number of workflows by the user that imported the
service.

3.5. Data exchange with external systems

The ClowdFlows platform provides several ways of exchanging
data with external systems. We distinguish between two types of
functionalities: the inward and outward interoperability.

Inward interoperability is achieved either by consuming web
services and presenting them to the users as widgets of the
ClowdFlows platform, or by creating widgets that call code from
other systems. By default the ClowdFlows platform consumes web
services that provide functionalities of the Weka platform, and
provides widgets that access code and data from the Orange and
scikit-learn packages.

Outward interoperability allows any workflow to be exposed
as a REST API endpoint. In order to benefit from this feature each
workflow can have several API Input and API Output widgets on
the canvas. These widgets are linked with the inputs that the
REST API endpoint receives and the JSON output of results that it
should return. In this way it is possible to construct a workflow
in the ClowdFlows platform and execute it without using the
graphical user interface, whichmakes it suitable for use in external
applications.

4. Real-time data streammining

Processing of real-time data streams is enabled in ClowdFlows:
a specialized stream mining deamon was implemented that
continuously executes workflows in parallel with a modified
workflow execution engine that implements a haltingmechanism.
The stream mining capabilities of the ClowdFlows platform are
described below.

4.1. Stream mining workflows and stream mining deamon

Stream mining workflows are workflows that are connected
to a potentially infinite source of incoming data and need to be
executed whenever there is new data on the input. Due to the
nature of online data sources, it is often necessary to poll a data
source for new data instead of having the data source push the
data to external services such as ClowdFlows. To control execution
of stream mining workflows we implemented a special deamon
that executes workflows at a fixed time interval and provided a
functionality to halt the execution of a workflow to streammining
widgets.

The stream mining deamon is a process that runs alongside
the ClowdFlows server, loops through deployed stream mining
workflows and executes them. The execution is similar to the
regular workflow execution with the difference that widgets may

Fig. 4. A worker node of the ClowdFlows architecture with two external packages
installed.

halt the execution of workflows. In practice, the workflow is
executed as frequently as the data appears on the data source and
produces outputs with a fixed latency depending on the workflow
complexity. Stream mining workflows are, in contrast to regular
workflows, executed a potentially infinite number of times until
the execution is stopped by the user.

4.2. Stream mining widgets

In contrast to widgets in regular workflows, widgets in stream
mining workflows have the internal memory and the ability to
halt the execution of the current workflow. The internal memory
is used to store information about the data stream, such as the
timestamp of the last processed data instance, or an instance of the
data itself. These two mechanisms were used to develop several
specialized stream mining widgets.

In order to process data streams, streaming data inputs were
implemented. Each type of stream requires its own widget to
consume the stream. In principle, a streaming input widget
connects to an external data stream source, collects instances of
the data that it has not yet seen, and uses its internal memory to
remember the current data instances. This can be done by saving
small hashes of the data to preserve space or only the timestamp
of the latest instance if timestamps are available in the stream. If
the input widget encounters no new data instances at the stream
source it halts the execution. No other widgets that are directly
connected to it via its outputs will be executed until the workflow
is executed again.

Several popular stream mining approaches [54] were imple-
mented as workflow components. The aggregation widget was
implemented to collect a fixed number of data instances before
passing the data to the next widget. The internal memory of the
widget is used to save the data instances until the threshold is
reached.While the number of instances is below the threshold, the
widget halts the execution. The internal memory is emptied and
the data instances are passed to the next widget once the thresh-
old is reached.

2.4. Related Publication 21



J. Kranjc et al. / Future Generation Computer Systems 68 (2017) 38–58 45

Fig. 5. The semantic triplet graph from an RSS feed workflow constructed in the ClowdFlows platform. The workflow is publicly available at http://clowdflows.org/
workflow/1729/.

The sliding windowwidget is similar to the aggregation widget,
except that it does not empty its entire internal memory upon
reaching the threshold. Only the oldest few instances are forgotten
and the instances inside the sliding window are released to other
widgets in the workflow for processing. By using the sliding
window, each data instance can be processed more than once.

Sampling widgets either pass the instance to the next widget
or halt the execution, based on a condition. This condition can be
dependent on the data or not (e.g., drop every second instance).
The internal memory can store counters, which are used to decide
which data is part of the sample.

Special stream visualization widgets were developed for the
purpose of examining results of real-time analyses. Each instance
of a stream visualization widget creates a web page with a unique
URL that displays the results in various formats. This is useful
because the results can be shared without having to share the
actual workflows.

4.3. Illustrative use case

The aim of this use case is to construct a semantic graph from a
stream of news articles in real time.

A semantic triplet graph [55] is a graph constructed from
subject–verb–object triplets extracted from sentences. Our goal is
to develop a reusable workflow that allows extraction of triplets
from an arbitrary source of news articles, displays them in a two-
dimensional force directed graphwithwords as nodes and updates
them in real-time. By doing this, we transform an incoming stream
of news articles into a live semantic graph that is continuously
updated.

The use case is presented as a step-by-step report on how the
workflow was constructed. Following this description the user
can construct a fully functional workflow for an arbitrary stream
of data and examine the results. In this particular workflow the
Middle East section of the CNN news website is used as the
incoming stream on which the semantic graph is constructed.

4.3.1. Identification and development of necessary workflow compo-
nents

In order to produce a workflow that transforms an incoming
stream of news articles into a semantic triplet graph we require
three components: a component that connects to the RSS feed and
fetches new articles as they appear, a component that extracts
triplets from the articles, and a component that the triplets in
the graph form. In order to create a visually appealing and useful
semantic graph we decided to create three supporting widgets:
a widget that fetches the article text and summarizes it by
selecting five most important sentences from the article, a widget
that normalizes the triplets by performing lemmatization on the
extracted words, and a sliding window to force the graph to
‘‘forget’’ older news.

We implemented a widget that connects to an arbitrary RSS
feed. This widget accepts a single parameter: the URL of the RSS
feed. The internal memory of widgets was utilized to store hash
codes of article URLs that have already been processed. With this
we ensure that each article is only processed once. If all URLs in the
feed have already been processed the widget halts the execution.
The widget’s single output is the URL of the article that should be

processed. This widget was implemented as a Python function as
explained in Section 3.4. The function has access to the argument
(the URL of the RSS feed) and to the internal memory of the widget
which is persistent for a particular execution of a stream. The
function uses a high level Python library requests for fetching the
data and parsing the feed.

We implemented a widget that fetches the article text from
the URL, extracts the article’s title and body, and summarizes it
by selecting five most important sentences in the article. We de-
veloped a widget that wraps the PyTeaser library for text summa-
rization [56]. The most important sentences are selected based on
their relevance to the title and keywords, as well as the position
and length of the sentences. The widget outputs the summary as a
string of characters.

The triplet extraction widget implements the algorithm pro-
posed in [57] using the Stanford Parser [58]. The widget first tok-
enizes the sentences and generates a parse tree for each sentence.
The algorithm searches the parse tree for the subject, predicate,
and object triplet. If the triplet is found, it is appended to the list
of triplets that the widget returns as its output. The triplet extrac-
tion widget was implemented as a WSDL Web service which was
imported into the ClowdFlows.

Normalization of words helps in building a more cohesive
graph by joining similar nodes into a single node. We employ the
WordNet Lemmatizer implemented in the Python NLTK library
[59,60]. The lemmatization uses the WordNet’s built-in morphy
function. The input words are returned unchanged if they cannot
be found inWordNet. This technique helps to eliminate repetitions
of similar or same entities in the graph. As NLTK is a Python library,
we implemented this widget as a Python function as explained in
Section 3.4.

To dynamically visualize the semantic triplet graph we use a
sliding window widget to keep only the 100 recent triplets. By
doing this the graph only shows current news and ‘‘forgets’’ older
news.

The visualizationwidget utilizes theD3 Data-DrivenDocuments
JavaScript library [61] to display the semantic triplet graph. The
graph is constructed by creating a node for each unique word
in the current sliding window. Edges are constructed from the
subject–verb and verb–object connections. The graph is rendered
using a force-directed algorithm [62]. The visualization is updated
in real-time, new nodes and edges are created in real-time and
old ones are removed from the graph. Visualization widgets also
render an HTML view, which allowed us to use a JavaScript library
to implement the visualization. Anything that can be displayed on
a web page can be displayed as a result of a visualization widget.

All the developed widgets were added to the repository and
are part of the stream mining ClowdFlows package. For the sake
of simplicity the Triplet Extraction Web service call was wrapped
into a Python function otherwise new installations of ClowdFlows
would require users to manually import it as a Web service.

4.3.2. Constructing the workflow
We constructed the workflow using the ClowdFlows graphical

user interface. Widgets were selected from the widget repository,
added to the canvas and connected as shown in Fig. 5.

In the RSS reader widget we entered the URL of the CNN
news section feed—http://rss.cnn.com/rss/edition_meast.rss. We
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Fig. 6. The results of monitoring the Middle East edition of the CNN RSS feed. This visualization is publicly available at http://clowdflows.org/streams/data/110/63907/.

have set the size of the sliding window to 100, thereby showing
the latest 100 news triplets in the graph.

We marked the workflow as public so that it can be viewed
and copied. The URL of the workflow is http://clowdflows.org/
workflow/1729/. By clicking the button ‘‘Start stream mining’’
on the workflows view (http://clowdflows.org/your-workflows/)
we instructed the platform to start executing the workflow with
the stream mining daemon. A web page is created with detailed
information about the stream mining process. This page contains
the link to the visualization page with the generated semantic
graph.

4.3.3. Monitoring the results
By using a stream visualization widget in the workflow we can

observe the results of the execution in real time. The ClowdFlows
platform generates a web page for each stream visualization
widget in the workflow.

Our workflow has only one stream visualization widget (see
Fig. 5), therefore the ClowdFlows platform generates one web
page with the results. The visualization of the CNN data stream
can be found at http://clowdflows.org/streams/data/110/63907/.
This visualization shows how the words in the most important
sentences of multiple articles are linked to each other via the
extracted subject–verb–object triplets. A screenshot of the semantic
triplet graph is shown in Fig. 6.

The workflow presented is general and reusable. The RSS feed
chosen for processing is arbitrary and can be trivially changed. The

results of the workflow can be further exploited by performing
additional data analysis on the graph, such as constructing a
summary of several news articles or discovering links between
them. Such a graph could be used to recommend related news to
the reader.

4.3.4. Evaluating the limitations of stream mining in ClowdFlows
Stream mining workflows are executed by the Stream mining

deamon, which is a separate process that exists with the sole
purpose of executing stream mining workflows on a set time
interval. For streams with a high rate of incoming data this time
interval has to be set in such way that the rate of processing
the data is higher or equal to the production rate of the data on
the inputs, while producing the results with a fixed latency (the
amount of time it takes to execute a workflow).

Streaming workflows usually run for a fixed amount of
time. Having the execution interval (frequency) shorter than the
workflow execution time (latency) means that the workflow for
the same stream will be executed many times in parallel. Since
ClowdFlows is a collaborative platform with many concurrent
executions of streamminingworkflows it is important to know the
limitations of such executions so that it is possible to determine
when to add new resources to ensure all data is processed. We
have identified two possible scenarios when executing stream
mining workflows: workflows that process data faster than the
data is produced, andworkflows that process data slower than it is
produced.
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Table 1
Average data analysis time for streaming data based on different incoming rates of data instances and different setups of worker
nodes. The cells display the average processing time for each data instance in seconds (plus the standard deviation) and the relative
amount of data instances processed during a minute of stream execution time.

Data spawn rate/Worker nodes 1 × 8 2 × 8 3 × 8

0.33 instances per second 3.597 ± 0.005 (100%) 3.603 ± 0.007 (100%) 3.602 ± 0.008 (100%)
1 instance per second 3.596 ± 0.006 (100%) 3.597 ± 0.009 (100%) 3.600 ± 0.014 (100%)
3 instances per second 7.702 ± 2.096 (85%) 3.599 ± 0.010 (100%) 3.600 ± 0.009 (100%)
6 instances per second 20.049 ± 8.220 (44%) 7.673 ± 2.061 (76%) 3.618 ± 0.010 (100%)

Fig. 7. Average data analysis times for streaming data based on different incoming
rates of data instances over different setups of worker nodes.

For cases where the latency is shorter than the amount of time
it takes for new data to appear it is clear that these workflows will
never be executed in parallel. Each workflow will process the data
before there is new data on the input. Even with a very small time
interval the subsequent parallel executions would be immediately
halted due to no data being present on the input, and thus this
would not affect the resources.

We conducted an experiment where we created artificial
streams with several production rates and processed them in a
workflow with a latency of 3 s per data instance. We tested the
stream mining capabilities of ClowdFlows against different rates
of data production on the inputs: 0.33 instance per second, 1
instance per second and 3 instances per second for different setups
of worker nodes. For each setting we adjusted the frequency to
ensure processing of data.

We tested the platform with one, two, and three worker nodes.
Worker nodes were installed on equivalent computers with 8 CPU
cores. Theworkerswere setup towork on8 concurrent threads.We
measured the processing time for processing each instance of data
and calculated the relative amount of data processed in a minute
in percentages. A hundred percent means that all the data on the
input streamwas successfully processed. The results are presented
in Table 1 and displayed on the chart in Fig. 7.

The results show that using a single worker it is possible to
process data at a rate three times slower than the rate of production
on the input and preserve the same throughput as on the input
stream. Using two workers it is possible to process data ten
times slower, while a configuration with three workers allows
for a twenty times slower processing rate and still cope with the
demand. This allows users to have complex workflows perform
analyses on the data and still see results in real time while being
confident that all data was processed.

It is important to note that inter-node communication does not
increase with the addition of new worker nodes. Worker nodes

communicate exclusively with the broker. Tasks are issued to the
broker by the stream mining daemon and results are returned to
the broker by the worker nodes. Even if there is a single worker
node processing the stream, the communication is always going
to and from the broker. The communication delay is therefore
constant.

The test also shows that the leniency for slow processing can be
improved by adjusting the number of worker nodes. The worker
nodes can be added and removed during runtime, which means
that processing high volume streams can be resolved simply by
adding more computing power to the ClowdFlows worker cluster.

5. Batch data processing with DiscoMLL library

We present the ClowdFlows system for analysis of big data in
batch mode. We have chosen the Disco MapReduce framework to
performMapReduce tasks as Disco is written in Python and allows
for a tighter and easier integration with the ClowdFlows platform.
The downside of this choice is an apparent lack of a specialized
machine learning library or toolkit within the framework, which
motivated us to develop our own library with a limited but useful
set of machine learning algorithms.

In this section we first introduce the MapReduce paradigm,
followed by a description of the Disco Framework. We describe
the implementation details of the Disco Machine Learning Library.
Finally we present the integration details of batch big data
processing in ClowdFlows and conclude with an illustrative use
case.

5.1. MapReduce paradigm

MapReduce is a programming model for processing large
data sets, which are typically stored in a distributed filesystem.
Algorithms based on the MapReduce paradigm are automatically
parallelized and distributed across the cluster. The user of
MapReduce paradigm defines a map function and a reduce
function. The map function takes an input key/value pair and
generates a set of intermediate key/value pairs. Intermediate keys
are grouped and passed to the reduce function. An iterator is used
to access the intermediate keys and values. The reduce function
merges these values and usually forms a smaller set of values. The
output of a MapReduce job can be used as the input for the next
job or as the result.

5.2. Disco framework

Disco is designed for storage and large scale processing of data
sets on clusters of commodity server machines. It provides fault-
tolerant scheduling, execution layer, and a distributed replicated
storage layer. Core aspects of cluster monitoring, jobmanagement,
task scheduling and distributed file system are implemented in
Erlang, while the standard Disco library is implemented in Python.
Activities of Disco cluster are coordinated by a central master host,
which handles computational resource monitoring and allocation,
job and task scheduling, log handling, and client interaction. A
distributed MapReduce job executes multiple tasks, where each

24 Chapter 2. The ClowdFlows Platform



48 J. Kranjc et al. / Future Generation Computer Systems 68 (2017) 38–58

task runs on a single host. The job scheduler assigns resources to
jobs, minimizes the data transfer over network, takes care of load
balancing and handles changes in cluster topology.

Disco Distributed Filesystem (DDFS) provides a distributed
storage layer for Disco. It is a tag based filesystem designed
for storage and processing of massive amounts of immutable
data. DDFS provides data distribution, replication, persistence,
addressing and access.

5.3. Disco Machine Learning Library

To the best of our knowledge there is currently no Python pack-
age with machine learning algorithms based on the MapReduce
paradigm for Disco, whichmotivated the development of the Disco
Machine Learning Library (DiscoMLL) [63]. DiscoMLL is an open
source library, build on NumPy [64] and the Disco framework.
DiscoMLL is a part of the ClowdFlows platform and is responsi-
ble for the analysis of big batch data. This enables ClowdFlows
users to process big batch data using visual programming. Dis-
coMLL provides many options for data set processing: multiple in-
put data sources, feature selection, handling missing data, etc. It
supports several data formats: plain text data, chunked data on
DDFS and gzipped data formats. Data can be accessed locally or via
file servers.

To take advantages of the MapReduce paradigm, it is necessary
that algorithms have certain properties. As shown in [65], machine
learning algorithms that fit the statistical query model [66] can be
expressed in so called summation form and distributed on a multi-
core system. An example is an algorithm that requires statistics
that sum over the data. The summation can be done independently
on each core by dividing the data, assigning the computation to
multiple cores and at the end aggregating the results.

All implemented algorithms have a fit phase and predict phase.
The fit phase consists of map and combine tasks, which are
parallelized across the cluster. Usually algorithms have one reduce
task that aggregates outputs ofmap tasks and returns URL of the fit
model, which is stored on DDFS. The learnedmodel differs for each
algorithm, since it contains the actual model and the parameters
needed for the predict phase. The predict phase consists only of
map tasks which are also parallelized across the cluster. The first
step of the predict phase is to read the model from DDFS and pass
it as parameter to map tasks. Then the data is read and processed
with the model. The predict phase stores predictions on DDFS and
outputs the URL.

We have implemented the following algorithms which are in
summation form: Naive Bayes, Logistic Regression, K -means clus-
tering, Linear regression, Locally weighted linear regression, and
Support Vector Machines. Implementations of these algorithms
can be found in the Appendix.

To assure enough algorithms with state-of-the-art perfor-
mance [67]we also implemented several existing andnewvariants
of ensemble methods adapted to distributed computing paradigm.
The proposed ensembles are based on decision trees, which are not
in summation form. These methods are presented in Section 6.

5.4. Integration in the ClowdFlows platform

The batch mode big data analysis in ClowdFlows is a separate
module that is accessed by the worker nodes via an HTTP interface
of the Disco cluster. This configuration is presented in Fig. 8.

To configure a Disco cluster, it is only necessary to set slave
server hostnames or IP addresses, and the number of their CPU
cores. All nodes of the cluster are connected to the Internet to
access the input data on file servers. An input data is transferred to
workers using HTTP GET requests and passed directly tomap tasks.
The ClowdFlows platform submits MapReduce jobs using HTTP

Fig. 8. An overview of the ClowdFlows system for batch mode big data analysis.

interface via a proxy server to the Disco master host. In contrast
to input data, results of MapReduce jobs are stored on DDFS and
their locations are passed back to the ClowdFlows platform.

Widgets that submit MapReduce jobs were developed which
allow construction of workflows for big data. Each widget calls
the Disco master using an HTTP interface. The workflows designed
with these widget do not differ in presentation from workflows
that deal with regular data. The MapReduce paradigm and
implementation methods are not obvious from the workflows
themselves.

5.5. Use case: Naive Bayes classifier for big data

In order to demonstrate the batch big data processing mode
of ClowdFlows we have implemented a simple workflow that is
capable of processing data sets that do not fit into memory of
conventional machines.

The aimof the use case is to build a classifier froma large test set
and to use it to classify data. We first describe the implementation
details of the Naive Bayes classifier in the Disco Machine Learning
Library, then we follow it with a description of a ClowdFlows
workflow that utilizes the DiscoMLL.

5.5.1. Naive Bayes in Disco Machine Learning Library
The basic form of the Naive Bayes (NB) classifier uses discrete

features. It estimates conditional probabilities P(xj = k|y = c)
andprior probabilities P(y) from the training data,where kdenotes
the value of discrete feature xj and c denotes a training label. The
map function (Algorithm 1) takes the training vector, breaks it
into individual features and generates output key/value pairs. Each
output pair contains the training label i.e., value of y, feature index
j and feature value of xj as the key and 1 as the value. This output
pair marks the occurrence of a feature value given training label.
The map function also outputs the training label as the key and
1 as the value, to mark the occurrence of a training label. The map
function is invoked for every training instance. The reduce function
(Algorithm 2) takes the iterator over key/value pairs. Values with
the same key are grouped together in the intermediate phase. If
the key consist of one element, it represents an instance’s label
and values are summed and stored for further calculation of the
prior probability. The values of other pairs are summed and output.
These pairs represent the occurrences of xj = k ∧ y = c and enable
calculation of conditional probabilities P(x|y) in the predict phase.
After all pairs are processed, prior probabilities are calculated and
output. The output of the reduce function presents a model that is
used in the predict phase. The outputs of the predict phase were
compared with the Orange implementation of the Naive Bayes
Classifier [11] and return identical results.

As an example, consider the NB classifier with the input data
set in Table 2, where the target label is Sex. At the beginning of the
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Table 2
Example data set of the human physical appearance.

Sex Hair length Height

M Short Tall
M Short Tall
F Long Medium

MapReduce job, each training instance is read and passed to the
map function as its input argument (sample). For the first training
instance, the sample assigns x = [Short, Tall] and y = M . The for
loop iterates through x and outputs pairs ((M, 0, Short), 1) and
((M, 1, Tall), 1). The value 1 is added to mark one occurrence
of the specific feature value and training label. The map function
also outputs the pair (M, 1) to mark the occurrence of label M .
The procedure is repeated for all training instances. Note that the
first two training instances in Table 2 are the same and produce the
same output pairs. Prior to invocation of the reduce function, the
output pairs are grouped by the key. We get the following pairs:
((M, 0, Short), [1, 1]), ((F , 0, Long), [1]), ((M, 1, Tall), [1, 1]),
((F , 1, Medium), [1]), (M, [1, 1]), (F , [1]). Notice that values
from the first and second training instance are grouped by the
key and their counts are merged in a list [1, 1]. The iterator over
pairs is passed to the reduce function. For each key, the values are
summed. The keys that mark training label occurrences are used
to calculate prior probabilities, others are output in the form of
((M, 0, Short), 2). These values constitute the model that is used
in the predict phase.

Algorithm 1: The map function of the fit phase in the NB

function map( sample , params )
x , y = sample
for j = 0 to length (x )

#key : label , a t t r index and value
#value : 1 occurrence
output ( ( y , j , x_j ) , 1)

#mark labe l occurrence
output (y , 1)

Algorithm 2: The reduce function of the fit phase in the NB.

function reduce ( i te ra tor , params )
y_dist = hashmap ( )
for key , values in i t e r a to r

i f key has 1 element
#labe l frequencies
y_dist . put ( key , sum( values ) )

e lse i f key has 3 elements
#occurrences x_j = k and y = c
output ( key , sum( values ) )

pr ior = calculate_pr ior_probs ( y_dist )
output ( " pr ior " , pr ior ) #P(y )

For numeric attributes, a NB classifier uses a different approach
to probability estimation. We provide a description of this method
in the Appendix.

5.5.2. Constructing the workflow
We constructed a workflow that analyzes a big data set

using the Naive Bayes machine learning algorithm based on the
MapReduce paradigm.

For the purpose of this use case, we generated 6 GB of semi-
artificial data [68] from the UCI image segmentation data set. The

Fig. 9. The workflow for learning the NB classifier, predicting unseen in-
stances and displaying the evaluation results. The workflow can be accessed at
http://clowdflows.org/workflow/2788/.

training and testing data set each contain 3 GB of data. Both data
sets were divided into chunks and loaded on a file server. The
components are connected as shown in Fig. 9.

The ClowdFlows workflow consists of training a model on the
image segmentation training data set with NB, using the model to
predict testing instances and visualization of the results.

First, we set the input parameters specifying the image
segmentation train data object. We entered multiple URLs to
process the data in parallel. The feature index parameter was set
to 2–21, to include all the features available in the data set. The
identifier attributewas set to 0 and the target label indexwas set to
1 as it represents the target label. In the widget that represents the
prediction data object, we entered the URLs of the corresponding
chunks. The Naive Bayes widget learns the model. The Apply
Classifierwidget takes the prediction data and themodel’s location
to predict the data. The Results View shows the results, the Class
Distributionwidget shows the distribution of labels in the data set,
the Model View widget enables us to review the statistics of the
model and the Classification Accuracy widget is used to calculate
the accuracy of the classifier. By pressing the button ‘‘start’’, the
workflow executes a series of MapReduce jobs on the cluster. After
theworkflow is finished the results are provided as a hosted file on
the distributed file system.

6. Distributed ensemble methods for batch processing

Ensemble methods are known for their robust, state-of-the-art
predictive performance [67]. Aswewant to assure high usability of
ClowdFlows we developed several tree-based ensembles adapted
for distributed computation with MapReduce and implemented
them in DiscoMLL. We first describe the ideas behind the most
successful ensemble method, random forest [69], then we review
existing distributed ensembles, followed by our methods.

Random forest is one of the most robust and successful data
mining algorithms [70]. It is an ensemble of randomized decision
trees used as the basic classifiers. Two randomization mechanisms
are used: a bootstrap sampling with replacements on the training
set, separately for each tree, and random selection of a subset of
attributes in each interior node of the tree. A notable consequence
of using bootstrap sampling with replacement for selection of
training sets is that on average 1/e ≈ 37% of training instances
are not selected in each tree (so called out-of-bag set or OOB). This
set can be used for unbiased evaluation of themodel’s performance
and its visualization.

Tree-based ensembles can exploit distributed computing in
two ways: either computing basic models independently on
local subsets of instances stored in worker nodes or computing
individual trees with several nodes. The first approach is used in
the MReC4.5 [71] and COMET [72] systems, while the second is
used in the PLANET [73]. These systems are not publicly available,
so direct comparison with them is not possible.

26 Chapter 2. The ClowdFlows Platform



50 J. Kranjc et al. / Future Generation Computer Systems 68 (2017) 38–58

The MReC4.5 system [71] implements a variant of bagging
where the master node bootstrap samples the training instances
and distributes them to local nodes, where C4.5 like decision
trees [74] are constructed in the map step and returned to the
master node in the reduce step. In the prediction phase all trees
return their votes. The weakness of this approach is memory
consumption as worker nodes operate on the data set the size of
the whole data set and keep it in its internal memory.

The COMET system [72] uses non-overlapping data samples in
worker nodes. During the map phase many trees are created in
each node using small training sets obtained with importance-
sampled voting [75]. Importance-sampled voting uses OOB set to
steer the training set sampling for consecutive trees in the same
worker node. A large collection of trees are returned to the master
node (the reduce phase). During prediction only a subset of trees
is used, depending on the agreement of already returned votes.

The PLANET system [73] constructs each tree from all data in a
distributed fashion. To keep the number of map steps low and to
evaluate attributes in several nodes at once it creates trees level by
level instead of in a depth-first manner as usual.

We developed three tree-based ensemble methods using the
MapReduce approach. To allow processing of big data we split data
sets to chunks that fit into local memory of worker nodes. All three
methods construct decision trees on local nodes in the map phase
and gather collected trees into a forest in the reduce phase.We im-
plemented a binary decision tree learning algorithm,which runs on
a single worker and expands decision tree nodes using a priority
queue. The algorithm allows different types of attribute sampling
in interior tree nodes and offers several types of attribute evalua-
tion functions, e.g. information gain [74] andMDL [76]. As the trees
are constructed locally in workers we need a single map step.

In the reminder of the section we present the three methods.
Their evaluation is included in Section 7.2.

6.1. Forest of Distributed Decision Trees

The first variant, called Forest of Distributed Decision Trees
(FDDT), performs a distributed variant of bagging [77]. Instead of
bootstrap sampling of the whole data set it builds decision trees
on chunks of training data. In each interior decision tree node
all attributes are evaluated and the best one is selected as the
splitting criterion. In the prediction phase all trees are used and
their majority vote is returned as a prediction.

6.2. Distributed Random Forest

The second variant, called Distributed Random Forest (DRF),
is a distributed variant of the random forest algorithm [69]. It
uses bootstrap sampling with replacement on local data chunks
to construct the training sets. In each interior node a random
subsample of attributes is evaluated and the best one is selected
as the splitting criterion. In the prediction phase a subset of trees
is randomly selected and used for prediction. If the difference
between the most probable prediction and the second most
probable prediction is larger than a pre-specified parameter the
most probable prediction is returned, otherwise more trees are
selected and the process is repeated. The process ends when the
difference is large enough or all the trees have been used for
prediction. This process speeds up the prediction phase by using
only a small subset of trees for prediction of less difficult instances.

6.3. Distributed Weighted Forest

The third variant, called Distributed Weighted Forest (DWF),
is based on the idea that not all trees perform equally well for

each instance, so it weights the trees for each prediction instance
separately, extending the idea of [78] to a distributed environment.
The construction phase of randomized trees is the same as in
DRF, but after each tree is constructed, it is used to predict class
values of its OOB instances. If two instances are classified into the
same leaf node, their similarity score is increased. In this way we
get a similarity score for all instances stored in a worker node,
which we can divide by the number of trees in a worker t to get
a [0, 1] normalized distance [69]. The distances are passed to the
k-medoid clustering algorithm, which returns medoids (instances,
whose average distance to all instances in the same cluster are
minimal). The default value for the number of clusters k is set to
⌈
√
a + 1⌉, where a is the number of attributes. Larger values of k

improve the prediction accuracy, but also increase the prediction
time. Medoids are used to determine prediction reliability of trees.
A reliability score used is the prediction margin, defined as a
difference between the predicted probability of the correct class
and the most probable incorrect class. This margin is used to
weight trees during the prediction phase. The DWF algorithm
returns a local (small) forest for each worker node, the medoids,
and reliability scores for each tree in the local forest.

During the prediction phase we first compute the similarity
between a test instance and all the medoids in all the forests using
the Gower coefficient [79], which is defined for both nominal and
numeric attributes. The medoids with the highest similarity to the
test case are used as tree quality probe. Only trees with positive
and large enough reliability score (larger than median) for each
medoid are used and their prediction scores are weighted with
the reliability scores. The class with the highest sum of weighted
predictions is returned. The described prediction process aims to
improve the prediction by using only trees that perform well on
instances similar to the given new instance.

To reduce memory consumption of k-medoid algorithm and
the space required to store instance similarities, we sample the
instances used in the tree reliability estimation process. The size
of the sample is a parameter of the method.

7. Evaluation of big data processing in ClowdFlows

To validate our implementation of batch processing of big
data we evaluated the big data processing in ClowdFlows by
first empirically proving that our map-reduce implementations
of algorithms are equivalent in performance to their standard
counterparts implemented in widely used libraries. Next we use
large data sets and assume that data sets is too big to fit into the
main memory of a single worker we test their performance in
distributed environment and on assumption that the data set is to
big to fit into the main memory of a single worker

We also validated our newly developed distributed ensemble
methods by comparing them to bagging and random forests
implemented in the scikit-learn toolkit [44]. Additionally, we test
their performance in distributed environment and on assumption
that the data set is to big to fit into the main memory of a single
worker.

7.1. Evaluation of DiscoMLL summation form algorithms

In order to verify the quality of implemented algorithms we
compared themwith standard single processor based implementa-
tions from the scikit-learn toolkit [44]. We used 10 relatively small
data sets from UCI repository [80] and 3 big data sets. The charac-
teristics of data sets are presented in Table 3.

We first tested DiscoMLL algorithms based on statistical
queries, which, although implemented in a distributed fashion,
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Table 3
The characteristics of small UCI data sets (above the line) and big data sets (below
the line). The labels in column header have the following meaning: D = number of
discrete attributes, R = number of numeric attributes, C = number of class values,
N = number of instances, NC = number of chunks used in distributed processing,
TC = number of trees per chunk for ensemble methods, Cl = the majority class
used in binary classification.

Data set D R C N NC TC Cl

abalone 1 7 29 2087 18 30 9
adult 8 6 2 24420 18 30 ≤50K
car 6 0 4 864 18 30 unacc
isolet 0 617 26 3899 18 30 17
segmentation 0 19 7 1155 18 30 sky
semeion 256 0 10 796 18 30 1
spambase 0 57 2 2300 18 30 –
wilt 0 5 2 2418 18 30 –
wine-white 0 11 10 2448 18 30 6
yeast 1 8 10 740 18 30 cyt

covertype 54 0 7 290506 8 10 2
epsilon 0 2000 2 250000 65 3 –
mnist8m 0 784 10 4050000 119 3 1

follow the same principles as non-distributed implementations
and shall achieve the same accuracy.4

For MapReduce methods we use a distributed computational
environment with 10 nodes (a master node and 9 worker nodes).
Each computational node is a 2 CPU AMD Opteron 8431 2.4 GHz
with 1 GB RAM using Ubuntu 12.04, so in total we have 18
concurrent processes and each is assigned approximately 1/18 of
training instances.

On small data sets 5 × 2 cross-validation was used to test the
performance of algorithms. Each training set was randomly split
into 18 chunks matching 18 processors in our testing scenario.
The results are collected in Table 4. For each algorithm we
present two scores: in the left-hand columns the scores of scikit-
learn using the whole training set are given and in the right-
hand columns the results of DiscoMLL are presented, where each
of 18 workers received 1/18 of the training data. We observe
that distributed algorithms achieve similar accuracies as non-
distributed algorithms. The comparison across algorithms is not
possible as for binary classifiers, logistic regression and linear
SVM, we binarized all non-binary data sets by setting the label for
instances with the most frequent class value to 0 (as indicated in
Table 3, column Cl) and labels of all the other instances to 1.We also
compare the clusterings produced by the k-means algorithm and
the clusterings defined by the target labels. The number of clusters
for k-means was set to the number of target labels in each data set.
In Table 4 we show the values of the adjusted rand index. One can
notice that the values for scikit-learn and DMLL are very similar,
which indicates that similar clusterings are produced.

In Table 5we present the results of summation form algorithms
on big data sets, for which we assume that they do not fit into
the memory. scikit-learn models are therefore trained on subsets
with N/NC samples (see Table 3 for these values), while DiscoMLL
models are trained on the entire data set distributed over worker
nodes (each node contains N/NC samples). All models were tested
on the entire test set. The performance of DiscoMLLmodels is equal
or significantly better than the performance of scikit-learnmodels,
except for Naive Bayes and Linear SVM on the mnist8m data set.

7.2. Performance of distributed ensembles

We evaluate the performance of developed ensemble methods
(FDDT, DRF and DWF), described in Section 6, and compare their

4 In contrast to that, the implemented distributed ensemble methods are not
equivalent to thenon-distributed implementations aswe train them in adistributed
fashion using subsets of training data. We compare them to scikit-learn ensemble
methods in Section 7.2.

classification accuracy with bagging (scikit BG) and random forests
(scikit RF ) implemented in the scikit-learn toolkit. We compare
distributed and non-distributed algorithms in two ways:

• giving each worker the whole data set (only possible for small
data sets) we expect comparable predictive performance;

• training the distributed ensembles on subsets, we can expect
decreased accuracy in comparison with non-distributed meth-
ods with all instances at their disposal. Altogether the dis-
tributed algorithms can process far more data than single ma-
chines so we expect improved performance in comparison to
singlemachineswith only chunks of data. For thesemethodswe
therefore analyze the decrease of accuracy due to distributed
learning. We start with small data sets and observe if the find-
ings generalize to big data sets.

We use a similar testing scenario as for summation form
algorithms in Section 7.1, i.e. we use 5 × 2 cross-validation and
each training set is randomly split into 18 chunks to match the
number of processors in our distributed environment. To measure
the decreased performance due to distributed implementations,
we simulate the data distribution process using scikit-learn, as
follows. We train a model on a subset of 1/18 training instances,
predict the entire testing set and measure the classification
accuracy. This process is repeated for each of 18 subsets. The
same testing method is used with DiscoMLL ensemble algorithms
(DiscoMLL subset).We expect similar performance: scikit subset ≃

DiscoMLL subset . To measure the upper bound of classification
accuracy for the algorithms, we train the classification models
using all the instances with scikit (scikit ideal). In practice this
is not always feasible due to the size of data sets, therefore we
also measure the performance in the distributed scenario using
the distributed ensembles, which producemodels in parallel using
subsets and then combine local models in the prediction phase.
Due to distributed learning, we expect the following relation
between the performance scores: scikit subset ≤ DiscoMLL dist ≤

scikit ideal.
We present average classification accuracy of distributed and

non-distributed ensembles on small data sets in Table 6. To
statistically quantify the differences between different methods
we test the null hypothesis that distributed ensembles (training
a model on the entire data set split into chunks) return models
with the same prediction accuracy compared to single processor
based implementations, which trainmodels on subsets of data.We
applied a paired t-test to measure the significance of differences
between matching scikit subset and DiscoMLL dist scores. In
cases when the null hypothesis is rejected we can assume that
distributed ensembles are beneficial. The scikit BG subset score
is compared with FDDT dist score and scikit RF subset score is
compared with DRF dist and DWF dist scores. The + signs in
FDDT dist, DRF dist, and DWF dist columns denote significant
improvements of classification accuracy and the - signs denote
significant decrease in accuracy. We observe that FDDT achieves
significant improvement over scikit BG on every data set except
yeast. Similarly DRF achieves a significant improvement over scikit
RF on all data sets except on car and wilt data sets. The DWF
algorithm achieves several significant improvements over scikit
RF, but also two significant decreases of classification accuracy (on
wilt and yeast data sets). In general DWF is mostly inferior to DRF.
We believe that the reason for this is unreliable assessment of
sample similarity based on k-medoid clustering, which is sensitive
to noise in the form of less important features. This causes certain
samples labeled differently to appear similar. Improvement in the
efficient instance similarity assessment is a topic of future work.

Based on the above performance we can confirm our expecta-
tions and report a significant increase of accuracy for distributed
methods, which use the entire data set split into chunks, com-
pared to single processor methods using only subsets of data. On
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Table 4
Results of summation form algorithms in distributed and non-distributed fashion on small data sets. Classification accuracy is presented for classification algorithms and
the adjusted rand index is given for k-means clustering. For logistic regression and Linear SVM the data sets are binarized. The + and − signs denote a significant increase
or decrease of classification accuracy, respectively.

Data set Naive Bayes Logistic regression Linear SVM k-means
scikit DMLL scikit DMLL scikit DMLL scikit DMLL

abalone 0.22 0.23 0.83 0.83− 0.83 0.83 0.04 0.06+
adult 0.81 0.83+ 0.80 0.82+ 0.80 0.81+ −0.01 −0.01
car 0.71 0.84+ 0.86 0.86 0.87 0.86 0.02 0.01
isolet 0.81 0.81 1.00 0.99− 1.00 0.99− 0.46 0.44
segmentation 0.77 0.77 1.00 1.00+ 1.00 1.00 0.37 0.36
semeion 0.82 0.84+ 0.97 0.91− 0.97 0.95− 0.37 0.38
spambase 0.82 0.81 0.92 0.92 0.92 0.89− 0.04 0.04
wilt 0.88 0.88 0.95 0.97+ 0.95 0.94− −0.01 −0.01
wine-white 0.44 0.44 0.56 0.56+ 0.56 0.56 0.01 0.01
yeast 0.23 0.23 0.70 0.69 0.70 0.70 0.03 0.03

Table 5
Results of summation form algorithms on big data sets. scikit-learn trains models on data subsets while DiscoMLL trains models on the entire data set, but in distributed
fashion. Classification accuracy is presented for classification algorithms and adjusted rand index is given for clustering.

Data set Naive Bayes Logistic regression Linear SVM k-means
scikit DMLL scikit DMLL scikit DMLL scikit DMLL

covertype 0.26 0.68 0.76 0.76 0.76 0.76 0.00 0.00
epsilon 0.60 0.67 0.80 0.90 0.80 0.90 0.00 0.00
mnist8m 0.49 0.46 0.98 0.98 0.98 0.95 0.27 0.29

Table 6
Classification accuracy of ensemblemethods in distributed and uniprocessormode on small data sets. The scikit BG subset performance is comparedwith FDDT dist and scikit
RF subset performance is compared with DRF dist and DWF dist. The + and − signs denote a significant improvement and reduction of classification accuracy, respectively.

Data set scikit BG scikit RF FDDT DRF DWF
subset ideal subset ideal subset dist subset dist subset dist

abalone 0.22 0.23 0.22 0.24 0.22 0.26+ 0.22 0.26+ 0.22 0.26+
adult 0.84 0.86 0.84 0.85 0.84 0.86+ 0.85 0.86+ 0.84 0.86+
car 0.79 0.96 0.77 0.95 0.79 0.84+ 0.78 0.80 0.77 0.79
isolet 0.75 0.90 0.76 0.94 0.72 0.88+ 0.74 0.88+ 0.72 0.85+
segmentation 0.87 0.97 0.87 0.97 0.88 0.92+ 0.88 0.92+ 0.80 0.89+
semeion 0.54 0.84 0.58 0.92 0.48 0.77+ 0.53 0.82+ 0.50 0.80+
spambase 0.89 0.95 0.91 0.95 0.90 0.92+ 0.91 0.92+ 0.91 0.93+
wilt 0.96 0.98 0.96 0.98 0.96 0.97+ 0.96 0.95 0.96 0.95−
wine-white 0.49 0.64 0.50 0.65 0.51 0.53+ 0.51 0.55+ 0.49 0.54+
yeast 0.46 0.61 0.43 0.61 0.46 0.51 0.48 0.50+ 0.44 0.40−

the other hand, the performance of distributed methods is well
beyond the upper bound achieved by using the entire data set in
non-distributed mode which leaves much opportunity for further
research.

Table 7 presents the results of ensemble methods on big
data sets, which are too big to fit into memory of a single
machine (ideal scores cannot be computed). For these data sets,
scikit-learn algorithms use subsets with N/NC samples while
DiscoMLL distributed ensembles use the entire data sets split
into chunks to train a model. To make parameters comparable,
scikit-learn ensembles construct all the trees on a single subset,
while DiscoMLL ensembles construct less trees per subset (as
indicated in Table 3, column TC) and combine them into ensembles
of equal size. We observe that distributed ensembles mostly
achieve higher accuracy. This confirms the benefits of a distributed
approach: for data sets too large to fit intomemory, the distributed
ensemblemethods can usemore data split into chunks and thereby
outperform the non-distributed methods.

Fig. 10 shows learning time of DiscoMLL ensemble methods
and their speedup with different number of CPUs on artificially
increased [68] segmentation data set (for other data sets the
behavior is similar). All methods achieve almost ideal linear
speedup i.e. if the time using one node (2 CPUs) is t , the time using
x nodes (2x CPUs) is only slightly larger than t/x.

The actual times usedby themethods are parameter dependent,
but in general DWF is slower than DRF and FDDT as it uses

Table 7
Results of ensemble methods on big data sets, which do not fit into memory of
single machines. Scikit algorithms use subsets of data, while DiscoMLL algorithms
use distributed computation (dist) to learn on the entire data sets split into chunks.

Data set scikit BG scikit RF FDDT DRF DWF
subset subset dist dist dist

covertype 0.82 0.79 0.82 0.82 0.82
epsilon 0.71 0.70 0.73 0.74 0.73
mnist8m 0.89 0.92 0.90 0.92 0.92

clustering. DRF is faster than FDDT if it uses the same number of
trees as it estimates only

√
a features in each tree node, where a

is the number of attributes. FDDT is faster than scikit RF using the
same number of processors.

8. Comparison and integration of ClowdFlows with related
platforms

ClowdFlows is an open source data mining platform that
can successfully process big data and handle potentially infinite
streams of data.

The graphical user interface of ClowdFlows is implemented as
a web application that is executed on a remote server. This distin-
guishes the platform fromother platforms such as RapidMiner, KN-
IME, Weka, and Orange which require an installation which poses
distinct software and hardware requirements. The side effect of
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Fig. 10. Learning times of MapReduce ensemble methods with different number
of CPUs.

this feature is that users can share their workwith anybody as only
a web browser is required to view, modify or execute a workflow
in ClowdFlows.

Even though ClowdFlows can be deployed on a single machine
it is designed with a modular architecture and scalability in mind.
Different parts of the system are decoupled so that they may be
duplicated for higher performance.

The non-local nature of ClowdFlows makes it an ideal platform
for running long term workflows for processing data streams as
users do not need to worry about leaving their machines turned
on during the process of mining the stream.

ClowdFlows is to the best of our knowledge the only platform
that provides a graphical user interface to the Disco Framework
and publicly available implementations of data mining algorithms
for big data mining in this framework.

The ClowdFlows platform can also be regarded as an open
source alternative to the Microsoft Azure Machine Learning
platform which requires a subscription with the Azure cloud.
ClowdFlows is released under a permissive open source license and
can be deployed on public or private clouds.

ClowdFlows in its current state cannot handle processing fin-
ished workflows of other platforms but can integrate procedures
and algorithms implemented in other platforms and use them in-
ternally as part of its own workflows. ClowdFlows features algo-
rithm implementations from Weka, Orange, and scikit-learn. In
this way ClowdFlows can be used as a graphical user interface
for other platforms, including platforms that do not have graphi-
cal user interfaces for constructingworkflows, such as TensorFlow.
While the TensorFlow interface is not yet implemented in Clowd-
Flows, it is a subject for further work. The platform is compati-
ble with ClowdFlows as they are both interfaced and expressed in
Python.

The ClowdFlows platform can be usedwithin other datamining
platforms either by calling ClowdFlows Python functions or by
importing REST API services deployed by any live installation of
ClowdFlows. The second method exposes an HTTP URL endpoint
which executes the workflow when input data is posted to it.

The ClowdFlows platform has been evaluated in independent
surveys where it was valued as one of the leading platforms with
regards to the number of features [81].

9. Conclusions and further work

We presented the ClowdFlows, a data mining platform that
supports the construction and execution of scientific workflows.
The platform implements a visual programming paradigm, which
allows users to present complex procedures as a sequence of
simple steps. This makes the platform usable for non-experts. The
ClowdFlows platform allows importing web services as workflow
components. With this feature the processing abilities of the
ClowdFlows platform are not limited to the initial roster of
processing components, but can be expanded with web services.
The interface for constructing and monitoring of workflow
execution is implemented as aweb application and can be accessed
from any contemporary web browser. The data and the workflows
are stored on the server or a cluster of servers (i.e., a cloud), so that
the users are not limited to a single device to access their work.
Similarly, workflows are not limited to a single user, but can be
made public, which allows other users to use existing workflows
either to reproduce the experiments, or as templates to expand and
create new workflows.

We presented two modules for big data processing: a real-time
analysis module and a batch processing module. Both modules are
accessible via an intuitive graphical user interface that are easy to
use for data mining practitioners, students, and non-experts.

The stream mining mode uses the stream mining daemon
that executes workflows in parallel. The workflow components
offer several novel features, so that workflows can connect to
potentially infinite number of data streams and process their data.
We demonstrated their use by extracting semantical triplets from
a live RSS feed.

For analyzing big data in batchmodewe developed DiscoMLL, a
machine learning library for the Disco MapReduce framework and
several ClowdFlows widgets that can interact with a Disco cluster
and issue MapReduce tasks. We implemented several summation
form algorithms and developed three new ensemble methods
based on random forests. Performance analysis shows the benefit
of using all available data for learning in the distributed mode
compared to using only subsets of data in the non-distributed
mode.Wedemonstrate the ability of our implementation to handle
big data sets and its nearly perfect linear speedup.

Both the batch-mode and real-time processing modules were
demonstrated with practical use cases that can be reproduced
and executed either on the public installation of the ClowdFlows
platform, or on a private cluster.

There are several directions for future work. First, the Clowd-
Flows platform currently implements its own stream processing
engine which is built-in and easy to use. On the other hand, the
Storm project is widely accepted as a de facto solution for massive
stream processing and we plan to provide a loose integration of
Storm into the ClowdFlows platform. Likewise, the ApacheHadoop
and Spark will be integrated to complement the Disco framework.

Second, the existing ClowdFlows workflow engine will be
extended to support different underlying processing platforms.
The workflow engine should be able to delegate andmonitor tasks
transparently providing an easy-to-use programming interface.

Third, the ClowdFlows platform currently is not able to import
or export workflows from other visual programming tools. For
example, workflows constructed in Taverna or RapidMiner using
web services and standard input/output components could easily
be imported.

Fourth, we will simplify the installation procedures of Clowd-
Flows clusters by providing one-click deployment and automati-
zation of scaling.

Finally, the available widget repository will be extended with
high quality open-source data processing libraries to cover several
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new data analysis scenarios, e.g., high-throughput bioinformatics,
large scale text processing, graph mining, etc.

To conclude, we believe that ClowdFlows has the potential
to become a leading platform for data mining and sharing
experiments and results due to its open source nature and its
non-opinionated design regarding its collections of workflow
components. It is our strategic vision for developers to create their
own workflow components, expand the ClowdFlows workflow
repository and deploy their own versions of ClowdFlows as a part
of a large ClowdFlows network. Since ClowdFlows was released as
open source software it has been forked many times and deployed
on public servers with custom opinionated sets of workflow
components (e.g. ClowdFlows Unistra and TextFlows [82]). With
the addition of big data mining and stream mining capabilities
presented in this paper we expect the number of users and
ClowdFlows installations to increase.
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Appendix. Summation form algorithms in DiscoMLL

Besides distributed ensemble methods (FDDT, DRF, and DWF)
presented and analyzed in Section 6, DiscoMLL contains imple-
mentations of several existing machine learning algorithms in
summation form. Since to the best of our knowledge their pseudo
code in MapReduce remains unpublished, but is of interest to the
scientific community, we include it in this appendix. We present
Naive Bayes, logistic regression, K -means clustering, linear regres-
sion, locally weighted linear regression, and support vector ma-
chine algorithms.

Naive Bayes for numeric attributes

Naive Bayes (NB) for discrete attributes was presented as an
example in Section 5.5.1. Here we describe handling of numerical
attributes. On numerical features the NB classifier (also called
Gaussian Discriminative Analysis in this context) uses numerical
features to learn the following statistics: mean, variance and prior
probability P(y). The map function (Algorithm 3) takes a training
instance, breaks it into individual features and generates output
key/value pairs. Each output pair contains the training label y and
the feature index j as the key and the feature value xj as the value.
The occurrences of training labels are output in pairs, the training
label as the key and 1 as the value. The combiner calculates local
statistics (mean, variance and prior probability) for each map task
to reduce network load. The reduce function (Algorithm 4) accepts
partially calculated statistics for each attribute and combines them
appropriately. The statistics are output and used to build a model,
which is applied in the predict phase. The output of the predict
phase was compared to the Naive Bayes algorithm implemented
in the scikit-learn toolkit [44].

We combined theNB classifier for discrete andnumeric features
into a single algorithm. The computed conditional scores for
discrete and numeric attributes are combined into a single score
to predict the label ŷ with the maximal score as stated in Eq. (A.1)
below.

ŷ = argmax
y

P(y)

 
j∈Numeric

P(xj|y)

 
j∈Discrete

P(xj|y)


. (A.1)

Algorithm 3: The map function of the fit phase in the NB for
numeric attributes.

function map( sample , params )
x , y = sample
for j = 0 to length (x )

#key : label , a t t r ibute index
#value : a t t r ibute value
output ( ( y , j ) , x_j )

#mark labe l occurrence
output (y , 1)

Algorithm 4: The reduce function of the fit phase in the NB for
numeric attributes.

function reduce ( i te ra tor , params )
y_dist = hashmap ( )
for key , values in i t e r a to r

i f key has 1 element
#count labe l occurrences
y_dist . put ( key , sum( values ) )

e lse i f key has 2 elements
#combine loca l s t a t i s t i c s
mean = calculate_mean ( values )
var = ca lculate_var iance ( values )
output ( key , mean)
output ( key , var )

pr ior = calculate_pr ior_probs ( y_dist )
output ( " pr ior " , pr ior ) #P(y )

Logistic regression

The logistic regression classifier is a binary classifier that uses
numeric features. The classifier learns by fitting θ to the training
data, using the hypothesis in the form hθ (x) = g(θ T x) =

1/(1 + exp(−θ T x)). We use the Newton–Raphson method to
update θ := θ − H−1

∇θℓ(θ). For the summation form, we
calculate the subgroups of gradients by map tasks, denoted as
∇θℓ(θ), by


subgroup(y − hθ (x))xj, and the Hessian matrix by

H(j, k) := H(j, k) + hθ (x)(hθ (x) − 1) xj xk. The subgroups of
the gradient and the Hessian matrix can be computed in parallel
by map tasks as shown in Algorithm 5. The logistic regression
updates θ in each iteration, where one iteration represents one
MapReduce job. Before the execution of each MapReduce job,
the θ are stored in object params and passed as argument. The
map function calculates the hypothesis with x and θ from the
previous iteration. The subgroups of gradient and Hessian matrix
are calculated and output. The reduce function (Algorithm 6) takes
an iterator over key/value pairs. Values with the same key are
grouped together by the intermediate phase. The reduce function
sums subgroups of gradients and Hessian matrix, updates θ and
outputs it. This procedure takes place until convergence or a user-
specified number of iterations. The output of the predict phasewas
compared with the logistic regression algorithm implemented in
Orange [11].

Algorithm 5: The map function of the fit phase in the logistic
regression.

function map( sample , params )
x , y = sample
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h = calc_hypothesis (x , params . thetas )
output ( " grad " , ca lc_gradient (x , y , h ) )
output ( "H" , calc_hessian (x , h ) )

Algorithm 6: The reduce function of the fit phase in the logistic
regression.

function reduce ( i te ra tor , params )
for key , value in i t e r a to r

i f key == "H"
H = sum( value )

e lse
grad = sum( value )

thetas = params . thetas − inv (H) ∗ grad
output ( " thetas " , thetas )

K-means clustering

The k-means is a partitional clustering technique that aims
to find a user-specified number of clusters (k) represented by
their centroids. The computation of distances between the training
instances and centroids can be parallelized. In the initial iteration,
the map function randomly assigns data points to k clusters. The
mean of data point values, assigned to a certain cluster, defines its
centroid. The MapReduce procedure is repeated until it reaches a
user-specified number of iterations. The map function (Algorithm
7) takes sample as the input parameter, which represents a data
point. It computes the Euclidean distance between a data point and
each centroid. It assigns each data point to the closest centroid and
outputs the cluster identifier as key and the data point as value.
The reduce function (Algorithm 8) recomputes centroids for each
cluster and outputs the cluster identifier as key and the updated
centroid as value. The k reduce tasks are parallelized across
the cluster, where each task recalculates a certain centroid. The
implementation of the k-means algorithm was taken from Disco
examples and was adapted to work with DiscoMLL. The output of
the predict phase was compared to the k-means implementation
in the scikit-learn toolkit [44].

Algorithm 7: The map function of the fit phase in the k-means.

function map( sample , params )
distances = ca lc_dis tances ( sample ,

params . centers )
center_id = min( distances )
output ( center_id , sample )

Algorithm 8: The reduce function of the fit phase in the k-means.

function reduce ( i te ra tor , params )
for center_id , samples in i t e r a to r

update_center (params . centers [ center_id ] ,
samples )

for center_id , samples in params . centers :
output ( center_id , average ( samples ) )

Linear regression

The linear regression fits θ to training data with the equation
θ∗

= A−1b, where A =
m

i=1(xix
T
i ) and b =

m
i=1(xiyi) with m

training instances. To put these equations into summation form,
the map function calculates


subgroup(xix

T
i ) and


subgroup(xiyi) as

shown in Algorithm 9. The reduce function (Algorithm 10) iterates
over subgroups of A and b and sums them. Then it calculates the
equation for θ∗ and outputs the parameters.

Algorithm 9: The map function of the fit phase in the linear
regression.

function map( sample , params )
x , y = sample
A = outer_product (x , x )
b = inner_product (x , y )
output ( "A" , A)
output ( "b " , b )

Algorithm 10: The reduce function of the fit phase in the linear
regression.

function reduce ( i te ra tor , params )
for key , value in i t e r a to r

i f key == "A"
A = sum( value )

e lse :
b = sum( value )

thetas = inner_product ( inv (A) , b )
output ( " thetas " , thetas )

Locally weighted linear regression

Locally weighted linear regression (LOESS) stores training data
and computes a linear regression at prediction time, separately for
each testing instance. In the linear regression formula instances
are weighted with their distances to the testing point, so that
points closer to the given testing instance have a strong effect on
prediction. This effect is modeled with parameter τ .

LOESS finds a solution of the equation Aθ = b, where

A =

m
i=1

w(i)(x(i)(x(i))T ),

b =

m
i=1

w(i)(x(i)y(i)),

where w(i) are distance based weights, x(i) is a training instance,
and y(i) is function value of instance i. For summary form
computation we use map function to compute subsets for A and
b, while reduce sums subsets and finds solution to θ = A−1b.

LOESS makes one pass through training data for prediction of a
single testing instance,which takes toomuch time for prediction of
many instances. Our implementation computes theta parameters
for several instances in one pass (Algorithm 11).

Algorithm 11: Computation of θ parameters with LOESS.

def get_thetas ( t ra in_set , tes t_set , tau = 1) :
re su l t _ur l = [ ] , t e s t _ se t = {}
read_test_set = read ( te s t _ se t )
for id , x in read_test_set :

t e s t _ se t [ id ] = x
i f below_max_capacity ( te s t _ se t ) :

params = Params ( test_set , tau )
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# compute thetas for given subset
thetas = compute( t ra in_set , params)
re su l t s _ur l . append( thetas )
tes t ing_se t = {}

return resu l t s _ur l

Function (Algorithm 12) uses dictionary of testing instances.
Training instances are used to compute weights, and subset of
matrices A and b for all testing instances. Function map returns as
many pairs as there are testing instances in a dictionary.

Algorithm 12: The map function for LOESS

def map( instance , params ) :
xi , y = instance
for id , x in params . tes t_ instances :

w = weights ( xi , x , params . tau )
sub_A = w ∗ outer_product ( xi , x i )
sub_b = w ∗ xi ∗ y
yie ld ( id , ( sub_A , sub_b ) )

Function reduce (Algorithm 13) sums all subsets of matrices for
test instanceswith the same id. It sorts pairs on the key andmerges
values based on the key (function kvgroup). For each test case we
sum subsets of matrices A and b, and compute parameters θ .

Algorithm 13: Function reduce for LOESS.

def reduce ( i te ra tor , params ) :
for id , value in kvgroup ( i t e r a to r ) :

A , b = 0 , 0
for sub_A , sub_b in value :

A += sub_A
b += sub_b

thetas = vector_product ( inverse (A) , b )
predict ion = vector_product ( thetas ,

params . t e s t _ se t [ id ] )
y ie ld ( id , ( thetas , predict ion ) )

Support Vector Machines

We implemented an incremental linear SVM, described in [83],
which requires a single pass over the training set with time
complexity O(n3) and space complexity O(n2). The method
assumes numeric attributes, and a binary class encoded with −1
or +1. A training set with n instances and m attributes is stored
in matrix A, and class values are stored in a diagonal matrix D. We
compute matrix E = [A− e], where e is a unit matrix of dimension
m × 1. For a user supplied parameter ν, we compute
w
γ


=

 I
ν

+ ETE
−1

ETDe. (A.2)

With the map function (Algorithm 14) we compute ETE and ETDe
in a distributed fashion.

Algorithm 14: Function map for linear SVM.

def map( sample , params ) :
A , D = sample
e = unit_matrix ( len (A) , 1)
E = column_merge (A , −e )
ETE = inner_product (ET , E )

ETDe = inner_product (ET , D, e )
y ie ld ( " key " , (ETE , ETDe ) )

In the reduce function (Algorithm 15) we sum ETE and ETDe,
create the unit matrix I of size (n + 1) × (n + 1), which is divided
by parameter ν. Using (A.2) we return parameters of linear SVM of
size (n + 1) × 1.

Algorithm 15: Reduce function of linear SVM.

def reduce ( i te ra tor , params ) :
sum_ETE , sum_ETDe = 0 ,0
for key , value in i t e r a to r :

i f key == "ETE " :
sum_ETE += value

else :
sum_ETDe += value

I = unit_matrix (sum_ETE . dimension_x )
sum_ETE += I / params . nu
yie ld ( " key " , vector_product (

inverse (sum_ETE ) , sum_ETDe ) )

Each test instance x is extended with 1 in the prediction phase,
z = [

x
−1]and we get the prediction y as

y = sign

zT
 I

ν
+ ETE

−1
ETDe


. (A.3)
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Chapter 3

Adaptations of ClowdFlows

In this chapter we present several adaptations of the ClowdFlows platform. As the Clowd-
Flows platform is available as open-source software with a permissive license, it is possible
for users to modify it and create their own adapted versions of ClowdFlows. First we de-
scribe the procedure for creating a new version of ClowdFlows, then we present two specific
adaptations of the ClowdFlows platform—ConCreTeFlows [46] and TextFlows [47]. Con-
CreTeFlows is a platform for performing computational creativity tasks, while TextFlows
is focused on text mining and natural language processing. Both platforms are presented
with publications. The publication focused on ConCreTeFlows presents an illustrative
use case of a novel computational creativity task. The chapter concludes with a publica-
tion which describes the development of TextFlows and outlines the differences between
TextFlows and ClowdFlows.

3.1 Creating an Adaptation of the ClowdFlows Platform

ClowdFlows is released under the MIT license, which allows it to be modified and its mod-
ifications made public. The main drawback of ClowdFlows is a large number of workflow
components which are often incompatible with each other. To remedy this, we propose
collections of widgets to be joined in separate platforms. In this section we briefly describe
the steps required to create an adaptation of the ClowdFlows platform and conclude with
an example of an adaptation that was not created by the author of the thesis.

3.1.1 Setting up a development version

The ClowdFlows source code is available on GitHub1. GitHub is a web-based Git or
version control repository. It offers all the distributed version control and source code
management (SCM) functionalities of Git as well as adding its own features. It provides
access control and several collaboration features such as bug tracking, feature requests and
task management.

Using Git, it is possible to download the source code to a development machine where
a local installation can be set up. The steps needed to be taken to achieve this are as
follows:

• As ClowdFlows is a Python project, it is customary (but not required) to create a
virtual environment to keep all software requirements separate from other Python
projects on the same machine. This eliminates the problem of required libraries
version conflicts.

1https://github.com/xflows/clowdflows/
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• The code is copied from GitHub using Git. This can be done using a command line
or a graphical user interface in the target operating system.

• As all the software requirements are listed in a parsable text file, a single command
line script is used to install the libraries needed to successfully execute and run
ClowdFlows.

• The local version of ClowdFlows needs to be configured by editing a configuration
file. A sample configuration file for local development is provided with the source
code.

• The database is created and all workflow components are loaded from the file-based
database into the relational data base that was set up in the configuration step.

• Finally, using the command line the ClowdFlows server can be started and accessed
via web browsers on a local address.

All the above steps are listed with snippets of commands in the ClowdFlows documen-
tation2 available at http://clowdflows.readthedocs.io/.

3.1.2 Creating ClowdFlows widgets and packages

An adaptation of ClowdFlows would include different workflow components, named wid-
gets. ClowdFlows widgets are contained in packages, which are collections of widgets that
perform similar tasks.

In the technical sense a ClowdFlows package is a collection of two types of files—widget
source codes and package metadata. The source code determines what kind of task the
widget performs. The metadata is automatically generated using a form in the ClowdFlows
administration panel (accessible from the local development version). The form is shown
in Figure 3.1.

ClowdFlows provides a command line tool that creates a package and includes a boiler-
plate code for creating widgets based on a template that is included with the source code.
When a package is created, a unique name must be chosen which should not conflict with
any existing Python package names to prevent unexpected behavior. The newly created
package needs to be added to the local configuration (in the section where all activated
packages are defined).

One of the created files is a special file entitled library.py. This file contains the
source code of the widgets. Each widget is represented by a static method in this file.
Each method receives a dictionary (a native Python data type) of inputs and should return
a dictionary of outputs. The inputs, outputs, widget name, description and other meta
data are entered in the ClowdFlows administration panel. When a widget is created in the
administration panel it can immediately be used in the local ClowdFlows installation.

In order to transfer a widget from one ClowdFlows installation to another (e.g., from
a development version to a live production version) the meta data files need to be created.
They are created using the ClowdFlows package manager, which provides two command
line tools: one for importing packages and another for exporting them. The export package
command on the development server examines all widgets in the database (these were
either imported or entered using the administration panel) and compares them to widgets
in the data files. Missing widgets are added to the files (or updated if changed). On the
target ClowdFlows installation the import command must be executed. Conversely, this

2http://clowdflows.readthedocs.io/en/latest/cf_dev_wiki/setting-up-your-development-version-of-
clowdflows.html

http://clowdflows.readthedocs.io/
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Figure 3.1: The ClowdFlows administration panel.

command compares data files with the database and adds (or removes if desired) widgets
to the database.

It is possible to create external ClowdFlows packages which can be installed with
Python’s package manager and included into ClowdFlows. Using this method it is possible
to have separate repositories for different packages. With such an architecture it is easy to
maintain different package configurations. An example of such an external package is the
RDM (Relational Data Mining) package [48]. This package is described in Chapter 4.

3.1.3 ClowdFlows Unistra

It is customary to rebrand an adapted platform so that it can be distinguished from the orig-
inal one. An example adaptation is ClowdFlows Unistra3, which is hosted at the University
of Strasbourg, France. It features a separate authentication database and algorithms de-
veloped at the University of Strasbourg, such as the rule discovery tool Tertius [49], the
first-order Bayesian classifiers 1BC and 1BC2 [50], and Propositionalisation using Relaggs,
cardinalisation and quantiles [51].

The existence of this platform shows that the ClowdFlows documentation is sufficient
and following it, it is possible to create a separate entity with personalized workflow compo-
nents. The documentation includes instructions for all the steps and procedures described
in this section along with several examples.

ClowdFlows Unistra and other adaptations of ClowdFlows can also benefit from Clowd-
Flows upgrades. As long as the maintainers of the ClowdFlows adaptations merge Clowd-
Flows changes with updates regularly, they will benefit from all the security fixes and new
features.

3https://clowdflows.unistra.fr
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3.2 ConCreTeFlows

This section presents the ConCreTeFlows platform—an adaptation of ClowdFlows which
supports computational creativity. First, computational creativity systems are briefly in-
troduced. This is followed by the inclusion of a conference proceedings publication which
describes the platform and provides a novel computational creativity use case.

3.2.1 Background and motivation

Computational creativity is a subfield of artificial intelligence research, studying how to
engineer software that exhibits behaviors which would reasonably be deemed creative [52].
These software systems are applied in domains associated with creative people, such as
mathematics and science, poetry and story telling, musical composition and performance,
video game, architectural, industrial and graphic design, and the visual arts.

Computational creativity systems use as their basic ingredients different types of re-
sources, including musical, pictorial and textual. Such computational creativity systems
include poetry generation [53], metaphor creation [54], generation of narratives, creation of
fictional ideas [55] and conceptual blending [46]. These are computational creativity tasks
which request manipulation of text resources that are provided as inputs.

Infrastructures supporting text-based creative systems are scarce. A text-based compu-
tational creativity system would automatically build creative artefacts from the given text
resources, which end users would inspect and potentially adapt to their needs. An attempt
in this direction is the FloWr system for automated flowchart construction, optimisation
and alteration [56]. While getting software to write computational creativity code directly
is a long-term research goal, that line of research is still in its infancy stage.

To this end, ClowdFlows was used to create ConCreTeFlows4 as an easy-to-use work-
flow management system for computational creativity, allowing users to compose complex
processing pipelines in a modular visual programming manner.

3.2.2 Related publication

The main feature that distinguishes ConCreTeFlows from ClowdFlows are the workflow
components. The developed workflow components in ConCreTeFlows may be used to
produce e.g., a conceptual blending workflow [46]. This workflow involves blending of
texts from different domains, blending of corresponding images and poetry generation
from texts.

The implementation details and the description of the workflow and all included com-
ponents are presented in the following conference proceedings publication:

M. Žnidaršič, A. Cardoso, P. Gervás, P. Martins, R. Hervás, A. O. Alves, H. G. Oliveira,
P. Xiao, S. Linkola, H. Toivonen, J. Kranjc, and N. Lavrač, “Computational creativity
infrastructure for online software composition: A conceptual blending use case,” in
Proceedings of the 7th International Conference on Computational Creativity, ICCC,
2016, pp. 371–378.

In this publication we achieve the following:

• We present the ConCreTeFlows platform and illustrate its use in a specific use case
of conceptual blending.

• We provide an introduction to conceptual blending theory.
4http://concreteflows.ijs.si
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• We present an executable workflow that aims to conduct conceptual blending in
three ways: conceptually, textually and visually. Given two descriptions of arbitrary
concepts in natural language, the presented approach provides conceptual graph rep-
resentations of both concepts and their blend, a textual description of the blended
concept and even a set of possible visual blends.

The authors contributions are as follows. Martin Žnidaršič was the main developer
and implementator of conceptual creativity workflows which are available in ConCreTe-
Flows and contributed to the development of available widgets. Amílcar Cardoso, Pedro
Martins, and Ana Oliveira Alves contributed to the conceptual blending theory and the
corresponding widgets. Hugo Gonçalo Oliveira authored the PoeTryMe workflow com-
ponent. Pablo Gervas and Raquel Hervas were leading the work on the components for
creation of text from graph representations. Ping Xiao, Simo Linkola and Hannu Toivonen
served as the authors of the components for visual blending. Janez Kranjc collaborated
with other authors on developing computational creativity widgets and provided neces-
sary support for integrating third party libraries and software into ConCreTeFlows. Nada
Lavrač contributed the idea of developing an adapted ClowdFlows platform for supporting
computational creativity workflows and supervised the work.
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Martin Žnidaršič1, Amı́lcar Cardoso2, Pablo Gervás4, Pedro Martins2,
Raquel Hervás4, Ana Oliveira Alves2, Hugo Gonçalo Oliveira2, Ping Xiao3,
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Abstract

Computational Creativity is a subfield of Artificial Intel-
ligence research, studying how to engineer software that
exhibits behaviors which would reasonably be deemed
creative. This paper shows how composition of soft-
ware solutions in this field can effectively be supported
through a Computational Creativity (CC) infrastructure
that supports user-friendly development of CC software
components and workflows, their sharing, execution
and reuse. The infrastructure allows CC researchers
to build workflows that can be executed online and be
reused by others with a single click on the workflow
web address. Moreover, it allows building of proce-
dures composed of software developed by different re-
searchers from different laboratories, leading to novel
ways of software composition for computational pur-
poses that were not expected in advance. This capabil-
ity is illustrated on a workflow that involves blending of
texts from different domains, blending of correspond-
ing images, poetry generation from texts as well as con-
struction of narratives. The paper concludes by present-
ing plans for future work.

Introduction
Computational creativity (CC) systems use as their basic
ingredients different types of resources, including musical,
pictorial and textual, to name a few. This paper focuses on
infrastructure support to CC systems that base their creativ-
ity on textual resources. Such CC systems include poetry
generation, metaphor creation, generation of narratives, cre-
ation of fictional ideas and conceptual blending, which all
represent CC tasks which request manipulation of text re-
sources that are provided as inputs.

Infrastructures supporting text-based creative systems are
scarce. Ideally, a text-based CC system would automatically
build creative artefacts from the given text resources, which
the end user would then inspect and potentially adapt to their
needs. An attempt in this direction is the FloWr system
for automated flowchart construction, optimisation and al-
teration (Charnley, Colton, and Llano 2014). While getting
software to write CC code directly is a long-term research
goal, that line of research is—with the exception of FloWr—
still in its infancy stage. A substantially more mature area
of research concerns the development of infrastructures sup-
porting modular development, sharing and execution of code

used in text mining tasks. Text mining has numerous open
source algorithms and natural language processing (NLP)
software libraries available (such as NLTK (Bird 2006) and
scikit-learn (Pedregosa et al. 2011)). However, even text
mining and NLP experiments are still difficult to reproduce,
including the difficulty of systematic comparison of algo-
rithms. To this end, a number of attempts have been made
to develop easy-to-use workflow management systems, al-
lowing users to compose complex processing pipelines in a
modular visual programming manner.

Related work As regards the work related to the platform
presented in this paper, we first mention myGrid1 which is
used primarily for bioinformatics research, having in mind
experiment replication. It is currently probably the most ad-
vanced workflow management system, although, due to its
complexity, not very easy to use. The most important part
of myGrid is Taverna, which is conceived as a suite of tools
used to design and execute scientific workflows. A multi-
lingual Internet service platform Language Grid2, which is
based on a service-oriented architecture and supports a web-
oriented version of the pipeline architecture typically em-
ployed by NLP tools, is open source, but it is quite complex
to install and use. The ARGO platform3 is a more recent
development, which enables workflows to have interactive
components, where the execution of the workflow pauses to
receive input from the user, but ARGO is not open source
and does not have sophisticated utilities for cataloguing the
available web services or workflows, nor a system of access
permissions.

Our recently developed platform ClowdFlows4 (Kranjc,
Podpečan, and Lavrač 2012) is web-based thus requiring
no local installation, is simple to use and install, and avail-
able as open source under the MIT Licence. While Clowd-
Flows is mainly devoted to data mining, its fork TextFlows5

is focused on text mining and NLP workflows. A fork
platform for facilitation and reuse of computational creativ-

1http://www.mygrid.org.uk/
2http://langrid.org/
3http://argo.nactem.ac.uk/
4http://clowdflows.org
5http://textflows.org

376
 

371Proceedings of the Seventh International Conference on Computational Creativity, June 2016

3.2. ConCreTeFlows 43



ity software is called ConCreTeFlows6. It is an indepen-
dent platform with a specific backend that is being continu-
ously adapted to computational creativity tasks and tools. As
forks of ClowdFlows, TextFlows and ConCreTeFlows bene-
fit from its service-oriented architecture, which allows users
to utilize web-services as workflow components. The distin-
guishing feature of these platforms is the ease of sharing and
publicizing workflows, together with an ever growing roster
of reusable workflow components and entire workflows. As
completed workflows, data, and results can be made public
by the author, the platform can serve as an easy-to-access
integration platform for data mining, text mining or com-
putational creativity processes. Each public workflow is as-
signed a unique URL that can be accessed by anyone to ei-
ther replicate the experiment, or use the workflow as a tem-
plate to design new similar workflows.

Contributions In this paper we present ConCreTeFlows
and illustrate its use in a specific use case of conceptual
blending (introduction to blending theory is provided on
page 3). This example employs multiple software compo-
nents that are being developed by various members of the
computational creativity community. The presented com-
position of software aims to conduct conceptual blending
conceptually, textually and visually. Given two descriptions
of arbitrary concepts in natural language, the presented ap-
proach provides conceptual graph representations of both
concepts and their blend, a textual description of the blended
concept and even a set of possible visual blends.

The paper is structured as follows. The first section
presents ConCreTeFlows as a special purpose workflow
management platform aimed at supporting computational
creativity tasks. In the next section is the core of this pa-
per. It provides a description of the use case and the basics
of its theoretical foundations, followed by presentation of all
the important methods and software components that are ap-
plied for its purpose. Last part of this section is devoted to
critical discussion and ongoing work on the presented com-
ponents. The paper concludes with a brief summary and
plans for further work.

Software Infrastructure
This section briefly describes the main components of the
ConCreTeFlows. It is a special purpose workflow manage-
ment platform, aimed at supporting (primarily text-based)
computational creativity tasks.

Like ClowdFlows, ConCreTeFlows can also be used in
a browser, while the processing is performed in a cloud
of computing nodes. The backend of ConCreTeFlows
uses Django7, which is an open source web framework.
The graphical user interface is implemented in HTML and
JavaScript, using jQuery8 and jQuery-UI9 libraries. Con-
CreTeFlows is easily extensible by adding new packages

6http://concreteflows.ijs.si
7https://www.djangoproject.com
8http://jquery.com
9http://jqueryui.com

and workflow components. Workflow components of sev-
eral types allow graphical user interaction during run-time,
and visualization of results by implementing views in any
format that can be rendered in a web browser. Below we ex-
plain the concept of workflows in more detail and describe
the basic concepts of ConCreTeFlows.

The workflow model is the main component of the Con-
CreTeFlows platform and consists of an abstract represen-
tation of workflows and workflow components. The graph-
ical user interface for constructing workflows follows a vi-
sual programming paradigm which simplifies the represen-
tation of complex procedures into a spatial arrangement of
building blocks. The basic unit component in a ConCreTe-
Flows workflow is a processing component, which is graph-
ically represented as a widget. Considering its inputs and
parameters every such component performs a task and stores
the results on its outputs. Different processing components
are linked via connections through which data is transferred
from a widget’s output to another’s input. An alternative
widget input for a widget are parameters, which the user
enters into widget’s text fields. The graphical user inter-
face implements an easy-to-use way of arranging widgets
on a canvas to form a graphical representation of a complex
procedure. Construction of new workflows thus requires no
expertise, apart from knowing (usually from widget docu-
mentation) the inputs and outputs of the widgets to ensure
their compatibility. Incorporation of new software compo-
nents, on the other hand, requires basic programming skills
in Python or SOAP web-service development in any pro-
gramming language.

ConCreTeFlows implements its own workflow execution
engine. Currently there are no ways to reuse the workflows
using third party software. We plan to implement special
widgets that will define inputs and outputs for REST API
endpoints which will allow execution of workflows on vari-
able inputs by any third party software.

The ConCreTeFlows graphical user interface is shown in
Figure 1. On the top of the graphical user interface is a tool-
bar where workflows can be saved, deleted, and executed.
Underneath on the left is the widget repository, which is a
list of available widgets grouped by their functionality. Click
on a widget in the repository adds it to the workflow con-
struction canvas on the right. A console for displaying suc-
cess and error messages is located on the bottom.

Workflows in ConCreTeFlows are processed and stored
on remote servers from where they can be accessed from
anywhere, requiring only an internet connection. By default
each workflow can only be accessed by its author, although
one may also chose to make it publicly available. ConCreTe-
Flows generates a specific URL for each workflow that has
been saved as public. The users can then simply share their
workflows by publishing the URL. Whenever a public work-
flow is accessed by another user, a copy of the workflow is
created on the fly and added to his private workflow reposi-
tory. The workflow is copied together with widgets’ param-
eter settings, as well as all the data, in order to ensure the
experiments can be repeated. In this way the user is able
to tailor the workflow to his needs without modifying the
original workflow.
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Figure 1: A screenshot of the ConCreTeFlows graphical user
interface opened in the Mozilla Firefox Web browser, pre-
senting a motivational CC use case.

Conceptual Blending Online
The elements of the conceptual blending (CB) theory (Fau-
connier and Turner 2002) are an inspiration to many algo-
rithms and methodologies in the field of computational cre-
ativity (Veale and O’Donoghue 2000; Pereira 2005; Thagard
and Stewart 2010; Schorlemmer et al. 2014). A key ele-
ment in the theory is the mental space, a partial and tem-
porary structure of knowledge built for the purpose of local
understanding and action (Fauconnier 1994). To describe
the CB process, the theory makes use of a network of four
mental spaces (Figure 2). Two of these correspond to the
input spaces, i.e., the content that will be blended. The pro-
cess starts by finding a partial mapping between elements of
these two spaces that are perceived as similar or analogous
in some respect. A third mental space, called generic, encap-
sulates the conceptual structure shared by the input spaces,
generalising and possibly enriching them. This space pro-
vides guidance to the next step of the process, where ele-
ments from each of the input spaces are selectively projected
into a new mental space, called the blend space. Further
stages of the process elaborate and complete the blend.

Figure 2: The original four-space conceptual blending net-
work (Fauconnier and Turner 2002).

In most computational approaches to CB, the input and
blended spaces are represented as computational versions of
Conceptual Maps (Novak 1998), i.e., graphs where nodes
are concepts and arcs are relations between them (see Fig-
ure 3).
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Figure 3: Concept maps of horse and bird.

Graph representations of concept blends are useful for au-
tomated analysis and further processing, but are not very
suitable and appealing for human perception of the blended
spaces. To improve on this aspect of conceptual blending,
we have developed methodologies and algorithms for visual
blending and for textual representation of concept graphs.
Using these new techniques, we designed a CB process that
results in conceptual blends that are described in natural lan-
guage and enriched with visual representations. The process
is sketched in Figure 4, where the boxes represent the main
(software) components and the arrows indicate the flow of
data from inputs to outputs.

Each of the main process components (that is, each box
from the sketch in Figure 4) is implemented as an inde-
pendent software solution and represented as a widget or a
group of widgets in ConCreTeFlows.

In the following, we describe the process components and
their implementations in detail, with a presentation of the
whole workflow and some exemplary results at the end.

Construction of Conceptual Networks
The Concept Network Builder component from Figure 4 ac-
cepts a textual description of a concept in natural language
and on its basis produces a conceptual graph.The set of pos-
sible concepts and relations in the resulting graph is open
and not limited to a particular fixed set (such as relations
in ConceptNet10) or linguistic characteristic. We decided to
represent also relations as concepts, which allows treating a
particular entity as both a concept or relation, depending on
the context. For example, the concept of eating can be used
to relate the concepts of cows and grass, but it can also be a
concept related through is a with animal activity.

The software component that creates these conceptual
graphs from text is implemented in ConCreTeFlows as the
Text2Graph widget. This component first uses the Ollie
triplet extractor (Mausam et al. 2012) to extract the triplets
from the given text. The only text transformation before
triplet extraction is uncapitalization of sentences. The re-
sulting triplets are used to create a graph. In this process,
the entities in the triplets can be lemmatized (this choice is

10http://conceptnet5.media.mit.edu/
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Figure 4: Sketch of the workflow for conceptual blending with visual and textual representations of blends.

left to the user). If the Main size parameter of the resulting
graph is set, the graph is filtered to contain only a limited
neighborhood around the Main entity, that is, the node in
the graph that a user might be most interested in. The Main
entity can be set by the user, but if it is not, it is selected
automatically as the graph node with the highest out-degree.

Conceptual Blending
The Concept Blender component takes care of blending two
elements that are represented as graphs. In our design of the
process (Figure 4), the mapping between the elements from
the input spaces is to be done by a human as an initial step (to
select the two inputs to take part in blending) or to be done in
the Concept Blender on all possible pairs of elements from
the two input spaces. Following our representation, these
would be pairs of conceptual graphs.

In the current baseline implementation, the Concept
Blender expects only one pair of input elements, which it
fully blends (merges the two conceptual graphs) without any
influence of the Generic Space. An elaborate concept blend-
ing component, that is based on Divago framework, is in de-
velopment as described in subsection on further work.

Visual Blending
In order to generate visual blends, the visual module, con-
sisting of the Image Processor and the Visual Metaphor Cre-
ator in Figure 4, takes inputs from either the Concept Net-
work Builder or the Concept Blender. From the first, it can
take two concepts from two concept graphs (in this version,
their main entities) as inputs to be visually blended. The
resulting visual blend is not a representation of a blend cre-
ated by Concept Blender, but an independent visual blend of
the two concepts. For this purpose the visual module first
finds photos tagged with the two concepts in Flickr, respec-
tively. For ensuring the relevance and quality of the photos,
we use a set of image analysis methods bundled together in
QualiPy11. The image processor separates the subject and
the background of each photo, and inpaints the background

11https://github.com/vismantic-ohtuprojekti/
qualipy

to hide any marks of the subject. The visual metaphor cre-
ator implements three visual operations: juxtaposition, re-
placement and fusion, as described by Xiao and Linkola
(2015). In effect, it puts one object in the context of an-
other, or gives an object the texture of another object (see
Figure 5 for an example).

The visual module can also take input from the concept
blender, which indicates a specific way of blending. Specif-
ically, the input may indicate a choice between the replace-
ment and fusion operations. For instance, a frequent concep-
tual blend is placing an object in an unusual environment,
which suggests that the replacement operator shall be used.

In ConCreTeFlows, such blending is available in two ver-
sions (generations) as Vismantic and Vismantic2 widgets.

Text Generation
In order to generate a textual description of the blends ob-
tained, a Text Renderer widget called Textifier has been
added to the workflow. Textifier is a natural language gen-
eration tool that transforms data represented in a graph into
a natural language text. It carries out stages of content de-
termination, document planning and surface realization (Re-
iter and Dale 2000) and then translates the result into plain
text. Content determination processes input to select and
adapt what might be rendered. The input graph must con-
tain pairs of source and target nodes with information, and
the system will create all possible paths and represent them
in a tree. Textifier first groups related information that refers
to the same concept by combining nodes that contain the
same subject and discarding duplicated nodes. Nodes that
represent information with granularity inappropriate for tex-
tual rendering – such as verb-preposition groups represented
as single strings – are rewritten to make all information ex-
plicit in the knowledge structure. Lastly, Textifier can prune
the tree if only branches of a certain length need to be con-
sidered. Currently we are working with branches that are
three nodes long, after detecting that they tend to contain
more promising information. Document planning is basic at
present but will play a larger role once the graphs of blends
are processed. The surface realization stage transforms the
tree into text. Figure 6 shows an example of Textifier in op-
eration over a graph constructed from a given input text.
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(a) (b)

Figure 5: Two (out of four combinations of exchanging context and texture) outputs of the Vismantic2 widget for the example
of blending the concepts of hamster and zebra. Figure 5a shows result of exchanging texture: hamster with a zebra’s texture.
In Figure 5b is an example of exchanging context: zebra is put in the usual visual context of a hamster.

Figure 6: Example of Textifier working on input graph obtained from text.

Integration in a Workflow

The software components that implement the functionali-
ties sketched in Figure 4 were implemented and integrated
in ConCreTeFlows either as internal (Python) functions,
wrapped standalone programs or as Web services. In addi-
tion, we implemented some additional components that sup-
port the user interaction and data processing. These are: (I)
components for Web page content retrieval and filtering and
(II) components for graph reformatting and visualization.

By connecting these software components, we composed
a ConCreTeFlows workflow that conducts a basic concep-
tual, textual and visual concept blending. The workflow is
presented in Figure 7 and is publicly available from:
http://concreteflows.ijs.si/workflow/137/
where it can be executed, changed and appended with
additional functionality.

In this workflow, two textual inputs are transformed into
conceptual graphs by a series of the Download web page,
Boilerplate removal and Text2Graph widgets. The first one
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Figure 7: Workflow implementation in ConCreTeFlows (available at: http://concreteflows.ijs.si/workflow/137/).

obtains the Web page source from a given URL. In the ex-
ample presented in this paper, these are the Wikipedia pages
for two animals: hamster and zebra. The second widget
removes the headers, menus, navigation and similar non-
relevant content from the source. Finally, Text2Graph trans-
forms the textual content into conceptual graphs (output g),
which are available to other widgets with separately pro-
vided main entity (output meo). In the workflow, one of
the graphs is reformatted and visualized with the graph vi-
sualization widget. All outputs of Text2Graph widgets en-
ter the Blender basic which blends the two graphs together
and outputs a combined blended graph (output bg). This
one gets served to the Textifier widget, which produces a
textual description of the blend. Its output is presented by
a standard Display String widget. The two main entities
from Text2Graph widgets enter also the Vismantic2, which
either changes the texture of one to the texture of the other
(see Fig. 5a), or puts one in the usual surroundings of the
other (Fig. 5b). This way it creates four candidates for vi-
sual blends. This widget takes somewhat longer to run, as it
is in fact a call to a computationally intensive Web service.
Upon completion, the outcome is shown in an output similar
to the ones shown in Figure 5.

Workflow dissemination, reuse and extension
Any ConCreTeFlows workflow can either remain private or
be made public for the purposes of dissemination and repro-
ducibility of work. The workflow from the previous subsec-
tion is available from a public URL. This means that anyone
can open it in ConcreTeFlows. Everytime this happens, a
dedicated copy of the original workflow is made for that par-
ticular user. This allows any user not only to run the work-
flow with its original data and parameters, but also to change
the inputs, parameters and redesign the structure of software
components without affecting the original workflow.

Changing and extending a workflow is easy, but it requires
some insight on the format of data that is exchanged among
the widgets. This is usually made available in widget docu-
mentation, but can also be seen by observing the raw results
of a widget (right-click and Results).

In the following we describe a simple exemplary exten-
sion of our workflow from Figure 7.

Exemplary addition: PoeTryMe widget The system
named PoeTryMe (Gonçalo Oliveira and Cardoso 2015) is a
poetry generation platform with a modular architecture that
may be used to produce poetry in a given form, based on
a set of seed words. Semantically-coherent lines are gen-
erated using the seeds or related words, and are produced
by exploiting the knowledge in a semantic network and a
grammar with textual renderings of the covered relations. A
generation strategy selects some of the produced lines and
organises them to suit the given form.

The PoeTryMe widget is limited to some of the features of
the full system. Nevertheless, it can produce poetry in three
languages (Portuguese, Spanish and English), given one of
the available target forms (block of four, sonnet, ...), an open
set of seeds, and a surprise factor, between 0 and 1, with
implications on the selection of more or less semantically-
distant words.

Figure 8: Addition of the PoeTryMe widget to the workflow.

In our workflow, the PoeTryMe widget can be appended
to the Textifier widget (as shown in Figure 8) in order to
get also a poem inspired by the resulting blend. Here is an
example of a poem from a blend of hamster and zebra:

when the coat paints the water white and black
stadiums here make song each stand has his
have not yet grown by the familiar crack
will mine and leave where the great love is
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Discussion and Future Work on Components
In the following, we discuss some of the encountered is-
sues and shortcomings of the components and processes that
are presented in this paper, as well as present some ongoing
work on their improvements and additions.

Graph representations and formats The use of graphs
for representing knowledge presents advantages in as much
as it is a simple format with significant expressive power.
In this sense it acts as a useful communication format for
the various components in the flows envisaged. However,
it has certain disadvantages in the sense that the graphs as
considered at present do not have a unique semantic inter-
pretation. Some of the modules produce graphs where re-
lations are represented as edges between nodes representing
objects, and others rely on graphs that represent relations as
nodes occurring in the path of the graph between nodes rep-
resenting objects. Even when the same approach to knowl-
edge representation in a graph is used, problems may arise
depending on the type of string used to label the nodes. Ex-
amples of problematic cases are: inflected verb forms used
as well as verbs in infinitive, nouns used in singular and/or
plural form, complex actions of the form stay at home...
At present the content determination stage of the Textifier
module is carrying out complex transformations to handle
these various inputs in a uniform fashion when it comes to
the final rendering. This requires the development of differ-
ent version of the content determination stage for receiving
input from different modules. It would be beneficial to make
progress towards a unified approach to graph representation
to allow blending operations to be carried out fruitfully be-
tween outputs generated by different modules. However, a
certain flexibility is desirable in these content determination
modules, so that they can tolerate inputs not altogether con-
forming to expectations. This is largely due to the open na-
ture of the ConCreTeFlows platform, which may see the ad-
dition of new modules that do not conform to any standards
set on graph representation, but also because the results of
conceptual blending operations may not always produce out-
put conforming to standards, even when the inputs to the
conceptual blending process do conform.

TextStorm Conceptual Maps TextStorm (Oliveira,
Pereira, and Cardoso 2001) is an NLP tool based on a
Definite Clause Grammar (DCG) to extract binary pred-
icates12 from a text file using syntactic and discourse
knowledge, not needing any preview knowledge about the
discussed domain. The resulting set of predicates constitute
a Conceptual Map. This tool can be used as an alternative
to the Text2Graph.

TextStorm receives text as initial base of the open infor-
mation extraction. After applying Part-of-Speech tagging
and querying WordNet (Miller 1995), it builds predicates
that map relations between two concepts from parsing of
sentences. Its goal is to extract from utterances like Cows,

12These predicates have the common Prolog form: func-
tor(Argument 1, Argument 2).

Figure 9: Imported Textstorm SOAP Web service used in
ConCreTeFlows.

as well as rabbits, eat only vegetables, while humans eat also
meat, the predicates eat(cow, vegetables), eat(rabbit, vegeta-
bles), eat(human, vegetables), eat(human, meat) which will
form its concept map. Since concepts in text are not named
every time the same way, TextStorm uses WordNet’s syn-
onymy semantic relationship to identify the concepts that
were already referred before with a different name.

Textstorm operates as a standards compliant SOAP Web
service and as such can be imported on-the-fly to ConCreTe-
Flows (see Figure 9).

Divago concept blender The concept blending method
that is currently used in the workflow from Figure 7 is
very basic.We are currently working on the adaptation of
a more elaborated blender, the pre-existing Divago (Pereira
2005), to offer its main functionalities as webservices in
ConCreTeFlows. This blender adopts the same graph for-
mat as TextStorm, i.e., the Conceptual Map format, for the
input and blended mental spaces.

The new blender, the DivagoFlow, is itself a flowchart
composed of two modules, the Mapper and the Blend Fac-
tory The first is responsible for finding analogy mappings
between two Input Spaces using structural alignment. More
precisely, it computes the largest isomorphic pair of sub-
graphs contained in the Input Spaces. The output mapping
is, for each pair of sub-graphs, the list of crossover rela-
tions between nodes of each of the input spaces. The Blend
Factory takes these mappings as input, as well as the Input
Spaces and a Generic Space. For each mapping, it performs
a selective projection into the Blend Space, which leads to
the construction of a Blendoid, an intermediate graph that
subsumes the set of all possible blends. This Blendoid feeds
an evolutionary process that explores the space of all possi-
ble combinations of projections of the Input Spaces taking
into account the Generic Space. This module uses an im-
plementation of the CB theory optimality principles (a set
of principles that ensure a coherent and integrated blend) as
fitness measure. When an adequate solution is found or a
pre-defined number of iterations is attained, the Blend Fac-
tory stops the execution and returns the best Blend.
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Conclusions
We have presented the ConCreTeFlows platform for online
composition of computational creativity solutions. It is en-
tirely Web based and does not require installation for its use.
New processes in the platform can be designed as workflows
of software components, which are either made available in
the platform or even imported on-the-fly in case of SOAP
Web services13. Workflows can be either private or shared,
which makes for an elegant solution to dissemination and
reuse of one’s work and repeatability of experiments.

The main focus of the paper is on a use case, which shows
how the platform can be used in practice and presents sev-
eral computational creativity software components that were
combined in a collaborative effort to implement an inter-
esting conceptual blending solution. Namely, the result-
ing blends are not only conceptual but also visual and tex-
tual. The benefits of a unifying workflow for blending are
twofold: a user can get blends of various kinds through the
same user-interface and the components can affect one an-
other to produce a more coherent and orchestrated set of
multimodal blending results. While some of the presented
components are currently being updated from implementing
basic to more elaborate methods, the presented prototype so-
lution is fully operational and serves as a proof of concept
that such an approach to multimodal conceptual blending is
possible. Potential for use of such an approach is for exam-
ple in creation of news stories. Such a tool could form an en-
tire automated article on a funny and humorous or a serious
and thought-provoking blend of topics. All the components
of an article are there: the text, the picture, as shown, one
could even add a poem. Other potential uses of the approach
could be in art, advertising and human creativity support.

To make these things possible, as described in section Fu-
ture Work on Components, our future work will include im-
provement of the components and the workflow presented in
this paper. We will also continue with development and im-
provement of the presented platform to make creation of this
and other computational creativity solutions further more ef-
ficient, collaborative and fun.
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3.3 TextFlows

This section presents the TextFlows platform which is an adaptation of the ClowdFlows
platform and focuses on mining textual data and natural language processing (NLP).
The section starts with a brief overview of workflow management software aimed at text
mining and NLP. Some drawbacks of ClowdFlows are presented which form a motivation
for creating TextFlows. The section and chapter are concluded with the inclusion of a
journal publication which describes the platform along with several use cases. The main
results and scientific contributions of the paper are highlighted before its inclusion.

3.3.1 Background and motivation

Text mining is a research area that deals with the construction of models and patterns
from text resources, aiming at text categorization and clustering, taxonomy construction,
sentiment analysis, etc. [57]. This research area, also known as text data mining or text
analytics, is usually considered a subfield of data mining (DM) research [58], but can be
viewed also more generally as a multidisciplinary field drawing its techniques from data
mining, machine learning, natural language processing (NLP), information retrieval (IR),
information extraction (IE) and knowledge management.

Workflow Management Systems have in the last years become a very hot topic, mostly
in the field of bioinformatics and other natural sciences. Lately, however, this trend has
also spread to text mining and NLP. In the area of Workflow Management Systems for text
mining and NLP, established systems are slowly starting to be used for text analytics, while
at the same time, new ones are being developed, specifically targeted to NLP. Among the
workflow managament software platforms used for text mining and NLP are Taverna [19],
PANACEA [59], ARGO [18], WebLicht [60], Language Grid [61] and LAPPS Grid [62].
We examined these systems with regard to being open-source, simplicity of use, workflow
sharing and I/O protocols, and determined there exists a lack of an open source platform
with a web-based graphical user interface that allows sharing of text mining and natural
language processing workflows.

ClowdFlows as a general data mining platform incorporates workflow components for
numerous data mining and machine learning projects while severely lacking text mining and
natural language processing components. Moreover, despite being very useful for workflow
construction by the informed developers and end-users, ClowdFlows currently suffers from a
somewhat disorganized roster of workflow components which may be incompatible with one
another due to their sheer numbers and diverse origins. As a result, new users sometimes
struggle to construct functioning workflows as there are too many mutually incompatible
components.

The motivation to create an adaptation of ClowdFlows for text mining and NLP is
therefore two-fold. First, there is an opportunity to develop a widely used tool for workflow
management systems, which is simplified by the fact that ClowdFlows already provides a
graphical user interface and workflow engine along with all its other features. Secondly,
limiting the roster of workflow components to a specific scientific field would increase the
cohesion of incorporated workflow components. The new platform, named TextFlows,
requires a redesigned roster of workflow components, which are highly compatible with
each other within the platform and easier to use for the expert and novice users alike. In
contrast to ClowdFlows, where there are no guidelines for sorting workflow components into
categories, TextFlows sorts the components based on their functionality. As a result, all
widgets that perform similar functions are located in the same category. The user interface
was enriched with extra information about the workflow components and documentation
was added for the provided workflow components and their inputs and outputs.
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3.3.2 Related publication

The implementation details and description of the platform are included in the following
journal publication:

M. Perovšek, J. Kranjc, T. Erjavec, B. Cestnik, and N. Lavrač, “TextFlows: A visual
programming platform for text mining and natural language processing,” Science of
Computer Programming, vol. 121, pp. 128–152, 2016.

In this publication we achieve the following:

• We provide a survey and detailed TextFlows comparison to five other natural lan-
guage processing platforms.

• We present the TextFlows workflow management web platform for text mining and
natural language processing and explain its relationship to ClowdFlows.

• We present the development of a unified data type object that is accepted and used by
all workflow components in the platform—the annotated document corpus (ADC).

• We enable simple evaluation of algorithms from NLTK [63], LATINO [64] and scikit-
learn [65] libraries.

• We demonstrate the features of the platform on three use cases: comparison of
document classifiers and part-of-speech taggers on a text categorization problem,
and outlier detection in document corpora.

• We show that LATINO’s Max Entropy classifier achieves best results in document
categorization.

• We show that Part-Of-Speech tagging improves the accuracy of document classifica-
tion.

The authors’ contributions are as follows. The integration of text mining widgets
was implemented by Matic Perovšek. Janez Kranjc altered the ClowdFlows platform to
support the execution of all types of widgets on different types of computation servers.
Tomaž Erjavec investigated the related work and provided a comparison of TextFlows to
other text mining platforms. Bojan Cestnik and Nada Lavrač supervised the work and
provided ideas for the use cases. All authors contributed to the publication text.
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Text mining and natural language processing are fast growing areas of research, with 
numerous applications in business, science and creative industries. This paper presents 
TextFlows, a web-based text mining and natural language processing platform supporting 
workflow construction, sharing and execution. The platform enables visual construction 
of text mining workflows through a web browser, and the execution of the constructed 
workflows on a processing cloud. This makes TextFlows an adaptable infrastructure for the 
construction and sharing of text processing workflows, which can be reused in various 
applications. The paper presents the implemented text mining and language processing 
modules, and describes some precomposed workflows. Their features are demonstrated on 
three use cases: comparison of document classifiers and of different part-of-speech taggers 
on a text categorization problem, and outlier detection in document corpora.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Text mining [9] is a research area that deals with the construction of models and patterns from text resources, aiming at 
solving tasks such as text categorization and clustering, taxonomy construction, and sentiment analysis. This research area, 
also known as text data mining or text analytics, is usually considered as a subfield of data mining (DM) research [12], but 
can be viewed also more generally as a multidisciplinary field drawing its techniques from data mining, machine learning, 
natural language processing (NLP), information retrieval (IR), information extraction (IE) and knowledge management.

From a procedural point of view, text mining processes typically follow the CRISP-DM reference process model for data 
mining [7], which proposes six phases when working on a DM project: business understanding, data understanding, data 
preparation, modeling, evaluation, and deployment. Text mining can be distinguished from general data mining by special 
procedures applied in the data preparation phase, where unstructured or poorly structured text needs to be converted 
into organized data, structured as a table of instances (rows) described by attributes (columns). In the modeling phase, 
such a table of instances can be used by the standard or slightly adapted data mining algorithms to uncover interesting 

* Corresponding author.
E-mail addresses: matic.perovsek@ijs.si (M. Perovšek), janez.kranjc@ijs.si (J. Kranjc), tomaz.erjavec@ijs.si (T. Erjavec), bojan.cestnik@temida.si (B. Cestnik), 

nada.lavrac@ijs.si (N. Lavrač).
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0167-6423/© 2016 Elsevier B.V. All rights reserved.
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information hidden in the data. Two typical approaches are using clustering algorithms to find groups of similar instances 
or classification rule learning algorithms to categorize new instances.

The TextFlows platform described in this paper is a new open source, web-based text mining platform that supports 
the design and composition of scientific procedures implemented as executable workflows. As a fork of ClowdFlows [28], 
TextFlows has inherited its service-oriented architecture that allows the user to utilize arbitrary web services as workflow 
components. TextFlows is oriented towards text analytics and offers a number of algorithms for text mining and natural 
language processing. The platform is implemented as a cloud-based web application and attempts to overcome various 
deficiencies of similar text analytics platforms, providing novel features that should be beneficial to the text mining com-
munity. In contrast to existing text analytics workflow management systems, the developed platform is the only one with all 
the following properties. It is simple (i.e., enables visual programming, is web-based and requires no installation), enables 
workflow sharing and reuse, and is open source. Moreover, the platform enables combining workflow components (called 
“widgets”) from different contexts (e.g., using clustering in relational data mining) and from different software sources (e.g., 
building ensemble classifiers from different libraries). To do so, it provides a unified input-output representation, which 
enables interoperability between widget libraries through automated data type conversion. It uses a common text represen-
tation structure and advocates the usage of ‘hubs’ for algorithm execution.

TextFlows is publicly available at http :/ /textflows .org, while its source code is available at https :/ /github .com /xflows /
textflows under the MIT License. Detailed installation instructions are provided with the source code. After setting up a 
local TextFlows instance, advanced users can also implement and test their own algorithms. Improvements to the code can 
also be pushed to the main Git code repository via pull requests. The committed changes are reviewed by the TextFlows 
core team and merged into the master branch.

TextFlows is a web application which can be accessed and controlled from anywhere while the processing is performed 
in a cloud of computing nodes. TextFlows differs from most comparable text mining platforms in that it resides on a server 
(or cluster of machines) while its graphical user interface for workflow construction is served as a web application through 
a web browser. The distinguishing feature is the ease of sharing and publicizing the constructed workflows, together with 
an ever growing roster of reusable workflow components and entire workflows. As not only widgets and workflows, but 
also data and results can be made public by the author, TextFlows can serve as an easy-to-access integration platform both 
for various text mining workflows but also for experiment replicability. Each public workflow is assigned a unique URL that 
can be accessed by anyone to either repeat the experiment, or to use the workflow as a template to design another, similar, 
workflow.

Workflow components (widgets) in TextFlows are organized into packages which allows for easier distributed develop-
ment. The TextFlows packages implement several text mining algorithms from LATINO1 [11], NLTK2 [3] and scikit-learn3 [32]
libraries. Moreover, TextFlows is easily extensible by adding new packages and workflow components. Workflow compo-
nents of several types allow graphical user interaction during run-time and visualization of results by implementing views 
in JavaScript, HTML or any other format that can be rendered in a web browser (e.g., Flash, Java Applet).

The rest of the paper is structured as follows. Section 2 presents the technical background and implementation details 
of the TextFlows platform, along with its key text mining components. The architecture of the system is presented in detail 
along with specific data structures that allow efficient text mining in a workflow environment. The concept of workflows, 
their implementation, execution and sharing are presented in Section 3, while Section 4 describes the widget repository 
and the implemented modules of the platform. The advanced features of TextFlows are demonstrated in Section 5 on three 
use cases: a comparison of document classifiers on a classification problem, a comparison of part-of-speech taggers on 
a text categorization (classification) problem, and outlier detection in document corpora. Section 6 presents the related 
work, where we describe comparable text mining platforms together with their similarities and differences compared to the 
TextFlows platform. Section 7 concludes the paper by presenting a summary and some directions for further work.

2. The TextFlows platform

This section presents the TextFlows platform, together with its architecture and main components of the system. We 
also introduce the graphical user interface and describe the concept of workflows. Like its predecessor data mining platform 
ClowdFlows [28], TextFlows can also be accessed and controlled from a browser, while the processing is performed on 
a cloud of computing nodes. In this section we explain the relationship between TextFlows and ClowdFlows, present the 
architecture of the TextFlows platform and describe the key text mining concepts of TextFlows in more detail.

2.1. Platform architecture

In software engineering, terms front-end and back-end are used to distinguish the separation between a presentation 
layer (the client side) and a data access layer (the server side), respectively. Fig. 1 shows the TextFlows architecture, which 

1 LATINO (Link Analysis and Text Mining Toolbox) is open-source—mostly under the LGPL license—and is available at http :/ /source .ijs .si /mgrcar /latino.
2 http :/ /www.nltk.org.
3 http :/ /scikit-learn .org.
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Fig. 1. An overview of the TextFlows architecture, separated into the front-end (in pink) and the back-end (in blue). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

is logically separated into the front-end (in pink) and the back-end (in blue). The back-end comprises a relational database 
for storing workflows, workers for task execution and a broker for delegating tasks from different queues to workers which 
can reside on different clusters of machines. The front-end is designed for user interaction with workflows through the 
graphical user interface in a web browser.

The back-end of the TextFlows platform uses Django,4 a Python-based open source high-level web framework. Django fol-
lows the model–view–controller architectural design, which encourages rapid development, and includes an object-relational 
mapper and a template engine for efficient code generation. The object-relational mapper provides an interface which links 
objects to a database. This provides support for several database systems, such as PostgreSQL, MySQL, SQLite and Oracle 
databases. PostgreSQL is used in the public installation of TextFlows.

Without additional extensions Django is synchronous, sometimes also described as blocking. This means that a HTTP 
request will not be returned until all processing is complete. Though this is the expected behavior usually required in web 
applications, in the case of TextFlows we need tasks to run in the background without blocking. Furthermore, different 
system environment requirements of implemented libraries dictate that the TextFlows platform must be distributed across 
multiple machines (e.g., the LATINO library uses the. Net framework and performs best on Windows operating systems). 
TextFlows task queues are used as a mechanism to distribute work across threads and machines. This is performed via 
Celery,5 which is a task queue system based on distributed message passing. Celery is focused on real-time operation, 
but supports scheduling as well. Dedicated worker processes monitor task queues for new work to perform and active 
workers execute different tasks concurrently on multiple servers. Tasks can be executed asynchronously (in the background) 
or synchronously (wait until ready). A Celery system can consist of multiple workers and brokers, thus supporting high 
availability and horizontal scaling.

Celery communicates via messages and uses a message broker to mediate between clients and workers. To initiate a 
task, a client adds a message to the queue, which the broker then delivers to a worker. The system used as a broker 
in TextFlows is RabbitMQ,6 a complete and highly reliable enterprise messaging system based on the Advanced Message 
Queuing Protocol (AMQP). It offers not only exceptionally high reliability, but also high availability and scalability, which is 
vital for the TextFlows platform.

TextFlows uses the PySimpleSoap library7 for integrations of web services as workflow components. PySimpleSoap is a 
lightweight Python library which provides an interface for client and server web service communication. Using PySimple-
Soap we can not only import WSDL web services as workflow components, but also expose entire workflows as WSDL web 
services.

The client side of the TextFlows platform consists of operations that involve user interaction primarily through the 
graphical user interface (GUI) in a modern web browser. The graphical user interface is implemented in HTML and JavaScript, 

4 https :/ /www.djangoproject .com.
5 http :/ /www.celeryproject .org.
6 http :/ /www.rabbitmq .com.
7 https :/ /code .google .com /p /pysimplesoap/.
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with an extensive use of the jQuery library.8 The jQuery library was designed to simplify client-side scripting and is the 
most popular JavaScript library in use today.9 On top of jQuery we use the interaction library jQuery-UI,10 which is a 
collection of GUI modules, animated visual effects, and themes. This library supports the option to make elements in the 
graphical user interface draggable, droppable, and selectable, which are the features supported by the TextFlows workflow 
canvas (cf. Section 3).

2.2. Key text mining concepts in TextFlows

The key concepts used in text mining and natural language processing are a document collection (or corpus), a single 
document (or text), and document features (or annotations) [9]. The following sections describe the model of corpora, doc-
uments and annotations in TextFlows. When designing TextFlows, emphasis was given to common representations that are 
passed among the majority of widgets: each TextFlows document collection is represented by an instance of the Annotated-
DocumentCorpus (ADC) class, a single text is an instance of the AnnotatedDocument class, while the features are instances of 
the Annotation class.

2.2.1. Annotated corpus
A document collection is any grouping of text documents that can be used in text analytics. Even though the size of a 

collection may vary from a few to millions of documents, from the text analysis perspective, more is better. In TextFlows, the 
Python class that represents a corpus of documents is called AnnotatedDocumentCorpus (ADC). Every ADC instance contains 
not only a collection of documents which are part of this corpus but also the features that provide additional information 
about the corpus (e.g., authors, date of collection, facts and notes about the dataset, etc.). The features are stored in a simple 
key-value Python dictionary, where keys are strings and the values can store any Python object.

2.2.2. Annotated document
In TextFlows a single textual data unit within a collection—a document—is represented by the class AnnotatedDocument. 

An AnnotatedDocument object contains the text of the entire document, which may vary in size, e.g., from a single sentence 
to a whole book.

Similarly to AnnotatedDocumentCorpus, AnnotatedDocument instances in TextFlows also contain features which may pro-
vide information about a single document (e.g., author, date of publication, document length, assigned keywords, etc.).

2.2.3. Annotation
In TextFlows Annotation instances are used to mark parts of the document, e.g., words, sentences or terms. Every An-

notation instance has two pointers: one to the start and another to the end of the annotation span in the document text. 
These pointers are represented as the character offset from the beginning of the document. Annotation instances also have 
a type attribute, which is assigned by the user and is used for grouping annotations of similar nature. As described in detail 
in Section 4, annotations can also contain key-value dictionaries of features, which are used by various taggers to annotate 
parts of document with a specific tag, e.g., annotations of type “token” that have a feature named “StopWord” with value 
“true”, represent stop words in the document.

3. The concept of workflows

The workflow model in the TextFlows platform consists of an abstract representation of workflows and workflow com-
ponents. A workflow is an executable graphical representation of a complex procedure. The graphical user interface used for 
constructing workflows follows a visual programming paradigm which simplifies the representation of complex procedures 
into a spatial arrangement of building blocks. The most basic unit component in a TextFlows workflow is a processing com-
ponent, which is represented as a widget in the graphical representation. Considering its inputs and parameters every such 
component performs a task and outputs the results. Different processing components are linked via connections through 
which data is transferred from a widget’s output to another widget’s input. Additional inputs for a widget are its parameters, 
which the user enters into the widget text fields. The graphical user interface implements an easy-to-use way of arranging 
widgets on a canvas to form a graphical representation of a complex procedure.

The TextFlows graphical user interface, illustrated in Fig. 2, consists of a widget repository and a workflow canvas. The 
widget repository is a set of widgets ordered in a hierarchy of categories. Upon clicking on a widget in the repository, the 
widget is added as a building block to the canvas. While hovering over a widget its documentation is shown in as a tooltip. 
Connections between widgets can be added by clicking on an output of a widget and then on an input of another widget. 
The workflow canvas implements moving, connecting, and issuing commands to execute or delete widgets. Every action on 
the workflows canvas causes an asynchronous HTTP POST request to be sent to the server. After the requested operation is 

8 http :/ /jquery.com.
9 http :/ /w3techs .com /technologies /overview /javascript _library /all.

10 http :/ /jqueryui .com.
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Fig. 2. A screenshot of the TextFlows GUI opened in Google Chrome. On the top there is a toolbar for saving, deleting entire workflows. On the left is the 
widget repository giving a list of available widgets grouped by their functionality. By clicking on a widget in the repository it is added to the workflow 
construction canvas which is on the right. The console for displaying success and error message is located on the bottom of the interface.

validated on the server, a success or error message with additional information is passed to the user interface. An example 
of such a validation is checking for cycles in the workflows when connecting widgets.

3.1. Workflow execution

The workflow execution engine is responsible for executing the workflow widgets in the predefined order. Two such 
engines are integrated into the TextFlows platform, one implemented in Python and another in JavaScript. Sub-parts of 
workflows in subprocesses and loops are executed by the Python implementation, while the top-level workflows executed 
from the user interface (when the user actually needs to see the order of the executed widgets in real time) are processed 
by the JavaScript implementation. The former shows results only after their complete execution, while the later allows 
showing results of the execution in real time. With the Python implementation the server receives only one HTTP request 
for the entire part of the workflow, therefore multiprocessing had to be implemented manually. On the other hand, when 
a workflow is running with the JavaScript engine, it perpetually checks for widgets that are executable and executes them. 
Executable widgets are widgets which either have no predecessors or their predecessors have already been successfully 
executed. Whenever two or more independent widgets can be executed at the same time they are asynchronously executed 
in parallel. Each widget is executed through a separate asynchronous HTTP request. Every request is handled by the server 
separately and executes a single widget. When a widget is prepared to be executed, a task is added to a suitable task queue; 
as some widgets have special library requirements or even system requirement they are executed on a separated task queue 
with its dedicated workers. Celery communicates via messages and uses a message broker to find a suitable worker to 
which the task is delivered to. Dedicated worker processes monitor task queues for new work to perform. When the task is 
executed its result is saved into the database and returned to the client. The execution of a workflow is considered complete 
when there are no executable or running widgets.

3.2. Workflow sharing

Workflows in TextFlows are processed and stored on remote servers from where they can be accessed from anywhere, 
requiring only an Internet connection. By default each workflow can only be accessed by its author, although (s)he may also 
choose to make it publicly available. The TextFlows platform generates a specific URL for each workflow that has been saved 
as public. Users can then simply share their workflows by publishing the URL. Whenever a public workflow is accessed by 
another user, a copy of the workflow is created on the fly and added to their private workflow repository. The workflow 
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is copied with all the data to ensure that the experiments can be repeated. In this way, the users are able to tailor the 
workflow to their needs without modifying the original workflow.

4. The widget repository

This section presents the TextFlows widget repository. First we describe different types of widgets, followed by the 
presentation of widgets based on their functionality as they appear in the TextFlows widget repository.

Widgets in TextFlows are separated into four groups based on their type:

• Regular widgets perform specific tasks that transform the data from their inputs and parameters to data on their outputs, 
and provide success or error messages to the system. In the back-end such widgets are represented as Python functions, 
which receive (on every widget execution) a Python dictionary of inputs and parameters as widget arguments, perform 
a specific task and return a dictionary of outputs. The function is called each time the widget is executed. Widgets that 
implement complex long-running procedures can also display a progress bar, which shows the progress to the user in 
real time.

• Visualization widgets are extended versions of regular widgets as they also provide the ability to render an HTML tem-
plate with JavaScript to the client’s browser, which is useful for data visualizations and presentation of a more detailed 
feedback to the user. Visualization widgets differ from regular widgets by a secondary Python function which controls 
the rendering of the template. This function is only invoked when the widget is executed using the JavaScript execution 
engine, i.e., when it is not part of a subprocess.

• Interactive widgets are extensions of regular widgets as they pop-up an additional window during execution through 
which the user can interact with or manipulate the data (an example of an interactive widget is shown in Fig. 12). 
The entire procedure is implemented using three Python functions. The first function receives the widget’s inputs and 
initialization parameters as its arguments and prepares the data for the second function. The second function renders 
(using an HTML template) a pop-up window that prompts the user to manipulate the data. The final function uses the 
user inputs, as well as the widget’s inputs and parameters to produce the final output of the widget.

• Workflow control widgets provide additional workflow controls which allow the user to combine different workflow 
components into subprocesses, and provide different types of iterations through data (e.g., iteration through a list of 
classifiers, applying a classifier to all folds in cross-validation, etc.). This group of widgets consists of: Subprocess, Input, 
Output, For Input, For Output, Cross Validation Input and Cross Validation Output widgets. Whenever a Subprocess widget is 
added to a workflow, an initially empty workflow with no inputs and outputs is created. Then, when an Input or Output
widget is attached to a subprocess workflow, an input or output is automatically added to the subprocess widget itself. 
Workflows can be indefinitely nested this way.
Two additional variations of the input and output widgets exist in TextFlows. When a subprocess contains the For Input
and For Output widgets, the workflow execution engine will emulate a for loop by attempting to break down the object 
on the input and executing the subprocess workflow once on every iteration. Using these controls a subprocess can 
be iteratively executed on a list. Similarly, if the user opts to use the Cross Validation Input and Cross Validation Output
widgets the input data will be divided into the training and test dataset according to the selected number of folds; if 
the input data is labeled, stratified cross-validation [40] is performed.

The widget repository shows the hierarchy of all the widgets currently available in the TextFlows platform, grouped by their 
functionality. There are four top-level categories:

• Text mining widgets: a collection of implemented text mining widgets; these widgets are further divided based on their 
text mining functionality.

• Basic widgets: widgets that are responsible for creating and manipulating simple objects such as strings and integers.
• Subprocess widgets: a collection of workflow control widgets, which are required for visual programming of complex 

procedures.
• WSDL imports: workflow components representing the WSDL web-services that the user has imported.

In the following sections we present in more detail the text mining widgets based on their functionality in the order of 
appearance in the TextFlows widget repository.

4.1. Corpus and vocabulary acquisition

Document acquisition (import) is usually the first step of every task, where TextFlows employs various widgets to enable 
loading document corpora, labeling of documents with domain labels and converting them into the AnnotatedDocumentCor-
pus structure. We identified the following text document acquisition scenarios, which are also supported by the developed 
widgets:
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• Loading locally stored files in various application dependent formats. In TextFlows document corpora can be uploaded from 
local files using the Load Document Corpus interactive widget. The entire dataset can be either a single text file (.doc, 
.docx, .pdf file formats are supported), where each line represents a separate document, or a zip of files in which a 
document is represented as a file. Apart from text, the files may optionally contain document titles, as well as multiple 
labels, which are encoded by the first word within a document prefixed by an exclamation mark, e.g., “!positive” is 
used to denote that the document belongs to the “positive” document category.

• Acquiring documents using the WSDL+SOAP web services. The user can integrate third-party web services as workflow com-
ponents using the Import webservice button obtained from the bottom of the widget repository. Such integration allows 
for the inclusion of database web services into the workflow (e.g., PubMed offers a SOAP web service interface to ac-
cess their database). TextFlows currently supports WSDL as the interface definition language for describing connections 
and requests to the web service and SOAP as the format for sending and receiving messages. The output of the im-
ported web service widget can be connected to the Load Document Corpus widget that transforms the plain text input 
documents into the AnnotatedDocumentCorpus structure.

• Selecting documents from SQL databases. The TextFlows platform supports loading data only from MySQL databases via 
the Load Document Corpus from MySQL widget. Before execution the user enters the information which is required to 
connect to a database (e.g., user credentials, database address, database name, table name, column names, etc.) in order 
to retrieve the data from a MySQL database server. This widget then connects to the specified MySQL database server 
and returns the input columns representing document titles, texts and labels from the selected table. The final output 
of the widget is an automatically constructed Annotated Document Corpus object.

• Crawling the Internet for gathering documents from web pages. The Crawl URL links widget receives as an input a list of 
URLs, e.g., Wikipedia pages. First, every page is visited by an automatic crawler in order to gather the website’s (HTML) 
content. Next, the Boilerpipe library [27] is used to extract the linguistically relevant textual content from the web page 
source. There are several content extraction methods available which can be selected by the user from the widget’s 
properties. Finally, the Crawl URL links outputs the Annotated Document Corpus where document titles are represented 
with URLs and the extracted website texts become the document texts.

• Collecting documents from snippets returned from web search engines. In TextFlows the user can search the web using the 
Search with Bing and Search with Faroo widgets, which use the Microsoft Bing11 and Faroo12 as their web search engines, 
respectively. Both widgets require the user to enter the search query as well as the number of search results that the 
widget should return. The output of both widgets is a list of URLs which are returned by the web search engine. The 
execution the output can be connected to the Crawl URL links widget which will extract the web content for every URL.

The most straightforward technique to incorporate background knowledge about the documents and their domain is to 
use a controlled vocabulary. A controlled vocabulary is a lexicon of all terms that are relevant for a given domain. TextFlows 
allows the users not only to upload their own local vocabulary files but also gives them the possibility to use one of the 
implemented vocabulary construction tools, such as the MeSH filter widget which constructs a vocabulary containing all the 
terms that belong to the user selected descriptors from the MeSH hierarchy.13

4.2. Corpus manipulation and visualization

TextFlows implements widgets which allow the manipulation of AnnotatedDocumentCorpus (ADC) data objects. They allow 
the user to add new features, extract existing features from a document corpus, split document corpora (by either specifying 
conditions or by indices), merge different corpora, etc.

A special widget in the platform is Document Corpus Viewer, which visualizes the ADC data objects (note that TextFlows 
emphasizes the importance of the common ADC representation which is passed among the majority of widgets). As shown 
in Fig. 3, the Document Corpus Viewer interactive widget allows the user to check the results of individual widgets by 
visualizing the ADC data object from their outputs. Through its interactive interface the widget allows the user to select 
an individual document from the list of document snippets by simply clicking on it. This opens a new page with a detailed 
view of the selected document, as shown in Fig. 3.

4.3. Text preprocessing widgets

Preprocessing is a very important part of any form of knowledge extraction from text documents. Its main task is the 
transformation of unstructured data from text documents into a predefined well-structured data representation. In general, 
the task of preprocessing is to construct a set of relevant features from text documents. The set of all features selected 
for a given document collection is called a representational model [42,43,9]. Each document is represented by a vector of 

11 http :/ /www.bing .com/.
12 http :/ /www.faroo .com/.
13 MeSH (Medical Subject Headings) is a controlled vocabulary thesaurus used for indexing articles in PubMed, a database designed by The National 

Library of Medicine. The MeSH database is available online http :/ /www.nlm .nih .gov /mesh.
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Fig. 3. Document Corpus Viewer widget visualizes the AnnotatedDocumentCorpus data objects. This figure shows the document exploration page which 
displays a detailed view for a selected document. On the left side a list of applied tokenizations is shown, while on the right the document’s full text is 
displayed. When the user selects a tokenization from the list, the tokens are highlighted directly on the text of the document with an alternative background 
color. As shown in the figure, annotation features are shown by hovering over a token.

numerical values, one for each feature of the selected representational model. Using this construction, we get the most 
standard text mining document representation, called feature vectors, where each numeric component of a vector is related 
to a feature and represents a weight related to the importance of the feature in the selected document. Typically, such 
text-based feature vectors are very sparse, as the majority of weights are equal to zero [9]. The goal of text preprocessing 
widgets is to extract a high quality feature vector for every document in a given document corpus.

Technically, our implementation employs the LATINO (Link Analysis and Text Mining Toolbox) software library [11], NLTK 
(Natural Language Toolkit) library [3] and scikit-learn library [32] for the text preprocessing needs. Together they contain the 
majority of elementary text preprocessing procedures as well as a large number of advanced procedures that support the 
conversion of a document corpus into a table of instances, thus converting every document into a table row representation 
of an instance.

In the TextFlows widget repository preprocessing techniques are based on standard text mining concepts [9] and are 
implemented as separate categories. Every category possesses a unique hub widget, which has the task of applying an 
given preprocessing technique from its category to the AnnotatedDocumentCorpus data object. Every such widget is library 
independent, meaning that it can execute objects from either LATINO, NTLK or scikit-learn libraries.

A standard collection of preprocessing techniques is listed below, together with sets of functionalities implemented in 
our platform:

1. Tokenization. In tokenization, meaningful tokens are identified in the character stream of the document, such as words 
or terms. TextFlows offers a large set of tokenizers: from LATINO, such as Max Entropy Tokenizer (word and sentence), 
Unicode, Simple and Regex tokenizers; various tokenizers from the NLTK library, from simpler ones, such as Line, Regex, 
S-Expression, Simple, to more complex ones, like Stanford Tokenizer and Treebank Word Tokenizer. Every tokenizer can be 
applied on a document corpus using the Tokenizer Hub widget. This hub receives as an input an ADC data object and 
a tokenizer instance, as well as two parameters entered by the user: the type of annotations to be tokenized (e.g., 
“TextBlock”) and the type of annotations to be produced (e.g., “Sentence”, “Token”). The Tokenizer Hub finds annotations 
of the input type and tokenizes them using the input tokenizer. The output of the hub is a new ADC object, which now 
contains the annotations of the new type. As described in the previous section, the results of any corpus tokenization 
can be visualized using the Display Document Corpus widget, as shown in Fig. 3.

2. Stop word removal. Stop words are predefined words from a language that do not carry relevant semantic information 
(e.g., articles, prepositions, conjunctions, etc.); the usual practice is to ignore them when building a feature set. In 
TextFlows we have three widgets which are used for stop word tagging: Get StopWord Set (outputs a predefined list of 
stop words for the user selected language—stop word lists for 18 languages, taken from Snowball,14 are included in our 
library), StopWords Tagger (receives as an input a list of stop words and outputs a constructed tagger object, which tags 
the words from the input list as stopwords), StopWord Tagger Hub (responsible for applying a stop word tagger on a 

14 Snowball: A small string processing language designed for creating stemming algorithms: http :/ /snowball .tartarus .org/.
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document corpus). Similarly to the Tokenization Hub, the Stop Word Tagger Hub receives on its inputs an ADC data object 
and a stop word tagger instance. The user is able to enter two parameters: the type of annotations to be tagged (as 
a stop word) and a feature name, which is added (with a default value of ‘true’) to every annotation of the selected 
type, which the tagger marks as a stop word. The output of the hub is a new ADC object. Fig. 3 shows the visualization 
of a selected document from the output ADC data object using the Display Document Corpus widget. The stop word 
annotation features are shown by hovering over the documents tokens.

3. Part-of-speech tagging. Tagging annotates words with the appropriate part-of-speech (PoS) tags based on the context in 
which they appear. The TextFlows platform includes the LATINO’s Max Entropy PoS Tagger and from NLTK the following 
taggers: Affix PoS Tagger (learns only on term affixes), Brill’s rule-based PoS Tagger [5], Classifier-based PoS Tagger (requires a 
classifier and a pre-annotated dataset to learn the PoS tags) and a PoS N-gram tagger (learns on a pre-annotated dataset 
the most frequent tag for every n-gram). PoS tags are applied to ADC data using the PoS Tagger Hub. The PoS Tagger Hub
requires, besides the usual element annotation type (default: “Token”) and the PoS feature name (default: “PoS Tag”), 
an additional parameter input by the user: a sentence annotation type (default: “Sentence”). The hub tags element 
annotations in the context of sentence annotations by assigning them new features with values returned by the PoS 
tagger. Fig. 3 visualizes a selected document from the output ADC data object using the Display Document Corpus widget. 
The generated PoS tag features are shown when hovering over the document’s tokens.

4. Stemming and lemmatization. This is the process of converting words/tokens into their stem or citation forms. The follow-
ing stemmers/lemmatizers were taken from the LATINO library: Stem Tagger Snowball and the Lemma Tagger LemmaGen
[23]. We have also implemented the following widgets which represent the corresponding algorithms from the NLTK 
library: Porter Stemmer, Snowball Stemmmer, ISRI Stemmer, Regex Stemmer, RSLP Stemmer, Lancaster Stemmer, and Word-
Net Lemmatizer. Analogous as in the stop word removal category, stemmers and lemmatizers can be applied using the 
Stem/Lemma Tagger hub. This widget receives as an input an ADC data object and a stemmer (or lematizer) instance 
and outputs a new ADC data object with an additional stemming added. The user can enter two parameters: the type 
of annotations to be stemmed (“Token” by default) and a feature name (“Stem” by default), which will be assigned to 
every annotation of the selected type as a key-value pair together with the stemmed value.

4.4. Bag-of-Words model

In the most general case, when dealing with raw text, the features are derived from text using only text preprocessing 
methods. The most common document representation model in text mining is the Bag-of-Words (BoW) model [9]. It uses 
all words (or, e.g., terms) as features, therefore the dimension of the feature space is equal to the number of different words 
in all of the documents. One of the most important characteristics of the described document features is the fact that they 
are usually very sparse [9], meaning that most of the features in a vector have zero weight. This sparsity is due to the fact 
that there are many different features (words, terms, concepts) in the document corpus; yet, a single document contains 
only a small subset of them. Consequently, the resulting feature matrix will have many (typically more than 99%) feature 
values that are zeros.

The TextFlows platform uses the Compressed Sparse Row (CSR) matrices, implemented in the scipy.sparse package15 in 
order to be able to efficiently store the matrix of features in memory and also to speed up algebraic operations on vectors 
and matrices. The CSR matrices make no assumptions about the sparsity structure of the matrix, and do not store any 
unnecessary elements. Their main purpose is to put the subsequent non-zeros of the matrix rows in contiguous memory 
locations. Usually three vectors are created: one for storing floating-point numbers (values), and the other two for integers 
(col_ ind, row_brk). The values vector stores the values of the non-zero elements of the matrix, as they occur if reading 
through the matrix row by row. The col_ind vector stores the column indexes of the elements in the val vector, while the 
row_brk vector stores the locations in the values vector that start a new row in the dense original matrix. The storage savings 
using this approach are significant. Instead of storing m ∗ n elements, we only need to use 2 ∗ nnz + m storage locations, 
where m is the number of rows, n is the number of columns and nnz is the number of non-zeros in the dense matrix.

In the data mining modeling phase (i.e., document classification or text clustering), each document from the ADC struc-
ture needs to be represented as a set of document features it contains. In TextFlows the Construct BoW Dataset and BoW 
Model Constructor widget takes as an input an ADC data object and generates a sparse BoW model dataset (which can be 
then handed to a classifier). The widget takes as an input also several user defined parameters, which are taken into account 
when building the feature dataset:

• Token Annotation. This is the type of Annotation instances marking parts of the document (e.g., words, sentences or 
terms), which will be used for generating the vocabulary and the dataset.

• Feature Name. If present, the model will be constructed out of annotations’ feature values instead of document text. For 
example, this is useful when we wish to build the BoW model using stems instead of the original word forms.

15 http :/ /docs .scipy.org /doc /scipy /reference /sparse .html.

3.3. TextFlows 61



M. Perovšek et al. / Science of Computer Programming 121 (2016) 128–152 137

• Stop Word Feature Name. This is an annotation feature name which is used to tag tokens as stop words. These tokens 
will be excluded from the BoW representational model. If the stop word feature name in not provided all tokens are 
included in the BoW space.

• Label Document Feature Name. This is the name of the document feature which will be used as a class label of the 
examples in the dataset. If blank, the generated sparse dataset will be unlabeled.

• Maximum n-gram Length. The upper bound of the range of n-values for different n-grams to be extracted. All values of n
such that 1 ≤ n ≤ max_ngram will be used.

• Minimum Word Frequency. Cut-off frequency value for including an item into the vocabulary.
• Word Weighting Type. The user can select among various weighting models for assigning weights to features:

– Binary. A feature weight is 1 if the corresponding term is present in the document, or zero otherwise.
– Term occurrence. A feature weight is equal to the number of occurrences of the corresponding term. This weight is 

sometimes better than a simple binary value since frequently occurring terms are likely to be more relevant to the 
given text.

– Term frequency. A weight is derived from the term occurrence by dividing the vector by the sum of all vector’s 
weights.

– TF-IDF. Term Frequency-Inverse Document Frequency [42] is the most common scheme for weighting features. For a 
given term w in document d from corpus D , the TF-IDF measure is defined as follows:

tfIdf(w,d) = tf(w,d) × log
|D|

|{d ∈ D : w ∈ d}| , (1)

where tf(w, d) represents the number of times term w appears in document d. The reasoning behind the TF-IDF 
measure is to lower the weight of terms that appear in many documents as this is usually an indication of them 
being less important (e.g., stop-words). The appropriateness of this scheme was confirmed in numerous text mining 
problem solutions [14,9].

– Safe TF-IDF. For a given term w in document d from corpus D , the Safe TF-IDF measure is defined as follows:

safeTfIdf(w,d) = tf(w,d) × log
|D|

|{d ∈ D : w ∈ d}| + 1
, (2)

This approach smoothens IDF weights by adding one to document frequencies, as if an extra document was seen 
containing every term in the collection exactly once. This prevents the occurrence of divisions by zero.

– TF-IDF with sublinear TF scaling. It often seems unlikely that twenty occurrences of a term in a document truly carry 
twenty times the significance of a single occurrence. Accordingly, there has been considerable research into variants 
of term frequency that go beyond counting the number of occurrences of a term [31]. A common modification is to 
use the logarithm of the term frequency instead of tf, defined as:

wf(w,d) =
{

1 + log tf(w,d), if tf(w,d) > 0

0, otherwise
(3)

• Normalize Vectors. The weighting methods can be further modified by vector normalization. If the user opts to use it in 
TextFlows the L2 regularization [30] is performed.

Besides the sparse BoW model dataset the Construct BoW Dataset and BoW Model Constructor also outputs a BowModelCon-
structor instance. This additional object contains settings which allow repetition of the feature construction steps on another 
document corpus. These settings include the input parameters, as well as the learned term weights and vocabulary.

An important widget in the Bag-of-Words category is the Create BoW Dataset using BoW Model Constructor. Its task is to 
apply the input BowModelConstructor instance to an input ADC data object and create a sparse feature dataset. This is useful, 
for instance, in every cross-validation fold where you need to build the test dataset’s sparse matrix using the same settings 
(also including IDF term weights) used for building the training sparse matrix.

4.5. Document classification

Document classification (also called text categorization) refers to automated assigning of predefined categories to nat-
ural language texts. A primary application of text categorization systems is to assign subject categories to documents to 
support information retrieval, or to aid human indexers in assigning such categories. Text categorization components are 
also increasingly being used in natural language processing systems for data extraction. Classification techniques have been 
applied to spam filtering, language identification, genre classification, sentiment analysis, etc. The common approach to 
building a text classifier is to manually label a selected set of documents to predefined categories or classes, and use them 
to train a classifier. The trained classifier can then be used to assign class labels to unseen documents based on the words 
they contain.

The term supervised learning refers to the above-described approach to automatically building a text classifier from 
training documents, which have been labeled (often manually) with predefined classes. The TextFlows platform currently 
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contains only the supervised learning approaches from the LATINO, NTLK and scikit-learn libraries. Every widget contains 
input parameters which are used to construct the classifier object. From the LATINO library we integrated Nearest Centroid 
Classifier, Naive Bayes Classifier, SVM (Binary and Multiclass) Classifier, Majority Classifier, Maximum Entropy Classifier, kNN (fast and 
regular version) Classifier, while the NLTK library contributes an additional Naive Bayes Classifier. The following widgets rep-
resent classifiers from the scikit-learn library: Decision Tree Classifier, Multinomial Naive Bayes Classifier, Gaussian Naive Bayes 
Classifier, k-Nearest Neighbors Classifier, SVM Linear Classifier, SVM Classifier

For training and applying classifiers TextFlows offers two dedicated widgets: Train Classifier Hub and Apply Classifier Hub. 
The Train Classifier Hub receives on its inputs a sparse feature dataset object and an untrained classifier. Its function is to fit 
the classifier model according to the given training data. The final outcome of this widget is a trained classifier object.

The Apply Classifier Hub receives a trained classifier object and returns predicted class probabilities for every new docu-
ment from the input test dataset, as well as the test dataset with a new predicted labels column.

4.6. Literature-based discovery

Literature-based discovery refers to the use of papers and other academic publications (the “literature”) to find new 
relationships between existing knowledge (the “discovery”). [48] presented an approach to discovering unknown relations 
between previously unrelated concepts by identifying interesting bridging terms (b-terms) appearing in two separate docu-
ment sets and bearing the potential to indirectly connect the two concepts under investigation.

The TextFlows platform includes a dedicated category with several widgets which support literature-based discovery. For 
example, literature-based discovery is supported through the incorporated Explore In CrossBee widget, which provides a link 
to the web application CrossBee (Cross-Context Bisociation Explorer) developed by [21]. The web application can be used 
for cross-domain knowledge discovery from a given pair of user-selected document corpora.

4.7. Noise detection

Noise filtering is frequently used in data preprocessing to improve the accuracy of induced classifiers. TextFlows incor-
porates an ensemble-based noise ranking methodology for explicit noise and outlier identification, named NoiseRank [45], 
which was modified to work with texts and TextFlows ADC data objects. Its main aim is to detect noisy instances for 
improved data understanding, data cleaning and outlier identification. NoiseRank was previously successfully applied to a 
real-life medical problem [45]. We show an example of using the NoiseRank methodology on a task of outlier detection in 
document corpora in Section 5.3.

4.8. Evaluation and visualization

The TextFlows platform enables users to create interactive charts for easy and intuitive evaluation of performance results. 
It includes standard performance visualizations used in machine learning, data mining, information retrieval, etc. Notably, 
the TextFlows platform includes a full methodology, named VIPER [45,46], i.e., a visualization approach that displays the 
results as points in the two dimensional precision-recall space. The platform contains several visual performance evaluation 
widgets, which result in interactive performance charts that can be saved and exported to several formats.

• Scatter charts. These include ROC space charts and PR space charts.
• Curve charts. These include PR curves, Cost curves, Lift curves, ROC curves, Kendall curves and Rate-driven curves.
• Column charts. These are general column charts for visualizing multiple performance measures for a set of algorithms.

While VIPER visualizations appear to be straightforward, this visualization toolbox is innovative and very useful for 
text analytics. An example is visual comparison of F-value results of different text analysis tools, including F-isoline-based 
text classifier comparison, which is not supported by any other visualization tool. We demonstrate several implemented 
visualization techniques in Section 5.

5. Selected use cases

In this section we demonstrate advanced features of TextFlows on three use cases: a comparison of classifiers from 
different libraries for a text categorization problem, a comparison of PoS taggers on the same categorization problem and 
outlier detection in document corpora.

In our experiments we used a corpus of documents, presented by [35] and [36], which was originally collected by the 
IPrA Research Center, University of Antwerp. The document corpus contains 464 articles (about 320,000 words) concerning 
Kenyan presidential and parliamentary elections, held on 27th December 2007, and the crisis following the elections. The 
documents originate from six different daily newspapers in English, covering the time period from 22nd December 2007 
to 29th February 2008. Articles from the US and British press (The New York Times, The Washington, The Independent, 
The Times and Post) form the class label “Western” (WE) and articles from local Kenyan newspapers Daily Nation and The 
Standard are categorized as “Local” (LO).
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Fig. 4. Document preprocessing workflow, available at http :/ /textflows .org /workflow /604/. The same workflow is implemented as a subprocess in the three 
use cases presented in this paper.

Fig. 5. The workflow for evaluating 7 classifiers from different text mining libraries. The workflow is available at http://textflows.org/workflow/350/.

The two common steps in the three presented use cases are the Document acquisition and Document preprocessing steps. 
These two steps were implemented as subprocesses in the main workflows for the three use cases, as shown in Figs. 5, 9
and 11.

In all three workflows, Document acquisition is the first step of the methodology and is responsible for, first, loading the 
locally stored text file (containing the Kenyan elections document corpus), then labeling the documents with appropriate 
domain labels and finally converting them into the AnnotatedDocumentCorpus data object.

Fig. 4 shows the subprocess in the TextFlows platform for the second step in all three presented methodologies: the Doc-
ument preprocessing workflow. As described in Section 4, category specific hubs are used for applying different preprocessing 
objects to the AnnotatedDocumentCorpus data object. The documents are first split into sentences with LATINO’s Max Entropy 
Sentence Splitter and then the sentences are split into tokens with LATINO’s Max Entropy Tokenizer. Some of these tokens are 
tagged as stop words using the Stop Word Tagger with the predefined Snowball list of English stop words. Finally, the Porter 
Stemmer is used for converting tokens into their stems.

5.1. Classifier comparison for text categorization

In this section we propose a workflow for classifier evaluation on the Kenyan elections dataset. In our experiments 
we compared 7 different classifiers from different text mining libraries. As shown in Fig. 5, we compared 4 classifiers 
from LATINO (Nearest Centroid Classifier, Naive Bayes Classifier, Maximum Entropy Classifier, kNN Fast Classifier) and 3 classifiers 
implemented in the scikit-learn library (Gaussian Naive Bayes Classifier, k-Nearest Neighbors Classifier, SVM Linear Classifier).

Every algorithm was evaluated using 10-fold stratified cross-validation, as shown in Fig. 6. All cross-validations were 
performed using the same seed in order to ensure the data was equally split for different classifiers. Fig. 7 shows the 
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Fig. 6. The For loop subprocess which evaluates the input classifier using 10-fold stratified cross-validation (with a constant seed) and extracts the obtained 
results, which are then visualized as shown in Fig. 5.

Fig. 7. The subprocess workflow representing the methodology in every fold for the used 10-fold cross-validation. First, the construction of the training and 
testing sparse matrices is performed. Next, the input classifier model is fitted to the training dataset and used to predict class probabilities for every new 
document from the input test dataset. The subprocess returns constructed pairs of actual and predicted classes.

methodology behind the CrossValidation subprocess which was executed for every cross-validation fold. First, a sparse BoW 
model dataset and the BowModelConstructor instance were generated by the Construct BoW Dataset and BoW Model Constructor. 
We constructed unigrams (n-grams where n = 1) out of stemmed values from word tokens, while disregarding stop words 
in the process. The Bag-of-Words vector space was calculated using the TF-IDF weighting scheme.

The test sparse matrix is required to be constructed using the same parameter settings, IDFs and vocabulary as the 
training sparse matrix. Therefore, we applied the BoW constructor object (output of the Construct BoW Dataset and BoW 
Model Constructor) to the test ADC data object using the Create BoW Dataset using the BoW Model Constructor.

After calculating the training and testing sparse matrices, we fitted the input classifier model to the training dataset 
using the Train Classifier Hub. Next, the Apply Classifier Hub received the trained classifier object and returned predicted 
class probabilities for every new document from the input test dataset. The Extract Actual and Predicted Values widget used 
these probabilities and constructed pairs of actual and predicted classes. These pairs were returned from the CrossValidation
subprocess and used for calculating different metrics, as shown in Fig. 6.

The results of cross-validation (precision, recall, F-score) were connected to the input of the VIPER: Visual Performance 
Evaluation widget, as shown in Fig. 5, while Fig. 8 presents its visualization of classifier evaluation in the precision-recall 
plane, where each point represents the result of an algorithm (for the selected target class “Lo”). Points closer to the 
upper-right corner have higher precision and recall values. F-measure values are presented as isolines (contour lines), which 
allows a simple comparison of algorithm performance.

Fig. 8 shows that in terms of the F-measure, scikit-learn’s SVM Linear Classifier and LATINO’s Maximum Entropy Classifier
achieved the best results: both algorithms generally achieved a higher percentage of correctly classified examples (higher 
recall score), and also a slightly higher percentage of correctly classified examples of the target class (higher precision score) 
compared to other classifiers used. A somewhat lower performance was achieved using LATINO’s Nearest Centroid Classifier
classifiers, while the k-nearest neighbor and Naive Bayes classifiers performed worse. Detailed results are presented in 
Table 1.
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Fig. 8. The VIPER visualization showing evaluation of classifiers from different libraries. This visualization is the result of the workflow presented in Fig. 5.

Table 1
Classifier evaluation on the Kenyan elections dataset.

Library Classifier Recall Prec. F1 
score

Classif. 
accuracy

AUC

LATINO Nearest Centroid Classifier 0.96 0.90 0.93 92.42% 0.92
LATINO Naive Bayes Classifier 1.00 0.72 0.84 80.74% 0.81
LATINO Maximum Entropy Classifier 0.97 0.93 0.95 94.59% 0.95
LATINO kNN Fast Classifier 0.93 0.88 0.90 90.26% 0.90

scikit-learn Gaussian Naive Bayes Classifier 0.87 0.82 0.84 83.77% 0.84
scikit-learn k-Nearest Neighbors Classifier 0.91 0.88 0.89 89.18% 0.89
scikit-learn SVM Linear Classifier 0.95 0.95 0.95 95.24% 0.95

The workflow was run within a virtual machine with a dedicated 1 core (Intel i7 2600k) and 4 GB of RAM. The running 
time for the document acquisition and document preprocessing step is 161 seconds while the comparison of classifiers with 
the 10 fold cross-validation takes 1486 seconds. The runtime of the entire workflow was 1652 seconds.

5.2. Part-of-speech tagger comparison for text categorization

In this section we describe a workflow for the evaluation of different part-of-speech taggers on the Kenyan elections 
dataset. In the experiments we compared five different PoS taggers: English Maximum Entropy PoS Tagger (from LATINO 
library) and PoS Affix Tagger, PoS N-gram Tagger, PoS Brill’s rule-based Tagger, PoS Classifier-based Tagger (from NLTK library). As 
shown in Fig. 9, PoS tagging widgets from NLTK require tagged sentence data as input, which is used for training the PoS 
tagger. The TextFlows platform already contains several tagged datasets, which come as a part of the NLTK library, and can 
be added to workflows through the NLTK Document Corpus widget. In this use case we used the annotated Brown corpus.16

The training process involves inspecting the tag of each word and storing the most likely tag for any word in a dictionary, 
which is stored inside the tagger. As it happens, once we have processed several thousand words of English text, most new 
words will be nouns. In cases when the NLTK PoS tagger is unable to assign a tag from its learned lookup table, it can use 
a backoff tagger from its input. As shown in Fig. 9 we have set the PoS Default Tagger as the backoff tagger for all NLTK 

16 Description of the Brown corpus is available at http://www.nltk.org/book/ch02.html#tab-brown-sources.
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Fig. 9. The workflow used for evaluation of 5 different PoS taggers from various text mining libraries on a text categorization problem. The workflow is 
available at http :/ /textflows .org /workflow /355/.

Fig. 10. The subprocess workflow representing the methodology in every fold for the used 10-fold cross-validation. First, the input PoS tagger is applied to 
the document corpus. Next, the construction of the training and testing sparse matrices is performed. Then, a linear SVM classifier is fitted to the training 
dataset and used to predict class probabilities for every new document from the input test dataset. Last, the subprocess returns constructed pairs of actual 
and predicted classes.

PoS taggers. The PoS Default Tagger assigns the input tag (e.g., “NN”, which is the PoS tag representing a noun) to every 
single word. Whenever the initial PoS tagger cannot assign a tag to a token it will invoke the input backoff tagger and thus 
tag the token as a noun. This improves the robustness of the language processing system. The PoS Classifier-based Tagger
widget also requires input of a classifier, which is learned to predict PoS tags based on the pre-annotated dataset. Every 
PoS tagger was applied to the document corpus, as shown in Fig. 10. In every iteration (over the list of PoS taggers) of the 
for loop the input PoS tagger is applied to the tokenized sentences of preprocessed ADC data object using the PoS Tagger 
Hub by generating new features with name “PoS tag” on every elementary (word) token. In order to use PoS tags together 
with stemmed values, we constructed (for every token) new features named “Stem with PoS” using the Add Computed Token 
Features widget. These features were later used in the CrossValidation subprocess to generate the BoW models. The values 
of the “Stem with PoS” features were constructed using the Add Computed Token Features widget as a combination of stems 
and PoS tags: “Stem_PoS tag”.

Next, 10-fold stratified cross-validation was performed on the generated PoS tagged ADC data objects. Similarly as in 
the classifier evaluation use case, all cross-validations were performed using the same seed in order to ensure the data 
was equally split for all PoS taggers. The methodology behind the CrossValidation subprocess, which is executed on every 
cross-validation fold, is similar to the methodology presented in Fig. 7. The only two differences are that cross-validation 
does not receive a classifier on its input—instead it always uses scikit-learn’s linear SVM classifier—and that the Construct 
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Table 2
PoS tagger evaluation on the Kenyan elections database.

Library Tagger Recall Precision F1 
score

Classif. 
accuracy

AUC

no PoS tagger 0.98 0.93 0.95 95.24% 0.95

LATINO Maximum Entropy 
PoS Tagger

0.98 0.94 0.96 96.10% 0.96

NLTK PoS Affix Tagger 0.98 0.94 0.96 95.67% 0.96
NLTK PoS Ngram Tagger 0.98 0.95 0.96 96.10% 0.96
NLTK PoS Brill Tagger 0.97 0.93 0.95 95.24% 0.95

NLTK+scikit-learn PoS Classifier Based 
Tagger (using SVM 
Linear Classifier)

0.98 0.95 0.96 96.32% 0.96

BoW Dataset and BoW Model Constructor widget uses features constructed by the Add Computed Token Features widget instead 
of stemmed values.

Table 2 shows the results of the presented PoS tagger evaluation workflow. The first row in the table shows the classi-
fication results without applying a PoS tagger (see row 3 of Table 1). We see that the usage of a PoS tagger increases the 
performance of the classifier. The best results were obtained using the NLTK’s PoS Classifier Based Tagger, which in combina-
tion with the LATINO’s Maximum Entropy Classifier achieved a slightly higher classification accuracy on the Kenyan elections 
dataset compared to the other PoS taggers.

The experiments were run using the same resources as in the classifier evaluation example—a virtual machine with a 
setting of 1 core and 4 GB of RAM. The execution time of the entire workflow was 1913 seconds, where 158 seconds were 
used for document acquisition and preprocessing, while the for loop which compares PoS taggers took 1747 seconds to 
execute.

5.3. Outlier document detection in categorized document corpora

In this section we propose a workflow for detecting atypical, unusual and/or irregular documents on the Kenyan elections 
dataset. The idea behind irregularity detection in categorized document corpora is based on early noise filtering approaches 
by [6], who used a classifier as a tool for detecting noisy instances in data. Noise detection approaches identify irregularities 
and errors in data and are therefore suitable also for detecting atypical documents in categorized document corpora, which 
can be considered as outliers of their own document category.

The aim of the NoiseRank (ensemble-based noise detection and ranking) methodology, proposed by [47,45], is to sup-
port domain experts in identifying noisy, outlier or erroneous data instances. The user should be able to select the noise 
detection algorithms to be used in the ensemble-based noise detection process. We have implemented this methodology 
as a workflow in TextFlows, which now offers widgets implementing classification and saturation noise filters, and enables 
the inclusion of external user specific noise detection algorithms available as web services. Fig. 11 presents the NoiseRank 
workflow using the implemented classifiers used for class noise detection.

The NoiseRank methodology workflow returns a visual representation of a list of potential outlier instances, ranked 
according to the decreasing number of noise detection algorithms which identified an instance as noisy, due to its classi-
fication into a class different from its own class label. The ability of NoiseRank to obtain atypical documents was tested 
on the Kenyan elections corpus. The implemented voting-based irregularity detection method uses four different classifiers 
acting as noise detection algorithms by identifying misclassified instances.

As in the experiments of Section 5.1 and Section 5.2 we ran the workflow on a virtual machine with 1 CPU core and 
4 GB of RAM. The execution time of the entire workflow was 202 seconds, where 148 seconds were used for document 
acquisition and preprocessing, while the BoW model construction and NoiseRank widget took 52 seconds to execute.

Fig. 12 shows the obtained set of atypical/irregular articles grouped and ranked according to the number of noise detec-
tion algorithms that identified them as irregular.

6. Related work

An extensive survey of workflow management platforms, including general data mining platforms—such as RapidMiner 
[29], Weka [49] and Orange [8]—is out of the scope of this paper, however, we do describe and compare to TextFlows other 
text mining and natural language processing platforms, starting with a comparison to its predecessor ClowdFlows [28]. In 
the rest of this section, we concentrate on the key features of the presented platforms: visual programming and execution 
of scientific workflows, diversity of workflow components, service-oriented architectures, remote workflow execution, big 
data processing, stream mining, and data sharing. This overview is followed by a comparison of the presented systems with 
TextFlows.
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Fig. 11. Example workflow of the NoiseRank methodology, which is available at http://textflows.org/workflow/360/.

Fig. 12. The NoiseRank interactive widget where the user gets a visual representation of a list of top-ranked potentially noisy instances, which are mis-
classified according to a decreasing number of elementary noise detection algorithms which identified the instance as noisy. The user can decide which 
documents he wishes to exclude from the document corpus.

6.1. Comparison with ClowdFlows

TextFlows is a heavily modified fork of the ClowdFlows data mining platform [28], which is a general workflow con-
struction and execution tool for data mining and machine learning. The platform incorporates workflow components for 
numerous data mining and machine learning projects—including WEKA [49] and Orange [8]—while severely lacking text 
mining and natural language processing components. Moreover, despite being very useful for workflow construction by the 
informed developers and end-users, ClowdFlows currently suffers from a somewhat disorganized roster of workflow com-
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ponents which may be incompatible with each other. As a result, new users sometimes struggle to construct functioning 
workflows as there are too many mutually incompatible components.

We created a fork of ClowdFlows in order to maintain cohesion of incorporated text mining and natural language process-
ing workflow components. TextFlows has a completely redesigned roster of workflow components, which are now highly 
compatible with each other within the platform and easier to use for the expert and novice users alike. In contrast to 
ClowdFlows, where there are no guidelines for sorting workflow components into categories, TextFlows sorts the compo-
nents based on the functionality of the components As a result, all widgets that perform similar functions are located in 
the same category. We have also enriched the user interface with extra information about the workflow components and 
written the documentation for the provided workflow components and their inputs and outputs.

While we introduced a completely new common text representation structure (cf. Section 2.2), a new widget structure 
as well as numerous new text mining and new NLP components (cf. Section 4) and workflows (cf. Section 5 for selected 
examples), the underlying architectures of ClowdFlows and TextFlows remain similar. To summarize, TextFlows is built on 
top of ClowdFlows, meaning that both the widget execution engine and the core of the ClowdFlows user interface are 
present in TextFlows. TextFlows still benefits from all security updates, bug fixes and feature upgrades that ClowdFlows 
receives.

6.2. Survey of workflow management environments for natural language processing

Workflow Management Systems have in the last years become a very hot topic, mostly in the field of bioinformatics 
and other natural sciences. Lately, however, this trend has also spread to NLP, as evidenced also by recent workshops at 
the main NLP conferences, e.g., the Workshop “Language Technology Service Platforms: Synergies, Standards, Sharing” at the 
9th Language Resources and Evaluation Conference (LREC 2014)17 and the Workshop on Open Infrastructures and Analysis 
Frameworks for HLT18 at the 25th Conference on Computational Linguistics, (COLING 2014).

The current situation with Workflow Management Systems for NLP is very fluid; some well-established systems are 
slowly starting to be used for NLP applications, while at the same time, new ones are being developed, specifically targeted 
to NLP. In this section we first overview some of the more important NLP-related Workflow Management Systems, where 
each platform/project is introduced and its most salient characteristics presented.

6.2.1. Taverna
The set of tools developed by the myGrid19 team in the U.K. and used primarily for bioinformatics and other life sci-

ences research (having in mind experiment replication) is currently probably the most advanced, richest and easiest to use 
Workflow Management (Eco)System, and consists of the following main components:

• SoapLab20 [44] which provides a convenient way to generate web services for command-line software;
• Taverna21 [16] with its Workflow editor and Server;
• BioCatalogue22 [2], a registry (for life sciences) where web services can be shared, searched for, annotated with tags, 

etc.
• myExperiment23 [41], a social network for sharing, reusing and repurposing public workflows.

As the most important part of the myGrid offerings, we here discuss Taverna, which is conceived as a suite of tools used 
to design and execute scientific workflows. It combines distributed Web Services and/or local tools into complex analysis 
pipelines, which can be executed on local desktop machines or through larger infrastructures, such as supercomputers, Grids 
or cloud environments, using the Taverna Server. The Server allows for workflow execution from web browsers, or through 
third-party clients; it supports WSDL, REST, GRID and Cloud services, local and distributed command-line scripts, as well as 
other types of services, such as R-Scripts.

Taverna is connected to myExperiment and BioCatalogue, as well as to other service registries, such as BioVeL,24 the 
Biodiversity Virtual e-Laboratory. In addition, Taverna offers an Interaction Service, which enables scientists to select param-
eters and data during workflow execution, and the Provenance suite, which records service invocations, intermediate and 
final workflow results.

Taverna workflows can be designed and executed in several ways, to serve different types of workflow users. First, the 
Taverna Workbench—once downloaded to a local machine—provides an environment for scientists to develop new work-
flows and test new analysis methods, by either developing workflows from scratch, or by composing them from existing 

17 http :/ /lrec2014 .lrec-conf .org/.
18 http :/ /glicom .upf .edu /OIAF4HLT/.
19 http :/ /www.mygrid .org .uk/.
20 http :/ /soaplab .sourceforge .net /soaplab2/.
21 http :/ /www.taverna .org .uk/.
22 https :/ /www.biocatalogue .org/.
23 http :/ /www.myexperiment .org/.
24 http :/ /www.biovel .eu/.
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workflows. Second, workflows can be executed directly through a Taverna Server, which is an environment for serving fin-
ished workflows to a larger community of scientists. Here, a single installation of the Server provides access to a collection 
of workflows, normally through a web interface, called the Taverna Player; in this case, no installation or in-depth knowl-
edge of the workflows is required, but workflows cannot be changed nor can new workflows be added to the collections. 
The third mode of execution is via a Taverna Lite installation, which provides an intermediate solution, as it allows users 
not only to run workflows through the web but also to upload new workflows from e.g., myExperiment or other sources. 
This means that Taverna Lite installations require user authentication, but no local software installation by regular users, as 
workflow execution also occurs on a server.

The Taverna Workbench, as the most sophisticated means of composing workflows, needs to be first downloaded and 
installed on a local machine (Windows, Linux or Mac OS X). For third-party services that require a login, Taverna allows 
credentials to be added at run-time, or to be stored in a purpose-built credential manager. The Workbench allows users 
to identify and combine services by dragging and dropping them onto the workflow design panel. The services can be 
from third parties (using e.g., WSDL or REST), but typically also contain local scripts for formatting data and managing 
service compatibility, known as shim services. Most workflows will need shim services as the analysis services are not 
usually designed to work together and, therefore, often have incompatible input and output formats. A workflow can also 
contain nested workflows, so workflows can be components of other workflows. Nested workflows can, for example, control 
retrieval of data from asynchronous services. Here the nested workflow is executed repeatedly until results are available 
and the control links between its output and downstream services pause the remainder of the workflow until all preceding 
results are available. As the workflow runs, the results panel shows progress through the workflow and iterations over data, 
as well as any errors if there are problems with executions.

The Taverna Server, which executes workflows, can also be downloaded and configured to run with or without login 
restrictions. It is written in Java, has to be installed on Unix and uses Tomcat with, for secure mode, HTTPS and SSL host 
certificate. There are various public installations of the Taverna Server, with the best know being the already mentioned 
BioVeL portal with workflows from the area of biodiversity.

As mentioned, Taverna is currently the most developed and advanced (open source) Workflow Management System, 
with a host of features and connection capabilities, including fine-grained access management. It is also very popular, e.g., 
myExperiment currently contains over 2000 Taverna workflows. By far the largest part of the user community is from the 
field of bioinformatics and other life sciences, where Taverna workflows are typically used in the areas of high-throughput 
analyses or for evidence gathering methods involving data mining.

Given the power and versatility of Taverna and other myGrid platforms, it is surprising that—apart from a few basic 
workflows submitted by various individuals—there are few public NLP workflows have been so far implemented in it. In 
connection with biomedical informatics, there is one published experiment in text mining [25], which has given rise to 
further research and there is also one platform that makes use of the myGrid building blocks for the purposes of NLP, 
which is the subject of Section 6.2.2.

6.2.2. PANACEA
In PANACEA25 [34], a FP7 project that ran 2010–2012, the objective was to automate the stages involved in the acqui-

sition, production, updating and maintenance of language resources required by machine translation systems, and by other 
applications for processing of natural language.

The architecture of this factory is based on deploying NLP tools as Web Services using SoapLab to generate them for 
command-line software, this being the standard mode of invocation for most current NLP tools. These individual services 
can then be combined in the Taverna Workbench and deployed on a Taverna Server.

In the scope of PANACEA various enhancements have been made to the underlying technology, e.g., the possibility to limit 
in SoapLab the amount of direct data that SOAP messages can transfer; various bugs were also identified and reported to the 
developers. A common interchange format for the language resources (esp. annotated corpora) was also defined [33], in the 
first instance XCES [17], because that was previously used by most of the project partners, but in the final version the format 
moved to the more current Linguistic Annotation Format (LAF) and Graph-based Format for Linguistic Annotations (GrAF) 
developed in the scope of the ISO/TC37/SC4 technical committee [19]. Finally, the IPR and other legal issues connected to 
sharing possibly proprietary tools and esp. resources were also considered in PANACEA [1].

The concrete results of the project are made available via ELDA,26 the European Evaluations and Language resources 
Distribution Agency, and consist of:

• the PANACEA Registry,27 currently describing 163 services (not all freely available);
• the PANACEA MyExperiment28 installation, which allows exploring workflows, but allows executing them only after 

registration.

25 http :/ /panacea-lr.eu/.
26 http :/ /www.elda .org/
27 http :/ /registry.elda .org/.
28 http :/ /myexperiment .elda .org/.
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The actual web services mostly run on machines (SoapLab or Taverna servers) of the project partners. It should be noted 
that the ELDA installation is made with an eye to commercializing the platform.

While the PANACEA platform is in place and operational, there does not seem to be any great up-take of this service by 
the NLP community. An inspection of the PANACEA MyExperiment shows that the platform receives few new workflows or 
web services, and most of those fairly specific ones by the (ex)project partners.

6.2.3. ARGO
Tsujii lab at the University of Tokyo had a long tradition in combining NLP with biomedical informatics. For example, 

they were the creators of the GENIA corpus [26], the first and best known biomedical corpus annotated with linguistic 
information. In connection with their work on NLP for bioinformatics a workflow for text mining U-compare29 [24], which 
includes NLP annotation services was developed. U-compare is implemented as an independent Java application, using the 
Apache UIMA30 framework. This work was later integrated into Taverna, in the already mentioned work by [25].

Recently, a new workflow management system has been developed on the basis of U-compare, now in the context of 
the National Centre for Text Mining (NaCTeM) at the University of Manchester, called ARGO31 [37,38]. ARGO offers the 
usual array of features, accessed through a browser based interface: the user can upload documents, compose workflows 
and execute them. A novelty introduced by ARGO is that workflows can have interactive components as well, where the 
execution of the workflow pauses to receive input from the user. This is useful for workflows which allow for manual 
annotation of corpora by the user, and ARGO offers several such workflows. However, ARGO does not seem to have any 
sophisticated utilities for cataloguing available web services or workflows, nor a system of access permissions.

As far as its architecture goes, ARGO continues to be based on UIMA, and uses REST for communication between the 
components, so other services or workflows can call ARGO defined web services as well. It supports import and export 
(deserializations and serializations) into RDF, which is the de-facto language of the Semantic Web. The requirement that 
web services need compatible I/O formats is in ARGO resolved with a powerful system based on cascaded finite-state 
transducers called Type Mapper [39], which allows for developing needed shim services.

6.2.4. WebLicht
The European Research Infrastructure CLARIN32 aims to provide the researchers unified single sign-on access to a plat-

form which integrates language-based resources and advanced tools. This is to be implemented by the construction and 
operation of a shared distributed infrastructure that aims at making language resources, technology and expertise available 
to the humanities and social sciences research communities. CLARIN is a distributed data infrastructure, with national sites 
in a number of European countries. These sites provide access to language data repositories, to services and workflows to 
work with language data, and to expertise that enables researchers to use these resources and tools.

In the scope of national CLARIN portals, various workflows have been developed, with the German WebLicht33 [15]
being the most advanced. While WebLicht is, in some respects, similar to PANACEA, the focus here is not on providing web 
services for human language technology research, but rather producing annotated corpora for use in linguistic research. 
Nevertheless, the methods are similar, as on both platforms most web services are devoted to the linguistic annotation of 
textual input.

WebLicht does not, as does PANACEA, use the myGrid tools and platforms but rather developed its own infrastructure, 
starting from the wrappers to make the included tools into RESTful web services, to its centralized repository, and the Web 
editor enabling the composition of the workflows (or toolchains, as they are known in WebLicht, as they are typically limited 
to one input and one output). As opposed to PANACEA, WebLicht does cover all the standard linguistic annotation steps, for 
a number of languages, and with often several tools being available for an annotation step. The WebLicht repository includes 
information about the type of inputs and outputs of individual services, which allows controlling the workflow construction 
process in the editor to allow connecting only tools that have matching I/O specifications. For example, a part-of-speech 
tagger needs a tokenizer to be applied to a text before it can be called. As in PANACEA, WebLicht also imposes standards 
on the I/O interchange format: it uses TCF (Text Corpus Format) [13], a format similar but slimmer than ISO LAF/GrAF, but 
also provides conversion to LAF/GrAF. With TCF the text and annotations are in one XML file, but with stand-off annotation, 
with each processing step adding a layer of annotation.

The Web (2.0) based WebLicht editor allows the construction of workflows and their invocation (after a CLARIN(-DE) 
recognized log-in) and viewing or saving the results. WebLicht has a dedicated viewer, which allows displaying an annotated 
corpus in tabular format (for tokens and their annotations), lists (for sentences) or as a graphic (for parse trees).

While the WebLicht platform is not open source, the initiative is open to adding new partners who are interested in 
contributing tools and services. This typically involves wrapping the tools to be contributed to make them RESTful and to 
take care of I/O requirements, installing this web service on a local machine and then registering them to the WebLicht 

29 http :/ /u-compare .org/.
30 https :/ /uima .apache .org/.
31 http :/ /argo .nactem .ac .uk/
32 http :/ /www.clarin .eu/.
33 weblicht.sfs.uni-tuebingen.de/.

72 Chapter 3. Adaptations of ClowdFlows



148 M. Perovšek et al. / Science of Computer Programming 121 (2016) 128–152

central repository. Currently, such third-party web services are provided for Finnish, by the University of Helsinki, and 
Romanian, by their Academy of Sciences.

6.2.5. Language Grid
The Language Grid34 [20] is a multilingual Internet service platform, developed by Language Grid Project (started in 

2006) at the Japanese National Institute of Information and Communications Technology. The Language Grid is based on 
the service-oriented architecture (SOA), a web-oriented version of the pipeline architecture typically employed by NLP tools. 
As other Workflow Management Systems it provides three main functions: language service registration and deployment, 
language service search, and language service composition and execution. Importantly, Language Grid also offers access to a 
large number of language resources such as online dictionaries and bi-lingual corpora.

In contrast to e.g., myGrid, geared towards running and reproducing scientific experiments, the Language Grid is much 
more application oriented, with a focus on enabling communication in multilingual communities (via machine translation), 
the best known example being the support of farming in rural communities in Vietnam, by enabling computer mediated 
communication between Vietnamese youth and Japanese experts in agriculture. This is also reflected in its architecture, 
where the users, services and workflows (or “composite services”) are centrally administered. And while running such web 
services is easy with the provided graphical interface, constructing them is more complicated: workflows are composed 
using WS-BPEL (Web Service Business Process Execution Language) as XML files, rather than in a dedicated Web based 
or locally installed visual editor. Although Eclipse does provide a visual BPEL editor, which can be used for this process, 
workflow construction is still more complicated than with e.g., Taverna.

The Language Grid is Open source and the first European node, known as Linguagrid35 [4] was established in Italy in 
2010.

6.2.6. LAPPS Grid
The Language Grid Server also serves as the basis for the U.S. Language Application (LAPPS) Grid project36 [18]. LAPPS 

is especially interesting in three aspects. First, it uses advanced standards for data encoding and exchange, in particular 
the JSON-based serialization for Linked Data (JSON-LD). The JavaScript Object Notation (JSON) is a lightweight, text-based, 
language-independent data interchange format that defines a small set of formatting rules for the portable representation 
of structured data. Because it is based on the W3C Resource Definition Framework (RDF), JSON-LD is simple to map to and 
from other graph-based formats, in particular the already mentioned ISO LAF/GrAF [19]. It also enables services to reference 
categories and definitions in web-based repositories and ontologies, such as those of ISOcat.37

Second, it uses the Open Advancement approach (developed in the making of IBM’s Watson [10]) for component- and 
application-based evaluation, that has been successful in enabling rapid identification of frequent error categories within 
modules and documents, thus contributing to more effective investment of resources in both research and application 
assembly. The LAPPS Grid thus envisions scenarios where it is possible for users to rapidly (re)configure and automatically 
evaluate a (changed) pipeline on a chosen dataset and metrics.

Third, workflows are planned to incorporate a comprehensive model for addressing constraints on the intellectual prop-
erty used in the LAPPS Grid, making it maximally open to users ranging from open source developers to commercial users 
of language services.

6.3. Comparison with TextFlows

The previous sections presented the more widely used Workflow Management Systems, with a focus on those that are 
also or primarily used for NLP and that support distributed and/or remote processing. So, for example, we do not treat 
Moa38 (not to be confused with MOA,39 an open source framework for data stream mining) and similar systems that are 
meant to develop workflows on a local server. In this section we compare the overviewed systems, together with TextFlows 
along several dimensions that affect the usefulness of each system. In the following section we first present an overview 
table and then discuss the salient dimension.

6.3.1. Open source
The first dimension, summarized in Table 3, concerns the question whether the Workflow Management Systems is open 

source, i.e., whether it is possible to download the complete system and install it on local server(s). This is important in 
cases where the system is to be an internal one, not accessible to third parties, e.g., for data privacy protection or where local 
modifications to the system are desired. In the general case, this option is not really needed, as it is much easier to simply 
use the official system. Nevertheless, it is desirable to at least have this option available. Of the surveyed systems, Taverna 

34 http :/ /langrid .org/.
35 http :/ /www.linguagrid .org/.
36 http :/ /lapps .anc .org/.
37 http :/ /www.isocat .org/
38 http :/ /moa .readthedocs .org/.
39 http :/ /moa .cms .waikato .ac .nz/
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Table 3
Comparison of NLP platforms regarding open source.

Taverna Yes (Java)
PANACEA No
ARGO No
WebLicht No
Language Grid Yes (Java, PostgreSQL, Tomcat)
TextFlows Yes (Python)

Table 4
Comparison of NLP platforms regarding workflow sharing.

Taverna With myExperiment, BioCatalogue, etc.
PANACEA Own installation of BioCatalogue and MyExperiment
ARGO Local registry
WebLicht Local registry
Language Grid Local registry
TextFlows Local registry

Table 5
Comparison of NLP platforms regarding simplicity of use.

Taverna Difficult
PANACEA Difficult
ARGO Easy for workflow composition
WebLicht Easy for workflow composition
Language Grid Difficult
TextFlows Easy for workflow composition

is available under OS, and can be installed on all major platforms (Windows, Mac, Linux) with precompiled distributions or 
in source Java and has few prerequisites; Language Grid (available from SourceForge) also runs on all platforms and requires 
PostgreSQL and Tomcat, with the set-up being rather complicated. TextFlows is also open source and publicly available with 
all the prerequisites wrapped in the installation script.

6.3.2. Workflow sharing
All systems offer workflow sharing, as this is the essence of building such systems, however, they differ in whether the 

platform itself provides the registry and exploration service of registries or whether they make use of associated services 
for workflow sharing and discovery. As can be seen from Table 4, most systems provide their own sharing platform, with 
the exception of Taverna and PANACEA, both of which use myExperiment as a social network platform and BioCatalogue 
(and, in the case of Taverna, other catalogues as well) as a registry for public web services.

6.3.3. Simplicity of use
This dimension, summarized in Table 5 describes how difficult it is to start using a particular system, not so much from 

the point of view of executing ready-made workflows but of designing workflows and adding new web services to the 
platforms. Taverna provides a dedicated Workflow Management System, which is, however, mostly due to the variety of 
options, reportedly quite difficult to master, also because the details of web service communication have to be understood 
by the user and complex types decomposed into atomic parts. It is also possible to add new web services using SoapLab. 
The composition of workflows in PANACEA follows that of Taverna, so the same (dis)advantages apply. ARGO provides 
a Web-based interface, which allows for graphical composition of workflows. It also provides a sophisticated system for 
adding new web services, including a testing environment. WebLicht supports web-based workflow composition, with the 
registry constraining which web services can be attached to the workflow, depending on their I/O requirements; however, 
new web services cannot be added by users. Language Grid does enable composition of new workflows, but this is an 
off-line and rather complicated process. Finally, TextFlows offers, via a web interface, easy composition of workflows. Adding 
new web SOAP-based services with WSDL available is also trivial (based on the user-supplied URL of WSDL, new workflow 
components are created automatically from service’s functions).

6.3.4. I/O protocols
This dimension, summarized in Table 6, concerns input/output protocols. The options supported by the communication 

protocols between the web services in a workflow have mostly to do with the age of the system: the older ones typically 
prefer WSDL and SOAP, while the newer ones choose the simpler REST.40

40 Note that the WSDL protocol referred to here is version 1.0 or 1.1; WSDL 2.0 offers (limited) support for RESTful web services.
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Table 6
Comparison of NLP platforms regarding I/O protocols.

Taverna WSDL+SOAP, REST
ARGO REST
PANACEA WSDL+SOAP
WebLicht REST
Language Grid WSDL+SOAP
TextFlows WSDL+SOAP, REST, JSON-WSP

When dealing with NLP workflows, standards become very important. NLP components in the main perform pipeline 
processing, where each tool/service adds another layer of annotation to the base text where it typically needs to have 
access to previous annotations. Furthermore, the input text might itself contain annotations, such as document structure. 
The wish for interoperability lead to the development of standards for text (corpus) annotation; however there exist a 
number of such standards and best practices, and different systems use different ones. TAVERNA, not being targeted toward 
NLP, is standard agnostic, and relies on implementers of workflows to provide the necessary conversion (shiv) services, i.e., 
conversion routines to the format that the downstream service(s) expect. In the context of NLP it is also possible to develop 
shiv services that convert not only outputs but also inputs, taking one of the commonly accepted standards as the pivot 
encoding. This is the route taken by PANACEA, where each web service is wrapped to accept and produce an output: for 
primary data this is an XCES encoded file, while text annotations use the LAF/GrAF standard with stand-off annotations. 
ARGO is based on UIMA and does not enforce any NLP standards in its pipelines. However, ARGO did pioneer a new method 
of aligning I/O requirements of component web services: rather than relying on shiv services, which need programming 
skills, it supports a Type Mapper, i.e., a dedicated rule-based analytic for transcribing feature structures between types 
needed for particular web services. It also supports export and type mapping to RDF.

WebLicht uses a local format TCF, which is, however, quite similar to ISO LAF/GrAF and conversion to these is provided. 
In WebLicht all web services are expected to use TCF, where the conversion is typically implemented as a wrapper around 
each annotation tool. Furthermore, the WebLicht Registry included information about the prerequisites for each web service 
and allows only chaining web services that do not violate these constraints. Language Grid has a very different scheme from 
most other services, and the details of how the interfaces are to be configured are rather hard to come by. In general, it 
defines an ontology of Web services, which then specifies also their I/O formats. As the focus is on dictionaries and machine 
translation, it is these kinds of formats that are defined. Finally, TextFlows, as Taverna, does not impose any standards in its 
I/O formats. Mostly plain text, JSON, XML and, for efficiency, serialized Python data structures and objects (in particular, the 
AnnotatedDocumentCorpus instances) are exchanged between workflow components.

7. Conclusions and directions for future work

This paper presented TextFlows, an open source platform featuring workflow components for text mining and natural 
language processing. TextFlows provides a common graphical user interface and joins several text mining, visualization 
and machine learning libraries under a single unifying platform, expanding their usability for researchers, practitioners and 
non-experts. The architecture of the platform is scalable, allows for many users and workflow and dataset sharing.

The usability of the platform was demonstrated on three illustrative use cases, showing that components developed 
for different systems and in different programming languages can be run within a single coherent system and may be 
represented as a visually constructed workflow available on the web. The ease of sharing the completed workflows and 
results over the web allows for TextFlows to become a central integration platform for many text mining and natural 
language processing tasks. We have compared our work to related platforms and shown the differences, benefits, and 
drawback of using TextFlows instead of other text mining platforms.

There are several directions for future work. We plan to expand the TextFlows widget repository with additional text 
preprocessing components (such as chunking, term extraction, syntactic parsing), extend the batch of weighting schemes 
for generating the BoW models, and include various algorithms for clustering. We also plan to extend the literature-based 
discovery package to include more widgets for cross-domain bridging term discovery. Furthermore, we will connect the 
platform to various external tools to better assist the user in the process of exploration and visualization of results, such as 
TopicCircle [22] for cluster visualization.

Second, by using public data on user workflows, submitted to the public version of the TextFlows platform, we will 
construct a recommender system based on the data on previously executed workflows that will enable computer-assisted 
construction of text mining workflows and bring the platform even closer to non-experts in terms of usability.

A current weakness of TextFlows is the inability to deal with very large data. As part of future work we plan to integrate 
the stream mining and big data mining features of ClowdFlows to the TextFlows platform. This will allow performing natural 
language processing on a larger scale, as well as preforming different tasks on streams of data such as website news feeds, 
or real time data from social networks such as Twitter and Facebook.

Finally, we wish to simplify the installation procedures of TextFlows to private servers by providing one-click deployment 
to services such as Amazon Elastic Compute Cloud (EC2) and Microsoft Azure.
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We have released the sources of the TextFlows platform under an open source MIT license, available at https :/ /github .
com /xflows /textflows. Detailed deployment instructions are provided with the source code. A public installation of the 
platform is available for online use at http :/ /textflows .org.
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[21] M. Juršič, B. Cestnik, T. Urbančič, N. Lavrač, Cross-domain literature mining: finding bridging concepts with CrossBee, in: Proceedings of the 3rd 

International Conference on Computational Creativity, 2012, pp. 33–40.
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Chapter 4

Use Case: Wordification in
ClowdFlows

This chapter presents a use case scenario where ClowdFlows is used as a test bed and
experimental environment to validate a novel propositionalization methodology entitled
wordification.

The first section of the chapter presents the problem of relational data mining and
introduces the wordification methodology. This is followed by a description of ClowdFlows
features that allow for experimentation in a workflow environment. Finally, the core of the
chapter is the journal publication which presents the wordification approach in detail along
with its validation and comparison with other Inductive Logic Programming (ILP) and
Relational Data Mining (RDM) algorithms, which have been implemented as executable
ClowdFlows workflows.

4.1 Problem Definition and Motivation

Standard machine learning and data mining algorithms look for patterns and induce models
from a single data table, where one example corresponds to a row in the table. Inductive
Logic Programming [66] and Relational Data Mining [67] algorithms and approaches induce
hypotheses from multiple tables, e.g., data stored in relational databases.

For multi-relational databases in which data instances are clearly identifiable (char-
acterized by one-to-many relationships among the target table and other data tables),
various techniques can be used for transforming a multi-relational database into a propo-
sitional single-table format [68]. After performing such a transformation, entitled proposi-
tionalization [69], standard propositional learners can be used, such as decision trees and
classification rule learners.

Wordification is a new propositionalization approach inspired by text mining [70] and
can be seen as a transformation of a relational database into a corpus of documents,
where each document can be characerized by a set of properties describing the entries
of a relational database. Documents are represented as Bag-Of-Words (BOW) vectors of
weights and features. The words are constructed from individual attribute-values of the
target table and related tables. Unlike other propositionalization techniques, which search
for good (and possibly complex) relational features to describe the subsequent propositional
representation, this methodology focuses on a large number of simple features with the aim
of greater scalability. Since the feature construction step is efficient, it can work well for
large relational databases. In fact, the newly developed methodology transforms a given
relational database in time linear to the number of attributes times the number of examples
for one-to-many databases. Furthermore, due to the simplicity of features, the generated
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features are easily interpretable by domain experts. On the other hand, this methodology
suffers from the loss of information, since the generated features do not explicitly connect
relations through variables. Instead, by using the Term Frequency Inverse Document
Frequency weighting (TF-IDF) [71], it tries to capture the importance of a certain feature
(attribute value) of a relation in an aggregate manner.

In summary, the input to the wordification approach is a relational database, and the
output is a set of feature vectors, which can be viewed as a corpus of text documents rep-
resented in the Bag-Of-Words vector format. Each text document represents an individual
entry of the main data table. A document is described by a set of words, where a word
is constructed as a combination of the table name, name of the attribute and its discrete
value. After the documents are transformed into Bag-Of-Words representation, the class
attribute column is appended to the transformed table.

The aim of the use case is to show that the developed wordification approach is simple,
more efficient and at least as accurate as the comparable state-of-the-art propositionaliza-
tion methods such as the RSD algorithm [72] and RelF [73], and comparable to methods
that directly induce relational patterns or models without propositionalization, such as
Aleph [74]. To achieve this, two experimental workflows were developed in ClowdFlows.
One workflow was developed for learning and another for evaluating and visualizing the
results. The implemented workflows allow methodology reuse and repeatability of experi-
ments.

4.2 Experimentation and Evaluation in the ClowdFlows Plat-
form

To evaluate and validate the newly developed propositionalisation methodology it is nec-
essary to perform experiments on different data sets and compare different methodologies.
To faciliate this, we have implemented mechanisms to perform multi-fold cross-validation
and visually compare results.

Cross-validation is a model validation technique for assessing how the results of a
statistical analysis will generalize to an independent data set [75]. It is an iterative process
where the data are partitioned into a training and test set multiple times. The model is
trained on the training data and executed on the test data and performance measures are
calculated. Finally, the performance measures (classification accuracy, precision, recall) of
the test are merged over several iterations (folds) to derive a more accurate estimate of
model prediction performance.

As cross-validation is an iterative process, it is not intuitively translated into a general
graphical workflow. A workflow in ClowdFlows is defined as a set of workflow components
(widgets) and a set of connections. In order to implement a process similar to cross-
validation as a graphical workflow, it is required to encapsulate workflows or parts of
workflows in widgets that can be replicated and reused. To this end, we developed the
sub-workflow widget, which can contain entire workflows. The inputs of the container
widget are implicitly connected to the outputs of special widgets inside the sub-workflow
(which can be added or removed at will, so that their number corresponds to the number of
desired inputs of the container widget). The outputs of the container widget are implicitly
connected to the inputs of special widgets inside the sub-workflow. In short, the simplest
sub-workflow widget contains a workflow that consists of two widgets, the input and the
output widget, whose output and input are implicitly connected to the input and output
of the container widget.

Sub-workflows are useful for encapsulating parts of workflows for re-use, however using
only sub-workflows it is not possible to implement a general cross-validation process. As
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cross-validation is an iterative process, we augmented the sub-workflow mechanism with an
iteration. If a sub-workflow contains a special pair of widgets (the for loop input and the for
loop output), the sub-workflow will be executed multiple times, once for each instance of an
iterable object (e.g. a data set table) on the input. The iterable object is constructed from
the result of each iteration on the output. To simplify implementation of cross-validation,
we added an iterative sub-workflow that randomly splits the iterable object into two sets,
a predefined number of times. To ensure reproducibility of experiments, the number of
folds and the seed of the random generator are part of the workflow.

To increase the performance of cross-validation, ClowdFlows leverages it with its cloud-
based nature. ClowdFlows can be installed on several machines and use them as processing
units (or workers). As each iteration in a ClowdFlows loop is independant of previous
iterations, it is possible to run the iterations in parallel. Iterations are uniformly distributed
across workers as separate tasks. Once all the tasks are finished, the results are combined
into another iterable object. In the case of cross-validation, these results are performance
measurements for iterations that need to be combined.

The averaged performance measurements can then be displayed or rendered visually.
A visual rendering of the performance measurements is implemented via the interactive
VIPER (Visual Performance Evaluation) charts [76]. These interactive charts display the
results in the precision-recall space. This visualization simplifies the comparison of perfor-
mance measurements for different methodologies.

Using cross-validation workflow widgets, it is possible to utilize ClowdFlows as a test
bed for newly developed methodologies that can be validated using cross-validation and
visually compared with others. A general comparison workflow is often used to compare
multiple implementations of methodologies and processes. The individual implementations
can be simply replaced with other ones by replacing a single workflow element. This
workflow was successfully employed in the validation of the newly developed wordification
propositionalization methodology.

4.3 Related Publication

The methodology and its implementation in ClowdFlows is described in detail in the fol-
lowing journal publication:

M. Perovšek, A. Vavpetič, J. Kranjc, B. Cestnik, and N. Lavrač, “Wordification: Propo-
sitionalization by unfolding relational data into bags of words,” Expert Systems with
Applications, vol. 42, no. 17, pp. 6442–6456, 2015.

In this publication we achieve the following:

• We present and improve the wordification methodology and provide a formal frame-
work for it and its pseudo code.

• We statistically evaluate the compared algorithms on multiple relational databases.

• We perform experiments which show favorable results of wordification in terms of
accuracy and efficiency.

• We prove that feature simplicity can be compensated by n-gram construction and
feature weighting.

• We implement the full experimental and validation workflow in the data mining
platform ClowdFlows.
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The authors’ contributions are as follows. Matic Perovšek implemented the wordifica-
tion widgets in ClowdFlows. Anže Vavpetič contributed widgets for connection to relational
databases and widgets for other methodologies used to validate wordification. The testing
environment and the cross-validation techniques used for validating the experiments in
ClowdFlows were implemented by Janez Kranjc. Nada Lavrač provided the main idea for
the wordification methodology and together with Bojan Cestnik served as supervisor. All
authors contributed to the text of the publication.
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a b s t r a c t

Inductive Logic Programming (ILP) and Relational Data Mining (RDM) address the task of inducing mod-
els or patterns from multi-relational data. One of the established approaches to RDM is propositionaliza-
tion, characterized by transforming a relational database into a single-table representation. This paper
presents a propositionalization technique called wordification which can be seen as a transformation of
a relational database into a corpus of text documents. Wordification constructs simple, easy to
understand features, acting as words in the transformed Bag-Of-Words representation. This paper
presents the wordification methodology, together with an experimental comparison of several proposi-
tionalization approaches on seven relational datasets. The main advantages of the approach are: simple
implementation, accuracy comparable to competitive methods, and greater scalability, as it performs
several times faster on all experimental databases. Furthermore, the wordification methodology and
the evaluation procedure are implemented as executable workflows in the web-based data mining
platform ClowdFlows. The implemented workflows include also several other ILP and RDM algorithms,
as well as the utility components that were added to the platform to enable access to these techniques
to a wider research audience.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Standard propositional data mining algorithms, included in
established data mining tools like Weka (Witten, Frank, & Hall,
2011), induce models or patterns learned from a single data table.
On the other hand, the aim of Inductive Logic Programming (ILP)
and Relational Data Mining (RDM) is to induce models or patterns
from multi-relational data (De Raedt, 2008; Džeroski & Lavrač,
2001; Lavrač & Džeroski, 1994; Muggleton, 1992). Most types of
propositional models and patterns have corresponding relational
counterparts, such as relational classification rules, relational
regression trees or relational association rules.

For multi-relational databases in which data instances are
clearly identifiable (the so-called individual-centered representa-
tion (Flach & Lachiche, 1999), characterized by one-to-many
relationships among the target table and other data tables), various

techniques can be used for transforming a multi-relational data-
base into a propositional single-table format (Krogel et al., 2003).
After performing such a transformation (Lavrač, Džeroski, &
Grobelnik, 1991), named propositionalization (Kramer, Pfahringer,
& Helma, 1998), standard propositional learners can be used,
including decision tree and classification rule learners.

Inspired by text mining, this paper presents a propositionaliza-
tion approach to Relational Data Mining, called wordification.
Unlike other propositionalization techniques (Kramer et al.,
1998; Kuželka & Železný, 2011; Lavrač et al., 1991; Železný &
Lavrač, 2006), which first construct complex relational features
(constructed as a chain of joins of one or more tables related to
the target table), used as attributes in the resulting tabular data
representation, wordification generates much simpler features
with the aim of achieving greater scalability.

Wordification can be viewed as a transformation of a relational
database into a set of feature vectors, where each original instance
is transformed into a-kind-of ‘document’ represented as a
Bag-Of-Words (BOW) vector of weights of simple features, which
can be interpreted as ‘words’ in the transformed BOW space. The
‘words’ constructed by wordification correspond to individual

http://dx.doi.org/10.1016/j.eswa.2015.04.017
0957-4174/� 2015 Elsevier Ltd. All rights reserved.
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attribute–values of the target table and of the related tables, subse-
quently weighted by their Term Frequency-Inverse Document
Frequency (TF-IDF) value (Jones, 1972; Salton & Buckley, 1988)
(requiring real-valued attributes to be discretized first).
Alternatively, instead of TF-IDF, simpler schemes can be used such
as term frequency (TF) ‘word’ count, or the binary scheme indicat-
ing just the presence/absence of a ‘word’ in the ‘document’.

To intuitively phrase the main idea of wordification, take two
simple examples illustrating the wordification data preprocessing
step in class-labeled data, where each structured data instance is
transformed into a tuple of simple features, which are counts/
weights of individual attribute–value pairs. Take the well-known
relational domain of East–West Trains (Michie, Muggleton, Page,
& Srinivasan, 1994) with cars containing different loads: one of
the train’s features in the BOW representation is the count/weight
of rectangular loads it carries, no matter in which cars these loads
are stored. Or in the standard Mutagenesis domain (Srinivasan,
Muggleton, King, & Sternberg, 1994), a molecule may prove to be
toxic if it contains a lot of atoms characterized by the property
atom type = lead, no matter how these atoms are bonded in the
molecule. The main hypothesis of the wordification approach is
that the use of this simple representation bias is suitable for
achieving good results in classification tasks. Moreover, when
using a binary scheme, this representation bias allows for simple
and very intuitive interpretation in descriptive induction tasks,
such as association rule learning from unlabeled multi-relational
data.

Wordification suffers from some loss of information, compared
to propositionalization methods which construct complex first-
order features (which get values true or false for a given individual)
as a chain of joins of one or more tables related to the target table.
Nevertheless, despite some information loss, wordification has
numerous advantages. Due to the simplicity of features, the gener-
ated hypotheses are easily interpretable by domain experts. The
feature construction step in wordification is very efficient, there-
fore it can scale well for large relational databases. As wordification
constructs each ‘document’ independently from the other ‘docu-
ments’, a large main table can be divided into smaller batches of
examples, which can be propositionalized in parallel. Next, wordi-
fication can use TF or TF-IDF word weighting to capture the impor-
tance of a given feature (attribute value) of a relation in an
aggregate manner, while feature dependence is modeled by con-
structing a-kind-of word ‘n-grams’ as conjuncts of a predefined
number of simple features. Finally, the wordification approach
has the advantage of using techniques developed in the text min-
ing community, such as efficient document clustering or word
cloud visualization, which can now be effectively exploited in mul-
ti-relational data mining.

This paper shows that the developed wordification technique is
simple, considerably more efficient and at least as accurate as the
comparable state-of-the-art propositionalization methods. This
paper extends our previous research (Perovšek, Vavpetič, &
Lavrač, 2012, 2013) in many ways. The related work is more exten-
sively covered. The improvements to the methodology include fea-
ture filtering by frequency, performance optimization (indexing by
value), new options regarding feature weighting (next to TF-IDF,
we added TF and binary), and a parallel version of the algorithm.
The methodology description is now more detailed, including the
formal wordification framework, the wordification algorithm
pseudo code as well as time and space complexity analysis. The
experimental evaluation has been substantially extended to
include a comparison of three different term weighting schemes,
additional propositionalization algorithms RelF (Kuželka &
Železný, 2011) and Aleph (Srinivasan, 2007), as well as an addi-
tional classifier (SVM), which were applied to an extended set of
experimental relational datasets. Such exhaustive experimentation

has enabled us to statistically validate the experimental results by
using the Friedman test and the Nemenyi post hoc test on the
seven benchmark problems from the five relational domains (two
of which have two database variants): IMDB,1 Carcinogenesis
(Srinivasan, King, Muggleton, & Sternberg, 1997), Financial2 and
two variants of Trains (Michie et al., 1994) and Mutagenesis
(Srinivasan et al., 1994). Further experiments were done to analyze
the effects of feature weighting, pruning and n-gram construction.
In addition to the two experimental workflows developed in the
web-based data mining platform ClowdFlows (Kranjc, Podpečan, &
Lavrač, 2012), one workflow developed for learning and another
for results evaluation and visualization, this paper introduces
another wordification workflow applicable in association rule learn-
ing tasks from binarized features. The implemented workflows,
which are available online through ClowdFlows, allow for methodol-
ogy reuse and experiment repeatability. As a side-product of work-
flow development, the competing propositionalization algorithms
used in experimental comparisons are also made available through
ClowdFlows and can therefore be easily reused in combination with
numerous pre-existing ClowdFlows components for data discretiza-
tion, learning, visualization and evaluation, including a large number
of Weka (Witten et al., 2011) and Orange (Demšar, Zupan, Leban, &
Curk, 2004) components. Making selected RDM algorithms handy to
use in real-life data analytics may therefore contribute to improved
accessibility and popularity of Relational Data Mining.

The paper is organized as follows. Section 2 describes the back-
ground and the related work. Section 3 gives an informal overview
of the wordification methodology, while Section 4 presents the for-
malism and the details of the developed wordification algorithm.
The implementation of the methodology as a workflow in the
ClowdFlows platform is described in Section 5. Section 6 presents
the evaluation methodology implementation and the experimental
results. Section 7 illustrates the utility of wordification in a
descriptive induction setting of learning association rules from
two real-life domains, using data from a subset of the IMDB movies
database and from a database of traffic accidents. Section 8 con-
cludes the paper by presenting the plans for further work.

2. Background and related work

Inductive Logic Programming (ILP) and Relational Data Mining
(RDM) algorithms are characterized by the ability to use back-
ground knowledge in learning relational models or patterns
(Džeroski & Lavrač, 2001; De Raedt, 2008; Lavrač & Džeroski,
1994; Muggleton, 1992), as by taking into account additional rela-
tions among the data objects the performance of data mining algo-
rithms can be significantly improved.

Propositionalization (Kramer et al., 1998; Lavrač et al., 1991) is
an approach to ILP and RDM, which offers a way to transform a
relational database into a propositional single-table format. In con-
trast to methods that directly induce relational patterns or models,
such as Aleph (Srinivasan, 2007) and Progol (Muggleton, 1995),
propositionalization algorithms transform a relational problem
into a form which can be solved by standard machine learning or
data mining algorithms. Consequently, learning with proposition-
alization techniques is divided into two self-contained phases:
(1) relational data transformation into a single-table data format
and (2) selecting and applying a propositional learner on the trans-
formed data table. As an advantage, propositionalization is not lim-
ited to specific data mining tasks such as classification, which is
usually the case with ILP and RDM methods that directly induce
models from relational data.

1 http://www.webstepbook.com/supplements/databases/imdb.sql.
2 http://lisp.vse.cz/pkdd99/Challenge/berka.htm.
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The transformation to a single-table format can be achieved for
the so-called individual-centered relational databases (Flach &
Lachiche, 1999), i.e., databases that have a clear notion of an indi-
vidual. The East–West Trains challenge (Michie et al., 1994), where
the task is to classify the Trains as East-bound or West-bound, is a
well-known domain in which individuals are clearly identified:
each train is a single individual related with one or more cars that
have different characteristics.

Most of the related work involves propositionalization through
first-order feature construction (Kramer et al., 1998; Kuželka &
Železný, 2011; Lavrač et al., 1991; Železný & Lavrač, 2006), where
the algorithms construct complex first-order features, which then
act as binary attributes in the new propositional representation
of examples. One of the first propositionalization algorithms,
LINUS (Lavrač et al., 1991), generates features that do not allow
recursion and newly introduced variables. An improvement of
LINUS, named SINUS (Lavrač & Flach, 2001), incorporates more
advanced feature construction techniques inspired by feature con-
struction implemented in 1BC (Flach & Lachiche, 1999). RSD
(Železný & Lavrač, 2006) is a relational subgroup discovery algo-
rithm composed of two main steps: the propositionalization step
and the subgroup discovery step, where the output of the proposi-
tionalization step can be used also as input to other propositional
learners. RSD effectively produces an exhaustive list of first-order
features that comply with the user-defined mode constraints, sim-
ilar to those of Progol (Muggleton, 1995) and Aleph (Srinivasan,
2007). Furthermore, RSD features satisfy the connectivity require-
ment, which imposes that no constructed feature can be decom-
posed into a conjunction of two or more features.

RELAGGS (Krogel & Wrobel, 2001), which stands for relational
aggregation, is a propositionalization approach, which uses the
input relational database schema as a basis for a declarative bias
and aims to use optimization techniques usually used in relational
databases (e.g., indexes). Furthermore, the approach employs
aggregation functions in order to summarize non-target relations
with respect to the individuals in the target table.

An early experimental comparison of propositionalization tech-
niques was reported in Krogel et al. (2003), where RSD, SINUS and
RELAGGS algorithms were compared.

Other means of propositionalization include stochastic proposi-
tionalization (Kramer et al., 1998), which employs a search strat-
egy similar to random mutation hill-climbing: the algorithm
iterates over generations of individuals, which are added and
removed with a probability proportional to the fitness of individu-
als, where the fitness function used is based on the Minimum
Description Length (MDL) principle.

Safarii3 is a commercial multi-relation data mining tool. Safarii,
extensively described in Knobbe (2005), offers a unique pattern lan-
guage that merges ILP-style structural descriptions as well as aggre-
gations. Furthermore, Safarii comes with a tool called ProSafarii,
which offers several preprocessing utilities, including propositional-
ization via aggregation.

Ceci and Appice (2006) investigate spatial classification using
two techniques: a propositionalization approach which constructs
features using spatial association rules to produce an attribute–
value representation. They compare the approach to a structural
approach using an extended Naive Bayes classifier. They report
an advantage of the structural alternative in terms of accuracy,
while the propositional approach performs faster. Ceci, Appice,
and Malerba (2008) present two emerging patterns based classi-
fiers that work in the multi-relational setting: one uses a heuristic
evaluation function to classify objects, while the other is based on a
probabilistic evaluation. The main result of the study is that both

approaches perform better than associative classification to which
they were compared.

Kuželka and Železný (2011) developed RelF, which constructs a
set of tree-like relational features by combining smaller conjunc-
tive blocks. The novelty is that RelF preserves the monotonicity
of feature reducibility and redundancy (instead of the typical
monotonicity of frequency), which allows the algorithm to scale
far better than other state-of-the-art propositionalization
algorithms.

An approach that is related to propositionalization is presented
by Guo and Viktor (2008). The authors propose a strategy of multi-
relational learning where they neither upgrade a propositional
learner to work with multiple relations or propositionalize the
relations. Instead, their approach learns from multiple views (fea-
ture sets) of a RDB and then integrates the individual view learners
to construct a final model. Their approach exhibits comparable
classification accuracies compared to related approaches, and a
faster runtime.

Recently, a propositionalization technique called Bottom Clause
Propositionalization (BCP) was introduced by França, Zaverucha,
and d’Avila Garcez (2014). It was integrated with C-IL2P (Garcez
et al., 1999); the combined system, named CILP++, achieves accu-
racy comparable to Aleph, while being faster. Compared to RSD,
BCP is better in terms of accuracy when using a neural network
and similar when using C4.5.

3. Informal description of the wordification approach

This section provides an informal description of the proposed
approach, where wordification is illustrated on a simplified variant
of the well-known East–West Trains problem (Michie et al., 1994).

The transformation from a relational database representation
into a Bag-Of-Words feature vector representation is illustrated
in Fig. 1, where the input to wordification is a relational database,
and the output is a set of feature vectors, which can be viewed as a
corpus of text documents represented in the Bag-Of-Words (BOW)
vector format. Each text document represents an individual entry
of the main data table. A document is described by a set of words
(or features), where a word is constructed as a combination of the
table name, name of the attribute and its discrete (or discretized)
value4:

½table name� ½attribute name� ½value�: ð1Þ

Such constructs are called word-items or witems or simply words in
the rest of the paper. Note that values of every non-discrete attri-
bute need to be discretized beforehand in order to be able to repre-
sent them as word-items. For each individual, the word-items are
first generated for the main table and then for each entry from
the related tables, and finally joined together according to the rela-
tional schema of the database.5 In the described transformation
there is some loss of information as a consequence of building the
document for each instance (each individual row in the main table)
by concatenating all word-items from multiple instances (rows) of
the connected tables into a single document. To overcome this loss,
we extended the document construction step of the initial wordifica-
tion methodology by concatenating to the document also n-grams of
word-items, constructed as conjunctions of several word-items.
These concatenations of elementary word-items represent conjunc-
tions of features occurring together in individual instances (rows of
joined tables). Technically, n-gram construction is performed by tak-
ing every combination of length k of word-items from the set of all

3 http://www.kiminkii.com/safarii.html.

4 See Line 4 in Algorithm 2 presented in Section 4.3.
5 See Line 10 in Algorithm 2 presented in Section 4.3.
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word-items corresponding to the given individual, and concatenat-
ing them as follows:

½witem1� ½witem2� . . . ½witemk�; ð2Þ

where 1 6 k 6 n and—as mentioned earlier—each word-item is a
combination of the table name, name of the attribute and its dis-
crete value. The witems are concatenated in a predetermined order,
each using the ‘‘ ’’ concatenation symbol.

In the rest of this section, for simplicity, we refer to individuals
as documents, to features as words, and to the resulting represen-
tation as the Bag-Of-Words (BOW) representation. For a given
word w in document d from corpus D, the TF-IDF measure is
defined as follows:

tfidfðw; dÞ ¼ tfðw;dÞ � log
jDj

jfd 2 D : w 2 dgj ; ð3Þ

where tfð�Þ represents the number of times word w appears in
document d. In other words, a word with a high TF-IDF value will
be considered important for the given individual provided that it
is frequent within this document and not frequent in the entire
corpus. Consequently, the weight of a word provides a strong
indication of how relevant is the feature for the given individual.
The TF-IDF weights can then be used either for filtering out words
with low importance or using them directly by a propositional
learner.

In addition to the TF-IDF weigthing scheme, the implementa-
tion of wordification (described in detail in Section 5) includes also
the term frequency (TF) and the binary (0/1) weighting schemes. A
comparison of the three schemes can be found in the Appendix A

(see Table A.6). Given that different weighting schemes do not per-
form significantly differently on the classification tasks used in our
experiments, in the rest of the paper we use the TF-IDF scheme
since this form of weighting is prevalent in text mining
applications.

The wordification approach is illustrated on a modified and sub-
stantially simplified version of the well-known East–West Trains
domain (Michie et al., 1994), where the input database consists
of just two tables shown in Fig. 2, where we have only one East-
bound and one West-bound train, each with just two cars with cer-
tain properties. Note that in the experimental section we use the
standard version of the East–West Trains domain.

The TRAIN table is the main table and the Trains are the individ-
uals. We want to learn a classifier to determine the direction of an
unseen train. For this purpose the direction attribute is not prepro-
cessed and is only appended to the resulting feature vector (list of
words).

First, the corresponding two documents (one for each train t1
and t5) are generated, as shown in Fig. 3. After this, the documents
are transformed into the Bag-Of-Words representation by calculat-
ing the TF-IDF values for each word of each document (using Eq.
(3)) with the class attribute column appended to the transformed
Bag-Of-Words table, as shown in Fig. 4. For simplicity, only uni-
grams and bigrams are shown in this example.

4. Wordification methodology

This section formally describes the wordification methodology
by presenting the input data model and input language bias, the
relational database representation, followed by the presentation
of the pseudo-code and the worst-case complexity analysis of the
wordification algorithm.

4.1. Data model

A data model describes the structure of the data. It can be
expressed as an entity-relationship (ER) diagram. The ER diagram,
illustrated in Fig. 5, shows three relations appearing in the original
East–West Trains problem (in addition to the TRAIN and CAR rela-
tionship, it includes also the LOAD relationship, which was skipped
for simplicity in Fig. 2, which contains just the TRAIN and CAR rela-
tional tables). The boxes in the ER diagram indicate entities, which
are individuals or parts of individuals. Here, the Train entity is the
individual, each Car is part of a train, and each Load is part of a car.
The ovals denote attributes of entities. The diamonds indicate rela-
tionships between entities. There is a one-to-many relationship from
Train to Car, indicating that each train can have an arbitrary num-
ber of cars but each car is contained in exactly one train; and a one-
to-one relationship between Car and Load, indicating that each car
has exactly one load and each load is part of exactly one car.

Fig. 1. The transformation from a relational database representation into a Bag-Of-
Words feature vector representation. For each individual entry of the main table
one Bag-Of-Words (BOW) vector di of weights of ‘words’ is constructed, where
‘words’ correspond to the features (attribute values) of the main table and the
related tables.

Fig. 2. Example input for wordification in the East–West Trains domain.

Fig. 3. The database from Fig. 2 in the Bag-Of-Words document representation.
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Entity-relationship diagrams can be used to choose a proper
logical representation for the data. If we store the data in a
relational database the most obvious representation is to have a
separate table for each entity in the domain, with relationships
being expressed by foreign keys.6 This is not the only possibility:
for instance, since the relationship between Car and Load is one-to-
one, both entities could be combined in a single table, while entities
linked by a one-to-many relationship cannot be combined without
either introducing significant redundancy or significant loss of infor-
mation, e.g., introduced through aggregate attributes. Note that one-
to-many relationships distinguish relational learning and Inductive
Logic Programming from propositional learning.

In wordification, we use the entity-relationship diagram to
define types of objects in the domain, where each entity will
correspond to a distinct type. The data model constitutes a
language bias that can be used to restrict the hypothesis space
and guide the search. In most problems, only individuals
and their parts exist as entities, which means that the entity-
relationship model has a tree-structure with the individual
entity at the root and only one-to-one or one-to-many relations
in the downward direction. Representations with this restriction
are called individual-centered representations. This restriction
determines the language bias, constraining the relational database
input to wordification.

4.2. Formal setting

The framework, established in this section, defines a learning
setting which is very similar to the standard propositionalization
problem setting. As in every propositionalization approach to
Relational Data Mining, a two-step approach is implemented: (1)
in the first propositionalization step the data is transformed from
a relational database format to a tabular format, and (2) the tabular
data is used as input for learning models or patterns by a selected

propositional learner, having its own hypothesis language bias
(e.g., decision trees or propositional classification rules). The for-
mal framework described below focuses only on step (1) of the
two-step wordification methodology. For simplicity, the formaliza-
tion describes the setting using only unigram features.

Input. The input to wordification is a relational database (RDB),
given as a set of relations fR1; . . . ;Rng and a set of foreign-key con-
nections between the relations denoted by Ri ! Rj, where Ri has a
foreign-key pointing to relation Rj. The foreign-key connections
correspond to the relationships in the entity-relationship diagram.
For example, the train attribute in the CAR relation is a foreign-
key referring to trainID in TRAIN. It defines the CAR! TRAIN

connection; as expected, it is a many-to-one connection from
CAR to TRAIN.

A n-ary relation Ri is formally defined as a set of tuples: a subset
of the Cartesian product of mi domains: Ri �

Qmi
j¼1Dij ¼

Di1 � Di2 � . . .� Dimi
, where a domain (or a type) is a specification

of the valid set of values for the corresponding argument.

Dij ¼ fv ij1
;v ij2

; . . . ;v ijkij
g

Note that for wordification we require that each domain Dij must
have a finite number of unique values kij, thus discretization of con-
tinuous domains is needed.

A further requirement is that the RDB must be individual-cen-
tered. This means that a target relation RT 2 RDB must exist, such
that it does not have any foreign keys:

9= i : RT ! Ri; Ri 2 RDB

Output. Having established the data model, the individual-cen-
tered data representation language bias and the relational database
representation of input data, the formal output (a transformed sin-
gle-relation representation RT 0 ) of the wordification methodology
can be defined as follows:

RT 0 �
Y
i;j;k

DT 0ijk
¼
Y
i;j;k

domainðRi;Dij ;v ijk
Þ; Ri!

�
RT

or in other words, one domain in the resulting relation RT 0 is defined
for each relation Ri (that is connected by following the foreign-key

path, denoted by !� to RT ), and each of its domains Dij as well as
domain values v ijk

. These domains have the property

DT 0ijk
¼ Rþ0

since they are determined by the TF-IDF formula. This final output
relation (table) can be given as an input to any propositional
learner.

4.3. Wordification algorithm

This section presents the wordification methodology by
describing in detail the individual transformation steps in
Algorithms 1 and 2.

Fig. 4. The transformed database (consisting of TF-IDF values, which are zero if the term appears in all documents) from Fig. 2 using the wordification approach. This final
output can be given as an input to a propositional classifier.

Fig. 5. Entity-relationship diagram for the East–West challenge.

6 In the context of relational databases, a foreign key is a field in a relational table
that matches a candidate key of another table. The foreign key can be used to cross-
reference tables.
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Algorithm 1. WordificationðT; p; kÞ

Algorithm 2. WordifyðT; ex; kÞ

The algorithm starts recursive document construction on the
instances of the main table (Lines 3–7 in Algorithm 1). First it cre-
ates word-items for the attributes of the target table (Lines 2–6 in
Algorithm 2), which is followed by concatenations of the word-
items and results of the recursive search through examples of the
connecting tables (Lines 8–16 in Algorithm 2). As this document
construction step is done independently for each example of the
main table, this allows simultaneous search along the tree of con-
nected tables. In order to perform concurrent propositionalization,
Lines 3–7 in Algorithm 1 need to be run in parallel. A common
obstacle in parallel computing is memory synchronization between
the different subtasks, which is not the case here as concurrent pro-
cesses in our implementation of wordification only need to share a
cached list of subtrees. This list stores the results of subtree word
concatenations in order to visit every subtree only once.

As wordification can produce a large number of features
(words), especially when the maximal number of n-grams per
word-items is large, we perform pruning of words that occur in

less than a predefined percentage (5% on default) of documents.
This reduces the size of trees by removing sections of the tree that
is expected to provide little power for instance classification.

The constructed features are simple, and as we do not explicitly
use existential variables in the new features (words), we instead
rely on the Term Frequency-Inverse Document Frequency (TF-
IDF) measure to implicitly capture the importance of a word for
a given individual. In the context of text mining, TF-IDF value
reflects how representative is a certain feature (word) for a given
individual (document).

4.4. Time and space complexity

This section covers the worst-case complexity analysis of the
wordification algorithm. Let t be the number of tables in a
database. To simplify the analysis, we assume that each table is
connected with exactly one other table in a one-to-many relation.
Let mi and ni be the number of rows and the number of attributes
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in table i, respectively. Further, let m ¼maxðm1;m2; . . . ;mtÞ and
n ¼maxðn1;n2; . . . ;ntÞ. The maximal number of rows is generally
much higher than the number of attributes and the number of
tables in a relational database: t � n� m. Let k be the maximal
number of n-grams per word.

Time complexity. The upper-bound time complexity for the
propositionalization step of the wordification methodology when
each word is constructed from one witem (k ¼ 1) is
Oðm � n �mt�1Þ ¼ Oðn �mtÞ. When we use words that are combina-
tions of up to 1 6 k 6 n witems (Lines 3–5 in Algorithm 2) the

complexity of the algorithm is O mt �
Pk

i¼1
n
i

� �� �
. As

limk!n
Pk

i¼1
n
i

� �
¼ 2n � 1, the worst-case time complexity is there-

fore Oð2n �mtÞ.
Space complexity. The space complexity for the wordification

algorithm using unigram features (k ¼ 1) is Oðm � t � nÞ. When we
increase the maximal word length (number of witems per word)
the feature space of the algorithm also increases exponentially.
When the maximal word length is equal to the maximal number

of attributes, the space complexity is O m � t �
Pk

i¼1
n
i

� �� �
.

Following a similar reasoning as in the time complexity analysis,
the worst case space complexity of the algorithm is therefore
Oðm � t � 2nÞ.

When k! n both time and space complexity are in its worst
cases exponential in the number of attributes, but as evidenced from
the experiments in Section 6, good performance can be achieved
with k ¼ 1 or k ¼ 2, in which case the space complexity is linear
Oðm � t � nÞ and the time complexity is polynomial Oðn �mtÞ. Since t
is usually small, the approach can perform orders of magnitude
faster than its competitors, as demonstrated in Section 6.

5. Implementation

This section describes the implementation of the wordification
methodology in the ClowdFlows platform. We briefly present the
platform with its distinguishing features including the ILP module,
followed by a description of the wordification workflow and its
components.

5.1. The ClowdFlows platform

The ClowdFlows platform (Kranjc et al., 2012) is an open-
source, web-based data mining platform that supports the
construction and execution of scientific workflows. ClowdFlows
differs from comparable platforms by its web based architecture.
During run-time the ClowdFlows platform resides on a server (or
on a cluster of machines) while its graphical user interface that
allows workflow construction is served as a web application
accessible from any modern web browser. ClowdFlows is

essentially a cloud-based web application that can be accessed
and controlled from anywhere while the processing is performed
in a cloud of computing nodes.7

The ClowdFlows platform is written in Python using the Django
framework. Its graphical user interface is implemented in
JavaScript and features simple operations that allow workflow con-
struction: adding workflow components (widgets) on a canvas and
creating connections between the components to form executable
workflows.

The platform has the following distinguishing features: an
implementation of a visual programming paradigm, a web-service
consumption module, a real-time processing module for mining
data streams, the ability to easily share and publicize workflows
constructed in ClowdFlows, and an ever growing roster of reusable
workflow components and entire workflows.

Following a modular design, workflow components in
ClowdFlows are organized into packages which allows for easier
distributed development. ClowdFlows is easily extensible by add-
ing new packages and workflow components by writing simple
or complex Python functions. Workflow components of several
types also allow graphical user interaction during runtime, visual-
ization of results by implementing views in JavaScript, HTML or
any other format that can be displayed in a web browser (e.g.,
Flash, Java Applet). The ClowdFlows packages include Weka algo-
rithms (Witten et al., 2011), Orange algorithms (Demšar et al.,
2004), text mining, as well as different ILP and RDM algorithms.

The current ILP module includes components, such as the pop-
ular ILP system Aleph (Srinivasan, 2007), as well as RSD (Železný &
Lavrač, 2006), SDM (Vavpetič & Lavrač, 2013) and RelF (Kuželka &
Železný, 2011). Aleph is an ILP toolkit on its own, with a wide range
of functionalities: from decision tree learning to feature generation
and first-order rule induction. We have extended the ClowdFlows
ILP module with the implementation of the wordification compo-
nent, which together with the existing components from different
modules of the ClowdFlows platform forms the entire workflow of
the wordification methodology, as can be seen in Fig. 6. Along with
other components in the ILP module, wordification components
can be used to construct diverse RDM workflows. As completed
workflows, data, and results can also be made public by the author
of the workflow, the platform can serve as an easy-to-access inte-
gration platform for various RDM workflows. Each public workflow
is assigned a unique URL that can be accessed by anyone to either
repeat the experiment, or use the workflow as a template to design
another workflow.

5.2. Wordification workflow

This section describes the main components of the wordifica-
tion workflow, which is shown in Fig. 6. The implementation

Fig. 6. Clowdflows wordification workflow with additional analyses after the wordification process. This workflow is publicly available at http://clowdflows.org/workflow/
1455/. The abbreviations on the input and output stubs (which are not important for understanding the workflow) are as follows: con connection, ctx context, odt Orange data
table, lot list of Orange data tables, str string, arf ARFF file, ins instances, lrn learner, cla classifier.

7 A public installation of ClowdFlows is accessible at http://clowdflows.org.
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allows the user to provide as input a relational database by con-
necting to a MySQL database server. First, the user is required to
select the target table from the initial relational database, which
will later represent the main table in the wordification component
of the workflow. Second, the user is able to discretize each table
using one of the various discretization techniques provided.
These discretized tables are used by the wordification widget,
where the transformation from the relational tables to a corpus
of documents is performed. The workflow components are
described in more detail below.

MySQL Connect. Since relational data is often stored in SQL data-
bases, we use the MySQL package to access the training data by
connecting to a MySQL database server. The MySQL Connect wid-
get is used for entering information required to connect to a data-
base (e.g., user credentials, database address, database name, etc.)
in order to retrieve the training data from a MySQL database server
and automatically construct the background knowledge and the
training examples.

Database Context. This widget enables a selection of tables and
columns that will be used in the next steps of the methodology.
The information is carried to the connected widgets through the
so-called database context objects. These objects also contain the
detected table relationships. In case that the input relational data-
base does not have predefined primary and foreign keys between

the tables, the user is given an option for simple table connection
search through the names of the attributes.

Dataset Discretization. The sole task of this widget is to convert
continuous attributes to categorical, by discretizing the continuous
attributes. Dataset Discretization widget supports three discretiza-
tion methods: using equal-width intervals, using equal-frequency
intervals, and class-aware discretization proposed by Fayyad and
Irani (1993) that uses MDL and entropy to find the best cut-off
points. Dataset Discretization widget can take as input either a
single data set or a list of multiple datasets. In the latter case,
discretization of all continuous attributes of every dataset is
performed.

Wordification. The wordification widget transforms the rela-
tional database to a corpus of documents for the main table. As
an input it takes three arguments: the target (main) table, a list
of additional tables and a database context, which contains the
relations between the tables. The widget first indexes the examples
of every table by their primary and foreign keys’ values. This step is
required for performance optimization of data retrieval operations
when searching for connecting instances from different (con-
nected) tables in the word-item concatenation step. Next, recursive
document construction for every individual is performed. The
algorithm starts on every example of the main table: it creates
word-items for its attributes, followed by concatenations of the
word-items and results of the recursive search through the
connecting tables. When searching along the tree of connected
tables, the algorithm stores the results of subtree word concatena-
tions for every instance. Consequently, the algorithm iterates
over every subtree only once. The user can run the widget with
different parameters: maximal number of n-grams per word, as
well as the pruning threshold parameter. The wordification widget
produces two outputs: a set of generated word documents and an
arff table with calculated TF-IDF values for every example of the
main table.

Word Cloud. A set of generated word documents can be dis-
played using word cloud visualization, enabling improved domain
understanding.

Data Mining. After the wordification step the user can perform
various types of analysis, depending on the task at hand (classifica-
tion, clustering, etc). In the example workflow shown in Fig. 6, the
arff output is used as input to build and display a J48 decision tree.

6. Experiments

This section presents the evaluation of the wordification
methodology. After describing the relational databases used in this
study, we describe the experiments performed on these datasets
and provide a comparison of wordification to other propositional-
ization techniques. In comparison with the experimental setting
described in Perovšek, Vavpetič, Cestnik, and Lavrač (2013), a lar-
ger number of datasets is used, and very favorable results are
obtained by using decision tree learner J48, compared to relatively
poor results reported in previous work, where the Naive Bayesian
classifier assuming feature independence was used. In addition to
the J48 tree learner, we also tested the LibSVM learner.

Table 1
Table properties of the experimental data.

# Rows # Attributes

Trains
Cars 63 9 (10)
Trains 20 2

Carcinogenesis
Atom 9064 5
canc 329 2
sbond_1 13,562 4
sbond_2 926 4
sbond_3 12 4
sbond_7 4134 4

Mutagenesis 42
Atoms 1001 5
Bonds 1066 5
Drugs 42 7
Ring_atom 1785 3
Ring_strucs 279 3
Rings 259 2

Mutagenesis 188
Atoms 4893 5
Bonds 5243 5
Drugs 188 7
Ring_atom 9330 3
Ring_strucs 1433 3
Rings 1317 2

IMDB
Actors 7118 4
Directors 130 3
Directors_genres 1123 4
Movies 166 4
Movies_directors 180 3
Movies_genres 408 3
Roles 7738 4
Financial
Accounts 4500 4
Cards 892 4
Clients 5369 4
Disps 5369 4
Districts 77 16
Loans 682 7
Orders 6471 6
tkeys 234 2
Trans 1,056,320 10

Table 2
Majority classifier performance for each dataset.

Domain CA [%]

Trains 50.00
Mutagenesis 42 69.05
Mutagenesis 188 66.50
IMDB 73.49
Carcinogenesis 55.32
Financial 86.75
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Let us first present the five relational databases used in the
experiments: Trains (in two variants), Carcinogenesis,
Mutagenensis with 42 and 188 examples, IMDB, and Financial.
Table 1 lists the characteristics of the datasets. All the datasets
can be downloaded from a web page,8 making them easily reusable
in other experiments.

Trains. The well-known East–West Trains challenge is an ILP
problem of predicting whether a train is East-bound or West-
bound. A train contains a variable number of cars that have
different shapes and carry different loads. We have considered
two versions of the data for our experiments: the original dataset
from the East–West Trains challenge and a modified dataset
where every car also has its position as an additional attribute. In
both datasets we have considered East-bound Trains as positive
examples.

Carcinogenesis. The problem addressed by Srinivasan et al.
(1997) is to predict carcinogenicity of a diverse set of chemical
compounds. The dataset was obtained by testing different chemi-
cals on rodents, where each trial would take several years and hun-
dreds of animals. The dataset consists of 329 compounds, of which
182 are carcinogens.

Mutagenesis In this task the goal is to predict mutagenicity of
aromatic and heteroaromatic nitro compounds (Debnath, Lopez
de Compadre, Debnath, Shusterman, & Hansch, 1991). Predicting
mutagenicity is an important task as it is very relevant to the pre-
diction of carcinogenesis. The compounds from the data are known
to be more structurally heterogeneous than in any other ILP data-
set of chemical structures. The database contains 230 compounds
of which 138 have positive levels of mutagenicity and are labeled
as ‘active’. Others have class value ‘inactive’ and are considered
to be negative examples. We took the datasets of the original
Debnath paper (Debnath et al., 1991), where the data was split into
two subsets: a 188 compound dataset and a smaller dataset with
42 compounds.

IMDB The complete IMDB database is publicly available in the
SQL format. This database contains tables of movies, actors, movie
genres, directors, and director genres. The database used in our
experiments consists only of the movies whose titles and years
of production exist on the IMDB’s top 250 and bottom 100 chart.9

The database therefore consists of 166 movies, along with all of their
actors, genres and directors. Movies present in the IMDB’s top 250
chart were considered as positive examples, while those in the bot-
tom 100 were regarded as negative.

Financial. This is a publicly available dataset, which was artifi-
cially constructed as part of the PKDD’99 Discovery Challenge.
The classification task addressed is the prediction of successful
loans. The dataset consists of 8 tables describing clients of a bank,
their accounts, transactions, permanent orders, granted loans and
issued credit cards.

Table 2 presents the performance of the majority classifier for
each of the described datasets. This should serve as a baseline for
the classification results reported in the following subsections.

6.1. Evaluation of feature construction and filtering

The experiments, enabling the analysis of the feature genera-
tion step of wordification were performed on the original East–
West Trains challenge dataset using different parameter settings:
using elementary word-items and complex word-items con-
structed from up to 5-grams of witems.

The left plot in Fig. 7 shows that the size of the feature space in
the non-pruned version of wordification increases exponentially as
the maximal number of witems per word increases. Note that
wordification also implements a pruning technique where words
that occur in less than a predefined percentage of documents are
pruned. As shown in Fig. 7, using higher thresholds for feature fil-
tering drastically reduces the dimensionality of the data, resulting
in more efficient learning.

We have also applied different wordification settings in the
classification task on the Trains dataset. The classification accura-
cies using the J48 decision tree of leave-one-out cross-validation
for different parameters are shown on the right side of Fig. 7 (the
reason for using leave-one-out instead of the standard 10-fold
cross-validation setting is a very small number of instances in
the Trains dataset). The results show that using larger n-grams of
witems only marginally improves the classification accuracies,
but results in longer run-times of the propositionalization step
because of a larger feature space. In this specific domain, pruning
performs favorably in terms of classification accuracy, though as
the experiments in the Appendix A show (Table A.7), this observa-
tion is only applicable to small domains, while for larger domains
with more potential witem combinations this observation does not
hold.

6.2. Comparative evaluation of propositionalization techniques

This section describes the experiments performed in the evalu-
ation of different propositionalization approaches on binary classi-
fication tasks, using the datasets from the five relational domains.

Fig. 7. Experiments on the wordification propositionalization step. Left: Size of the feature space in correlation with the number witems per word. Right: Classification
accuracies in leave-one-out cross-validation (using the J48 decision tree learner with default parameter setting) as a function of the maximum number of n-grams per word.

8 http://kt.ijs.si/janez_kranjc/ilp_datasets/.
9 As of July 2, 2012.
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Fig. 8 shows the full experimental workflow (from connecting to a
relational database management server to visualizing the experi-
mental results and evaluation). This evaluation workflow is avail-
able online10 in the ClowdFlows platform, which enables ILP
researchers to reuse the developed workflow and its components
in future experimentation.

The first step of the evaluation methodology is to read the rela-
tional data, stored in an SQL database, using the MySQL package
widgets. Data then enters the cross-validation subprocess (Fig. 9),
where the following steps are repeated for each fold (we used
10-fold cross-validation). First, discretization of the training fold
of the relational database is performed. We have arbitrarily
selected equi-distance discretization with 3 intervals of values to
discretize the continuous attributes of the experimental relational
datasets, such that none of the techniques was given an advantage.
Then a propositionalization technique is applied to the training

data and the results are formatted in a way to be used by the
Weka algorithms. The J48 decision tree and the LibSVM learners
were selected with their default parameter settings to perform bin-
ary classification.

The test set is handled as follows. First, the data is discretized to
the intervals determined on the training set. Second, the features
produced by the given propositionalization approach on the train-
ing set are evaluated on the test set to produce a propositional rep-
resentation of the test data. Note that this process is slightly
different for wordification, since the features do not have to be
evaluated. We do however need the IDF values calculated on the
training set. Finally, these test examples are classified by the clas-
sifiers trained on the training data. The results of each step are then
collected to be returned at the end by the cross-validation
subprocess.

Every propositionalization algorithm was run with its default
settings. A non-parallel version of wordification was run using only
the elementary words (maximal number of witems per word was
set to 1) and without pruning, as none of our datasets required this.

Fig. 9. The cross-validation subprocess from Fig. 8. This workflow gets a training set (input trn) and a test set (input tst) as input and is executed for each fold. There are two
Wordification widgets in the workflows: one responsible for constructing the features on the Trains set and the other on the test set. The connection between the two widgets
is needed for transferring the IDF weights learned on the training set, which are used for feature construction on the test set. The results of each step are collected by the cv
output widget. Other widget input and output abbreviations are not important for understanding the workflow.

Fig. 8. Evaluation workflow for evaluating and comparing Wordification, Aleph, RSD, and RelF, implemented in the ClowdFlows data mining platform. The abbreviations on
the input and output stubs are as follows: con connection, ctx context, dat full dataset for cross-validation, cvf number of cross-validation folds, sed random seed, lrn/lea
learner instance, res cross-validation results, sta classification statistics, evr evaluation results.

10 http://clowdflows.org/workflow/4018/.

M. Perovšek et al. / Expert Systems with Applications 42 (2015) 6442–6456 6451

92 Chapter 4. Use Case: Wordification in ClowdFlows



RSD was specified to construct features with a maximum length
of a feature body of 8. None of the constructed features were dis-
carded as the minimum example coverage of the algorithm was
set to 1.

Aleph was run in the feature construction mode (named
AlephFeaturize in the evaluation workflow) with coverage as the
evaluation function and maximal clause length of 4. The minimal
number of positive examples was set to 1 and the maximal number
of false positives to 0.

RelF, the most relevant of the algorithms in the TreeLiker soft-
ware (Kuželka & Železný, 2011), was run in the default setting as
well, but it is not clear from the documentation what exactly are
the default parameter values. RelF expects a feature template from

the user. In this case, we constructed relatively simple templates
(enabling features with depth 1), since constructing and selecting
more complex templates is out of scope for the analysis in this
paper. It should be noted that templates more finely tuned to a par-
ticular domain could yield significantly better results. RelF also
supports continuous attributes, but since in our experiments all
approaches were given a discretized dataset, this feature could
not be exploited.

6.3. Results comparison

The results of the experiments on multiple datasets, presented
in Table 3, show the classification accuracy and the ROC AUC
obtained by the J48 and LibSVM learners (when applied on the data
obtained as a result of propositionalization approaches), as well as
the run-times needed for propositionalization. The run-time per-
formance for each algorithm was done by measuring the time an
algorithm took to propositionalize the full database in each
domain. The results show that the wordification methodology
achieves scores comparable to the state-of-the-art propositional-
ization algorithms RSD and RelF, as well as compared to proposi-
tionalization performed by using features constructed by Aleph,
while the run-time required for transforming the database into
its propositional form is much faster.

In terms of classification accuracy obtained by the J48 classifier,
wordification performs favorably compared to other propositional-
ization techniques, except on the Trains dataset (without the car’s
position attribute) and the Financial dataset. Poor performance on
the Trains dataset can be explained by examining the J48 tree in
the wordified Trains dataset with the position attribute, where
the J48 classifier puts the cars_position_3 attribute into the root
of the decision tree. Because of the absence of this attribute in
the first dataset and the usage of only unigram words, the decision
tree failed to find a clear distinction between the positive and neg-
ative examples (this problem can be solved by using bigrams of
witems). Similar results were obtained using the LibSVM classifier
where wordification achieved the best results on every dataset
except for the two variants of the Trains data.

From the point of view of run-times, wordification is clearly the
most efficient system, as it outperforms other techniques on every
dataset. The true value of the wordification methodology, its low
time-complexity, shows even more drastically on larger datasets,
such as Carcinogenesis and Financial datasets, where it achieves
comparable classification results in up to 100-times faster manner
(compared to RSD or Aleph feature construction).

In order to statistically compare classification accuracies of
multiple propositionalization approaches (separately for each of
the classifiers) on multiple datasets, we applied the Friedman test
(Friedman, 1937) using significance level a ¼ 0:05 and the corre-
sponding Nemenyi post hoc test (Nemenyi, 1963). This approach
is used as an alternative to the t-test, which is proven to be

Fig. 10. Critical distance diagram for the reported classification accuracy (left; not enough evidence to prove that any algorithm performs better) and run-time (right;
significant differences for a ¼ 0:05) results. The numbers in parentheses are the average ranks.

Table 3
Classifier evaluation on different databases. The bolded items indicate the best
results.

Domain Algorithm J48 LibSVM Time
[s]

CA
[%]

AUC CA
[%]

AUC

Trains without
position

Wordification 50.00 0.50 50.00 0.50 0.11
RelF 65.00 0.65 80.00 0.80 1.04
RSD 65.00 0.65 75.00 0.75 0.53
Aleph –
Featurize

60.00 0.60 65.00 0.65 0.40

Trains Wordification 95.00 0.95 50.00 0.50 0.12
RelF 75.00 0.75 75.00 0.75 1.06
RSD 60.00 0.60 80.00 0.80 0.47
Aleph –
Featurize

55.00 0.55 70.00 0.70 0.38

Mutagenesis 42 Wordification 97.62 0.96 78.57 0.65 0.39
RelF 76.19 0.68 76.19 0.62 2.11
RSD 97.62 0.96 69.05 0.50 2.63
Aleph –
Featurize

69.05 0.50 69.05 0.50 2.07

Mutagenesis 188 Wordification 68.62 0.55 81.91 0.78 1.65
RelF 75.00 0.68 68.62 0.54 7.76
RSD 68.09 0.54 71.28 0.58 10.10
Aleph –
Featurize

60.11 0.68 60.11 0.68 19.27

IMDB Wordification 81.93 0.75 73.49 0.50 1.23
RelF 69.88 0.66 73.49 0.50 32.49
RSD 74.70 0.59 73.49 0.50 4.33
Aleph –
Featurize

73.49 0.50 73.49 0.50 4.96

Carcinogenesis Wordification 62.31 0.61 60.79 0.58 1.79
RelF 60.18 0.59 56.23 0.52 16.44
RSD 60.49 0.59 56.23 0.52 9.29
Aleph –
Featurize

55.32 0.50 55.32 0.50 104.70

Financial Wordification 86.75 0.50 86.75 0.50 4.65
RelF 97.85 0.92 86.70 0.50 260.93
RSD 86.75 0.50 79,06 0.50 533.68
Aleph -
Featurize

86.75 0.50 86.75 0.50 525.86
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inappropriate for testing multiple algorithms on multiple datasets
(Demšar, 2006).

The Friedman test ranks the algorithms for each dataset, the
best performing algorithm getting the rank of 1, the second best
rank 2, etc. In the case of ties, average ranks are assigned. The
Friedman test then compares the average ranks of the algorithms.
The null-hypothesis states that all the algorithms are equivalent
and so their ranks should be equal. If the null-hypothesis is
rejected, we can proceed with a post hoc test, in our case the
Nemenyi test. The Nemenyi test is used when we want to compare
multiple algorithms to each other. The performance of the algo-
rithms is significantly different if the average ranks differ by at
least the critical distance (CD), as defined by Demšar (2006). This
test can be visualized compactly with a critical distance diagram;
see Fig. 10 for classification accuracy (CA) and run-time, when
using J48 as the selected classifier (omitting AUC due to similar
results obtained as for CA).

The described statistical test was performed using J48 for the
three reported measures: classification accuracy, AUC and run-
time. The validation yielded the following. For classification

accuracy and AUC, there is not enough evidence to prove that
any propositionalization algorithm on average performs better
than the others (Fig. 10 left, for significance level a ¼ 0:05), even
though wordification achieves the best results on 5 out of 7 bench-
marks. This is due to the fact that the test takes into account the
order of all algorithms, not only one versus the others.

We repeated the same statistical analysis for the LibSVM
results, where the conclusion ended up the same. For classification
accuracy and AUC, there is not enough evidence to prove that any
propositionalization algorithm on average performs better than
the others, even though wordification also achieves the best results
on 5 out of 7 benchmarks.

For run-time, the results are statistically significant in favor of
wordification; see the critical distance diagram in the right part
of Fig. 10. The diagram tells us that the wordification approach per-
forms statistically significantly faster than other approaches, under
the significance level a ¼ 0:05. Other approaches fall within the
same critical distance and no statistically significant difference
was detected.

As shown in Fig. 8, the results of the Cross Validation widget
(precision, recall, F-score) are connected to the input of the
VIPER (Visual Performance Evaluation) widget. VIPER is an alterna-
tive evaluation visualization (Sluban, Gamberger, & Lavrač, 2014),
implemented in the ClowdFlows data mining platform, which dis-
plays the results as points in the two dimensional precision-recall
space (for the selected target class). Fig. 11 presents the VIPER
performance visualization, evaluating J48 and LibSVM results after
applying wordification, RSD, RelF and Aleph feature construction as
propositionalizaton techniques. The results are presented in the
so-called precision-recall space, where each point represents
the result of an algorithm. Points closer to the upper-right corner
have higher precision and recall values. F-measure values are
presented as isolines (contour lines) in the precision-recall
space, which allows a simple comparison of algorithm
performances.

From the results shown in Fig. 11 we can conclude that in terms
of precision and recall J48 achieves best results using the wordifi-
cation propositionalization. Using the wordification methodology,
not only a higher percentage of positive examples was retrieved
(higher recall score), but also a slightly higher percentage of cor-
rectly classified examples of the target class (higher precision
score) compared to other propositionalization techniques.

Table 4
Table properties of the experimental data.

# Rows # Attributes

IMDB
Movies 166 4
Roles 7738 2
Actors 7118 4
Movie_genres 408 2
Movie_directors 180 2
Directors 130 3
Director_genres 243 3

Accidents
Accident 102,756 10
Person 201,534 10

Table 5
Document properties after applying the wordification methodology.

Domain Individual # Examples # Words # Words after filtering

IMDB Movie 166 7453 3234
Accidents Accident 102,759 186 79

Fig. 11. The VIPER visualization showing evaluations of the standard J48 algorithm after applying propositionalizaton techniques. In the Trains dataset (left), ‘East’ was
selected as the target class, while in the IMDB dataset (right) positive class was selected as the target.
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7. Applications

This section presents results of association rule learning exper-
iments on two real-life relational databases: a collection of best
and worst movies from the Internet Movie DataBase (IMDB) and
a database of Slovenian traffic accidents. Tables 4 and 5 list the
characteristics of both databases.

The preprocessing procedure was performed on the two data-
bases as follows. First, the wordification step was applied. As
shown in Fig. 12, we used ClowdFlows to read the relational data
from the MySQL database, discretize continuous attributes and
apply the propositionalization step. Due to lack of support for asso-
ciation rule learning in the ClowdFlows platform, the results of the
wordification feature construction step were saved as an ARFF file
and imported into RapidMiner (Mierswa, Wurst, Klinkenberg,
Scholz, & Euler, 2006). Using RapidMiner we first removed
irrelevant features (which have the same value across all the
examples), which resulted in the reduction of the features to less
than half of the original (see Table 5). In order to prepare the data
for association rule mining, we also binarized the data: after
experimenting with different TF-IDF thresholds, features with a
higher TF-IDF weight than 0.06 were assigned the value true and
false otherwise.

7.1. IMDB database

The complete IMDB database is publicly available in the SQL
format.11 This database contains tables of movies, actors, movie gen-
res, directors, director genres.

The evaluation database used in our experiments consists only
of the movies whose titles and years of production exist on
IMDB’s top 250 and bottom 100 chart. The database therefore
consisted of 166 movies, along with all of their actors, genres
and directors. Movies present in the IMDB’s top 250 chart were
added an additional label goodMovie, while those in the bottom
100 were marked as badMovie. Additionally, attribute age was
discretized; a movie was marked as old if it was made before
1950, fairlyNew if it was produced between 1950 and 2000 and
new otherwise.

After preprocessing the dataset using the wordification
methodology, we performed association rule learning. Frequent
itemsets were generated using RapidMiner’s FP-growth imple-
mentation (Mierswa et al., 2006). Next, association rules for
the resulting frequent itemsets were produced. Among all the
discovered rules, several interesting rules were found. Fig. 13
presents some of the interesting rules selected by the expert.
The first rule states that if the movie’s genre is thriller and is
directed by Alfred Hitchcock, who is also known for drama
movies, then the movie is considered to be good. The second
rule we have selected concludes that if the movie is good and
Robert De Niro acts in it, than it must be a drama. The third
interesting rule shows that Alfred Hitchcock acts only in the
movies he also directs. The last rule concludes that if Ted
Grossman acts in a good adventure movie, then the director is
Steven Spielberg. Note that Ted Grossman usually plays the role
of a stunt coordinator or performer.

Fig. 12. Clowdflows wordification workflow used for feature construction before applying association rule learning. This workflow is publicly available at http://clowdflows.
org/workflow/3969/. The abbreviations (not important for understanding the workflow) on the input and output stubs are as follows: con connection, ctx context, odt Orange
data table, lot list of Orange data tables, str string, arf ARFF file, ins instances, lrn learner, cla classifier.

Fig. 14. Examples of interesting association rules discovered in the accidents
database.

Fig. 13. Examples of interesting association rules discovered in the IMDB database.

11 http://www.webstepbook.com/supplements/databases/imdb.sql.
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7.2. Traffic accident database

The second dataset consists of all accidents that happened in
Slovenia’s capital Ljubljana between years 1995 and 2005. The data
is publicly accessible from the national police department web-
site.12 The database contains the information about accidents along
with all the accident’s participants.

The data already contained discretized attributes, so further dis-
cretization was not needed. Similarly to the IMDB database, pre-
processing using wordification methodology, FP-growth itemset
mining and association rule mining were performed. Fig. 14 pre-
sents some of the interesting rules found in the Slovenian traffic
accidents dataset.

The first rule indicates that if the traffic is rare and the accident
happened in a parking lot, then no injuries occurred. The second
rule implies that whenever a motorcycle is involved in an accident,
a male person is involved.

8. Conclusions

This paper presents the propositionalization technique called
wordification, which aims at constructing a propositional table
using simple and easy to understand features. This methodol-
ogy is inspired by text mining and can be seen as a transfor-
mation of a relational database into a corpus of documents,
where document ‘words’ are constructed from attribute values
by concatenating each table name, attribute name and value
(called word-item or witem in this paper) into a single
named-entity. As is typical for propositionalization methods,
after the wordification step any propositional data mining algo-
rithm can be applied.

As shown in the experiments on seven standard ILP datasets,
the proposed wordification approach using the J48 and LibSVM
classifiers performs favorably (in terms of accuracy and efficiency),
compared to state-of-the-art propositionalization algorithms (RSD,
RelF) as well as compared to propositionalization performed by
using features constructed by Aleph. In addition, the proposed
approach has the advantage of producing easy to understand
hypotheses, using much simpler features than RSD and other sys-
tems, which construct complex logical features as conjunctions
of first-order literals. It is interesting to observe that in wordifica-
tion feature simplicity is compensated by the mechanism of fea-
ture weighting, inherited from text mining, which successfully
compensates for the loss of information compared to complex
relational features constructed by other propositionalization
algorithms. In our experiments we also considered feature
construction using n-grams. However, our preliminary experi-
ments indicate that in larger domains this technique should be
coupled with feature selection algorithms, which we plan to
address in our further work.

Other advantages of wordification, to be explored in further
work, include the capacity to perform clustering on relational data-
bases; while this can be achieved also with other propositionaliza-
tion approaches, wordification may successfully exploit document
similarity measures and word clouds as easily understandable
means of cluster visualization.

The implementation of the entire experimental workflow (from
connecting to a relational database management server to visualiz-
ing the experimental results and evaluation) in the web-based data
mining platform ClowdFlows is another major contribution, which
will enable ILP researchers to reuse the developed software in
future experimentation. To the best of our knowledge, this is the
only workflow-based implementation of ILP algorithms in a

platform accessible through a web browser, enabling simple work-
flow adaptation to the user’s needs. Adding of new ILP algorithms
to the platform is also possible by exposing the algorithm as a web
service. This may significantly contribute to the accessibility and
popularity of ILP and RDM methods in the future.

In terms of reusability of the workflows, accessible by a single
click on a web page where the workflow is exposed, the
ClowdFlows implementation of propositionalization algorithms
is a significant step towards making the ILP legacy accessible
to the research community in a systematic and user-friendly
way. An additional building block in this vision is the incorpora-
tion of the VIPER visual performance evaluation engine, which
enables algorithm comparison in terms of precision and recall,
simplifying the experimental comparisons and results
interpretation.

In future work, we will address other problem settings (such as
clustering) and use the approach for solving real-life relational
problems. Moreover, we plan to use the approach in a more elab-
orate scenario of mining heterogeneous data sources, involving a
mixture of information from databases and text corpora. We will
also further investigate the strength of n-gram construction and
feature weighting, as used in the text mining community, in propo-
sitional and Relational Data Mining, as our results indicate that
these mechanisms may successfully be used to compensate for
the loss of information compared to constructing complex logical
features.
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Appendix A

Tables A.6 and A.7.

Table A.6
Evaluation of different feature weighting techniques. The bolded items indicate the
best results.

Domain Weighting J48-accuracy [%] J48-AUC

Trains without position TF-IDF 50.00 0.50
TF 85.00 0.85
Binary 35.00 0.35

Trains TF-IDF 95.00 0.95
TF 80.00 0.80
Binary 70.00 0.70

Mutagenesis 42 TF-IDF 97.62 0.96
TF 97.62 0.96
Binary 97.62 0.96

Mutagenesis 188 TF-IDF 68.62 0.55
TF 68.09 0.54
Binary 68.62 0.55

IMDB TF-IDF 81.93 0.75
TF 81.93 0.75
Binary 81.93 0.75

Carcinogenesis TF-IDF 62.31 0.61
TF 62.61 0.61
Binary 62.92 0.62

Financial TF-IDF 86.75 0.50
TF 86.75 0.50
Binary 86.75 0.5012 http://www.policija.si/index.php/statistika/prometna-varnost.
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Table A.7
Evaluation of different number of witems. The bolded items indicate the best results.

Domain k J48-Accuracy [%] J48-AUC Time [s]

Trains without position 1 50.00 0.50 0.12
2 75.00 0.75 0.15
3 75.00 0.75 0.20

Trains 1 95.00 0.95 0.12
2 75.00 0.75 0.16
3 70.00 0.70 0.22

Mutagenesis 42 1 97.62 0.96 0.65
2 97.62 0.96 0.83
3 92.86 0.88 0.88

Mutagenesis 188 1 68.62 0.55 1.25
2 68.62 0.55 2.26
3 66.49 0.50 2.68

IMDB 1 73.49 0.50 0.16
2 73.49 0.50 0.20
3 73.49 0.50 0.25

Carcinogenesis 1 56.84 0.56 5.31
2 51.67 0.51 6.65
3 52.58 0.51 7.04

Financial 1 86.75 0.50 4.11
2 86.75 0.50 4.24
3 86.75 0.50 4.38
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Chapter 5

Use Case: Active Learning for
Sentiment Analysis on Data Streams

This chapter presents a novel use case scenario—active learning for sentiment analysis on
data streams. The clear advantage of ClowdFlows being available as a web application is
that it is always online because the data processing takes place on reliable remote servers.
This allows for user intervention at any time, providing a suitable environment for an
active learning use case. Coupled with the ability of ClowdFlows to process streams of
data makes it ideal to process a popular source of textual data such as the microblogging
platform Twitter.

The first section presents the field of sentiment analysis and its challenges. This is
followed by a description of active learning for sentiment analysis on data streams. The
next section presents a general overview of data stream processing, lists the most com-
mon approaches therein and provides a brief description on how data stream processing
was implemented in ClowdFlows. The chapter concludes with a journal publication that
describes publicly available on-line workflows for dynamic adaptive sentiment analyses,
which are able to handle changes in data streams and adapt their behavior over time via
human-computer interaction.

5.1 Sentiment Analysis

Sentiment analysis refers to the use of natural language processing, text mining, and ma-
chine learning for detection of attitude, emotion or opinion about a given topic expressed
in the text by the author [77]. A basic task in sentiment analysis is to classify text as being
positive, negative, or neutral. While some approaches perform more complex analyses, in
this use case we address basic sentiment analysis of short textual messages, classifying
them into two (positive or negative) categories.

Sentiment analysis can be performed using several different approaches. Lexicon-based
methods employ sentiment lexicons for determining the sentiment in text [78]. These are
fast methods that are usually unable to adapt to context changes which may occur in data
streams. Linguistic methods analyze the grammatical structure of the text to determine
its sentiment [79]. These approaches tend to be more computationally demanding and are
not suitable for a streaming setting. Machine learning methods require a labeled data
collection for training classifiers [80]. Experiments have shown that the latter is the most
suitable approach for the streaming setting [81].

As the use case deals with data obtained from the web, the task of sentiment analysis
is especially challenging since such data often contains informal language [82], as well as
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grammatical and spelling mistakes [83]. Therefore, it is important to perform appropriate
preprocessing to adapt the input to sentiment analysis algorithms.

5.2 Active Learning

Active learning is a special case of supervised machine learning where a learning algorithm
has a collection of unlabeled instances at its disposal, but it can select only a limited
number of them for hand-labeling [84]. The goal of active learning is to select instances
in the best possible way so that the performance of the algorithm is maximized and the
hand-labeling effort is minimized. The labeled instances are then used for learning. Active
learning is useful in situations when labeling is difficult, time-consuming, or expensive [85].

Active learning is applied to various domains such as spam filtering [86], part-of-speech
tagging [87], text classification [88], and others. We apply it to the sentiment prediction
on data streams of short documents from microblogging platforms (such as Twitter).

Algorithms that analyze constantly incoming data have to be up-to-date with changes
in the data stream, provide fast data processing, and deal with large data volumes in real-
time. Trained models can become outdated due to the changes in the data stream and
stream-based active learning is a reasonable solution to this problem, since its main task
is to continuously select the most suitable examples from the data stream to update the
model.

Sentiment analysis has previously been performed on Twitter data streams. The MOA-
TweetReader [89] system performs real-time analysis of Twitter messages. The system de-
tects changes in word frequencies and performs sentiment analysis, but does not use active
learning to adapt the model. Another system was developed for Twitter sentiment analysis
in real-time for the US elections [90]. There users can observe aggregated sentiment, vol-
ume, statistics, trending words, tag clouds, or individual tweets. The system allows users
to label arbitrarily chosen tweets, but the system does not suggest tweets for labeling, or
use labeled tweets for updating the sentiment model, so no active learning takes place.

5.3 Data Stream Mining

Data stream mining is a process of extracting knowledge structures from continuous data
records. A data stream is an ordered sequence of instances that in many applications
of data stream mining can be read only once or a small number of times using limited
computing and storage capabilities.

In this section we present the challenges that data stream mining presents and some
common approaches employed in processing streams of data. This is followed by a descrip-
tion how data stream processing is implemented in a graphical workflow environment in
the ClowdFlows platform.

5.3.1 Challenges and approaches

Applications that generate data at very high rates in the form of transient data streams re-
quire intelligent data processing and online analysis. Examples of such applications include
financial applications, network monitoring, security, sensor networks, web applications, so-
cial media web sites, and others. Rapid generation of individual data items in forms of
continuous streams of information has challenged storage, computation and communication
capabilities in computing systems.

Among the many challenges of data stream mining that need to be addressed are
the following: memory management, data pre-processing, visualization of streaming data,
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and resource-aware mining. Memory management [91] is the first fundamental issue that
needs to be considered. A stream mining algorithm with high memory requirement will
have difficulty being applied in many situations. Data pre-processing is an important
and time-consuming phase in the knowledge discovery process and must be taken into
consideration when mining data streams. Designing light-weight preprocessing techniques
that can guarantee the quality of the mining results is an important aspect. The challenge is
to automate such a process and integrate it with the mining techniques [37]. Visualization
of results is a powerful way to facilitate data analysis. Data should be visualized in an
efficient, responsive way so that it reflects the current or overall stream of data. Stream
mining processes need to be resource aware. Stream data mining algorithms must not
ignore the problem of consuming the available resources or the risk of losing data when
the memory is used up [92].

Common approaches to data stream mining are mostly based on summarization tech-
niques for producing approximate answers from large databases [93]. This can be done by
either summarizing the whole dataset or by choosing a subset of the incoming stream to
be analyzed. The techniques include sampling, sketching, aggregation, and sliding win-
dow [93]. Sampling is the process of statistically selecting the elements of the incoming
stream to be analyzed [94]. Sampling is often used as a data reduction technique for pro-
ducing approximate answers for queries over data streams [95]. Sketching is a technique
where a summary of data is built using a small amount of memory [96]. It is the process
of vertically sampling the incoming stream. Aggregation is a representation of a number
of elements in one aggregated element using an arbitrary statistical measure. It is consid-
ered a data rate adaptation technique in resource-aware mining [97]. Finally, one of the
techniques for producing approximate answers to a data stream query is called a sliding
window. The idea is to perform a detailed analysis over the most recent data items and
over summarized versions of the old ones.

5.3.2 Data stream processing in ClowdFlows

Standard workflows in ClowdFlows receive data at inputs and return results at the output.
With the exception of iterating subworkflows, each workflow component is traditionally
only executed once. In order to process a data stream, workflow components need to be
executed whenever a new data instance arrives at the input.

In order to process potentially infinite data streams we have augmented the ClowdFlows
workflow execution engine to execute workflows multiple times at arbitrarily small temporal
intervals in parallel. In an ideal scenario the workflow should be executed whenever there
is a new data instance on the input. Due to differences in connections to data streams
(e.g., some need to be continuously polled) setting the frequency and parallelism needs
to be optimized for each stream mining process separately. The amount of parallelism is
usually dependent on the amount of processing units in the ClowdFlows installation, while
the frequency is dependent on the incoming rate of data instances.

The execution of a stream mining workflow is delegated to a process referred to as the
stream processing daemon which issues tasks to workers (processing units) that execute
workflows. Special workflow components and mechanisms were implemented to ensure
that all data is processed and each data instance is processed only once. Most notably, two
important mechanisms were implemented to enable processing of data streams. Workflow
components in stream mining have an internal memory which stores data about the pro-
cessed stream, such as the time stamp of the last processed data instance, or an instance
of the data itself. The halting mechanism which stops executions of workflows is used to
optimize the run-time. This mechanism is activated by the workflow components. These
two mechanisms enable implementation of several general purpose stream mining workflow
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components.
To process data streams, streaming data inputs were implemented. These are compo-

nents that consume the stream. In short, a streaming input workflow component connects
to an external data source, collects data instances and uses its internal memory to re-
member data from previous instances (so as to eliminate repetition). Several workflow
components were developed that conform to the approaches of stream mining described in
Section 5.3.1. The aggregation component collects a fixed number of data instances before
passing the data to the next component. The internal memory of the widget is used to
save the data instances until an arbitrary threshold is reached. As long as the number
of instances is below the threshold, the component invokes the halting mechanism which
stops the execution of the workflow for this data instance. The sliding window component
is similar to aggregation, with the exception that it does not empty its entire internal
memory upon reaching the threshold. The oldest few instances are removed from the in-
ternal memory and the instances in the sliding window are released to other widgets in the
workflow. Sampling workflow components either pass the instance to the next component
or halt the execution based on an arbitrary condition. Several streaming visualization com-
ponents were developed for the purpose of examining results of real-time analyses. Each
instance of a stream visualization component automatically creates a Web page with a
unique URL that displays the results.

The stream processing daemon coupled with the stream mining workflow components
allow for reliable processing of data streams in ClowdFlows and enable execution of various
use cases.

5.4 Related Publication

The main idea of the use case is to create a workflow for processing arbitrary data streams
and to apply active learning to create dynamic adaptive models for sentiment analysis.
The web-based nature of ClowdFlows also allows for crowdsourcing of labeling examples.

A derivation of this use case was also applied to monitor the Twitter sentiment during
the Bulgarian parliamentary elections [98].

The implementation details and description of the use case scenario are included in the
following journal publication:

J. Kranjc, J. Smailović, V. Podpečan, M. Grčar, M. Žnidaršič, and N. Lavrač, “Active
learning for sentiment analysis on data streams: Methodology and workflow implemen-
tation in the ClowdFlows platform,” Information Processing & Management, vol. 51,
no. 2, pp. 187–203, 2015.

In this publication we achieve the following:

• We present the real time capabilities of ClowdFlows and show the limitations of its
concurrent use.

• We implement an active learning scenario for sentiment analysis on data streams.

• We show that machine learning methods are suitable for sentiment analysis.

• We show that active learning improves the accuracy of sentiment classification.

• We provide useful visualizations of textual data streams.
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The authors’ contributions are as follows. The ClowdFlows platform was augmented
by Janez Kranjc with helpful insights from Vid Podpečan to facilitate mining of real time
data and provide an interface for active learning. Jasmina Smailovič implemented the
sentiment anlaysis algorithms and conducted active learning experiments to determine
the best strategies for active learning. Miha Grčar provided the tools and algorithms
used in determining the sentiment and building the models. Martin Žnidaršič supervised
the sentiment analysis and active learning on the conceptional level while Nada Lavrač
supervised the implementation of stream mining in ClowdFlows. All authors contributed
to the text of the publication.
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a b s t r a c t

Sentiment analysis from data streams is aimed at detecting authors’ attitude, emotions and
opinions from texts in real-time. To reduce the labeling effort needed in the data collection
phase, active learning is often applied in streaming scenarios, where a learning algorithm is
allowed to select new examples to be manually labeled in order to improve the learner’s
performance. Even though there are many on-line platforms which perform sentiment
analysis, there is no publicly available interactive on-line platform for dynamic adaptive
sentiment analysis, which would be able to handle changes in data streams and adapt
its behavior over time. This paper describes ClowdFlows, a cloud-based scientific workflow
platform, and its extensions enabling the analysis of data streams and active learning.
Moreover, by utilizing the data and workflow sharing in ClowdFlows, the labeling of
examples can be distributed through crowdsourcing. The advanced features of ClowdFlows
are demonstrated on a sentiment analysis use case, using active learning with a linear
Support Vector Machine for learning sentiment classification models to be applied to
microblogging data streams.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper addresses a data mining scenario at the intersection of active learning, sentiment analysis, stream mining and
service-oriented knowledge discovery architectures effectively solved by on-line workflow implementation of the developed
active learning methodology for sentiment analysis from streams of Twitter data.

Active learning is a well-studied research area (Sculley, 2007; Settles, 2011; Settles & Craven, 2008), addressing data
mining scenarios where a learning algorithm can periodically select new examples to be labeled by a human annotator
and add them to the training dataset to improve the learner’s performance on new data. Its aim is to maximize the
performance of the algorithm and minimize the human labeling effort. Sentiment analysis (Liu, 2012; Pang & Lee, 2008;
Turney, 2002) is concerned with the detection of the author’s attitude, emotion or opinion about a given topic expressed
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in the text. The task of sentiment analysis is especially challenging in the context of analyzing user generated content from
the Internet (Petz et al., 2012, 2013). Stream mining (Gama, Rodrigues, Spinosa, & de Carvalho, 2010) is an online learning
paradigm, aiming to incorporate the information from the evolving data stream into the model, without having to re-learn
the model from scratch; while batch learning is a finite process that starts with a data collection phase and ends with a sta-
tionary model, the online learning process starts with the arrival of some training instances and lasts as long as there is new
data available for learning. As such, it is a dynamic process that has to encapsulate the collection of data, the learning and the
validation phase in a single continuous cycle.

This paper introduces a cloud-based scientific workflow platform, which is able to perform on-line dynamic adaptive sen-
timent analysis of microblogging posts. Even though there are many on-line platforms which apply sentiment analysis on
microblogging texts, there is still no such pltaform that could be used for on-line dynamic adaptive sentiment analysis
and would thus be able to handle changes in data streams and adapt its components over time. In order to provide contin-
uous updating of the sentiment classifier with time we used an active learning approach. In this paper, we address this issue
by presenting an approach to interactive stream-based sentiment analysis of microblogging messages in a cloud-based sci-
entific workflow platform ClowdFlows.1 With the aim to minimize the effort required to apply labels to tweets, this browser-
based platform provides an easy way to share the results and a Web interface for labeling tweets.

ClowdFlows is a new open-sourced data mining platform designed as a cloud-based Web application in order to over-
come several deficiencies of similar data mining platforms, providing a handful of novel features that benefit the data mining
community. ClowdFlows was first developed as a data mining tool for processing static data (Kranjc, Podpecian, & Lavraci,
2012a, 2012b), which successfully bridges different operating systems and platforms, and is able to fully utilize available
server resources in order to relieve the client from heavy-duty processing and data transfer as the platform is entirely
Web based and can be accessed from any modern browser. ClowdFlows also benefits from a service-oriented architecture
which allows users to utilize arbitrary Web services as workflow components. In this paper we present the adaptation of
the ClowdFlows platform, enabling it to work on real time data streams. As a result, workflows in ClowdFlows are no longer
limited to static data on the server but can connect to multiple data sources and can process the data continuously. One such
data source is the Twitter API which provides a potentionally infinite stream of tweets which are the subject of sentiment
analysis in this paper.

The paper is structured as follows. Section 2 presents the related work. Comparable data mining and stream mining plat-
forms are presented and their differences and similarities with ClowdFlows are discussed. Related work concerning active
learning in data streams is also presented. Section 3 presents the technical background and implementation details of the
ClowdFlows platform. The architecture of the system is presented along with specific methods that allow stream mining
in a workflow environment. The proposed sentiment analysis and active learning methods are presented in Section 4. The
implementation details and the workflow enabling active learning for sentiment analysis are presented in Section 5. In Sec-
tion 6 we conclude the paper by presenting the directions for further work.

2. Related work

This section presents an overview of data mining platforms and their key features: visual programming and execution of
scientific workflows, diversity of workflow components, service-oriented architectures, remote workflow execution, big data
processing, stream mining, and data sharing. The overview is followed presenting current research in the field of active
learning on data streams.

2.1. Data mining platforms

Visual construction and execution of scientific workflows is one of the key features of the majority of current data mining
software platforms. It enables the users to construct complex data analysis scenarios without programming and allows to
easily compare different options. All major data mining platforms, such as Weka (Witten, Frank, & Hall, 2011), RapidMiner
(Mierswa, Wurst, Klinkenberg, Scholz, & Euler, 2006), KNIME (Berthold et al., 2007) and Orange (Demšar, Zupan, Leban, &
Curk, 2004) support workflow construction. The most important common feature is the implementation of a workflow canvas
where complex workflows can be constructed using simple drag, drop and connect operations on the available components.
The range of available components typically includes database connectivity, data loading from files and preprocessing, data
and pattern mining algorithms, algorithm performance evaluation, and interactive and non-interactive visualizations.

Even though such data mining software solutions are reasonably user-friendly and offer a wide range of components,
some of their deficiencies severely limit their utility. Firstly, all available workflow components provided by any of these
platforms are specific and can be used only in the given platform. Secondly, the described platforms are implemented as
standalone applications and have specific hardware and software dependencies. Thirdly, in order to extend the range of
available workflow components in any of these platforms, knowledge of a specific programming language is required. This
also means that they are not capable of using existing software components, implemented as Web services, freely available
on the Web.

1 http://clowdflows.org.
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As a benefit of service-oriented architecture concepts, software tools have emerged, which are able to make use of Web
services, and can access large public databases (some supporting grid deployment and P2P computing). Environments such
as Weka4WS (Talia, Trunfio, & Verta, 2005), Orange4WS (Podpečan, Zemenova, & Lavrač, 2012), Web Extension for Rapid-
Miner, Triana (Taylor, Shields, Wang, & Harrison, 2007), Taverna (Hull et al., 2006) and Kepler (Altintas et al., 2004) allow
for the integration of Web services as workflow components. However, with the exception of Orange4WS and Web Extension
for RapidMiner, these environments are mostly specialized to domains like systems biology, chemistry, medical imaging,
ecology and geology. Lastly, all mentioned platforms are still based on technologies that do not benefit from modern Web
technologies which enable truly independent software solutions. On the other hand, Web-based workflow construction
environments exist, which are however too general and not coupled to any data mining library. For example, Oryx Editor
(Decker, Overdick, & Weske, 2008) can be used for modeling business processes and workflows while the Galaxy
(Blankenberg et al., 2001, chap. 19) genome analysis tool (implemented as a Web application) is limited exclusively to
the workflow components provided by the project itself.

Remote workflow execution (on different machines than the one used for workflow construction) is employed by KNIME
Cluster execution and RapidMiner using the RapidAnalytics server. This allows the execution of workflows on more powerful
machines and data sharing with other users, with the requirement that the client software is installed on the user’s machine.
The client software is still used for designing workflows which are executed on remote machines, while only the results can
be viewed using a Web interface.

In support of the ever increasing amount of data several truly distributed software platforms have emerged. Such plat-
forms can be categorized into two groups: batch data processing and data stream processing. A well known example of a
distributed batch processing framework is Apache Hadoop,2 an open-source implementation of the MapReduce programming
model (Dean & Ghemawat, 2008) and a distributed file system called Hadoop Distributed Filesystem (HDFS). It is used in many
real life environments and several modifications and extensions exist, also for online (stream) processing (Condie et al., 2010)
(parallelization of a variety of learning algoriths using an adaptation of MapReduce is discussed by Chu et al. (2006)). Apache
Hadoop is also the base framework of Apache Mahout,3 a machine learning library for large data sets, which currently supports
recommendation mining, clustering, classification and frequent itemset mining. Radoop,4 a commercial big data analytics solu-
tion, is based on RapidMiner and Mahout, and uses RapidMiner’s data flow interface.

For data stream processing, two of the most known platforms were released by Yahoo! (the S4 platform5) and Twitter
(Storm6). SAMOA (Morales, 2013) is an example of a new generation platform which is targeted at processing big data streams.
In contrast with distributed data mining tools for batch processing using MapReduce (e.g., Apache Mahout), SAMOA features a
pluggable architecture on top of S4 and Storm for performing the most common tasks such as classification and clustering. How-
ever, the platform is under development, no software has been released yet and it is not known whether the platform will sup-
port visual programming with workflows. MOA (Massive On-line Analysis) is a non-distributed framework for mining data
streams (Bifet, Holmes, Kirkby, & Pfahringer, 2010). It is related to the WEKA project and bi-directional interaction of the
two is possible. MOA itself does not support visual programming of workflows but the ADAMS project (Reutemann &
Vanschoren, 2012) provides a workflow engine for MOA which uses a tree-like structure instead of an interactive canvas.

Sharing data and experiments has been implemented in the OpenML Experiment Database (Vanschoren & Blockeel,
2009), which is a database of standardized machine learning experimentation results. Instead of a workflow engine it fea-
tures a visual query engine for querying the database, and an API for submitting experiments and data.

2.2. Active learning for data streams

There exist three different scenarios for active learning: (i) membership query synthesis, (ii) pool-based sampling, and
(iii) stream-based selective sampling (Settles, 2010). In the membership query synthesis scenario, the learning algorithm
can select examples for labeling from the input space or it can produce new examples itself. In the pool-based scenario,
the learner has access to a collection of previously seen examples and may request labeling for any of them. In this study,
we are interested in the third scenario: the stream-based active learning approach. More specific, we are interested in the
active learning on stream data for sentiment analysis of Twitter posts. In this scenario, examples are constantly arriving from
a data stream and the learning algorithm has to decide in real time whether to select an arriving example for labeling or not.
Therefore, the approach which would handle this scenario has to:

� have constant access to a source of data,
� have the ability to quickly and in real time process each incoming instance and decide whether to request a label for it,
� periodically update the model and apply it to new instances.

2 http://hadoop.apache.org/.
3 http://mahout.apache.org/.
4 http://www.radoop.eu.
5 http://incubator.apache.org/s4/.
6 http://storm-project.net/.
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In the stream-based active learning setting, there exist several approaches to deciding whether or not to request hand
labels for examples which come from a data stream. One of the simplest strategies is to use some informativeness measure
and request labeling for the examples which are the most informative. For instance, the examples for which the learner has
the highest uncertainty can be considered the most informative and be selected for labeling. Zhu, Zhang, Lin, and Shi (2007)
used uncertainty sampling to label examples within a batch of data from the data stream. Žliobaitė, Bifet, Pfahringer, and
Holmes (2011) propose strategies that are based on uncertainty, dynamic allocation of labeling efforts over time and ran-
domization of the search space. Our active learning approach also employs randomization of the search space, but in contrast
to the work of Žliobaitė et al. (2011), we organize the examples from the data stream into batches. The decision which exam-
ples are best for labeling can be made by a single evolving classifier (Žliobaitė et al., 2011) or by a classifier ensemble (Wang,
Zhang, & Guo, 2012; Zhu et al., 2007, Zhu, Zhang, Lin, & Shi, 2010). In our study, we use a single evolving sentiment classifier
for Twitter posts.

Our preliminary work on active learning on stream data for sentiment analysis of tweets is presented in (Saveski & Grčar,
2011). The closely related contribution was made in (Settles, 2011), where the author demonstrated the application of DUAL-
IST, an active learning annotation tool, to Twitter sentiment analysis. The author intended to show the generality of the
annotation tool, since it is not adjusted specifically to tweets. On the other hand, our approach is particularly adjusted to
Twitter data. Regarding the on-line platform which would handle active learning on stream data for sentiment analysis of
Twitter posts, to best of our knowledge, we are the first addressing this issue.

3. The ClowdFlows platform

In this section the ClowdFlows platform is presented. The enabling technologies are presented briefly and displayed in the
architecture of the system. To validate the design of the platform we present a stress test with many simultaneous users
executing their workflows. The graphical user interface and the workflow model are presented. Finally the real-time analysis
features of ClowdFlows are described.

3.1. Platform design

As a new generation data mining platform, ClowdFlows (Kranjc et al., 2012a, Kranjc, Podpečan, & Lavrač, 2012b) is
designed and implemented using modern technologies and computing paradigms. It is essentially a cloud-based Web
application that can be accessed and controlled from anywhere while the processing is performed in a cloud of computing
nodes. To achieve the goal of developing a platform that can be accessed and controlled from anywhere and executed on a
cloud, we have designed it as a cloud-based Web application. As such it can be, based on the technologies used, logically
separated on two sides – the client side, and the server side. The architecture of the platform accessed by multiple users
is shown in Fig. 1. A similar architecture figure was previously published in (Kranjc et al., 2012a), with some major
differences. In contrast to the previously published architecture, the platform now features a relational database for
storing workflows, a broker for delegating tasks to worker nodes and a stream mining daemon for processing data
streams.

The client side of the platform consists of operations that involve user interaction. The user interacts with the platform
primarily through the graphical user interface in a contemporary Web browser. We have implemented the graphical user

Fig. 1. An overview of the ClowdFlows platform design.
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interface in HTML and JavaScript, with an extensive use of the jQuery library.7 The jQuery library was designed to simplify
client-side scripting, and is the most popular JavaScript library in use today.8

The server side is written in Python and uses the Django Web framework.9 Django is a high level Python Web framework
that encourages rapid development and provides an object-relational mapper and a powerful template system. The object-rela-
tional mapper provides an API that links objects to a database, which means that the ClowdFlows platform is database agnostic.
PostgreSQL, MySQL, SQLite and Oracle databases are all supported. MySQL is used in the public installation of ClowdFlows.

In order to allow consumption of Web services and importing them as workflow components, the PySimpleSoap library10

is used. PySimpleSoap is a light-weight library written in Python and provides an interface for client and server Web service
communication, which allows importing WSDL Web services as workflow components, and exposing entire workflows as WSDL
Web services.

ClowdFlows may also be installed on multiple computers, which is enabled by using the RabbitMQ11 messaging server and
a Django implementation of Celery,12 a distributed task queue, which allows passing asynchronous tasks between servers. With
this tools it is possible to install ClowdFlows on worker nodes which execute workflows. To demonstrate the scalability of the
platform with these tools we have performed a stress test which we describe in Section 3.2.

ClowdFlows is publically available for use at http://clowdflows.org. The source code is open sourced under the General
Public Licence and can be downloaded at http://github.com/janezkranjc/clowdflows. Detailed installation instructions are
provided with the source code.

3.2. Scalability of the platform

In order to test the scalability of the ClowdFlows platform and validate the design decisions described in Section 3.1
enabling big data analytics for data streams we have performed a stress test in which we simulated several users executing
their workflows simultaneously and measured the average execution time.

The test was conducted on a simplified workflow that performs 10-fold cross validation with the Naive Bayes algorithm.
The workflow is shown in Fig. 2. In order to simulate concurrent users we have implemented a simulation of a user that

Fig. 2. A screenshot of the ClowdFlows graphical user interface loaded in the Google Chrome Web browser.

7 http://jquery.com.
8 http://w3techs.com/technologies/overview/javascript_library/all.
9 https://www.djangoproject.com.

10 https://code.google.com/p/pysimplesoap/.
11 http://www.rabbitmq.com/.
12 http://celeryproject.org/.
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executes her workflow continuously for 60 s without a pause. This settings is also equivalent to executing a streaming pro-
cess for 1 min. After 60 s have passed the user waits until the final workflow execution results are returned. We tested the
platform against different sets of concurrent users: 1 user, 10 users, 20 users, 50 users, and 100 users for different setups of
the worker nodes.

A worker node is a headless installation of the ClowdFlows platform that executes workflows. We tested the platform
with a single worker node, two worker nodes, and three worker nodes. Each of these worker nodes was installed on equiv-
alent computers with 8 cores. The workers were setup to work on 8 concurrent threads. For the final test we have setup an
additional worker on a computer with 16 cores to run 16 threads. We have measured the execution times for each workflow
and calculated the average execution time from the beginning of the request until the result was received. The results are
shown in Table 1.

The results show that a single user continuously executing her cross validation workflow will be able to execute it 18 or
19 times on any setup if she is the only user executing workflows. In order for ten concurrent users to execute their work-
flows at a comparable speed at least two worker nodes are needed. The most efficient current setup is three workers with 8
threads each and one worker with 16 threads which still allows a hundred users to issue workflow execution requests to the
platform at a reasonable response time.

The platform has succesfully passed the stress test. The results show that the ClowdFlows platform can serve many con-
current users that continuously execute workflows. The average execution times can be controlled by adding or removing
worker nodes. The worker nodes can be added and removed during runtime, which means that heavy loads can be resolved
simply by adding more computing power to the ClowdFlows worker cluster. As adding worker nodes at times with lower
loads does not improve the average processing time, we would like to implement a mechanism for automatically spawning
and removing worker nodes on services such as the Amazon Elastic Compute Cloud in future work.

3.3. The workflow model

The integral part of the ClowdFlows platform is the workflow model which consists of an abstract representation of work-
flows and workflow components. Workflows are executable graphical representations of complex procedures. A workflow in
ClowdFlows is a set of processing components and connections. A processing component is a single workflow processing unit
with inputs, outputs and parameters. Each component performs a task considering its inputs and parameters, and then
stores the results of the task on its outputs. Connections are used to transfer data between two components and may exist
only between an output of a widget and an input of another widget. Data is transffered between connections, so each input
can only receive data from a connected output. Parameters are similar to inputs, but need to be entered manually by users.
Inputs can be transformed into parameters and vice versa, depending on the users’ needs.

3.4. The graphical user interface

The graphical user interface used for constructing workflows follows a visual programming paradigm which simplifies
the representation of complex procedures into a spatial arrangement of building blocks. The building blocks (workflow com-
ponents) in ClowdFlows are referred to as widgets. The graphical user interface implements an easy to use way to arrange
widgets on a canvas to form a graphical representation of a procedure. The ClowdFlows graphical user interface rendered in a
Web browser is shown in Fig. 2.

The graphical user interface of the ClowdFlows system consists of a workflow canvas and a widget repository. The widget
repository is a set of widgets ordered in a hierarchy of categories. Upon clicking on a widget in the repository, that widget
appears on the canvas. The workflow canvas implements moving, connecting, issuing commands to execute and delete wid-
gets. Widgets can be arbitrarily arranged on the canvas by dragging and dropping. Connections between widgets can be
added by selecting an output of a widget and an input of another widget.

Information on each operation the user performs on the workflow canvas is sent to the server using an asynchronous
HTTP POST request. The operation is validated on the server and a success or error message with additional information
is passed to the user interface (the client’s browser) formatted in JavaScript Object Notation (JSON) or HTML.

Table 1
Average response time for the execution of the workflow based on different numbers of concurrent users and different setups of worker nodes. The cells display
the average execution time in seconds (plus the standard deviation) and the number of workflow executions done by all the worker nodes in the time of the test
in parantheses.

Users Worker nodes

1� 8 2� 8 3� 8 3� 8þ 1� 16

1 3.466 ± 0.603 (18) 3.252 ± 0.010 (19) 3.255 ± 0.011 (19) 3.248 ± 0.011 (19)
10 5.665 ± 2.927 (109) 3.913 ± 1.436 (157) 4.012 ± 1.399 (154) 3.476 ± 0.779 (179)
20 9.369 ± 5.449 (130) 5.530 ± 2.786 (222) 5.090 ± 4.189 (236) 4.268 ± 1.742 (290)
50 17.176 ± 8.105 (182) 9.856 ± 6.615 (303) 7.433 ± 4.207 (407) 6.154 ± 3.799 (495)

100 27.534 ± 13.071 (238) 18.088 ± 9.132 (351) 12.745 ± 6.732 (499) 9.882 ± 5.990 (617)
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On the top of the graphical user interface is a toolbar where entire workflows can be saved, deleted, and executed.

3.5. The widget repository

Widgets in ClowdFlows are separated into four groups based on their purpose: regular widgets, visualization widgets,
interactive widgets and workflow control widgets.

Regular widgets perform specific tasks that transform the data from the inputs and the parameters to data on the outputs,
and provide success or error messages to the system. The task of a widget is written as a Python function that takes a Python
dictionary of inputs and parameters as its arguments and returns a dictionary of outputs. The function is called each time the
widget is executed. Widgets that implement complex procedures can also implement a progress bar, that displays progress
to the user in real time.

Visualization widgets are extended versions of regular widgets as they also provide the ability to render an HTML tem-
plate with JavaScript to the client’s browser. These are useful for data visualizations and presentation of more detailed feed-
back to the user. Visualization widgets are regular widgets with the addition of a second Python function which controls the
rendering of the template. This function is only invoked when the workflow is executed from the user interface.

An interactive widget is a widget that requires data before execution in order to prompt the user for the correct param-
eters. These widgets are extensions of regular widgets as they perform three functions. The data preparation function exe-
cutes first and takes the inputs and parameters as the arguments. The second function is a rendering function where a modal
window is prepared by using an HTML template which prompts the user to manipulate the data. The final function’s argu-
ments are the user’s input and the inputs and parameters of the widget. A widget can also be a combination of an interactive
and a visualization widget, where it executes a fourth rendering function to display the results.

Three special widgets provide additional workflow controls. These are the Sub-workflow, Input, and Output widget. When-
ever a Sub-workflow widget is added to a workflow, an empty workflow is created that will be executed when the sub-work-
flow widget is executed. The Sub-workflow widget has no inputs and outputs by default, so they have to be added to the
workflow by the user using the Input and the Output widget. Whenever an Input or Output widget is put on a workflow that
is a sub-workflow of another workflow, an actual input or output is added to the widget representing the sub-workflow.
Workflows can be indefinitely nested this way.

Two variations of the input and output widget provide ways to loop through sub-workflows. The input and output wid-
gets can be replaced by the For Input and For Output widgets. Whenever a workflow contains these two widgets, the work-
flow execution engine will attempt to break down the object on the input and execute the workflow once for each piece of
data that is on the input. With these controls a workflow can be executed on a list or array of data.

3.6. The workflow execution engine

The job of the workflow execution engine is to execute all executable widgets in the workflow in the correct order. The
engine is implemented twice, both in Python and JavaScript due to performance issues when the user wishes to see the order
of the executed widgets in real time.

The two implementations of the workflow execution engine are similar with two differences. The JavaScript engine is
enabled by default due to the requests for executing separate widgets being asynchronous HTTP requests. Each request is
handled by the server separately and executes a single widget, saves the changed and returns the results to the client where
the execution continues. The server side Python implementation only receives one HTTP request for the entire workflow and
multiprocessing had to be implemented manually. For performance issues, sub-workflows and loops are executed by the
Python implementation, while top-level workflows executed from the user interface are processed by the JavaScript imple-
mentation. The JavaScript implementation shows the results of the execution of each widget in real time, while the user can
only see the results of the Python implemented workflow execution after it has finished in full.

When a workflow is running, the execution engine perpetually checks for widgets that are executable and executes them.
Executable widgets are widgets which either have no predecessors, or their predecessors have already been successfully exe-
cuted. Whenever two or more widgets are executable at the same time they are asynchronously executed in parallel, since
they are independent. The implemented widget state mechanism ensures that no two widgets where the inputs of a widget
are dependent on an output of another widget will be executable at the same time. The execution of a workflow is complete
when there are no executable or running widgets.

3.7. Public workflows

Since workflows in ClowdFlows are processed and stored on remote servers they can be accessed from anywhere with an
internet connection. By default, each workflow can only be accessed by its author. We have implemented an option that
allows users to create public versions of their workflows.

The ClowdFlows platform generates a specific URL for each workflow that has been saved as public. Users can then simply
share their workflows by publishing the URL. Whenever a public workflow is accessed by a user, a copy of the workflow is
created on the fly and added to the user’s private workflow repository. The workflow is copied with all the data to ensure the
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repeatability of experiments. Each such copied public workflow can also be edited, augmented or used as a template to cre-
ate a new workflow, which can be made public as well.

3.8. Real-time data analysis in ClowdFlows

In comparison with the early implementations of the ClowdFlows platform described in (Kranjc et al., 2012a, 2012b)
the novelty of this work is the ability of ClowdFlows to process real-time data streams. Its workflow engine has been
augmented with continuous parallel execution and the halting mechanism and several specialized widgets for stream data
processing were developed. In the following we describe the new data stream processing capabilities of the ClowdFlows
platform.

3.8.1. Continuous workflow execution with the halting mechanism
Regular workflows and stream mining workflows are primarily distinguished by their execution times. A widget in a sta-

tic workflow is executed a finite amount of times and the workflow has a finite execution time. Widgets in a stream mining
workflow are executed a potentially infinite amount of times and the workflows are executed until manually terminated by
users. Another major difference between regular workflows and stream mining workflows is the data on the input. The data
that is processed by regular workflows is available in whole during the entire processing time, while data entering the
stream mining workflows is potentially infinite and is only exposed as a small instance at any given time.

In order to handle potentially infinite data streams we have modified the workflow execution engine to execute the work-
flow multiple times at arbitrarily small temporal intervals in parallel. The amount of parallelism and the frequency of the
execution are parameters that can be (providing the hardware availability) modified for each stream to maximize the
throughput.

The execution of the workflows is delegated by a special stream mining daemon that issues tasks to the messaging queue.
The stream mining daemon’s task is to issue commands to execute streaming workflows. The daemon can also prioritize exe-
cution of some streams over others based on the users’ preferences. Tasks are picked up from the messaging queue by work-
ers that execute the workflow. To ensure that each execution of a workflow processes a different instance of the data, special
widgets and mechanisms were developed, which can halt the execution of streaming workflows. This halting mechanism can
be activated by widgets in a streaming workflow to halt the current execution.

Workflows that are executed as a stream mining process need to be saved as streaming workflows and executed sepa-
rately. The user cannot inspect the execution of the workflow in real time, as many processes are running in parallel. The
user can, however, see the results from special stream visualization widgets.

3.8.2. Specialized workflow widgets for real-time processing
Widgets in stream mining workflows have, in contrast to widgets in regular workflows, the internal memory and the abil-

ity to halt the execution of the current workflow. The internal memory is used to store information about the data stream,
such as the timestamp of the last processed data instance, or an instance of the data itself. These two mechanisms were used
to develop several specialized stream mining widgets.

In order to process data streams, streaming data inputs had to be implemented. Each type of stream requires its own wid-
get to consume the stream. In principle, a streaming input widget connects to an external data stream source, collects
instances of the data that it had not yet seen, and uses its internal memory to remember the current data instances. This
can be done by saving small hashes of the data, to preserve space or just the timestamp of the latest instance if they are avail-
able in the stream itself. If the input widget encounters no new data instances at the stream source it halts the execution of
the stream. No other widgets that are directly connected to it via its outputs will be executed until the workflow is executed
again.

Several other popular stream mining approaches (Ikonomovska, Loskovska, & Gjorgjevik, 2007) were also imple-
mented as workflow components. The aggregation widget was implemented to collect a fixed number of data instances
before passing the data to the next widget. The internal memory of the widget is used to save the data instances
until the threshold is reached. While the number of instances is below the threshold, the widget halts the execution.
The internal memory is emptied and the data instances are passed to the next widget once the threshold has been
reached.

The sliding window widget is similar to the aggregation widget, except that it does not empty its entire internal memory
upon reaching the threshold. Only the oldest few instances are forgotten and the instances inside the sliding window are
released to other widgets in the workflow for processing. By using the sliding window, each data instance can be processed
more than once.

Sampling widgets are fairly simple. They either pass the instance to the next widget or halt the execution, based on an
arbitrary condition. This condition can be dependent on the data or not (e.g. drop every second instance). The internal mem-
ory can be used to store counters, which are used to decide which data is left in the sample.

Special stream visualization widgets were also developed for the purpose of examining results of real-time analyses. Each
instance of a stream visualization widget creates a special Web page with a unique URL that displays the results in various
formats. This is useful because the results can be shared without having to share the actual workflows.
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4. Active learning for sentiment analysis

In this section we first describe the dataset we use for the default tweet sentiment classifier, preprocessing techniques
and the algorithm for sentiment analysis. The approach to tweet preprocessing and classifier training is implemented using
the LATINO13 software library of text processing and data mining algorithms. The section continues with a description of the
active learning algorithm and the strategy used to select data instances for labeling.

4.1. The data used for the default sentiment classifier

The default tweet sentiment classifier is trained on a collection of 1,600,000 (800,000 positive and 800,000 negative)
tweets collected and prepared by Stanford University (Go, Bhayani, & Huang, 2009), where the tweets were labeled based
on positive and negative emoticons in them. Therefore, the emoticons approximate the actual positive and negative senti-
ment labels. This approach was introduced by Read (Read, 2005). If a tweet contains ‘‘:)’’, ‘‘:-)’’, ‘‘: )’’, ‘‘:D’’ or ‘‘=)’’ emoticon it
was labeled as positive, and if it contains ‘‘:(’’, ‘‘:-(’’ or ‘‘: (’’ emoticon it was labeled as negative. In the training data, the
tweets containing both positive and negative emoticons, retweets and duplicate tweets were removed (Go et al., 2009).
The emoticons, which approximate sentiment labels, were also already removed from the tweets in order not to put too
much weight on them in the training phase, and therefore the classifier learns from the other features of tweets. The tweets
in this collection do not belong to any particular domain.

4.2. Data preprocessing

Preprocessing of data is an important step when using supervised machine learning techniques. On the Twitter data, we
apply both standard and Twitter-specific text preprocessing to better define the feature space. The specific text preprocess-
ing is especially important for Twitter messages, since user generated content on the Internet often contains slang (Petz
et al., 2012) and messages from social media are considered noisy, containing many grammatical and spelling mistakes
(Petz et al., 2013). Therefore, with our Twitter-preprocessing, we try to overcome these problems and improve the quality
of features.

As a part of the Twitter preprocessing step (Agarwal, Xie, Vovsha, Rambow, & Passonneau, 2011; Go et al., 2009;
Smailović, Grčar, Lavrač, & Žnidaršič, 2013; Smailović, Grčar, & Žnidaršič, 2012) we replace mentioning of other Twitter users
in a tweet of the form @TwitterUser by a single token named USERNAME and writing different Web links by a single token
named URL. Moreover, letters which repeat for more than two times are replaced by one occurrence of such letter; for exam-
ple, the word loooooooove is transformed to love. We replace negation words (not, isn’t, aren’t, wasn’t, weren’t, hasn’t, haven’t,
hadn’t, doesn’t, don’t, didn’t) with a single token named NEGATION. Finally, exclamation marks are replaced by a single token
EXCLAMATION and question marks by a single token QUESTION.

Besides the Twitter-specific text preprocessing, we also apply standard preprocessing techniques (Feldman & Sanger,
2007) in order to better define and reduce the feature space. These involve text tokenization (text splitting into individual
words/terms), stopwords removal (removing words which do not contain relevant information, e.g., a, an, the, and, but, if, or,
etc.), stemming (converting words into their base or root form) and N-gram construction (concatenating 1 to N stemmed
words appearing consecutively in a tweet). The resulting terms are used as features in the construction of feature vectors
representing the tweets, where the feature vector construction is based on term frequency feature weighting scheme. We
do not apply a part of speech (POS) tagger, since it was indicated by Go et al. (2009) and Pang and Lee (2002) that POS tags
are not useful when using SVMs for sentiment analysis. Also, Kouloumpis, Wilson, and Moore (2011) showed that POS fea-
tures may not be useful for sentiment analysis in the microblogging domain.

4.3. The algorithm used for sentiment classification

Sentiment analysis methods (Liu, 2012; Pang & Lee, 2008; Turney, 2002) aim at detecting the authors attitude, emotions
or opinion about a given topic expressed in text. There are three generally known approaches to sentiment analysis (Pang &
Lee, 2008; Thelwall, Buckley, & Paltoglou, 2011): (i) machine learning, (ii) lexicon-based methods and (iii) linguistic analysis.

We use a machine learning approach, applying the linear Support Vector Machine (SVM) (Cortes & Vapnik, 1995; Vapnik,
1995, 1998), which is a typical algorithm used in document classification. The SVM training algorithm represents the labeled
training examples as points in the space and separates them with a hyperplane. A hyperplane is placed in such a way that the
examples of the separate classes are divided from each other as much as possible. New examples are then mapped into
the same space and classified based on the side of the hyperplane they are. For training the tweet sentiment classifier,
we use the SVMperf (Joachims, 2005, 2006; Joachims & Yu, 2009) implementation of the SVM algorithm. In order to test
its classification accuracy, we trained the SVM classiffier on the collection of 1,600,000 smiley labeled tweets (Go et al.,
2009) and tested it on 177 negative and 182 positive manually labeled tweets, prepared and labeled by Stanford University

13 LATINO (Link Analysis and Text Mining Toolbox) is open-source—mostly under the LGPL license—and is available at http://latino.sourceforge.net/.
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(Go et al., 2009). We applied both standard and Twitter specific preprocessing. In this experiment we achieved the accuracy
of 83.01% (which is a comparable result with (Go et al., 2009)).

The reason for using a machine learning approach and not lexicon-based or linguistic methods is the following. In the
context of active learning for sentiment analysis on data streams, the linguistic methods pose several challenges, as they
tend to be too computationally demanding for the use in a streaming near real time setting. Also, there is the lack of readily
available tools for parsing tweets. On the other hand, lexicon-based methods are faster, but they usually rely on explicit
notion of sentiment and dismiss the terminology that bears sentiment more implicitly. For example, the word ‘Greece’ bears
negative sentiment in the light of the financial crisis, but in general it is neutrally or even positively connoted word.

Nevertheless, in order to compare lexicon and machine learning methods, we have tested a lexicon method classification
accuracy on the same collection of 177 negative and 182 positive manually labeled tweets (Go et al., 2009), as for the
machine learning approach. In the lexicon-based method, we used an opinion lexicon containing 2006 positive and 4783
negative words14 (Hu & Liu, 2004; Liu, Hu, & Cheng, 2005). The lexicon is adjusted to social media content, as it also contains
many misspelled words which are frequently used in social media language. We applied Twitter specific preprocessing on the
test tweets and calculated positive and negative score for each tweet, based on the occurrences of positive and negative lexicon
words in them. For example, if a tweet contains a word ‘love’ from the positive lexicon list, the positive score will increase by
one. The score will not increase if the currently observed lexicon word contains or it is contained in some of the previously seen
lexicon words for that specific class in the observed tweet. For example, a tweet could contain a word ‘nicely’. On the other
hand, the positive word lexicon list contains both ‘nice’ and ‘nicely’ words. The algorithm will detect that the word ‘nice’ is pre-
sented in the tweet and it will increase the positive score by one. Next, it will check the presence of the word ‘nicely’ and it will
find out that the tweet contains this word, but this word contains a word (‘nice’), which already increased the positive score for
this tweet, and therefore it will not increase the positive score. If the resulting positive score for a tweet is the same or higher
than the negative score, the tweet is labeled as positive. If it is lower, it is labeled as negative. The tweets with equal positive and
negative score are labeled as positive, since the positive lexicon list contains less words. In this experiment we achieved the
accuracy of 76.04% on the test set.

Since the accuracy on the test set obtained with the machine learning approach was higher than the accuracy obtained
with the lexicon-based approach, we decided to focus on the machine learning approach in our study.

4.4. Active learning

In active learning, the learning algorithm periodically asks an oracle (e.g., a human annotator) to manually label the
examples which he finds most suitable for labeling. Using this approach and an appropriate query strategy, the number
of examples that need to be manually labeled is largely decreased. Typically, the active learning algorithm first learns from
an initially labeled collection of examples. Based on the initial model and the characteristics of the newly observed unlabeled
examples, the algorithm selects new examples for manual labeling. After the labeling is finished, the model is updated and
the process is repeated for the new incoming examples. This procedure is repeated until some threshold (for example, time
limit, labeling quota or target performance) is reached or, in the case of data streams, it continues as long as the application is
active and new examples are arriving.

In our software, the active learning algorithm first learns from the Stanford smiley labeled data set as an initial labeled
data set. According to this initial model, the algorithm classifies new incoming tweets from the data stream as positive or
negative. Tweets, which come from the data stream, are split into batches. The algorithm selects most suitable tweets from
a first batch for hand-labeling and puts them in a pool of query tweets. The process is repeated for every following batch and
every time the pool of query tweets is updated and the tweets in the pool are reordered according to how suitable they are
for hand-labeling. When the user decides to conduct manual labeling, she is given a selected number of top tweets from the
pool of query tweets for hand-labeling. The user can label a tweet as positive, negative or neutral. After the labeling, labeled
tweets are placed in the pool of labeled tweets and removed from the pool of query tweets. Periodically, using the initial and

Table 2
Average accuracy, precision and recall in the setting without active learning and with active learning while experimenting with different proportions of random
tweets (#rnd) and tweets which are closest to the SVM hyperplane (#hyp) from every batch, containing 1000 tweets, for hand labeling.

Setting #rnd #hyp Accuracy Precision positive class Recall positive class Precision negative class Recall negative class

No active learning 0 0 0.349 0.463 0.569 0.223 0.643

Active learning 0 100 0.406 0.456 0.829 0.272 0.351
Active learning 25 75 0.413 0.454 0.858 0.275 0.296
Active learning 50 50 0.410 0.459 0.837 0.256 0.335
Active learning 75 25 0.418 0.451 0.881 0.279 0.265
Active learning 100 0 0.416 0.448 0.886 0.288 0.251

14 The opinion lexicon was obtained from http://www.cs.uic.edu/liub/FBS/sentiment-analysis.html.
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manually positively and negatively labeled tweets from the pool of labeled tweets, the model is retrained. This process is
repeated until it is terminated by the user.

The selection of tweets, which are suitable for manual labeling is based on uncertainty strategy and randomization of the
search space. The randomization of the search space was also used by Žliobaitė et al. (2011). We experimented with different
proportions of random tweets and tweets which are closest to the SVM hyperplane in order to find the best combination of
them. Additionally, we performed one experiment in which we did not apply the active learning strategy, i.e., the sentiment
classifier was static and did not update over time. In order to automatically conduct these experiments, we hand-labeled a
data set of 11,389 financial tweets (4861 positive, 1856 negative and 4672 neutral tweets) discussing the Web search engine
provider Baidu,15 which were collected for a period from March 11 to December 9, 2011. The evaluation method was based on a
holdout evaluation approach (Bifet & Kirkby, 2009; Ikonomovska, 2012; Ikonomovska, Gama, & Džeroski, 2011) for data streams
where concept drift is assumed. The classifier‘s performance is tested on a new batch of tweets which come from the data
stream. After the testing is finished, the algorithm selects a predefined number of tweets from the same batch and asks an oracle
to label them. The newly labeled tweets are added to the training set and used for updating the sentiment model. This procedure
is repeated for every new batch of tweets from the data stream. We calculate the accuracy, precision and recall for every batch
and at the end of the simulation we report the overall average measures for all the batches. In our off-line evaluation experi-
ments, we select 100 tweets from every batch, which contains 1000 tweets, and then update the model. The results are pre-
sented in Table 2. As can be seen from the table, the accuracy of the sentiment classification is higher when the active
learning approach is applied. Among the querying strategies, the highest accuracy is obtained by selecting 75 random tweets
and 25 tweets which are closest to the SVM hyperplane.

In contrast to the experimental setting described above, the workflow developed for practical use (shown in Fig. 3) by
default splits tweets from the data stream into batches which contain 100 tweets, and selects 10 for hand labeling. Following
the best strategy from Table 2, the algorithm selects 3 tweets that are closest to the SVM hyperplane and puts them into the
pool of query tweets, so that the top most are the ones which are closest to the hyperplane, i.e., the most uncertain ones for
the classifier. The other 7 tweets are chosen randomly from the batch and put into a separate pool of random tweets. With
time, as new tweets arrive, the pools are updated. Whenever the user decides to label some tweets, she is presented with a
set of tweets to label, which contains 3 most uncertain ones from the pool of query tweets and 7 random ones from the pool
of random tweets. The hand-labeled tweets are placed in the pool of labeled tweets. Periodically, using the initial and man-
ually labeled tweets from the pool of labeled tweets, the model is retrained.

5. Active learning sentiment analysis workflow implementation in ClowdFlows

In this section we present the implementation of an active learning sentiment analysis use case on Twitter data in the
form of an executable workflow. The use case description is written as a step-by-step report on how the workflow was con-
structed. Following the description in this section, it is possible for the reader to construct a fully functioning streaming
active learning sentiment analysis process and observe its results.

Fig. 3. The Twitter sentiment analysis workflow.

15 http://www.baidu.com/.
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The aim of the use case is to monitor the Twitter sentiment on a given subject with the possibility to manually label
tweets to improve the classification model. For the purpose of this use case we have selected to monitor tweets containing
the keyword Snowden, as it is one of the trending keywords during the time of writing this article. We wish to measure the
Twitter sentiment over time regarding Edward Snowden, who leaked details of several top-secret documents to the press.

5.1. Rationale

We have decided to implement this stream-mining workflow in the ClowdFlows platform for several reasons.
The execution of the stream-mining workflow is bottlenecked by the rate of incoming Tweets, which is imposed by the

Twitter API. Therefore any stream mining platform capable of processing tweets at a higher rate than the API’s incoming rate
would be as efficient as ClowdFlows for this use case. However, the benefit of using ClowdFlows for this task is its extensible
user interface which allows for human–computer interaction during the course of the stream mining process. In this use case
the user interface is used during runtime for labeling Tweets. The user interface can also be used to modify the workflow by
using the intuitive visual programming paradigm interface. Moreover, the ability to share workflows allows us to publish
this workflow on the Web and allow single click deployment of it to the users. The users can also augment, extend or modify
the workflow to suit their needs without any coding knowledge just by rearranging the workflow components on the canvas.

5.2. Development of necessary components

To construct the workflow we required a stream input widget that can collect tweets based on a query, a sampling widget
that should discard any non-English tweets, a widget to perform sentiment analysis on tweets, a stream splitter to split the
stream of tweets into a stream of positive and a stream of negative tweets, and three types of visualization widgets to display
the line chart of the sentiment over time, a word cloud of positive or negative tweets, and the latest tweets.

5.2.1. Streaming input, filtering, and visualizations
To consume the incoming stream we implemented a widget that connects to Twitter via the Twitter API.16 The widget

accepts several parameters: the search query, by which it filters the incoming tweets, the geographical location (optional),
which filters tweets based on location, and the credentials for the Twitter API. The widget works both in a streaming and
non-streaming environment. Whenever the widget is executed it will fetch the latest results of the search query. For streaming
workflows, the internal memory of the widget holds the ID of the latest tweet, which is passed to the Twitter API, so that only
the tweets that have not yet been seen are fetched.

Since tweets returned by the Twitter API are annotated with their language, we constructed a widget for filtering tweets
based on their language. This widget discards all tweets that are not in English.

A simple widget was implemented that splits the stream of tweets into two streams, based on their sentiment. This was
done so that positive and negative tweets could be separately inspected.

To visualize the sentiment we implemented a line chart that displays the volume of all tweets, the volume of positive
tweets, the volume of negative tweets, and the difference of positive and negative tweets. The visualization was imple-
mented with the HighCharts JavaScript visualization library.17

To inspect separate tweets a simple table was implemented where each tweet is colored red or green based on its sen-
timent (red for negative and green for positive).

The word cloud visualization was implemented to show most popular words in recent tweets. This visualization is
dynamic and changes with the stream. Looking at the word cloud and seeing popular words appearing and unpopular words
disappearing is a novel way to inspect data streams in real-time. The visualization was developed with the D3.js JavaScript
library (Bostock, Ogievetsky, & Heer, 2011).

5.2.2. Sentiment classification and active learning
To implement sentiment classification and active learning discussed in Section 4, which was developed in the.NET frame-

work, we exposed it as a Web service that provided several operations:

� classify a set of tweets for a specific workflow,
� return a set of tweets for manual labeling for a specific workflow,
� update a model for a specific workflow.

The service keeps track of multiple workflows and builds a model for workflows separately (in order to better conform the
models for specific topics and to avoid malicious labeling affecting the models for legitimate users). Whenever the service is
queried a unique identifier of the processing component is also passed along to determine which model to use.

16 https://dev.twitter.com/.
17 http://www.highcharts.com/.
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The Classify a set of tweets operation accepts a set of tweets and an identifier of the processing component at the input.
Upon execution it loads the appropriate model and applies it to the tweets. The loading times of the models were reduced to
become shorter than the waiting time required to conform to the rate limit of the Twitter API in order to guarantee the pro-
cessing of all the tweets. The operation returns a set of labels for the tweets.

Return a set of tweets for manual labeling is an operation that accepts the unique identifier of the processing component
and returns ten tweets for manual labeling for that specific model. The tweets are then deleted from its pool of query tweets.

The Update model operation accepts a set of labeled tweets and a unique identifier of the processing component to update
the model. The updating of a model takes several minutes so special care was taken in order to only update models when
really necessary.

The functions were implemented into a workflow processing component in the following way: we have developed a
streaming workflow component that receives a list of tweets at the input. These tweets are provided by the Twitter API usu-
ally in a batch of a hundred or less tweets. The tweets are sent to the Classify a set of tweets operation of the Web service. The
sentiment labels that are returned from the Web service are appended to the tweets which are sent to the visualization wid-
gets in the workflow. The active learning workflow component also has a special view that functions as an interactive visu-
alization. This view is accessible the same way as other visualizations of the workflow (by special URLs). Whenever this view
is accessed the Web service is polled for tweets that require manual labeling. If there are no query tweets in the pool, a
friendly message is displayed to the user, prompting her to come back later. If there are query tweets in the pool they
are displayed to the user along with a simple form that can be used to manually label the tweets either as positive, negative,
or neutral. When the user labels the tweets and clicks the Submit labels button, the labeled tweets are saved into the internal
memory of the active learning sentiment analysis component. The Update model operation is invoked once a day for every
streaming workflow that has an active learning widget with new labeled tweets.

5.3. Constructing the workflow

The workflow was constructed using the ClowdFlows graphical user interface. Widgets were selected from the widget
repository and added to the canvas and connected as shown in Fig. 3.

Parameters were set after the workflow was constructed. Parameters of a widget are set by double clicking the widget.
Twitter API credentials and the search query were entered as parameters for the Twitter widget. The language code en was
entered as a parameter of the Filter tweets by language widget. We have also added three sliding window widgets with the size
500 (entered as parameter) to the workflow. This is done because the visualization widgets that display tweets and word
clouds only display the last data that was received as an input for these widgets. By setting the size of the window to
500 the word cloud will always consist of the words of most recent 500 tweets.

The workflow was saved by clicking the save button in the toolbar. We have also marked the workflow as public so that
the workflow can be viewed and copied by other people. The URL of the workflow is http://clowdflows.org/workflow/1041/.
We have then navigated to the workflows page (http://clowdflows.org/your-workflows/) and clicked the button ‘‘Start
stream mining’’ next to our saved workflow. By doing this we have instructed the platform to start executing the workflow
with the stream mining daemon. A special Web page was created where detailed information about the stream mining pro-
cess is displayed. This page also contains links to visualization pages that were generated by the widgets. The stream mining
process was left running from the 14th of June until the 10th of July 2013.

5.4. Monitoring the results

We have put several stream visualization widgets in the workflow which allowed us to inspect the results during the pro-
cess of stream mining. ClowdFlows has generated a Web page for each stream visualization widget, which can be viewed by
anybody since the workflow is public.

Fig. 4. A line chart of sentiment, volume, and sentiment difference over time.
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Fig. 5. A word cloud constructed from tweets with a negative sentiment.

Fig. 6. The tweet labeling user interface.
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The Sentiment graph visualization displaying the line chart of volumes of tweets, volumes of positive tweets, negative vol-
ume of negative tweets and the difference of positive and negative sentiment is available at http://clowdflows.org/streams/
data/4/9056/ and is shown in Fig. 4. By looking at this visualization we can see that the sentiment in the tweets mentioning
Snowden is generally more positive than negative. We can observe several spikes in the volume which correspond to the
times when news articles regarding this subject were published. On June 23rd, news of Edward Snowden’s departure from
Hong Kong and arrival in Moscow was published. On the first of July Edward Snowden released a statement on the Wikileaks
website and lots of news reports focused on possible countries that could offer asylum to Edward Snowden.

The word cloud visualization of negative tweets is available at http://clowdflows.org/streams/data/4/9065/ and is shown
in Fig. 5. This visualization helps put the stream into another perspective and can display changing trends in real-time. When
the word cloud is opened in the browser and the stream mining process is active the words change positions and sizes cor-
responding to their occurrences in the tweets. Links to the visualizations of other stream visualization widgets are also pres-
ent on the two provided visualization pages.

The workflow presented in this use case is general and reusable. The query chosen for monitoring was arbitrary and can
be trivially changed. This type of workflow could also be used for monitoring sentiment on other subjects, such as monitor-
ing the Twitter sentiment of political candidates during an election, or monitoring the sentiment of financial tweets with
stock symbols as queries.

5.5. Labeling the tweets

Similar to stream visualization widgets the Active learning sentiment analysis widget provides a special URL that can be
accessed by human annotators. Propagating this link is an easy way to crowdsource labeling of tweets.

The labeling interface for this use case is available at http://clowdflows.org/streams/data/16/12326/ and is shown in
Fig. 6. The tweets that require labeling are displayed and users can label them as positive, negative, or neutral. Upon clicking
the button Submit annotations the labeled tweets are saved into the widget’s internal memory. These tweets are accessed and
sent to the sentiment analysis Web service once a day, if there are any new labeled tweets on that particular day.

6. Conclusion and further work

We have implemented an active learning scenario for sentiment analysis on Twitter data in a cloud-based data mining
platform. In order to do so we adapted the platform to work with data streams by use of two mechanisms: widget memory
and the halting mechanism.

We have developed a Web service that utilizes the Support Vector Machine algorithm to build and update sentiment
analysis models. The service also applies the models on unlabeled tweets and determines which tweets require manual
labeling by the user. We have developed workflow components that utilize this Web service in order to provide an intuitive
interface for labeling tweets and setting up new active learning sentiment analysis scenarios from scratch without the need
of programming or installing complex software. For each active learning workflow a special Web page is created where
tweets can be labeled. By propagating the address of this Web page, crowdsourcing and collaborative knowledge discovery
can be utilized to label vast amounts of tweets.

In future work we wish to implement several different strategies for selecting the tweets suitable for labeling and to allow
the user to select the most appropriate one. We also wish to allow more control over the generation of the initial models and
a richer selection of initially labeled datasets. In the current version of our software, we assume sentiment analysis to be a
two class classification problem and classify tweets only as positive or negative, in order to enable simple and efficient cal-
culations in real time. But, tweets can also be neutral, and our current implementation of the software does not allow 3 class
classification. In our previous study (Smailović et al., 2013) we introduced a method to classify tweets also as neutral. In
future work we plan to adapt and implement this method for inclusion in ClowdFlows.

The source code of the platform is released under an open source licence (GPL) and can be obtained at http://github.com/
janezkranjc/clowdflows.
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Petz, G., Karpowicz, M., Fürschuß, H., Auinger, A., Stříteskỳ, V., Holzinger, A., et al (2013). In Proceedings of human–computer interaction and knowledge

discovery in complex, unstructured, big data (pp. 35–46). Springer.
Petz, G., Karpowicz, M., Fürschuß, H., Auinger, A., Winkler, S. M., Schaller, S., et al (2012). On text preprocessing for opinion mining outside of laboratory

environments. In Active media technology (pp. 618–629). Springer.
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Chapter 6

Conclusions and Further Work

The thesis presents a modern web-based platform for distributed computing, developed
using the latest software technologies and computing paradigms for construction and ex-
ecution of scientific workflows. The platform is, to the best of our knowledge, the only
platform that provides a graphical user interface to the big data processing framework
Disco and publicly available implementations of data mining algorithms in this platform.
The ClowdFlows platform is adaptable and allows adding new workflow components via the
inclusion of web services. Its well documented programmable interface allows for complete
adaptations of the platform as evidenced in the presented ConCreTeFlows and TextFlows
platforms. By unifying functionalities of different knowledge discovery platforms we have
addressed novel scenarios which could not have been considered until now, such as rela-
tional data mining empowered by text mining. The platform’s non-local nature is ideal
for processing data streams, as evidenced by the active learning for sentiment analysis on
streams of data from the microblogging platforms use case.

In the rest of this chapter the hypotheses of the thesis are summarized with claims
supporting their validity along with the main scientific contributions of the thesis. We
conclude by discussing the strengths and limitations of the current development, and pro-
vide directions for further work and improvements of the presented software platform,
developed methodologies, and their implementations.

6.1 Scientific Contributions

In Section 1.4 we hypothesized that big data can efficiently be processed with a system
that implements the visual programming paradigm and utilizes cloud computing by means
of distributed hardware and software resources to improve scalability and adaptation to
data of large proportions with nearly perfect linear speedup. In the publication included
in Section 2.4 we empirically show that the ClowdFlows platform can handle progressively
larger data sets by adding more computing power to the cluster of computing nodes.
Likewise, the through-put of the real-time data stream analysis module can be increased to
match the rate of incoming data by adding processing nodes. Similarly, in the publication
included in Section 5.4 we analyze the performance of the platform and provide information
on its limitations regarding the amount of concurrent users.

Our second hypothesis was that the platform will simplify the knowledge discovery
process with big data and enable the analysis of data streams in real-time for non-experts
and scientists from different domains of research. We have shown that ClowdFlows is
adaptable to various fields of research other than data mining. Section 3.2 describes the
adaptaion of the platform for computational creativity, while the platform described in
Section 3.3.2 is focused on text mining and natural language processing. The workflow
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sharing mechanism of ClowdFlows and public workflows allow modification of existing
public workflows and allow knowledge discovery without knowledge of particular software
components. Use cases in forms of workflows can be copied, modified, and executed. Non-
expert users can exploit publicly available workflows without the knowledge how to create
one. In numbers, the public installation of ClowdFlows has more than 1,000 registered
users that have produced more than 8,000 workflows. An independent survey has shown
that the ClowdFlows platform is leading with regards to the number of features compared
to related platforms [99].

Our third hypothesis was that by unifying functionalities of different knowledge discov-
ery platforms and adding features to facilitate big data mining conjoined with real-time
data analytics, we would now be able to address novel scenarios which were not possible
until now. Among such novel scenarios are the active learning sentiment analysis workflow
described in the publication included in Section 5.4, the use of relational data mining and
inductive logic programming algorithms in a workflow environment as described in the
publication included in Section 4.3, and workflows that employ the map-reduce paradigm
for big data mining as described in the publication included in Section 2.4.

To summarize, the scientific contributions of the thesis are multi-fold.

1. Firstly, we have implemented a web-based knowledge discovery platform that fea-
tures a browser-based workflow editor and facility for sharing the workflows on the
web. The platform is capable of processing big data and features a real-time analysis
module for continuous mining of data streams. The platform is developed using mod-
ern web development technologies and frameworks. It features numerous workflow
components for various data mining tasks. Remote web services may be incorpo-
rated into the workflows by users during run-time. The platform was developed with
a modular design, meaning that it can be installed on a cluster of machines, which
enables scalability to ensure optimal performance regardless of the amount of data
and amount of concurrent users. This contribution was covered in Chapter 2.

2. We have demonstrated that the platform is extensible to other fields of expertise by
creating adaptations of the platform. The provided documentation is sufficient, as
the platform has also successfully been adapted by users other than the author. This
contribution was covered in Chapter 3.

3. Exploiting the innovative features of the platform to provide novel knowledge discov-
ery scenarios in forms of scientific workflows is the second main scientific contribution
of the thesis. We proposed a relational data mining scenario where a text mining
inspired approach entitled wordification was evaluated in comparison with the exist-
ing propositionalization approaches on several relational datasets. The ClowdFlows
platform’s evaluation features were exploited to validate the wordification approach
against comparable methodologies. As a side effect, other relational data mining
algorithms were made available as ClowdFlows workflow components. Another novel
use case that shows the real time analysis capabilities of ClowdFlows is the active
learning for sentiment analysis on data streams of posts from microblogging social
media web sites. We show that active learning improves the accuracy of sentiment
classification and provides useful visualizations of textual data streams. These novel
use cases were covered in Chapters 4 and 5.

6.2 Strengths and Limitations of the Approach

In this section we emphasize the strengths of the developed ClowdFlows platform and use
case scenarios presented in this thesis, and critically evaluate their limitations.
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6.2.1 Strengths of the ClowdFlows platform

The presented platform and the implemented use case scenarios which are easily accessible
to end users and developers have numerous strengths, which were made evident throughout
the thesis. A brief summary of strengths is re-emphasized below:

• ClowdFlows is a cloud-based platform. Workflows can be executed on powerful clus-
ters of machines, while they can be designed on less powerful desktop or mobile
devices.

• The platform is service-oriented. Web services can be imported as workflow compo-
nents, which allows for easy extension of the roster of components.

• Developers can profit from the open-source nature of the platform by incorporating
their own algorithms into ClowdFlows and using them in the workflow environment.

• Online access to workflows developed through the ClowdFlows platform allows for
publishing research work online, and for experiment reuse as well as methodology
and experimental design control.

• As ClowdFlows is a web application that is always running, it is an ideal setting for
executing long-running workflows such as data stream mining workflows. Multiple
workflow components are available for processing data streams.

• ClowdFlows supports processing of big data, which cannot be processed using con-
ventional methods.

• Open access to predefined workflows in ClowdFlows makes the use of workflows easily
accessible to non-experts.

6.2.2 Limitations and lessons learned

Potential users of ClowdFlows should be aware also of several limitations outlined below:

• ClowdFlows supports widgets for analyzing big data with the MapReduce paradigm,
however these widgets are few, and a vast majority of widgets still process data in
the classical sense and can falter on large amounts of data.

• The throughput of the stream analysis module is limited by the amount of comput-
ing nodes in the cluster. The limitations of the stream analysis module have been
evaluated in the publication included in Section 2.4.

• Unless the user adds new components, the user is limited to the particular set of
tools (such as classifier implementations, pre-processing tools, visualizations) that
are available in ClowdFlows by default.

• Currently there are no available workflow components for performing deep learning,
and the platform has no capabilities to leverage GPU processors which have been
shown to speed up deep learning algorithms by orders of magnitude, reducing running
times from weeks to days [100].

• Although composing new workflows from the existing ClowdFlows widgets looks easy
and appealing, the user may get annoyed by the fact that there is currently a lack
of professional documentation of available widgets and the lack of input and output
types, making the development of new workflows difficult for a non-experienced user.
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• Unless the user has ClowdFlows running on their own hardware, the public Clowd-
Flows instance is not intended for large experiments, due to memory and computation
constraints, and a daily growing user base sharing hardware resources. The limita-
tions regarding the number of concurrent users has been evaluated in the publication
included in Section 5.4.

• The use of the public installation of ClowdFlows is not appropriate if the user is
worried about privacy, since the data is copied and stored on the server, therefore
such users need to run their own ClowdFlows instance.

The main lessons learned for the new user are that when developing a new workflow,
it is best to start from pre-existing workflows, many of which have been published on
the public installation of ClowdFlows. Another lesson learned is that due to the option
of incorporating web services, the services may become unavailable without notification,
which may cause a workflow to stop being executable. To mitigate this, the results of the
last successful execution of the workflow are saved in the database.

6.3 Further Work

We envision several directions of further research, some of which we have already started
working on. We divide further work into the development of the ClowdFlows platform and
its features, the development of adapted platforms, and the development of use cases and
workflows.

6.3.1 The ClowdFlows platform

Regarding the ClowdFlows platform we propose several ideas for future work. We will
work on the de-monolithization of the platform into smaller parts to increase modularity.
Currently, the core of the platform features a workflow execution engine, a graphical user
interface, a big data module for mining in batch mode, and a stream mining module. Even
though these components are called modules, they are essentially part of the same code
base. We observe that this limits the portability and usability of ClowdFlows, therefore we
intend to separate the core into several projects that can be interconnected and replaced
at will. For example, the workflow execution engine could be invoked from a multitude of
different graphical user interfaces, programmatically via an API, or via a command line
interface. Likewise, the graphical user interface could be used to control a different type
of workflow engine than the one provided by ClowdFlows.

ClowdFlows currently provides its own stream processing engine. We propose to utilize
the ClowdFlows’s graphical user interface for other popular stream processing engines such
as Storm. Likewise, we plan to integrate Apache Hadoop and Apache Spark into the big
data mining module to complement the Disco framework.

Scaling of ClowdFlows is achieved by adding new computing nodes to the cluster. To
add a new node human intervention is required to provide configuration for the node.
We plan to streamline the installation of the platform by providing one-click deployment
solutions and provide an automatic mechanism of elastic scaling, which will scale the
platform up when load is high, and down when the resources are free for a longer period
of time.

Finally, to complement the repository of public workflows, we plan to provide a public
repository of workflow components. Our intention is to allow adding user code to live
installations of the platform. This poses challenges regarding compatibility and software
dependencies of workflow components as well as security challenges.
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6.3.2 Adaptations of ClowdFlows

There are several directions for future work regarding adaptations of ClowdFlows. With the
de-monolithization of ClowdFlows we intend to expose workflow components from related
platforms into external packages that can be included in any installation or adaptation of
ClowdFlows. This would allow construction of workflows that feature components from
ClowdFlows, TextFlows and ConCreTeFlows in a single workflow.

Regarding TextFlows, we plan to expand the widget repository with additional text
preprocessing components (such as chunking, term extraction, syntactic parsing) and in-
clude various clustering algorithms. Furthermore, we will connect the platform to various
external tools to better assist the user in the process of exploration and visualization of
results.

6.3.3 Use cases and workflows

Currently, only a limited amount of workflow components are suited for big data processing.
We wish to add new workflow components that broaden the possibility of big data mining
in ClowdFlows. Ideally each workflow component should also have a big data processing
counterpart.

Regarding the relational data mining use cases, we will address other problem settings
(such as clustering) and use the approach for solving real-life relational problems. We plan
to use the approach in a more elaborate scenario of mining heterogeneous data sources,
involving a mixture of information from databases and text corpora.

Regarding the active learning sentiment analysis use case we intend to implement sev-
eral strategies for selecting the data instances suitable for labeling and to allow users to
select the most appropriate ones. In the current version of the use case, it is assumed that
sentiment analysis is a two-class classification problem and tweets are classified only as
positive or negative in order to enable efficient calculations in real time. As the sentiment
can also be neutral, and our current implementation of the software does not allow 3-class
classification, we plan to generalize the use case for multi-class classification problems. We
wish to allow more control over the generation of the initial models and a richer selection
of initially labeled data sets.
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