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Abstract

Most data mining approaches focus on the analysis of data represented in a table with a
�xed number of columns. More complex means of storing data include relational databases
and information networks, for which the standard data mining algorithms are not well
suited. The thesis presents several contributions to the area of mining complex data.

The �rst part of the thesis addresses the problem of node classi�cation in heterogeneous
networks (i.e. networks containing nodes and edges of di�erent types). We focus on
a network decomposition algorithm that constructs one or more homogeneous networks
out of a heterogeneous network. We propose several heuristics designed to evaluate the
signi�cance of so called intermediary nodes of the heterogeneous network. The motivation
behind the developed heuristics originated in heuristics for bag-of-words vector construction
in text mining. The heuristics were designed to penalize the e�ect of intermediary nodes,
connecting too many nodes, and intermediary nodes, connecting many nodes with di�erent
class labels. We tested the new heuristics on several data sets and showed that using them
improves classi�cation of network nodes. The new approach is implemented in the newly
developed HinMine methodology.

Second, the thesis presents our work on combining network analysis methods with
semantic data mining (SDM) algorithms for explaining data sets annotated by ontology
terms. The proposed methodology, named NetSDM, uses network node ranking methods to
evaluate the signi�cance of the terms in the background knowledge ontology. We tested the
methodology on several data sets, including a biological data set containing gene expression
data for potato plants, infected with a virus. Our results show that using NetSDM can
speed up the existing state of the art semantic data mining algorithm Hedwig by a factor
of one hundred, discovering high quality rules describing the data set in minutes instead
of hours.

Third, we present a methodology for data visualization using banded matrices. The
methodology improves the comprehensibility of semantic data mining algorithm outputs
by using banded matrix algorithms to uncover a hidden structure in the data. As we
discover this structure independently of the SDM algorithm, we can use the results in an
easy-to-understand informative visual overlay of both results.

Finally, the algorithms presented in the thesis were made publicly available. The
HinMine and NetSDM methodologies are available as work�ows in the ClowdFlows online
data mining platform, and the banded matrix algorithms are available as Python packages
on GitHub.
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Povzetek

Ve£ina pristopov podatkovnega rudarjenja je namenjena analizi podatkov, predstavljenih
v obliki tabele z vnaprej dolo£enim ²tevilom stolpcev. Alternativo predstavljajo komple-
ksnej²i na£ini shranjevanja podatkov kot so relacijske podatkovne baze in informacijska
omreºja, za katere standardni pristopi podatkovnega rudarjenja niso primerni. Disertacija
predstavi ve£ prispevkov k podro£ju rudarjenja kompleksnih podatkov.

V prvem delu disertacija obravnava problem klasi�kacije vozli²£ v ve£vrstnih omreºjih
(t.j. omreºjih z razli£nimi tipi vozli²£ in povezav). Osredoto£imo se na pristop dekompozi-
cije ve£vrstnih omreºij v enovrstna omreºja. Predlagamo ve£ hevristik, s katerimi lahko pri
postopku dekompozicije ocenimo pomembnost tako imenovanih povezovalnih vozli²£ hete-
rogenega omreºja. K razvoju teh hevristik so nas motivirale metode za uteºevanje besed
pri tvorjenju vektorjev besed v rudarjenju tekstovnih podatkov. Doprinos teh hevristik je
zmanj²evanje u£inka tistih povezovalnih vozli²£, ki so povezana z veliko drugimi vozli²£i,
in povezovalnih vozli²£, ki povezujejo vozli²£a z razli£nimi oznakami razredov. Hevristike
smo testirali na ve£ podatkovnih mnoºicah in pokazali, da njihova uporaba lahko izbolj²a
klasi�kacijo vozli²£ ve£vrstnih omreºij. Pristop, opisan v tem delu disertacije, imenujemo
HinMine.

V drugem delu disertacije predstavimo kombinacijo metod za analizo omreºij in al-
goritmov za semanti£no rudarjenje podatkov (semantic data mining - SDM) z namenom
iskanja vzorcev v podatkih, anotiranih z ontolo²kimi termi. Razvita metodologija NetSDM
uporabi metode za rangiranje vozli²£ v omreºjih in z njimi oceni pomembnost termov dane
ontologije. Metodologijo smo testirali na ve£ podatkovnih mnoºicah, med drugim na mno-
ºici podatkov izraºenosti genov v odzivu na virusno okuºbo. Eksperimentalni rezultati
kaºejo, da z uporabo NetSDM lahko pohitrimo obstoje£i SDM algoritem Hedwig tako, da
za odkrivanje opisnih pravil uporabi le nekaj minut namesto nekaj ur ra£unalni²kega £asa.

Tretji del disertacije predstavi metodologijo za vizualizacijo podatkov s pasovnimi ma-
trikami. Metodologija izbolj²a razumljivost rezultatov algoritma Hedwig tako, da s pomo-
£jo pasovnih matrik najprej odkrije skrito strukturo v analiziranih podatkih. To strukturo
odkrijemo neodvisno od algoritma Hedwig, zato lahko s prikazom obeh rezultatov na isti
sliki kon£nemu uporabniku prikaºemo nov vpogled na nau£ena pravila skupaj z zgradbo
podatkovne mnoºice.

Disertacijo zaklju£imo s predstavitvijo razvitih algoritmov, ki so javno dostopni. Me-
todologiji HinMine in NetSDM sta dostopni v okviru spletne platforme za rudarjenje po-
datkov ClowdFlows, metodologija za vizualizacijo s pasovnimi matrikami pa je na voljo
kot paket programskega jezika Python na spletni platformi GitHub.
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Chapter 1

Introduction

This thesis contributes to the improvement of data analysis methods by combining machine
learning algorithms with network analysis approaches. The main contributions include
improving network node classi�cation using text-mining-inspired heuristics, improving se-
mantic data mining algorithms using network analysis based preprocessing, and improving
the interpretability of semantic data mining algorithms using banded matrix visualization.
This introductory chapter brie�y motivates the problems addressed, introduces the rele-
vant background technologies and presents an overview of the proposed solutions to the
addressed problems. This is followed by outlining the purpose of the dissertation, its goals
and scienti�c contributions. The chapter concludes with a structural overview of the rest
of the thesis.

1.1 Background and Motivation

For many research questions, the relevant information is scattered across disparate public
resources in heterogeneous data formats. Collecting, storing and processing of these large
amounts of data is technically challenging and time-consuming, and presents a signi�cant
obstacle for a wide application of data analysis techniques.

Most data mining algorithms work only with tabular data, where the data we want
to analyze is presented in a single spreadsheet. However, most of the data collected does
not exist in isolation. When researchers collect new data about a given phenomenon, they
are adding to an already existing pool of knowledge about the phenomenon. For example,
when examining the activity of a particular gene in response to a particular disease, the
researchers add information to an already existing set of known facts about the gene: which
protein it encodes, which characteristics of an organism it is responsible for, which genes it
activates (up-regulates), which genes it suppresses (down-regulates), and which biological
processes and cell functions it is a part of. It can be shown that taking this knowledge
into account improves the results of classical machine learning approaches (D. Page et al.,
2012).

Like in the work of D. Page et al. (2012), previous work in the area of Inductive Logic
Programming (ILP) and Relational Data Mining (RDM) (Muggleton, 1992; De Raedt,
2008; Dºeroski & Lavra£, 2001) has shown that existing knowledge (referred to as back-
ground knowledge in this thesis) is vital for data analysis, and that a simple tabular rep-
resentation is not a feasible way of describing the background knowledge. Two problems
arise that necessitate the use of better data representations.

The �rst problem is that in the case where instances under examination are connected
to each other (like genes that are connected through mutual activation, or research papers
connected through paper citations), but where the instances are not connected to the
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same number of other instances. In this case, representing all knowledge about a given
instance in a single row would be di�cult. If we represented each instance connected to
the described instance as a separate column, this would result in the number of columns
in the resulting data set to vary depending on the row. Alternatively, if we encode the
connections of one instance with a single column of the data set, this would require that
the columns of the data set contain complex data structures such as lists. In RDM,
this problem is addressed by representing the data set in a multi-relational data base. An
alternative way of describing a data set containing inter-connected instances is to represent
it as a network (Burt & Minor, 1983), a data structure containing nodes, information
about the nodes, and connections between the nodes. In mathematical terms, such a
structure is a represented by a graph � the nodes are also referred to as vertices, and
the connections as edges. The �eld of network analysis deals with several di�erent types
of networks based on their origin. Social networks are networks in which nodes represent
people and connections represent their social connections. Biological networks are networks
that arise from biological data and include among others gene regulatory networks, protein
interaction networks and drug interaction networks. The term information network is used
to described networks where connections are directed and encode some sort of information
�ow from one node to another. When collected data becomes even more complex, it is
appropriate to represent such structures as a heterogeneous information network (Sun &
Han, 2012) with each node and edge belonging to a given type. For example, we may have
a network containing both genes and the proteins they encode, necessitating the use of two
node types to represent the data.

The second problem requiring better data representation arises when instances already
belong to some known groups of connected instances (in the case of genes, we may already
know that a certain set of genes is responsible for cell division). While each group can be
represented in a tabular data set as a zero-one column, this does not solve the problem if
the groups of instances themselves are further organized. For example, a group of genes
can be involved in mitosis (cellular division in a non-reproductive cells) and another group
can be involved in meiosis (cellular division in reproductive cells), while a third group
describes all genes that are involved in any sort of cellular division. In such a case, no gene
belongs to only one of the three described groups, and this information is lost if we encode
each group as a simple zero-one column in a tabular representation of data. In this case,
a better way to represent knowledge is through the use of ontologies (Guarino, Oberle, &
Staab, 2009), such as the Gene Ontology (Ashburner et al., 2000). Ontologies are a formal
way of representing background knowledge using terms connected by directed edges to
form an acyclic graph in which connections represent relationships (for example, the is-a
relationship) between the terms. This special form of background knowledge, which has
not been exploited in the original ILP and RDM literature, has been recently addressed in
Semantic Data Mining (SDM) research (Lavra£, Vavpeti£, Soldatova, Trajkovski, & Kralj
Novak, 2011).

1.1.1 Advancing heterogeneous information network analysis

In our work, we are particularly interested in the task of classi�cation in a network setting.
The task receives as input an information network in which some of the nodes are labeled
as belonging to a certain class. In the case of genes, the classes may denote active and
inactive genes, or if we are analyzing scienti�c papers connected through a network of
citations, the classes denote the research areas investigated by the paper. The goal is to
correctly predict the labels of the remaining nodes in the network. A well established way
of labeling nodes in a network is the label propagation approach presented by D. Zhou,
Bousquet, Lal, Weston, and Schölkopf (2004) in which class labels are propagated from
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nodes with known labels via connections in a network to the nodes with unknown labels.

In a heterogeneous information network, the task of classi�cation may be limited to
only one node type (for example, in a paper-and-author network, we may only wish to clas-
sify the papers as belonging to a certain class). One way of approaching the task of node
classi�cation in heterogeneous information networks is through network decomposition, a
method �rst described by Gr£ar, Trdin, and Lavra£ (2013). Network decomposition (also
refered to as network projection (T. Zhou, Ren, Medo, & Zhang, 2007)) of a heterogeneous
network results in the construction of homogeneous (i.e. single type) networks in which
connections are inferred through intermediary nodes. Either label propagation or proposi-
tionalization can then be used to infer the missing labels. This thesis further develops the
idea of classi�cation via heterogeneous information network decomposition by examining
the impact of intermediary nodes. The approach, named HINMine, is presented in Chapter
3.

1.1.2 Advancing semantic data mining

To �nd patterns in data annotated with ontologies, we rely on Semantic Data Mining
(SDM), which extends the research on symbolic rule learning (Fürnkranz, Gamberger, &
Lavra£, 2012). In SDM, the input is composed of a set of instances, each belonging to
a class, and background knowledge encoded in the form of an ontology. Each instance is
annotated by one or more terms from the ontology, and the goal is to �nd class descrip-
tions composed of rules of the form TargetClass ← Explanation, where the explanation
is a logical conjunction of terms from the ontology. For example, when analyzing the ex-
pression of genes in breast cancer patients, the TargetClass of the generated rules is the
class of all genes that are di�erentially expressed in the patients compared to the general
population. An example of an explanation would then be the conjunction of biological
concepts chromosome AND cell cycle, meaning the rule covers all genes that are covered
by both concepts. A list of other possible rules for this example is shown in Figure 2.2 of
Chapter 2.

The starting point for the research in this thesis is the Hedwig algorithm (Vavpeti£,
Novak, & Lavra£, 2013; Vavpeti£, 2016), which is able to discover complex rules describing
subgroups of data instances annotated by ontology terms. The background knowledge
in this case is represented in the Resource Description Framework (RDF) format1. The
format encodes relationships in the form of subject-predicate-object triples and can be used
to encode both is-a and other relationships by using di�erent predicate relationships. The
algorithm uses a heuristic-guided beam search to traverse the potentially in�nite space of
possible logical expressions that could be used as descriptions. A potentially large size of
the search space in Hedwig indicates that the algorithm will be able to discover informative
rules describing the data set, however it also means that the search can take a long time.
This issue is addressed by this thesis in Chapter 4, where we present a method for pruning
the background knowledge before using it as an input for Hedwig. A large search space may
also cause over�tting and hence prevent the �nding of (truly) informative rules, an issue
addressed by algorithms by requiring a minimum number of examples that a rule needs to
describe (this number is called the coverage of a rule). A second problem with Hedwig is
that its output is a list of rules that may be di�cult to understand. This motivated us to
develop a visualization algorithm for the data sets that can visualize Hedwig's rules and
make them more comprehensible. The algorithm is described in Chapter 5.

1https://www.w3.org/TR/REC-rdf-syntax/
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1.2 Purpose of the Dissertation

The purpose of this dissertation is to improve data analysis methods by combining network
analysis algorithms with machine learning with a speci�c focus semantic data mining. The
dissertation covers three main topics: improving network classi�cation using text-mining
inspired heuristics, improving semantic data mining algorithms using network-analysis-
based preprocessing, and improving interpretability of semantic data mining algorithms
using banded matrix algorithms.

• Improving node classi�cation in heterogeneous networks using text mining inspired

heuristics. The �rst part of the dissertation (covered in Chapter 3) examines the im-
provements made to the algorithms performing network classi�cation through propo-
sitionalization. In classifying network nodes through network decomposition, the cur-
rent algorithm (Gr£ar et al., 2013) considers all connecting nodes as equals, which
may be inappropriate. For example, in a network of papers and their authors, highly
proli�c senior authors who publish many papers in several research �elds may induce
a lot of connections, however these connections can often bridge di�erent research
�elds (due to the authors seniority and thus familiarity with di�erent research �elds).
This problem is similar to a bag-of-words vector contruction problem in text min-
ing. The problem of common words appearing in many documents is tackled in text
mining by using several weighting heuristics such as the tf-idf (term frequency-
inverse document frequency) heuristic to penalize the impact of common words. A
second problem arises when classifying nodes using label propagation in a highly
imbalanced data set. In such a case, unlabeled nodes are likely to be surrounded
mostly by neighbors belonging to the majority class compared to the minority class.
The dissertation examines how this over-voting problem can be addressed through
appropriate weighting schemes applied to the weighting of network nodes.

• Improving semantic data mining algorithms using network-analysis-based preprocess-

ing. We examine how network analysis algorithms can be used to explore and prune
the search space of semantic data mining algorithms. The performance of seman-
tic data mining algorithms is currently bottlenecked by the size of the search space
these algorithms must examine. Even with the state-of-the-art heuristics guiding the
search, the construction of high quality rules is a time-consuming process. This prob-
lem is addressed by using network analysis methods, such as the famous PageRank
method (L. Page, Brin, Motwani, & Winograd, 1999), with which one can estimate
the importance of a given node in a network. We evaluate three methods for node
ranking and explore how they can be used to improve the quality of rules, obtained
by semantic data mining.

• Improving the interpretability of semantic data mining algorithms using banded ma-

trix algorithms. While semantic data mining algorithms produce complex and highly
informative results, the results are relatively inaccessible even to domain experts as
the output of an SDM algorithm is a potentially long list of rules that characterize
a given class of data. Improved readability of the results can be achieved by bet-
ter visualization of semantic data mining results using banded matrix algorithms.
Banded matrix algorithms (Garriga, Junttila, & Mannila, 2011) can discover under-
lying structures in the data independently of SDM algorithms, and overlaying them
with SDM results produces an informative and easier-to-read output.

The purpose is also to make these algorithms publicly accessible through reusable
implementations of the proposed algorithms to allow simple comparison with competing
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algorithms. The algorithms are implemented in ClowdFlows (Kranjc, Podpe£an, & Lavra£,
2012), an open-source cloud-based platform for composition, execution, and sharing of
interactive machine learning and data mining work�ows.

1.3 Hypotheses and Goals

Aligned with the three problems presented above, the hypotheses of the work are as follows.
We hypothesize that heuristics, developed in text mining for weighting words in docu-

ments for bag-of-words vector construction, can be adapted for weighting connecting nodes
during network decomposition. The adapted weights can penalize connecting nodes that
do not induce informative connections, and in this way the heuristics should improve the
accuracy of classi�cation algorithms for heterogeneous networks.

As the data and background knowledge can be viewed as a heterogeneous network, we
hypothesize that it is possible to use network analysis algorithms to estimate the impor-
tance of background knowledge terms before running semantic data mining algorithms. In
particular, we hypothesize that it is possible to prune the search space by eliminating the
nodes that are found to be non-informative by network analysis algorithms. Such pruning
should increase the quality of the resulting rules while at the same time reduce the time
complexity of the SDM algorithms.

The results of semantic data mining algorithms are currently only represented in a tex-
tual format. Our hypothesis is that the interpretability of semantic data mining algorithms
can be enhanced by rule visualization using banded matrix algorithms. This shall improve
readability and comprehensibility of results.

1.4 Scienti�c Contributions

The scienti�c contributions of the thesis are as follows.

Contribution 1 We developed an improved methodology for classi�cation of nodes in
a heterogeneous network via network decomposition and propositionalization, using text
mining inspired heuristics. This allows us to better assess the importance of intermediary
nodes and prevent uninformative intermediary nodes to induce a vast majority of connec-
tions. We also improved the �nal step of classi�cation through decomposition and label
propagation by improving initial weights of classes when the class distribution is unbal-
anced. We evaluated the e�ects of di�erent heuristics and di�erent initial weights for class
propagation on several data sets with varying characteristics.

Publications related to this contribution

Journal Paper

Kralj, J., Robnik-�ikonja, M., & Lavra£, N. (2017). HINMine: Heterogeneous Informa-
tion Network Mining with Information Retrieval Heuristics. Journal of Intelligent
Information Systems, 1�33.

Conference Paper

Kralj, J., Valmarska, A., Robnik-�ikonja, M., & Lavra£, N. (2015). Mining Text Enriched
Heterogeneous Citation Networks. In Proceedings of the 19th Paci�c-Asia Conference
on Knowledge Discovery and Data Mining (pp. 672�683).
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Book Chapter

Kralj, J., Valmarska, A., Gr£ar, M., Robnik-�ikonja, M., & Lavra£, N. (2016). Analysis
of Text-enriched Heterogeneous Information Networks. In N. Japkowicz & J. Ste-
fanowski (Eds.), Big Data Analysis: New Algorithms for a New Society (pp. 115�
139). Springer.

Kralj, J., Robnik-�ikonja, M., & Lavra£, N. (2015b). Heterogeneous Network Decomposi-
tion and Weighting with Text Mining Heuristics. In International Workshop on New

Frontiers in Mining Complex Patterns (pp. 194�208). Springer.

Contribution 2 Our research resulted in a methodology for network analysis assisted
semantic data mining (SDM) which uses network analysis methods to pre-prune the back-
ground knowledge used by SDM. This methodology is capable of extracting knowledge
from much larger background knowledge collections than pure SDM algorithms. We evalu-
ated di�erent variations of network conversion, network node scoring and network pruning
methods to pre-process the background knowledge. We also applied the algorithms to a
new biological data set containing gene expression data for potato plants, infected with a
virus. We report the positive e�ects of background knowledge pruning on the quality of
the rules and the e�ciency of SDM algorithms.

Publications related to this contribution

Journal paper

Kralj, J., Robnik-�ikonja, M., & Lavra£, N. (n.d.). NetSDM: Network Filtering for Semantic
Data Mining. (submitted).

Conference paper

Kralj, J., Vavpeti£, A., Dumontier, M., & Lavra£, N. (2016). Network Ranking Assisted Se-
mantic Data Mining. In International Conference on Bioinformatics and Biomedical

Engineering (pp. 752�764). Springer.

Contribution 3 We have developed a methodology merging a semantic data mining
algorithm with banded matrix visualization to display the rules, discovered using the SDM
algorithm. The methodology discovers a hidden structure in data sets independently from
semantic data mining, meaning that overlaying its results with semantic data mining rules
o�ers a new view of the underlying data set. We tested the methodology on several publicly
available data sets.

Publications related to this contribution

Journal Paper

Adhikari, P. R., Vavpeti£, A., Kralj, J., Lavra£, N., & Hollmén, J. (2016). Explaining
Mixture Models through Semantic Pattern Mining and Banded Matrix Visualization.
Machine Learning, 105 (1), 3�39.
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Conference Paper

Adhikari, P. R., Vavpeti£, A., Kralj, J., Lavra£, N., & Hollmén, J. (2014). Explaining
Mixture Models through Semantic Pattern Mining and Banded Matrix Visualization.
In International Conference on Discovery Science (pp. 1�12). Springer.

Contribution 4 We have implemented the functions, developed in contributions 1 and
2, publicly available on the ClowdFlows website. The source code for the functions is also
available on GitHub. The descriptions of the software, along with the links to the code
repositories, is available in Chapter 6.

1.5 Structure

The rest of the thesis is structured as follows. Chapter 2 presents the related work. The
chapter is split into sections roughly corresponding to the related work of Chapters 3, 4
and 5 that present the main body of our work.

In Chapter 3, we describe our approach to improving the network decomposition and
label propagation steps of the methodology developed by Gr£ar et al. (2013). We begin the
chapter with a detailed description of the network decomposition and label propagation
algorithms and the problems arising with using each of them. We then present the improved
HinMine methodology that improves on both the network decomposition approach (by
using text mining inspired heuristics) and label propagation (by modifying the starting
weights of the nodes) and fuses both approaches. We present the experimental setting in
which the new algorithm was tested � �rst we provide a description of the data sets that
were used, and then the results on each of the data sets. We conclude the chapter with a
summary of experimental results.

In Chapter 4, we describe the NetSDM methodology that uses network analysis meth-
ods to pre-process input data for semantic data mining algorithms. We �rst present the
background technologies relevant for the chapter, speci�cally the Hedwig semantic data
mining algorithm and the network scoring function used in our experiments. We then
present the new methodology that converts a background knowledge network into an in-
formation network, evaluates the importance of the terms in the network, and then prunes
the network, leaving only the most relevant terms in the background knowledge. Experi-
ments show that the pruned background knowledge allows for much quicker analysis with
SDM technologies and yields better results than the existing solutions.

Chapter 5 presents the results of using banded matrix algorithms to visualize the out-
puts of semantic data mining algorithms. We present a methodology that performs clus-
tering, rule discovery using an SDM algorithm, and data visualization using banded matrix
methods. The methodology is tested on several publicly available data sets.

The work continues with Chapter 6 in which we present the publicly available work�ows,
developed and implemented in the course of this thesis, and concludes with Chapter 7 which
summarizes of the presented work and presents the ideas for future work.
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Chapter 2

Related Work

This chapter provides the related work in three research topics covered by the thesis:
network analysis, semantic data mining and data visualization.

2.1 Network Analysis

In network analysis, concepts and results from graph theory are used to investigate char-
acteristics of networked structures in terms of nodes (individual actors, people, or ob-
jects/things within the network) and their ties, edges, or links (relationships or interac-
tions) that connect them. This section presents the related work on node classi�cation
and ranking in information networks, for homogeneous and heterogeneous information
networks. As the work presented in Chapter 3 is inspired by the heterogeneous informa-
tion network propositionalization using bag-of-words vector construction, we also present
several heuristics used in text mining.

2.1.1 Node classi�cation in networks

In network classi�cation, the task is to �nd class labels for some of the nodes in the network
using known class labels of the remaining network nodes. As the network structure is known
in advance even for the unclassi�ed nodes, this is a semi-supervised learning task. Several
classi�cation methods are proposed in the literature. Sen et al. (2008) presented four
network classi�cation algorithms (in their work, they refer to the problem of classifying
nodes in a network as collective classi�cation), while de Sousa, Rezende, and Batista (2013)
describe �ve algorithms used for semi-supervised learning which are based on constructing
a network of nodes and using it to classify the nodes. One of the approaches used is the
propagation of labels in the network (referred to as label propagation), a concept used by
D. Zhou et al. (2004) and Vanunu, Magger, Ruppin, Shlomi, and Sharan (2010). Other
approaches include Gaussian Random Fields (Zhu, Ghahramani, La�erty, et al., 2003), its
modi�cation Robust Multi-Class Graph Transduction (W. Liu & Chang, 2009), Laplacean
support vector machines, and Laplacean Regularized Least Squares (Belkin, Niyogi, &
Sindhwani, 2006).

The limitation of collective classi�cation and label propagation algorithms is that the
algorithms do not take the types of nodes in a network into account and only work well
on homogeneous information networks (where all nodes are of the same type). Another
limitation of these algorithms is that they are not designed for imbalanced data. For
example, in label propagation, if one class has a large majority in the initially labeled
set, then this class casts a much stronger vote along the edges of the network, potentially
over-voting all other classes.
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2.1.2 Node ranking in information networks

The objective of ranking in information networks is to assess the relevance of a given
object either globally (with regard to the whole graph) or locally (relative to some object
in the graph). A network node ranking algorithm assigns a score (or rank) to each node
in the network, with the goal of ranking the nodes in terms of their relevance. A well
known ranking method is PageRank (L. Page et al., 1999), which was used in the Google
search engine. Other methods for ranking include Weighted PageRank method (Xing &
Ghorbani, 2004), SimRank (Jeh & Widom, 2002), di�usion kernels (Kondor & La�erty,
2002), hubs and authorities (Kleinberg, 1999), and spreading activation (Crestani, 1997).
Another approach to rank nodes in a network is to use network centrality measures, e.g.,
Freeman's network centrality (Freeman, 1979), betweenness centrality (Freeman, 1977),
closeness centrality (Bavelas, 1950), and Katz centrality (Katz, 1953). For our work,
the Personalized-PageRank (L. Page et al., 1999)�frequently abbreviated as P-PR�that
calculates the node score locally to a given network node is especially interesting because
it calculates the importance of network nodes in relation to a given set of starting nodes.
In the context of a data set annotated by using ontologies, this allows us to estimate the
importance of background knowledge terms in relation to the examples in the data set.

In this work, we used a network node ranking approach (1) to calculate feature vectors
for nodes in a network and (2) to limit the search space of semantic data mining. In both
use cases, we are interested in network ranking methods which can be `localized', i.e. which
does not compute the global importance/score of a node but rather calculate the score of
a node in the context of a given subset of nodes. An example of this type of network
node ranking approaches is the Personalized PageRank algorithm (L. Page et al., 1999),
sometimes referred to as random walk with restarts (Tong, Faloutsos, & Pan, 2006). For
example, this algorithm is used by Gr£ar et al. (2013) in a classi�cation setting to construct
feature vectors from network nodes based on their relevance to a chosen node.

The idea of PageRank�frequently abbreviated as PR�is motivated by two di�erent
views. The �rst is the random walker approach: a random walker starts walking from a
random node v of the network and in each step walks to one of the neighboring nodes with
a probability proportional to the weight of the edge traversed. The PageRank of a node is
then the expected proportion of time the walker spends in the node, or, equivalently, the
probability that the walker is in the particular node after a long time. The second view of
PageRank is the view of score propagation. The PageRank of a node is its score, which it
passes to the neighboring nodes. A node vi with a score PR(i) transfers its score to all its
neighbors. Each neighbor receives a share of the score proportional to the strength of the
edge between it and vi. This view explains the PageRank with a principle that in order
for a node to be highly ranked, it must be pointed to by many highly ranked nodes.

Given a set of `starting' nodes A, the Personalized PageRank vector, calculated for A
(denoted P-PRA) in a network is de�ned as the stationary distribution of positions of a
random walker that starts the walk in a randomly chosen member of A and then at each
step either selects one of the outgoing connections or teleports back to a randomly selected
member of A. The probability (denoted p) of continuing the walk is a parameter of the
Personalized PageRank algorithm and is usually set to 0.85. To calculate the vector P-PRA
for a given network, it is best to represent the network with an adjacency matrix M . For
a directed network containing n nodes v1, v2, . . . , vn, the matrix M is a n × n matrix for
which Mij is equal to the weight on the edge going from node vi to node vj . Using the
adjacency matrix to represent the network, the vector P-PRA is calculated in three steps.

1. In the �rst step, only the all-zero row of matrix M are modi�ed. For every j for
which Mij = 0 for all j, the value of Mij is set to 1 if the node vi is in the set A, and
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to 0 otherwise. In e�ect, this modi�es the original network by adding edges nodes
which do not have any outgoing edges. In the modi�ed network, each such node is
connected to all starting nodes in the set A. This �rst step modi�es the starting
matrix M into matrix M ′.

2. In the second step, the adjacency matrix M is transformed into a stochastic matrix.
A stochastic matrix is a matrix that satis�es two conditions: (1) all its values are
positive and the sum of each row of the matrix is equal to 1. To transform the
matrix M into a stochastic matrix P , each row is divided by the sum of its values.
Mathematically, we calculate P as

P = D−1M

where D is a diagonal matrix for which Dii =
∑n

j=1Mij .

3. In the third step, the matrix P is used to iteratively calculate the vector P-PRA.
The iteration starts with the vector x0 whose i-th component is equal to 1 if vi ∈ A
and 0 otherwise. In each iterative step s ≥ 1, the vector xs is calculated as

xt = p · Pxt−1 + (1− p) · x0.

The parameter p is a parameter of the Personalized PageRank algorithm and is usu-
ally set to p = 0.85. It represents the probability of a random walker to continue
its walk instead of returning back to a randomly selected node from A. While set-
ting p to 0.85 has no theoretical background, empirical results show that this is a
good setting. The algorithm terminates once the di�erence between xs and xs−1
falls below a threshold, and the resulting vector xs is the vector P-PRA. It can be
shown (Bourchtein & Bourchtein, 2013) that iterating this step converges as the pro-
cedure is e�ectively calculating the eigenvector corresponding to the eigenvalue 1 of
an irreducible non-periodic stochastic matrix whose second largest eigenvalue is p.

In our context, the Personalized PageRank algorithm is used to calculate the impor-
tance of network nodes with respect to a given starting set of nodes.

Remark 2.1.1. While P-PRA is technically a vector, each value of the vector corresponds
to a particular network node v. To shorten the notation, we write P-PRA(v) instead of
using the i-th value of P-PRA, where v is the i-th node.

2.1.3 Node embedding using node2vec

A recently developed approach to vectorize network nodes is the node2vec algorithm
(Grover & Leskovec, 2016), which uses the random walk approach to calculate features
that express similarities between pairs of nodes. The node2vec algorithm takes as input a
network of n nodes, represented as a graph G = (V,E) where V is the set of nodes in the
network and E is the set of connections, or edges, in the network. The algorithm returns a
matrix f ∈ R|V |×k with a pre-de�ned number of columns k. The matrix f is interpreted as
a collection of k-dimensional feature vectors with the i-th row of the matrix corresponding
to the feature vector of the i-th node in the network. As with the P-PRA vector, we write
f(u) to mean the row of matrix f , corresponding to the node u. The goal of the algorithm
is to construct the feature vectors f(u) in such a way that the feature vectors of all nodes
that share a certain neighborhood will be similar. The matrix f is calculated as as
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node2vec(G) = argmax
f∈R|V |×k

∑
u∈V

− log(Zu) +
∑

ni∈NS(u)

f(ni) · f(u)

 . (2.1)

where N(u) denotes the network neighborhood of node u given a sampling strategy and

Zu =
∑
v∈V

ef(u)·f(v).

In the above expression the inner sum calculates the similarities between a node and all
nodes in its neighborhood. This sum is large if the feature vectors of nodes in the same
neighborhood are collinear, however it also increases if feature vectors of nodes have a large
norm. The �rst value of each summand, − log(Zu), decreases when the norms of feature
vectors increase, thereby penalizing collections of feature vectors with large norms.

The expression (2.1) has a probabilistic interpretation which models a process of ran-
domly selecting nodes from the network. The probability P (n|u) of node n following node
u in the selection process is proportional to ef(n)·f(u). Assuming that selecting one node
is independent from selecting any other node, we can calculate the probability of selecting
all nodes from a given set A as P (A|u) =

∏
n∈A P (n|u), and Equation 2.1 can then be

rewritten as

node2vec = argmax
f∈R|V |×k

∑
u∈V

log (P (NS(u)|f(u))) . (2.2)

The term NS(u) in Equations (2.1) and (2.2) denotes the neighborhood of u given a
sampling strategy S and is calculated by simulating a random walker traversing the network
starting at node u. Unlike the PageRank random walker, the transition probabilities for
traversing from node n1 to node n2 also depends on the node n0 the walker visited before
node n1, making the process of traversing the network a second order random walk. The
unnormalized transition probabilities are set using two parameters, p and q, and are equal
to

P (n2|previous step moved from node n0 to n1) =


1
p if n2 = n0

1 if n2 can be reached from n1
1
q otherwise

.

The parameters p and q are referred to as the return parameter and the in-out parameter,
respectively. A low value of the return parameter p means that the random walker is more
likely to backtrack its steps, meaning the random walk will be closer to a breadth �rst
search. On the other hand, a low value of the parameter q encourages the walker to move
away from the starting node and the random walk resembles a depth �rst search of the
network. To calculate the maximizing vector f , a set of random walks of limited size is
simulated starting from each node in the network to generate several samples of the set
NS(u).

The function maximizing expression (2.1) is calculated using stochastic gradient de-
scent. The value of (2.1) is estimated at each generated sampling of the neighborhoods
NS(u) for all nodes in the network to discover the vector f that maximizes the expression
for the simulated neighborhood set.
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2.1.4 Analysis of heterogeneous information networks

Analagous to the algorithms developed for node classi�cation in homogeneous networks,
adapted methods have been proposed for classi�cation of nodes in heterogeneous networks.
Hwang and Kuang (2010) expand the idea of label propagation used by D. Zhou et al.
(2004) to include multiple dampening parameters (one for each node type pair) in place
of a single parameter. A similar approach is taken by Sun and Han (2012). Ji, Sun,
Danilevsky, Han, and Gao (2010) propose the GNetMine algorithm which uses the idea of
knowledge propagation through a heterogeneous information network to �nd probability
estimates for labels of the unlabeled data. A strong point of this approach is that it has
no limitations on how di�erent node types in a network are connected (this is sometimes
referred to as a network schema), meaning that it can be applied to both heterogeneous and
homogeneous networks. Building on the idea of GNetMine, Sun and Han (2012) propose
a classi�cation algorithm that relies on within-class ranking functions to achieve better
classi�cation results. The idea is that nodes, connected to high ranked entities of a given
class, most likely belong to the same class. This idea is implemented in the RankClass
framework for classi�cation in heterogeneous information networks.

2.1.5 Propositionalization of heterogeneous information networks

An alternative approach to classi�cation in heterogeneous networks, is classi�cation of
network nodes through network decomposition and propositionalization. In this section,
we present the approach, developed by Gr£ar et al. (2013), as it represents the starting
point for the work, presented in in Chapter 3. The approach analyzes a network in which a
certain type of nodes (called the target type) is partially labeled. The task is to discover the
labels of target-type nodes that are unknown. The adopted approach consists of two main
steps. In the �rst step, a heterogeneous network is decomposed into a set of homogeneous
networks. In the second step, the homogeneous networks are used to predict the labels of
target nodes.

In the �rst step of the methodology, the original heterogeneous information network
is decomposed into a set of homogeneous networks. Each homogeneous network contains
only the nodes of the original network of a given target node type (in this chapter, we will
refer to these nodes as base nodes). In each homogeneous network two nodes are connected
if they are directly or indirectly linked in the original heterogeneous network. The nodes
are linked indirectly of they are connected to the same intermediary node. Take as an
example the network originally presented by Gr£ar et al. (2013). Let the network contain
two types of nodes, Papers and Authors, and two edge types, Cites (linking papers to
papers) and Written_by (linking papers to authors). From this network we can construct
two homogeneous networks of papers: the �rst, in which two papers are connected if
one paper cites another, and the second, in which they are connected if they share a
common author (shown in Figure 2.1). This construction is similar to the construction of
author collaboration networks (C. Chen & Paul, 2001), however instead of using papers
as intermediate nodes inducing links between authors, we use authors to induce links
between papers in this decomposition. In general, the choice of links used in the network
decomposition step requires an expert who takes the meaning of links into account and
chooses only the decompositions relevant for a given task (any link between two papers in
the heterogeneous network can be used to construct either a directed or undirected edge
in the homogeneous network).

Note that in the network in which two papers are connected if they share a common
author, each common author induces one connection between the two papers. This can be
expressed mathematically as the weight of the link between the two papers being set to the
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number of common authors (number of common neighboring nodes of the type Author).
In the second step of the methodology, class labels for the unlabeled nodes are calcu-

lated using a process of network propositionalization, a method for classifying the target
nodes in the original heterogeneous network introduced by Gr£ar et al. (2013). The propo-
sitionalization step calculates feature vectors for each target node in the network using
the Personalized PageRank (P-PR) algorithm (L. Page et al., 1999), described in 2.1.2.
The Personalized PageRank of node v corresponds to the Personalized PageRank vector,
as described in Section 2.1.2, if we set the starting set A to A = {v}. Once calculated,
the resulting PageRank vectors for each node in the network are normalized according to
the Euclidean norm. The resulting vector contains information about the proximity of
node v to each of the nodes of the network. We consider the P-PR vectors of a node as a
propositionalized feature vector of the node. Two nodes with similar P-PR vectors will be
in proximity of similar nodes, and classi�ers will consider them as similar instances. We
use the vectors to classify the nodes from which they were calculated.

For a single homogeneous network, the propositionalization results in one feature vec-
tor per node. For classifying a heterogeneous network decomposed into k homogeneous
networks Gr£ar et al. (2013) propose to concatenate and assign weights to the k vectors,
obtained from the k homogeneous networks. The weights of the vectors are optimized us-
ing the computationally expensive di�erential evolution (Storn & Price, 1997). A simpler
alternative is to use equal weights and postpone weighting to the learning phase. Due to
the size of feature vectors in our experiments, we to followed the latter approach. After
the weights are set, many classi�ers, for example SVM (Manevitz & Yousef, 2001; Kwok,
1998; D'Orazio, Landis, Palmer, & Schrodt, 2014), k-NN (Tan, 2006) or a centroid clas-
si�er (Han & Karypis, 2000) can be used. It was shown by Gr£ar et al. (2013) that the
calculating feature vectors and using them for the classi�cation of nodes in a network yields
good results.

2.1.5.1 Improvement opportunities

A drawback of the decomposition and propositionalization approach by Gr£ar et al. (2013)
is that in the decomposition step�where individual homogeneous networks are constructed�
the homogeneous networks are composed of all the nodes of the given type that are con-
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Figure 2.1: An example (�rst used in (Gr£ar, Trdin, & Lavra£, 2013)) of a heterogeneous
network (on the left-hand side) and a homogeneous network extracted from it (on the right-
hand side). In the homogeneous network, papers are connected if they share a common
author. Weights of the edges are equal to the number of authors that contributed to both
papers.
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nected through an intermediary node of any other type. For example, from a network
consisting of papers and their authors, a homogeneous network of papers is constructed
in which two papers are connected if they have the same author (in this example, author
nodes are the intermediate nodes). This construction may cause highly proli�c authors to
induce most of the connections in the resulting network, which is not optimal. In reality,
links induced by the most proli�c authors are not the most important as they are not
informative about the papers related to other papers; on the other hand, if an author only
writes a small number of papers, those papers are much more likely to be closely connected
to each other. A similar problem was addressed in the construction of co-authorship net-
works of authors where papers are the intermediate nodes. If each publication two writers
co-author induces a link with a weight of 1 between the authors, then publications with
k authors induce

(
k
2

)k(k−1)
2 links in the induced network. Perianes-Rodriguez, Waltman,

and van Eck (2016) propose to add a weight of 1
k to each of the induced connections. This

means a publication with k authors increases the sum of all weights in the induced network
by k

2 which is proportional to k, the number of authors.
In our work, we based our research on the fact that a similar problem to that of the

exaggerated impact of proli�c authors in a paper-author network is also encountered in the
�eld of text mining when constructing bag-of-words (BOW) vectors from text documents.
The simplest way to construct a BOW vector of a document is to count appearances of
a word or term in the document. This term frequency (tf) weighting is used by Gr£ar
et al. (2013) for BOW vector construction in heterogeneous network propositionalization.
In text mining, however, tf-based weighting is rarely used, as the term-frequency inverse-
document-frequency (tf-idf) weighting introduced by Jones (1972) contains more informa-
tion for document classi�cation. The tf-idf weighting schema was designed to penalize
terms that appear in many documents of the corpus, as their appearance in a particular
document is not informative. A number of other weighting heuristics, which also take
labels of documents into account, have been proposed. These include the χ2, information
gain and gain ratio (Debole & Sebastiani, 2004), ∆-idf (Martineau & Finin, 2009), and
relevance frequency (Lan, Tan, Su, & Lu, 2009). These weighting schemes are usable in
a classi�cation setting where the objective is to determine the class of a document. In
such a setting, the weights are designed to penalize terms that appear in the documents
of all/most of the target class examples and therefore poorly discriminate between the
classes. While the above-mentioned term weighting schemes evaluate the importance of
a given term in the entire corpus of documents, the Okapi BM25 function (Robertson &
Walker, 1994) evaluates the importance of a term speci�cally for each (class labeled) doc-
ument. It should be noted that this function gives smaller weights to terms that appear in
long (compared to the average document length) documents. In Chapter 3, we adapt the
text retrieval heuristics to weigh intermediate nodes in network decomposition.

2.1.5.2 Label propagation

An alternative method of classifying nodes in a homogeneous network is the label propa-
gation (D. Zhou et al., 2004) algorithm. The algorithm starts with a network adjacency
matrix M ∈ Rn,n+ and a class matrix Y ∈ {0, 1}n,|C|, where C = {c1, . . . , cm} is the set
of classes, with which the network nodes are labeled. The j-th column of Y represents
the j-th label of C, meaning that Yij is equal to 1 if the i-th node belongs to the j-th
class and 0 otherwise. A node with no labels is represented in Y by a all-zero row. The
algorithm constructs the matrix S = D−

1
2MD−

1
2 , where D is a diagonal matrix and the

value of each diagonal element is the sum of the corresponding row ofM (i.e. the degree of
the corresponding node). Matrix S is sometimes referred to as the symmetric normalized
Laplacian matrix of the network (Newman, 2010).
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The goal of the algorithm is to calculate a matrix F ∗ ∈ Rn,|C| which satis�es two
conditions. First, for labeled nodes in the network, the corresponding rows of F must be
similar to the rows of Y . Second, if two nodes are connected in the network, then their
corresponding rows must also be similar. The label propagation algorithm calculates the
matrix F iteratively. Initially, the matrix F (0) is de�ned as F (0) = Y . In each step of the
iteration, the matrix F (t) is calculated as F (t) = αSF (t−1) + (1−α)Y , and the iteration
concludes when there are no changes in matrix F (t). D. Zhou et al. (2004) show that the
iterative process converges to the matrix F regardless of the starting matrix F (0). In their
work, D. Zhou et al. (2004) also show that matrix F can also be calculated by solving a
system of linear equations, as

F ∗ = (I − αS)−1Y. (2.3)

More importantly, the resulting matrix F minimizes the quadratic expression

n∑
i,j=1

Mij

∥∥∥∥∥ 1√
Dii

Fi −
1√
Djj

Fj

∥∥∥∥∥
2

+

(
1

α
− 1

) n∑
i=1

‖Fi − Yi‖2

where Fi and Yi denotes the i-th row of matrix F and Y , respectively. The �rst summand
of the quadratic expression characterizes the requirement that connected nodes must have
similar corresponding rows of matrix F , and the second summand characterizes the re-
quirement that the matrix F is similar to Y . The term α is a parameter of the algorithm
that was set to 0.99 in our experiments following D. Zhou et al. (2004).

The resulting matrix F is used to predict the class labels of all unlabeled nodes in
the network by labeling the i-th node in the network with the class, associated with the
column at which the i-th row of matrix F acchieves the highest value.

2.2 Semantic Data Mining

Semantic Data Mining (SDM) can be viewed as an extension of rule learning and subgroup
discovery. In SDM, structured data and background knowledge are used to uncover ex-
planations composed of multiple attributes and relations. SDM forms explanatory if-then
rules that characterize the instances of the target class, i.e. the class of interest to the
domain expert. This section presents the related work on semantic data mining and forms
an introduction to the work presented in Chapter 4.

2.2.1 Rule learning and subgroup discovery

One of the established knowledge discovery and data mining techniques (Piatetsky-Shapiro,
1991) is rule learning (Fürnkranz et al., 2012). Rule learning was initially focused on learn-
ing predictive models in the form of classi�cation rules and descriptive pattern mining. For
example, association rule learning (Agrawal & Srikant, 1994) can �nd interesting patterns
in both unsupervised and supervised setting (B. Liu, Hsu, & Ma, 1998). Building on clas-
si�cation and association rule learning, subgroup discovery techniques �nd interesting pat-
terns as sets of rules that best describe the target variable (Klösgen, 1996; Wrobel, 1997).
Measures of rule quality are further described in Chapter 4. Typically, in the learned rules
of the form TargetClass ← Explanation, the rule condition (Explanation) is a conjunc-
tion of features (attribute values) that characterize the examples of the target class covered
by the rule. For example, a rule describing a subgroup of genes di�erentially expressed
in breast cancer is the rule containing a conjunction of two terms, chromosome and cell

cycle. The rule covers all genes that are connected to both biological terms. A table of
other rules describing the same set of genes is shown in Figure 2.2.
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2.2.2 enrichment analysis and ontologies

Semantic data mining can be viewed as an extension of enrichment analysis (Trajkovski,
Lavra£, & Tolar, 2008). Enrichment analysis (EA) techniques (Trajkovski, Lavra£, & Tolar,
2008) are statistical methods used to identify putative explanations for a set of entities
based on the over- or under-representation of their attribute values. In life sciences, EA is
widely used with the Gene Ontology (GO) (Consortium, 2008) to pro�le the biological role
of genes, such as di�erentially expressed cancer genes in microarray experiments (Tipney
& Hunter, 2010).

While standard EA provides explanations in terms of concepts from a single ontology,
researchers are increasingly using it with combinations of several ontologies and data sets
to uncover novel associations. The ability to detect patterns in data sets which do not
use only GO can yield valuable insights into diseases and their treatment. For instance,
Werner's syndrome, Cockayne syndrome, Burkitt's lymphoma, and Rothmund-Thomson
syndrome are all associated with aging related genes (Puzianowska-Kuznicka & Kuznicki,
2005; Cox & Faragher, 2007). On the clinical side, EA can be used to learn adverse events
from Electronic Health Record (EHR) data (e.g., increased comorbidities in rheumatoid
arthritis patients were detected by LePendu et al. (2013)), or to identify phenotypic sig-
natures of neuropsychiatric disorders (Lyalina et al., 2013). Ontology-based EA was used
to identify genes linked to aging in worm (Callahan, Cifuentes, & Dumontier, 2015), and
the aberrant pathways�the network drivers in HIV infection identifying HIV inhibitors
strongly associated with mood disorders (Hoehndorf, Dumontier, & Gkoutos, 2012). Jiline,
Matwin, and Turcotte (2011) learned a combination of molecular function and chromosome
position from lymphoma gene expression.

2.2.3 Using ontologies in rule learning

Given an abundance of taxonomies and ontologies that are readily available, these can
be used to provide higher-level descriptors and explanations of discovered subgroups. For
example, in the domain of systems biology the Gene Ontology (Consortium, 2008), KEGG
orthology (Ogata et al., 1999) and Entrez gene�gene interaction data (Maglott, Ostell,
Pruitt, & Tatusova, 2005) are examples of structured domain knowledge that can be used
as additional higher-level descriptors in induced rules describing interesting subgroups.
The SEGS algorithm (Trajkovski, Lavra£, & Tolar, 2008) was the �rst to combine enrich-
ment analysis and machine learning research in the construction of rules explaining gene
expression data. SEGS constructs gene sets as combinations of GO ontology (Consortium,
2008) terms, KEGG orthology (Ogata et al., 1999) terms, and terms describing gene�gene
interactions obtained from the Entrez database (Maglott et al., 2005).

The challenge of incorporating domain ontologies in data mining was addressed in
SDM research by several authors (�áková et al., 2006; Lawrynowicz & Potoniec, 2011;
Vavpeti£ & Lavra£, 2013). In the work of �áková et al. (2006) an engineering ontol-
ogy of Computer-Aided Design (CAD) elements and structures was used as a background
knowledge to extract frequent product design patterns in CAD repositories and to discover
predictive rules from CAD data. Using ontologies, the algorithm Fr�ONT for mining fre-
quent concepts was introduced by Lawrynowicz and Potoniec (2011). Vavpeti£ and Lavra£
(2013) describe and evaluate the SDM toolkit that includes two semantic data mining
systems: SDM-SEGS and SDM-Aleph. SDM-SEGS is an extension of the earlier domain-
speci�c algorithm SEGS (Trajkovski, Lavra£, & Tolar, 2008) which supports semantic
subgroup discovery in gene expression data. SDM-SEGS extends and generalizes this ap-
proach by allowing users to input a set of ontologies in the OWL ontology speci�cation
language and an empirical data set annotated with domain ontology terms. SDM-SEGS
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employs ontologies to constrain and guide a top-down search of hierarchically structured
hypotheses space. SDM-Aleph, which is built using the inductive logic programming sys-
tem Aleph (Srinivasan, 2007) does not have the limitations of SDM-SEGS, imposed by
the domain-speci�c algorithm SEGS. Additionally, in the learning process SDM-Aleph can
accept any number of OWL ontologies as a background knowledge. Like SDM-Aleph, the
Hedwig semantic subgroup discovery algorithm (Vavpeti£, Podpe£an, & Lavra£, 2014),

Figure 2.2: An example output of a semantic
rule learning, where rules are learned from the
breast cancer data set. All the rules represent
subgroups of genes, di�erentially expressed in
patients with breast cancer.

which is a generalization of the SDM-SEGS
algorithm, also accepts any number of owl
ontologies as input.

As an example, let us take the analy-
sis of breast cancer data set, originally pre-
sented in Sotiriou et al., 2006. Use of the
Hedwig algorithm resulted in the discovery
of 10 rules, describing a subgroup of breast
cancer patients. The resulting set of ranked
rules (the rules are ranked based on their
lift value, a metric described in Chapter 4)
is shown in Figure 2.2, where the conjuncts
explain di�erent subgroups of breast can-
cer patients in terms of ontology concepts.
This work showed that cytoskeletal forma-
tion and the regulation of the mitotic cell
cycle best explain breast cancer gene ex-
pression (Vavpeti£ et al., 2014).

2.2.4 The Hedwig semantic data mining algorithm

We describe the semantic subgroup discovery system Hedwig (Vavpeti£, Novak, Gr£ar,
Mozeti£, & Lavra£, 2013; Vavpeti£, 2016). Compared to standard subgroup discovery
algorithms, Hedwig uses domain ontologies to structure the search space and to formulate
generalized hypotheses using ontology terms as conjuncts of if-then rules. Other semantic
subgroup discovery algorithms are either specialized for a speci�c domain (Trajkovski,
�elezný, Lavra£, & Tolar, 2008) or adapted from systems that do not take into account
the hierarchical structure of background knowledge (Vavpeti£ & Lavra£, 2013). Hedwig
overcomes these limitations as it is designed to be a general purpose semantic subgroup
discovery system. As Hedwig was shown to be a state-of-the-art semantic data algorithm
by Vavpeti£ (2016), we used Hedwig in the experiments, described in this chapter.

In Hedwig, the semantic data mining task addressed takes three types of inputs: the
training examples, domain knowledge, and a mapping between the two. The training
examples are expressed as RDF triplets (Resource Description Framework i.e. subject-
predicate-object; e.g., gene X suppresses gene Y) and represent the data instances of our
data set. Domain knowledge is in the form of ontologies and represents the background
knowledge associated with the data set. The third input is the object-to-ontology mapping
which associates each RDF triplet with an appropriate ontological concept. We refer to
these object-to-ontology mappings as `annotations' and say that a particular object x
is annotated by an ontology term o if the pair (x, o) appears in the mapping. As the
annotations represent the existing knowledge about the data instances, they are known
in advance. The set S of objects in our data set is split into a set of `interesting' target
class objects (for example, genes enriched in a particular biological experiment) and a set
of non-target objects (non-enriched genes). Our approach �nds a hypothesis (a predictive
model or a set of descriptive patterns), expressed by domain ontology terms explaining
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the given empirical data. This hypothesis is expressed as a logical expression of ontology
terms that best describe as many target objects and as few non-target objects as possible.

Semantic subgroup discovery by Hedwig results in logical descriptive rules. Take as
example the rule, induced from a data set with 200 examples, 100 of which are positive:

Class(X) ← C1(X), R(X,Y), C2(Y) [80,20].

The rule is a �rst-order logical expression, where variables such as X and Y represent sets of
input instances, R is a binary relation between the examples, and C1 and C2 are ontological
concepts. This particular rule correctly covers 80 positive (target class) examples (True
Positives, TP ) and 20 negative examples (False Positives, FP ) in training set S. The
particular rule can be interpreted as follows. If an example x from example set X is
annotated with concept C1 and is related with another example (y from Y ) via relation
R, and y is annotated with concept C2, then the conclusion Class(X) holds. Note that
in this rule X is a global (universally quanti�ed) variable, and Y is a local (existentially
quanti�ed) variable introduced in the rule body. The rule condition is true for 100 input
instances (also called coverage), and the support of the rule is 0.5, computed as TP+FP

|S| .

The precision of the rule, calculated as TP
TP+FP , is 0.8. In our experiment, we use the lift

metric to evaluate the performance of the proposed algorithm. The lift of a rule is de�ned
as the ratio between the precision of a rule and the proportion of positive examples in the
data set (i.e. the precision of an empty rule that classi�es all examples as positive) and is
calculated as precision

|S+|/|S| . In our example, the lift of the rule is 0.8
0.5 = 1.6.

Like many ILP and RDM algorithms, the Hedwig algorithm uses beam search, where
the beam contains the best N rules found so far. It starts with the default rule which covers
all the input examples. In every search iteration, each rule from the beam is specialized
via one of the four operations: (1) replace the predicate of a rule with a predicate that
is a sub-class of the previous one, (2) negate predicate of a rule, (3) append a new unary
predicate to the rule, or (4) append a new binary predicate, introducing a new existentially
quanti�ed variable, where the new variable has to be `consumed' by a literal, which has to
be added as a conjunction to the body of this clause in the next step of rule re�nement.

Hedwig learns rules via specialization steps. Each step either maintains or reduces the
current number of covered examples. A rule will not be specialized once its coverage is zero
or falls below some predetermined threshold. When adding a new conjunct, the algorithm
checks if the extended rule improves the probability of rule consequence, calculated as
p(rule) = |{positive examples covered by the rule}|

|{all examples covered by the rule}| . To perform this check, we use the redundancy
coe�cient �rst introduced in the work of Hämäläinen (2010), which estimates whether the
coe�cient p(new rule)

p(old rule) is greater than 1. If it is not, then the new rule is not added to the list
of specializations. After the specialization step is applied to each rule in the beam, a new
set of best scoring N rules is selected. If no improvement is made to the rule set, the search
terminates. In principle, the procedure supports any rule scoring function. Numerous rule
scoring functions for discrete targets are available: χ2, precision, WRAcc (Lavra£, Kav²ek,
Flach, & Todorovski, 2004), leverage and lift. The latter is the default choice in Hedwig
and was used in our experiments.

In addition to a �nancial use case (Vavpeti£, Novak, Gr£ar, et al., 2013), Hedwig
was shown to perform well in a biological setting, analyzing DNA aberration data for
various cancer types (Adhikari, Vavpeti£, Kralj, Lavra£, & Hollmén, 2016), where it was a
part of a three-step methodology, together with mixture models and banded matrices. In
that analysis, additional background knowledge in the form of several ontologies obtained
from various sources was used: hierarchical structure of multiresolution data, chromosomal
location of fragile sites, virus integration sites, cancer genes, and ampli�cation hotspots.
A detailed examination of the methodology is provided in the next chapter.
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2.3 Banded Matrix Visualization

This section presents the related work on banded matrix algorithms, which�along with
the related work on SDM presented in Section 2.2�composes the related work for the
research presented in Chapter 5.

Visualization is an important ingredient of data mining because it presents insights
into complex data sets by communicating their key aspects (Tufte, 1986). Furthermore,
providing information in the visual format is one of the fastest and most comprehensible
methods for application area specialists. Data is often represented in a matrix form and
the research community has developed numerous methods for matrix visualization (C.-H.
Chen et al., 2004; H.-M. Wu, Tien, & Chen, 2010).

While binary matrices (matrices with entries equal to either 0 or 1) are frequently used
in data mining (perhaps the most notable example of binary matrices being market basket
data analysis), the concept of banded matrices has its origins in numerical analysis. The
computational e�ort of multiplying matrices is much smaller when matrices are banded (i.e.
the non-zero elements of a matrix only appear on positions that form a single band going
from the top left to the bottom right corner of the matrix). The interest of the numerical
community is usually to reduce the total bandwidth of a matrix, where the bandwidth
of a matrix with entries aij is de�ned as the smallest value k such that if |i − j| > k,
then aij = 0. This di�ers from data mining, where the goal is to �nd a matrix structure
as close to a banded one with the underlying assumption that the data analyzed is noisy
and contains outliers. Banded matrices and their relation to data analysis were initially
studied by (Garriga et al., 2011). Garriga et al. (2011) presented an overview of several
algorithms to �nd optimal permutations of rows (and sometimes columns) that best expose
the banded structure of a matrix.

In Chapter 5 we conducted experiments with three algorithms: minimal banded aug-
mentation (MBA), bidirectional MBA (biMBA), and a barycentric approach (�rst pro-
posed by (Sugiyama, Tagawa, & Toda, 1981), and �rst used in the context of discovering a
banded structure of binary matrix by Garriga et al. (2011)). Given that the performance
of the biMBA method was superior to both MBA and the barycentric method, we used
this method for visualizing the results of semantic rules and clusters in Chapter 5.
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Chapter 3

HinMine: Heterogeneous

Information Network Mining with

Information Retrieval Heuristics

This chapter presents an advanced approach to mining heterogeneous information networks
by decomposing them into homogeneous networks. The proposed HinMine methodology is
based on previous work that classi�es nodes in a heterogeneous network in two steps. In the
�rst step the heterogeneous network is decomposed into one or more homogeneous networks
using di�erent connecting nodes. We improve this step by using new methods inspired by
weighting of bag-of-words vectors mostly used in text mining and information retrieval,
where larger weights are assigned to nodes which are more informative and characteristic
for a given class of nodes. In the second step, the resulting homogeneous networks are used
to classify data either by network propositionalization or label propagation. We propose
an adaptation of the label propagation algorithm to handle imbalanced data and test
several classi�cation algorithms for propositionalization. The new methodology is tested
on three data sets with di�erent properties. For each data set, we perform a series of
experiments and compare di�erent heuristics used in the �rst step of the methodology. We
also use di�erent classi�ers which can be used in the second step of the methodology when
performing network propositionalization.

This chapter is structured as follows. Section 3.1 provides the motivation for the work
described in this chapter. We also analyze the drawbacks of the existing methods, described
in Section 2.1.5 in dealing with proli�c intermediary nodes and with imbalanced data
sets, and provide a framework that can be used to modify the algorithm. In Section 3.2,
we propose improvements to the basic methodology by introducing text-mining inspired
weight heuristics on intermediary nodes and by modifying starting weights for the label
propagation algorithm. In Section 3.3, we present the results of the proposed methodology
on three data sets.

3.1 Motivation

The methodology proposed in this chapter presents an extension of existing methods for
heterogeneous network mining using various text mining inspired heuristics, described
in Section 2.1.5.1. We made two signi�cant improvements to the original methodology
proposed by Gr£ar et al. (2013): we improved the network decomposition and the label
propagation approach. In this section, we present the motivation for our improvements,
while a more extensive overview of the related work is provided in Section 2.1 and the
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actual approach to mining heterogeneous networks is described in Section 3.2.

3.1.1 Improved network decomposition

In the �eld of text mining, most formulas for calculating the bag-of-words vector (a com-
plete list of formulas used is provided in Section 3.2.2.1) share the same basic structure for
weighting a term t in a document d:

w(t, d) = f(t, d) · w(t), (3.1)

where f(t, d) is the frequency of term t in document d and w(t) is a function that depends
on the given term (and, implicitly, on the entire document corpus we are analyzing),
and not on the particular document. The function w can be interpreted as a weighting
function that determines the importance of a given term. For example, in the standard
term-frequency (tf) scheme, function w is identically equal to 1, meaning all terms in a
document receive equal weight. The term-frequency inverse-document (tf-idf) frequency
scheme is designed to lower the weights for the terms that appear in a large number of
documents. Other weighting schemes aim to lower the weights of terms that appear in all
target classes with a similar frequency. By transferring the same rationale from text mining
to network analysis, we aim to improve the network decomposition step of the described
methodology by decreasing the link weights (1) when intermediate nodes connect to a large
number of nodes (links induced by authors who wrote a lot of papers are less likely to be
informative) and (2) when intermediate nodes connect to nodes from di�erent classes (links
induced by authors that write in many di�erent �elds are less informative). We therefore
use network-analogues of function w used in text mining schemes and translate function f
of Equation (3.1) to a network setting.

To transform the function f , we �rst rewrite Equation (3.1). The value f(t, d) is the
number of times t appears in d, meaning that we can understand Equation (3.1) as the
sum of w(t, d) over all appearances of t in document d, i.e. if we consider a document to
be an ordered tuple (t1, t2, . . . , tN ) of terms, Equation 3.1 equals to

w(t, d) =
∑

1≤i≤N
ti=t

w(t). (3.2)

This form of equation clearly emphasizes that the full weight of a term in a document is
calculated by summing the weights of appearances of the term in the document.

In the network decomposition step of the methodology described in Section 2.1.5, we
explained that the weight of the link between two base nodes (e.g., two papers) is equal to
the number of intermediate nodes (e.g., authors) that are linked to (e.g., are authors of)
both papers. In other words, we can say that the weight of the link between nodes v and
u is

w(v, u) =
∑
m∈M

m is linked to v and u

1, (3.3)

where M is the set of all intermediate nodes.
Equation (3.3) can now be adapted and extended in a similar way as the term-frequency

weights are adapted in text mining. In the text mining case, we replace 1 with w(t), where
w is a weighting function that penalizes the terms appearing in many documents or in
documents from di�erent classes. Similarly, in the network setting, we replace value 1 used
in the calculation of w(v, u) with a function w(m), where w penalizes intermediate nodes
that link to many base nodes or those that link the base nodes from di�erent classes. The
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Figure 3.1: Results of a label propagation algorithm on an imbalanced data set.

result is the following formula for computing the weight of the link between u and v

w(v, u) =
∑
m∈M

m is linked to v and u

w(m). (3.4)

The novelty of our work concerns the following extension of the existing methodology
for classi�cation in heterogeneous networks via network decomposition: by using di�erent
functions w in Equation (3.4) we are able to provide more informative weights used in
the decomposition step. Using functions analogous to the inverse document frequency
function, we improve the methodology by constructing a network in which links induced
by highly connected intermediate nodes will not dominate in the homogeneous networks.
For example, in the original methodology, adding an intermediate node that connects to
all base nodes would cause the homogeneous network to be fully connected and would
therefore result in nodes with similar personal PageRank values. Adding such a node in
our scenario would still induce a fully connected network, however the additionally added
links would have low weights (because the added intermediate node would have a weight)
and would not a�ect the PageRank calculation. As the base nodes of a network are labeled,
we can also take the class labels into account when calculating the weights of intermediate
nodes. In particular, we introduce functions w (described in detail in Section 3.2.2.2)
that give low weights to links induced by nodes that connect several classes, resulting in
improved classi�cation accuracy when such nodes cause authority to spread over a large
portion of a network.

3.1.2 Label propagation and improvement

In our work, we also improved on the second step of the decomposition-based methodology
presented by Gr£ar et al. (2013). Along with classi�cation through propositionalization,
we also use the label propagation to classify the nodes of homogeneous networks that
arise from decomposing the heterogeneous network. To classify the original heterogeneous
network, decomposed into k homogeneous networks, all available connections from all k
homogeneous networks can be used. We construct a new network with the same set of
nodes as in the original network. The weight of a link between two nodes is calculated
as the sum of link weights in all homogeneous networks. In e�ect, if the decomposed
homogeneous networks are represented by adjacency matrices M1,M2, . . . ,Mk, the new
network's adjacency matrix equals M1 +M2 + · · ·+Mk.

The label propagation algorithm, as de�ned in (D. Zhou et al., 2004), works by propa-
gating class labels from all members belonging to a certain class. By doing so, the algorithm



24 Chapter 3. HinMine

Classifier
Decomposition

Decomposition

heuristic

Propositionalization
anduconcatenation

Classification

INPUT:

Partially
labeled
network

.

.

.

Decompositionu1

Decompositionu2

Decompositionun

nodeu1

nodeu2

nodeu3

nodeu4
nodeu5

nodeu6

Propositionalized
network

OUTPUT:

Fully
labeled
network

Aggregation Labelupropagation

Aggregated
network

Figure 3.2: Overview of the proposed methodology. In the �rst step, an input partially
labeled heterogeneous network is decomposed into one or more homogeneous networks. In
the second step, these decompositions are merged and used to classify the data using label
propagation (top branch) or each decomposition is used to calculate feature vectors for
each base node in the network (bottom branch). In the latter case, the feature vectors are
concatenated and the result can be used by any classi�er (we use the k-NN, centroid based
and the SVM classi�ers) to classify the unlabeled nodes.

may overestimate the importance of larger classes (those with more instances) when data
is imbalanced. We propose a modi�cation to the label propagation algorithm which ad-
dresses this issue. For example, the left-hand side of Figure 3.1 shows an example in which
the label propagation algorithm will classify the central node as belonging to the larger
class simply because it has three neighbors of the red and only two neighbors of the blue
class. This, in some cases, may not be a desired outcome. It could be argued that the
node we wish to classify is actually adjacent to all elements of the blue class, but only
some elements of the red class. Therefore, in the relative sense, blue nodes cast a stronger
vote than red nodes. Consider Figure 3.1 to inspect the results of label propagation on an
imbalanced data set. If we run the original label propagation algorithm, each labeled node
begins the iteration with a weight of 1 for the class they belong to. In each step of the
iteration, every node collects votes from its neighboring nodes and adds a portion (de�ned
by α which was set to 0.6 in this example) of its original weight. In this case (on the left
hand side), the central node receives a proportional vote of 2

5 = 0.40 from the blue class
and a vote of 3

5 = 0.60 from the red class. However, using our modi�ed weights (on the
right hand side), the labeled nodes start with a weight of 1

2 for the blue class with two
nodes and 1

4 for the red class with four nodes. Because of this, the proportion of votes for
the blue class increases to 0.57. This is justi�ed by proportional voting and the fact that
the central node receives the highest possible vote from the blue class consisting of only
two nodes, while it does not receive the highest possible vote from the red class.

3.2 The HinMine Methodology

In compliance with the motivation presented in Section 3.1, this section presents two
improvements to the existing methodology. It �rst addresses the issue of handling of im-
balanced data sets, followed by the presentation of a novel edge weighting approach used in
the construction of homogeneous networks from the original heterogeneous network. The
proposed approach named HinMine (Heterogeneous information network Mining method-
ology) is composed of a heterogeneous network decomposition step, followed by a clas-
si�cation step in which classi�cation is performed either by propositionalization or label
propagation. Figure 3.2 shows an overview of the proposed approach.



3.2. The HinMine Methodology 25

3.2.1 Imbalanced data sets and label propagation

The reasoning, described in Section 3.1.2, has made us believe that the label propagation
approach may not perform well if the data is highly imbalanced, i.e. if the frequencies
of class labels are noticeably di�erent. In Section 2.1.5.2 we described that in each step
of the iteration, matrix F (t) is calculated as F (t) = αSF (t − 1) + (1 − α)Y , where S
is a matrix calculated from the adjacency matrix of the network and each column of the
zero-one matrix Y represents one of the possible labels in the network. We propose an
adjustment of the label propagation algorithm by changing the initial label matrix Y so
that larger classes will have less e�ect in the iterative process. The value of label matrix
Y in this case is no longer binary (i.e. 0 or 1), but it is set to 1

|cj | if node i belongs to class
cj and 0 otherwise.

If the data set is balanced (all class values are equally represented), then the modi�ed
matrix Y is equal to the original binary matrix multiplied by the inverse of the number of
class values. This, along with Equation (2.3), means that the resulting prediction matrix
only changes by a constant and the �nal predictions remain unchanged. However, if the
data set is imbalanced, smaller classes now have a larger e�ect in the iterative calculation
of F ∗. This prevents votes from more frequent classes to outweigh votes from less frequent
classes.

3.2.2 Text mining inspired weights

We �rst present weighting of terms in the construction of bag-of-words (BOW) vectors.
We then explain how we can draw an analogy between BOW construction and extraction
of homogeneous networks from heterogeneous networks. This can be done by replacing
terms with intermediate nodes and documents with network base nodes, thus also implicitly
replacing the relation �term-appears-in-text� with the relation �intermediate node-is-linked-
to-base node�.

3.2.2.1 Term weighting in text mining

In the bag-of-words vector construction one feature vector represents one document in a
corpus of documents. In this vector, the i-th component corresponds to the i-th term (a
word or a n-gram) that appears in the corpus. The value of the feature depends primarily
on the frequency of the term in the particular document. We describe several methods
for assigning feature values. We use the following notations: f(t, d) denotes the number
of times that term t appears in document d. The term D denotes the corpus (a set of
all documents). We assume that the documents in the set are labeled, each document
belonging to a class c from a set of all classes C. The number of all documents belonging
to class c is denoted as |c|, while the number of all training documents that do not belong
to class c is denoted as |¬c|. We use the notation t ∈ d to describe that a term t appears
in document d. Where used, P (t) is the probability that a randomly selected document
contains term t, and P (c) is the probability that a randomly selected document belongs to
class c. We use |d| to denote the length (in words) of a document, and avgdl denotes the
average document length in the corpus. The constants b and k, used in the bm25 weighting,
are free variables of the weighting scheme and were set to their default values of 0.75 and
1.5, respectively, in our experiments.

Table 3.1 shows di�erent methods for term weighting. Term frequency (tf) weights
each term with its frequency in the document. Term frequency�inverse document frequency
(tf-idf) (Jones, 1972) addresses the drawback of the tf scheme, which tends to assign high
values to common words that appear frequently in the corpus � the weights of terms are
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Table 3.1: Term weighing schemes and their formulas in text mining.

Scheme Formula

tf f(t, d)

tf-idf f(t, d) · log

(
|D|

|{d′ ∈ D : t ∈ d′}|

)
chi2 f(t, d) ·

∑
c∈C

(P (t ∧ c)P (¬t ∧ ¬c)− P (t ∧ ¬c)P (¬t ∧ c))2

P (t)P (¬t)P (c)P (¬c)

ig f(t, d) ·
∑

c∈C,c′∈{c,¬c},t′∈{t,¬t}

(
P (t′, c′) · log

P (t′ ∧ c′)
P (t′)P (c′)

)

gr f(t, d) ·
∑
c∈C

∑
c′∈{c,¬c}

∑
t′∈{t,¬t}

(
P (t′, c′) · log P (t′∧c′)

P (t′)P (c′)

)
−
∑

c′∈{c,¬c} P (c′) · logP (c′)

∆-idf f(t, d) ·
∑
c∈C

(
log

|c|
|{d′ ∈ D : d′ ∈ c ∧ t ∈ d′}|

− log
|¬c|

|{d′ ∈ D : d′ /∈ c ∧ t /∈ d′}|

)
rf f(t, d) ·

∑
c∈C

log

(
2 +
|{d′ ∈ D : d′ ∈ c ∧ t ∈ d′}|
|{d′ ∈ D : d′ /∈ c ∧ t /∈ d′}|

)
bm25 f(t, d) · log

(
|D|

|{d′ ∈ D : t ∈ d′}|

)
· k + 1

f(t, d) + k ·
(

1− b+ b · |d|avgdl

)

multiplied by the logarithm of the inverse of the number of documents the term appears
in, thus decreasing the importance of terms which are common in all documents of the
corpus. The same drawback is addressed by the bm25 weighting scheme (also known as
the Okapi BM25), �rst proposed in (Robertson & Walker, 1994). When the Okapi BM25
measure was �rst introduced, it was used to evaluate how well a query of several words
matches up to a given document. The score is calculated as the sum of simple scoring
functions, each of the scoring functions evaluating only one of the query words, and we use
this simple scoring function as the basis for the bag-of-words construction.

The χ2 (chi2) weighting scheme (Debole & Sebastiani, 2004) attempts to correct an-
other drawback of the tf scheme (one which is not addressed by the tf-idf scheme) by
additionally taking class value of processed documents into consideration. Mimicking the
χ2 distribution used in statistics, this scheme measures the dependency of a given term and
a given class label in the data set. The scheme penalizes terms that appear in documents of
all classes (i.e. when the term is not dependent on any particular class), and favors terms
which are speci�c to some classes. Information gain (ig) (Debole & Sebastiani, 2004)
also uses class labels to improve term weights, however it uses an information-theoretic
approach by measuring the amount of information about one random variable (the class of
a document) gained by knowledge of another random variable (the appearance of a given
term). The gain ratio scheme (gr) is similar to the information gain, but is normalized by
the total entropy of the class labels in the data set. The ∆-idf (∆-idf) (Martineau & Finin,
2009) and relevance frequency (rf) (Lan et al., 2009) attempt to merge ideas of tf-idf
and both above class-based schemes by penalizing both common and non-class-informative
terms.

3.2.2.2 Intermediate node weighting in homogeneous network construction

In this section, we present the translation of the text mining weighting schemes for bag-
of-words vector construction into the weighting schemes for node weighting in network
analysis.

Example 3.2.1. Let us revisit the example from Section 2.1.5 in which two papers are
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Table 3.2: Heuristics for weighting intermediate nodes in the decomposition step of con-
structing homogeneous networks from the original heterogeneous network.

Scheme Formula

tf 1

tf-idf log

(
|B|

|{b ∈ B : (b,m) ∈ E}|

)
chi2

∑
c∈C

(P (m ∧ c)P (¬m ∧ ¬c)− P (m,¬c)P (¬m, c))2

P (m)P (c)P (¬m)P (¬c)

ig
∑

c∈C,c′∈{c,¬c},m′∈{m,¬m}

(
P (m′ ∧ c′) log

P (m′ ∧ c′)
P (c′)P (m′)

)

gr
∑
c∈C

∑
c′∈{c,¬c}

(∑
m′∈{m,¬m} P (m′ ∧ c′) log

(
P (m′∧c′)

P (c′)P (m′)

))
−
∑

c′∈{c,¬c} P (c′) logP (c′)

∆-idf
∑
c∈C

∣∣∣∣log
|c|

|{b ∈ B : n ∈ c ∧ (b,m) ∈ E}|
− log

|¬c|
|{b ∈ B : b /∈ c ∧ (b,m) /∈ E}|

∣∣∣∣ .
rf

∑
c∈C

(
log

(
2 +
|{n ∈ B : n ∈ c ∧ (n,m) ∈ E}|
|{b ∈ B : n /∈ c ∧ (b,m) /∈ E}|

))
bm25 log

(
|B|

|{b∈B:(b,m)∈E}|

)
· k+1

1+k·(0.25+0.75· deg(u)
avgdeg )

connected by one link for each author they share. The resulting network is equivalent to
a network in which two papers are connected by a link with a weight equal to the number
of authors that wrote both papers (Figure 2.1). The method treats all authors equally,
which may not be correct from an information content point of view. For example, if two
papers share an author that only co-authored a small number of papers, it is more likely
that these two papers are similar than if the two papers share an author that co-authored
tens or even hundreds of papers. The �rst pair of papers should therefore be connected by
a stronger weight than the second. Moreover, if papers are labeled by the research �eld,
then two papers, sharing an author publishing in only one research �eld, are more likely
to be similar than if they share an author who has co-authored papers in several research
�elds. Again, the �rst pair of papers should be connected by an edge with a larger weight.

We alter the term weighting schemes from text mining in such a way that they can be
used to set weights to intermediate nodes in heterogeneous graphs (such as authors in our
example). We propose that the weight of a link between two base nodes is calculated by
summing the weights of all the intermediate nodes they share. In particular, if we construct
a homogeneous network in which nodes are connected if they share a connection to a node
of type T in the original heterogeneous network, then the weight of the link between nodes
v and u should be equal to ∑

m∈T :
(m,v)∈E
(m,u)∈E

w(m), (3.5)

where w(m) is the weight assigned to the intermediate node m. The value of w(m) can
be calculated in several ways. Table 3.2 shows the proposed intermediate node weighting
heuristics corresponding to term weighting heuristics used in document retrieval (Table
3.1). The notation used is as follows. We denote with B the set of all nodes of the base
node type, and with E the set of all edges of the heterogeneous network. Whenm is a node,
P (m) denotes the probability that a randomly selected labeled base node is connected to



28 Chapter 3. HinMine

Table 3.3: Comparison of weighting heuristics in text mining and network analysis.

Scheme Property (text mining) Property (network analysis)

tf Counts each appearance of each
word in a document equally.

Counts each intermediate node
connecting two base nodes
equally.

tf-idf Gives a greater weight to a word
if it appears only in a small num-
ber of documents.

Gives a greater weight to a inter-
mediate node if it is connected
to only a small number of base
nodes.

chi2 For a given term, measures the
dependence of the class label of
a document with respect to the
given term in the document.

For an intermediate node, mea-
sures the dependence of the class
label of a base node with respect
to the link between the base node
and the given intermediate node.

ig Measures how much information
about the class label of a docu-
ment is gained by the appearance
of a given term in the document.

Measures how much information
about the class of a base node
is gained by the existence of a
link between a given intermedi-
ate node and the base node.

gr A modi�cation of the ig scheme,
normalized by the total entropy
of each class.

A modi�cation of the ig scheme,
normalized by the total entropy
of each class.

∆-idf Measures the di�erence between
the tf-idf value of a term when
observing only documents of one
class compared to the tf-idf

value when observing the docu-
ments of other classes.

Measures the di�erence between
the tf-idf value of an interme-
diate node when only observing
the base nodes of one class com-
pared to observing the nodes of
other classes.

rf Measures the ratio between the
tf-idf value of a term when ob-
serving only documents of one
class, compared to the tf-idf

value when observing the docu-
ments of other classes.

Measures the ratio between the
tf-idf value of an intermediate
node when observing only the
base nodes of one class compared
to observing the nodes of other
classes.

bm25 Gives greater weights to words
that appear in short documents
and words that appear in a small
number of documents.

Gives greater weights to interme-
diate nodes that are connected to
a small number of base nodes and
to nodes of low degree.

the intermediate node m (in other words, P (m) = |{base nodes, connected to m}|
|{alllabeledbasenodes}| . A subset of

the base nodes of the network is labeled, and each labeled node in the network belongs to
one or more classes c from the set of all classes C. We use P (c) to denote the probability
that a random base node is in class c. The term P (c ∧m) denotes the probability that a
random base node is both in the class c and linked to the intermediate node m.

Table 3.3 shows a comparison of weighting schemes in text mining and their newly
developed analogs in network analysis. The tf weight is e�ectively used in (Gr£ar et al.,
2013), where all base nodes weighed equally. Out of the remaining weights, the ig, gr, chi,
rf and tf-idf weights transform naturally from the text mining setting to the network
decomposition setting, and only some extra modi�cations were required on the last two
schemes.

The ∆-idf weighting scheme, unlike other term weighting schemes, can assign nega-
tive weights to certain terms when constructing bag-of-words vectors. Since link weights
in graphs are assumed to be positive both by the PageRank and the label propagation
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Figure 3.3: The construction of a homogeneous network from the toy network in Figure
2.1 using the χ2 heuristic. The blue color denotes that the paper belongs to class 1 and
the red color denotes class 2.

algorithm, we must change the weighting scheme before it can be used to construct homo-
geneous networks. We interpret the original weighting scheme in such a way that terms
which receive negative values are informative about the term not being typical of a certain
class. Therefore it is reasonable to take the absolute values of the weights in network
construction, which explains the use of the absolute value in row 6 of Table 3.2 compared
to the corresponding row of Table 3.1.

We also change the bm25 scheme. The other weighting schemes are in the form f(t, d) ·
g(t,D), where f(t, d) is the frequency of the term t in document d, and g(t,D) is a function
that depends on the term and the entire corpus. The Okapi BM 25 scheme cannot be
decomposed in such a way, as the second function includes the average length of a given
document. In our adaptation of the text mining functions to network weighting, each term
translates to a connecting node and each document translates to a basic node, meaning
that the document length translates into the degree of the basic node (the number of
connecting nodes it is linked to). This means that the bm25 weighting scheme must not
return a weight for each connecting node (term), but a weight for each pair of intermediate
node and basic node (term-document). For this reason, the formula in the last row of
Table 3.2 depends on the choice of the base node u.

Example 3.2.2. Figure 3.3 shows the construction of a heterogeneous network from Figure
2.1, using the χ2 heuristic. The weight of the central author m is calculated as the sum
over both classes as

(P (m ∧ c)P (¬m ∧ ¬c)− P (m,¬c)P (¬m, c))2

P (m)P (c)P (¬m)P (¬c)
(3.6)

When c is the �rst (blue) class, we calculate the required values as P (m∧ c) = 2
4 , P (¬m∧

¬c) = 1
4 , P (m,¬c) = 1

4 , P (¬m ∧ c) = 0; P (m) = 3
4 , P (¬m) = 1

4 , P (c) = P (¬c) = 1
2 ,

yielding the value of expression (3.6) as

(24 ·
1
4 −

1
4 · 0)2

3
4 ·

1
4 ·

1
2 ·

1
2

=
1

3
.

When c is the red class, after calculating P (m ∧ c) = P (¬M ∧ c) = 1
4 , P (¬m ∧ ¬c) =

0, P (m ∧ ¬c) = 2
4 , we see that the second summand of expression (3.6) is 1

3 and the total
weight of author m is 2

3 .
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The weights of the remaining authors are calculated in the same way. In our case, none
of the other authors wrote papers from both classes, so their weights are all equal to 2.

The homogeneous network on the right hand side is constructed by summing the weights
of all common authors for each pair of papers. We can see that the connection between
papers a and b is weaker than the other connections because the common author was
assigned a smaller weight.

3.3 Experimental Setting and Results

This section describes the experiments used to evaluate the performance of the proposed
weighting schemes. We �rst describe the data sets and then present the experimental setup
and results.

3.3.1 Data sets descriptions

We evaluated the proposed weighting heuristics on three separate data sets. The �rst
data set (E-commerce) contains 30,000 base nodes split into two target classes. The target
classes are highly imbalanced, allowing us to test the imbalance sensitivity of the modi�ed
label propagation algorithm. The second data set contains over 10 times more nodes than
the �rst one, split into 11 target classes. It was used to test the scalability of our approach.
The third data set contains 12,000 base nodes in 20 target classes and was used to test the
performance of the algorithm on many target classes, each with a small number of nodes.

E-commerce data set The �rst data set contains data about customer purchases used
in the PAKDD 2015 mining competition Gender prediction based on e-commerce

data where we acchieved 22. place. The data set, available on the competition
website1 describes 30,000 customers. The data for each customer consists of the
gender (the target variable), the start and end time of the purchase, and the list of
products purchased. A typical product is described by a 4-part string (for example:
A3/B5/C2/D8). The strings describe a 4-level hierarchy of products, meaning that the
example product is the product D8 (or D-level category) which belongs to (A-level)
category A3, sub-category (or B-level category) B5 and sub-sub-category (or C-
level category) C3. The category levels are consistent, meaning that if two products
belong to the same B-level category, they also belong to the same A-level category.
The data set is highly imbalanced: 23,375 customers are women and 6,625 are men.
Along with the purchase data, the original data also contains a timestamp when
the purchase occurred. For the purpose of our experiments, we ignored this data
which explains the superior performance of other approaches which took the time
information into account.

For the purpose of our experiments, we ignored the temporal aspects of the data and
only focused on the products purchased by the customers. This allowed us to view
the data set as an implicitly de�ned heterogeneous network. The network consists
of �ve node types: customers (the base node type) and four hierarchy levels. In
this heterogeneous network, every purchase by a customer de�nes four edges in the
heterogeneous network: one edge between the customer and each (sub)category to
which the product belongs.

We constructed four homogeneous networks from the original heterogeneous network.
In the �rst network, two customers are connected if they purchased the same product
(same D-level item), i.e. if they are connected by a path in the original network

1https://knowledgepit.fedcsis.org/contest/view.php?id=107
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that goes through a D-level item. In the second network, they are connected if
they purchased a product in the same sub-subcategory (C-level item), in the third
network they are linked if they purchased the same B-level item and in the fourth
network they are connected if they purchased the same A-level item. The constructed
networks are referred to as A-, B-, C- and D-level networks in the following sections.
Our objective is to use the constructed networks to predict the gender of customers.

ACM papers data set The second data set is a collection of papers �rst used by Tang
et al. (2008). The data set is freely available online2 along with several other citation
networks. For our experiments, we used a part of the ACM citation network. We
chose this network because, unlike the DBLP network also available on the same
website, the papers in the ACM data set are classi�ed into one of 11 categories. The
data set contains 2,381,688 papers and 10,476,564 citation relationships. The papers
are divided into three major groups: book chapters, proceedings papers and journal
papers.

For the purposes of our experiments, we reduced the data set to only include con-
ference papers with authors which wrote at least two papers in order to eliminate
isolated nodes. We did not perform any name disambiguation as this would be a de-
manding task that is not directly connected to our topic of research. We constructed
a citation network containing two types of nodes�papers and their authors�and con-
structed a homogeneous network by converting each paper-author-paper path in the
network into a link between the two papers. The resulting network contained 320,339
nodes and 3,531,263 links between them. In our experiments, the objective was to
correctly predict the category (research �eld, for example Data Mining, Theoreti-
cal Computer Science, Neural Networks) of papers in the network. With this large
network, we tested the scalability and limitations of our approach.

iMDB data set The third data set was �rst published by the 2nd International Work-
shop on Information Heterogeneity and Fusion in Recommender Systems (Cantador,
Brusilovsky, & Ku�ik, 2011) and is freely available3. The data set contains informa-
tion extracted from the internet movie database4 about 10,198 movies (the actors,
directors, locations and tags, associated with each movie). Each movie is labeled
with one or more genres it belongs to. Altogether there are 20 genres.

We focused on the movies and actors in the data set and constructed a heterogeneous
network composed of actors and movies. Based on this network we constructed a
homogeneous network of movies in which two movies are connected if they share a
common actor. Using this movie-actor-movie network, our objective was to correctly
predict at least one genre label assigned to each movie.

3.3.2 Experimental setting

In summary, note that we have two situations. The E-commerce data set is the most com-
plex, having several types of nodes and relations. Therefore, the entire HinMine methodol-
ogy needs to be applied, resulting in several possible decompositions of the heterogeneous
network. On the other hand, the ACM and iMDB data sets are simpler, containing only
one relation type and two node types. This means only one decomposition can be calcu-
lated, which simpli�es the methodology described in Section 3.2. In the simpli�ed case,

2https://aminer.org/citation
3http://grouplens.org/datasets/hetrec-2011/
4https://www.imdb.com
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Figure 3.4: An overview of the methodology described by Figure 3.2 when we only construct
one homogeneous network from the heterogeneous network. In contrast to Figure 3.2, only
one homogeneous network is constructed in the decomposition step. Consequently, the
aggregation step before label propagation is skipped as we only have one matrix to sum,
and the concatenation step before classi�cation is skipped as we only produce one feature
vector per node during propositionalization.

presented in Figure 3.4, we construct one homogeneous network from the original hetero-
geneous network. However, in the following step, if we perform classi�cation using label
propagation, we do not need to aggregate several networks and can directly perform la-
bel propagation to classify the nodes. If we use the propositionalization approach, the
propositionalization produces one feature vector per base node and no concatenation is
required.

By analyzing the E-commerce data set, we were able to fully analyze the e�ects of using
di�erent decompositions and classi�ers on classi�cation performance. The results on this
data set allowed us to demonstrate that the centroid-based classi�er proposed by Gr£ar
et al. (2013) was not always optimal and that a k-NN and SVM classi�er can out-perform
it. With these conclusions, we then performed the simpli�ed experiments on the ACM and
iMDB data sets because our goal is to analyze the e�ects of using di�erent decomposition
heuristics for homogeneous network construction.

3.3.3 Experiments on E-commerce data set

We performed four sets of experiments on the E-commerce data sets. We �rst describe the
experiments and then discuss the results.

3.3.3.1 Experiment description

We performed four sets of experiments on the E-commerce data set. In this section, we
present the experimental setup for the sets of experiments.

First experimental setup The �rst set of experiments was designed to verify the results
of Gr£ar et al. (2013), which show that a centroid classi�er, trained on Personalized
PageRank feature vectors, performs as well as the more complex SVM classi�er.
The centroid classi�er is a simple classi�er that calculates a centroid vector for each
target class as the sum of all vectors belonging to the class, divided by the number of
instances in the class. It then classi�es a new instance into the class whose centroid
vector is the closest to the feature vector of the new instance. Gr£ar et al. (2013)
showed that centroid P-PR vectors are easy to calculate from networks, making the
centroid classi�er highly scalable. However, the simplicity of the classi�er means
that it is not always the best performing classi�er. We tested the performance of
the centroid classi�er, the k-nearest neighbors classi�er (with k set to 1, 2, 5 and 10),
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and the SVM classi�er. Because the data set is imbalanced, we tested the SVM
classi�er both with uniform instance weights as well as weights proportional to the
class frequencies. We only tested the k-nearest neighbors classi�er with uniform
instance weights. The tests were performed on feature vectors extracted from all
four homogeneous networks. We randomly sampled 3,000 network nodes to train the
classi�ers and tested their performance on the remaining 27,000 nodes. The small
size of the training set ensured that the training phase was fast, but the training set
was still large enough to allow us to compare the classi�cation algorithms we used.

Second experimental setup In the second set of experiments, we tested the heuristics
used in the construction of the homogeneous networks. We tested three classi�ers.
We �rst used the SVM classi�er using solely the Personalized PageRank vectors
extracted from the network. As the results of the �rst experiment show that weights,
proportional to the class frequencies, improve the classi�cation accuracy of the SVM
classi�er, we used the same weights for this set of experiments. The second tested
classi�er is the label propagation classi�er, de�ned by D. Zhou et al. (2004), which
classi�es the network nodes using the graph itself. The third classi�er is the label
propagation classi�er with the starting matrix Y adjusted for the class frequencies,
as proposed in Section 2.1.5.2. The goal of this round of experiments was to compare
the label propagation classi�er with the SVM classi�er and evaluate whether the
adjusted starting matrix Y has any e�ect on classi�er performance. As in the �rst
experiment, we trained the classi�ers on a randomly sampled set of 3,000 nodes and
tested their performance on the remaining 27,000 nodes.

Third experimental setup In the third round of experiments, we tested the perfor-
mance of the label propagation and propositionalization-based classi�ers on all four
homogeneous networks. Based on the results of the �rst two sets of experiments, we
used the SVM classi�er for the propositionalization approach and the label propa-
gation method with the modi�ed starting matrix Y. As explained in Section 2.1.5,
we constructed feature vectors for SVM classi�ers by concatenating feature vectors
of individual homogeneous networks. We constructed the adjacency matrix for the
label propagation algorithm by summing the four adjacency matrices. One of the
goals of the third round of experiments was to test the performance of the classi�ers
when trained on a large data set; for this reason we trained the classi�ers on 90% of
the data set and tested their performance on the remaining 10%. Compared to the
�rst two sets of experiments, this setup was computationally much more demanding,
however the accuracy of the SVM classi�er was increased by approximatelly 5%.

Fourth experimental setup In the fourth round of experiments, we used the E-commerce
data set to observe the e�ect of class imbalance on classi�er performance. The full
data set contains more female than male customers. We used the original data set
to construct several data sets with di�erent levels of class imbalances by using only
a subsample of female customers and all of the male customers. We used a sample of
28, 30, 40, 50, 60, 70, 80, 90 and 100% of all females in the data set (we chose the 28%
as this is the ratio at which the data set becomes perfectly balanced). For each of the
constructed data sets, we ran the original and modi�ed label propagation algorithms.

In all the experiments we evaluated the accuracy of the classi�ers using the balanced

accuracy metric. This metric, which was used in the PAKDD'15 Data Mining Competition,
is de�ned as follows:

|{Correctly classi�ed male customers}|
|{All male customers}| + |{Correctly classi�ed female customers}|

|{All female customers}|

2
. (3.7)
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Table 3.4: Results of the �rst set of experiments on the E-commerce data set comparing
the performance of di�erent classi�ers on the propositionalized network. SVM1 marks the
standard SVM classi�er, while SVM2 marks the classi�er using balanced instance weights.

Classi�er: Centroid 1-nn 2-nn 5-nn 10-nn SVM1 SVM2

A-level network 74.19% 63.61% 71.93 72.74% 74.36% 74.03% 74.62%
B-level network 70.78% 56.42% 59.17% 65.30% 67.73% 63.51% 72.61%
C-level network 64.71% 63.62% 67.21% 68.26% 71.65% 70.15% 75.18%
D-level network 60.08% 67.36% 70.39% 66.72% 66.06% 65.61% 71.17%

Table 3.5: Performance of the SVM classi�er
in the second round of experiments on the E-
commerce data set comparing the e�ect of
di�erent weighting schemes on the classi�er
performance.

Scheme A-level B-level C-level D-level
tf 76.61% 74.00% 77.34% 73.65%
chi2 77.80% 74.17% 76.86% 68.76%

tf-idf 77.80% 74.22% 77.23% 72.25%
∆-idf 77.80% 74.14% 77.23% 72.52%
rf 77.80% 74.11% 76.81% 70.54%
ig 77.80% 74.12% 76.87% 68.72%
gr 77.80% 74.32% 77.12% 69.44%
bm25 76.61% 74.16% 76.26% 69.35%

Table 3.6: Performance of the label propaga-
tion classi�er in the second round of experi-
ments on the E-commerce data set compar-
ing the e�ect of di�erent weighting schemes
on classi�er performance.

Scheme A-level B-level C-level D-level
tf 75.52% 64.28% 63.60% 72.44%
chi2 76.02% 65.15% 71.95% 72.75%

tf-idf 74.90% 63.83% 61.02% 72.48%
∆-idf 74.90% 63.76% 61.05% 72.48%
rf 75.52% 64.28% 67.59% 72.55%
ig 76.02% 65.15% 72.41% 72.96%
gr 75.79% 65.32% 68.64% 72.52%
bm25 74.95% 63.98% 60.83% 72.48%

Table 3.7: Performance of the modi�ed label
propagation classi�er in the second round
of experiments on the E-commerce data set
comparing the e�ect of di�erent weighting
schemes on the classi�er performance.

Scheme A-level B-level C-level D-level
tf 77.16% 74.75% 77.28% 73.91%
chi2 77.16% 74.44% 77.61% 73.82%

tf-idf 77.20% 74.70% 77.74% 73.76%
∆-idf 77.20% 74.71% 77.74% 73.76%
rf 77.16% 74.59% 77.21% 74.03%
ig 77.16% 74.49% 77.59% 73.79%
gr 77.16% 74.70% 77.23% 73.80%
bm25 77.16% 74.70% 77.44% 73.76%

Table 3.8: The results of the third set of ex-
periments on the E-commerce data set show-
ing the balanced accuracies of the SVM and
label propagation classi�ers on the entire
data set.

Scheme SVM Label propagation
tf 81.35% 77.06%
chi2 81.78% 77.10%

tf-idf 82.09% 79.03%
∆-idf 81.94% 79.08%
rf 81.49% 77.16%
ig 81.56% 77.12%
gr 81.74% 77.12%
bm25 81.53% 78.16%

3.3.3.2 Experimental results

The result of the �rst set of experiments, shown in Table 3.4, demonstrates a large di�er-
ence in the performance of di�erent classi�ers. Similarly to Gr£ar et al. (2013), the simple
centroid classi�er performs well on feature vectors extracted from several di�erent homoge-
neous networks. However, the classi�er is consistently outperformed by the SVM classi�er
if the instance weights of the classi�ers are set according to the class sizes. In contrast
with the �ndings by Gr£ar et al. (2013) which opted for an e�cient centroid classi�er as
a default classi�er in all settings, our experiments show that the optimal classi�er for the
methodology are data set speci�c.
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The results of the second set of experiments are shown in Tables 3.5, 3.6 and 3.7. When
comparing the results of the two label propagation approaches the results demonstrate that
label propagation with adjusted starting matrix has a large impact on the performance of
the classi�er, as the balanced accuracy increases by 1�2% in the case of the A- and D-level
network and even more in the case of B- and C-level networks. This result con�rms the
intuition explained in Section 2.1.5.2 which motivated the construction of the adjusted
starting matrix.

Di�erent heuristics used in the construction of homogeneous networks also a�ect the
�nal performance of all three classi�ers. No heuristic consistently outperforms the others,
meaning that the choice of the heuristic is data-dependent. The last conclusion of the
second round of experiments is that the computationally demanding propositionalization
method does not outperform the label propagation method. In all four networks choosing
the appropriate heuristic and appropriate weights for the starting matrix allows the label
propagation method to perform comparably to the SVM classi�er.

Table 3.8 shows the results of the third set of experiments. In this experiment, the
propositionalization-based approach clearly outperforms the label propagation algorithm.
It is possible that this e�ect occurs because the network propositionalization approach,
in particular the SVM classi�er, requires more training instances (compared to the label
propagation classi�er) to perform well. A second explanation may come from the way the
four networks were combined in our experiments (i.e. the concatenation approach in the
case of network propositionalization and the matrix sum in the case of label propagation).
By summing the adjacency matrices before performing label propagation, we implicitly
assumed that the connections between the customers that purchased the same D-level
product, are equally important as connections between customers that purchased the same
A-level product. This may cause the amount of A-level edges to overwhelm the e�ects of
the D-level edges, causing the resulting network to be very similar to the original A-level
network. The propositionalization-based approach is less prone to errors of this type, as
the idea of the SVM algorithm is to learn correct weights for elements of feature vectors.
The SVM algorithm is therefore �exible enough to assign larger weights to the features,
produced by the D-level network, if it estimates that these features are more important
for classi�cation. The second conclusion we can draw from the third set of experiments is
that using weighting heuristics in the construction of the homogeneous networks is highly
bene�cial. With both classi�cation methods the adjusted ∆-idf and tf-idf heuristics
perform best.

Figure 3.5 shows the results of the fourth set of experiments. The chart compares the
standard label propagation classi�er with the modi�ed imbalance-sensitive classi�er on data
subsets of varying levels of imbalances. We see that when we sample 28% of females into the
data set, i.e. when the data set is completely balanced, both classi�ers perform equally; this
was expected, as the modi�ed label propagation classi�er returns predictions that are in this
case merely a constant factor di�erent from the predictions of standard label propagation.
The di�erence in performances of the two classi�ers then steadily increases as the data set
becomes more and more imbalanced, con�rming our hypothesis that the modi�ed label
propagation algorithm will perform better on imbalanced data sets. Note however that the
di�erence between the classi�ers does not arise from decreased performance of the standard
label propagation classi�er: while by increasing ratio of female customers the training
data sets grew larger, enabling the label propagation classi�er to improve its performance,
the modi�ed imbalance-sensitive label propagation classi�er achieved a signi�cantly better
performance on the increased data sets. Moreover, the chart also shows a signi�cant drop
in classi�er performance even when most of the data is used in the classi�cation. As this
phenomenon occurred in more than one run of our experiments, we believe it is not an
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Figure 3.5: Performance of the standard and modi�ed label propagation classi�ers at
di�erent levels of class imbalance. The x axis shows the proportion of female customers
chosen (at 28%, the data set is perfectly balanced) and the y axis shows the classi�cation
accuracy. The height of each column is the balanced accuracy score achieved by the
modi�ed or standard label propagation classi�er.

anomaly, but rather that it is the result of the characteristics of the data set used. It shows
that even when removing only a small portion of the nodes from the network, the structure
of the network changes signi�cantly and results in much poorer performance by the label
propagation classi�ers. In future, more advanced methods of sampling network data must
be used (such as those described by Y. Wu et al. (2017)) as our experiments show that a
simple random sample selection leads to signi�cant drops in performance.

3.3.4 Experiments on ACM papers data set

Because the ACM data set is much larger than the E-commerce data set, it is computation-
ally unfeasible to exactly repeat the experiments from the �rst data set. In this section,
we describe the experiments on the ACM data set and their results.

3.3.4.1 Experiment description

Calculating the P-PR vectors of all base nodes in the network is both time consuming
and memory intensive. Using our e�cient speed-adapted algorithms (Kralj, Valmarska,
Robnik-�ikonja, & Lavra£, 2015) that compute approximately one P-PR vector per second
we would need 3�4 days to calculate the vectors for each weighting scheme, and as each
P-PR vector has 320,339 dimensions and takes 30 megabytes of memory, 10,000 vectors
occupy approximately 30 gigabytes of memory.

The second problem is that training times for most machine learning algorithms are too
long. Given that our main objective is to evaluate the performance of di�erent interme-
diate node weighting schemes (not classi�ers), we decided to only use k-nearest neighbors
classi�ers to evaluate the weighting schemes. However, even this simple classi�er is too
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Figure 3.6: Sorted feature values of an example feature vector from the propositionalized
ACM data set. The x axis shows the index of the features sorted by size, and the y axis
shows the feature values.

slow to run on the full data set. To execute the algorithms in a reasonable time we used
the following scenario:

• We sparsi�ed the P-PR vectors by cutting o� low ranking nodes. The motivation
behind this can be seen in Figure 3.6 which shows that only a small number of
papers in the network has P-PR values above 10−5, so discarding the rest of the
values should have little impact on the results while greatly decreasing the run time
of the algorithm. We tested three di�erent cuto� values to sparsify the data (0.001,
0.0001 and 0.00001) and re-normalized the data set for each cuto� value.

• We randomly selected 12,000 papers in the network and calculated their P-PR vectors
for each homogeneous network. We split the data set into a training set (80%) and
test set (20%) and tested the performance of the classi�er. In performing the split,
we followed the approach of Sechidis, Tsoumakas, and Vlahavas (2011) to account
for the fact that some instances in the data set can be labeled with more than one
category. To evaluate statistical signi�cance, we repeated this step 5 times, testing
all the decomposition heuristics on 5 di�erent sets of 12,000 papers.

As the ACM papers data set contains papers that are labeled with 11 categories and
each paper can be labeled with more than one category, we use the same performance
metric as Gr£ar et al. (2013) and evaluate how well the classi�er predicts the category of
a paper when we consider its top 1, 2, 3 or 5 predictions. We did not examine the top
10 predictions as in Gr£ar et al. (2013) because, with 11 categories, the performance of a
classi�er would be nearly perfect.

3.3.4.2 Experimental results

Tables 3.9, 3.10 and 3.11 show the results of the experiments on the ACM data set. We
show the accuracy and its standard deviation across �ve random resamples. The results
indicate that our decision to cut o� the near-zero values of PageRank vectors was well
justi�ed as there is no signi�cant di�erence in performance due to cuto� values.
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Table 3.9: Classi�cation accuracy (in %) of the k-nearest neighbor algorithms on the ACM
data set. The classi�er was trained on P-PR vectors of nodes in homogeneous networks,
obtained from the original heterogeneous network using eight weighting schemes. All values
of the vectors, smaller than 0.001, were set to 0.

k = 1

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 28.25± 2.23 26.84± 0.34 20.85± 3.45 18.95± 0.73 26.67± 0.55 19.94± 0.30 19.46± 0.65 32.36± 0.34
2 39.30± 5.29 51.43± 0.23 39.27± 7.47 34.84± 0.78 51.48± 0.31 35.10± 0.98 31.58± 0.58 41.18± 0.56
3 42.48± 0.85 52.78± 0.24 34.39± 10.70 30.48± 1.10 53.65± 0.86 32.63± 0.43 32.62± 0.51 42.22± 0.60
5 52.34± 0.49 62.14± 0.23 47.46± 8.83 45.35± 1.06 62.27± 0.51 46.52± 0.50 46.68± 0.41 52.61± 0.33

k = 3

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 29.70± 2.39 34.57± 0.46 18.02± 2.73 19.14± 1.09 28.10± 1.11 19.75± 0.65 18.10± 2.38 32.62± 1.86
2 53.93± 0.66 54.77± 0.14 35.00± 7.24 49.26± 0.79 54.93± 0.58 36.64± 7.43 32.99± 3.30 46.02± 4.92
3 59.64± 1.29 58.57± 0.76 37.97± 11.43 53.10± 0.75 55.14± 7.36 43.24± 7.13 45.03± 6.48 49.34± 5.06
5 69.87± 1.18 67.62± 0.49 52.42± 12.97 62.45± 0.26 67.84± 0.57 53.33± 6.22 66.89± 7.56 58.81± 4.75

k = 5

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 29.92± 2.70 34.07± 2.11 21.50± 3.60 26.12± 7.53 28.46± 1.10 19.43± 0.74 20.62± 4.77 28.48± 0.93
2 53.91± 1.39 56.23± 0.55 39.87± 8.58 50.48± 1.09 55.64± 0.91 45.27± 7.50 36.82± 4.95 54.71± 1.19
3 61.06± 1.47 61.02± 0.28 48.84± 10.40 60.41± 6.18 58.48± 6.00 53.37± 7.66 52.69± 3.99 58.86± 0.84
5 73.69± 1.90 69.47± 0.41 64.36± 12.48 76.81± 4.26 72.02± 0.68 65.14± 9.31 76.62± 1.49 68.30± 0.99

k = 10

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 31.20± 2.81 36.28± 0.68 19.87± 1.00 34.77± 1.47 29.26± 0.93 26.27± 4.19 22.38± 4.54 33.47± 2.50
2 55.79± 0.50 56.78± 0.64 39.44± 7.17 51.50± 0.97 56.40± 0.69 44.67± 1.56 45.77± 10.03 49.99± 5.75
3 62.46± 1.22 65.03± 1.03 57.58± 8.58 64.44± 4.57 62.99± 1.31 65.16± 1.94 52.92± 8.49 58.94± 6.81
5 75.47± 1.75 76.82± 1.74 77.96± 5.85 79.64± 4.56 76.35± 2.91 79.36± 4.68 75.90± 4.04 69.64± 2.11

Table 3.12 shows the results of the label propagation experiments on the ACM data set.
We can conclude that the performance of the label propagation algorithm is signi�cantly
worse than the performance of the k-nearest neighbor methods. There is no signi�cant
di�erence in performance when comparing the standard label propagation algorithm with
the modi�ed version introduced in Section 3.2.1. This result is not surprising. In Section
3.2.1, we explained that if the data set is perfectly balanced, the modi�ed matrix Y is equal
to the original starting matrix, multiplied by a constant, and thus the �nal predictions do
not change. As the ACM data set is more balanced than the E-commerce data set, Table
3.12 con�rms our expectation that in a balanced data set, the modi�ed label propagation
algorithm will perform identically to the original algorithm.

The weighting schemes perform di�erently depending on the data set. The gr and
ig schemes show similar performance overall. As the two schemes are calculated using
a similar formula (the ig weight is a normalized version of the gr weight) this is an
expected result. There is a distinction between well performing weighting schemes, namely
the gr, tf, ig and chi weighting schemes, and other schemes, however the di�erence is
hard to evaluate. In order to provide a better visualization of performance, we use the
methodology �rst described by Dem²ar (2006) to compare weighting schemes on multiple
classi�er/data set pairs. On each of the �ve random resamples of the data (as described in
Section 3.3.4.1), we ran the classi�cation methodology using each of the 8 decomposition
heuristics. We then use the Friedman test to evaluate the null hypothesis that all weighting
schemes perform equally. We rejected the hypothesis at a p-value of 10−8 and performed
a post-hoc Nemenyi test to assess di�erent algorithms. The test applies the Bonferroni
correction to account for multiple hypothesis testing and evaluates the average ranking of
each weighting scheme. The results are shown in Figure 3.7. The best weighting scheme
for the ACM data set is the gr, followed by the chi and tf weighting schemes. Based on
this result and the results in Tables 3.9, 3.10, and 3.11, we recommend using the gain ratio
(gr) weighting scheme to classify papers in the ACM paper-author-paper network.
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Table 3.10: Classi�cation accuracy (in %) of the k-nearest neighbor algorithms on the ACM
data set. The classi�er was trained on P-PR vectors of nodes in homogeneous networks,
obtained from the original heterogeneous network using eight weighting schemes. All values
of the vectors, smaller than 0.0001, were set to 0.

k = 1

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 31.52± 2.16 19.07± 0.91 19.17± 0.52 19.20± 0.65 22.11± 6.00 32.66± 0.49 14.76± 0.66 26.72± 1.07
2 42.74± 2.77 35.40± 1.22 26.40± 0.66 35.50± 1.00 38.53± 5.84 41.87± 0.22 31.62± 0.50 36.14± 1.79
3 46.59± 1.82 28.10± 0.67 31.19± 0.96 28.07± 0.81 31.52± 6.12 42.89± 0.37 27.49± 0.57 42.90± 2.33
5 55.82± 1.11 41.88± 0.61 42.57± 1.15 41.93± 0.67 44.53± 4.58 52.80± 0.25 41.53± 0.31 52.55± 1.56

k = 3

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 30.11± 2.30 19.58± 0.53 27.11± 0.86 29.30± 2.17 20.07± 0.84 24.14± 5.60 27.24± 0.82 20.22± 1.12
2 54.37± 0.57 39.67± 3.66 43.98± 0.92 51.66± 3.61 36.78± 1.18 49.01± 3.54 40.30± 0.85 44.78± 0.92
3 61.62± 1.65 42.30± 8.00 43.40± 2.23 55.72± 4.38 60.03± 0.92 54.52± 4.56 43.79± 0.72 35.18± 1.19
5 69.62± 1.56 55.61± 5.95 70.04± 3.76 64.55± 2.81 68.69± 0.95 63.84± 4.25 56.50± 0.55 74.09± 1.11

k = 5

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 34.76± 0.37 19.62± 0.60 28.44± 1.07 26.78± 10.36 19.56± 0.61 20.71± 1.08 19.63± 1.50 19.91± 0.96
2 55.02± 0.50 38.02± 6.22 54.60± 0.61 51.35± 5.87 36.30± 0.92 41.35± 5.90 44.36± 1.38 46.79± 3.05
3 63.27± 1.73 46.84± 6.09 59.28± 0.83 51.93± 12.93 53.96± 7.74 58.33± 1.49 58.00± 2.47 54.85± 7.35
5 71.48± 1.20 58.24± 5.45 72.23± 2.70 69.06± 4.96 67.55± 9.84 72.29± 4.32 73.75± 2.44 64.67± 6.72

k = 10

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 35.81± 0.58 20.01± 0.61 35.69± 0.86 33.96± 2.39 24.86± 8.20 28.45± 7.50 31.54± 3.19 30.01± 2.75
2 56.64± 0.79 39.11± 5.74 56.64± 0.65 53.25± 4.95 39.20± 8.33 52.03± 0.47 52.54± 4.08 47.94± 4.73
3 63.20± 1.40 52.66± 11.58 62.52± 0.76 53.85± 5.35 56.86± 1.46 58.99± 1.30 61.65± 1.25 67.62± 2.41
5 71.44± 0.93 72.70± 3.43 68.70± 0.92 66.74± 5.24 72.41± 1.37 75.63± 0.46 77.23± 3.17 77.51± 1.12

Table 3.11: Classi�cation accuracy (in %) of the k-nearest neighbor algorithms on the ACM
data set. The classi�er was trained on P-PR vectors of nodes in homogeneous networks,
obtained from the original heterogeneous network using eight weighting schemes. All values
of the vectors, smaller than 0.00001, were set to 0.

k = 1

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 15.58± 2.57 21.83± 3.27 19.39± 0.72 22.93± 5.53 13.33± 0.82 19.50± 0.57 19.33± 0.69 18.85± 0.61
2 31.99± 2.49 36.99± 1.16 35.50± 1.07 38.88± 6.05 29.72± 0.19 33.04± 3.40 35.13± 0.85 35.12± 0.71
3 31.43± 1.44 32.66± 7.03 28.45± 0.57 34.34± 4.84 30.70± 1.29 28.54± 0.54 28.21± 0.84 27.99± 0.39
5 42.73± 0.54 45.48± 4.97 42.41± 0.65 47.91± 3.01 41.78± 0.64 42.64± 0.88 42.32± 0.81 42.16± 0.46

k = 3

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 17.65± 5.70 23.43± 4.09 22.57± 3.53 23.30± 5.84 16.22± 3.07 21.02± 0.61 19.49± 0.43 19.74± 0.74
2 36.94± 10.16 48.44± 3.92 40.95± 7.55 50.37± 0.59 33.56± 2.96 33.96± 0.73 36.59± 0.97 31.42± 0.79
3 40.87± 9.50 54.21± 3.70 39.31± 10.71 51.61± 2.94 42.31± 3.92 37.06± 0.58 37.62± 5.20 34.55± 0.56
5 50.94± 8.63 68.14± 5.47 51.98± 8.58 61.30± 2.36 53.66± 2.68 51.09± 0.89 51.77± 5.32 49.37± 0.59

k = 5

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 22.67± 8.15 23.43± 3.96 24.99± 3.92 33.50± 0.83 16.17± 2.87 20.61± 0.77 19.20± 0.63 19.43± 0.70
2 46.55± 5.45 47.33± 3.51 49.58± 6.89 50.80± 1.07 31.96± 2.26 41.88± 5.88 36.08± 0.95 31.78± 0.81
3 59.62± 1.87 50.47± 1.21 50.84± 8.57 58.20± 2.02 43.39± 7.24 53.53± 7.58 42.27± 1.86 35.85± 1.04
5 71.82± 4.32 73.64± 5.31 65.36± 7.77 66.86± 2.84 60.35± 5.11 71.75± 10.30 58.55± 0.81 51.44± 0.94

k = 10

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 29.04± 1.26 22.69± 3.72 30.44± 1.91 28.15± 6.69 18.52± 0.93 32.95± 2.38 21.35± 3.35 22.91± 5.61
2 55.92± 1.40 46.08± 6.68 55.76± 0.96 52.06± 0.32 32.01± 3.57 50.05± 4.70 37.94± 3.93 41.01± 9.53
3 66.45± 2.65 62.95± 5.93 63.84± 3.50 64.63± 3.99 43.96± 8.23 53.59± 4.26 49.72± 4.89 54.13± 10.42
5 78.68± 2.83 77.72± 4.02 76.52± 1.17 76.14± 6.76 61.12± 9.89 68.32± 2.27 64.37± 4.93 67.98± 9.34

3.3.5 Experiments on iMDB data set

We repeated the experiments from the ACM data set on the iMDB data set, and also
analyzed other semi-supervised learning methods for classi�cation on the data set. In this
section, we describe the experiments and results for the iMDB data set.
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Table 3.12: Classi�cation accuracy (in %) for the label propagation algorithm on the ACM
data set. The label propagation was run in homogeneous networks, obtained from the
heterogeneous network using eight weighting schemes.

Modi�ed label propagation

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 29.26 29.66 29.61 28.82 29.81 29.80 30.16 29.36
2 58.03 57.46 58.14 57.22 58.12 58.27 57.29 58.35
3 54.98 55.21 55.71 55.20 55.41 55.51 54.72 54.76
5 70.68 71.74 70.64 70.64 70.82 71.34 70.76 71.80

Standard label propagation

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 29.26 29.66 29.61 28.82 29.81 29.80 30.16 29.36
2 58.03 57.46 58.14 57.22 58.12 58.27 57.29 58.35
3 54.98 55.21 55.71 55.20 55.41 55.51 54.72 54.76
5 70.68 71.74 70.64 70.64 70.82 71.34 70.76 71.80
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chi (3.8)
tf (3.9)
ig (4.7)
∆-idf (4.8)
bm25 (5.0)
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tf-idf (5.9)
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8 7 6 5 4 3 2 1

Measure = CA

Figure 3.7: Critical distance diagram of the weighting schemes and their performance on
the ACM data set. The critical distance is calculated at a p value of 0.05.

3.3.5.1 Experiment description

We used the iMDB data set to compare several alternative semi-supervised learning ap-
proaches described in Section 2.1.1. Five di�erent semi-supervised classi�cation algorithms
are described in (de Sousa et al., 2013). One of these is label propagation, which we used
on all our data sets. We tested two other methods, Gaussian Random Fields (GRF) and
Robust Multi-Class Graph Transduction (RMGT) on the iMDB data set. We chose the
RMGT and GRF methods over Laplacian Support Vector Machines and Laplacian Reg-
ularized Least Squares because of implementation di�culties of the latter two methods
which are in MATLAB, while the former two were easy to use in our experiments. We per-
formed the same set of experiments as on the ACM data set. However, as the network size
is much smaller, we used 5-fold cross validation using the same multi-label strati�cation
approach as in the ACM data set (Sechidis et al., 2011). As in the ACM data set, each
instance is labeled with one or more labels and we again evaluate the top-n predictions.
Because of a larger number of class labels (20 genres), we also tested the top-10 classi�er.
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Figure 3.8: Critical distance diagram of the weighting schemes and their performance on
the IMDB data set. The critical distance is calculated at a p value of 0.05.

3.3.5.2 Experimental results

Table 3.13 shows the results of di�erent methods for semi-supervised learning on the iMDB
data set. We see that on this data set, the RMGT method does not perform as well as the
standard label propagation and the GRF methods, which both perform comparably.

Table 3.14 shows the results of the experiments on the iMDB data set. We repeated
the same experiments as in the ACM data set. Because of the larger number of possible
labels (20 as opposed to 11 in the ACM data set), we also calculated the accuracy of
the top-10 classi�er. Interestingly, the results show a di�erent picture from the ACM
data set. The label propagation with standard weights substantially outperforms the label
propagation with imbalance-sensitive weights. There are several factors that can contribute
to this result. Compared to the other data sets, the iMDB data set is smaller and has the
largest number of di�erent labels. The most frequent label in the data set, �Drama�,
contains 5,076 representatives, the second most frequent, �Comedy�, contains 3,566, while
the least frequent label, �IMAX�, only contains 25 instances. This represents an extreme
imbalance ratio between large and small classes (up to 1:203), and means that the number
of rarely represented classes is probably too small for reliable setting of imbalance correction
coe�cient.

A second explanation for poor result of the imbalance-sensitive label propagation clas-
si�er is the imbalance-agnostic performance measure used. We used the same method for
calculating accuracy as Gr£ar et al. (2013) in which an example is correctly classi�ed if
one of its labels appears among the top k suggestions by the classi�er (with k being set to
1, 2, 3 and 5) and the accuracy is then calculated as the proportion of correctly classi�ed
examples. This method does not take class sizes into account and penalizes a misclassi-
�ed �IMAX� movie just as heavily as a misclassi�ed �Drama� movie. While increasing the
accuracy on the smaller classes (even at the cost of miss-classifying larger classes) may be
bene�cial in some cases, the accuracy measure we used did not take this into account.

Another observation is that the standard label propagation algorithm performs almost
as well as the 10-nearest neighbors algorithm, but on average, it is still bene�cial to use
the computationally more demanding step of P-PR vector calculation.

In Figure 3.8 we see the full comparison of weighting schemes. On average, the tf-idf
weighting scheme performs best, while the gr scheme performs worst. This result stands
in contrast to the results on the ACM data set and further reinforces our hypothesis that
the best weighting scheme must be selected for each data set individually.
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Table 3.13: Semi-supervised classi�er accuracies (in %) for the iMDB data set. The classi-
�ers were trained on P-PR vectors of nodes in homogeneous networks, obtained from the
original heterogeneous network using eight weighting schemes.

Robust Multi-Class Graph Transduction
top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 49.62± 1.56 40.66± 0.96 49.43± 1.56 48.66± 1.52 40.98± 0.84 19.51± 0.99 37.03± 0.71 30.25± 1.07
2 63.03± 1.28 50.24± 1.27 61.45± 1.33 61.18± 1.41 50.74± 1.32 23.84± 0.81 45.55± 1.10 37.64± 1.63
3 68.68± 1.11 55.06± 1.62 66.75± 0.86 66.79± 1.32 55.61± 1.62 27.11± 0.75 50.27± 1.35 41.58± 1.64
5 74.90± 0.83 61.08± 1.66 73.05± 0.69 73.05± 1.09 61.67± 1.68 33.41± 0.39 56.60± 1.84 47.78± 1.66
10 82.09± 0.69 70.77± 1.02 80.42± 0.84 80.21± 0.57 71.22± 0.98 47.08± 0.92 66.96± 0.99 59.78± 1.23

Gaussian Random Fields
top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 61.57± 0.80 60.87± 0.92 62.77± 0.63 62.74± 0.63 61.00± 0.85 61.19± 0.58 60.87± 0.92 60.80± 0.81
2 77.83± 1.20 76.46± 1.01 78.02± 0.89 78.71± 1.07 76.45± 1.00 76.98± 0.89 76.46± 1.01 76.58± 0.98
3 85.04± 0.84 84.85± 0.88 85.29± 0.79 85.53± 0.79 84.87± 0.90 85.08± 0.84 84.85± 0.88 84.86± 0.85
5 91.30± 0.70 91.45± 0.73 91.60± 0.67 91.65± 0.62 91.44± 0.74 91.87± 0.71 91.45± 0.73 91.53± 0.71
10 96.03± 0.48 96.19± 0.53 96.05± 0.52 96.01± 0.46 96.17± 0.54 96.43± 0.56 96.19± 0.53 96.22± 0.58

Modi�ed label propagation
top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 19.03± 1.09 27.03± 0.93 23.95± 0.73 19.60± 0.92 26.99± 0.85 28.37± 0.79 27.61± 0.94 25.84± 0.59
2 33.66± 1.12 43.84± 0.88 39.66± 0.79 32.99± 1.17 43.64± 0.94 45.69± 0.97 44.26± 0.91 42.14± 0.75
3 46.40± 1.60 55.53± 1.19 52.09± 1.19 44.95± 1.24 55.46± 1.12 57.06± 0.69 56.04± 1.25 53.57± 0.97
5 63.89± 1.21 70.80± 0.82 68.24± 0.91 62.18± 1.17 70.68± 0.87 72.56± 0.61 71.20± 0.88 69.42± 0.97
10 83.86± 1.36 90.06± 0.93 86.22± 0.66 82.11± 1.06 89.96± 0.96 90.61± 0.84 90.08± 0.82 89.14± 1.02

Standard label propagation
1 53.97± 1.08 51.74± 1.08 55.67± 1.22 56.11± 1.11 51.81± 1.05 52.64± 1.27 51.74± 1.10 52.26± 1.08
2 74.20± 0.69 74.15± 0.62 74.29± 0.70 74.29± 0.70 74.16± 0.61 74.17± 0.73 74.12± 0.69 74.01± 0.69
3 83.74± 0.54 83.23± 0.45 83.84± 0.52 84.27± 0.46 83.27± 0.51 83.33± 0.81 83.22± 0.55 83.22± 0.69
5 89.67± 0.64 89.06± 0.75 89.69± 0.60 90.03± 0.55 89.05± 0.74 89.30± 0.72 89.08± 0.74 88.76± 0.70
10 95.98± 0.51 96.14± 0.57 96.03± 0.60 96.09± 0.57 96.15± 0.58 96.38± 0.47 96.25± 0.57 96.06± 0.55

Table 3.14: k-NN classi�ers accuracies (in %) for the iMDB data set. The classi�ers
were using P-PR vectors of nodes in homogeneous networks, obtained from the original
heterogeneous network using eight weighting schemes.

k = 1

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 40.74± 1.12 41.84± 1.74 41.71± 1.70 41.09± 1.87 41.87± 1.65 42.47± 1.86 42.33± 1.58 41.78± 1.74
2 53.87± 0.72 54.40± 1.58 54.80± 1.57 54.16± 1.36 54.62± 1.59 54.87± 1.44 54.76± 1.43 54.35± 1.62
3 57.75± 0.61 58.10± 1.52 58.66± 1.86 58.21± 1.43 58.59± 1.42 58.91± 1.13 58.75± 1.28 58.02± 1.56
5 62.25± 0.95 62.62± 1.46 63.04± 1.92 62.77± 1.50 63.04± 1.47 63.26± 1.45 63.03± 1.44 62.57± 1.51
10 74.27± 0.85 74.50± 1.00 74.87± 1.36 74.41± 1.34 74.67± 1.22 74.99± 1.16 74.64± 1.21 74.49± 1.01

k = 5

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 54.79± 1.01 56.27± 1.39 56.32± 1.46 54.75± 1.68 56.38± 1.28 55.17± 1.48 56.80± 1.51 56.28± 1.46
2 71.51± 0.93 73.36± 0.82 72.28± 1.10 71.09± 1.03 73.57± 0.81 72.69± 1.78 73.72± 1.44 73.37± 0.88
3 78.10± 1.27 79.83± 0.43 78.77± 0.79 77.82± 0.27 80.02± 0.17 80.07± 1.02 80.35± 0.55 79.81± 0.43
5 86.18± 0.85 87.65± 0.50 86.91± 0.57 85.80± 0.79 87.86± 0.10 88.03± 0.46 87.86± 0.55 87.67± 0.55
10 93.87± 0.88 95.02± 0.82 94.09± 0.72 93.80± 0.68 95.17± 0.63 94.94± 0.50 94.90± 0.64 95.02± 0.82

k = 10

top n gr tf ig χ2 rf ∆-idf tf-idf bm25

1 59.46± 1.44 61.26± 1.06 60.73± 1.54 59.25± 1.30 61.35± 1.45 59.04± 1.11 61.53± 0.92 61.19± 0.99
2 75.89± 0.62 78.14± 0.71 76.02± 0.71 75.37± 0.67 78.12± 0.85 77.34± 0.53 78.30± 1.08 78.10± 0.66
3 82.09± 0.62 84.43± 0.45 82.54± 1.12 82.10± 1.20 84.44± 0.48 84.25± 0.44 84.54± 0.49 84.46± 0.44
5 89.46± 0.60 91.19± 0.41 90.09± 0.83 89.75± 0.89 91.17± 0.42 91.37± 0.43 91.25± 0.45 91.22± 0.40
10 96.06± 0.47 97.00± 0.23 96.24± 0.39 96.14± 0.70 97.00± 0.26 96.81± 0.17 96.69± 0.16 97.01± 0.25

3.3.6 Summary of experimental �ndings

Our experiments show that using di�erent weighting schemes can signi�cantly alter the
propositionalization vectors, obtained by following the methodology proposed by Gr£ar
et al. (2013). The selection of the best weighting scheme is data set and classi�er speci�c,
as di�erent data sets and di�erent classi�ers applied to the propositionalized networks can
yield signi�cantly di�erent results. The behavior of the gain ratio and inverse document
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frequency weighting schemes illustrates this, as the gr scheme performs very well on the
ACM data set, but does not perform well on the iMDB data set, and the roles are reversed
for the tf-idf weighting scheme.

Overall, such performance is expected in the light of weighting schemes origins. None
of the tested methods is shown to consistently outperform others in the �eld of text mining,
and the selection of the best scheme to use in bag-of-vector construction is still a vital part
of a text mining process. Our experiments show that a similar step should be used in the
network decomposition methodology.

Furthermore, our experiments show that when the number of classes to predict is small,
and the data set is heavily imbalanced, the label propagation algorithm should be modi�ed
by changing the initial propagation matrix Y . This produces much better results than the
standard initial matrix de�ned by D. Zhou et al. (2004). The modi�ed matrix, however,
yields no improvement when the classes are uniformly distributed in the data set (as in the
ACM data set), and can even lead to unreliable classi�cations when the number of classes
to predict is large and each class has a small number of representatives (as in the iMDB
data set).

3.4 Conclusions

We have proposed and implemented several improvements to existing network classi�-
cation algorithms into an improved heterogeneous network mining methodology we call
HinMine. We used the HinMine methodology to analyze the e�ect of starting weights for
node classi�cation using label propagation and the e�ects of di�erent heuristics to asses
the importance of intermediary nodes in network decomposition. The contributions of this
chapter are as follows. First, by setting the weights of the initial class matrix proportion-
ally to the class value frequency, we improved the performance of the label propagation
algorithm when applied to the highly imbalanced data set. Second, we adapted heuristics,
developed primarily for use in text mining, for the construction of homogeneous networks
from heterogeneous networks. We used 8 di�erent heuristics � some were designed to pe-
nalize terms common to all documents in a corpus (tf-idf, bm25), some penalized terms
appearing in documents of all classes (chi, gr and ig) and some combined the two prop-
erties (∆-idf and rf). Third, we tested the newly developed algorithms on three data
sets with di�erent properties. The �rst data set was of medium size with only two target
classes, the second was a smaller data set with 20 classes, and the third was very large
with 11 classes.

Our results show that when using label propagation to classify nodes in a network,
using modi�ed starting weights can have a large impact on the accuracy of the result-
ing classi�er. We have shown that on an imbalanced data set, the modi�ed weights can
decrease the e�ect of the larger classes and prevent some cases of over-voting. A sec-
ond signi�cant contribution of this chapter is the analysis of how the choice of heuristics
impacts the performance of both label propagation classi�er and classi�ers based on the
propositionalization approach of Gr£ar et al. (2013). The introduction of the heuristics
from text mining into network decomposition is a relatively general one, meaning that in
future, possible new weighting heuristics, developed for bag-of-word vector construction
can quickly be adapted into the network decomposition step of HinMine. We have also
shown that the choice of the correct heuristic cannot be made in advance, as it depends
on the structure of the network. This is evident comparing results on the ACM and iMDB
data sets: the gr weighting scheme performs well on the ACM data set and poorly on the
iMDB data set, while the situation is reversed for the tf-idf weighting.





45

Chapter 4

NetSDM: Network Filtering for

Semantic Data Mining

Semantic data mining (SDM) uses annotated data and complex interconnected background
knowledge to generate rules that are easily interpreted by the end user. However, compu-
tational complexity of SDM algorithms is high, resulting in long running times even when
applied to relatively small data sets. On the other hand, network analysis algorithms are
among the most scalable data mining algorithms. In this section, we propose and test an
e�ective SDM approach that combines semantic data mining and network analysis.

4.1 Combining Semantic Pattern Mining with Network

Analysis

While the Hedwig algorithm, described in Section 2.2.4 performs well on small real-world
data sets, the algorithm searches through a very large space of possible patterns to �nd
the `best' if-then rule explaining the data. The more conjuncts we allow in rules, the larger
the search space. This section presents the proposed methodology that combines semantic
data mining with network analysis to reduce the search space of semantic data mining
algorithms.

4.1.1 Proposed methodology NetSDM for reducing the search of SDM

The Hedwig algorithm uses a beam search, consequently only searching the locally most
promising parts of the search space. However, this strategy is heuristic and can lead to
poor results in some cases. For example, if the search beam is too narrow, the branch
that leads to good solutions could be discarded early on. In large search spaces even wide
beams can be quickly �lled with terms that will eventually not lead to a good solution.
The proposed methodology, named NetSDM, is outlined in Figure 4.1.

The goal of the proposed methodology is to improve the e�ciency of the Hedwig al-
gorithm by using a pre-pruning step in which we �lter out background knowledge terms
that are not likely to appear in signi�cant rules. A scoring function used in pruning should
(i) be able to evaluate the signi�cance of terms based on data, and (ii) be e�ciently com-
puted. The scoring function receives as input all the data that is later used in the Hedwig
algorithm: data set S consisting of target (S+) and non-target (S−) instances, background
knowledge ontology G (consisting of a set of terms V and a set of relations E), and a set
of annotations A connecting instances in S = S+ ∪ S− with nodes in G. Just like the
Hedwig algorithm, the NetSDM can accept several ontologies as input � in that case, the
input ontologies are joined together by adding a dummy root node connected to all the
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Figure 4.1: An illustrative example, outlining of the proposed NetSDM methodology.

Algorithm 4.1: The proposed NetSDM algorithm, combining semantic data min-
ing with network ranking.

Input: Background knowledge G and a set of examples S annotated with nodes
from G

Output: A set of rules discovered by semantic data mining algorithm.
Parameters: threshold value c ∈ [0, 1]
Calculate importance scores score(g) for all g ∈ G
for node g ∈ G do

if |{g′ ∈ G : score(g′) > score(g)}| > c · |G| then
mark node g for removal.

end

end

form G′ by removing all marked nodes from G
Run semantic data mining on S using the pruned G′ as background knowledge
return Rules discovered by the SDM algorithm

root nodes of the input ontologies. Annotations are presented as pairs (s, g), where s ∈ S
and g ∈ G, which denote that data instance s is annotated by background knowledge term
g. The output of the scoring function is a vector which, for each term in the background
knowledge, calculates a score for the term�in other words, the scoring function is a function

scoreS,G,A : V → [0,∞).

For our application, we are interested in score functions for which a higher score of term
t ∈ V means that term t is more likely to be used in rules describing the original data. After
de�ning a suitable scoring function score (in the subsequent subsections we will examine
two possibilities), we use the computed scores to prune the background knowledge G and
get a smaller background knowledge G′ using a selected threshold value c ∈ [0, 1]. We
construct G′ from G by keeping only the proportion c of nodes with the highest scores, i.e.
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we keep only terms t′ for which it holds that

|{t′ ∈ V : score(t′) > score(t)}|
|V |

≤ c.

For example, if c = 0.4, the new network G′ consists only of terms in G which are in the
top 40 percent of all nodes according to the scoring function.

The proposed NetSDMmethodology, illustrated in Figure 4.1, is presented in Algorithm
4.1. It consists of three steps that are explained in more detail in Section 4.1.3:

1. estimate the importance of background knowledge using the scoring function score,

2. prune the background knowledge, keeping only the proportion c of top ranking terms,

3. use semantic data mining algorithm Hedwig on the original data set and pruned
background knowledge.

4.1.2 Illustrative example

As a toy example we use the data set described in Table 4.1. The data set consists of 15
instances, 7 of which belong to the target class (marked with + in Table 4.1). The instances
are annotated by one or more nodes in a hierarchy (simple ontology) consisting of 8 base
nodes and 7 higher-level nodes, shown on the left-hand side of Figure 4.2. Using the
Personalized PageRank scoring function described in Section 4.1.3, we assign high scores
to those background knowledge nodes that are strongly related to the positive examples.

Table 4.1: A toy data set consisting of 15 ex-
amples annotated by 8 possible annotations.

Example Class Annotated by
1 + A,B
2 - A,B,C
3 + B,C,D
4 + B,C,E
5 + B,C
6 - C,D,E
7 + D,E
8 + D,E,F
9 - E,F
10 - E,F
11 - F,G
12 - F,G
13 - G
14 + G,H
15 + G,H

Resulting scores are depicted in the middle
of Figure 4.2. We can see that the nodes on
the left-hand side have higher scores com-
pared to the right-hand nodes as they anno-
tate mostly positive (target) examples. In
the next step, we prune the lower-ranked
nodes, leaving only the best 8 background
nodes in the new hierarchy. As most of the
top scoring nodes were in the left part of
the hierarchy, the pruned hierarchy mostly
contains these nodes. In the �nal step, we
use Hedwig to �nd rules based on instances
from Table 4.1 and the reduced ontology.
The best two rules discovered by Hed-
wig are Positive(X) ← LL(X) (shown
in yellow in Figure 4.2) covering 3 positive
and 1 negative instance (coverage = 4, pre-
cision = 3

4), and Positive(X) ← LR(X)

(shown in red in Figure 4.2) covering 5 pos-
itive and 2 negative instance (coverage =
7, precision = 5

7). These two rules indeed
cover most of the positive examples.

We could run Hedwig on the original data set for this toy data set and get the same rules
as on a pruned data set. However (as shown by our experiments depicted in Section 4.2.3),
in actual real-world data sets, removing unimportant parts of large ontologies bene�ts both
the execution time and the quality of the discovered rules.
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Figure 4.2: An illustration of Algorithm 4.1 on toy example from Table 4.1.

4.1.3 Using network analysis to evaluate node signi�cance

In this section, we describe in detail three vital steps of Algorithm 4.1. We �rst describe
how it is possible to convert a background knowledge into an information network which
we can then analyze using network analysis methods. Then, we describe two methods that
can be used to estimate the importance of nodes in an information network. The section
concludes with a discussion on the node deletion step of the algorithm in which low-scoring
nodes are removed from the network.

4.1.3.1 Conversion to a network

Input ontologies for the NetSDM algorithm are collections of terms (background knowledge
terms) and relations between them. As an information network is also composed of a set
of nodes and the connections between the nodes, a natural conversion from a background
knowledge into an information network arises in which we convert each relation connecting
two ontology terms into an edge between two corresponding nodes in an information net-
work. This gives rise to the �rst function converting an input ontology into an information
network, in which we view both as parts of one network and score the background terms
by their proximity to the data instances in the expanded network. Therefore, we merge the
data set and the background knowledge into one expanded network network Ge = (Ve, Ee)
where

• Ve = V ∪ S+ are vertices of the new network consisting of all background knowledge
terms V and all target data instances S+;

• Ee = E ∪ A are edges of the new network consisting of all background knowledge
relations E, as well as all relations from A of the form s is-annotated-by t (the terms
V, S, S+, S− and A, used in this de�nition, are de�ned in Section 4.1.1).

An alternative approach to converting an ontology into an information network was
proposed in (H. Liu, Dou, Jin, LePendu, & Shah, 2013). In their work, H. Liu et al.
(2013) use the view that every relation in a semantic representation of data is in fact a
triple, consisting of subject, predicate and object. Authors propose to construct a network
(which they call a hypergraph) in which every relation of the original background knowledge
(along with the background knowledge terms) forms an additional node in the network
with exactly three connections: one connection to the subject of the relation, one to the
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object of the relation, and one to the predicate of the relation. Thus, in this alternative
information network conversion, each predicate that appears in the background knowledge
is an additional node in the resulting network. While this results in a slightly larger
information network, the bene�t of losing less information in the process of conversion
may mean that this network conversion method is better than the naïve version presented
in the beginning of this section.

4.1.3.2 Calculating node signi�cance scores from the converted network

We use the Personalized PageRank and node2vec functions to evaluate the signi�cance of
background terms. Our goal is to construct the node importance scoring function scoreS,G,A
by taking into account both the data set S and the background knowledge terms V .

The �rst scoring function we used to evaluate the signi�cance of background knowledge
terms is the score computed by the Personalized PageRank algorithm (L. Page et al., 1999).
The basic PageRank algorithm is used to evaluate the global importance of each node in
a network, while the Personalized PageRank (described in Section 2.1.2) evaluates the
signi�cance of a given node with respect to the starting set S. This �ts well with our
demand that a scoring function must evaluate the signi�cance of a term based on the
actual data; as each term g ∈ G is an element of the network Ge, we calculate the P-PR
score of each term g ∈ G as

scoreP-PR(g) = P-PRS+(g), (4.1)

where the P-PR vector is calculated on the network Ge. A simple algebraic calculation
(Gr£ar et al., 2013) shows that this value is equal to the average of all Personalized PageR-
ank scores of v where the starting set for the random walker is one node from S:

P-PRS+(g) =
1

|S+|
∑
w∈S+

P-PR{w}(g). (4.2)

Following the de�nition of the Personalized PageRank score, the value of scoreP-PR is
the stationary distribution of a random walker that starts its walk in one of the target data
instances (elements of set S+) and follows the relations (either the is-annotated-by or the
is-a) in the background knowledge. Another interpretation of scoreP-PR(v) is that it tells
us how often we will reach node v in random walks, starting with positive (target) data
instances. Note that the Personalized PageRank algorithm is de�ned on directed networks,
allowing us to calculate the Personalized PageRank vectors of nodes by taking the direction
of connections into account. In our experiments, we also tested the performance of the
scoring function if the network Ge is viewed as an undirected network. To calculate the
PageRank vector on an undirected network, each edge between two nodes u and v is
interpreted as a pair of directed edges, one going from u to v and one from v to u, allowing
the random walker to traverse the original undirected edge in both directions.

The second estimator of background knowledge signi�cance is the node2vec algorithm
(Grover & Leskovec, 2016). In our experiments, we used the default settings of p = q = 1
for the parameters of the node2vec function, meaning the random walks generated were
a balance between depth-�rst and breadth-�rst searches of the network. The maximum
length of the random walks was set to 15. The function node2vec, described in Section
2.1.3, calculates a feature matrix f = node2vec(Ge), and each row of f represents a
feature vector f(u) for node u in Ge. The resulting feature vectors of nodes can be used
to compute the similarity between any two nodes in the network. The approach uses the
cosine similarity of the two feature vectors u and v is computed as follows:

similaritynode2vec(u, v) =
f(u) · f(v)

|f(u)||f(v)|
.
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In our approach, we form feature vectors for nodes representing both background knowl-
edge terms and data instances. We use these feature vectors to compute the similarity
between the background knowledge terms and the data instances using a formula inspired
by Equation 4.2. With the Personalized PageRank, we evaluate the score of each node
as P-PRS+(v) where S+ is the set of all target data instances. As the value P-PR{w}(v)
measures the similarity between w and v, Equation (4.2) can also be used to construct a
node2vec scoring function. We replace the individual P-PR similarities in Equation (4.2)
with the individual node2vec similarities:

scorenode2vec(v) =
1

|S|
∑
w∈S

f(w) · f(v)

|f(w)||f(v)|
, (4.3)

where feature vectors f(u) are calculated on the network Ge.

4.1.3.3 Node removal step

In the third step of Algorithm 4.1 we remove low-scoring nodes from the network. We
present and test two options of node removal.

The �rst (naïve) option is to take every node that is marked for removal and delete
both the node and any connection leading to or from it. This method is robust and can
be applied to any background knowledge. However, it may, at low cuto� thresholds, cause
the resulting network to decompose into several disjoint connected components. Also, if
we converted the background knowledge into a hypergraph, the hypergraph must always
contain relation nodes with exactly three neighbors (the subject, predicate and object of
the relation) if we are to convert it back into a standard representation of a background
knowledge. Thus, blindly removing nodes from the hypergraph will result in a network
we can no longer convert back into a background knowledge. To counteract this, we also
tested an approach that takes into account the fact that relations, encoded by the network
edges, are often transitive � in our example, the gene ontology encodes the is-a relation
which is indeed transitive, meaning that if g1 is-a g2 and g2 is-a g3, then we also know that
g1 is-a g3.

Using transitivity, we can design an algorithm for advanced removal of low scoring nodes
from an information network, obtained by naïve conversion of the background knowledge
(Algorithm 4.2). As the background knowledge is in direct correspondence with the infor-
mation network, obtained from it, we can also view removing the node from the information
network as removing a corresponding term from the background knowledge, and therefore
Algorithm 4.2 can be used as the term-removal step of Algorithm 4.1.Algorithm 4.2 can
also be used to remove low scoring nodes from hypergraphs, constructed from background
knowledge, if we �rst convert hypergraphs into a simpler representation without nodes,
representing relations.

4.2 Experimental Setting and Results

In this section, we present the experiments with semantic data mining using both the
Personalized PageRank and node2vec search space reduction mechanisms. We �rst explain
the data sets, followed by the experimental setting outline and presentation of the results.

4.2.1 Data sets

In the experiments we used two data sets: the acute lymphoblastic leukemia data set and
the breast cancer data set.
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Algorithm 4.2: The algorithm for removing a node from a network, obtained
through naïve conversion of the background knowledge into an information net-
work.

Input: An information network G (obtained by naïvely converting a
background knowledge into an information network) and a node n ∈ G
(a term of the original background knowledge) we wish to remove

Output: A new background knowledge that does not contain the node n
for b ∈ G : (b, n) is an edge in G do

for a ∈ G : (n, a) is an edge in G do
Add the edge (b, a) into G
Remove the edge (n, a) from G

end

Remove the edge (b, n) from G
end

Remove the node n from G
Return G

ALL data set We analyzed the acute lymphoblastic leukemia (ALL) data set using se-
mantic data mining. We followed the steps used in the work of Podpe£an et al. (2011)
to obtain a set of 1,000 enriched genes (forming the target set of instances) from a
set of 10,000 genes. The genes were annotated by concepts from the Gene Ontology
(Ashburner et al., 2000) which was used as the background knowledge in our exper-
iments. In total, the data set contained 167,339 annotations (connections between
genes and Gene Ontology terms). In previous work on analyzing the ALL data set,
the performance of the SegMine methodology (Podpe£an et al., 2011) was compared
to the performance of the DAVID algorithm (Huang, Sherman, & Lempicki, 2008).
In this work, we use the same data set to assess if we can improve the performance
of the Hedwig algorithm which was already shown to perform well in a biological
setting. Our research question is if network node ranking can decrease the running
time and improve the performance of the Hedwig algorithm.

Breast cancer data set We also analyzed the breast cancer data set (Vavpeti£ et al.,
2014). In previous work, the authors �rst used a subgroup discovery algorithm
and analyzed the results. After this step, they used the approach to explain the
most important subgroup (as determined by domain experts). In this work, we only
constructed rules for the same subgroup as in (Vavpeti£ et al., 2014) and did not
use the input of the domain expert. The group contained 11,029 negatively labeled
and 990 positively labeled data instances. The data instances were connected to the
Gene Ontology terms by 195,124 annotations.

4.2.2 Experimental setting

For each data set and each network scoring function, the experiment consisted of three
experimental setups. In both setups, Hedwig was used in its standard mode to return the
set of rules explaining the data. The set consists of the last rules that are left on the search
beam after the search is concluded (meaning that the size of the set matches the size of
the search beam). In the �rst setup, the entire set of rules was analyzed, and in the second
setup only the best rule was analyzed, which allows clearer comparison and is su�cient to
demonstrate how pruning the background knowledge a�ects the quality of the discovered
rules. We compared the quality of the resulting rules by measuring the lift values of each
rule.
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First experimental setup In this set of experiments we ran the Hedwig algorithm on the
entire data set to determine the baseline performance of the algorithm and examined
all the returned rules. We ran the algorithm with all combinations of depth (1 or 10),
beam width (1 or 10) and support (0.1 or 0.01). The goal of this set of experiments
was to determine whether terms used by Hedwig are correlated with the score of the
terms returned by network analysis algorithms, as calculated by P-PR (Equation 4.1)
and node2vec (Equation 4.3). We evaluated this relation by observing the ranks of
the terms used by Hedwig to construct the rules. For each term t used by Hedwig
we computed the percentage of all terms t′ that scored higher by a given scoring
function.

100 · |{t
′ ∈ V : score(t′) > score(t)}|

|V |

If the relation between Hedwig's use of terms and returned scores is strong, then the
percentage calculated for a given term t will be low.

Second experimental setup In the second set of experiments we exploited the correla-
tions discovered in the �rst experimental setup. We used the scores of background
knowledge terms to prune the background knowledge. Speci�cally, we ran Algorithm
4.1, setting the threshold values of c to 0.5, 0.2, 0.1 and 0.05, thereby running the
Hedwig algorithm on the gene ontology (GO) background knowledge containing only
a subset of 5%, 10%, 20% and 50% of nodes with the highest score, respectively. We
calculated Personalized PageRank values of GO nodes in two ways: (i) we viewed
is_a relations as directed edges pointing from a more speci�c GO term to a more
general term, and (ii) we viewed the relations as undirected edges. We set beam size,
depth and minimum coverage parameters of Hedwig to values that returned the best
rules on each data set in the �rst set of experiments. For example, the results of
the �rst experimental setup showed that the rules obtained by setting the beam size
or rule depth to one are too general to be of any biological interest. We therefore
decided to set both values to ten. In the case of rule depth, this value ensures that
Hedwig returns longer conjuncts (as on our data sets Hedwig returns no rules of
length greater than �ve, setting the rule depth to ten e�ectively means that we allow
Hedwig to construct arbitrarily long rules). Setting the beam size to ten allows us
to discover important rules (as shown in the �rst set of experiments) in a reasonable
amount of time�the runtime of Hedwig increases drastically with increased beam
size, and at size ten the algorithm takes several hours to complete).

Third experimental setup In the �rst two sets of experiments we always used both the
naïve method for converting background knowledge into an information network and
the naïve method for deleting low scoring nodes. In the third set of experiments,
we tested the advanced versions of both the conversion step (converting the a into a
hypergraph) and the node deletion step (using transitivity to maintain connectedness
in a network). As the node2vec function proved inferior to the Personalized PageRank
scoring function in the second set of experiments, we only ran the third round of
experiments with the P-PR scoring function. We ran the algorithm with advanced
node deletion on both the information network, obtained through naïve conversion of
the background knowledge, and the hypergraph, obtained from the same background
knowledge. The results of this third set of experiments can then be compared to the
results of the second set.
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Table 4.2: The best rules discovered by the Hedwig algorithm in the ALL data set. Each
row presents the conjuncts (Gene Ontology terms) of the top ranking rule. The sec-
ond (third) column shows the percentage of GO terms with the Personalized PageRank
(node2vec) score higher than the corresponding term.

Term Personalized PageRank % Node2vec % Beam Depth Support Lift
GO:0003674 0.297 46.383 1 1 0.01 1.000
GO:0003674 0.297 46.383 1 10 0.01 1.000
GO:0003674 0.297 46.383 1 1 0.1 1.000
GO:0003674 0.297 46.383 1 10 0.1 1.000
GO:0050851 4.467 2.066 10 1 0.01 2.687
GO:0002376 0.603 62.137

10 10 0.01 3.420GO:0002429 2.506 13.985
GO:0005886 0.076 0.876
GO:0005488 0.050 16.979
GO:0002376 0.603 62.137 10 1 0.1 1.292
GO:0002376 0.603 62.137

10 10 0.1 1.414GO:0005488 0.050 16.979
GO:0048518 1.056 93.724
GO:0003674 0.0046 46.38 1 10 0.01 1

Table 4.3: The best rules discovered by the Hedwig algorithm in the breast cancer data
set. Each row presents the conjuncts (Gene Ontology terms) of the top ranking rule. The
second (third) column shows the percentage of GO terms with the Personalized PageRank
(node2vec) score higher than the corresponding term.

Term Personalized PageRank % Node2vec % Beam Depth Support Lift
GO:0043230 11.350 31.000 1 1 0.01 1.400
GO:0043230 11.350 31.000 1 10 0.01 1.400
GO:0043230 11.350 31.000 1 1 0.1 1.400
GO:0043230 11.350 31.000 1 10 0.1 1.400
GO:0000785 0.821 24.693 10 1 0.01 1.868
GO:0003674 0.202 36.568

10 10 0.01 3.743GO:0044427 0.409 20.538
GO:0000278 0.091 0.665
GO:0022402 0.312 59.868
GO:0043228 9.062 25.750 10 1 0.1 1.439
GO:0071840 29.454 58.599

10 10 0.1 1.556GO:0044428 0.051 13.580
GO:0003674 0.202 36.568

4.2.3 Experimental results

We present the results of semantic data mining algorithm (using two scoring functions, two
network conversion methods and two node deletion methods) on the two data sets. We
analyze the results of the three experimental setups.

4.2.3.1 First setup: Relation between terms used in Hedwig and term scores

The best rules discovered by Hedwig using di�erent parameter settings in the �rst exper-
imental setup using the Personalized PageRank function to evaluate node relevance are
shown in Tables 4.2 and 4.3 for the ALL and breast cancer data sets, respectively. The
results show that the Personalized PageRank scoring function ranks all the terms, used by
Hedwig very high with a remarkably low percentage of terms scoring higher. In all cases,
the terms used to construct rules were in top percentiles of all rule scores, con�rming our
hypothesis that high scoring terms are usually used in rules.

This phenomenon is shown even more clearly in Figure 4.3 showing all the terms used
by Hedwig and their ranks. Even taking into account all (not only the best) rules, we see
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Figure 4.3: The score ranks of the terms used by Hedwig to construct rules on the ALL
(top) and breast cancer (bottom) data set. The blue line shows the Personalized PageRank
score (the value of P-PR(v)) for each of the terms in the background knowledge. The terms
are sorted by descending score. Each red cross highlights one of the terms used by Hedwig.
The blue area on the left denotes the top 5 percent of all nodes (according to the ranking).

that predominantly the used terms come from the top 5 percent of all terms as scored by
the Personalized PageRank scoring function. On the other hand, this phenomenon does
not occur with the node2vec scoring function, as the results in Tables 4.2 and 4.3 show for
the ALL and breast cancer data sets. The rules used by Hedwig score quite low according
to the node2vec function, however as seen in Figure 4.4, the node2vec score of the used
terms is still above average, and it is possible that the node2vec score ranks are useful.
We consider the node2vec scores to contain su�cient information to warrant testing both
scores in the second experimental setup.

The rules discovered in this experimental setup are also biologically relevant. When
the search beam for the Hedwig algorithm was set to 1, the only signi�cant rule discov-
ered contained in its condition a single gene ontology term GO:0003674, a term denoting
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Figure 4.4: The score ranks of the terms used by Hedwig to construct rules on the ALL
(top) and breast cancer (bottom) data set. The blue line shows the node2vec score for
each of the terms in the background knowledge. The terms are sorted by descending score.
Each red cross highlights one of the terms used by Hedwig. The blue area on the left
denotes the top 5 percent of all nodes (according to the ranking).

molecular function. This is a very general term which o�ers little insight and shows that
a larger search beam is necessary in order for Hedwig to make signi�cant discoveries. The
most interesting results are uncovered when the beam size is set to 10 and the support
is set to 0.01. When the depth is set to 1, the most important term GO:0050851 (anti-
gen receptor-mediated signaling pathway) relates to the immune system related cell type.
When searching with a depth of 10, we discovered a conjunct of four terms: immune system
process (GO:0002376), immune response-activating cell surface receptor signaling pathway,
(GO:0002429), plasma membrane (GO:0005886) and binding (GO:0005488). This conjunct
provides additional insights about the action (binding), e�ect (immune response signaling
pathway), and location (plasma membrane).
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Table 4.4: Results of Algorithm 4.1 on the ALL data set using the Personalized PageRank
scoring function. A smaller cuto� value means that a smaller part of the background
knowledge was kept and used by the Hedwig rule discovery algorithm. The direction of
the relations in the background knowledge was not taken into account.

Cuto� threshold GO-term Lift Coverage Positives

0.05

GO:0003824 catalytic activity
GO:0044283 small molecule biosynthetic pro-

cess
GO:0044444 cytoplasmic part
GO:0044238 primary metabolic process

3.741 132 55

0.1

GO:0003824 catalytic activity
GO:0044283 small molecule biosynthetic pro-

cess
GO:0044444 cytoplasmic part
GO:0044238 primary metabolic process

3.769 131 55

0.2

GO:0045936 negative regulation of phosphate
metabolic process

GO:0003824 catalytic activity
GO:0009892 negative regulation of metabolic

process

2.219 89 22

0.5

GO:0002376 immune system process
GO:0002429 immune response-activating cell

surface receptor signaling pathway
GO:0005886 plasma membrane
GO:0005488 binding

3.420 105 40

1

GO:0002376 immune system process
GO:0002429 immune response-activating cell

surface receptor signaling pathway
GO:0005886 plasma membrane
GO:0005488 binding

3.420 105 40

Table 4.5: Results of Algorithm 4.1 on the ALL data set using the Personalized PageRank
scoring function. A smaller cuto� value means that a smaller part of the background
knowledge was kept and used by the Hedwig rule discovery algorithm. The direction of
the relations in the background knowledge was taken into account.

Cuto� threshold GO-term Lift Coverage Positives

0.05

GO:0002376 immune system process
GO:0002694 regulation of leukocyte activation
GO:0034110 regulation of homotypic cell-cell

adhesion

3.235 111 40

0.1
GO:0002376 immune system process
GO:0002694 regulation of leukocyte activation
GO:0044459 plasma membrane part

4.090 131 55

0.2

GO:0003824 catalytic activity
GO:0044283 small molecule biosynthetic pro-

cess
GO:0044444 cytoplasmic part

4.257 116 57

0.5

GO:0002376 immune system process
GO:0002429 immune response-activating cell

surface receptor signaling pathway
GO:0005886 plasma membrane
GO:0005488 binding

3.420 105 40

1

GO:0002376 immune system process
GO:0002429 immune response-activating cell

surface receptor signaling pathway
GO:0005886 plasma membrane
GO:0005488 binding

3.420 105 40

4.2.3.2 Second setup: Pruning the background knowledge

The results of the �rst experimental setup show that scores, calculated using the network
analysis techniques, are relevant to determine whether background knowledge nodes will
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be used by Hedwig in the construction of rules describing the target instances. Here we
present the results of using the computed scores to pre-prune the background knowledge
used by Hedwig. We �rst present the results of both scoring functions on the ALL data set
and then on the breast cancer data set. We set the beam and depth parameter of Hedwig
to 10, and set the minimum coverage parameter 0.01; these are the settings that�when
running Hedwig without network analysis�actually produced the best results for both
data sets (see Tables 4.2 and 4.3).

For Personalized PageRank-based network pruning we test also if taking into account
edge directions makes a di�erence. Table 4.4 (undirected edges) and Table 4.5 (directed
edges) show the results of semantic rule discovery using the P-PR function on the ALL
data set. Both tables show a similar phenomenon: by decreasing the cuto� threshold the
rules discovered by the Hedwig algorithm either stay the same or change to rules with a
higher lift value. When searching for longer rules, decreasing the size of the network by
50% still allows us to discover the same high quality conjunct of GO:0002376, GO:0002429,
GO:0005886 and GO:0005488 as before, however further decreasing the size of the ontology
produces a conjunct GO:0003824, GO:0044283, GO:0044444, GO:0044238 which is more
general and hence less interesting.

Comparing Table 4.4 and Table 4.5 we see that there is a slight di�erence in the resulting
rules if we take the direction of the relations in the background knowledge into account.
Better lift values and more consistent results are obtained when we choose to ignore the
direction of the relations. Taking directions into account, for example, leads to a discovery
of a very low quality rule with a lift value of only 2.219 at the cuto� threshold of 0.2.
When we do not ignore the direction of the relations, the score of each node is only allowed
to propagate to the `parent' nodes in the background knowledge, i.e. high scores will be
given to those GO terms whose child terms (specializations) have a high score. On the
other hand, when ignoring the direction, we allow nodes to pass their high scores also to
sibling nodes, allowing Hedwig in the �nal step of our NetSDM methodology (outlined in
Algorithm 4.1) to choose the correct specialization of the parent node. More experiments
are needed to analyze this phenomenon.

Table 4.6 and Table 4.7 show the results of the experiments using the node2vec function
on the same data set. The results show that the node2vec pruning did not achieve the same
performance as the pruning using the Personalized PageRank function. The results in both
tables show that lower threshold values strictly decrease the quality of the rules discovered
by Hedwig, meaning that pruning of the background knowledge with the node2vec scoring
function removes several informative terms and connections. Without these terms Hedwig
could not extract the relevant information from the data, causing decreased performance.

Another interesting phenomenon in the node2vec results is that as the threshold value
for pruning background knowledge decreases, the resulting rules become shorter, with the
lowest values returning a single GO term as the only important node. This may be a
consequence of so many terms pruned that the remaining terms describe non-intersecting
sets of enriched genes (or sets with a very small intersection). In this case, term GO:0044281
covers the largest number of instances and is therefore selected as the best term. Upon
selecting this term, Hedwig is not able to improve the rule by adding further conjuncts, as
adding any other term to the conjunction drastically decreases the coverage of the resulting
rule.

Tables 4.8 and 4.9 show the results of the Personalized PageRank scoring function in
pruning the background knowledge for the breast cancer data set. As in the ALL data
set, we see that decreasing the threshold value does not drastically decrease the quality
of rules discovered by Hedwig. In fact, the rules discovered from only 20% of the original
background knowledge achieve almost the same lift score as the rules produced from the
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Table 4.6: Results of Algorithm 4.1 on the ALL data set using the node2vec scoring
function. A smaller cuto� value means that a smaller part of the background knowledge
was kept and used by the Hedwig rule discovery algorithm. The direction of the relations
in the background knowledge was not taken into account.

Cuto� threshold GO-term Lift Coverage Positives

0.05
GO:0050852 T cell receptor signal-

ing pathway 2.586 125 36

0.1 GO:0050852 T cell receptor signaling pathway 2.586 125 36
0.2 GO:0050852 T cell receptor signaling pathway 2.586 125 36
0.5 GO:0050863 regulation of T cell activation 3.076 108 37

1

GO:0002376 immune system process
GO:0002429 immune response-activating cell

surface receptor signaling pathway
GO:0005886 plasma membrane
GO:0005488 binding

3.420 105 40

Table 4.7: Results of Algorithm 4.1 on the ALL data set using the node2vec scoring
function. A smaller cuto� value means that a smaller part of the background knowledge
was kept and used by the Hedwig rule discovery algorithm. The direction of the relations
in the background knowledge was taken into account.

Cuto� threshold GO-term Lift Coverage Positives
0.05 GO:0050852 T cell receptor signaling pathway 2.586 125 36
0.1 GO:0050852 T cell receptor signaling pathway 2.586 125 36
0.2 GO:0050852 T cell receptor signaling pathway 2.586 125 36

0.5
GO:0007507 heart development
GO:0032502 developmental process 2.214 93 22

1

GO:0002376 immune system process
GO:0002429 immune response-activating cell

surface receptor signaling pathway
GO:0005886 plasma membrane
GO:0005488 binding

3.420 105 40

entire data set. Further pruning the data set allows Hedwig to discover an even better
rule. Comparing the two tables we see�even more clearly than in the ALL data set�that
ignoring the direction of edges resulted in better overall performance of the algorithm.
Especially for low threshold values, Algorithm 4.1 �nds rules with substantially lower lift
values using scores calculated on directed edges compared to those calculated by ignoring
the edge direction.

The results of Algorithm 4.1 using the node2vec scoring funciton on the breast cancer
data set are comparable to those on the ALL data set. The Hedwig algorithm does not
discover important rules to explain the positive examples with the pruned background
knowledge. As on the ALL data set, too many important nodes were pruned. Again we
observe the phenomenon that as the threshold is lowered, the length of the rules decreases
to 1.

While the increased rule quality shows that using the Personalized PageRank as a �lter
before applying the Hedwig algorithm can improve the performance of the algorithm, the
results are also signi�cant considering the fact that with low threshold values the search
space of Hedwig (and thus the computational complexity of the algorithm) is much smaller.

Figure 4.5 shows the relationship between the time taken by the Hedwig semantic rule
learning algorithm (together with network preprocessing) to discover the relevant rules
and the network pruning threshold c, i.e. the size of the background knowledge left for
Hedwig to analyze. The network preprocessing steps were completed in seconds, meaning
that the times, reported in Figure 4.5, correspond almost entirely to the times that the
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Table 4.8: Results of Algorithm 4.1 on the breast cancer data set using the Personalized
PageRank scoring function. The direction of the relations in the background knowledge
was not taken into account.

Cuto� threshold GO-term Lift Coverage Positives

0.05

GO:0071840 cellular component organization or
biogenesis

GO:0000278 mitotic cell cycle
GO:0005515 protein binding
GO:0044260 cellular macromolecule metabolic

process
GO:0022402 cell cycle process

4.114 121 41

0.1

GO:0043232 intracellular non-membrane-
bounded organelle

GO:0000278 mitotic cell cycle
GO:0005515 protein binding

3.055 151 38

0.2

GO:0071840 cellular component organization or
biogenesis

GO:0007049 cell cycle
GO:0003824 catalytic activity
GO:0005515 protein binding

3.781 122 38

0.5

GO:0003824 catalytic activity
GO:0000278 mitotic cell cycle
GO:0022402 cell cycle process
GO:0005515 protein binding

3.469 126 36

1

GO:0003674 molecular function
GO:0044427 chromosomal part
GO:0000278 mitotic cell cycle
GO:0022402 cell cycle process

3.743 120 37

Table 4.9: Results of Algorithm 4.1 on the breast cancer data set using the Personalized
PageRank scoring function. The direction of the relations in the background knowledge
was taken into account.

Cuto� threshold GO-term Lift Coverage Positives

0.05
GO:0003824 catalytic activity
GO:0007049 cell cycle
GO:0044446 intracellular organelle part

3.035 136 34

0.1

GO:0044421 extracellular region part
GO:0003824 catalytic activity
GO:0070062 extracellular vesicular exosome
GO:0044707 single-multicellular organism pro-

cess

2.587 122 26

0.2

GO:0003674 molecular function
GO:0044427 chromosomal part
GO:0000278 mitotic cell cycle
GO:0022402 cell cycle process

3.743 120 37

0.5

GO:0003674 molecular function
GO:0044427 chromosomal part
GO:0000278 mitotic cell cycle
GO:0022402 cell cycle process

3.743 120 37

1

GO:0003674 molecular function
GO:0044427 chromosomal part
GO:0000278 mitotic cell cycle
GO:0022402 cell cycle process

3.743 120 37

Hedwig algorithm took to complete. The fact that pruning takes orders of magnitude
less time than rule discovery is a pre-requisite for our pruning algorithms to be useful in
real-life applications. We timed the algorithm on the ALL data set using di�erent settings
for beam, depth and support on a 8 core 2.60 GHz Intel Xeon(R)E5-2697 v3 machine
with 64GB of RAM. The graph clearly shows that smaller threshold values result in much
shorter running times (note the logarithmic scale). This con�rms our hypothesis that
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Table 4.10: Results of Algorithm 4.1 on the breast cancer data set using the node2vec
scoring function. The direction of the relations in the background knowledge was not
taken into account.

Cuto� threshold GO-term Lift Coverage Positives
0.05 GO:0000082 G1/S transition of mitotic cell cycle 2.589 136 29
0.1 GO:0000082 G1/S transition of mitotic cell cycle 2.589 136 29
0.2 GO:0000082 G1/S transition of mitotic cell cycle 2.589 136 29

0.5
GO:1903047 mitotic cell cycle process
GO:0005515 protein binding 2.916 204 49

1

GO:0003674 molecular function
GO:0044427 chromosomal part
GO:0000278 mitotic cell cycle
GO:0022402 cell cycle process

3.743 120 37

Table 4.11: Results of Algorithm 4.1 on the breast cancer data set using the node2vec
scoring function. The direction of the relations in the background knowledge was taken
into account.

Cuto� threshold GO-term Lift Coverage Positives

0.05
GO:0000082 G1/S transition of mitotic cell cy-

cle 2.589 136 29

0.1
GO:0044699 single-organism process
GO:0000278 mitotic cell cycle 3.541 120 35

0.2
GO:0000082 G1/S transition of mitotic cell cy-

cle 2.589 136 29

0.5
GO:0000082 G1/S transition of mitotic cell cy-

cle 2.589 136 29

1

GO:0003674 molecular function
GO:0044427 chromosomal part
GO:0000278 mitotic cell cycle
GO:0022402 cell cycle process

3.743 120 37

pruning the background knowledge decreases the time it takes Hedwig to search the space
of possible hypotheses. Taking into account also previous results we can conclude that
using our background knowledge pre-pruning approach is bene�cial both in increasing the
quality of the rules and in speeding up the Hedwig algorithm.
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Figure 4.5: The times (in seconds) on logarithmic scale (y axis) taken by Hedwig to discover
rules with di�erent settings for beam, depth and support at varying settings for the node
pruning threshold c (x axis).
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Table 4.12: Results of Algorithm 4.1 on the breast cancer data set using the Personalized
PageRank scoring function with advanced node removal. We only list the smallest cuto�
value at which each network conversion method (naïve and Hypergraph, respectively)
discovers the same rules as for cuto� value 1, and one cuto� value below that threshold.

Conversion
method

Cuto�
threshold GO-term Lift Coverage Positives

None 1

GO:0003674 molecular function
GO:0044427 chromosomal part
GO:0000278 mitotic cell cycle
GO:0022402 cell cycle process

3.743 120 37

Naïve 0.01

GO:0003674 molecular function
GO:0044427 chromosomal part
GO:0000278 mitotic cell cycle
GO:0022402 cell cycle process

3.743 120 37

Naïve 0.005 GO:0022402 cell cycle process
GO:0005654 nucleoplasm 2.942 120 30

Hypergraph 0.1

GO:0003674 molecular function
GO:0044427 chromosomal part
GO:0000278 mitotic cell cycle
GO:0022402 cell cycle process

3.743 120 37

Hypergraph 0.05

GO:0022411 cellular component disassembly
GO:0005515 protein binding
GO:0044422 mitotic cell cycle
GO:0032991 macromolecular complex

3.743 120 37

Table 4.13: Results of Algorithm 4.1 on the ALL data set using the Personalized PageRank
scoring function with advanced node removal. We only list the smallest cuto� value at
which each network conversion method (naïve and Hypergraph, respectively) discovers the
same rules as for cuto� value 1, and one cuto� value below that threshold.

Conversion
method

Cuto�
threshold GO-term Lift Coverage Positives

None 1

GO:0002376 immune system process
GO:0002429 immune response-activating cell

surface receptor signaling path-
way

GO:0005886 plasma membrane
GO:0005488 binding

3.420 105 40

naïve 0.05

GO:0002376 immune system process
GO:0002429 immune response-activating cell

surface receptor signaling path-
way

GO:0005886 plasma membrane
GO:0005488 binding

3.420 105 40

naïve 0.01

GO:0016020 membrane
GO:0050851 antigen receptor-mediated sig-

naling pathway
GO:0005488 binding

3.413 89 34

Hypergraph 0.2

GO:0002376 immune system process
GO:0002429 immune response-activating cell

surface receptor signaling path-
way

GO:0005886 plasma membrane
GO:0005488 binding

3.420 105 40

Hypergraph 0.1

GO:0002376 immune system process
GO:0002694 regulation of leukocyte activa-

tion
GO:0005886 plasma membrane
GO:0034110 regulation of homotypic cell-cell

adhesion

3.395 100 38
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Figure 4.6: The times (in seconds) on logarithmic scale (y axis) taken by Hedwig to discover
rules in the third round of experiments. Both axes are drawn at a logarithmic scale, and
a linear trendline (dashed) is drawn for comparison.

4.2.3.3 Third setup: advanced network conversion and node deletion

The results of the third set of experiments show a di�erent pattern from those in the
second round of experiments. Table 4.12 shows the results of both network conversion
methods on the breast cancer data set, while Table 4.13 shows the results of the methods
on the ALL data set. Unlike in the second set of experiments, the results of this setup
show that the quality of the rules, and in fact entire rules discovered, remains the same
when we decrease the size of the background knowledge to one tenth its original size.
When decreasing the network further, we see that the naïve method of network conversion
outperforms the hypergraph construction; while the hypergraph version of the background
knowledge returns signi�cantly worse results at 1% of its original size (in the breast cancer
data set), the naïve version still �nds the same rule as we �nd without network pruning.
When pruning the network even further, the quality of the resulting decreases, but the
decrease in quality happens at a smaller size for the naïve network conversion.

Figure 4.6 shows the times, required for Hedwig to discover the rules on the pruned
networks in the third round of experiments. The graph shows that unlike the case with
naïve network deletion methods in the second set of experiments, the time required to
discover rules decreases linearly as we lower the pruning threshold. When reducing the
network to 1 percent of its original size, the algorithm was able to discover the rules in two
minutes, compared to the runtime of over 11 hours on the non-pruned network.

The result of this set of experiments can be compared with the results of the �rst set of
experiments to draw two conclusions. The naïve version of network node removal causes
Hedwig to discover rules of a slightly higher quality, but the results of decreasing the cuto�
threshold are unpredictable both in the quality of the rules discovered (which for some
cuto� values falls below the base value obtained on an unpruned network), and the times
taken to discover the rules do not decrease signi�cantly until we lower the cuto� value to
below 0.2. On the other hand, the advanced version of node removal allows the algorithm
to discover the same results as on an unpruned network even for very small cuto� values.
The results remain consistent, and the times taken to discover the rules decrease much
more predictably with this node deletion method.
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4.3 Application in Explaining Gene Expression in

Potato Virus Infection

In this section, we present an application of the netSDM methodology on a biological
data set. We applied the NetSDM methodology on a real-life data set containing gene
expression data for potato plants, infected with the PVY (Potato Virus Y) virus. The
data was collected by collaborating biologists of the National Institute for Biology (NIB)
in Ljubljana, Slovenia.

4.3.1 Gene expression data set

The data set was the result of a biological experiment, performed at NIB, examining gene
expression after a viral infection with the PVY (Potato Virus Y) virus (Baebler et al.,
2014). Potato plants were grown in a controlled environment for 4 weeks. After this
period, the leaves of the plants were dusted in carborundum powder and rubbed with
cheesecloth dipped in a sap prepared from the leaves of PVY-infected tobacco plants.
Control plants were treated with mock inoculations where water was used instead of the
sap. The procedure was repeated on two strains of potato plants: Rywal and PW363.

On day 1, 3 and 6 after infection, RNA samples were collected from plants and ana-
lyzed using microarrays. The result was a collection of 42,034 continuous gene expression
values for each treatment (mock or virus), each genotype (Rywal and PW363) and each
day post infection (1, 3 and 6). The data was analyzed in the R environment (Team, 2012)
with the Bioconductor Limma package (Smyth, 2005). The background signal on all of the
microarrays was uniform and low and was hence ignored in further calculations. Di�er-
entially expressed genes (Benjamini and Hochberg corrected P-value ≤ 0.05, fold change
≥ 2) between virus and mock-inoculated plants at each time point and for each genotype
were identi�ed using the empirical Bayes method (Smyth, 2005).

The input of the NetSDM work�ow was a set of 42,034 data instances (microarray
probes) belonging to one of three groups: positively expressed, negatively expressed, or
non-expressed. The instances were annotated by Gene Ontology terms.

4.3.2 GO-slim

Previous experiments with the Hedwig algorithm, presented in Sections 4.2.2 and 4.2.3
have already shown that using SDM on gene expression data sets results in informative
rules explaining experimental results. However, similarly to the data sets used in Section
4.2, the analysis takes several hours to complete with large beam and depth settings for
Hedwig. So far, the best option of reducing time complexity without severely reducing
either beam or depth settings was to use a smaller version of the GO ontology, called a
GO-slim. GO-slims are cut-down versions of the GO ontologies that contain a subset of
the terms in the entire ontology.

Just like the Gene Ontology, GO-slims are freely available on the GO website1 which
also provides tools to map a data set, annotated with the entire ontology, into one annotated
with a selected GO-slim. As our experiments were conducted on (potato) plants, we used
the Plant slim ontology developed by The Arabidopsis Information Resource2 which is a
cut-down version of the GO ontology focusing on terms, more closely related to plants.
The current version of the GO-slim ontology, for example, contains only 99 terms (only
0.22% of the terms in the Gene Ontology).

1http://geneontology.org/page/go-slim-and-subset-guide
2http://www.arabidopsis.org/
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Table 4.14: Results of NetSDM on positively expressed genes 1 day after infection for the
PW363 genotype.

% GO-term Lift Cov Pos Time[seconds]

1

GO:0044464 cell part
GO:0009753 response to jasmonic acid
GO:0003824 catalytic activity
GO:0044237 cellular metabolic process
GO:0009605 response to external stimulus

4.378 14 8 35,576

0.01

GO:0044464 cell part
GO:0009753 response to jasmonic acid
GO:0003824 catalytic activity
GO:0044237 cellular metabolic process
GO:0009605 response to external stimulus

4.378 14 8 223

0.005
GO:0060089 molecular transducer activity
GO:0005783 endoplasmic reticulum 3.283 14 6 97

GO-slim

GO:0009719 response to endogenous stimulus
GO:0006464 cellular protein modi�cation pro-

cess
GO:0005829 cytosol
GO:0016740 transferase activity

2.775 21 8 111

Table 4.15: Results of NetSDM on positively expressed genes 3 days after infection for the
PW363 genotype.

% GO-term Lift Pokritost Pozitivnih �as[sekunde]

1
GO:0060089 molecular transducer activity
GO:0001101 response to acid chemical
GO:0016301 kinase activity

4.650 14 6 37,238

0.01
GO:0060089 molecular transducer activity
GO:0001101 response to acid chemical
GO:0016301 kinase activity

4.650 14 6 259

0.005

GO:0048046 apoplast
GO:0005773 vacuole
GO:0043167 ion binding
GO:0003824 catalytic activity

4.468 17 7 141

GO-slim
GO:0016020 membrane
GO:0007154 cell communication
GO:0005215 transporter activity

4.088 24 9 89

4.3.3 Experiments and results

We ran the NetSDM methodology on the data sets. We used the naïve network conver-
sion (simply transforming semantic relations into edges of an information network) and
advanced node deletion methods (taking relation transitivity into account) that proved
most e�cient in Section 4.2. Like in Section 4.2, we ran the methodology with di�erent
cuto� thresholds ranging from 0.005 on to discover the threshold at which we discovered
the same rules as when running Hedwig alone on the entire ontology. To compare the
results, we also ran the Hedwig algorithm on the plant GO-slim. In this section, we report
the results of our experiments.

4.3.4 PW363 genotype

Tables 4.14, 4.15 and 4.16 show the results of the experiments when searching for expla-
nations of the positively expressed instances for the three time points (1, 3 and 6 days
after infection). The �rst row of every table shows the rules discovered with no pruning
using the Hedwig algorithm with Gene Ontology as the background knowledge. The sec-
ond row shows the smallest discovered cuto� value to which we can prune the background
knowledge using NetSDM and still discover the same rules � the cuto� percentage for that
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Table 4.16: Results of NetSDM on positively expressed genes 6 days after infection for the
PW363 genotype.

% GO-term Lift Cov Pos

1

GO:0005575 cellular_component
GO:0009873 ethylene-activated signaling path-

way
GO:0005634 nucleus
GO:0034641 cellular nitrogen compound

metabolic process

7.100 18 8 26,849

0.03

GO:0005575 cellular_component
GO:0009873 ethylene-activated signaling path-

way
GO:0005634 nucleus
GO:0034641 cellular nitrogen compound

metabolic process

7.100 18 8 595

0.005

GO:0001071 nucleic acid binding transcription
factor activity

GO:0009755 hormone-mediated signaling path-
way

GO:0003006 developmental process involved in
reproduction

6.846 14 6 88

GO-slim

GO:0003700 transcription factor activity,
sequence-speci�c DNA binding

GO:0007165 signal transduction
GO:0003676 nucleic acid binding
GO:0005623 cell

3.412 37 8 105

Table 4.17: Results of NetSDM on negatively expressed genes 1 day after infection for the
PW363 genotype.

% GO-term Lift Cov Pos Time[seconds]

1
GO:0001906 cell killing
GO:0005575 cellular_component 3.648 14 7 38,853

0.01
GO:0001906 cell killing
GO:0005575 cellular_component 3.648 14 7 226

0.005

GO:0022892 substrate-speci�c transporter ac-
tivity

GO:0006082 organic acid metabolic process
GO:0005575 cellular_component

3.474 21 10 155

GO-slim

GO:0007165 signal transduction
GO:0005794 Golgi apparatus
GO:0005488 binding
GO:0005886 plasma membrane

2.500 25 9 135

rows therefore varies depending on the particular experiment. The third row shows the
rules discovered by pruning the background knowledge to 0.5% of its original size. Finally,
we report the rules discovered by Hedwig by using the plant GO-slim as the background
knowledge. For each cuto� value, we also report the times taken by Hedwig to complete
the rule discovery process.

Table 4.14 shows that the rule, discovered by Hedwig taking the entire Gene Ontology
as its background knowledge is the highest quality discovered rule. However, this same
rule can also be discovered using NetSDM by removing all but 1% of the background
knowledge with the time required to discover the rules reducing from slightly less than 10
hours to less than 4 minutes. Reducing the background knowledge further, to 0.5% its
original size reduces the time further to approximately 100 seconds, however this setting
results in a lower quality of the discovered rule. Finally, running the Hedwig algorithm on
the GO-slim ontology results in a rule that is discovered relatively quickly (100 seconds).
However, this rule is always of a much lower quality than the rule discovered using the
entire Gene Ontology. The rule is also worse when compared to the rule discovered on the
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Table 4.18: Results of NetSDM on negatively expressed genes 3 days after infection for the
PW363 genotype.

% GO-term Lift Cov Pos Time[seconds]

1

GO:0043226 organelle
GO:0015662 ATPase activity, coupled to trans-

membrane movement of ions, phos-
phorylative mechanism

GO:0000166 nucleotide binding
GO:0006164 purine nucleotide biosynthetic pro-

cess

3.475 15 5 28,525

0.03

GO:0043226 organelle
GO:0015662 ATPase activity, coupled to trans-

membrane movement of ions, phos-
phorylative mechanism

GO:0000166 nucleotide binding
GO:0006164 purine nucleotide biosynthetic pro-

cess

3.475 15 5 790

0.005

GO:0051704 multi-organism process
GO:0005829 cytosol
GO:0043169 cation binding
GO:0003824 catalytic activity

5.957 14 8 128

GO-slim
GO:0005794 Golgi apparatus
GO:0005515 protein binding
GO:0016740 transferase activity

3.608 23 8 144

Table 4.19: Results of NetSDM on negatively expressed genes 6 days after infection for the
PW363 genotype.

% GO-term Lift Cov Pos Time[seconds]

1

GO:0009987 cellular process
GO:0051169 nuclear transport
GO:0003674 molecular_function
GO:0044424 intracellular part

5.064 14 6 37,943

0.03

GO:0009987 cellular process
GO:0051169 nuclear transport
GO:0003674 molecular_function
GO:0044424 intracellular part

5.064 14 6 910

0.005

GO:0051704 multi-organism process
GO:0003006 developmental process involved in

reproduction
GO:0005737 cytoplasm
GO:0005488 binding

5.064 14 6 154

GO-slim
GO:0009856 pollination
GO:0005575 cellular_component
GO:0006950 response to stress

4.223 20 7 153

most severely pruned ontology. A very similar result is shown in Table 4.15: the highest
quality rule is discovered in slighly more than 10 hours, and the same rule was discovered
in 4 minutes on the pruned background knowledge (with the cuto� set at 1%). Setting the
cuto� at 0.5% lowers the quality of the discovered rule, using the GO-slim instead results
in an even lower quality rule. For the data set collected 6 days after infection, the cuto�
value was set at 3% to discover the same rule as on the entire Gene Ontology. This meant
that the time saving was smaller, but still very signi�cant (8 hours reduced to 10 minutes).
Pruning the network further again caused a slight decrease in rule quality, also resulted in a
rule of a higher quality than the one discovered using GO-slim as a background knowledge.

Tables 4.17, 4.18 and 4.19 show the results of the experiments when searching for
explanations of the negatively expressed genes for the three time points. The pattern,
described previously for positively expressed instances, is also evident here, with NetSDM
discovering in minutes what Hedwig alone can only �nd after hours of search. In all
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Table 4.20: Results of NetSDM on positively expressed genes 1 day after infection for the
Rywal genotype.

% GO-term Lift Cov Pos Time[seconds]

1

GO:0071840 cellular component organization or
biogenesis

GO:0048581 negative regulation of post-
embryonic development

GO:2000241 regulation of reproductive process

2.366 14 9 30,592

0.01

GO:0071840 cellular component organization or
biogenesis

GO:0048581 negative regulation of post-
embryonic development

GO:2000241 regulation of reproductive process

2.366 14 9 304

0.005

GO:0022414 reproductive process
GO:0005829 cytosol
GO:0016787 hydrolase activity
GO:0005488 binding

2.629 14 10 164

GO-slim
GO:0009653 anatomical structure morphogene-

sis
GO:0007154 cell communication

2.317 20 12 135

experiments, the cuto� value of 3% was su�cient for NetSDM to return the same rule as
Hedwig on an un-pruned Gene Ontology. In half the cases, reducing the cuto� value to 1%
was also possible with no decrease in rule quality. Table 4.24 shows the only outlier from
there rules. In the case of searching for rules, explaining negatively expressed instances
3 days post infection, the GO-slim background knowledge actually slightly outperformed
the entire Gene Ontology. In this case, however, pruning the Gene Ontology to 0.5% of its
original size, NetSDM discovered a rule that outperforms both un-pruned ontologies, and
the rule was discovered in only two minutes.

Figure 4.7 shows the time required to discover the rules for both the PW363 genotype
and the Rywal genotype described in the following section. Similarly to Figure 4.6, it
shows time savings, proportional to the amount of ontology terms pruned.
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Figure 4.7: The times (in seconds) on logarithmic scale (y axis) taken by Hedwig to discover
rules for the potato virus infection data set. Both axes are drawn at a logarithmic scale,
and a linear trendline (dashed) is drawn for comparison.

4.3.5 Rywal genotype

Tables 4.20, 4.21 and 4.22 show the rules explaining positively expressed genes on the
Rywal genotype on the three time points, respectively. The results are comparable to those
presented in Section 4.3.4 and con�rm the phenomena described there. Using NetSDM, we
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Table 4.21: Results of NetSDM on positively expressed genes 3 days after infection for the
Rywal genotype.

% GO-term Lift Cov Pos Time[seconds]

1

GO:0030054 cell junction
GO:0003006 developmental process involved in

reproduction
GO:0016020 membrane
GO:0009987 cellular process
GO:0003674 molecular_function

2.562 19 17 47,257

0.005

GO:0030054 cell junction
GO:0003006 developmental process involved in

reproduction
GO:0016020 membrane
GO:0009987 cellular process
GO:0003674 molecular_function

2.562 19 17 164

GO-slim

GO:0009791 post-embryonic development
GO:0003676 nucleic acid binding
GO:0000166 nucleotide binding
GO:0000003 reproduction

2.222 29 21 140

Table 4.22: Results of NetSDM on positively expressed genes 6 days after infection for the
Rywal genotype.

% GO-term Lift Cov Pos Time[seconds]

1
GO:0005057 signal transducer activity, down-

stream of receptor
GO:0000165 MAPK cascade

4.779 14 6 24,667

0.03
GO:0005057 signal transducer activity, down-

stream of receptor
GO:0000165 MAPK cascade

4.779 14 6 518

0.005

GO:0001071 nucleic acid binding transcription
factor activity

GO:0009755 hormone-mediated signaling path-
way

GO:0003676 nucleic acid binding
GO:0006351 transcription, DNA-templated

4.646 24 10 114

GO-slim

GO:0009791 post-embryonic development
GO:0016301 kinase activity
GO:0000003 reproduction
GO:0006464 cellular protein modi�cation pro-

cess
GO:0005575 cellular_component
GO:0000166 nucleotide binding

3.562 23 7 141

are able to discover the same rules as Hedwig on the entire data set, but in a fraction of the
time required by Hedwig. The rules are of much higher quality than those discovered by
using GO-slim as background knowledge and take only slightly longer to discover. Using
very low values cuto� for background knowledge pruning results in rules that are better
than those from using GO-slim, and are discovered in a comparable time frame. Rules
for the set of positively expressed genes 3 days after infection stayed the same even when
pruning the ontology to 0.5% its original size.

The same phenomenon observed on the positively expressed genes is also exhibited in
results on the negatively expressed instances, shown in Tables 4.23 and 4.25. Just like for
the PW363 genotype, the only outlier is the set of negatively expressed genes 6 days after
infection. For this set, the GO-slim ontology outperformed the entire Gene Ontology. The
highest quality rules were discovered by pruning the ontology to 0.5% its original size.
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Table 4.23: Results of NetSDM on negatively expressed genes 1 day after infection for the
Rywal genotype.

% GO-term Lift Cov Pos Time[seconds]

1
GO:0060089 molecular transducer activity
GO:0005773 vacuole 2.672 14 7 34,541

0.01
GO:0060089 molecular transducer activity
GO:0005773 vacuole 2.672 14 7 210

0.005

GO:0044702 single organism reproductive pro-
cess

GO:0005975 carbohydrate metabolic process
GO:0016043 cellular component organization
GO:0044464 cell part

2.672 14 7 170

GO-slim

GO:0040029 regulation of gene expression, epi-
genetic

GO:0006464 cellular protein modi�cation pro-
cess

GO:0005515 protein binding

2.264 22 9 110

Table 4.24: Results of NetSDM on negatively expressed genes 3 days after infection for the
Rywal genotype.

% GO-term Lift Cov Pos Time[seconds]

1

GO:0004871 signal transducer activity
GO:0004714 transmembrane receptor protein

tyrosine kinase activity
GO:0005575 cellular_component

2.738 15 10 36,426

0.03

GO:0004871 signal transducer activity
GO:0004714 transmembrane receptor protein

tyrosine kinase activity
GO:0005575 cellular_component

2.738 15 10 864

0.005

GO:0032502 developmental process
GO:0004674 protein serine/threonine kinase ac-

tivity
GO:0005515 protein binding
GO:0043229 intracellular organelle
GO:0044763 single-organism cellular process

3.559 15 13 161

GO-slim

GO:0009628 response to abiotic stimulus
GO:0016787 hydrolase activity
GO:0005975 carbohydrate metabolic process
GO:0006950 response to stress

3.054 27 19 122

Table 4.25: Results of NetSDM on negatively expressed genes 6 days after infection for the
Rywal genotype.

% GO-term Lift Cov Pos Time[seconds]

1
GO:0060089 molecular transducer activity
GO:0004714 transmembrane receptor protein

tyrosine kinase activity
3.531 18 7 17,490

0.03
GO:0060089 molecular transducer activity
GO:0004714 transmembrane receptor protein

tyrosine kinase activity
3.531 18 7 155

0.005

GO:0060089 molecular transducer activity
GO:0016020 membrane
GO:0032502 developmental process
GO:0016021 integral component of membrane

3.026 15 5 134

GO-slim

GO:0007154 cell communication
GO:0016787 hydrolase activity
GO:0005575 cellular_component
GO:0006950 response to stress

3.982 22 9 135
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4.4 Conclusion

We presented and tested several variations of combining network analysis with semantic
data mining. The result is an overall four-step framework (background knowledge conver-
sion, network importance calculation, network pruning, and semantic data mining) for data
analysis. Results show that using a naïve network conversion, the Personalized PageRank
function to estimate node importance, and an advanced version of network pruning (using
transitivity of underlying relations) provides the most consistent results. Using this setup,
the entire algorithm was able to discover the same rules as the original Hedwig algorithm,
but after the NetSDM data processing, Hedwig rule discovery is faster by a factor of al-
most 100. If we replace the advanced node removal function with a naïve version, the
time saving is less predictable, but the algorithm discovers di�erent rules than if run on a
non-pruned data set.

We also tested the algorithms on a new biological data set containing gene expression
data after an infection with the PVY virus. Our experiments show that if we annotate
the data set with the Gene Ontology, NetSDM can discover high quality rules in a fraction
of the time Hedwig requires to discover the same rules. Previously, it was only possible
to discover rules in such a short amount of time if we used the GO-slim ontology instead
of the GO ontology, however resorting to GO-slim signi�cantly reduced the quality of the
resulting rules. Using NetSDM, we can discover rules of much higher quality in only slightly
more time than using GO-slim. Alternatively, using extremely low cuto� values, NetSDM
can discover high quality rules (but worse than on an un-pruned data set) on GO in the
same time as Hedwig can discover lower quality rules on GO-slim.
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Chapter 5

Banded Matrix Visualization

In the previous chapter, we focused on improving the scalability and speed of semantic
data mining, however the results of the algorithms were output in the same format as
before our proposed methods. One problem of SDM algorithms is that their outputs are
relatively hard to read and understand, even by �eld specialists. In this chapter, we present
our work on improving the visualization of outputs of semantic data mining algorithms by
using banded matrix algorithms. Our work was guided by the idea that SDM algorithms
discover patterns in the data they are applied to. These patterns can also be exposed in
some other way by manipulating the input data directly � if some structure can be found
that exposes the SDM-discovered patterns and makes them more easily readable, then this
will both reinforce the results of the SDM algorithms and make them more comprehensible.

5.1 Description of the Methodology

In this section, we describe a three-step methodology for data clustering, explanation and
visualization. We �rst describe the banded matrix algorithm used, and then show how it
�ts into the proposed three-step methodology, developed by Adhikari et al. (2016).

5.1.1 Banded matrix algorithm in detail

Consider a binary matrix M with N rows and d columns and two permutations, κ and π
of the �rst N and d integers. Matrix Mπ

κ , de�ned as (Mπ
κ )i,j = Mκ(i),π(j), is constructed

by applying the permutations π and κ on the rows and columns of M . If, for some pair of
permutations π and κ, matrix Mπ

κ has the following properties:

• each row i of the matrix has the consecutive ones property. This means that the
column indices for which the value in the matrix is 1 appear consecutively. In other
words, for each i, there exist ai, bi ∈ N such that

(Mπ
κ )i,j =

{
1 if ai ≤ x ≤ bi
0 otherwise

• for each i, we have ai ≤ ai+1 and bi ≤ bi+1 (here, ai and bi are the same values as in
the point above)

then the matrix M is fully banded. Furthermore, if matrix M is fully banded, then its
transposition M> is also fully banded.



72 Chapter 5. Banded Matrix Visualization

0 5 10 15 20

0

5

10

15

20

25

30

Figure 5.1: An example of a binary matrix before and after row and column permutations
exposing a banded structure.

Figure 5.1 demonstrates the motivation behind banded matrices as it shows that �nd-
ing the banded structure of a matrix also exposes the clustered structure of the underlying
data. For a fully banded matrix, it can be shown that a banded structure can be found
in polynomial time (Garriga et al., 2011). We cannot expect, however, that real-world
matrices will be fully banded. The problem is that, for a noisy matrix, �nding the cor-
rect row and column permutations that show a structure, close to a banded one, may be
computationally infeasible. We therefore need algorithms that are designed not only to
�nd column and row permutations that are close to banded, but also �nd these `almost
banded' structures in a reasonable time.

The method used to �nd the banded structure of a matrix in this work, called the bidi-
rectional minimummatrix augmentation (biMBA) method, was �rst proposed in (Sugiyama
et al., 1981) and was �rst used as a method of banded matrix extraction in (Garriga et al.,
2011). One step of the method consists of three substeps:

1. Each row of the binary matrix is transformed to have the consecutive ones property.
This is done by �nding the smallest number of matrix elements which have to be
changed (either from 1 to 0 or from 0 to 1) in order for the row to have the consecutive
ones property. The elements which have to be changed can be found in linear time
by transforming the problem into a maximum subarray problem. This transforms
matrix M into matrix M ′.

2. The algorithm �nds each pair of rows M1,M2 such that a1 < a2 and b1 > b2, where
the column indices for which values 1 appear in row Mi range from ai to bi for
i = 1, 2. In other words, the algorithm �nds all pairs of rows where one row's indices
of ones completely envelops the other row's. The motivation behind this is that a
matrix with the consecutive ones property is fully banded if and only if no such pair
of indices can be found. For each such pair, the algorithm performs the minimum
number of changes required that either a1 = a2 or b1 = b2. This step transforms
matrix M ′ into matrix M ′′. As shown by Garriga et al. (2011), after this step, the
resulting matrix M ′′ is fully banded.

3. In the �nal step, the algorithm �nds the permutation π that exposes the banded
structure of M ′′ (meaning that (1) matrix M (π) has the consecutive ones property
and (2) the intervals of ones of matrix M (π) move strictly to the right).

In this way, the method calculates the best possible (according to some criterion) per-
mutations of rows that will best expose the banded structure of the input matrix. The
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Figure 5.2: Overview of the proposed three-part methodology used in the analysis of high
dimensional multiresolution data.

result of the method is the original matrix M , on which we apply the permutation π.
However, the biMBA algorithm is non�optimal, heuristic, and does not �nd any permu-
tation of columns (Garriga et al., 2011). The alternating biMBA method (Garriga et al.,
2011) transposes the resulting matrix and iteratively repeats the described method on the
transposed matrix until convergence or until reaching a predetermined number of steps.
This second iterative step, however comes with a price in when applied to the data set de-
scribed in Section 5.2.1: as neighboring columns of a matrix represent chromosome bands
that are in physical proximity to one another, the goal may be to only �nd the optimal
row permutation while not permuting the matrix columns.

As motivated by Figure 5.1, �nding a banded structure of a matrix will expose the clus-
ter structure of the underlying data. The image of the banded structure can be overlaid
with a cluster visualization. Because the rows of the matrix represent instances, high-
lighting one set of instances (one cluster) means highlighting several matrix rows. If the
discovered clusters are exposed by the matrix structure, we can expect that several adja-
cent matrix rows will be highlighted, forming a wide band. Highlighting clusters need not
be limited to only one cluster: because each instance belongs to exactly one cluster, we
can highlight all of them at once. The only limitation is the number of clusters: because
each cluster is colored with its own color, too many clusters may cause colors to be too
similar for the human eye.

5.1.2 Data clustering and visualization methodology

We used the banded matrix algorithm described in the previous section in a joint method-
ology for knowledge discovery from data proposed by Adhikari et al. (2016). The method-
ology merged three data analysis methods into a single pipeline, outlined in Figure 5.2.

The methodology starts with a set of experimental data and background knowledge
facts as shown in Figure 5.2. Next, both a mixture model and a banded matrix are
induced independently from the data. The mixture model results in a set of k probabilities
(π1, . . . , πk) for each data instance, where k is manually selected to the value at which an
objective function estimating the �t of the data stops increasing noticeably. The objective
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function used is the log-likelihood of the data given the probabilities (πi)i, estimated using
cross validation. The model is then applied to the original data, to obtain a clustering of
the data in which each data instance is associated with the index of the largest probability
πi. A detailed description of the methods used to calculate the values of πi is available in
Adhikari et al. (2016), however for the purposes of this work, the resulting index assignment
is considered as an input to the banded matrix methodology which presents the novel work,
presented in this thesis. In our contribution, we implemented the banded matrix step of
the methodology which enables the visualization of the resulting clusters. The step is
described in detail in Section 5.1.1. A third part of the methodology, semantic pattern
mining describes the clusters as conjunctions of terms in the background knowledge. In
the �nal step, all three models (the mixture model, the banded matrix and the patterns)
are joined to produce the �nal visualization.

5.2 Data Set Description

This section describes the application of the visualization methodology to several real-world
data sets. We �rst describe the data sets and then the results.

5.2.1 Multiresolution chromosomal ampli�cation data set

A wide range of genetic mutations and molecular mechanisms known as chromosomal aber-
rations have been identi�ed as the hallmarks of various disorders such as cancer, schizophre-
nia, and infertility (Albertson, 2006). In cancer research, identi�cation and characterization
of chromosomal aberrations are crucial to study and understand pathogenesis of cancer.
Furthermore, study of chromosomal aberrations provides necessary information to select
the optimal target for cancer therapy on individual level (Kirsch, 1993). The study of
chromosomal aberrations also has several clinical applications such as studying multiple
congenital abnormalities and identifying the family history of Down syndrome (Obe &
Vijayalaxmi, 2007).

The data set under study describes DNA copy number ampli�cations in 4,590 cancer
patients. The data describes 4,590 patients as data instances, with attributes being chro-
mosomal locations indicating aberrations in the genome. These aberrations are described
as ones (ampli�cation) and zeros (no ampli�cation). Myllykangas et al. (2006) describe
the ampli�cation data set in detail. Ampli�cation data is further described at two di�erent
resolution levels (312 and 393 locations, for 24 di�erent chromosomes).

Given the complexity of the multiresolution data, we were forced to reduce the com-
plexity of the learning setting to a simpler setting, allowing us to develop and test the
proposed methodology. To this end, we have reduced the size of the data set: from the
initial set of instances describing 4,590 patients, each belonging to one of the 73 di�erent
cancer types, we have focused on the 34 most frequent cancer types only, as there were
small numbers of instances available for many of the rare cancer types, thus reducing the
data set from 4,590 instances to a 4,104 instances data set. The choice of the 34 most
frequent cancers is motivated by the fact that it covers 90% of entire data. The original
data with 393 genomic locations are high dimensional and could result in a curse of di-
mensionality (Bellman, 1961) greatly increasing the runtime of the algorithm. Therefore,
we focused on the data from a single chromosome in our experiment, using as input to
step 2 of the proposed methodology the data clusters obtained at coarse resolution using
a mixture modeling approach (Myllykangas, Tikka, Böhling, Knuutila, & Hollmén, 2008).

When chromosomes are extracted from the data, some cancer patients show no am-
pli�cations in any regions of the chromosome 1. We have removed such samples without
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ampli�cations (zero vectors) because we are interested in the ampli�cations and their rela-
tion to cancers, not their absence. We considered negation cases unsuitable because we are
only investigating one chromosome at a time. A negation result could infer that if a region
is not aberrated, it is likely to be a speci�c cancer which will be misleading as information
from other chromosomes is missing. This reduces the sample size, for example sample size
of chromosome 1 is reduced from 4,104 to 407. While this data reduction may be an over-
simpli�cation, �nding relevant patterns in this data set is a huge challenge, given the fact
that even individual cancer types are known to consist of cancer sub-types which have not
yet been explained in the medical literature. If we consider the entire data, our initial ex-
periments have shown that inference and density estimation will produce degenerate results
because of the curse of dimensionality (Bellman, 1961). Additionally, the experiments per-
formed on chromosome 1 can be seamlessly extended to all the other chromosomes, thus
e�ciently using each sample present in the data. Furthermore, chromosome-wise anal-
ysis can generate chromosome-speci�c patterns for certain cancer types. The proposed
methodology may prove, in future work, to become a cornerstone in developing means
through which such sub-types could be discovered, using automated pattern construction
and innovative pattern visualization using banded matrices visualization.

In addition to the DNA ampli�cations data set, we used supplementary background
knowledge in the form of an ontology to enhance the analysis of the data set. The sup-
plementary background knowledge consists of a hierarchical structure of multiresolution
ampli�cation data, chromosomal locations of fragile sites, virus integration sites, cancer
genes, and ampli�cation hotspots. The hierarchical structure of multiresolution data is
due to International System of Cytogenetic Nomenclature (ISCN) which allows an exact
description of all numeric and structural ampli�cations in genomes (Sha�er & Tommerup,
2005). A fragile site is a chromosomal region that tends to show a constriction or a gap and
may tend to break on metaphase chromosomes when subjected to partial replication stress,
i.e. following partial inhibition of DNA synthesis (Durkin & Glover, 2007). A metaphase
chromosome is a chromosome in the stage of the cell cycle (the sequence of events in the life
of a cell) when a chromosome is most condensed, highly coiled, and aligned in the equator
of the cell before being separated into each of the two daughter cells. At this stage of the
cell cycle, it is easiest to distinguish and study the chromosome. Virus integration sites are
also the chromosomal locations where viral DNA inserts into host-cell DNA (zur Hausen,
2009). Approximately, 12% of cancers are caused by viruses (zur Hausen, 2009). Cancer
genes are also the chromosome locations of known cancer causing genes. The list of virus
integration sites was obtained from (Futreal et al., 2004). Ampli�cation hotspots are fre-
quently ampli�ed chromosomal loci identi�ed using computational modeling (Myllykangas
et al., 2006). Chromosome fragile sites and virus integration sites were used as additional
desriptions of the data sets (forming additional columns in the data matrix indicating an
abberation occurs in a particular site).

5.2.2 Publicly available data sets

In addition to the chromosomal aberrations data, we experimented with our proposed
three-part visualization methodology on four additional data sets used by Ristoski and
Paulheim (2014):

Cities data set describes the most and least liveable cities in the world according to the
Mercer rankings1.

NY Daily data set describes the crawled news items along with their sentiment scores.

1https://mobilityexchange.mercer.com/Insights/quality-of-living-rankings
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Tweets data set is a collection of tweets with di�erent features and the original task was
to identify di�erent sports related tweets. In this scenario we use the `DBpedia Direct
Types` ontology from (Ristoski & Paulheim, 2014).

StumbleUpon data set consists a of training data set used in a Kaggle competition.

Since the publicly available data sets were highly sparse, we preprocessed them to
remove highly sparse variables. In the Cities data set, we selected only those features
which were positive in at least 25 di�erent samples. Similarly, in the Cities data set we
also eliminated features that were dense, i.e. those variables that were positive in more
than 170 rows. In the NY Daily data set, we selected only those features that were
positive in more than 200 samples but less than 450 samples. Furthermore, we selected
only those features that were positive in more than 400 samples in the Stumble Upon data
set. Similarly, we selected only those features that were positive in more than 100 samples
of the tweets data set. The motivation behind removing those features was the fact that
features that are sparse or too dense carry little information with regard to di�erent types
of classes within the data. Furthermore, removing those sets of features mitigates negative
e�ects of the curse of dimensionality (Bellman, 1961).

5.3 Results

We �rst describe the results of cluster visualization using banded matrices on each of the
data sets. This is followed by the results of semantic rule visualization.

5.3.1 Cluster visualization using banded matrices

We used the bidirectional minimal banded augmentation method, described in Section 5.1.1,
to extract the banded structure in the data. As explained in Section 5.1.1, we decided to
only allow permutations of rows of the data matrix. The dark color indicates ones in the
data and light color denotes zeros in the data. The resulting data was then overlaid with
the 6 clusters, discovered using mixture models, as shown in Figure 5.3.

Figure 5.3 shows two visualizations of the clusters discovered in the data. In Figure
5.3a, the data instances are sorted so that all instances in the same cluster appear together
as consequtive rows in the visualization. Figure 5.3b, shows the same data set with the
instances sorted to expose the banded structure of the data set. Comparing the two it
is clear that Figure 5.3a shows a more homogeneous coloring, which is expected as a this
was the only criterion for sorting the data instances before visualizing them. On the other
hand, the colors in Figure 5.3b are mostly, but not entirely grouped together. Unlike Figure
5.3a, Figure 5.3b does not group instances from cluster 2 together, but rather splits them
into several subsets. These subsets, clearly visible in Figure 5.3b, are not appparent in
5.3a. Clusters 1, 5 and 6 are very well isolated by the banded matrix algorithms. Overall,
by exposing the banded structure of a matrix, Figure 5.3b allows a clear visualization
of not only the clusters discovered in the data, but also how the inner structure of each
cluster. Examination of the �gure shows that each cluster captures ampli�cations in some
speci�c regions of the genome. Also evident simply from the �gure is the phenomenon
that the p-arm of chromosome 1 (left part of the �gure) shows a comparatively smaller
number of ampli�cations whereas the q-arm shows a higher number of ampli�cations. As
this is also true for the mixture model results obtained in the �rst step of the visualization
methodology, we see that �nding the banded matrix structure of the data has enabled
more insightful visual inspection of the data.

During the mixture modeling phase of the methodology, Cluster 1 was characterized
by pronounced ampli�cations in the end of the q-arm (regions 1q32�q44) of chromosome
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(a) Cluster-based sorting (b) Banded matrix visualization

Figure 5.3: Visualization of the clusters discovered in the data. The data in Figure 5.3a is
sorted so that data instances in the same cluster appear together. Figure 5.3b shows an
alternative visualization of the clusters in the data where the cluster information is shown
over a banded structure, independendly discovered from the data.

1. Samples in the second cluster contained sporadic ampli�cations spread across both
p and q-arms in di�erent regions of chromosome 1. This cluster does not carry much
information and contains cancer samples that do not show discriminating ampli�cations in
chromosomes as the values of random variables (values of πi for instances in this cluster)
were near 0.5. This is consistent with the fact that cluster 2 is the only cluster that was split
into many separate matrix regions. In contrast, Cluster 3 portrayed marked ampli�cations
in regions 1q11�44. Cluster 4 showed ampli�cations in regions 1q21�25. Similarly, Cluster
5 is denoted by ampli�cations in 1q21�25. Cluster 6 is de�ned by pronounced ampli�cations
in the p-arm of chromosome 1.

The results of the mixture modeling step matched very well with the banded matrix
visualization shown in Figure 5.3b. All of the clusters, except for the uninformative Cluster
2, were almost completely isolated by the banded matrix algorithms. Especially interesting
is the fact that left image in Figure 5.3b also draws a distinction between Clusters 4 and
5 which at �rst show no obvious di�erence to the human eye.

5.3.1.1 Public data sets

On the publicly available data sets, we ran the alternating biMBA method to expose the
banded structure of the matrices. The choice of alternating method was motivated by the
fact that the ordering of the columns in the publicly available data sets was arbitrary. This
is unlike the ampli�cation data set which had �xed ordering of regions in the genome.

Cities The biMBA algorithm converged after 7 iterations exposing the banded structure
of the matrix. The banded structure in Figure 5.4 clearly visualizes the four clusters
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found by the presented methodology. Clusters 2 and 3 are almost completely sep-
arated from Clusters 1 and 4. The visualization shows that Cluster 1 and Cluster
2 are both composed of two parts which are hard to distinguish. This phenomenon
was also captured during model selection in Cities data set because increase in the
validation likelihood was minimal when the number of components were increased
from 3 to 4. When we selected four components, a relatively homogeneous cluster is
broken down into two.

NY Daily The biMBA algorithm converged after 11 iterations for the NY Daily data set.
The banded structure in Figure 5.5 clearly highlights Clusters 1, 2 and 6 and shows
that Clusters 4 and 3 are more similar to each other. Interestingly, even though
Cluster 3 is split into several parts, it can still be seen that the annotations, drawn
on the left side of the visualization, are more important for Cluster 3 (meaning that
splitting the two clusters was a good choice). As in the Cluster 2 of the ampli�cation
data set, the algorithm also highlights the Cluster 5 which does not capture a speci�c
pattern but patterns scattered across di�erent columns in the data set.

Tweets The biMBA algorithm converged after 33 iterations for the Twitter data set with
credible results con�rming the cluster allocation from step 1 of the methodology.
The visualization provided in Figure 5.6 shows that Clusters 1, 2 and 3 are clearly
separable from the rest of the data set. Cluster 4, the largest of the clusters, is split
into two large parts, both of which are fairly homogeneous. However, Clusters 5, 6,
and 7 were relatively small with the value mixture components equal to 0.07, 0.05,
and 0.03. Hence, these clusters are not fully exposed in the visualization.

Stumble Upon The Stumble Upon data set was the only data set on which our method-
ology did not achieve credible results, as shown in Figure 5.7. The model selection
procedure shows that both training and validation likelihood smoothly increases un-
til the number of components is 20. Even with the number of components greater
than 20 the validation likelihood did not decrease showing that there is no apparent
structure in the data. Similarly, the biMBA algorithm converged much more slowly
than in the other data sets, taking 521 iterations to reach the optimal banded struc-
ture. Visualizing the structure shows that the data is fractured into several small
chunks. Some clusters, like Clusters 8 and 10, are separated from the rest, but the
remaining clusters are sporadically scattered across all rows. This negative result,
however, still shows us that the overall methodology is sound, as the banded ma-
trix visualization com�rmed the result of mixture modelling � there is no underlying
structure to discover in the Stumble Upon data set.

5.3.2 Rules induced through semantic pattern mining

Using the Hedwig algorithm, described in Chapter 4, we induced subgroup descriptions for
each cluster as the target class. For a selected cluster, all the other clusters represent the
negative training examples, which resembles one-versus-all approach in multiclass classi�-
cation. In this section, we focus our discussion on the results pertaining to Clusters 1 and
3 (see Tables 5.1 and 5.2), however we provide the results of the other clusters as well. In
our experiments we have considered only rules without negations in the rule conditions, as
we are interested in the existence of ampli�cations characterizing the clusters (and thereby
the speci�c cancers). In contrast, the absence of ampli�cations normally characterizes the
absence of cancers not their presence.

Tables 5.1 and 5.2 show the rules induced for Clusters 1 and 3, together with their
relevant statistics. The rules presented in Table 5.2 quantify the clustering results obtained
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41 0 1.00 3.47

Figure 5.4: Results of the methodology on the Cities data set.

through mixture modeling and con�rmed by banded matrix visualization in Section 5.3.1.
The banded matrix visualizations are depicted in Figure 5.3 and show that Cluster 3
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# Rule TP FP Precision Lift

1
Cluster1(X) ← Agent(X)

AdministrativeDistrict(X)

Organism(X)

90 0 1.00 7.20

2
Cluster1(X) ← Organism(X)

AdministrativeDistrict(X)

LivingPeople(X)

87 0 1.00 7.20

3
Cluster1(X) ← Agent(X)

District(X)

Organism(X)

92 1 0.99 7.12

4
Cluster1(X) ← Organism(X)

District(X)

LivingPeople(X)

89 1 0.99 7.12

5
Cluster1(X) ← Organism(X)

Region(X)

LivingPeople(X)

92 2 0.98 7.04

Figure 5.5: Results of the methodology on the NY Daily data set.

is marked by the ampli�cations in the regions 1q11�44. However, the rules obtained in
Table 5.2 show that ampli�cations in all the regions 1q11�44 do not equally discriminate
Cluster 3. For example, the rule Rule 1: Cluster3(X) ← 1q43-44(X) ∧ 1q12(X)

characterizes Cluster 3 best with a precision of 1. This means that ampli�cations in regions
1q43�44 and 1q12 denote Cluster 3. The rule covers 81 of the 88 samples in Cluster 3.
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5
Cluster1(X) ← Person(X)

LivingPeople(X)
145 46 0.76 4.02

Figure 5.6: Results of the methodology on the Tweets data set.

Clinically, the aberration in these regions characterize Ependymoma (Myllykangas et al.,
2008).

Nevertheless, ampli�cations in regions 1q11�44 that were identi�ed through mixture
modeling as discriminating regions appear in at least one of the rules in Table 5.2 with a
varying degree of precision. The �rst part of the rule (i.e. ampli�cations in region 1q43�44)
is the most discriminating for Cluster 1 as shown in Table 5.1. However, precision and lift
are considerably reduced.

Although the rule Rule 2: Cluster1(X) ← 1q43-44(X) appears in semantic de-
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Figure 5.7: Results of the banded matrix visualization on the StumbleUpon data set. The
data is more fragmented compared to the NY daily, Tweets and Cities data set. As Hedwig
discovered no signi�cant rules, we only show the banded matrix visualization.

# Rules for Cluster 1 TP FP Precision Lift

1 Cluster1(X) ← 1q43�44(X) 26 88 0.23 3.09
2 Cluster1(X) ← 1q41(X) 26 90 0.22 3.04
3 Cluster1(X) ← 1q32(X) 24 116 0.17 2.33
4 Cluster1(X) ← HotspotSite(X) 30 280 0.10 1.31
5 Cluster1(X) ← FragileSite(X) 30 317 0.09 1.17

Table 5.1: Rules induced for Cluster 1 of the chromosomal ampli�cation data set.

scriptions of both Cluster 1 and 3, addition of a conjunct 1q12 to the rule improves the
discriminating power for Cluster 3. Rule 2 covers all 88 samples of Cluster 3 with pre-
cision of 0.77 whereas it covers 26 out of 30 samples in Cluster 1 with the precision of
0.23. This shows that ampli�cations in region 1q43�44 characterize both Clusters 1 and
3. If the negation rules are considered, ampli�cations only in regions 1q43-44 would more
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# Rules for Cluster 3 TP FP Precision Lift

1 Cluster3(X) ← 1q43�44(X) ∧ 1q12(X) 81 0 1.00 4.62
2 Cluster3(X) ← 1q11(X) 78 9 0.90 4.15
3 Cluster3(X) ← 1q43�44(X) 88 26 0.77 3.57
4 Cluster3(X) ← 1q41(X) 88 28 0.76 3.51
5 Cluster3(X) ← 1q12(X) 81 43 0.65 3.02
6 Cluster3(X) ← 1q32(X) 88 52 0.63 2.91
7 Cluster3(X) ← 1q31(X) 87 54 0.62 2.85
8 Cluster3(X) ← 1q25(X) 88 64 0.58 2.68
9 Cluster3(X) ← 1q24(X) 88 97 0.48 2.20
10 Cluster3(X) ← 1q21(X) 88 134 0.40 1.83
11 Cluster3(X) ← 1q22�24(X) 88 149 0.37 1.72
12 Cluster3(X) ← HotspotSite(X) 88 222 0.28 1.31
13 Cluster3(X) ← CancerSite(X) 88 245 0.26 1.22
14 Cluster3(X) ← FragileSite(X) 88 259 0.25 1.17

Table 5.2: Rules induced for Cluster 3 of the chromosomal ampli�cation data set.

likely make it a candidate for Cluster 1. Similarly, the second most discriminating rule for
Cluster 3 is Rule 2: Cluster3(X) ← 1q11(X) which covers 78 positive samples and 9
negative samples.

The rules listed in Table 5.2 also capture the multiresolution phenomenon of the data.
We input only one resolution of data to the algorithm but the hierarchy of di�erent res-
olutions is made available to the algorithm as background knowledge. For example, the
literal 1q43�44 denotes a joint region in coarse resolution thus showing that the algorithm
produces results at di�erent resolutions. The results at di�erent resolutions improve the
understandability and interpretability of the rules (Hollmén & Tikka, 2007).

Furthermore, other information added to the background knowledge are ampli�cation
hotspots, fragile sites, cancer genes, which are discriminating features of cancers but do not
show to discriminate any speci�c clusters present in the data. Therefore, such additional
information can be better utilized in situations where the data set contains not only cancer
samples but also control samples. Unfortunately, this is not the situation here as our data
set has only cancer patients.

5.3.2.1 Public data sets

We ran the same semantic subgroup discovery procedure (with the same parameters) on the
publicly available data sets. Due to the large amount of experimental results, we chose to
describe one cluster and the top �ve rules for that cluster for each data set (Figures 5.4, 5.5
and 5.6). For the Stumble Upon data set we report only the (lacking) banded matrix
visualization to illustrate an instance where our methodology is not applicable (as described
in Section 5.3.1.1).

Cities Cluster 2 was chosen as an example of a very well characterized cluster (Figure 5.4).
We report the top �ve rules, all with 100% precision. The �rst rule actually perfectly
describes the cluster, since it covers all examples from Cluster 2.

By investigating the rule conjuncts it follows that this cluster contains cities that
are at the same time annotated as centers, municipalities and populated places.
Furthermore, the cities data set comes with a label describing its livability: low,
medium, and high (Ristoski & Paulheim, 2014). Although clustering, rule extraction,
and visualization were performed independent of the labels, the rules and clusters
mostly describe cities with medium and high livability.
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In the table, we omit the full concept URIs of concepts for visual clarity. Never-
theless, the exact semantics of each concept can be veri�ed by visiting the corre-
sponding DBpedia pages, e.g., full URI of Center is http://dbpedia.org/class/yago/
Center108523483.

NY Daily For this data set, we report the top �ve rules for Cluster 1 (Figure 5.5). Similar
to the previous data set, the found rules are of high precision and each covers a
relatively large portion of examples from this cluster (a total of 107 examples).

Compared to the subgroup descriptions found for the other �ve clusters, this cluster
contains mainly headlines annotated with the District and Region concepts, together
with Agent and Organism concepts.

Tweets For this data set we feature the top �ve rules for Cluster 1 (Figure 5.6). The
rules found were of lower precision (76%-80%), which indicates that this cluster is
harder to describe compared to the clusters mentioned in the previous two data sets.
Nevertheless, the subgroup descriptions indicate that this cluster contains mainly
tweets mentioning speci�c athletes (i.e. annotated with Person and Athlete concepts)
and not for example teams or organizations, which do appear in rules for the other
clusters (e.g., Organization concept). Furthermore, the tweets data set consists of
associated class labels which denotes sports related and unrelated tweets (Ristoski
& Paulheim, 2014). Although clustering, rule extraction, and visualization were
performed independently of the label, this cluster mostly contains the sports related
tweets.

5.3.3 Visualizing semantic rules and clusters with banded matrices

The second way we can use the exposed banded structure of the data is to display columns
that were found to be important due to appearing in rules from Section 5.3.2. We achieve
this by highlighting the chromosomal regions which appear in the rules. The Figure 5.8
depicts colored overlays of the rules on the ordered/serialized patient-chromosome matrix.
A highlighted column in the �gure denotes that an ampli�cation in the corresponding region
characterizes the instances of the particular cluster. A darker hue means that the region
appears in more rules. The numbers on top right of the �gures correspond to rule numbers.
For example, 1, 3 above rightmost column of cluster 3 indicates that the chromosome region
appears in rules 1 and 3 tabulated in Table 5.2. As shown in Figure 5.8, the highlighted
band for Cluster 1 spans chromosome regions 1q32�44. For Cluster 3, the entire q-arm
of the chromosome is highlighted, as indeed the instances in Cluster 3 have ampli�cations
throughout the entire arm. We can see that the regions 1q11�12 and 1q43�44 appear in
rules with higher lift, in contrast to the other regions. This tells us that the ampli�cations
on the edges of the region are more important for the characterization of the cluster.

# Rule TP FP Precision Lift

1 Cluster2(X) ← 1p31(X) 28 26 0.52 2.20
2 Cluster2(X) ← 1p32(X) 19 35 0.35 1.49

Table 5.3: Rules for Cluster 2.

As shown in the left panel of Figure 5.9, this cluster captures the heterogeneity in
data. Since we are using only chromosome 1, this cluster is more likely to capture those
mainly cancers that are characterized by aberrations in other chromosomes rather than
chromosome 1. The samples from clusters are distributed in di�erent parts by the banded

http://dbpedia.org/class/yago/Center108523483
http://dbpedia.org/class/yago/Center108523483
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Figure 5.8: Clusters 1 (left) and 3 (right). The highlighted columns in each image corre-
spond to the attributes that appear in the rules, tabulated in Tables 5.1 and 5.2.
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Figure 5.9: Clusters 2 (left) and 4 (right) with relevant columns highlighted.

matrix visualization. Nevertheless, the aberrations captured by these clusters are mis-
cellaneous samples, i.e. those cancers that do not show prominent aberrations in chro-
mosome 1. Nevertheless, aberrations captured by this cluster characterize glioblastoma
multiforme (Myllykangas et al., 2008).

As shown in the right panel of Figure 5.9, this cluster captures the aberrations near
the beginning of the q arm of chromosome 1. The rules tabulated in Table 5.4 show
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# Rule TP FP Precision Lift

1 Cluster4(X) ← 1q24(X) 81 104 0.44 2.20
2 Cluster4(X) ← 1q25(X) 57 95 0.38 1.88
3 Cluster4(X) ← 1q22-24(X) 81 156 0.34 1.72
4 Cluster4(X) ← HotspotSite(X) 81 229 0.26 1.31
5 Cluster4(X) ← 1q21(X) 56 166 0.25 1.27
6 Cluster4(X) ← CancerSite(X) 81 252 0.24 1.22
7 Cluster4(X) ← FragileSite(X) 71 276 0.20 1.03

Table 5.4: Rules for Cluster 4.

aberrations in regions 1q21�1q25. Clinically, the aberrations in these regions of Cluster 4
mark liposarcoma (Myllykangas et al., 2008).

# Rule TP FP Precision Lift

1 Cluster5(X) ← 1q21(X) 75 147 0.34 1.83
2 Cluster5(X) ← 1q12(X) 33 91 0.27 1.44
3 Cluster5(X) ← 1q22�24(X) 60 177 0.25 1.37
4 Cluster5(X) ← HotspotSite(X) 75 235 0.24 1.31
4 Cluster5(X) ← HotspotSite(X) 75 235 0.24 1.31
5 Cluster5(X) ← CancerSite(X) 75 258 0.23 1.22
6 Cluster5(X) ← FragileSite(X) 75 272 0.22 1.17

Table 5.5: Rules for cluster 5.
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Figure 5.10: Clusters 5 (left) and 6 (right) with relevant columns highlighted.

The regions and rules in Cluster 5 depicted in the left panel of Figure 5.10 overlap with
the rules describing Cluster 4. However, the rules describing these clusters have higher
precision than those describing Cluster 4. These two clusters are the prime candidates if any
two clusters need to be merged. In terms of clinical relevance, the aberrations in the regions
captured by this cluster denote malignant �brous histiocytoma of bone (Myllykangas et al.,
2008).

The ampli�cations in the P-arm of Chromosome 1 captured by this cluster are depicted
in the right panel of Figure 5.10. This is clearly distinguishable from other clusters because
other clusters mainly capture the aberrations in Q arm of chromosome 1. The aberration
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# Rule TP FP Precision Lift p-value

1 Cluster6(X) ← 1p34(X) 37 8 0.82 9.04 0.000
2 Cluster6(X) ← 1p33(X) 31 12 0.72 7.93 0.000
3 Cluster6(X) ← 1p32(X) 29 25 0.54 5.91 0.000
4 Cluster6(X) ← 1p31(X) 15 39 0.28 3.06 0.000
5 Cluster6(X) ← CancerSite(X) 36 297 0.11 1.19 0.000

Table 5.6: Rules for cluster 6.

in these regions characterizes the phenomenon of small cell lung cancer (Myllykangas et al.,
2008).

In summary, �gures 5.3 and 5.8 o�er an improved view of the structure of the underlying
data. The Figures show that most samples in the same cluster also come together in the
banded matrix visualization although the permutations are constrained and restricted to
only rows in the data set. This has been achieved by reordering the matrix rows by placing
similar items closer together to form a banded structure, which allows easier visualization
of the clusters and rules. It is important to reorder the rows independently of the clustering
process. This is because the reordering does not depend on the cluster structure discovered.
Therefore, the resulting �gures o�er new insight into both the data and the clustering.

5.3.3.1 Public data sets

Similar to the chromosomal aberrations data set, we also highlighted the relevant variables
captured by the rules describing each cluster on the public data sets. Due to the large
amount of experimental results, we chose to limit the discussions on one cluster and the top
�ve rules for that cluster for each data set (Figures 5.4, 5.5, and 5.6). For the StumbleUpon
data set we report only the (lacking) banded matrix visualization to illustrate an instance
where our methodology is not applicable.

Cities Cluster 2 in the data set was perfectly described by the rules. This cluster was cho-
sen as an example of a very well characterized cluster (Figure 5.4). The visualization
shows a clear band of features, with the top instances annotated by features on the
left side of the chart and the bottom instances annotated by features on the right.
Cluster 2 in the middle is characterized by containing instances that are annotated
by features on both sides of the band, as instances above it are not annotated by the
rightmost features and instances above are not annotated by the leftmost features.
The visualization shows that all �ve top rules cover features on both sides of the
band.

NY Daily For this data set, we report the top �ve rules for Cluster 1 as shown in Fig-
ure 5.5. The visualization clearly identi�es the banded structure of the data, with
three distinct vertical bands. The cluster is characterized as the cluster which con-
tains instances, annotated by the features in the (unlike Clusters 3 and 4) second
and (unlike Clusters 2 and 6) third band. The visualisation shows that all rules take
this into account as all rules explain Cluster 1 with at least one conjunct covering
features on the second band and one conjunct in the third band.

Tweets For this data set we feature the top �ve rules for Cluster 1 (Figure 5.6). Despite
lower precision of rules extracted by our methodology, the visualization still clearly
shows the most important features for Cluster 1. The banded structure visualization
shows us two sets of features that are important to Cluster 1. The �rst is the block
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of tweets, annotated with the terms Athlete and Contestant. One of these two
annotations occurs in all top four rules, found for this cluster. The second, larger
block of features is used in all top �ve rules we present. Additionally, the visualization
of all clusters can also tell us why the precision of rules, found for this data set, was
lower: Cluster 2 contains several instances which are annotated by all features that
also annotate features in Cluster 1.

5.4 Conclusion

We have applied algorithms for banded matrix discovery to improve the visualization of
data, in particular results of semantic data mining on the data.

The contributions of this chapter are as follows. We designed an algorithm that uses
a banded-matrix �nding algorithm to visualize data sets that can be presented as 0 − 1
matrices. We have tested the algorithm on several data sets. On each data set, we have
shown that the algorithm improves the visualization of the data set by permuting its rows
and columns. By independently running a clustering algorithm on the data set, we have
shown that clusters, discovered using the clustering algorithm, were easily identi�ed after
we permute the data set to discover its banded structure. The fact that the clusters and the
banded structure were discovered independently reinforces each component of the described
methodology. We also ran a semantic data mining algorithm to uncover rules that describe
the clusters of the data set. As before, we have shown that the independently discovered
banded structure allows for easier visualization of the rules, discovered by Hedwig.

The three steps of the visualization methodology were all able to discover the underlying
structure of the data, with each having its bene�ts and all working together. The synergy
between the three steps was also con�rmed on the Stumble Upon data set. Although the
results of the three steps were not good on this data set, it is important to note that all
three steps of the methodology failed to uncover any hidden structure � it was di�cult to
select the number of clusters, the banded structure of the data was hard to discover and
barely visible, and the discovered clusters were hard to describe using Hedwig. These three
negative results show that the data set has no underlying structure to uncover.
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Chapter 6

Publicly Available Software

The HinMine and NetSDM methodologies, described in Chapters 3 and 4, are publicly
available. We implemented the algorithms, described in this thesis, in the ClowdFlows
data mining platform. ClowdFlows is an open-source cloud-based platform for composition,
execution, and sharing of interactive machine learning and data mining work�ows (Kranjc
et al., 2012) using a visual programming paradigm. As ClowdFlows allows users to develop
their own widgets and contribute to the roster of data analysis methods available, we
developed several widgets implementing the HinMine and NetSDM work�ows. In this
chapter, we present the implementation of both work�ows. The algorithms are also joined
in a GitHub repository1.

6.1 HinMine Work�ow in ClowdFlows

We implemented all the functions, used in our experiments with the HinMine methodology,
in the ClowdFlows platform. The resulting work�ow is shown in Figure 6.1. The work�ow
begins by loading a data set encoded as a .gml �le. The GML (Graph Modeling Language)
(Himsolt, 1997) is a text format that allows for easy representation of network data. For
the HinMine methodology, the input requires that each node in the network is of a given
type. In the online example2, the methodology is run on a subset of the IMDB data
set containing nodes of type person and nodes of type movie. One node type (the base
node type for the HinMine methodology) must be labeled, and if more than one label is
applicable for a node, the labels must be separated by a ��� separator. An example of a
node looks as follows:

node [

id 6336

label "movie_303"

labels "Action---Adventure---Western"

type "movie"

name "movie_the-quick-and-the-dead"

]

The methodology loads the GML �le in the widget Read GML from �le, where it
identi�es the base node type (the node type that is labeled) and training instances (all
instances that are labeled). The loaded network is passed as the variable net to the
HinMine-Decompose widget where network decomposition is applied. This is an interactive

1https://github.com/JanKralj/cfnetSDM
2http://clowd�ows.org/work�ow/11019/
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Figure 6.1: Overview of the HinMine methodology as a work�ow in the Clowd�ows plat-
form.

Figure 6.2: The decomposition selection in HinMine.

widget that, when �rst run, provides all possible decompositions of the input network.
The widget discovers all possible decomposition paths and allows the user to choose which
decompositions to perform. After performing the decompositions, the widget returns the
decomposed network in the variable net. Figure 6.2 shows the possible decompositions of
the online example. After decomposition, the methodology has two options:

1. If we classify the data set with label propagation, we can use the Apply Label Prop-

agation widget. This widget performs label propagation on the network and returns
the results as a numpy (Walt, Colbert, & Varoquaux, 2011) array (variable res).

2. If we classify the data using propositionalization, the HinMine-Propositionalize wid-
get performs the network propositionalization described in Section 2.1.5. This widget
constructs the feature vectors for the labeled (training, variable tra) and unlabeled
(test, variable tes) nodes separately. In this way, the classi�er can be trained using
the Build MultiLabel Classi�er widget on the training set. In classi�er construction
using the Build MultiLabel Classi�er, any learner capable of predicting labels on data
sets containing numeric values can be used as the inuput variable lea. In the online
example, we use the k-nearest neighbours classi�er. Finally, the induced classi�er is
applied to the test set and a numpy array is returned as a result in the variable res.

Both options above result in the work�ow returning a numpy array. The array's
columns represent the labels of the data set and the rows represent the unlabeled nodes.
Each row contains results of label propagation applied to the given unlabeled node. The
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Figure 6.3: Overview of the NetSDM methodology as a work�ow in the Clowd�ows plat-
form.

result is a vector of values between 0 and 1, and the higher the value, the more likely it is
that the label is applicable to the given node.

6.2 NetSDM Work�ow in ClowdFlows

The work�ow, implementing the NetSDM methodology, shown in Figure 6.3, is available
online3. The work�ow begins by loading the background knowledge (denoted as the input
variable bk) and the set of examples (denoted as the variable ex). This step is the same
as the �rst step of the Hedwig methodology which is also available in the ClowdFlows
platform4. The background knowledge �le is then loaded into the netSDM-reduce widget
which prunes the background knowledge network. Double-clicking on the widget allows
the user to change the parameters of the NetSDM algrithm:

• the advaced_removal checkbox determines whether the algorithm will use the ad-
vanced or naive node removal method,

• checking the hyper checkbox causes the algorithm to construct a hypergraph out of
the background ontologies instead of using the naive network conversion,

• the directed checkbox tells the algorithm whether to take directions of network edges
into account when calculating network scores,

• minimum ranking determinines how much of the background knowledge should re-
main in the pruned data set.

The widget returns two objects: the pruned background knowledge set (bk) and the
newly annotated set of examples (ex. These two objects can be used to discover rules in
the widget Hedwig that runs the Hedwig SDM algorithm.

3http://clowd�ows.org/work�ow/11015/
4http://clowd�ows.org/work�ow/7031/
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Figure 6.4: Selecting the parameters for the NetSDM widget.

6.3 Banded Matrix Algorithm

The banded matrix algorithm is available as a command line script from GitHub5. After
installing the package with the command python setup.py install, the user can apply
the banded matrix algorithm to a data set and display the data set and clusters by running

python -m banded_visualization clusters path-to-folder

The folder at location path-to-folder must contain at least three �les (an example is
also provided on GitHub in the folder tweets:

• data.txt � the text �le containing the binary matrix of the data (contains zeroes
and ones, separated by spaces).

• column_names.txt � a text �le containing column names of the matrix � one name
per row.

• row_labels.txt � a text �le containing row indices and the number of a cluster each
instance belongs to, separated by a tab. For example, the line 1 4 means that the
�rst row of the data belongs to the cluster 4.

To visualize the rules explaining the data set, the folder must contain two additional
�les:

• rules.txt � the output of the Hedwig algorithm on the data.

• hierarchy.txt � the hierarchy of labels used by Hedwig to construct the rules. Each
row of this �le contains �rst the parent term of the background ontology and then
(separated by a tab) a list of child-terms, separated by the semicolon. An example
row in this folder is as follows:

parent_node child_1;child_2;child_3

5https://github.com/JanKralj/banded_visualization
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Chapter 7

Conclusions

Our work provides novel approaches to data mining by combining network analysis methods
with machine learning algorithms. In this section, we provide a summary of the scienti�c
contributions covered in Chapters 3, 4 and 5. We conclude our work with an overview of
future work for each area of research.

7.1 Summary of Contributions

The thesis presented three connected areas of research and the advancements made in each.
1. Advances in semi-supervised learning on information networks. We examined a com-

bination of network analysis and data mining on a semi-supervised problem in a network
setting. Taking as a basis the network decomposition and propositionalization approach
�rst proposed by Gr£ar et al. (2013), we designed and tested a framework for node classi-
�cation in a network setting with two distinct classi�cation options. For the �rst option,
classi�cation through network propositionalization, we proposed and tested several im-
proved heuristics for heterogeneous network decomposition. We adapted seven heuristics
for bag-of-words (BOW) vector construction in text mining into heuristics that can be used
to weigh intermediary nodes when decomposing a heterogeneous network into individual
homogeneous networks. Several of these heuristics give lower weights to words that either
appear in too many documents or appear in documents with varying class labels which is
a desired property for text analytics. A similar property is desirable in a network setting.
Hence, we designed new heuristics to decrease the importance of intermediary nodes that
either connect too many base nodes or connect nodes with varying class labels. Experi-
ments on several data sets have shown that the naive heuristic (that can be understood
as the adaptation of the term-frequency heuristic for BOW-vector construction) is outper-
formed by other node weighting heuristics used for network decomposition. The heuristic,
adapted from the well known tf-idf (term-frequency-inverse-document-frequency) and the
gain ratio heuristic, performed well on the tested data sets.

The second option for classi�cation with heterogeneous network decomposition is to
use the label propagation algorithm (D. Zhou et al., 2004). Our experiments have shown
that the label propagation algorithm does not perform well on imbalanced data sets where
it tends to allow the majority class to disproportionally out-vote the minority classes. We
proposed a modi�cation to the label propagation algorithm where initial weights are set to
the labeled examples so that the examples from a larger class receive smaller weights and
therefore have a lower e�ect on the label propagation. Our results show that the modi�ed
label propagation approach outperforms standard label propagation on data sets where
one class is larger than the others, but su�ers decreased performance when applied to data
sets with very small classes.
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2. Network �ltering for semantic data mining. We introduced network analysis into
the �eld of Semantic Data Mining (SDM). The work presents an approach to combining
the best properties of network analysis methods (scalability and speed) with the bene�ts
of SDM methods (capability of dealing with complex background knowledge and infor-
mativeness of results). The new methodology consists of four steps: (1) conversion of
a background knowledge network into an information network, (2) assessment of back-
ground knowledge terms signi�cance using network analysis methods, (3) pruning of the
background knowledge network and (4) application of an SDM algorithm to the pruned
network. We proposed and tested two methods � a naive version and one that constructs
a hypergraph � of converting a background knowledge network (an input for SDM algo-
rithms) into an information network that can be examined by network analysis methods.
To assess the importance of background knowledge terms, we tested two network anal-
ysis methods and determined that Personalized PageRank weights are the best heuristic
for pruning the background knowledge. Finally, for the step of pruning the background
knowledge, we tested a naive and advanced version of node removal, with the naive version
simply removing the node and all its connections and the advanced version removing the
node but keeping the connections semantically implied by its existence. In the experiments,
the advanced node removal method proved to be more consistent and resulted in better
performance. Our experiments showed that by using network �ltering we can decrease the
runtime of the SDM algorithm by a factor of 100, �nding in minutes the complex rules
that � without network �ltering � require several hours to discover.

3. Banded matrix aided visualization for semantic data mining. We proposed a method
for data visualization that can be used in parallel with semantic data mining algorithms to
provide a better understanding of both the structure of the input data and the nature of
the rules resulting from the SDM algorithms. To expose the structure of the data sets, we
propose to use banded matrix algorithms that search for permutations of the input data
set in order to discover a hidden structure in the data set. Combined with labels for data
instances, the discovered structure can further be used to expose groups of similar data
instances and their labels if we color each class label with its own color. Alternatively, we
can use semantic data mining algorithms to discover rules governing di�erent class labels,
and then use the banded matrix structure to expose both the class and the rules governing
it. The application to several publicly available data sets showed that the banded matrix
approach is useful for discovering hidden structures in data sets in all but one of the cases.
The data set in which a hidden structure could not be found was also di�cult to cluster
using mixture models and di�cult to analyze using semantic data mining algorithms which
discovered no valuable rules. This gives two independent indicators that the data set simply
lacks any structure we could uncover.

4. Publicly available software. The algorithms, used in this work, are publicly available
online. The HinMine and NetSDM algorithms were implemented in the ClowdFlows online
platform and the banded matrix algorithm is available on GitHub.

7.2 Further Work

The three main research contributions described in Chapters 3-5 show promising results
and deserve further investigation.

In semi-supervised learning, we have shown that using advanced network decomposition
heuristics can improve the results of network classi�cation algorithms. An issue faced in
our research is that while one heuristic can perform well on one data set, it can perform
much worse on another data set. This opens an interesting research question. On one
hand, further analysis is required to discover which properties of a network correlate with
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a change in performance of a given network decomposition heuristic. The properties that
should be examined can cover any information network property such as the structure of its
communities, the network's size, diameter, distribution of node degrees, etc. This analysis
could be done on arti�cial data sets where we have full control of the network properties.
On the other hand, the problem of selecting the best decomposition heuristic could also
be solved through sampling. Using this approach, we would �rst select a small random
subset of the training set and evaluate the di�erent decomposition heuristics on that. This
step may prove to be problematic because sampling of network data is di�cult, a di�culty
also shown in our results in Chapter 3 (Figure 3.5). After appropriately sampling the data
and testing the heuristics, the results would then be used to select the best decomposition
heuristic and use it for classi�cation in a real classi�cation problem. In further work, we
wish to compare the two methods for decomposition heuristic selection.

In network �ltering for semantic data mining, we plan a more comprehensive exami-
nation of how the performance of Hedwig compares to enrichment-analysis-based methods
like SegMine. We plan a comparison using several biological data sets, including responses
of rheumatoid arthritis patients to drug treatment. We plan further experiments with
di�erent methods for network reduction. For example, other network ranking methods
or even other network analysis methods, such as community detection, could be used to
identify the most relevant parts of the background knowledge network. Additionally, a
non-deterministic approach to background knowledge pruning could be used instead of the
hard cut-o� used in the current experiments. In this approach, the scores of background
knowledge terms represent (non-scaled) probabilities of sampling a given node. Such an
approach has the bene�t of not eliminating any background knowledge term outright,
however the probabilistic nature of the sampling would require multiple runs of the entire
algorithm, including the Hedwig algorithm. This can quickly negate the improvements in
performance, achieved by the work done so far. Further work in the �eld of network �lter-
ing for semantic data mining will also include applications of the NetSDM methodology
to larger data sets. Our experiments so far have been limited to the Gene Ontology back-
ground knowledge set. As Hedwig required several hours to discover interesting rules using
this ontology, using much larger ontologies was not feasible without dramatically reducing
the parameters guiding the search. However, using our network �ltering approach, the
algorithm can be applied to a much wider array of background knowledge sets. In future,
we wish to examine how the network �ltering approach can be used to run semantic data
mining on the BioMine (Eronen, Hintsanen, & Toivonen, 2012) graph of biological entities
and connections between them.

In the �eld of banded matrix visualization, the main goal of the resulting algorithms is
improved comprehensibility of the SDMmethods. Currently, the banded matrix algorithms
are designed to �nd a structure of the data without knowing the class labels of data
instances. We would like to examine the possibilities of designing algorithms that can
also take class labels into account, however, a naive version simply grouping the instances
with the same label would present a step back from the existing algorithm � it would not
discover any real structure of the data. Additionally, we could expand the idea described
in this work and use general methods which discover a structure of binary matrices.





97

References

Adhikari, P. R., Vavpeti£, A., Kralj, J., Lavra£, N., & Hollmén, J. (2016). Explaining
Mixture Models through Semantic Pattern Mining and Banded Matrix Visualization.
Machine Learning, 105 (1), 3�39.

Agrawal, R. & Srikant, R. (1994). Fast Algorithms for Mining Association Rules in Large
Databases. In Proceedings of the 20th International Conference on Very Large Data

Bases (pp. 487�499). San Francisco, California, USA.
Albertson, D. G. (2006). Gene Ampli�cation in Cancer. Trends in Genetics, 22 (8), 447�

455.
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., . . . Eppig,

J. T., et al. (2000). Gene Ontology: Tool for the Uni�cation of Biology. Nature
genetics, 25 (1), 25.

Baebler, �., Witek, K., Petek, M., Stare, K., Tu²ek-�nidari£, M., Pompe-Novak, M., . . .
Marczewski, W., et al. (2014). Salicylic acid is an indispensable component of the
Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato.
Journal of Experimental Botany, 65 (4), 1095�1109.

Bavelas, A. (1950). Communication Patterns in Task-oriented Groups. Journal of the

Acoustical Society of America, 22, 725�730.
Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold Regularization: A Geometric

Framework for Learning from Labeled and Unlabeled Examples. Journal of Machine

Learning Research, 7 (Nov), 2399�2434.
Bellman, R. E. (1961). Adaptive Control Processes - A Guided Tour. Princeton University

Press.
Bourchtein, A. & Bourchtein, L. (2013). On some analytical properties of a general PageR-

ank algorithm. Mathematical and Computer Modelling, 57 (9), 2248�2256.
Burt, R. & Minor, M. (1983). Applied Network Analysis: A Methodological Introduction.

Sage Publications.
Callahan, A., Cifuentes, J. J., & Dumontier, M. (2015). An Evidence-based Approach to

Identify Aging-related Genes in Caenorhabditis Elegans. BMC Bioinformatics, 16 (1),
1.

Cantador, I., Brusilovsky, P., & Ku�ik, T. (2011). 2nd Workshop on Information Het-
erogeneity and Fusion in Recommender Systems. In Proceedings of the 5th ACM

Conference on Recommender Systems. Chicago, IL, USA: ACM.
Chen, C.-H., Hwu, H.-G., Jang, W.-J., Kao, C.-H., Tien, Y.-J., Tzeng, S. L., & Wu, H.-M.

(2004). Matrix Visualization and Information Mining. In Proceedings in Compu-

tational statistics: 16th Symposium Held in Prague, Czech Republic (pp. 85�100).
Physica-Verlag HD.

Chen, C. & Paul, R. J. (2001). Visualizing a knowledge domain's intellectual structure.
IEEE Computer, 34 (3), 65�71.

Consortium. (2008). The Gene Ontology Project in 2008. Nucleic Acids Research, 36 (suppl
1), D440�D444.



98 References

Cox, L. S. & Faragher, R. (2007). From Old Organisms to New Molecules: Integrative Biol-
ogy and Therapeutic Targets in Accelerated Human Ageing. Cellular and Molecular

Life Sciences, 64 (19-20), 2620�2641.
Crestani, F. (1997). Application of Spreading Activation Techniques in Information Re-

trieval. Arti�cial Intelligence Review, 11 (6), 453�482.
De Raedt, L. (2008). Logical and Relational Learning. Springer.
de Sousa, C. A. R., Rezende, S. O., & Batista, G. E. (2013). In�uence of Graph Con-

struction on Semi-supervised Learning. In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases (pp. 160�175). Springer.
Debole, F. & Sebastiani, F. (2004). Supervised Term Weighting for Automated Text Cat-

egorization. In Text Mining and its Applications (pp. 81�97). Springer.
Dem²ar, J. (2006). Statistical Comparisons of Classi�ers over Multiple Data Sets. Journal

of Machine Learning Research, 7 (Jan), 1�30.
D'Orazio, V., Landis, S. T., Palmer, G., & Schrodt, P. (2014). Separating the Wheat from

the Cha�: Applications of Automated Document Classi�cation Using Support Vector
Machines. Polytical Analysis, 22 (2), 224�242.

Durkin, S. G. & Glover, T. W. (2007). Chromosome Fragile Sites. Annual Review of Ge-

netics, 41 (1), 169�192.
Dºeroski, S. & Lavra£, N. (Eds.). (2001). Relational Data Mining. Berlin: Springer.
Eronen, L., Hintsanen, P., & Toivonen, H. (2012). Biomine: A Network-structured Re-

source of Biological Entities for Link Prediction. In M. R. Berthold (Ed.), Bisociative
Knowledge Discovery (Vol. 7250, pp. 364�378). Lecture Notes in Computer Science.
Springer.

Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry,
40, 35�41.

Freeman, L. C. (1979). Centrality in Social Networks Conceptual Clari�cation. Social Net-
works, 1 (3), 215�239.

Fürnkranz, J., Gamberger, D., & Lavra£, N. (2012). Foundations of Rule Learning. Springer.
Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., . . . Stratton,

M. R. (2004). A Census of Human Cancer Genes. Nature Reviews Cancer, 4 (3), 177�
183.

Garriga, G. C., Junttila, E., & Mannila, H. (2011). Banded Structure in Binary Matrices.
Knowledge and Information Systems, 28 (1), 197�226.

Gr£ar, M., Trdin, N., & Lavra£, N. (2013). A Methodology for Mining Document-enriched
Heterogeneous Information Networks. The Computer Journal, 56 (3), 321�335.

Grover, A. & Leskovec, J. (2016). Node2vec: Scalable Feature Learning for Networks.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. San Francisco, California, USA.
Guarino, N., Oberle, D., & Staab, S. (2009). What Is an Ontology? In Handbook on On-

tologies (pp. 1�17). Springer.
Hämäläinen, W. (2010). E�cient Search for Statistically Signi�cant Dependency Rules in

Binary Data (Doctoral dissertation, Department of Computer Science, University of
Helsinki, Finland).

Han, E.-H. & Karypis, G. (2000). Centroid-Based Document Classi�cation: Analysis and
Experimental Results. In Proceedings of the 4th European Conference on Principles

of Data Mining and Knowledge Discovery (pp. 424�431). Springer.
Himsolt, M. (1997). GML: A Portable Graph File Format. Universität Passau.
Hoehndorf, R., Dumontier, M., & Gkoutos, G. V. (2012). Identifying Aberrant Pathways

through Integrated Analysis of Knowledge in Pharmacogenomics. Bioinformatics,
28 (16), 2169�2175.



References 99

Hollmén, J. & Tikka, J. (2007). Compact and Understandable Descriptions of Mixture of
Bernoulli Distributions. In Proceedings of the 7th International Symposium on Intel-

ligent Data Analysis (IDA 2007) (Vol. 4723, pp. 1�12). Lecture Notes in Computer
Science. Springer-Verlag.

Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). Systematic and Integrative Anal-
ysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nature Protocols,
4 (1), 44�57.

Hwang, T. & Kuang, R. (2010). A Heterogeneous Label Propagation Algorithm for Disease
Gene Discovery. In Proceedings of the 2010 SIAM International Conference on Data

Mining (pp. 583�594).
Jeh, G. & Widom, J. (2002). SimRank: A Measure of Structural-context Similarity. In Pro-

ceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (pp. 538�543). ACM.
Ji, M., Sun, Y., Danilevsky, M., Han, J., & Gao, J. (2010). Graph Regularized Transductive

Classi�cation on Heterogeneous Information Networks. In Proceedings of the 25th

European Conference on Machine Learning and Principles and Practice of Knowledge

Discovery in Databases (pp. 570�586).
Jiline, M., Matwin, S., & Turcotte, M. (2011). Annotation Concept Synthesis and Enrich-

ment Analysis: A Logic-based Approach to the Interpretation of High-throughput
Experiments. Bioinformatics, 27 (17), 2391�2398.

Jones, K. S. (1972). A Statistical Interpretation of Term Speci�city and Its Application in
Retrieval. Journal of Documentation, 28 (1), 11�21.

Katz, L. (1953). A New Status Index Derived from Sociometric Analysis. Psychometrika,
18 (1), 39�43.

Kirsch, I. (1993). The Causes and Consequences of Chromosomal Aberrations. CRC Press.
Kleinberg, J. M. (1999). Authoritative Sources in a Hyperlinked Environment. Journal of

the ACM, 46 (5), 604�632.
Klösgen, W. (1996). Explora: A Multipattern and Multistrategy Discovery Assistant. In

Advances in Knowledge Discovery and Data Mining (pp. 249�271). American Asso-
ciation for Arti�cial Intelligence.

Kondor, R. I. & La�erty, J. D. (2002). Di�usion Kernels on Graphs and Other Discrete In-
put Spaces. In Proceedings of the 19th International Conference on Machine Learning

(pp. 315�322).
Kralj, J., Valmarska, A., Robnik-�ikonja, M., & Lavra£, N. (2015). Mining Text Enriched

Heterogeneous Citation Networks. In Proceedings of the 19th Paci�c-Asia Conference
on Knowledge Discovery and Data Mining (pp. 672�683).

Kranjc, J., Podpe£an, V., & Lavra£, N. (2012). Clowd�ows: A Cloud Based Scienti�c
Work�ow Platform. In Proceedings of the 12th European Conference on Machine

Learning and Knowledge Discovery in Databases (pp. 816�819). Springer.
Kwok, J. T.-Y. (1998). Automated Text Categorization Using Support Vector Machine.

In Proceedings of the 5th International Conference on Neural Information Processing

(pp. 347�351).
Lan, M., Tan, C. L., Su, J., & Lu, Y. (2009). Supervised and Traditional Term Weighting

Methods for Automatic Text Categorization. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 31 (4), 721�735.
Lavra£, N., Kav²ek, B., Flach, P., & Todorovski, L. (2004). Subgroup Discovery with CN2-

SD. Journal of Machine Learning Research, 5 (Feb), 153�188.
Lavra£, N., Vavpeti£, A., Soldatova, L., Trajkovski, I., & Kralj Novak, P. (2011). Using

Ontologies in Semantic Data Mining with SEGS and G-SEGS. In Proceedings of the

14th International Conference on Discovery Science (pp. 165�178). Springer.



100 References

Lawrynowicz, A. & Potoniec, J. (2011). Fr-ONT: An Algorithm for Frequent Concept
Mining with Formal Ontologies. In Foundations of Intelligent Systems, Proceedings

of 19th International Symposium on Methodologies for Intelligent Systems (Vol. 6804,
pp. 428�437). Lecture Notes in Computer Science.

LePendu, P., Iyer, S. V., Bauer-Mehren, A., Harpaz, R., Mortensen, J. M., Podchiyska, T.,
. . . Shah, N. H. (2013). Pharmacovigilance using Clinical Notes. Clinical Pharmacol-
ogy & Therapeutics, 93 (6), 547�555.

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating Classi�cation and Association Rule Mining.
In Proceedings of the 4th International Conference on Knowledge Discovery and Data

Mining (pp. 80�86). New York, New York, USA.
Liu, H., Dou, D., Jin, R., LePendu, P., & Shah, N. (2013). Mining Biomedical Ontologies

and Data Using Rdf Hypergraphs. In 12th International Conference on Machine

Learning and Applications (Vol. 1, pp. 141�146). IEEE.
Liu, W. & Chang, S.-F. (2009). Robust Multi-class Transductive Learning with Graphs.

In IEEE Conference on Computer Vision and Pattern Recognition (pp. 381�388).
IEEE.

Lyalina, S., Percha, B., LePendu, P., Iyer, S. V., Altman, R. B., & Shah, N. H. (2013). Iden-
tifying Phenotypic Signatures of Neuropsychiatric Disorders from Electronic Medical
Records. Journal of the American Medical Informatics Association, 20 (e2), e297�
e305.

Maglott, D., Ostell, J., Pruitt, K. D., & Tatusova, T. (2005). Entrez Gene: Gene-centered
Information at Ncbi. Nucleic Acids Res, 33 (Database issue), 54�58.

Manevitz, L. M. & Yousef, M. (2001). One-class SVMs for Document Classi�cation. Journal
of Machine Learning Research, 2, 139�154.

Martineau, J. & Finin, T. (2009). Delta TFIDF: An Improved Feature Space for Sentiment
Analysis. In Proceedings of the Third AAAI Internatonal Conference on Weblogs and

Social Media. AAAI Press.
Muggleton, S. (1992). Inductive Logic Programming. Academic Press.
Myllykangas, S., Himberg, J., Böhling, T., Nagy, B., Hollmén, J., & Knuutila, S. (2006).

DNA Copy Number Ampli�cation Pro�ling of Human Neoplasms. Oncogene, 25 (55),
7324�7332.

Myllykangas, S., Tikka, J., Böhling, T., Knuutila, S., & Hollmén, J. (2008). Classi�cation of
Human Cancers Based on DNA Copy Number Ampli�cation Modeling. BMC Medical

Genomics, 1 (15).
Newman, M. (2010). Networks: An introduction. Oxford university press.
Obe, G. & Vijayalaxmi. (2007). Chromosomal Alterations: Methods, Results, and Impor-

tance in Human Health. Springer.
Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., & Kanehisa, M. (1999). KEGG:

Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 27 (1), 29�34.
Page, D., Costa, V. S., Natarajan, S., Barnard, A., Peissig, P., & Caldwell, M. (2012).

Identifying Adverse Drug Events by Relational Learning. In Proceedings of the 26th

AAAI Conference on Arti�cial Intelligence (Vol. 2012, p. 790). Toronto, Canada.
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank Citation Ranking:

Bringing Order to the Web. Stanford InfoLab.
Perianes-Rodriguez, A., Waltman, L., & van Eck, N. J. (2016). Constructing bibliometric

networks: A comparison between full and fractional counting. Journal of Informetrics,
10 (4), 1178�1195.

Piatetsky-Shapiro, G. (1991). Discovery, Analysis, and Presentation of Strong Rules. In
Knowledge Discovery in Databases (pp. 229�248).



References 101

Podpe£an, V., Lavra£, N., Mozeti£, I., Kralj Novak, P., Trajkovski, I., Langohr, L., . . .
Motaln, H., et al. (2011). SegMine Work�ows for Semantic Microarray Data Analysis
in Orange4WS. BMC Bioinformatics, 12 (1), 416.

Puzianowska-Kuznicka, M. & Kuznicki, J. (2005). Genetic Alterations in Accelerated Age-
ing Syndromes: Do They Play a Role in Natural Ageing? The International Journal
of Biochemistry & Cell Biology, 37 (5), 947�960.

Ristoski, P. & Paulheim, H. (2014). Feature Selection in Hierarchical Feature Spaces. In
S. Dºeroski, P. Panov, D. Kocev, & L. Todorovski (Eds.), International Conference
on Discovery Science (Vol. 8777, pp. 288�300). Lecture Notes in Computer Science.
Springer International Publishing.

Robertson, S. E. & Walker, S. (1994). Some Simple E�ective Approximations to the 2-
Poisson Model for Probabilistic Weighted Retrieval. In Proceedings of the 17th Annual
International ACM SIGIR Conference on Research and Development in Information

Retrieval (pp. 232�241). Springer-Verlag New York, Inc.
Sechidis, K., Tsoumakas, G., & Vlahavas, I. (2011). On the strati�cation of multi-label

data. Machine Learning and Knowledge Discovery in Databases, 145�158.
Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Col-

lective Classi�cation in Network Data. AI Magazine, 29 (3), 93.
Sha�er, L. G. & Tommerup, N. (2005). ISCN 2005: An International System for Human

Cytogenetic Nomenclature(2005) Recommendations of the International. Standing

Committee on Human Cytogenetic Nomenclature. Karger.
Smyth, G. K. (2005). Limma: Linear Models for Microarray Data. In Bioinformatics and

Computational Biology Solutions Using R and Bioconductor (pp. 397�420). Springer.
Sotiriou, C., Wirapati, P., Loi, S., Harris, A., Fox, S., Smeds, J., . . . Haibe-Kains, B., et al.

(2006). Gene Expression Pro�ling in Breast Cancer: Understanding the Molecular
Basis of Histologic Grade to Improve Prognosis. Journal of the National Cancer

Institute, 98 (4), 262�272.
Srinivasan, A. (2007). Aleph Manual. Retrieved from http://www.cs.ox.ac.uk/activities/

machinelearning/Aleph/.
Storn, R. & Price, K. (1997). Di�erential Evolution; A Simple and E�cient Heuristic for

Global Optimization over Continuous Spaces. Journal of Global Optimization, 11 (4),
341�359.

Sugiyama, K., Tagawa, S., & Toda, M. (1981). Methods for Visual Understanding of Hier-
archical System Structures. IEEE Transactions on Systems, Man, and Cybernetics,
11 (2), 109�125.

Sun, Y. & Han, J. (2012). Mining Heterogeneous Information Networks: Principles and

Methodologies. Morgan & Claypool Publishers.
Tan, S. (2006). An E�ective Re�nement Strategy for KNN Text Classi�er. Expert Systems

and Applications, 30 (2), 290�298.
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). ArnetMiner: Extraction

and Mining of Academic Social Networks. In Proceedings of the 14th ACM SIGKDD

international conference on Knowledge discovery and data mining (pp. 990�998).
Team, R. C. (2012). R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing. The R project for statistical com-
puting.

Tipney, H. & Hunter, L. (2010). An Introduction to E�ective Use of Enrichment Analysis
Software. Human Genomics, 4 (3), 1.

Tong, H., Faloutsos, C., & Pan, J.-Y. (2006). Fast Random Walk with Restart and Its
Applications. In Proceedings of the Sixth International Conference on Data Mining

(pp. 613�622). Washington, DC, USA.

http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/.
http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/.


102 References

Trajkovski, I., Lavra£, N., & Tolar, J. (2008). SEGS: Search for Enriched Gene Sets in
Microarray Data. Journal of Biomedical Informatics, 41 (4), 588�601.

Trajkovski, I., �elezný, F., Lavra£, N., & Tolar, J. (2008). Learning Relational Descriptions
of Di�erentially Expressed Gene Groups. IEEE Transactions on Systems, Man, and

Cybernetics, Part C, 38 (1), 16�25.
Tufte, E. R. (1986). The Visual Display of Quantitative Information. Cheshire, CT, USA:

Graphics Press.
Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., & Sharan, R. (2010). Associating Genes

and Protein Complexes with Disease Via Network Propagation. PLoS Computational

Biology, 6 (1).
Vavpeti£, A. (2016). Semantic Subgroup Discovery (Doctoral dissertation, Jozef Stefan

International Postgraduate School).
Vavpeti£, A. & Lavra£, N. (2013). Semantic Subgroup Discovery Systems and Work�ows

in The SDM�toolkit. The Computer Journal, 56 (3), 304�320.
Vavpeti£, A., Novak, P. K., Gr£ar, M., Mozeti£, I., & Lavra£, N. (2013). Semantic Data

Mining of Financial News Articles. In Proceedings of Sixteenth International Con-

ference on Discovery Science (DS 2013) (Vol. 8140, pp. 294�307). Lecture Notes in
Computer Science. Singapore.

Vavpeti£, A., Novak, P. K., & Lavra£, N. (2013). Analysing Financial Vocabulary Using a
New Semantic Subgroup Discovery System Hedwig. In 5th Joºef Stefan International

Postgraduate School Students Conference (pp. 219�229).
Vavpeti£, A., Podpe£an, V., & Lavra£, N. (2014). Semantic Subgroup Explanations. Jour-

nal of Intelligent Information Systems, 42 (2), 233�254.
Walt, S. v. d., Colbert, S. C., & Varoquaux, G. (2011). The Numpy Array: A Structure

for E�cient Numerical Computation. Computing in Science & Engineering, 13 (2),
22�30.

Wrobel, S. (1997). An Algorithm for Multi-relational Discovery of Subgroups. In Proceed-

ings of the First European Conference on Principles of Data Mining and Knowledge

Discovery (PKDD '97) (pp. 78�87). Springer.
Wu, H.-M., Tien, Y.-J., & Chen, C.-H. (2010). GAP: A Graphical Environment for Ma-

trix Visualization and Cluster Analysis. Computational Statistics and Data Analysis,
54 (3), 767�778.

Wu, Y., Cao, N., Archambault, D., Shen, Q., Qu, H., & Cui, W. (2017). Evaluation of
graph sampling: A visualization perspective. IEEE transactions on visualization and

computer graphics, 23 (1), 401�410.
Xing, W. & Ghorbani, A. (2004). Weighted PageRank Algorithm. In 2nd Annual Confer-

ence on Communication Networks and Services Research (pp. 305�314). IEEE.
�áková, M., �elezny, F., Garcia-Sedano, J. A., Tissot, C. M., Lavra£, N., Kremen, P., &

Molina, J. (2006). Relational Data Mining Applied to Virtual Engineering of Product
Designs. In International Conference on Inductive Logic Programming (pp. 439�453).
Springer.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with
Local and Global Consistency. Advances in Neural Information Processing Systems,
16 (16), 321�328.

Zhou, T., Ren, J., Medo, M., & Zhang, Y.-C. (2007). Bipartite network projection and
personal recommendation. Physical Review E, 76 (4), 046115.

Zhu, X., Ghahramani, Z., La�erty, J., et al. (2003). Semi-supervised Learning Using Gaus-
sian Fields and Harmonic Functions. In Proceedings of the 20th International Con-

ference on Machine Learning (ICML-03) (Vol. 3, pp. 912�919).



References 103

zur Hausen, H. (2009). The Search for Infectious Causes of Human Cancers: Where and
Why. Virology, 392 (1), 1�10.





105

Bibliography

Publications Related to the Thesis

Journal Articles

Adhikari, P. R., Vavpeti£, A., Kralj, J., Lavra£, N., & Hollmén, J. (2016). Explaining
Mixture Models through Semantic Pattern Mining and Banded Matrix Visualization.
Machine Learning, 105 (1), 3�39.

Kralj, J., Robnik-�ikonja, M., & Lavra£, N. (2017). HINMine: Heterogeneous Informa-
tion Network Mining with Information Retrieval Heuristics. Journal of Intelligent
Information Systems, 1�33.

Kralj, J., Robnik-�ikonja, M., & Lavra£, N. (n.d.). NetSDM: Network Filtering for Semantic
Data Mining. (submitted).

Conference Papers

Adhikari, P. R., Vavpeti£, A., Kralj, J., Lavra£, N., & Hollmén, J. (2014). Explaining
Mixture Models through Semantic Pattern Mining and Banded Matrix Visualization.
In International Conference on Discovery Science (pp. 1�12). Springer.

Kralj, J., Valmarska, A., Robnik-�ikonja, M., & Lavra£, N. (2015). Mining Text Enriched
Heterogeneous Citation Networks. In Proceedings of the 19th Paci�c-Asia Conference
on Knowledge Discovery and Data Mining (pp. 672�683).

Kralj, J., Robnik-�ikonja, M., & Lavra£, N. (2015b). Heterogeneous Network Decomposi-
tion and Weighting with Text Mining Heuristics. In International Workshop on New

Frontiers in Mining Complex Patterns (pp. 194�208). Springer.

Kralj, J., Vavpeti£, A., Dumontier, M., & Lavra£, N. (2016). Network Ranking Assisted Se-
mantic Data Mining. In International Conference on Bioinformatics and Biomedical

Engineering (pp. 752�764). Springer.

Book Chapter

Kralj, J., Valmarska, A., Gr£ar, M., Robnik-�ikonja, M., & Lavra£, N. (2016). Analysis
of Text-enriched Heterogeneous Information Networks. In N. Japkowicz & J. Ste-
fanowski (Eds.), Big Data Analysis: New Algorithms for a New Society (pp. 115�
139). Springer.





107

Biography

Jan Kralj was born on December 6, 1988 in Jesenice, Slovenia. He �nished primary school
in Bled and secondary school in Kranj. In 2007, he started his studies at the Faculty of
Mathematics and Physics at the University of Ljubljana. In 2010, he defended his BSc
thesis entitled �Grigor£ikova Grupa in Burnsideov Problem� under the supervision of Asst.
Prof. Dr. Ale² Vavpeti£, and in 2013, he defended his MSc thesis entitled �The Arnoldi
Algorithm for the Generalized Eigenvalue Problem� under the supervision of Prof. Dr.
Bor Plestenjak.

In 2013, he was accepted to the position of junior researcher at the Joºef Stefan Institute
in Ljubljana, Slovenia, under the supervision of Prof. Dr. Nada Lavra£ at the Department
of Knowledge Technologies, Joºef Stefan Institute, Ljubljana, Slovenia. In the same year
he started his graduate studies at the Joºef Stefan International Postgraduate School. He
enrolled in the PhD programme �Information and Communication Technologies� under the
supervision of Prof. Dr. Nada Lavra£.

During his work at the Joºef Stefan Institute he collaborated on the EU-funded projects
ConCreTe (Concept Creation Technology), WHIM (The What-If-Machine) and HBP (The
Human Brain Project). He also served as a member of the International Postgraduate
School student council and was a co-organizer of the 9th Joºef Stefan International Post-
graduate School Students' Conference.

His research covers the �eld of data mining with a focus on data mining algorithms for
heterogeneous information network, as well as semantic data mining algorithms. Specif-
ically, his work focuses on joining network analysis techniques with existing data mining
approaches to develop new e�cient algorithms for data analysis. He presented his work in
a published journal paper and at international conferences and workshops.




	Title
	Acknowledgments
	Abstract
	Povzetek
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Background and Motivation
	1.1.1 Advancing heterogeneous information network analysis
	1.1.2 Advancing semantic data mining

	1.2 Purpose of the Dissertation
	1.3 Hypotheses and Goals
	1.4 Scientific Contributions
	1.5 Structure

	2 Related Work
	2.1 Network Analysis
	2.1.1 Node classification in networks
	2.1.2 Node ranking in information networks
	2.1.3 Node embedding using node2vec
	2.1.4 Analysis of heterogeneous information networks
	2.1.5 Propositionalization of heterogeneous information networks

	2.2 Semantic Data Mining
	2.2.1 Rule learning and subgroup discovery
	2.2.2 enrichment analysis and ontologies
	2.2.3 Using ontologies in rule learning
	2.2.4 The Hedwig semantic data mining algorithm

	2.3 Banded Matrix Visualization

	3 HinMine: Heterogeneous Information Network Mining with Information Retrieval Heuristics
	3.1 Motivation
	3.1.1 Improved network decomposition
	3.1.2 Label propagation and improvement

	3.2 The HinMine Methodology
	3.2.1 Imbalanced data sets and label propagation
	3.2.2 Text mining inspired weights

	3.3 Experimental Setting and Results
	3.3.1 Data sets descriptions
	3.3.2 Experimental setting
	3.3.3 Experiments on E-commerce data set
	3.3.4 Experiments on ACM papers data set
	3.3.5 Experiments on iMDB data set
	3.3.6 Summary of experimental findings

	3.4 Conclusions

	4 NetSDM: Network Filtering for Semantic Data Mining
	4.1 Combining Semantic Pattern Mining with Network Analysis
	4.1.1 Proposed methodology NetSDM for reducing the search of SDM
	4.1.2 Illustrative example
	4.1.3 Using network analysis to evaluate node significance

	4.2 Experimental Setting and Results
	4.2.1 Data sets
	4.2.2 Experimental setting
	4.2.3 Experimental results

	4.3 Application in Explaining Gene Expression in Potato Virus Infection
	4.3.1 Gene expression data set
	4.3.2 GO-slim
	4.3.3 Experiments and results
	4.3.4 PW363 genotype
	4.3.5 Rywal genotype

	4.4 Conclusion

	5 Banded Matrix Visualization
	5.1 Description of the Methodology
	5.1.1 Banded matrix algorithm in detail
	5.1.2 Data clustering and visualization methodology

	5.2 Data Set Description
	5.2.1 Multiresolution chromosomal amplification data set
	5.2.2 Publicly available data sets

	5.3 Results
	5.3.1 Cluster visualization using banded matrices
	5.3.2 Rules induced through semantic pattern mining
	5.3.3 Visualizing semantic rules and clusters with banded matrices

	5.4 Conclusion

	6 Publicly Available Software
	6.1 HinMine Workflow in ClowdFlows
	6.2 NetSDM Workflow in ClowdFlows
	6.3 Banded Matrix Algorithm

	7 Conclusions
	7.1 Summary of Contributions
	7.2 Further Work

	References
	Bibliography
	Biography

