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Abstract

Parkinson’s disease is the second most common neurodegenerative disorder that affects
people worldwide. Its symptoms affect different aspects of patients’ lives that influence
the quality of life and that of their families. Given the wide variability of symptoms
among different patients and also for the same patient at different times, it is difficult
for the clinicians to manage the Parkinson’s disease. Using data mining for analyzing of
Parkinson’s disease data can lead to the identification of similar patients, with the aim to
assist the clinicians to respond more promptly and in a more personalized fashion to the
changes of the patients’ status.

The management of Parkinson’s disease to improve the patients’ quality of life is not
widely researched. In this thesis, we address the question of data mining support for the
analysis of Parkinson’s disease progression and management with antiparkinson medica-
tions. The thesis is divided into three parts addressing improved descriptive modeling,
grouping of patients based on similar disease progression, and analysis of the most impor-
tant symptoms and medication changes.

High-quality descriptive models are highly appreciated by the clinicians. Classification
rules and rules describing interesting subgroups are important components of descriptive
data mining. Rule learning algorithms typically proceed in two phases: rule refinement se-
lects the conditions for specializing the rule and rule selection selects the final rule among
several rule candidates. While most conventional algorithms use the same heuristic for
guiding both phases, recent research indicates that using two separate heuristics is concep-
tually better justified, improves the coverage of positive examples, and may result in better
predictive accuracy. The thesis presents and evaluates two new beam search rule learning
algorithms: DoubleBeam-SD for subgroup discovery and DoubleBeam-RL for classification
rule learning. The algorithms use two separate beams and can combine various heuristics
for rule refinement and rule selection, which widens the search space and allows for finding
rules with improved quality. In the classification rule learning setting, the experimental re-
sults confirm previously shown benefits of using two separate heuristics for rule refinement
and rule selection. In subgroup discovery, DoubleBeam-SD algorithm variants outperform
several related state-of-the-art algorithms. We use the newly introduced algorithms in
Parkinson’s disease data analysis.

Careful management of the patient’s status is crucial to ensure the patient’s indepen-
dence and quality of life. This is achieved by personalized treatment based on individual pa-
tient’s symptoms and medical history. We address the issue of determining patient groups
with similar disease progression patterns coupled with patterns of medication changes that
lead to the improvement or decline of the patients’ quality of life symptoms. To this end,
we propose a new methodology for clustering short time series of patients’ symptoms and
prescribed medications. The methodology also employs time sequence data analysis us-
ing skip-grams to monitor disease progression. The results demonstrate that the motor
and autonomic symptoms are the most informative for evaluating the quality of life of
Parkinson’s disease patients. We show that Parkinson’s disease patients can be divided
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into clusters ordered in accordance to the severity of their symptoms. By following the evo-
lution of symptoms for each patient separately, we were able to determine the patterns of
medication changes that lead to the improvements or degradations of the patients’ quality
of life.

Based on discovered groups of similar patients, we present a step towards personalized
management of Parkinson’s disease patients. We present two novel approaches. The first
algorithm analyzes the symptoms’ impact on the Parkinson’s disease progression. Exper-
iments on the Parkinson Progression Markers Initiative (PPMI) data reveal a subset of
symptoms influencing the disease progression which are already established in Parkinson’s
disease literature, as well as symptoms that have been considered only recently as possi-
ble indicators of disease progression. The second novelty is a methodology for detecting
patterns of medications dosage changes based on the patient’s status. The methodology
combines multitask learning using predictive clustering trees (PCTs) and short time series
analysis to better understand when a change in medications is required. The experiments
on PPMI data demonstrate that using the proposed methodology, we can identify some
clinically confirmed patients’ symptoms suggesting medications change. In terms of pre-
dictive performance, the PCT approach is comparable to the random forest model but is
advantageous due to the model interpretability.
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Povzetek

Parkinsonova bolezen je druga najpogostejša nevrodegenerativna motnja na svetu. Simp-
tomi vplivajo na različne vidike življenja pacientov, kar vpliva tudi na njihovo kakovost in
na kakovost življenja njihovih družin. Med simptomi, ki jih čutijo bolniki s Parkinsonovo
boleznijo, obstajajo velike razlike, kar velja celo za simptome istega bolnika v različnih
obdobjih. Uporaba podatkovnega rudarjenja za analizo podatkov o Parkinsonovi bolezni
lahko prispeva k identifikaciji podobnih bolnikov in uspešnejši terapiji in na ta način k bolj
individualnemu zdravljenju, kar bo lahko pomagalo zdravnikom, da se bodo odzivali na
stanje bolnikov z bolj personaliziranimi terapijami.

Zdravljenje Parkinsonove bolezni z namenom izboljšanja kakovosti življenja bolnikov
ni dobro raziskana tema. V disertaciji se ukvarjamo z rudarjenjem podatkov za podporo
pri analizi in nadzoru Parkinsonove bolezni z antiparkinsonskimi zdravili. Disertacija je
razdeljena na tri dele, ki obravnavajo izboljšave opisnih modelov, združevanje bolnikov na
podlagi podobnega poteka bolezni ter analizo najpomembnejših simptomov in sprememb
zdravil.

Zdravniki cenijo kakovostne opisne modele, ki lahko razkrijejo zanimive in nepriča-
kovane vzorce v podatkih. Pomembne komponente opisnega podatkovnega rudarjenja so
pravila za razvrščanje in pravila za opisovanje zanimivih podskupin. Učenje pravil običajno
poteka v dveh fazah: faza dopolnjevanja izbere pogoje za specializacijo pravila, faza izbora
pravil pa med kandidati izbere končno pravilo. Medtem ko večina algoritmov uporablja
isto hevristiko v obeh fazah, nedavne raziskave kažejo, da je uporaba dveh ločenih hevri-
stik konceptualno boljša, saj izboljša pokritost pozitivnih primerov in lahko privede do
večje napovedne točnosti. V nalogi predstavimo in ovrednotimo dva nova učna algoritma:
DoubleBeam-SD za odkrivanje podskupin in DoubleBeam-RL za učenje klasifikacijskih
pravil. Algoritma uporabljata dva ločena preiskovalna snopa in lahko uporabita različne
hevristike za dopolnjevanje in izbiro pravil, s čimer se razširi iskalni prostor in omogoči
iskanje kakovostnejših pravil. Eksperimentalni rezultati potrjujejo prednosti uporabe dveh
ločenih hevristik pri izgradnji klasifikacijskih pravil. Pri odkrivanju podskupin je nekaj
različic algoritma DoubleBeam-SD učinkovitejših od najuspešnejših sorodnih algoritmov.
Razvite algoritme uporabimo tudi pri analizi podatkov o Parkinsonovi bolezni.

Pri zdravljenju Parkinsonove bolezni je nadzor bolnikovega stanja ključnega pomena
za neodvisnost in kakovost bolnikovega življenja. To dosežemo z bolniku prilagojenim
zdravljenjem, ki temelji na bolnikovih simptomih in anamnezi. V delu obravnavamo vpra-
šanje določanja skupin bolnikov s podobnimi vzorci poteka bolezni ter podobnimi vzorci
spremembe zdravil, ki vodijo k izboljšanju ali poslabšanju pokazateljev kakovosti življenja
bolnikov. V ta namen predlagamo novo metodologijo za analizo kratkih časovnih vrst
bolnikovih simptomov in podatkov o predpisanih zdravilih. Metodologija za analizo časov-
nih vrst uporablja preskočne n-grame za spremljanje poteka bolezni. Rezultati kažejo, da
so motorični in avtonomni simptomi najinformativnejši za ocenjevanje kakovosti življenja
bolnikov s Parkinsonovo boleznijo. V delu pokažemo, da lahko bolnike razdelimo v skupine
glede na resnost simptomov. S spremljanjem razvoja simptomov za vsakega posameznega
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bolnika določimo vzorce sprememb zdravil, ki lahko privedejo do izboljšav ali poslabšanja
kakovosti njihovega življenja.

Na podlagi določanja skupin podobnih bolnikov poskušamo izboljšati personalizirano
zdravljenje bolnikov s Parkinsonovo boleznijo. Predstavljamo dva nova pristopa. Prvi
algoritem analizira vpliv simptomov na potek Parkinsonove bolezni. Poskusi na podat-
kih PPMI (Parkinson Progression Markers Initiative) razkrivajo podmnožico simptomov,
ki vplivajo na potek bolezni in so že obravnavani v literaturi o Parkinsonovi bolezni, pa
tudi simptome, ki so jih začeli zdravniki šele nedavno obravnavati kot možne pokazatelje
poteka bolezni. Druga novost je metodologija za odkrivanje vzorcev pri odmerjanju zdra-
vil, ki temelji na bolnikovem stanju. Metodologija združuje večopravilno učenje dreves
za napovedno razvrščanje (PCT) in analizo kratkih časovnih vrst za ugotavljanje, kdaj je
potrebna sprememba zdravil. Eksperimenti na podatkih PPMI kažejo, da lahko z upo-
rabo predlagane metodologije ugotovimo, da se zaradi sprememb zdravil pojavijo nekateri
klinično potrjeni simptomi. V smislu napovedne točnosti se izkaže, da je večopravilni
pristop z uporabo PCT metode primerljiv z naključnim gozdom, njegova prednost pa je
interpretabilnost.



xiii

Contents

List of Figures xv

List of Tables xvii

Abbreviations xix

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Classification Rule Learning and Subgroup Discovery . . . . . . . . . 2
1.1.2 Discovering Parkinson’s Disease Progression Patterns . . . . . . . . . 3
1.1.3 Tracking Medication Changes . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Purpose of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Goals and Hypotheses of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 9
2.1 Classification Rule Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Subgroup Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Multi-View Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Analysis of Short Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Skip-grams for Sequence Data Analysis . . . . . . . . . . . . . . . . . . . . . 15
2.6 Multitask Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Feature Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Parkinson’s Disease Related Data Mining Research . . . . . . . . . . . . . . 18

3 Parkinson’s Disease Data 21
3.1 Symptoms Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Medications Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Descriptive Rule Learning 27
4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Related Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Detection of Parkinson’s Disease Progression Patterns 47
5.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Related Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Detection of Medications Change Patterns 89
6.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Related Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



xiv Contents

7 Conclusions 125
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Summary of Hypotheses Confirmations . . . . . . . . . . . . . . . . . . . . . 126
7.3 Strenghts and Limitations of the Developed Approaches . . . . . . . . . . . 127

7.3.1 Strenghts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Appendix A 131
A.1 Appendix to Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2 Appendix to Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

References 133

Bibliography 141

Biography 143



xv

List of Figures

Figure 3.1: Example of Parkinson’s disease patient therapy modifications between
visits 1 and 4. The blue line presents the linear timeline, while points
V1, V2, V3, and V4 present four consecutive visits to the clinician when
the MDS-UPDRS questionnaire is administered. The red lines present
the duration of intake for each antiparkinson medication, while the line
width presents the dosage of the medication. . . . . . . . . . . . . . . . 26





xvii

List of Tables

Table 2.1: Comparison of the DoubleBeam-RL algorithm to the state-of-the-art
classification rule learners CN2, Ripper and SC-ILL. . . . . . . . . . . . 11

Table 2.2: Some properties of subgroup discovery algorithms DoubleBeam-SD, APRIORI-
SD, SD, and CN2-SD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Table 3.1: Short overview of the patients whose data are used in the experimental
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Table 3.2: Characteristics of the questionnaire data used in the analysis. . . . . . . 23





xix

Abbreviations

RL . . . Rule Learning
SD . . . Subgroup Discovery
AUC . . . Area Under Curve
WRACC . . . Weighted Relative ACCuracy
PD . . . Parkinson’s Disease
PPMI . . . Parkinson’s Progression Markers Initiative
LEDD . . . Levodopa Equivalent Daily Dosage
MAO-B . . . MonoAmine Oxidase B
PCT . . . Predictive Clustering Tree
NLP . . . Natural Language Processing
MTL . . . Multi Task Learning
MDS . . . Movement Disorder Society
UPDRS . . . Unified Parkinson’s Disease Rating Scale
MoCA . . . Montreal Cognitive Assessment
SCOPA-AUT . . . SCales for Outcomes in PArkinson’s disease–AUTonomic
QUIP . . . QUestionnaire for Impulsive-compulsive disorders in Parkinson’s disease
PASE . . . Physical Activity Scale for the Elderly





1

Chapter 1

Introduction

This thesis contributes to the development of descriptive data mining approaches for
Parkinson’s disease data analysis. The main contributions include improving classification
rule learning algorithms and subgroup discovery algorithms, methods for analyzing disease
progression based on clustering of patients and skip-grams, and methods for analyzing
changes in the dosage of medications using multitask learning. In this introductory chap-
ter, we motivate the problems addressed and overview solutions to the presented problems.
This is followed by the purposes of the dissertation, its goals, and scientific contributions.
We conclude with a structural overview of the rest of the thesis.

1.1 Background and Motivation

Parkinson’s disease is a neurodegenerative disorder affecting people worldwide. It is a disor-
der of the central nervous system, mostly affecting the patients’ motor functions. According
to Bega (2017), the motor symptoms most associated with the idiopathic Parkinson’s dis-
ease are bradykinesia, rigidity, resting tremor, and postural instability. In addition to the
motor symptoms, patients experience several emotional and behavioral problems, includ-
ing depression, anxiety, impulsivity, and sleeping problems. Both motor and non-motor
symptoms affect the patients’ ability to live independently, consequently decreasing their
quality of life and affecting also the lives of their families.

At the moment, there is no cure for Parkinson’s disease. The disease treatment is di-
rected towards managing the symptoms of the patients and prolonging their independence.
The management of symptoms is done mostly by prescribing antiparkinson medications.
A careful medication therapy is of crucial importance as the clinicians must prudently
balance between controlling the symptoms and reducing the side effects of antiparkinson
medications prolonged usage.

Parkinson’s disease poses a high economic cost on countries. This cost can be divided
into a direct cost caused by the decreased independence of the patients and indirect cost
induced by the dedication of patients’ families to care for their wellbeing. As of 2012, the
estimated annual cost of Parkinson’s disease on the economies of European Union countries
is estimated at 13.9 billion EUR: a cost that will increase as the population ages (Olesen,
Gustavsson, Svensson, Wittchen, & Jönsson, 2012). Efforts are made by the European
Union to address this issue. A quick and efficient response to the patient’s status is needed
in order to control the disease, treat its symptoms, and consequently lower the burden on
the economies of countries.

The introduction of data mining techniques can lead to a faster discovery of groups
of patients with similar symptoms, therapies, and patterns of disease progression. It can
reveal the common characteristics of patient groups and identify how symptoms should
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be treated with medications. Parkinson’s disease clinicians only have access to the data
of their patients. Data mining can take advantage of databases of numerous Parkinson’s
disease patients from around the world to find relevant patterns in the data.

Most of machine learning and data mining research in the field of Parkinson’s disease
is concerned with the prediction of Parkinson’s disease diagnosis (Gil & Johnson, 2009;
Ramani & Sivagami, 2011), detection of patients’ symptoms from wearable sensors (Patel
et al., 2009), or determining subtypes of Parkinson’s disease patients (Lewis et al., 2005;
Ma, Chan, Gu, Li, & Feng, 2015; Reijnders, Ehrt, Lousberg, Aarsland, & Leentjens, 2009).
Currently, there are no methods to follow Parkinson’s disease progression or analysis of
patients’ medications therapy.

The usage of data mining for the analysis of Parkinson’s disease patients’ symptoms
and therapies is further facilitated by the increased availability of real Parkinson’s disease
patients data. For example, such data has been available by the PD_manager: m-Health
platform for Parkinson’s disease management (2015), an EU Horizon 2020 project, aimed at
the development of a patient-centric platform for Parkinson’s disease. Providing long-term
access to patients’ motor and non-motor symptoms data should enable the clinicians to
prescribe the best therapy for symptoms maintenance (Gatsios, Rigas, Miljkovic, Seljak,
& Bohanec, 2016) and maintain a good quality of life of the patients. One of the key
elements of this project is the use of machine learning for the development of a decision
support system, helping the clinicians in choosing appropriate patients’ therapies (Gatsios
et al., 2016).

In this research, which was a part of the PD_manager project (PD_manager: m-Health
platform for Parkinson’s disease management, 2015), we use symptoms and medications
data from the Parkinson’s Progression Markers Initiative (PPMI) data collection (Marek
et al., 2011). This is an extensive data collection of Parkinson’s disease patients monitored
through a period of five years. The PPMI data collection gives an opportunity to follow the
disease progression among different groups of PD patients and to monitor how clinicians
react to their symptoms–the ones resulting from the disease as well as those that are side
effects of the prescribed medications.

The relatively unexplored field of data mining for Parkinson’s disease data analysis
offers many possibilities for data mining research. Below we present our motivation for
developing novel methods in descriptive learning, ordering of groups of patients according to
their symptoms severity, analysis of disease progression, and medications change analysis.

1.1.1 Classification Rule Learning and Subgroup Discovery

Good descriptive methods are essential in order to identify patients and describe them with
their common symptoms. Subgroup discovery is a technique for identifying subgroups of
similar patients (Gamberger & Lavrač, 2002). The task of subgroup discovery is to find
interesting subgroups in the population, i.e. subgroups that have a significantly different
class distribution than the entire population (Klösgen, 1996; Wrobel, 1997). The result of
subgroup discovery is a set of individual rules where the rule consequence is a target class
label (Fürnkranz, Gamberger, & Lavrač, 2012). Rule learning is a symbolic data analysis
technique that can be used to construct understandable models or patterns describing the
data (Clark & Niblett, 1989; Fürnkranz et al., 2012; Michalski, 1969). The main difference
between classification rule learning and subgroup discovery is that subgroup discovery
algorithms construct individual rules describing the properties of individual groups of target
class instances, while classification rule learning algorithms construct a set of classification
rules covering the entire problem space. The learning process in both classification rule
learning and subgroup discovery typically proceeds in two phases: rule refinement selects
conditions for specializing the rule, and rule selection selects the final rule among several
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rule candidates.
Similarly to classification rule learning algorithms, subgroup discovery algorithms use

pre-selected heuristics in their rule learning process (Fürnkranz et al., 2012). In the pro-
cess of building a new rule, they do not differentiate between the selection and refinement
step. Stecher, Janssen, and Fürnkranz (2014) proposed to use separate heuristics for each
of the two rule construction phases, and suggested that in the refinement phase, the so-
called inverted heuristics shall be used for evaluating the relative gain obtained by refining
the current rule. The key idea of these heuristics is the following: while the majority
of conventional rule learning heuristics, such as the Laplace or m-estimate, anchor their
evaluation on the empty rule that covers all examples, inverted heuristics anchor the point
of view on the base (parent) rule, which is more appropriate for a top-down refinement
process (Stecher et al., 2014). As a side effect to improved rule quality in terms of classi-
fication accuracy, the rules generated by using inverted heuristics in the refinement phase
are longer and contain more terms (descriptors), thus offering an additional explanation.
We extend the approach of Stecher et al. (2014) to improve classification rule learning as
well as subgroup discovery with two beams, taking both phases into account.

The division of patients into groups of similar symptoms can be done using method
such as clustering. In the medical literature on Parkinson’s disease, Goetz et al. (2015)
suggested that sums of the severity of certain symptoms can be used to determine the
overall status of the patient. For this reason, we explore groups of patients on data,
described by the sums of the considered symptoms. Since patients’ symptoms data are
collected from different sources, there is a possibility to use both multi-view (Xu, Tao, &
Xu, 2013) and single view methods. Multi-view clustering can use the information from
multiple sources (views) to provide an alternative analysis of patients (He, Kan, Xie, &
Chen, 2014). This approach has not yet been investigated in the context of Parkinson’s
disease.

We hypothesize that the status of patients can be learned from the descriptions of
obtained clusters. These descriptions shall enable the experts to establish an ordering or a
partial ordering of clusters according to the severity of the described symptoms. The order-
ing of clusters is important for distinguishing changes—improvement or degradation—of
the patients’ overall status. The clusters’ descriptions are obtained by the abovementioned
descriptive methods.

1.1.2 Discovering Parkinson’s Disease Progression Patterns

The Parkinson’s disease patients’ symptoms and status data are recorded in the database
and updated at regular time intervals (on each visit to the clinician). The status of patients
is changing through time, reflecting a natural progression of the disease and medication
intake. We expect that–after initial clustering of patients in terms of the severity of their
symptoms–the patients will have changed clusters between the considered time points
(between two visits to the clinician), reflecting the improvement or worsening of their
overall (quality of life) status. By considering these cluster changes across all patients
throughout their involvement in the study, we should be able to determine the patterns of
patients symptoms changes.

The scarcity of recorded events (6 visits at most) prevents the use of traditional time se-
ries approaches. Therefore, we address the problem of disease progression with approaches
adapted from natural language processing and use sequence analysis to determine patterns
of disease progression. In order to increase the robustness of our results, we model the
sequences of changes between clusters using skip-grams (Guthrie, Allison, Liu, Guthrie, &
Wilks, 2006) instead of n-grams that are regularly used in the analysis of data sequences.
The introduction of skip-grams results in an increased number of investigated n-grams,
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providing more stable and robust patterns of cluster changes.
The use of skip-grams has been up to now limited to natural language processing tasks

and to the best of our knowledge, except our work, no other research has yet addressed
the application of skip-grams in disease progression data analysis.

1.1.3 Tracking Medication Changes

Parkinson’s disease patients are treated with combinations of antiparkinsonian medications
to improve the patients’ quality of life and reduce the unwanted side effects. The assigned
combinations depend on the patients’ symptoms (Fox et al., 2011; Seppi et al., 2011),
consisting of disease symptoms and side effects symptoms. The identification of interactions
between the antiparkinsonian medications selected for the given symptoms can assist the
clinicians when considering changing the patients’ therapies. To the best of our knowledge,
there are no available data mining approaches supporting the control of disease symptoms
with the changes in the medications therapy. Zhao, Papapetrou, Asker, and Boström
(2017) use the analysis of heterogeneous temporal data in electronic health records to detect
adverse drug events. They use the history of patients symptoms in order to predict a single
event (adverse drug event: yes or no), while we follow the patients’ disease development
and predict changes in the therapies as a result of changes in the overall status.

Patients’ symptoms are collected from multiple sources. The multitask problem of si-
multaneously learning the dosage change of several antiparkinsonian medications can thus
be addressed in two settings: using features from a single data set and features from mul-
tiple data sets. The latter setting is a representative of multitask multi-view learning and
is not addressed in this thesis. The analysis of dosage changes of antiparkinsonian medica-
tions as a reaction to patients’ symptoms from multiple views can lead to the identification
of groups of symptoms that require specific therapy modifications. This is a step towards
more personalized assistance to clinicians in handling therapies of their patients.

1.2 Purpose of the Thesis

The purpose of this dissertation is to develop methods supporting the analysis of longitudi-
nal Parkinson’s disease patients data, consisting of the symptoms data and the medications
data. The dissertation covers three main topics: development of improved algorithms for
classification rule learning and subgroup discovery, development of a methodology for find-
ing patterns of Parkinson’s disease progression, and development of a methodology for
detection of medications dosage changes.

Development of improved algorithms for classification rule learning and sub-
groups discovery. The first part of the dissertation (covered in Section 4) examines
algorithms for rule learning and subgroup discovery motivated by separating the two
phases of the rule learning process, rule refinement and rule selection. Stecher et al.
(2014) introduced the idea that due to the different nature of the refinement and se-
lection phase of the rule learning process, it is beneficial to separate these two phases
by using heuristics that take full advantage of each phase. However, they only store
a single rule with the best potential to refine and the selection phase is therefore lim-
ited to a single rule. Their experimental work is focused on the separate-and-conquer
algorithm for classification rule learning. Although the results are encouraging, their
search strategy can miss some rules with an even better selection quality. For that
purpose, we suggest keeping track of a subset of rules that have the best potential
for refinement and selection, and store them separately. In this way, we expand the
search space and possibly discover rules that are not found by other state-of-the-art
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algorithms for classification rule learning and subgroup discovery. In our evaluation,
we determine the default parameters for the introduced algorithms and compare them
with other state-of-the-art algorithms.

Development of a methodology for finding patterns of Parkinson’s disease
progression. The current application of data mining to Parkinson’s disease data is
limited to diagnosis of new patients (Gil & Johnson, 2009), detection of symptoms
(Timmer, Gantert, Deuschl, & Honerkamp, 1993), detection of subtypes of Parkin-
son’s disease patients (Lewis et al., 2005), and assessing the success of deep brain
stimulation surgery as a last resort in the treatment of Parkinson’s disease patients
(Y. Liu et al., 2014). The Parkinson’s disease progession in terms of patients’ motor
and overall UPDRS (Unified Parkinson’s Disease Rating Scale) score was addressed
by Eskidere, Ertaş, and Hanilçi (2012), Tsanas (2012), Tsanas, Little, McSharry,
and Ramig (2010), Tsanas, Little, McSharry, and Ramig (2010). Their evaluation of
Parkinson’s disease progression is done on data from non-invasive speech tests for a
six months period. During this six months period all of the patients were off there
antiparkinson medications. To the best of our knowledge, no data mining research
is done on disease progression, reasons for progression, and clinicians’ reaction to
symptoms changes with modification of medications therapies of patients. This is of
crucial importance in order to maintain a good quality of life for Parkinson’s disease
patients. We address this issue by i) developing a method that combines clustering
of patients into groups of patients with similar symptoms, and ii) following changes
with respect to patient’s symptoms and iii) their prescribed medications therapies
as the patients change clusters through time. The division of patients into clusters
can be done using traditional clustering methods, e.g., k-means clustering, or multi-
view clustering approaches that take advantage of groups of recorded symptoms. To
determine robust patterns of disease progression, we adapt the skip-gram approach
from natural language processing. With our approach, we preserve the sequential
nature of the cluster assignments that reflect changes in the patients’ overall status.

Development of a methodology for the detection of medications change pat-
terns. Based on the patients’ assignment to clusters between consecutive visits and
the (partial) order established between the clusters, the changes in the patients’ over-
all status can be characterized as positive or negative. Our methodology from the
previous point is able to detect patterns of medications dosage changes when the over-
all status of the patients has improved or deteriorated. However, this approach does
not address the underlying symptoms that affected the changes and which caused
the clinicians to change the medications dosages. For this purpose, we propose multi-
task learning with predictive clustering trees (PCT) to determine when the clinicians
decide to change the patients’ therapies and what are the changes. Based on this
knowledge extracted from the real patients’ data, we consulted the experts concern-
ing the discovered scenarios which enabled us to develop of decision support models,
which should enable more personalized disease management of Parkinson’s disease
patients.

Public accessibility of the developed algorithms. Our purpose is also to make the
algorithms for classification rule learning and subgroup discovery publicly accessible.
The code for the DoubleBeam-RL algorithm and the DoubleBeam-SD algorithm is
publicly available on GitHub. We are currently working on its implementation within
the ClowdFlows platform (Kranjc, Podpečan, & Lavrač, 2012), i.e. an open-source,
cloud-based platform for composition, execution, and sharing of interactive machine
learning and data mining workflows. On the other hand, the code we developed for
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the analysis of Parkinson’s disease data is available upon request as is closely related
to the data being analyzed. We do not have permission to share the data but users
can obtain it from PPMI.

1.3 Goals and Hypotheses of the Thesis

The goals and hypotheses of this thesis are aligned with its purposes described in the
previous section. We believe that by separating the two phases of the rule learning pro-
cess, the classification rule learning algorithms and the subgroup discovery algorithms will
generate rules with the improved quality compared to the rules produced by their state-of-
the-art counterparts. The introduction of two beams and separate heuristics for each of the
phases in the rule learning process will widen the search space and enable the algorithms
to construct rules which would be missed by the standard rule learning algorithms.

We hypothesize that Parkinson’s disease patients can be divided into groups of patients
with similar symptoms. These groups of patients can be partially ordered1 according to the
severity of the symptoms describing each of the clusters. The patients’ status will change
through time, thus prompting the patients to be assigned to different groups. Given the
fact that the clusters are at least partially ordered in terms of the symptoms severity, the
transition between two clusters can also indicate a transition in the overall status of the
patient, signaling an improvement or deterioration of the patients’ status. Following the
changes of clusters for all patients using skip-grams, our methods will reveal robust patterns
of disease progression, while further analysis of these patterns will reveal characteristics of
the patients following certain patterns of disease progression.

Analysis of medications dosage changes aligned with the changes of patients’ status
can reveal patterns that led to the improvement or degradation of the overall status of
patients. We hypothesize that using multitask approach, we will be able to determine the
symptoms that trigger the changes in medication dosages.

1.4 Scientific Contributions

The scientific contributions of the thesis are as follows.

Contribution 1 We developed improved algorithms for classification rule learning and
subgroup discovery by separating the two phases of the rule learning process, rule refine-
ment and rule selection. We used two separate beams for the refinement and selection
phase and used different heuristics in each of the phases. We evaluated and compared
the newly developed algorithms to their state-of-the-art counterparts. We made the code
publicly available on GitHub2.

Publications related to this contribution

Journal Paper

Valmarska, A., Lavrač, N., Fürnkranz, J., & Robnik-Šikonja, M. (2017). Refinement and
selection heuristics in subgroup discovery and classification rule learning. Expert Sys-
tems with Applications, 81, 147–162. doi:10.1016/j.eswa.2017.03.041

1In a partially ordered set of clusters, not every pair of clusters need be comparable.
2https://github.com/bib3rce/RL_SD

https://dx.doi.org/10.1016/j.eswa.2017.03.041
https://github.com/bib3rce/RL_SD
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Conference Paper

Valmarska, A., Robnik-Šikonja, M., & Lavrač, N. (2015). Inverted heuristics in subgroup
discovery. In Proceedings of the 18th International Multiconference Information So-
ciety (Vol. 178, pp. 41–44).

Contribution 2 We developed a methodology for the division of patients into clusters
based on the severity of the symptoms of patients assigned to each cluster. We showed
that the resulting clusters can be at least partially ordered according to the severity of the
disease. Using this, we can declare the changes of clusters between two consecutive visits
to be positive or negative (the patient’s status has improved or has worsened). Based on
these changes, we presented an algorithm for detection of medications dosage changes that
occurred most frequently when the status of the patients improved or worsened. We also
present a methodology for determining patterns of Parkinson’s disease progression based
on skip-grams from natural language processing. The pseudocode of the methodology is
presented in Chapter 5 and Appendix A.1.

Publications related to this contribution

Journal Paper

Valmarska, A., Miljkovic, D., Lavrač, N., & Robnik-Šikonja, M. (2018). Analysis of medi-
cations change in Parkinson’s disease progression data. Journal of Intelligent Infor-
mation Systems. doi:10.1007/s10844-018-0502-y

Conference Paper

Valmarska, A., Miljkovic, D., Robnik-Šikonja, M., & Lavrač, N. (2016). Multi-view ap-
proach to Parkinson’s disease quality of life data analysis. In Proceedings of the In-
ternational Workshop on New Frontiers in Mining Complex Patterns (pp. 163–178).
Springer.

Contribution 3 We developed a methodology for the detection of medications change
patterns and determining the symptoms that trigger the change of the dosages of an-
tiparkinson medications. We found patterns of medications dosage changes as a result of
changes in the overall status (quality of life) of patients. We developed an algorithm for
determining the symptoms that have the strongest impact on the progression of the dis-
ease. Some of the identified symptoms are well known, while others only recently started
to gain recognition as possible markers of Parkinson’s disease progression. The pseudocode
of the methodology is presented in Appendix A.2.

Publications related to this contribution

Journal Paper

Valmarska, A., Miljkovic, D., Konitsiotis, S., Gatsios, D., Lavrač, N., & Robnik-Šikonja, M.
(2018). Symptoms and medications change patterns for Parkinson’s disease patients
stratification. Artificial Intelligence in Medicine (accepted).

https://dx.doi.org/10.1007/s10844-018-0502-y
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Conference Paper

Valmarska, A., Miljkovic, D., Konitsiotis, S., Gatsios, D., Lavrač, N., & Robnik-Šikonja,
M. (2017). Combining multitask learning and short time series analysis in Parkin-
son’s disease patients stratification. In Proceedings of the Conference on Artificial
Intelligence in Medicine in Europe (pp. 116–125). Springer.

1.5 Structure of the Thesis

The remainder of the thesis is structured as follows. Chapter 2 presents the related work.
Chapter 3 presents the Parkinson’s disease data used in the experiments. Chapters 4, 5,
and 6 present the main body of our work.

Chapter 3 is an introduction to Parkinson’s disease through the description of the
patients’ symptoms and the medications treatments available to the clinicians to control the
symptoms and promote the patients’ independence. We present the PPMI data collection
and describe the process of data collection, as well as the nature of symptoms, represented
by the attributes and their values. We present value ranges of the attributes and statistical
associations with the improvements or degradations of the patients’ status.

Chapter 4 presents our approach to improving algorithms for classification rule learning
and subgroup discovery by separating the two phases of rule learning, refinement and
selection. We extend the idea of Stecher et al. (2014) by using two beams that hold
the best rules according to their potential quality for rule refinement and selection. This
chapter is divided into two sections, where we first introduce the problem description and
then present the paper published in the Expert Systems with Applications journal that
addresses the described problem.

In Chapter 5 we present our methodology for separating the patients into groups based
on the similarity of their symptoms and determining patterns of medications change and
disease progression. We present an algorithm for detection of medications changes patterns
that most frequently cause improvement or worsening of patients’ status. We employ skip-
grams from natural language processing to obtain the patterns of disease progression. The
chapter is divided into two sections, where we first introduce the problem description and
then we present the paper published in the Journal of Intelligent Information Systems that
addresses the described problem.

Chapter 6 presents our methodology for the detection of medications changes patterns
based on the patients’ status. We employ predictive clustering trees in order to learn
symptoms that trigger the medications dosage change. We present an algorithm for deter-
mining symptoms that mostly influence the Parkinson’s disease progression, i.e. symptoms
that improve or worsen most frequently as the status of the patients improves or declines.
Similarly to Chapters 4 and 5, this chapter is also divided into two sections: problem de-
scription and the paper published in the Artificial Intelligence in Medicine journal which
addresses the described problem.

Chapter 7 summarizes the work and presents the ideas for future improvements.
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Chapter 2

Related Work

This chapter provides the related work in three research topics covered by the thesis: rule
learning and subgroup discovery algorithms based on separation of refinement and selection
phase in rule learning, Parkinson’s disease data clustering and skip-gram analysis of short
series, and multi-target approach to Parkinson’s disease management.

Rule learning is a standard symbolic data analysis technique used for constructing
comprehensible models and patterns. Its main advantage over the other data analysis
techniques is its simplicity and comprehensibility of its outputs. Rule learning has been
extensively used both in predictive and descriptive rule learning settings, whereby applying
different rule evaluation heuristics different trade-offs between the consistency and coverage
of constructed rules can be achieved. This chapter presents a short overview of classifi-
cation rule learning in Section 2.1 and subgroup discovery in Section 2.2, followed by an
overview of relevant multi-view clustering approaches (Section 2.3), a short overview of
methods for short time series analysis (Section 2.4), and the introduction of skip-grams for
sequence data analysis (Section 2.5). In Parkinson’s disease management several groups of
medications are used together. We apply multi-target modeling with predictive clustering
trees to capture their joint effects. We discuss related work from multitarget and multi-
task learning in Section 2.6. We are interested in the importance of symptoms affecting the
overall status of the disease, which is a problem addressed in feature ranking/evaluation
research. We compare and contrast the proposed algorithm with existing approaches in
Section 2.7.

2.1 Classification Rule Learning

The task of classification rule learning is to find models that would ideally be complete
(i.e., cover all the positive examples, or at least most of the positives), and consistent (i.e.,
do not cover any of the negative examples, or at most a very small number of negatives).
Multi-class classification problems can be addressed by using the one-versus-all approach,
which learns one rule set for each class, where the examples labeled with the chosen class
are considered as positive target class examples and the examples of all the other classes
as the negatives.

There are numerous classification rule learning algorithms, the most popular being AQ,
CN2 and Ripper. The AQ algorithm (Michalski, 1969) was the first covering algorithm for
rule set construction. It is a top-down beam search algorithm that uses a random positive
example as a seed for finding the best rule. The CN2 algorithm (Clark & Niblett, 1989)
combines the ideas from the AQ algorithm and the decision tree learning algorithm ID3
(Quinlan, 1983), where each path from the root of the tree to a tree leaf can be viewed
as a separate rule. It constructs an ordered decision list by learning rules describing the
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majority class examples. Once the learned rule is added to the decision list, all the covered
examples, both positive and negative, are removed from the training data set, and the rule
induction process is continued on the updated training set. Ripper (Cohen, 1995) is the
first rule learning algorithm that effectively overcomes the overfitting problem and is thus a
very powerful rule learning system. The algorithm constructs rule sets for each of the class
values. Initially, the training data set is divided into a growing and a pruning set. Rules are
learned on the growing set and then pruned on the pruning set by incrementally reducing
the error rate on the pruning set. A pruned rule is added to the rule set if the description
length of the newly constructed rule set is at most d bits longer (a parameter) than the
already induced rule set. Otherwise, the rule learning process is stopped. Similarly to
the CN2 algorithm, when a new rule is added to the rule set, all the instances covered
by this rule are removed from the growing set. In addition to pruning the rules before
adding them to the induced rule set, Ripper prevents rules overfitting in a post-processing
phase in which the learned rule set is optimized and the selected rules are re-learned in
the context of the other rules. FURIA (Hühn & Hüllermeier, 2009) is a classification rule
learning algorithm that extends the Ripper algorithm by learning fuzzy rules.

Despite its long history, rule learning is still actively researched and routinely applied
in practice. For example, Napierala and Stefanowski (2015) use rule learning with argu-
mentation to tackle imbalanced data sets, and Ruz (2016) explores the order of instances
in seeding rules to improve the classification accuracy. Minnaert, Martens, De Backer, and
Baesens (2015) discuss the importance of proper rule evaluation measures for improving
the accuracy of classification rule learning algorithms. They also introduce multi-criteria
learning and investigate a Pareto front as a trade-off between comprehensibility and accu-
racy of rule learners.

In the line of research started by Parpinelli, Lopes, and Freitas (2002), rule learning
is turned into an optimization problem using an ant colony optimization approach. The
initial rule learning algorithm, named Ant-Miner, worked for nominal attributes only but
was later improved by Pičulin and Robnik-Šikonja (2014) to efficiently handle numeric
attributes. Classification rule learning has been a vivid topic of research also in induc-
tive logic programming and relational data mining. For example, Zeng, Patel, and Page
(2014) developed the QuickFOIL algorithm that improves over the original FOIL algorithm
(Quinlan & Cameron-Jones, 1993).

Learning rules can be regarded as a search problem (Mitchell, 1982). Search problems
are defined by the structure of the search space, a search strategy for searching through the
search space, and a quality function (a heuristic) that evaluates the rules in order to deter-
mine whether a candidate rule is a solution or how close it is to being a solution to be added
to the rule set, i.e. the final classification model. The search space of possible solutions is
determined by the modeling language bias (Fürnkranz et al., 2012). In propositional rule
learning, the search space consists of all the rules of the form targetClass Conditions,
where targetClass is one of the class labels, and Conditions is a conjunction of features.
Features have the form of Ai = vij (attribute Ai has value vij).

For learning a single rule, most learners use one of the following search strategies:
general-to-specific (top-down hill-climbing) or specific-to-general (bottom-up), where the
former is more commonly used. Whenever a new rule is to be learned, the learning algo-
rithm initializes it with the universal rule r>. This is an empty rule that covers all the
examples, both positive and negative. In the rule refinement phase, conditions are suc-
cessively added to this rule, which decreases the number of examples that are covered by
the rule. Candidate conditions are evaluated with the goal of increasing the consistency of
the rule while maintaining its completeness, i.e. a good condition excludes many negative
examples and maintains good coverage of the positive examples.



2.1. Classification Rule Learning 11

Heuristic functions are used in order to evaluate and compare different rules. Different
heuristics implement different trade-offs between the two objectives (coverage and consis-
tency). While CN2 and Ripper use entropy as the heuristic evaluation measure, numerous
other heuristic functions have been proposed in rule learning—for a variety of heuristics
and their properties the interested reader is referred to (Fürnkranz et al., 2012). The most
frequently used heuristics in rule learning are:

Precision:
hprec(p, n) =

p

p+ n
(2.1)

Laplace:
hlap(p, n) =

p+ 1

p+ n+ 2
(2.2)

m-estimate:

hm-est(p, n,m) =
p+m · P

P+N

p+ n+m
(2.3)

where, for a given rule, arguments p and n denote the number of positive and negative
examples covered by the rule (i.e. the true and false positives, respectively), and P and N
denote the total number of positive and negative examples in the data set. Given that these
heuristics concern the problem of selecting the best of multiple refinements of the same
base rule (the empty rule, universal rule), values P and N can be regarded as constant, so
that the above functions may be written as h(p, n) depending only on the true and false
positives, while in Equation (2.3) the function arguments include m, which is a positive
number denoting a correction towards the prior probability of the positive class (Fürnkranz
et al., 2012).

Table 2.1 compares the DoubleBeam-RL classification rule learning algorithm intro-
duced in Chapter 4, to the state-of-the-art classification rule learners that were used in the
experiments. CN2 and DoubleBeam-RL are beam search algorithms, while Ripper and SC-
ILL are greedy algorithms, adding conditions to the rules that maximize their respective
heuristics. The DoubleBeam-RL and SC-ILL algorithms use separate heuristics adapted
for the refinement and selection phase of the rule learning process. Ripper is the only con-
sidered classification rule learning algorithm that employs rule pruning and optimization
of rule sets in post-processing. The algorithms use different stopping criteria; for example,
Ripper uses a heuristic based on the minimum description length (MDL) principle.

Table 2.1: Comparison of the DoubleBeam-RL algorithm to the state-of-the-art classifica-
tion rule learners CN2, Ripper and SC-ILL.

Separate Stopping Rule Post-
Algorithm Type of search refinement criterion pruning processing

heuristic
CN2 beam no no beam no no

improvement

Ripper greedy no MDL yes yes

no negative
SC-ILL greedy yes examples no no

covered

DoubleBeam-RL beam yes maxSteps no no
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2.2 Subgroup Discovery

The goal of data analysis is not only to build prediction models but frequently the aim
is to discover individual patterns that describe regularities in the data (Fürnkranz et al.,
2012; Kralj Novak, Lavrač, Zupan, & Gamberger, 2005; Wrobel, 1997). This form of data
analysis is used for data exploration and is referred to as descriptive induction.

Subgroup discovery is a form of descriptive induction. The task of subgroup discovery
is to find subgroups of examples which are sufficiently large while having a significantly
different distribution of target class instances than the original target class distribution.
Like in classification rule learning, individual subgroup descriptions are represented as rules
in the form targetClass Conditions, where targetClass is the target class representing
the property of interest, and Conditions is a conjunction of features that are characteristic
for a selected group of individuals.

Subgroup discovery is a special case of a more general task of rule learning. Classifica-
tion rule learners have been adapted to perform subgroup discovery with heuristic search
techniques drawn from classification rule learning. These algorithms apply constraints,
which are appropriate for descriptive rule learning. Research in the field of subgroup discov-
ery has developed in different directions. Exhaustive methods, which include EXPLORA
(Klösgen, 1996), SD-MAP (Atzmüller & Puppe, 2006), and APRIORI-SD (Kavšek, Lavrač,
& Jovanoski, 2003), guarantee the optimal solution given the optimization criterion. The
APRIORI-SD algorithm draws its inspiration from the association rule learning algorithm
APRIORI (Agrawal & Srikant, 1994) but restricts it to constructing rules that have only
the target variable (the property of interest) in their head, with weighted relative accuracy
(WRACC), defined in Equation (2.5), used as a measure of rule quality. In order to im-
prove the inferential power of the subgroup describing rules, the APRIORI-SD algorithm
uses a post-processing step to reduce the generated rules to a relatively small number of
diverse rules. This reduction is performed using the weighted covering method proposed
by Gamberger and Lavrač (2000). When a rule is added to the induced rule set, weights
of examples covered by the rule are decreased. This allows the method to prioritize rules
which cover yet uncovered examples, thus promoting the coverage of diverse groups of
examples.

While the APRIORI-SD algorithm adapts the process of association rule learning to
the context of subgroup discovery, the SD subgroup discovery algorithm (Gamberger &
Lavrač, 2002) performs heuristic beam search, where rule quality is estimated using the
heuristic

hg(p, n, g) =
p

n+ g
, (2.4)

where p is the number of true positives, n is the number of false positives, and g is the
generalization parameter. High-quality rules will cover many target class examples and a
low number of non-target examples. The number of tolerated non-target examples covered
by a rule is regulated by generalization parameter g. For small g, more specific rules are
generated, while for bigger values of g the algorithm constructs more general rules. The
interpretation of the rules produced by the SD algorithm is improved using the above
mentioned weighted covering method in post-processing (Gamberger & Lavrač, 2000).

CN2-SD (Lavrač, Kavšek, Flach, & Todorovski, 2004) is a beam search algorithm,
which adapts the CN2 (Clark & Niblett, 1989) classification rule learner to subgroup
discovery. CN2-SD introduced a weighted covering algorithm, where examples that have
already been covered by one of the learned rules are not removed from the training data
set, but instead, their weights are decreased. The authors propose and compare different
measures for rule evaluation. They argue that the most important measure for subgroup
evaluation is weighted relative accuracy (WRACC), referred to as unusualness, defined as
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Table 2.2: Some properties of subgroup discovery algorithms DoubleBeam-SD, APRIORI-
SD, SD, and CN2-SD.

Separate Stopping Post-
Algorithm Type of search refinement criterion processing

heuristic
APRIORI-SD exhaustive no minSup, minConf yes

SD beam no no beam yes
improvement

CN2-SD beam no no beam no
improvement

DoubleBeam-SD two beams yes maxSteps optional

follows

WRACC(p, n) =
p+ n

P +N
·
✓

p

p+ n
� P

P +N

◆
(2.5)

This measure reflects both the rule significance and rule coverage, as subgroup discovery is
interested in rules with significantly different class distribution than the prior class distri-
bution that covers many instances. WRACC is the measure of choice in our experimental
work on subgroup discovery for comparing the quality of the induced subgroup describing
rules.

Subgroup discovery was used also in the context of semantic data mining. Adhikari,
Vavpetič, Kralj, Lavrač, and Hollmén (2014) have explained mixture models by applying
the semantic subgroup discovery system Hedwig (Vavpetič, Kralj Novak, Grčar, Mozetič,
& Lavrač, 2013) to structure the search space and to formulate generalized hypotheses by
using concepts from the given domain ontologies.

Table 2.2 compares the DoubleBeam-SD algorithm (introduced in Chapter 4) to the
state-of-the-art subgroup discovery algorithms APRIORI-SD, CN2-SD, and SD, which were
used in our experiments. The latter algorithms use only a single heuristic for rule eval-
uation, designed to optimize the selection of best rules. The DoubleBeam-SD algorithms
can use pairs of different heuristics (see Chapter 4) which can be applied to estimate rule
quality in both the refinement and selection phases of the rule learning process. The
DoubleBeam-SD algorithm stops the learning process after a predetermined number of
steps (maxSteps). The SD and CN2-SD algorithms stop when there are no improvements
of rules in the beam, i.e. when newly induced rules have lower quality than the rules
already included in the beam. APRIORI-SD uses minimal support and coverage as the
stopping criteria.

2.3 Multi-View Clustering

Multi-view clustering is concerned with clustering of data by considering the information
shared by each of the separate views. Many multi-view clustering algorithms initially
transform the available views into one common subspace (early integration), where they
perform the clustering process (Xu et al., 2013). Chaudhuri, Kakade, Livescu, and Srid-
haran (2009) propose a method for multi-view clustering where the translation to a lower
vector space is done with Canonical Correlation Analysis (CCA). Tzortzis and Likas (2009)
propose a multi-view convex mixture model that locates clusters’ representatives (exem-
plars) using all views simultaneously. These exemplars are identified by defining a convex
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mixture model distribution for each view. Cleuziou, Exbrayat, Martin, and Sublemontier
(2009) present a method where in each view they obtain a specific organization using fuzzy
k-means (Bezdek, 1981) and introduce a penalty term in order to reduce the disagreement
between organizations in different views. Cai, Nie, and Huang (2013) propose a multi-
view k-means clustering algorithm for big data. The algorithm utilizes a common cluster
indicator in order to establish common patterns across the views.

Co-training (Blum & Mitchell, 1998) is one of the earliest representatives of multi-view
learning. This approach considers two views consisting of both labeled and unlabeled data.
Using labeled data, co-training constructs a separate classifier for each view. The most
confident predictions of each classifier on the unlabeled data are then used to iteratively
construct additional labeled training data. Kumar and Daumé (2011) apply the co-training
principle (Blum & Mitchell, 1998) in unsupervised learning. Clustering is performed on
both views, then cluster points from one view are used to modify the clustering structure
of the other view. Appice and Malerba (2016) employ the co-training principle in the
multi-view setting for process mining clustering. The above-mentioned approaches pre-
sume that each of the respective views is capable of producing clusters of similar quality
when considered separately. He et al. (2014) do not make that presumption. They com-
bine multiple views under a principled framework, CoNMF (Co-regularized Non-negative
Matrix Factorization), which extends NMF (Non-negative Matrix Factorization) for multi-
view clustering by jointly factorizing the multiple matrices through co-regularization. The
matrix factorization process is constrained by maximizing the correlation between pairs of
views, thus utilizing information from each of the considered views. CoNMF is a multi-
view clustering approach with intermediate integration of views, where different views are
fused during the clustering process. The co-regularization of each pair of views makes the
clustering process more robust to noisy views. The decision to use the CoNMF approach
in our work was made based on this property and on the availability of its Python code.
The CoNMF approach is used in Chapter 5.

2.4 Analysis of Short Time Series

A time series is a sequence of data points indexed in time order. Time series data analysis
was used to study a wide range of biological and ecological systems (Bence, 1995). The use
of time series allows for studying the dynamics of a system. Short time series (8 points or
less) constitute more than 80% of all time series data sets (Ernst, Nau, & Bar-Joseph, 2005).
The small number of available time points does not allow for identification of statistically
significant temporal profiles (Ernst & Bar-Joseph, 2006). Bence (1995) examines methods
for adjusting confidence intervals of the mean and parameters of a linear regression for
autocorrelation. De Alba, Mendoza, et al. (2007) suggest that simpler models can be more
effective on short time series. They show that the Bayesian approach is superior to the
traditional approach when applied to short time series but inferior when applied to longer
time series. A lot of the research in short time series analysis is related to the analysis of
short time series on microarray gene expression data. Ernst et al. (2005) present a method
for clustering of short time series gene expression data, followed by the introduction of
the STEM (Short Time-series Expression Miner) software program (Ernst & Bar-Joseph,
2006) specifically designed for the analysis of short time series microarray gene expression
data.

In the healthcare domain, Choi, Schuetz, Stewart, and Sun (2017) incorporate temporal
modeling using the recurrent neural network (RNN) model to predict heart failure. Imhoff,
Bauer, Gather, and Löhlein (1998) apply short time series analysis to monitor lab variables
after liver surgery and to offer support to clinicians in their decision-making process for
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the treatment of acute respiratory distress syndrome. Schieb, Mobley, George, and Casper
(2013) evaluate the clustering of stroke hospitalization rates, patterns of the clustering
over time, and associations with community-level characteristics. They generate clusters
of high and low-stroke hospitalization rates during two periods of time. According to the
place of residence of patients, counties in the USA are assigned to clusters. Following the
transition of counties between clusters between these two periods, counties are labeled as
having a persistently high, transitional, or persistently low-stroke hospitalization rate.

Murugesan et al. (2017) present a hierarchical multi-scale approach for visualizing spa-
tial and functional cluster evaluation patterns. Their visualization method is a two-stage
method based on a sequence of community detection at each time stamp and community
tracking between steps. Greene, Doyle, and Cunningham (2010) address the issue of iden-
tifying communities in dynamic networks. Appice (2017) uses social network analysis as a
basic approach for organizational mining, aimed at understanding the life cycle of dynamic
organizational structures.

Zhao et al. (2017) explore different representations of temporal data from electronic
health records to improve prediction of adverse drug events. They obtain sequences of
symbols by transforming time series of individual feature into strings, as presented in (Lin,
Keogh, Wei, & Lonardi, 2007). These strings reflect the temporal nature of the original
values. Results from their empirical investigation show that transformation of sequences
to tabular form based on edit distance of sub-sequences to representative shapelets leads
to improved predictive performance. This approach reduces the feature sequence diversity
by finding informative random sub-sequences. The goal of Zhao et al. (2017) is to predict
whether patients will develop adverse drug reactions. They use the history of patients
symptoms in order to predict a single event (adverse drug event: yes or no), while we
follow the patients’ disease development and changes in their overall status as a result
of therapy changes. Another difference is our use of skip-grams which reduces noise and
enforces strong transition patterns.

To the best of our knowledge, the temporal nature of medical data has not been ex-
plored in research directed towards determining the progression of Parkinson’s disease and
determining the therapy recommendations in order to stabilize the disease progression.
We present a clustering based methodology on short time series symptoms data of Parkin-
son’s disease patients in an attempt to discover how the disease develops through time,
reflected by the change of patients’ symptoms. Simultaneously, we use the temporal data
about their medications therapy to determine how clinicians react to patients’ symptoms
changes. Each Parkinson’s disease patient is described with his/her symptoms and medi-
cations treatment through time. The temporal data is flattened to records from single time
points, where any change of patients’ symptoms between two consecutive points is referred
as a change in their status. Changes in status are then connected to possible changes in
medications therapies.

2.5 Skip-grams for Sequence Data Analysis

Patient’s allocation to clusters in sequential time points can be viewed as a sequence of
items. Analysis of contiguous sequences of items for every patient’s cluster allocation can
provide an insight into the disease progression and reveal patterns how (and how often)
the patient’s symptoms improve or degrade.

We use an approach to sequence data analysis, where we borrow the methodology
initially developed in the field of natural language processing (NLP). In NLP, a contiguous
sequence of n items from a given sequence of text or speech is called an n-gram (Broder,
Glassman, Manasse, & Zweig, 1997). Skip-grams are a generalization of n-grams in which
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the components (typically words) need not be consecutive in the text under consideration
but may leave gaps that are skipped over (Guthrie et al., 2006). They provide a way of
overcoming the data sparsity problem found with conventional n-gram analysis.

Another use of skip-grams is in producing word embeddings into a vector form to
reduce the dimensionality and sparsity of a bag-of-words representation. Mikolov, Chen,
Corrado, and Dean (2013) proposed word2vec embedding based on deep learning, which
has subsequently been used in many NLP applications, including some with clinical text
data (De Vine, Zuccon, Koopman, Sitbon, & Bruza, 2014) and to learn relationships
between clinical processes and unified medical language system (UMLS) concepts (Choi
et al., 2017). Our use of skip-grams is entirely different as we do not use embeddings but
use skip-grams directly as a more robust version of n-grams.

In the context of our analysis, skip-grams allow for robust identification of frequent
paths through clusters and reveal typical disease progression patterns. The patient’s overall
status at a given visit to the clinician, as determined by the (patient, visit) pair cluster
assignment, can be seen as an item, and changes of clusters as sequences of items, which
can be analyzed with the skip-grams-based approach developed for NLP. This is novel
in the analysis of Parkinson’s disease data and allows us to follow the progression of the
patient’s overall status without taking into account noise in the form of sudden changes in
the patient’s status. Such changes are not necessary due to Parkinson’s disease but can be
attributed to other stressful events in the patient’s life (such as loss of a loved one, loss of a
pet, etc.). The patients’ status is determined by the symptoms recorded during their visit
to the clinician. Patients’ assignment to the clusters is determined based on their overall
status. To the best of our knowledge, there has not been any study involving skip-grams
that uses the actual symptoms of patients in order to explore patients’ disease progression
and the clinicians’ response by changing the medications therapy. The skip-gram approach
is used in Chapter 5.

2.6 Multitask Learning

In multitask learning (MTL), multiple related tasks are learned simultaneously on a shared
attribute space. Compared to single task learning, MTL can improve model generalization
and prevent overfitting (Caruana, 1997). This is achieved by transfer of intermediate
knowledge (features) between jointly learned tasks.

Caruana, Baluja, and Mitchell (1996) use knowledge from the future to rank patients
according to their risk to die from pneumonia. The shared attribute space consists of pa-
tients at the time they are admitted to the hospital. The multiple tasks which are learned
by the model are a set of hospital tests performed to determine whether the patients are
at risk of dying of pneumonia. Zhou, Liu, Narayan, Ye, and ADNI (2013) use multitask
learning to model Alzheimer’s disease progression. They use two clinical/cognitive mea-
sures, Mini Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale
cognitive subscale (ADAS-Cog) as multiple evaluations to determine the progression of the
disease. Zhang, Shen, and ADNI (2012) propose a multitask model for prediction of multi-
ple regression and classification variables in Alzheimer’s disease, which takes advantage of
the multi-modal nature of patient’s symptoms. Similarly to Parkinson’s disease patients,
Alzheimer’s disease patients can be described by symptoms collected from multiple sources.
All of these approaches use quantitative data “from the future” (test values) to determine
how the disease progresses. Unfortunately, there are no tests to appropriately measure
the progression of Parkinson’s disease. None of the above-mentioned methods look at the
medications that the patients are receiving to decelerate the disease progression.

We use multitask learning with the aim to simultaneously predict the values of several
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target attributes (medications in our case). We use the MTL implementation with pre-
dictive clustering trees (PCTs) (Blockeel & De Raedt, 1998; Blockeel, Raedt, & Ramon,
1998). This method adapts the basic top-down induction of decision trees with clustering
and allows for multitask learning. The PCT learning algorithm used is implemented in the
CLUS data mining framework (Blockeel, 1998; Blockeel et al., 1998; De Raedt & Blockeel,
1997; Kocev, Vens, Struyf, & Džeroski, 2007; Piccart, Struyf, & Blockeel, 2008). We ob-
tain multi-target decision trees, simultaneously predicting three target variables: change
of levodopa dosage, change of dopamine agonists dosage, and change of MAO-B inhibitors
dosage, referring to three most important medication groups used in Parkinson’s disease
patient management. The PCT-based approach is used in Chapter 6.

2.7 Feature Evaluation

Feature subset selection can improve the accuracy, efficiency, applicability, and comprehen-
sibility of a learning process and its resulting model (Arauzo-Azofra, Aznarte, & Benítez,
2011; Guyon & Elisseeff, 2003; Guyon, Gunn, Nikravesh, & Zadeh, 2008). For this reason,
many feature subset selection approaches have been proposed. In general, three types of
feature selection methods exist: wrapper, filter, and embedded methods. Wrapper meth-
ods use the performance of a given learning algorithm as the criterion to include/exclude
attributes. Embedded methods use feature selection as an integral part of their learning
process. Filter methods introduce some external criterion independent of the predictor
and evaluate features according to that criterion, which allows for ranking of features and
selection of a suitable subset. This is fit for our purpose.

Our approach to determine the importance of symptoms for the overall disease pro-
gression is strongly related to the well-known Relief family of algorithms (Kira & Rendell,
1992; Kononenko, 1994; Reyes, Morell, & Ventura, 2015; Robnik-Šikonja & Kononenko,
2003). These algorithms evaluate attributes based on their ability to distinguish between
similar instances with different class values. Contrary to the majority of feature evaluation
heuristics (e.g., information gain, gini index, etc.) that assume conditional independence
of attributes with respect to the target variable, the Relief approaches do not make this
assumption and are suitable for problems that involve feature interaction. The Relief al-
gorithms randomly select an instance and find the nearest instance from the same class
and nearest instances from different classes. When comparing feature values of near in-
stances the algorithm rewards features that separate instances with different class values
and punishes features that separate instances with the same class value. The whole process
is repeated for a large enough sample. The approach we propose also uses similar instances
but uses cluster membership as a criterion for similarity instead of a distance in the feature
space. When updating the importance of features, our approach assesses joint transitions
from one cluster to another or from a better patient status to a worse one, while Relief
algorithms use similarities in target variable.

Most feature selection methods do not attempt to uncover causal relationships between
feature and target and focus instead on making best predictions. The introduction of
causal feature selection (under broad assumptions) can exibit strong feature set parsimony,
high predictivity, and local causal interpretability (Aliferis, Statnikov, Tsamardinos, Mani,
& Koutsoukos, 2010a, 2010b). In the medical context, the Markov blanket discovery
algorithm HITON (Aliferis, Tsamardinos, & Statnikov, 2003) has been used to understand
physicians’ decisions and their guideline compliance in the diagnosis of melanomas.

Some recent feature selection approaches try to explore the interconnection between
the features by exploring the similarity graph of features (Rana et al., 2015; Shang, Wang,
Stolkin, & Jiao, 2016). Other approaches pose feature selection as an optimization problem.
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For example, Sun et al. (2012) use optimization in combination with a game theory based
method. Our approach also uses a graph of transitions between clusters to assess similarity
of patients, but we work in an unsupervised scenario and use time order of patients’ visits
as links between nodes. The details are explained in Chapter 6.

2.8 Parkinson’s Disease Related Data Mining Research

The main branches of data mining research in the field of Parkinson’s disease (PD) include:
classification of PD patients, detection of subtypes of PD patients, detection of possible
biomarkers, detection of PD symptoms, and assessing the success of deep brain stimulation
surgery as a last resort in the treatment of Parkinson’s disease patients.

The use of classification techniques offers decision support to specialists by increasing
the accuracy and reliability of diagnosis and reducing possible errors. Gil and Johnson
(2009) use Artificial Neural Networks (ANN) and Support Vector Machines (SVM) to dis-
tinguish PD patients from healthy subjects. Ramani and Sivagami (2011) compare the
effectiveness of different data mining algorithms in the diagnosis of PD patients. Identifi-
cation of Parkinson’s disease subtypes is presented in the work of Lewis et al. (2005), and
has been confirmed in the conclusions from Reijnders et al. (2009) and Ma et al. (2015).

A biomarker is an objectively measurable characteristic that is able to detect abnormal
biological processes, pathogenic processes and/or pharmacological responses to therapy
(Bazazeh, Shubair, & Malik, 2016). To the best of our knowledge, there is no accepted
definitive biomarker of Parkinson’s disease. The development of early diagnostic biomark-
ers can lead towards more promt clinician’s intervention at the onset of disease and can aid
monitor the progress of medications therapy interventions that may slow or stop the course
of the disease (Miller & O’Callaghan, 2015). Effors are made in the machine learning and
data mining community to discover biomarkers distinguishing idiopathic Parkinson’s dis-
ease patients. Research includes detection of possible biomarkers from image (Adeli et al.,
2017; Goebel et al., 2011; L. Liu et al., 2018; Singh & Samavedham, 2015), speech (Tsanas,
Little, McSharry, Spielman, & Ramig, 2012), and biochemical data (Alberio et al., 2013).

Tremor is one of the symptoms strongly associated with Parkinson’s disease. Several
methods for numerical assessment of the intensity of tremor have been proposed. These
methods include time series analysis (Timmer et al., 1993), spectral analysis (Riviere,
Reich, & Thakor, 1997) and analysis with adaptive Fourier modeling (Riviere et al., 1997)
and they address tremor detection and quantification. Recent works are based on body
fixed sensors (BFS) for long-term monitoring of patients (Patel et al., 2009).

In the course of their disease, patients are prescribed antiparkinson medications thera-
pies in order to control the troubling symptoms. As the disease progresses, the medications
treatment can become ineffective and—as a last resort—clinicians use deep brain stimu-
lation (DBS) surgery to control the Parkinson’s disease symptoms. Data mining research
confirms that DBS significantly improves the patients’ motor function (Y. Liu et al., 2014).
Depending on the chosen method for DBS, a great reduction in dose of medication, or con-
servation of cognitive functions can be achieved. In order to predict the neurological effects
related to different electrode-contact stimulation, Szymański, Kubis, and Przybyszewski
(2015) tracked the connections between the stimulated part of the subthalamic nucleus
and the cortex with the help of diffusion tensor imaging (DTI).

Tsanas (2012) addresses the progression of Parkinson’s disease for 42 patients over
a six month period by predicting the total score of patients’ motor symptoms severity
and the total UPDRS (Unified Parkinson’s Disease Rating Scale) score using linear and
nonlinear regression techniques. Eskidere et al. (2012) build on previous work (Tsanas,
Little, McSharry, & Ramig, 2010; Tsanas, Little, et al., 2010) by proposing and comparing
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the performance of multiple regression methods for predicting the above mentioned total
scores. It is worth noting that during their involvement in the clinical study for data
collection, patients did not receive their antiparkinson medications.

While clustering usually focuses on patient grouping with the aim of diagnosing new
patients, none of the listed methods follows the progression of the disease, and to the best
of our knowledge, no data mining research in the field of Parkinson’s disease analyzed the
development of the disease in combination with the medications that the patients receive.
Identification of groups of patients based on the similarity of their symptoms and the
clinicians’ reaction with medications modification in order to keep the patients as stable and
in good status as possible, can be helpful in the assignment of personalized therapies and
adequate patient treatments. For that purpose, we propose a methodology for identification
of groups of patients based on the severity of their symptoms, determination of disease
progression, and the consequent patterns of medications modifications.

In the context of the PD_manager project (PD_manager: m-Health platform for
Parkinson’s disease management, 2015), Mileva-Boshkoska et al. (2017) developed a deci-
sion support model for Parkinson’s disease medication changes. Models are developed in
collaboration with Parkinson’s disease experts and no data mining is used in the process.
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Chapter 3

Parkinson’s Disease Data

The data we used in this thesis is a part of the Parkinson’s Progression Markers Initiative
(PPMI) funded by the Michael J. Fox Foundation. The PPMI study is comprised of neu-
rological and movement disorder study sites throughout the United States, Europe, and
Australia, and study cores with expertise in clinical assessments, neurological imaging, bi-
ologic sample storage (biorepository), bioinformatics, statistics, bioanalytics, and genetics
(Marek et al., 2011). The PPMI data set collection includes clinical assessments and eval-
uations, subject demographics, imaging data, and biological samples. In addition to these
data, the PPMI study also keeps track of all the concomitant medications the Parkinson’s
disease patients are receiving throughout their involvement in the study. This chapter
presents a short description of symptoms and medications data used in our analyses to
determine indicators of changes in the patients’ quality of life—important symptoms and
reactions to these symptoms by medications therapy modifications. Section 3.1 presents
a short description of symptoms data used by clinicians to follow the quality of life of
their patients. In Section 3.2 we present groups of antiparkinson medications used in the
therapy of Parkinson’s disease patients. We describe how these medications are recorded
in the PPMI study and how we relate them to symptoms reflecting the overall status of
the patients.

3.1 Symptoms Data

Parkinsonism is a term that covers a range of conditions that have similar symptoms to
Parkinson’s. About 85% of people with parkinsonism have Parkinson’s (sometimes called
idiopathic Parkinson’s) (European Parkinson’s Disease Association, 2016). The quality of
life of patients suffering from Parkinson’s disease is monitored by a set of clinical symptoms.
These symptoms describe different aspects of patients’ everyday life and are obtained and
evaluated by standardized questionnaires. The most popular and widely accepted ques-
tionnaire for determining the medical condition and the quality of life of a patient suffering
from Parkinson’s disease is the Movement Disorder Society (MDS) sponsored revision of
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz et al., 2008). It is a
questionnaire consisting of 65 questions concerning the progression of disease symptoms.
MDS-UPDRS is divided into four parts. Part I consists of questions about the ‘non-motor
experiences of daily living’. These questions address complex behaviors, such as halluci-
nations, depression, apathy, etc., and patient’s experiences of daily living, such as sleeping
problems, daytime sleepiness, urinary problems, etc. Part II expresses ‘motor experiences
of daily living’. This part of the questionnaire examines whether the patient experiences
speech problems, the need for assistance with the daily routines such as eating or dress-
ing, etc. Part III is referred to as the ‘motor examination’ and collects data about the



22 Chapter 3. Parkinson’s Disease Data

Table 3.1: Short overview of the patients whose data are used in the experimental work.

Characteristic Value
Number of patients 405
Male/Female patients 265/140
Age range on baseline visit 33–84
Average age 61
Visit range 1–5
Average number of visits 3.32
Number of instances 1335

motor symptoms that are typical for Parkinson’s disease patients and involve bradykinesia
(slowness of movement), rigidity, tremor, postural instability, etc. Part IV concerns ‘motor
complications’, which are mostly developed when the main antiparkinson drug levodopa is
used for a longer time period.

Each question from the MDS-UPDRS questionnaire is anchored with five responses
that are linked to commonly accepted clinical terms: 0 = normal (patient’s condition is
normal, symptom is not present), 1 = slight (symptom is present and has a slight influence
on the patient’s quality of life), 2 = mild, 3 = moderate, and 4 = severe (symptom is
present and severely affects the normal and independent functioning of the patient, i.e.
her/his quality of life is significantly decreased). In terms of data science, questions from
the questionnaire can be considered as attributes in a data table, while responses to the
questions provide values of the corresponding attributes. The evaluation of MDS-UPDRS
symptoms is performed periodically, approximately every 3–6 months, throughout the
patients’ 5-year involvement in the study, thus providing a longitudinal view and data
about the progression of Parkinson’s disease of each of the involved patients. We refer
to the time points when symptoms are updated as visits as these are actual visits of the
patients.

Note that PPMI data collection holds data about patients with varying times from
diagnosis and length of involvement in the PPMI study. There are patients who have only
recently been diagnosed with Parkinson’s disease as well as patients with almost 2 years
passed between their diagnosis and the start of their involvement in the PPMI study. Also,
there are patients who have only started their involvement in the PPMI study and those
who have concluded theirs. The experimental data include symptoms and medications
data of 405 Parkinson’s disease patients from the PPMI study. Table 3.1 presents a short
overview of the patients whose data are used in our experimental work. The data cover
the status of 265 male and 140 female patients. At the beginning of their involvement in
the study (baseline visit), the youngest patient was 33 years old and the oldest patient
was 84 years old. The average age of patients is 61 years. Each patient has made 1 to 5
visits to the clinician. The average number of recorded visits is 3.32. The experimental
data consist of 1,345 patients’ visits and each visit is considered a separate data instance,
representing the basic building block of the methodology described in Chapters 5 and 6.

The cognitive state of Parkinson’s disease patients is assessed by the Montreal Cognitive
Assessment (MoCA) (Dalrymple-Alford et al., 2010) questionnaire. It is a rapid screen-
ing instrument for mild cognitive dysfunction. It is a 30 point questionnaire consisting of
11 questions, designed to assess different cognitive domains: attention and concentration,
executive functions, memory, language, visuoconstructional skills, conceptual thinking,
calculations, and orientation. The cognitive evaluation of patients using the MoCA ques-
tionnaire is done on every other visit, starting from the fourth visit. In addition to MoCA,
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Table 3.2: Characteristics of the questionnaire data used in the analysis.

Questionnaire Number of Answers Higher value indicates
questions value range higher symptom severity

MDS-UPDRS Part I 6 0–4 Yes
MDS-UPDRS Part Ip 7 0–4 Yes
MDS-UPDRS Part II 13 0–4 Yes
MDS-UPDRS Part III 35 0–4 Yes
MoCA 11 0–1 No
PASE 7 1–2 No
SCOPA-AUT 21 0–3 Yes
QUIP 11 0–1 Yes

physicians also use the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s
disease (QUIP) (Weintraub et al., 2012) to address four major and three minor impulsive-
compulsive disorders. The patient is impulsive if he/she has impulsion problems with any
of the considered impulsive compulsive problems. In our research, we use QUIP to deter-
mine whether the patient has an impulsivity problem or not. Questions are not considered
as separate attributes in the data analysis. QUIP is administered regularly on every other
visit to the clinician.

Scales for Outcomes in Parkinson’s disease–Autonomic (SCOPA-AUT) is a specific
scale to assess autonomic dysfunction in Parkinson’s disease patients (Visser, Marinus,
Stiggelbout, & Van Hilten, 2004). It consists of 23 questions concerning gastrointestinal,
urinary, cardiovascular, thermoregulatory, pupillomotor, and sexual symptoms. The sexual
symptoms are gender-specific and were therefore omitted from our analysis, thus bringing
the number of considered SCOPA-AUT attributes to 21. Each question from the SCOPA-
AUT questionnaire is anchored with four responses that are linked to commonly accepted
clinical terms: 0 = never (patient has never experienced the particular symptom), 1 =
sometimes (symptom has occurred sometimes), 2 = regularly, 3 = often (patient often has
problems with the particular symptom). Urinary symptoms can also be evaluated with
value 9, indicating that the patient is wearing a catheter. Responses to the SCOPA-AUT
questionnaire are updated on every other visit.

Physical Activity Scale for the Elderly (PASE) (Washburn, Smith, Jette, & Janney,
1993) is a questionnaire that is a practical and widely used approach for physical activ-
ity assessment in epidemiologic investigations. The PASE score combines information on
leisure, household, and occupational activity. Washburn et al. (1993) states that the PASE
test-retest reliability coefficient (0.75) exceeded those reported for other physical activity
surveys. Responses to the PASE questionnaire are updated on every other visit, starting
from the fourth visit. The periodical update of patients symptoms in the PPMI study
allows the clinicians to monitor patients’ disease development through time. As mentioned
above, answers to the questions from each questionnaire form the vectors of attribute
values.

Table 3.2 presents a summary of the symptoms data sets considered in our research.
It lists the number of considered questions from each questionnaire, the range of attribute
values, and the nature of the attribute values. All considered questions have ordered values
and with the exception of questions from MoCA and PASE, larger values suggest higher
symptom severity and decreased quality of life of PD patients.

Symptoms of patients suffering from Parkinson’s disease are grouped into several data
sets, representing distinct views of the data. These views consist of data from MoCA test,
motor experiences of daily living, non-motor experiences of daily living, complex motor
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examination data, etc. For each patient these data are obtained and updated periodically
(on each or every second patient’s visit to the clinician), usually first at the beginning of
the patient’s involvement in the PPMI study, and then approximately every 6 months,
in total duration of 5 years—providing the clinicians with the opportunity to follow the
development of the disease. Visits of each patient can be viewed as time points, and the
collected data on each visit is the data about the patient at the respective time point. All
time points collected for one patient form a short time series.

When considering the possibility of using a multi-view framework, the independence
of separate views should be inspected. The conditional independence of separate views
imposes constraints on their shared latent representation. If the conditional independence
constraint is respected, it can improve the quality of a learned low dimensional represen-
tation thus leading towards improved learning results (White, Zhang, Schuurmans, & Yu,
2012). In their work, Goetz et al. (2008) state that MDS-UPDRS shows high internal con-
sistency (Cronbach’s alpha = 0.79–0.93 across the MDS-UPDRS parts (described above),
indicating acceptable to excellent internal consistency). Cronbach’s alpha (Cronbach, 1951)
is a measure of internal consistency, measuring how closely related a set of items are as
a group. MDS-UPDRS across-part correlations range from 0.22 to 0.66, indicating not
acceptable or poor internal consistency. Across-part correlations determine the correlation
between pairs of MDS-UPDRS parts. Results confirm that each part assesses a different
aspect of PD. Reliable factor structures for each part are obtained (comparative fit index
> 0.90 for each part), which supports the use of sum scores for each part, when compared
to using a total score of all parts. Factor analysis is a strong clinical/statistical method
for scale evaluation (Goetz et al., 2008). It examines whether items can be clustered and
allows clinicians to determine if these clusters fall into components that represent clinically
relevant domains (Goetz et al., 2008).

3.2 Medications Data

The PPMI data collection offers information about all concomitant medications that pa-
tients used during their involvement in the study. These medications are described with
names, medical conditions they are prescribed for, and time when the patient started and
(if) ended the medications therapy. For the purpose of our research, we initially concentrate
only on whether the patient receives a therapy with antiparkinson medications, and which
combination of antiparkinson medications the patient has received between the time points
when the MDS-UPDRS test and the MoCA test were administered. The main families of
drugs used for treating motor symptoms are levodopa, dopamine agonists, and MAO-B
inhibitors (National Collaborating Centre for Chronic Conditions, 2006). Medications that
treat Parkinson’s disease-related symptoms but are not from the above-mentioned groups
of medications are referred to as other.

The most widely used treatment for Parkinson’s disease for over 30 years is levodopa.
It crosses the blood/brain barrier and once it is in the nervous system, it is transformed
into dopamine in the dopaminergic neurons by dopa-decarboxylase. Motor symptoms are
produced by a lack of dopamine in the substantia nigra, so levodopa is used to temporar-
ily diminish the motor symptomology. The chronic administration of levodopa in the
treatment of Parkinson’s disease can cause several serious side effects, that include on/off
fluctuations and levodopa-induced dyskinesia. When this occurs, Parkinson’s disease pa-
tients change rapidly from a state with good response to medication and few symptoms
(”on” state) to a status with no response to medication and important motor symptoms
(”off” state). In order to omit or prolong the time before these side-effects occur, levodopa
doses are kept as low as possible while maintaining functionality of patients. A common
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practice is to delay the initiation of levodopa therapy and use alternatives for some time.
Dopamine agonists were initially used for patients experiencing on-off fluctuations and

dyskinesias as a complementary therapy to levodopa. Now they are mainly used on their
own as an initial therapy for motor symptoms with the aim of delaying motor complications.
Dopamine agonists are known to cause side effects which include insomnia, hallucinations,
constipation, and problems with impulsive control. The existence of these side effects
forces clinicians to change patients’ medication therapies either by decreasing the dosage
or stopping the dopamine agonist therapy.

MAO-B inhibitors increase the level of dopamine in the basal ganglia by blocking its
metabolization and provide increased levels of levodopa in the striatum (nuclei in the
forebrain and a critical component of the motor and reward system). Similar to dopamine
agonists, MAO-B inhibitors are used in the first stages of the disease to control the motor
symptoms and delay the need for taking levodopa. Therapies with MAO-B inhibitors are
also used for the treatment of depression and anxiety. Both symptoms can be experienced
by Parkinson’s disease patients.

Clinicians follow the patients’ status and respond to changes in modifications of medica-
tions. The modifications can be in terms of increasing or decreasing the dosage of a certain
group of antiparkinson medications, introducing or removing medications from patients’
therapies, changing the frequency and dosage of medication intake, etc. Clinicians can
modify the patients’ medications at any time and their decision is not strictly connected
to the visits at which the above-mentioned questionnaires are administered. Many times
clinicians do phone call-ups to patients in order to stay informed of the patients’ status and
how the disease progresses, and if necessary, they modify the therapy in order to control
and stabilize the status of the patients. The medications therapy for Parkinson’s disease
patients is highly personalized. Patients take different medications with personalized plans
of intake. In order to be able to compare different therapies, dosages of Parkinson’s disease
medications are translated into a common score called Levodopa Equivalent Daily Dosage
(LEDD).

Figure 3.1 presents scenarios of medications dosage changes of a single patient. Points
V1, V2, V3, and V4 present time points on the continuous timeline with visits 1, 2, 3,
and 4 to the clinician. The red lines represent the intake duration of each antiparkinson
medication, D1, D2, and D3. The line width indicates the dosage of the medications, where
wider line width indicates increased dosage. As evident from Figure 3.1, on visit 1, the
patient receives a therapy consisting of medications D1 and D3. Sometime between visits
1 and 2 the therapy is updated by introducing medication D2 and removing medication
D1. The snapshot of medications therapy in visit 3 shows that the patient’s therapy is
modified by increasing the LEDD of medication D2 and consists of medications D2 and D3.
By visit 4, the medications therapy consists only of medication D3. As mentioned above,
the clinicians follow the status of the patient and based on the overall status decide how to
modify the therapy. For example, if certain motor symptoms are getting overly problem-
atic, clinicians will try to introduce levodopa based medications or increase their dosage.
However, if the patient is experiencing hallucinations or has problems with impulse control
and takes dopamine agonists, clinicians will decrease the dosage of these medications or
remove them from the therapy.

We preprocessed the medications data presented in the PPMI concomitant medications
log by recording only antiparkinsonian medications and connecting the medications and
their dosages to the patients’ visits. For example, for the patient from Figure 3.1, we
would record that in visit 1 the patient was taking medications D1 and D3 and as well as
their respective LEDD values. For visit 2 we would record that the therapy consisted of
medications D2 and D3, etc.
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Figure 3.1: Example of Parkinson’s disease patient therapy modifications between visits 1
and 4. The blue line presents the linear timeline, while points V1, V2, V3, and V4 present
four consecutive visits to the clinician when the MDS-UPDRS questionnaire is adminis-
tered. The red lines present the duration of intake for each antiparkinson medication, while
the line width presents the dosage of the medication.
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Chapter 4

Descriptive Rule Learning

Rule learning algorithms typically proceed in two phases: rule refinement selects terms
for specializing the rule, and rule selection selects the final rule among several candidates.
While most conventional algorithms use the same heuristic in both phases, recent research
(Stecher et al., 2014) indicates that two separate heuristics improve the coverage of posi-
tive examples, and may result in better classification accuracy. This chapter presents and
evaluates two new beam search rule learning algorithms: DoubleBeam-SD for subgroup
discovery and DoubleBeam-RL for classification rule learning. The algorithms use two
separate beams and can use different heuristics in the rule refinement and rule selection
phase. The chapter is divided into two sections. We first introduce the problem descrip-
tion and then present the published Expert Systems with Applications journal paper that
addresses the described problem.

4.1 Problem Description

Most data mining techniques aim at optimizing the predictive performance of the induced
models. However, in order for these models to be utilized by an expert system or to offer
decision support, their comprehensibility is of the ultimate importance. For example, in
medical applications, clinicians are interested in the symptoms, conditions, and circum-
stances causing a certain recommendation. Other examples of application areas in need of
transparent models include law, finance and knowledge discovery (Bibal & Frénay, 2016).

Rule learning is a symbolic data analysis technique that can construct comprehensible
models or patterns describing the data (Clark & Niblett, 1989; Fürnkranz et al., 2012;
Michalski, 1969). Compared to statistical learning techniques, the key advantage of rule
learning is its simplicity and humanly comprehensible outputs, therefore, the development
of new rule learning algorithms for constructing understandable models and patterns is of
great interest of the data mining community.

Classification rule learning is a technique for predictive induction. Models consist of IF-
THEN rules covering the entire problem space. The rule generation process is performed on
the labeled data with the intention to construct rules with high predictive power, covering
as many as possible positive examples and as few as possible negative examples. Contrary
to classification rule learning, subgroup discovery (Atzmüller, 2015; Klösgen, 1996; Wrobel,
1997) is a descriptive induction technique where the ultimate goal is to induce individual
rules describing interesting subgroups which have a significantly different class distribution
to that of the entire population (Klösgen, 1996; Wrobel, 1997). Models are generated on
the labeled data, however, they consist only of rules describing the properties of individual
groups of target class instances.

A common property of classification rule learning and subgroup discovery is the rule
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construction process. In both cases, rule construction is performed in two phases: the rule
refinement and the rule selection phase. Typically, different types of heuristics are used
for classification rule induction and subgroup induction. Researchers usually choose one
heuristic and use the same heuristic in the two phases of the rule construction process:
(i) a heuristic is used to evaluate rule refinements, i.e. to select which of the refinements
(specializations) of the current rule will be further explored, and (ii) the same heuristic is
used in rule selection to decide which of the constructed rules will be added to the rule set.

Since one of the goals of rule learning is to optimize the predictive performance of
constructed rules, heuristics used in the rule construction process are customized and
adapted for the selection phase. Given the different natures of the refinement and selection
phase, this practice may not fully take advantage of each phase and not lead to the best
discovered rules. Stecher et al. (2014) described this divergence and proposed to use
separate heuristics for each of the two rule construction phases. They suggested that in
the refinement phase, so-called inverted heuristics should be used for evaluating the relative
gain obtained by refining the current rule. The key idea of these heuristics is that while
most conventional rule learning heuristics, such as the Laplace or the m-estimate, anchor
their evaluation on the empty rule that covers all examples, inverted heuristics anchor
the point of view on the base rule, which is more appropriate for a top-down refinement
process. In terms of the formulas for the conventional rule learning heuristics, it means
that the values of P and N are constant and denote the total number of positive and
negative examples in the data set. In the inverted heuristics setup, these values change,
and represent the number of positive and negative examples covered by the parent rule of
the rule that is being evaluated.

The introduction of separate heuristics that take full advantage of the different natures
of the rule construction phases can lead towards discovering better rules in terms of their
classification power and their coverage. Stecher et al. (2014) mention that longer rules are
an expected side effect of using inverted heuristics in the refinement phase which might be
welcome in the analysis of medical data, as longer rules have a greater descriptive power
and are preferred in some application areas such as medicine.

We explored the possibility of separating the phases of the rule learning process in two
settings: classification rule learning and subgroup discovery. We propose two new algo-
rithms, the DoubleBeam-RL algorithm for classification rule learning and the DoubleBeam-
SD algorithm for subgroup discovery. The separation of the refinement and selection phase
in the rule learning process was done two-fold by introducing separate heuristics and using
separate beams for rule refinement and selection.

The introduction of two beams in the rule learning process effectively widens the search
space and allows the algorithms to construct and detect rules which could be overlooked
otherwise. This separation keeps track of the set of rules which may have low selective
quality—they cover some negative examples, but have high refinement quality—rule also
has a high coverage of positive examples. It also keeps track of rules that have very high
selective quality but only cover a fraction of positive examples. By keeping track of the
best rules for both refinement and selection we extend the possibility that by the end of
the search process the algorithm will find rules of better quality.

We compare the performance of the DoubleBeam-RL algorithm and the DoubleBeam-
SD algorithm to their state-of-the-art counterparts. In order to omit any bias introduced
by the algorithms’ parameters, we introduce a double-loop approach for parameter setting.
In the classification rule learning setting, the experimental results confirm previously shown
benefits of using two separate heuristics for rule refinement and rule selection. In subgroup
discovery, DoubleBeam-SD algorithm variants outperform several state-of-the-art related
algorithms.
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4.2 Related Publication

The rest of this chapter presents the Expert Systems with Applications journal paper.

Publication related to this contribution

Journal Paper

Valmarska, A., Lavrač, N., Fürnkranz, J., & Robnik-Šikonja, M. (2017). Refinement and
selection heuristics in subgroup discovery and classification rule learning. Expert Sys-
tems with Applications, 81, 147–162. doi:10.1016/j.eswa.2017.03.041

This publication contains the following contributions:

• We present an overview of existing algorithms for classification rule learning and
subgroup discovery.

• We present the process of rule learning in the coverage space and motivate the sep-
aration of the refinement and selection phase of the learning phases.

• We present the DoubleBeam-RL algorithm for classification rule learning and empir-
ically compare its performance to the performance of the CN2 algorithm (Clark &
Niblett, 1989), the Ripper algorithm (Cohen, 1995), and the best performing algo-
rithm from (Stecher et al., 2014).

• We show that our algorithm performs comparably to its state-of-the-art counterparts.

• We confirm the advantage of separating the learning phases in both the classification
rule learning setting as well as in the subgroup discovery setting.

• We present the DoubleBeam-SD algorithm for subgroup discovery and present three
approaches for instance weighting.

• We compare its performance to the SD algorithm (Gamberger & Lavrač, 2002), the
CN2-SD algorithm (Lavrač et al., 2004), and the APRIORI-SD algorithm (Kavšek
et al., 2003). We empirically show that the DoubleBeam-SD algorithm performs
comparably to the considered state-of-the-art algorithms for subgroup discovery. We
also show that a variant of this algorithm produces rules that are statistically more
unusual than the rules generated by the SD and the APRIORI-SD algorithm.

The authors’ contributions are as follows. The algorithms were designed and developed
by Anita Valmarska with the insights from Marko Robnik-Šikonja. Anita Valmarska im-
plemented the algorithms and performed the experimental work. Marko Robnik-Šikonja
initiated the idea for double-loop cross-validation determination of default parameters and
supervised the implementation of the algorithms. Nada Lavrač directed our attention to-
wards the work of Stecher et al. (2014) and motivated the usage of inverted heuristics in the
rule learning process. Johannes Fürnkranz provided helpful insights into the performance
of the algorithms. All authors contributed to the text of the manuscript.

https://dx.doi.org/10.1016/j.eswa.2017.03.041
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a b s t r a c t 
Classification rules and rules describing interesting subgroups are important components of descriptive 
machine learning. Rule learning algorithms typically proceed in two phases: rule refinement selects con- 
ditions for specializing the rule, and rule selection selects the final rule among several rule candidates. 
While most conventional algorithms use the same heuristic for guiding both phases, recent research in- 
dicates that the use of two separate heuristics is conceptually better justified, improves the coverage of 
positive examples, and may result in better classification accuracy. The paper presents and evaluates two 
new beam search rule learning algorithms: DoubleBeam-SD for subgroup discovery and DoubleBeam-RL 
for classification rule learning. The algorithms use two separate beams and can combine various heuris- 
tics for rule refinement and rule selection, which widens the search space and allows for finding rules 
with improved quality. In the classification rule learning setting, the experimental results confirm previ- 
ously shown benefits of using two separate heuristics for rule refinement and rule selection. In subgroup 
discovery, DoubleBeam-SD algorithm variants outperform several state-of-the-art related algorithms. 

© 2017 Elsevier Ltd. All rights reserved. 
1. Introduction 

While most data mining techniques aim at optimizing predic- 
tive performance of the induced models, their comprehensibility is 
of ultimate importance for expert systems and decision support. 
Examples of application areas in need of transparent models in- 
clude medicine, law, finance and knowledge discovery ( Bibal & Fré- 
nay, 2016 ). 

Rule learning is a symbolic data analysis technique that can be 
used to construct understandable models or patterns describing 
the data ( Clark & Niblett, 1989; Fürnkranz, Gamberger, & Lavra ̌c, 
2012; Michalski, 1969 ). As one of the standard machine learning 
techniques it has been used in numerous applications. Compared 
to statistical learning techniques, the key advantage of rule learn- 
ing is its simplicity and human understandable outputs. Therefore, 
the development of new rule learning algorithms for constructing 
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understandable models and patterns is in the core interest of the 
data mining community. 

Symbolic data analysis techniques can be divided into two cate- 
gories. Techniques for predictive induction produce models, typically 
induced from labeled data, which are used to predict the label of 
previously unseen examples. The second category consists of tech- 
niques for descriptive induction , where the aim is to find compre- 
hensible patterns, typically induced from unlabeled data. There are 
also descriptive induction techniques that learn descriptive rules 
from labeled data, which are referred to as supervised descriptive 
rule discovery techniques ( Kralj Novak, Lavra ̌c, & Webb, 2009 ). Typi- 
cal representatives of these techniques are subgroup discovery (SD) 
( Atzmueller, 2015; Klösgen, 1996; Wrobel, 1997 ), contrast set min- 
ing (CSM) ( Bay & Pazzani, 2001 ), and emerging pattern mining 
(EPM) ( Dong & Li, 1999 ) techniques. For instance, the task of sub- 
group discovery is to find interesting subgroups in the population, 
i.e. subgroups that have a significantly different class distribution 
than the entire population ( Klösgen, 1996; Wrobel, 1997 ). The re- 
sult of subgroup discovery is a set of individual rules, where the 
rule consequence is a class label. 

An important characteristic of subgroup discovery is that its 
task is a combination of predictive and descriptive rule induction. 

http://dx.doi.org/10.1016/j.eswa.2017.03.041 
0957-4174/© 2017 Elsevier Ltd. All rights reserved. 
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It provides understandable descriptions of subgroups of individu- 
als which share a common target property of interest. This fea- 
ture of subgroup discovery has inspired many researchers to in- 
vestigate new methods that will be more effective in finding inter- 
esting patterns in the data. Most subgroup discovery approaches 
build on classification algorithms, e.g., EXPLORA ( Klösgen, 1996 ), 
MIDOS ( Wrobel, 1997 ), SD ( Gamberger & Lavra ̌c, 2002 ), CN2- 
SD ( Lavra ̌c, Kavšek, Flach, & Todorovski, 2004 ), and RSD ( Lavra ̌c, 
Železný, & Flach, 2002 ), or on algorithms for association rule learn- 
ing, e.g., APRIORI-SD ( Kavšek, Lavra ̌c, & Jovanoski, 2003 ), SD-MAP 
( Atzmüller & Puppe, 2006 ), and Merge-SD ( Grosskreutz & Rüping, 
2009 ). 

The main difference between classification rule learning and 
subgroup discovery is that subgroup discovery algorithms con- 
struct individual rules describing the properties of individual 
groups of target class instances, while classification rule learning 
algorithms construct a set of classification rules covering the en- 
tire problem space. 

A common property of classification rule learning and subgroup 
discovery is that rule construction is performed in two phases: the 
rule refinement and the rule selection phase. Typically, different 
types of heuristics are used for classification rule induction and 
subgroup induction. Researchers usually choose one heuristic and 
use the same heuristic in the two phases of the rule construction 
process: (i) a heuristic is used to evaluate rule refinements , i.e. to 
select which of the refinements (specializations) of the current rule 
will be further explored, and (ii) the same heuristic is used in rule 
selection to decide which of the constructed rules will be added to 
the rule set. For learning classification rules, Stecher, Janssen, and 
Fürnkranz (2014) proposed to use separate heuristics for each of 
the two rule construction phases, and suggested that in the refine- 
ment phase, so-called inverted heuristics should be used for eval- 
uating the relative gain obtained by refining the current rule. The 
key idea of these heuristics is that while most conventional rule 
learning heuristics, such as the Laplace or the m -estimate, anchor 
their evaluation on the empty rule that does not cover any exam- 
ples, inverted heuristics anchor the point of view on the base rule, 
which is more appropriate for a top-down refinement process. 

In this paper, we test the utility of inverted heuristics in the 
context of subgroup discovery as well as in the context of clas- 
sification rule learning. For this purpose we have developed two 
new beam search rule learning algorithms, named DoubleBeam- 
SD for subgroup discovery and DoubleBeam-RL for classification 
rule learning, respectively. The algorithms allow to combine vari- 
ous heuristics for rule refinement and rule selection, with the goal 
of determining their optimal combination, and, in consequence, 
learn rules with better coverage and better descriptive power with- 
out compromising rule accuracy. The introduction of two separate 
beams enlarges the search space, enabling the learner to find rule 
sets that are more accurate as well as more interesting to the end 
user. For example, physicians appreciate rules that are highly accu- 
rate when used in patient classification, but prefer understandable 
rules that precisely characterize the patients in terms of the fea- 
tures that distinguish the patients from the control group. 

We compare the double beam search algorithms to state-of-the- 
art subgroup discovery and rule learning algorithms by experimen- 
tally evaluating them on the UCI data sets, using the same data 
sets as in previous research of Stecher et al. (2014) . All the com- 
petitors are used with their default parameters from their corre- 
sponding software platforms. In order to determine useful default 
configurations for our algorithms, we employ a data set hold-out 
methodology for parameter setting with the goal of finding the op- 
timal configuration without tuning the algorithms to a particular 
data set. 

The rest of this paper is organized as follows. Section 2 pro- 
vides the necessary background on rule learning and subgroup dis- 

covery, followed by the introduction of the coverage space and an 
illustrative example, explaining the advantages of using inverted 
heuristics in rule refinement. It also summarizes the findings of 
Stecher et al. (2014) concerning the use of inverted heuristics in 
rule learning. Section 3 is concerned with subgroup discovery pre- 
senting the DoubleBeam-SD algorithm and its variants, followed 
by a description of the experimental setting and the obtained re- 
sults. Section 4 outlines the DoubleBeam-RL algorithm for classifi- 
cation rule learning, followed by a description of the experimen- 
tal setting, and the presentation of experimental results. Finally, 
Section 5 presents the conclusions and ideas for further work. 
2. Rule learning: background and related work 

Rule learning is a standard symbolic data analysis technique 
used for constructing understandable models and patterns. Its 
main advantage over the other data analysis techniques is its sim- 
plicity and comprehensibility of its outputs. Rule learning has been 
extensively used both in predictive and descriptive rule learning 
settings, where by applying different rule evaluation heuristics dif- 
ferent trade-offs between the consistency and coverage of con- 
structed rules can be achieved. 

This section first presents a short overview of classification rule 
learning and subgroup discovery. It introduces the coverage space 
used as a tool for studying the properties of different heuristics 
and presents the idea of using two separate heuristics for rule re- 
finement and rule selection illustrated on a selected UCI data set. 
The section ends with the description of closely related work re- 
garding the use of inverted heuristics in classification rule learning. 
2.1. Classification rule learning 

The task of classification rule learning is to find models which 
would ideally be complete (cover all positive examples, or at least 
most of the positives), and consistent (not cover any negative ex- 
amples, or at most a very small number of negatives). Multi-class 
classification problems can be dealt with by using the one-versus- 
all approach, which learns one rule set for each class, where the 
examples labeled with the chosen class are considered as positive 
target class examples, and all examples of other classes as nega- 
tives. 

There are numerous classification rule learning algorithms, 
the most popular being AQ, CN2 and Ripper. The AQ algorithm 
( Michalski, 1969 ), which was the first to propose the covering al- 
gorithm for rule set construction, is a top-down beam search algo- 
rithm that uses a random positive example as a seed for finding 
the best rule. The CN2 algorithm ( Clark & Niblett, 1989 ) combines 
the ideas from the AQ algorithm and the decision tree learning al- 
gorithm ID3 ( Quinlan, 1983 ), given the similarity of rule learning 
to learning decision trees, where each path from the root of the 
tree to a tree leaf can be viewed as a separate rule. It constructs 
an ordered decision list by learning rules describing the majority 
class examples in the training set. Once the learned rule is added 
to the decision list, all the covered examples, both positive and 
negative, are removed from the training data set, and the rule in- 
duction process is continued on the updated training set. Ripper 
( Cohen, 1995 ) is the first rule learning algorithm that effectively 
overcomes the overfitting problem and is thus a very powerful rule 
learning system. The algorithm constructs rule sets for each of the 
class values. Initially, the training data set is divided into a growing 
and a pruning set. Rules are learned on the growing set, and then 
pruned on the pruning set by incrementally reducing the error rate 
on the pruning set. A pruned rule is added to the rule set if the 
description length of the newly constructed rule set is at most d 
bits longer (a parameter) than the already induced rule set. Oth- 
erwise, the rule learning process is stopped. Similarly to the CN2 
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Table 1 
Comparison of the DoubleBeam-RL algorithm to the state-of-the-art classification rule learners CN2, Ripper and SC-ILL. 

Algorithm Type of search Separate refinement heuristic Stopping criterion Rule pruning Post-processing 
CN2 Beam No No beam improvement No No 
Ripper Greedy No MDL Yes Yes 
SC-ILL Greedy Yes No negative examples covered No No 
DoubleBeam-RL Beam Yes maxSteps No No 

algorithm, when a new rule is added to the rule set, all the in- 
stances covered by that rule are removed from the growing set. In 
addition to pruning the rules before adding them to induced rule 
set, Ripper prevents rules overfitting in a post-processing phase in 
which the learned rule set is optimized and the selected rules are 
re-learned in the context of the other rules. FURIA ( Hühn & Hüller- 
meier, 2009 ) is a classification rule learning algorithm which ex- 
tends the Ripper algorithm by learning fuzzy rules. 

Despite its long history, rule learning is still actively researched 
and routinely applied in practice. For example, Napierala and Ste- 
fanowski (2015) use rule learning with argumentation to tackle im- 
balanced data sets, and Ruz (2016) explores the order of instances 
in seeding rules to improve the classification accuracy. Minnaert, 
Martens, De Backer, and Baesens (2015) discuss the importance 
of proper rule evaluation measures for improving the accuracy of 
classification rule learning algorithms. They also introduce multi- 
criteria learning and investigate a Pareto front as a trade-off be- 
tween comprehensibility and accuracy of rule learners. 

In a line of research started by Parpinelli, Lopes, and Freitas 
(2002) , rule learning is turned into an optimization problem us- 
ing an ant colony optimization approach. The initial rule learning 
algorithm, named Ant-Miner, worked for nominal attributes only, 
but was later improved by Pi ̌culin and Robnik-Šikonja (2014) to ef- 
ficiently handle numeric attributes. Classification rule learning has 
been a vivid topic of research also in inductive logic programming 
and relational data mining. For example, Zeng, Patel, and Page 
(2014) developed the QuickFOIL algorithm that improves over the 
original FOIL algorithm ( Quinlan & Cameron-Jones, 1993 ). 

Learning rules can be regarded as a search problem ( Mitchell, 
1982 ). Search problems are defined by the structure of the search 
space, a search strategy for searching through the search space, 
and a quality function (a heuristic ) that evaluates the rules in or- 
der to determine whether a candidate rule is a solution or how 
close it is to being a solution to be added to the rule set, i.e. the 
final classification model. The search space of possible solutions is 
determined by the model language bias ( Fürnkranz et al., 2012 ). 
In propositional rule learning, the search space consists of all the 
rules of the form targetClass ← Conditions , where targetClass is one 
of the class labels, and Conditions is a conjunction of features. Fea- 
tures have the form of A i = v i j (attribute A i has value v ij ). 

For learning a single rule, most learners use one of the fol- 
lowing search strategies: general-to-specific ( top-down hill-climbing ) 
or specific-to-general ( bottom-up ), where the former is more com- 
monly used. Whenever a new rule is to be learned, the learning 
algorithm initializes it with the universal rule r ⊤ . This is an empty 
rule that covers all the examples, both positive and negative. In the 
rule refinement phase, conditions are successively added to this 
rule, which decreases the number of examples that are covered 
by the rule. Candidate conditions are evaluated with the goal of 
increasing the consistency of the rule while maintaining its com- 
pleteness, i.e. a good condition excludes many negative examples 
and maintains good coverage on the positive examples. 

Heuristic functions are used in order to evaluate and com- 
pare different rules. Different heuristics implement different trade- 
offs between these two objectives. While CN2 and Ripper use en- 
tropy as the heuristic evaluation measure, numerous other heuris- 
tic functions have been proposed in rule learning—for a variety of 

heuristics and their properties the interested reader is referred to 
Fürnkranz et al. (2012) . The most frequently used heuristics in rule 
learning are: 

Precision: 
h prec (p, n ) = p 

p + n (1) 
Laplace: 

h lap (p, n ) = p + 1 
p + n + 2 (2) 

m-estimate: 
h m-est (p, n, m ) = p + m · P 

P+ N 
p + n + m (3) 

where, for a given rule, arguments p and n denote the number of 
positive and negative examples covered by the rule (i.e. the true 
and false positives, respectively), and P and N in Eq. (3) denote the 
total number of positive and negative examples in the data set. 
Given that these heuristics concern the problem of selecting the 
best of multiple refinements of the same base rule (the empty rule, 
universal rule), the values P and N can be regarded as constant, so 
that the above functions may be written as h ( p, n ) depending only 
on the true and false positives. 

Table 1 compares the DoubleBeam-RL classification rule learn- 
ing algorithm (introduced in Section 4 ) to the state-of-the-art clas- 
sification rule learners that were used in the experiments. CN2 and 
DoubleBeam-RL are beam search algorithms, while Ripper and SC- 
ILL are greedy algorithms, adding conditions to the rules which 
maximize their respective heuristics. The DoubleBeam-RL and SC- 
ILL algorithms use separate heuristics adapted for the refinement 
and selection phase of the rule learning process. Ripper is the 
only considered classification rule learning algorithm which em- 
ploys rule pruning and optimization of rule sets in post-processing. 
The algorithms use different stopping criteria; for example, Ripper 
uses a heuristic based on minimum description length (MDL) prin- 
ciple. 
2.2. Subgroup discovery 

The goal of data analysis is not only building prediction mod- 
els, but frequently the aim is to discover individual patterns that 
describe regularities in the data ( Fürnkranz et al., 2012; Kralj No- 
vak, Lavra ̌c, Zupan, & Gamberger, 2005; Wrobel, 1997 ). This form 
of data analysis is used for data exploration and is referred to as 
descriptive induction . Subgroup discovery is a form of descriptive 
induction. The task of subgroup discovery is to find subgroups of 
examples which are sufficiently large while having a significantly 
larger distribution of target class instances than the original target 
class distribution. 

Like in classification rule learning, individual subgroup descrip- 
tions are represented as rules in the form targetClass ← Conditions , 
where the targetClass is the target class representing the property 
of interest, and Conditions is a conjunction of features that are 
characteristic for a selected group of individuals. 

Subgroup discovery is a special case of the more general task 
of rule learning. Classification rule learners have been adapted 
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Table 2 
Some properties of subgroup discovery algorithms DoubleBeam-SD, APRIORI-SD, SD, and CN2-SD. 

Algorithm Type of search Separate refinement heuristic Stopping criterion Post-processing 
APRIORI-SD Exhaustive No minSup, minConf Yes 
SD Beam No No beam improvement Yes 
CN2-SD Beam No No beam improvement No 
DoubleBeam-SD Two beams Yes maxSteps Optional 

to perform subgroup discovery with heuristic search techniques 
drawn from classification rule learning. These algorithm also ap- 
ply constraints, which are appropriate for descriptive rule learning. 
The research in the field of subgroup discovery has developed in 
different directions. Exhaustive methods, which include EXPLORA 
( Klösgen, 1996 ), SD-MAP ( Atzmüller & Puppe, 2006 ) and APRIORI- 
SD ( Kavšek et al., 2003 ), guarantee the optimal solution given the 
optimization criterion. The APRIORI-SD algorithm draws its inspira- 
tion from the association rule learning algorithm APRIORI ( Agrawal 
& Srikant, 1994 ), but restricts it to constructing rules that have 
only the target variable (the property of interest) in their head, 
with weighted relative accuracy (WRACC), defined in Eq. (5) , used as 
a measure of rule quality. In order to improve the inferential power 
of the subgroup describing rules, the APRIORI-SD algorithm uses a 
post-processing step to reduce the generated rules to a relatively 
small number of diverse rules. This reduction is performed using 
the weighted covering method proposed by Gamberger and Lavra ̌c 
(20 0 0) . When a rule is added to the induced rule set, weights 
of examples covered by the rule are decreased. This allows the 
method to prioritize rules which cover yet uncovered examples, 
thus promoting the coverage of diverse groups of examples. 

While the APRIORI-SD algorithm adapts the process of associa- 
tion rule learning to the context of subgroup discovery, the SD sub- 
group discovery algorithm ( Gamberger & Lavra ̌c, 2002 ) performs 
heuristic beam search, where rule quality is estimated using the 
generalization quotient heuristic 
h g (p, n, g) = p 

n + g , (4) 
where p is the number of true positives, n is the number of false 
positives , and g is the generalization parameter . High-quality rules 
will cover many target class examples and a low number of non- 
target examples. The number of tolerated non-target examples cov- 
ered by a rule is regulated by the generalization parameter. For 
small g , more specific rules are generated while for bigger values 
of g the algorithm constructs more general rules. The interpreta- 
tion of the rules produced by the SD algorithm is improved using 
the above mentioned weighted covering method in post-processing 
( Gamberger & Lavra ̌c, 20 0 0 ). 

CN2-SD ( Lavra ̌c et al., 2004 ) is a beam search algorithm, which 
adapts the CN2 ( Clark & Niblett, 1989 ) classification rule learner to 
subgroup discovery. CN2-SD has introduced a weighted covering 
algorithm, where examples that have already been covered by one 
of the learned rules are not removed from the training data set, 
but instead their weights are decreased. The authors propose and 
compare different measures for rule evaluation. They argue that 
the most important measure for subgroup evaluation is weighted 
relative accuracy (WRACC), referred to as unusualness , defined as 
follows 
WRACC (p, n ) = p + n 

P + N ·
(

p 
p + n − P 

P + N 
)

(5) 
This measure reflects both the rule significance and rule coverage, 
as subgroup discovery is interested in rules with significantly dif- 
ferent class distribution than the prior class distribution that cover 
many instances. WRACC is the measure of choice in our experi- 
mental work on subgroup discovery for comparing the quality of 
the induced subgroup describing rules. 

Subgroup discovery was used also in the context of seman- 
tic data mining. Adhikari, Vavpeti ̌c, Kralj, Lavra ̌c, and Hollmén 
(2014) have explained mixture models by applying semantic sub- 
group discovery system Hedwig ( Vavpeti ̌c, Novak, Gr ̌car, Mozeti ̌c, & 
Lavra ̌c, 2013 ) to structure the search space and to formulate gen- 
eralized hypotheses by using concepts from the given domain on- 
tologies. 

Table 2 compares the DoubleBeam-SD algorithm (introduced in 
Section 3 ) to the state-of-the-art subgroup discovery algorithms 
APRIORI-SD, CN2-SD, and SD, which were used in the experiments. 
The latter algorithms use only a single heuristic for rule evaluation, 
designed to optimize the selection of best rules. The DoubleBeam- 
SD algorithms can use pairs of different heuristics (see Section 2.4 ) 
which can be applied to estimate rule quality in both the re- 
finement and selection phases of the rule learning process. The 
DoubleBeam-SD algorithm stops the learning process after a pre- 
determined number of steps ( maxSteps ). The SD and CN2-SD algo- 
rithms stop when there are no improvements of rules in the beam, 
i.e. when newly induced rules have lower quality than the rules al- 
ready included in the beam. APRIORI-SD uses minimal support and 
coverage as the stopping criteria. 
2.3. Coverage space 

Fürnkranz and Flach (2005) introduced the coverage space as 
a formal framework for analyzing and visualizing the behavior of 
rule learning heuristics. The coverage space ( Fürnkranz & Flach, 
2005; Fürnkranz et al., 2012 ), referred to as the PN space when 
initially introduced by Gamberger and Lavra ̌c (2002) , enables us 
to plot the number of covered positive examples (true positives p ) 
over the number of covered negative examples (false positives n ). 
This results in a rectangular plot with values {0,1,... , N } (where N is 
the total number of negative examples) on the horizontal axis and 
{0,1,... , P } (where P is the total number of positive examples) on 
the vertical axis. Fig. 1 shows a coverage space visualization. The 
principle of coverage spaces can be used to plot individual rules, 
as well as entire theories or models composed of a rule set or a 
decision list. 

There are four points of special interest in a coverage space: 
- (0, 0) marks the empty theory , denoted by r ⊥ . This theory covers 

no positive and no negative example. 
- (0, P ) is the perfect theory which covers all positive and none of 

the negative examples. 
- ( N , 0) is the opposite theory . It covers all negative, but no posi- 

tive examples. 
- ( N, P ) is the universal theory , denoted by r ⊤ . This theory covers 

all the examples, regardless of their label. 
The ultimate goal of learning is to reach the point of perfect 

theory in the coverage space, i.e. the point (0, P ). This will rarely be 
achieved in a single step. A set of rules will need to be constructed 
in order to achieve this objective. The purpose of heuristics used 
for rule evaluation is to determine how close a given rule is to this 
ideal point. 

An isometric of a heuristic h is a line (or curve) in the coverage 
space that connects all points ( p, n ) for which h(p , n) = c for some 
constant value c . Several properties of heuristics can be seen from 
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Fig. 1. Visualization of coverage space with P (total of positives) and N (total of negatives). 

Fig. 2. Isometrics for precision. 
isometrics. As an example, Fig. 2 shows the isometrics of precision, 
h prec . These isometrics show that regarding precision all rules that 
cover only positive examples (points on the P -axis) achieve the 
best quality score, and all rules that cover only negative examples 
(points on the N -axis) achieve zero score. All other isometric val- 
ues are obtained by rotation around the origin (0, 0) for which the 
value of h prec is undefined. Fig. 2 presents also the disadvantage of 
precision, which is its inability to discriminate between rules with 
high and low coverage. For illustration, a rule that covers only one 
positive example and no negative example will have better evalua- 
tion than a rule that covers a hundred positive examples and only 
one negative example. 

The commonly used top-down strategy for rule refinement can 
be viewed as a path through the coverage space. Fig. 3 illustrates 
rule refinement, where each point on the path corresponds to one 
further condition conjunctively added to the rule body. The path 
starts at the upper right corner, ( N, P ), with the universal rule r ⊤ . 
By adding conditions to the rule, the number of covered positive 
and negative examples decreases and the path of the rule contin- 
ues towards the origin (0, 0), which corresponds to the empty rule 
r ⊥ . 
2.4. Inverted heuristics 

Rule learning algorithms rely on heuristic measures to deter- 
mine the quality of the induced rules. Stecher et al. (2014) propose 
to distinguish between rule refinement and rule selection heuris- 
tics in inductive rule learning. They argue that the nature of the 
separate-and-conquer rule learning algorithms opens up a possi- 
bility to use two different heuristics in the two fundamental steps 
of the rule learning process, i.e. rule refinement and rule selec- 
tion. Using the coverage space they motivate separate evaluation 
of candidates for rule refinement and the selection of rules for the 

final theory. Stecher et al. (2014) further argue that the rule refine- 
ment step in a top-down search requires inverted heuristics , which 
can result in better rules. Such heuristics evaluate rules from the 
point of the current base rule, instead of the empty rule. In this 
way, while successively adding features to the rule (refinement), 
the learner favours rules with higher coverage of positive exam- 
ples and thereby gives chance to rules with higher coverage to be 
finally selected with the selection heuristics. 

Representations of the inverted heuristics in the coverage space 
reveal the following relationship with the basic heuristic: 

(6) 
where p and n denote the number of positive and negative exam- 
ples covered by the rule, and P and N are not constant but depend 
on the predecessor of the currently constructed rule. For example, 
in the example illustrated in Fig. 5 , in the first step N and P cor- 
respond to the initial top-right corner ( N, P ) in the coverage space, 
but when refined to rule p ← a , the top-right corner is moved to 
point B . The values of N and P will change respectively. Addition- 
ally, on the refinement path, N and P will be updated with the ( N, 
P ) coordinates of values of point C, D , and E , respectively in each 
next refinement iteration. Each of these points represent the base 
rule from which we observe the improvements of the consequent 
refinements. 

Stecher et al. (2014) adapt the three standard heuristics for rule 
induction (introduced in Section 2.1 ): precision, Laplace , and m- 
estimate . The effect on these three heuristics is that the isometrics 
of their inverted variants do not rotate around the origin of the 
coverage space, but rotate around the point in the coverage space 
representing the base rule (the predecessor of the currently con- 
structed rule). Consequently, the inverted heuristics have the fol- 
lowing forms: 

Inverted precision: 
(7) 

Inverted Laplace:

(8) 
Inverted m-estimate: 

(9) 
The inverted heuristics are not suited for rule selection. They 

do favor rules with high coverage but are also tolerant to covering 
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Fig. 3. A path in the coverage space of a top-down specialization of a single rule. For simplicity, a comma is used to represent the conjunction operator. 

Fig. 4. Isometrics of inverted precision. 
negative examples. The isometrics of inverted precision in Fig. 4 
illustrate this propery. 

For classification rule learning, Stecher et al. (2014) have shown 
that the combination of Laplace heuristic h lap used in the rule se- 
lection step and the inverted Laplace heuristic used in the 
rule refinement step outperformed other combinations in terms of 
average classification accuracy. An interesting side conclusion from 
Stecher et al. (2014) is that the usage of inverted heuristics in the 
rule refinement phase produces on average longer rules, which are 
claimed to be better for explanatory purposes. 

We illustrate the advantage of using inverted heuristics in the 
refinement phase on the UCI ( Lichman, 2013 ) mushroom data set. 
In Fig. 5 we show the path in coverage space of top-down special- 
ization of two rules for the class poisonous using different heuris- 
tics. Table 3 shows the descriptions of the coverage space points 
shown in Fig. 5 . The red path shows the top-down specialization 
of a rule using the h lap heuristic. From all of the refinements of 
the universal rule, the refinement odor = f has the steepest gradi- 
ent from the origin (0, 0). Therefore, this rule is selected for further 
refinement. However, since the number of covered positive exam- 

ples is n = 0 , the refinement process is terminated and the rule 
odor = f is also selected in the selection phase, covering 2160 pos- 
itive and no negative examples. 

The green path shows the top-down specialization of a rule us- 
ing the heuristic. This heuristic prefers rules with high cov- 
erage of positive examples. It gives preference to rule refinements 
with the smallest angle between the line of the refinement and the 
horizontal axis, i.e. angles α, β , and γ in Fig. 5 . Top-down special- 
ization continues until there are no covered negative examples or 
there are no possible refinements. In Fig. 5 the refinement stops 
at point F , where rule veil-color = w, gill-spacing = c, bruises? = 
f, ring-number = o, stalk-surface-above-ring = k is constructed, cov- 
ering a total number of 2192 positive examples and no negative 
examples. Using only a single selection heuristics this rule would 
be preferred to the rule depicted with the red path, but it is not 
achievable as a different choice was made already in the first step. 

In summary, inverted heuristics prefer rules with high cover- 
age of positive examples. The top-down specialization of a rule is 
steadily removing negative examples and some positive examples. 
This leaves the possibility that an additional refinement will con- 
struct a rule with the same or a higher number of covered positive 
examples than a rule constructed using a single heuristics which 
immediately maximizes its value. 
2.5. Relation to previous work 

Our work is closely related to previous work in rule learning 
and subgroup discovery. In particular, it explores the recommended 
approach by Stecher et al. (2014) for separation of rule refinement 
and rule selection and the use of different heuristics in the classi- 
fication rule learning context. While rule induction algorithms and 
subgroup discovery algorithms typically use the same heuristic for 
rule refinement and rule selection, Stecher et al. (2014) argued that 
the nature of the separate-and-conquer algorithms offers the pos- 
sibility of separating the two rule construction phases and their 
evaluation using two different heuristics. 

Table 3 
Description of coverage space points from Fig. 3 , illustrated on the mushroom data set, using target class p ( poisonous ). 

Point Rule p n 
U p ← true. 3916 4208 
A p ← odor = f. 2160 0 
B p ← veil-color = w. 3908 4016 
C p ← veil-color = w, gill-spacing = c. 3804 2816 
D p ← veil-color = w, gill-spacing = c, bruises? = f. 3188 160 
E p ← veil-color = w, gill-spacing = c, bruises? = f, ring-number = o. 3152 144 
F p ← veil-color = w, gill-spacing = c, bruises? = f, ring-number = o, 2192 0 

stalk-surface-above-ring = k. 
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Fig. 5. Comparison of rule refinement paths using standard heuristic and the inverted one. The red path shows rule constructed using h lap . The green path shows rule 
refinement using . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

In this paper we investigate the separation of the rule refine- 
ment and rule selection phase in both subgroup discovery and 
classification rule learning. Along with the phase separation we in- 
troduce two beams, each consisting of the best rules according to 
the refinement and selection heuristic, respectively. 

Contrary to the approach of Stecher et al. (2014) , where they 
compare the selection quality of the best rule refinement to the 
rule with the best selection quality, we compare the selection qual- 
ity of all refined candidate rules to the selection quality of the best 
rules for selection (current selection beam members). In this way 
we expand the space of possible candidates for selection and in- 
crease the possibility of choosing a candidate with good selection 
quality, which might have been omitted in the refinement phase 
using the Stecher et al. (2014) approach. Additionally, our algo- 
rithm for rule learning builds rule sets for each target class of a 
given data set. This is different from the approach taken in Stecher 
et al. (2014) where unordered decision lists are constructed. 

This paper also significantly extends our previous work 
( Valmarska, Robnik-Šikonja, & Lavra ̌c, 2015 ), where we reported on 
the initial findings regarding the use of inverted heuristics in sub- 
group discovery. In this paper, we introduce an additional heuristic, 
WRACC, which consequently proves to improve over other heuris- 
tics in several settings. In addition, we propose a different ap- 
proach to algorithm comparison, by first determining the default 
parameters for each algorithm and then comparing the algorithms 
on new data sets, using the default parameters. The establishment 
of default parameters is valuable for future users of the algorithms, 
as it offers a solid starting point for their use. In addition to the 
subgroup discovery algorithm, in this paper we also introduce a 
novel classification rule learning algorithm based on double beam 
and compare it to the state-of-the-art rule learning algorithms. 
3. DoubleBeam algorithm for subgroup discovery 

The previously observed favorable properties of inverted heuris- 
tics in a classification setting provide a motivation to test the idea 
in the subgroup discovery context. For this purpose, we developed 
the DoubleBeam-SD subgroup discovery algorithm 1 , which com- 
bines separate refinement and selection heuristics with the beam 

1 Code is available on github at https://github.com/bib3rce/RL _ SD . 

search. In the same fashion, we integrated the beam search and 
two separate heuristics in the classification rule learning setting, 
which we discuss in Section 4 . 

Contrary to conventional beam-search based algorithms such 
as CN2-SD ( Lavra ̌c et al., 2004 ), the DoubleBeam-SD algorithm for 
subgroup discovery maintains two separate beams, the refinement 
beam and the selection beam . Upon initialization, each beam is 
filled with the best single-condition rules according to their refine- 
ment and selection quality, respectively. The algorithm then enters 
a loop. In each iteration, rules of the form targetClass ← Condi- 
tions from the refinement beam are refined by adding features to 
the Conditions part of the existing rules. The resulting new rules 
are added to the refinement beam, which is ordered according 
to the refinement quality. Newly produced rules are then evalu- 
ated according to their selection heuristic and the selection beam 
is updated with the rules whose selection quality is better than 
the selection quality of the rules already stored in the beam. The 
algorithm exits the loop after the maximally allowed number of 
steps is reached. Another purpose of storing several rules in the 
selection beam is to allow post-processing where only the non- 
redundant subset of rules is retained ( Gamberger & Lavra ̌c, 2002 ). 
The DoubleBeam-SD algorithm is outlined in Algorithm 1 . 

In order to induce descriptions for subgroups of data instances 
which have not yet been covered by the previously constructed 
rules, we employ weighted covering, which reduces the weight 
of covered positive examples but does not remove them entirely. 
This required a modification of the method for updating the se- 
lection beam. Each time a positive example is covered by a rule 
that is already in the selection beam, the instance coverage count 
is increased and consequently the instance weight is decreased, 
which results in reducing the probability that the covered exam- 
ples would be covered again by the rules constructed in the fol- 
lowing iterations of the algorithm. 

In this work, we used the harmonic and geometric weights for 
instance weighting. We also implemented removal of the already 
covered positive instances by assigning weight 0 to every instance 
already covered by some rule in the selection beam (method zero 
weight ). Eqs. (10) –(12) show how the weight of a covered example 
is updated depending on the number of rules that cover it. 
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Algorithm 1: DoubleBeam-SD algorithm. 

Input: : E = P ∪ N 
E is the training set, | E| its size, 
tc is target class, 
P are positive examples (of class tc), 
N are negative examples (of classes ̸ = tc). 

Output: : subgroup descriptions 
Parameters: : minSupport , 

rbw is refinement beam width, 
sbw is selection beam width, 
rh is refinement heuristic, 
sh is selection heuristic 
maxSteps is maximal number of steps 

1 Cand id ateList ← all feature values or intervals 
2 for each candidate in CandidateList do 
3 evaluate candidate with rh 
4 evaluate candidate with sh 
5 end 
6 sort Cand id ateList according to the rh 
7 for i = 0 to rbw do 
8 RB [ i ] ← Cand id ateList[ i ] 
9 end 

10 sort Cand id ateList according to the sh 
11 for i = 0 to sbw do 
12 SB [ i ] ← Cand id ateList[ i ] 
13 end 
14 step ← 1 
15 do 
16 refinedCandidates ← refine RB with Cand id ateList 
17 replace RB with refinedCandidates using rh 
18 updateSelectionBeam ( SB , refinedCandidates , sh ) 
19 step ← step + 1 
20 while step ≤ maxSteps ; 
21 return SB 

Geometric weight: 
w g (d i ) = αk , (10) 
where k is the number of rules that have already covered example 
d i ; 

Harmonic weight: 
w h (d i ) = 1 

k + 1 , (11) 
where k is the number of rules that have already covered example 
d i ; 

Zero weight: 
w z (d i ) = 0 , (12) 
if example d i is covered by at least one rule in the selection beam. 

The weighted value of positive examples covered by a rule r 
( weighted number of true positives ) is calculated using Eq. (13) . 
wT P (r) = | E| ∑ 

i =1 w (d i ) · c {
c = 1 if r covers d i ; 
c = 0 otherwise. (13) 

Note that zero weight can be understood as removing covered 
positive examples from the data set. This is not the same as no 
weighting, which means that instances are retained in the data 
set. As we use the selection beam, which keeps all the interest- 
ing subgroups, and the algorithm takes care that beam entries are 
not duplicated, no weighting might be sufficient. However, a prac- 
tical reason to introduce instance weighting are possible redun- 
dancies in the attribute set. Without weighting we might get sev- 
eral different but redundant descriptions of the same instances in 
the beam, which unnecessary fill the beam and reduce the search 
space. The code of the updateSelectionBeam method is outlined 
in Algorithm 2 . 

Algorithm 2: Method for updating the selection beam. 
1 Method updateSelectionBeam( SB , refinedCandidates , sh ) 

// current data 
2 cData ← P ∪ N 

// candidates for selection 
3 cs ← ∪ SB 

// new selection beam 
4 nSB ← {} 
5 resetWeights ( cData ) 
6 for i = 0 to sbw do 
7 bestRule ← getBestRule ( cs , cData , sh ) 
8 cs ← remove ( cs , bestRule ) 
9 nSB { i } ← bestRule 

10 cData ← updateWeights ( cData , bestRule ) 
11 end 
12 SB ← nSB 

Function getBestRule returns the rule with the best selection 
quality on the data set with updated weights. The selection quality 
of a rule is calculated according to the chosen selection heuristics. 
Function updateWeights updates the weights of the covered pos- 
itive examples. The weights are updated according to the desired 
weight type i.e. geometric, harmonic or zero. 
3.1. Experimental setting 

For the purpose of algorithm evaluation, we use different com- 
binations of refinement and selection heuristics, constituting the 
following DoubleBeam subgroup discovery variants: 

SD-ILL (Inverted Laplace, Laplace), using ( ) heuristics 
combination pair, 

SD-IPP (Inverted Precision, Precision), using ( ), 
SD-IMM (Inverted M-estimate, M-estimate), using 

( ), 
SD-IGG (Inverted Generalization quotient, Generalization quo- 

tient), using ( ), 
SD-GG (Generalization quotient, Generalization quotient), using 

(h g , h g ), and 
SD-WRACC (WRACC), using (h WRACC , h WRACC ) . 
For the purpose of annotation, we prefix the variants of our 

DoubleBeam-SD with SD. The h g heuristic is the generalization 
quotient proposed in Gamberger and Lavra ̌c (2002) ( Eq. 4 ), while 

is its inverted variant defined as . The weighted 
relative accuracy (WRACC) heuristic is defined in Eq. (5) . It was in- 
troduced in Lavra ̌c et al. (2004) to measure the unusualness of the 
induced subgroup describing rules. Note that WRACC is identical 
to its inverted variant ( Stecher et al., 2014 ). 

We compare three state-of-the-art subgroup discovery al- 
gorithms (SD, CN2-SD, and APRIORI-SD) and the proposed 
DoubleBeam-SD algorithm with six combinations of refinement 
and selection heuristics (SD-ILL, SD-IPP, SD-IMM, SD-IGG, SD-GG, 
and SD-WRACC). We test the DoubleBeam-SD algorithm with each 
of the six combinations of refinement and selection heuristics, both 
with and without using the weighted covering algorithm, and with 
and without using rule subset selection in the post-processing step 
described in Gamberger and Lavra ̌c (2002) . This resulted in 48 dif- 
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Table 4 
Number of classes ( C ), examples ( E ), attributes ( A ), and features ( F ) of the 20 data sets used in the 
experiments. 

Tuning data sets C E A F Evaluation data set C E A F 
breast-cancer 2 286 10 41 contact-lenses 3 24 5 9 
car 4 1728 7 21 futebol 2 14 5 27 
glass 7 214 10 31 ionosphere 2 351 35 157 
hepatitis 2 155 20 41 iris 3 150 5 14 
horse-colic 2 368 23 72 labor 2 57 17 42 
hypothyroid 2 3163 26 60 mushroom 2 8124 23 116 
idh 3 29 5 14 primary-tumor 22 339 18 37 
lymphography 4 148 19 52 soybean 19 683 36 99 
monk3 2 122 7 17 tic-tac-toe 2 958 10 27 
vote 2 435 17 32 zoo 7 101 18 134 
Table 5 
Chosen variants of the DoubleBeam-SD algorithm. The overall rank is the rank of the algorithm 
among the 48 variants. 

Heuristics combination Overall rank Average rank Post-processing Weight type 
WRACC 1 7 .30 No None 
IMM 2 7 .45 Yes None 
GG 3 8 .15 No None 
IGG 9 15 .50 No None 
ILL 14 19 .95 Yes None 
IPP 21 24 .45 No Zero 

ferent combinations of the DoubleBeam-SD algorithm (6 refine- 
ment/selection combinations × 2 post-processing/no × 4 weight- 
ing/no). 

We use SD, CN2-SD and APRIORI-SD implementations of al- 
gorithms that are available in the ClowdFlows platform ( Kranjc, 
Podpe ̌can, & Lavra ̌c, 2012 ). We use the same 20 UCI classification 
data sets as Stecher et al. (2014) (see Table 4 ). In order to deter- 
mine suitable settings, we randomly split the data sets into two 
groups: we use 10 randomly chosen data sets (shown on the left- 
hand side of Table 4 ) to determine default parameters of all com- 
peting methods, and the remaining 10 data sets (shown on the 
right-hand side of Table 4 ) to compare the best settings. The tun- 
ing of parameters is described in Section 3.2 , while the methods 
comparison is presented in Section 3.3 . 

To compare the speed and scalability of the algorithms, we use 
the UCI adult data set which consists of 32,561 instances and 14 
attributes. We do not use cross-validation on this data set but split 
it into training and test sets of different sizes. 
3.2. Default parameter setting 

We use the 10 left-hand side data sets from Table 4 for set- 
ting default parameters of the algorithms. The SD algorithm and 
the APRIORI-SD algorithm are both trained using rule subset se- 
lection in the post-processing step, as described in Gamberger and 
Lavra ̌c (2002) . Originally, the CN2-SD algorithm does not use rule 
selection in the post-processing. 

The algorithms are initially tested with 10-fold double-loop 
cross-validation on each of the 10 data sets used for parameter 
tuning (named tuning data sets in the rest of this paper). For each 
algorithm (both the newly proposed algorithms as well as the ex- 
isting algorithms SD, CN2-SD and APRIORI-SD), a grid of possible 
parameter values is set in advance. The value of minSup is set 
to 0.01. Each training set of a given cross-validation iteration is 
additionally split into an internal training and testing subset. For 
each algorithm, models were built using the internal training sub- 
set and the parameters from its own parameter grid. Parameters 
maximizing the value of unusualness of the produced subgroups 
on the internal test subest are then chosen for building a model 
using the whole training set. In the evaluation, we use the sub- 
group discovery evaluation statistics proposed in Kralj Novak et al. 

Fig. 6. Nemenyi test on ranking of subgroup discovery algorithms regarding average 
WRACC values with a significance level of 0.05. 
(2005) (originally implemented in the Orange data mining environ- 
ment Demšar et al., 2013 ): coverage, support, size, complexity, signif- 
icance, unusualness (WRACC), classification accuracy , and AUC . 

We compute average ranks of the 48 combinations of 
the DoubleBeam-SD algorithm with respect to the unusualness 
(WRACC) of the produced subgroup describing rules. For each com- 
bination of refinement and selection heuristics of algorithms de- 
scribed in Section 3.1 we chose the algorithm setting that had the 
best average ranking. The chosen algorithm settings are shown in 
Table 5 . 

The default set of parameters for each algorithm consists of the 
parameters which were chosen in the 10-fold double-loop cross- 
validation testing phase. This default set of parameters is used for 
cross-validation testing of the subgroup discovery algorithms on 
the remaining 10 data sets. 
3.3. Experimental results 

The WRACC values obtained from the 10-fold cross-validation 
testing on the 10 evaluation data sets with selected default param- 
eters are shown in Table 6 . These values are averaged over all the 
classes for every particular data set. 

The results of the Nemenyi test following the Friedman test 
for statistical significance of differences between average values of 
WRACC are shown in Fig. 6 . It is evident that SD-WRACC algorithm 
produces the most interesting subgroups, which are statistically 
more unusual than the ones produced by the two state-of-the-art 
algorithms, the SD algorithm and the APRIORI-SD algorithm. How- 
ever, there are no statistically significant differences between the 
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Table 6 
Ten-fold cross-validation WRACC results for subgroup discovery algorithms with default parameters. The best values for each data 
set are written in bold. We compare existing SD, CN2-SD and APRIORI-SD algorithms with the proposed DoubleBeam algorithms 
with different refinement and selection heuristics. 

Data sets SD CN2-SD APRIORI-SD SD-ILL SD-IPP-w-z SD-IMM SD-WRACC SD-GG SD-IGG 
contact-lenses 0 .032 0 .071 0 .027 0 .039 0 .035 0 .021 0 .047 0 .081 0 .081 
futebol 0 .0 0 0 0 .009 0 .005 0 .005 0 .003 0 .015 0 .0 0 0 0 .006 0 .005 
ionosphere 0 .099 0 .111 0 .0 0 0 0 .083 0 .032 0 .105 0 .133 0 .105 0 .107 
iris 0 .090 0 .200 0 .142 0 .159 0 .167 0 .146 0 .175 0 .148 0 .148 
labor 0 .080 0 .102 0 .041 0 .081 0 .085 0 .085 0 .098 0 .095 0 .094 
mushroom 0 .088 0 .163 0 .0 0 0 0 .133 0 .029 0 .134 0 .191 0 .146 0 .131 
primary-tumor 0 .011 0 .009 0 .008 0 .006 0 .006 0 .017 0 .019 0 .014 0 .014 
soybean 0 .025 0 .037 0 .0 0 0 0 .035 0 .036 0 .043 0 .037 0 .035 
tic-tac-toe 0 .022 0 .021 0 .029 0 .024 0 .029 0 .024 0 .041 0 .028 0 .029 
zoo 0 .037 0 .097 0 .0 0 0 0 .094 0 .065 0 .096 0 .100 0 .099 0 .094 

Table 7 
Performance comparison of subgroup discovery algorithms using WRACC score and average rule length (ARL) on the UCI 
adult data set. The data set is split in 70:30 ratio. Rules are induced using the default parameters. 

Measure SD CN2-SD APRIORI-SD SD-ILL SD-IPP-w-z SD-IMM SD-WRACC SD-GG SD-IGG 
WRACC 0 .023 0 .043 0 .041 0 .011 0 .012 0 .028 0 .076 0 .025 0 .024 
ARL 2 .800 2 .150 2 .700 2 .800 1 .300 2 .100 2 .100 2 .600 2 .500 

Fig. 7. Nemenyi test on ranking of average rule sizes for subgroup discovery algo- 
rithms in the second experimental setting with a significance level of 0.05. Note 
that algorithms are ordered according to the average length of generated rules—

rank 1 would indicate the algorithm producing the longest rules. 
six chosen variants of the DoubleBeam-SD algorithm and the CN2- 
SD algorithm. The DoubleBeam-SD algorithm with the combina- 
tion (h g , h g ) produces statistically more unusual subgroups than 
the ones produced by the APRIORI-SD algorithm. The rest of the 
variants of the DoubleBeam-SD algorithm do not produce subgroup 
describing rules which are statistically more interesting than the 
ones produced by any of the tested algorithms. 

Experimental results reveal that algorithms which use WRACC 
as their heuristic (the SD-WRACC algorithm and the CN2-SD algo- 
rithm) produce rules which describe more interesting subgroups. 
The underperformance of the other considered variants of the 
DoubleBeam-SD algorithm is due to their respective heuristics, 
which are specialized towards finding prediction rules and not un- 
usual rules. 

The results of the Nemenyi test following Friedman test for 
statistical significance of differences of the average rule sizes are 
shown in Fig. 7 . The DoubleBeam-SD algorithm with the combina- 
tion (h g , h g ) produces subgroups which are on average described 
by the longest rules. The SD-GG algorithm generates subgroups de- 
scribed by rules that are statistically longer only than the ones pro- 
duced by the SD algorithm and the SD-IPP algorithm with zero- 
weight covering. There is no statistical evidence that the SD-GG 
algorithm produces longer rules than other evaluated algorithms. 
Consequently, these results do not confirm that the DoubleBeam- 
SD algorithm with inverted refinement heuristic produces statisti- 
cally longer subgroup descriptions than all other subgroup discov- 
ery algorithms. This is slightly surprising taking into account the 
findings of Stecher et al. (2014) in the classification rule learning 
setting. 

Table 7 presents the performance of subgroup discovery algo- 
rithms on the adult data set in terms of their WRACC score. We 
split the data set in the 70:30 ratio, leading to 22,793 training 
and 9768 testing instances. The SD-WRACC algorithm produced the 
most interesting rules, followed by the CN2-SD algorithm. The re- 
sults are in accordance with the results presented in Fig. 6 . The al- 
gorithms SD-ILL, SD, APRIORI-SD and SD-GG generated the longest 
rules; the SD-ILL and SD-GG algorithms produced the longest rules 
also on data sets from Fig. 7 . 

Fig. 8 presents the training times of subgroup discovery algo- 
rithms with different numbers of training instances from the adult 
data set. The APRIORI-SD algorithm is the slowest, followed by the 
SD-IPP-w-z and CN2-SD algorithms. The other subgroup discovery 
algorithms are comparable in terms of training time and allow for 
processing of relatively large data sets. 

To the users of subgroup discovery algorithms we recommend 
the use of the SD-WRACC algorithm with the selection beam width 
set to 5, and no example weighting or post-processing. Results 
show that this algorithm on average outperforms other subgroup 
discovery algorithms considered in this work. 
4. DoubleBeam algorithm in classification rule learning 

The idea of using two separate heuristics for rule refinement 
and selection as well as using inverted heuristics in refinement 
phase was proposed and successfully tested by Stecher et al. 
(2014) . The previous section shows that this idea can also be suc- 
cessful in subgroup discovery, where we tested it using a double 
beam search approach. As Stecher et al. (2014) do not use beam 
search in rule learning, an obvious extension is to use double beam 
also in classification rule learning. 

In order to test the influence of different selection heuris- 
tics, refinement heuristics, selection beam width, and refinement 
beam width, we implemented a DoubleBeam classification rule 
learning (DoubleBeam-RL) algorithm. This algorithm is adaptation 
of the DoubleBeam-SD algorithm. It uses a combination of re- 
finement and selection heuristics for each phase of rule learn- 
ing. The algorithm has two beams, the selection beam and the 
refinement beam, where during the process of generating rules 
it holds potential candidates for refinement and selection, based 
on their selection and refinement quality. For learning a decision 
list, it employs the commonly used separate-and-conquer strategy 
( Fürnkranz, 1999 ): each time a rule is generated for a given target 
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Fig. 8. Comparison of training times for subgroup discovery on the adult data set. The horizontal axis shows the number of training instances and the vertical axis shows 
the training time in seconds. 
class, the positive examples covered by the rule are removed from 
the data set. The algorithm continues to learn new rules for the 
same target class on the updated data set as long as rules with a 
minimal acceptable quality are induced, i.e. if the rule covers more 
positive than negative examples and covers more positive exam- 
ples than a chosen threshold (in our case a threshold of 2). The 
final result is a rule set with acceptable rules for the given target 
class. 

Basically, for learning a single rule, a single beam (in the re- 
finement phase) is sufficient, unless we want to produce a collec- 
tion of rules which are post-processed later. If not, we shall set 
the selection beam width to 1, as we do in our experiments. The 
DoubleBeam-RL algorithm is outlined in Algorithm 3 . The function 

Algorithm 3: DoubleBeam-RL algorithm. 
Input: : E = P ∪ N 

E is the training set, | E| its size, 
tc is target class, 
P are positive examples (of class tc), 
N are negative examples (of classes ̸ = tc). 

Output: : R , ( R is rule set for tc) 
Parameters: : rh is refinement heuristic, 

sh is selection heuristic, 
rbw is refinement beam width, 
sbw is selection beam width. 

// rule set for target class tc 
1 R ← {} 
// current data 

2 cData ← E 
3 do 
4 rule ← generateRule (cData, tc, r h, sh, r bw, sbw ) 
5 R ← R + rule 
6 cData ← removePositiveCovered (cData, rule, tc) 
7 while not satisfied ; 
8 return R 

for generating a single rule when a data set, selection heuristics, 
refinement heuristics, selection beam width, and refinement beam 
width are given is outlined in Algorithm 4 . 
4.1. Experimental setting 

We perform experimental evaluation in two steps. In the first 
step we determine default parameters for the five best combina- 

Algorithm 4: Function for generating rules using two heuris- 
tics. 
1 Function generateRule ( dataset, tc, rh , sh , rbw , sbw ) 

// candidates for best rule 
2 bRC ← DoubleBeam-SD ( dataset , tc, rh , sh , rbw , sbw ) 
3 bestRule ← getBestRule (bRC) 
4 return bestRule 

tions of refinement and selection heuristics on the same randomly 
chosen 10 data sets in the left-hand side of Table 4 . In the second 
step, we use 10 fresh data sets (the right-hand side of Table 4 ) 
to compare these five best configurations with two state-of-the-art 
algorithms for rule learning, Ripper ( Cohen, 1995 ) and CN2 ( Clark 
& Niblett, 1989 ). We use the Weka ( Hall et al., 2009 ) implemen- 
tation of Ripper and the Orange ( Demšar et al., 2013 ) implemen- 
tation of the CN2 algorithm. For both algorithms we use the de- 
fault parameters set by their software platforms, respectively. For 
comparison, we also include the results from the best performing 
algorithm from Stecher’s ( Stecher et al., 2014 ) experimental work, 
named SC-ILL. 

The quality of the induced rules is measured in terms of the 
classification accuracy (CA). The process of parameter tuning and 
variant selection is described in Section 4.3 . We also report the av- 
erage rule length of produced rules. 
4.2. Illustrative example 

We compare our approach with the approach of Stecher et al. 
(2014) with an illustrative example. For the purpose of this com- 
parison, we chose the same set of attributes used in the mentioned 
work. Rules in both decision lists are generated with as the 
refinement heuristic and h lap as the selection heuristic. The width 
of both refinement and selection beam is set to 1. Fig. 8 shows 
the decision list learned for the class poisonous on the data set 
mushroom using the algorithm presented in Stecher et al. (2014) , 
whereas Fig. 9 presents the rule set learned by our DoubleBeam 
rule learning algorithm. 

Results from Tables 8 and 9 suggest that our approach 
tends towards finding even more complete rules than the ap- 
proach taken by Stecher et al. (2014) . The algorithm produces 
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Table 8 
Decision list learned for class p ( poisonous ) in the mushroom data set using Stecher’s approach with refinement heuristic and se- 
lection heuristic h lap . The number of positive examples covered by each rule is also shown. No rule covers any of the negative examples. 
2192 p ← veil-color = w, gill-spacing = c, bruises? = f, ring-number = o, 

stalk-surface-above-ring = k. 
864 p ← veil-color = w, gill-spacing = c, gill-size = n, population = v, 

stalk-shape = t. 
336 p ← stalk-color-below-ring = w, ring-type = p, stalk-color-above-ring = w, 

ring-number = o, cap-surface = s, stalk-root = b, gill-spacing = c. 
264 p ← stalk-surface-below-ring = s, stalk-surface-above-ring = s, 

ring-type = p, stalk-shape = e, veil-color = w, gill-size = n, bruises? = t. 
144 p ← stalk-shape = e, stalk-root = b, stalk-color-below-ring = w, ring-number = o. 
72 p ← stalk-shape = e, gill-spacing = c, veil-color = w, gill-size = b, 

spore-print-color = r. 
44 p ← stalk-surface-below-ring = y, stalk-root = c. 
Table 9 
Rule set learned for the class p ( poisonous ) in the mushroom data set using DoubleBeam rule learning algorithm with refinement 
heuristic , selection heuristic h lap , and both refinement and selection beam width set to 1. The number of positive examples 
covered by each rule is shown on the left. No rule covers any negative examples. 
2228 p ← p ← gill-spacing = c, veil-color = w, stalk-surface-above-ring = k. 
864 p ← gill-color = b. 
336 p ← stalk-color-above-ring = w, gill-spacing = c, stalk-root = b, 

stalk-color-below-ring = w, gill-attachment = f, cap-surface = s, 
ring-number = o, ring-type = p. 

264 p ← stalk-shape = e, bruises? = t, gill-size = n, gill-attachment = f, 
stalk-surface-above-ring = s, stalk-surface-below-ring = s, ring-type = p. 

144 p ← stalk-shape = e, bruises? = f, stalk-root = b, stalk-color-below-ring = w, 
gill-attachment = f. 

72 p ← stalk-shape = e, spore-print-color = r. 
8 p ← veil-color = y. 

on average shorter rules which include more or the same 
number of examples. The DoubleBeam-RL algorithm is able 
to detect features that do not contribute to the overall im- 
provement of the rules. Such example is the bruises? = f 
feature. In the first rule from Stecher’s decision rule, the 2192 
covered examples are covered by the conjunction of the fol- 
lowing features: veil-color = w, gill-spacing = c, 
ring-number = o, stalk-surface-above-ring = k . 
Feature bruises? = f was selected during the refinement 
phase, but does not contribute anything to the final result. 

This difference is due to the nature of the applied algorithms. 
Stecher’s approach is to refine a rule using the inverted heuristics 
until there are only positive examples covered and then returns the 
best rule on the refinement path. This approach leads to eliminat- 
ing possible refinements of a certain rule due to their lower refine- 
ment quality, even though their selection quality is very high; in 
our case, one of the possible refinements has even better selection 
quality than the final rule, chosen by the Stecher’s approach. The 
DoubleBeam-RL algorithm on the other hand, considers the selec- 
tion quality of the refined candidates and the rules already in the 
selection beam. It simultaneously checks for rules with best refine- 
ment and selection quality and keeps track of all the best rules 
found in the refinement process. 

As an example, consider rules from Table 3 . After the univer- 
sal rule is refined, the best candidate for further refinement in 
both approaches is p ← veil-color = w. The DoubleBeam- 
RL algorithm saves this rule as a candidate for refinement, 
but chooses rule p ← odor = f as its candidate for best 
rule. In the next iteration, once more the two algorithms have 
the best candidate for refinement, p ← veil-color = w, 
gill-spacing = c. There is no change in the selection beam 
of the DoubleBeam-RL algorithm, where the selection quality of 
p ← odor = f (1.0 0 0) is better than the selection quality of 
p ← veil-color = w, gill-spacing = c (0.575). In the 
third step, best rule for refinement is p ← veil-color = w, 
gill-spacing = c, bruises? = f. Both algorithms will 

continue with the refinement of this rule, however, the selec- 
tion beam of the DoubleBeam-RL algorithm will be updated with 
a refinement of p ← veil-color = w, gill-spacing = 
c, leading to rule p ← veil-color = w, gill-spacing 
= c, stalk-surface-above-ring = k, whose selection 
quality is the same as the selection quality of the rule already 
stored in the beam (1.0 0 0). When the DoubleBeam-RL algorithm 
is faced with choosing between two rules with the same selection 
quality, it always chooses the rule that has covered more positive 
examples. In case the decision is not straight-forward, it chooses 
the shortest among the rules in question. The top-down specializa- 
tion will continue for both algorithms. The algorithm proposed by 
Stecher will stop when there are only positive examples covered 
or there is no possible further refinement. At the end, the algo- 
rithm will return the rule with the best selection quality among 
all the rules on the refinement path. As it is evident from our 
example, this will result with longer rules which can have lower 
coverage than the rules selected by the DoubleBeam-RL algorithm. 
The DoubleBeam-RL algorithm stops after a predefined number of 
steps, and returns the rule with the best selection quality among 
all the investigated refinements. 
4.3. Default parameter setting 

In the experiments performed to determine the default param- 
eter values for the DoubleBeam-RL algorithm, we use all combina- 
tions of the following heuristics in refinement and selection phase: 
– Laplace h lap - L, 
– Inverted Laplace - IL, 
– Precision h prec - P, 
– Inverted Precision - IP, 
– M-estimate h m-est - M, 
– Inverted -M-estimate - IM, and 
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– Weighted Relative ACCuracy h WRACC - W. 

As an example, the abbreviation RL-ILL indicates that was 
used as a refinement heuristic, and h lap as a selection heuristic in 
the DoubleBeam-RL algorithm. This resulted in 49 variants of the 
DoubleBeam-RL algorithm. Each variant is tested on the same 10 
randomly chosen data sets that were used for parameter tuning in 
the subgroup discovery context. 

The value of the selection beam width is fixed to 1 in all vari- 
ants (see Section 4 ). In order to select the default width of the re- 
finement beam for each variant of the DoubleBeam-RL algorithm, 
we perform a 10-fold double-loop cross-validation of each variant 
on each of the tuning data sets from Table 4 . Each tuning data set 
is divided into training and test set. Each training data set is ad- 
ditionally split into internal training and test subset. A separate 
model is induced on the internal training subset for each of the 
possible parameter values. These models are then evaluated using 
the internal test subset. The parameter values that maximize the 
value of classification accuracy are chosen as parameters for the 
construction of the model using the initial training data set. The 
final cross-validation value of classification accuracy (CA) for each 
fold is calculated using the model induced with the chosen best 
parameters and the corresponding test data set. 

For each heuristic combination we collected the best parame- 
ters for refinement beam width across the tested 10 data sets. The 
most frequently selected parameter was chosen as a default pa- 
rameter for the considered combination. Our experiments showed 
that for each variant of the rule learning algorithm, the most ac- 
curate rules are induced when we use refinement beam width 
with value 1. This means that the selected best parameters make 
our algorithm identical to the rule learning algorithm proposed 
in Stecher et al. (2014) , with the exception that our algorithms 
can select the best rule from each refinement step (line 2 of 
Algorithm 4 and line 18 of Algorithm 1 ), while in Stecher et al. 
(2014) only the final refined rule is selected. This seemingly small 
difference leads our algorithm to form shorter rules with better 
coverage and affects also the classification accuracy as presented 
in Section 4.4 . 

Out of the 49 variants of the DoubleBeam-RL algorithm, we 
eventually selected the following five variants, which had the best 
average rank performance on the 10 tuning data sets: RL-MM 
( h m-est , h m-est ), RL-ILM ( ), RL-WM ( h WRACC , h m-est ), RL- 
IPM ( ), and RL-PM ( h prec , h m-est ). 
4.4. Experimental results 

We compare the selected best rule learning algorithm (using 
the five chosen variants of rule selection heuristics) with two 
state-of-the art algorithms, Ripper and CN2, and the best perform- 
ing algorithm from Stecher et al. (2014) ’s work, named SC-ILL. 
The classification accuracy (CA) values obtained from the 10-fold 
cross-validation testing on the 10 evaluation data sets from the 
right-hand side of Table 4 with default parameters are shown in 
Table 10 . 

The Friedman test for statistical differences in CA showed 
that there are no significant differences between the algorithms 
which is confirmed by the confidence intervals of the Nemenyi 
test in Fig. 9 . Nevertheless, the approach taken by Stecher et al. 
(2014) yields the best results (average rank is 3.00). Three of our 
five chosen variants of the DoubleBeam-RL algorithm have a bet- 
ter average rank than the Ripper algorithm. The chosen variants of 
our algorithm for rule learning on average perform better than the 
CN2 algorithm. 

Fig. 9. Nemenyi test on ranking of classification accuracy values with a significance 
level of 0.05. 

Fig. 10. Nemenyi test on ranking of average classification rule length with a signif- 
icance level of 0.05. 

An interesting observation is that among all the algorithms with 
two heuristics, the one with the least search performs best i.e. 
the Stecher et al. (2014) approach. The explanation for this could 
be the over-searching phenomenon ( Janssen & Fürnkranz, 2009; 
Quinlan & Cameron-Jones, 1995 ), which indicates that the amount 
of search shall be adjusted specifically to a data set and search 
heuristics employed. 

The results of the Friedman test and post-hoc Nemenyi test for 
statistical significance of differences between average rule length 
of rules induced by the chosen variants of the DoubleBeam-RL al- 
gorithm and the state-of-the-art algorithms for classification rule 
learning are shown in Fig. 10 . The results suggest that the vari- 
ant that uses the inverted heuristic in refinement phase, RL-IPM, 
induces rules which are statistically longer than the rules in- 
duced by the standard refinement heuristic, RL-PM. The results in 
Fig. 10 are in accordance with the conclusions drawn by Stecher 
et al. (2014) . The approach taken by Stecher et al. (2014) , SC-ILL, 
produces longest rules, while the CN2 algorithm produces rules 
with the shortest average rule length. These rules are significantly 
shorer than the rules produced by the SC-ILL, the Rl-IPM, and the 
RL-ILM algorithm. Note the average rule length is calculated as the 
ratio between the sum of all conditions across all induced rules 
and the total number of rules in the model. 

Table 11 shows the performance comparison of classification 
rule learning algorithms on the adult data set in terms of classifi- 
cation accuracy and average rule length. Results reveal that all ver- 
sions of the DoubleBeam-RL algorithm produce rules with better 
classification accuracy than the CN2 algorithm. Three DoubleBeam- 
RL algorithms (RL-ILM, RL-WM, and RL-IPM) slightly outperform 
the Ripper algorithm. Comparison of the results obtained with the 
algorithms RL-IPM and RL-PM confirm the conclusions of Stecher 
et al. (2014) : when an inverted heuristic is used in the refinement 
phase, the produced rules tend to be longer and have better clas- 
sification accuracy. 

Fig. 11 presents the training times of classification rule learn- 
ing algorithms with different numbers of training instances from 
the adult data set. The times can only give a rough picture of 
the algorithms’ performance, as the algorithms are not imple- 
mented on the same platform: we use the Ripper implementa- 
tion from Weka, CN2 from Orange, the other algorithms are im- 
plemented in Python. The training times of the SC-ILL algorithm 
are not included due to excessive time consumption of the algo- 
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Table 10 
Ten-fold cross-validation CA results for rule learning with default parameters. Best values are written in 
bold. 

Data sets RL-MM RL-ILM RL-WM RL-IPM RL-PM Ripper S C-ILL CN2 
contact-lenses 0 .750 0 .750 0 .750 0 .750 0 .750 0 .750 0 .875 0 .683 
futebol 0 .700 0 .700 0 .700 0 .700 0 .700 0 .571 0 .571 0 .800 
ionosphere 0 .900 0 .861 0 .858 0 .875 0 .914 0 .897 0 .932 0 .906 
iris 0 .920 0 .920 0 .920 0 .920 0 .920 0 .953 0 .953 0 .893 
labor 0 .773 0 .820 0 .720 0 .820 0 .827 0 .771 0 .825 0 .720 
mushroom 0 .999 1 .0 0 0 1 .0 0 0 1 .0 0 0 0 .997 1 .0 0 0 1 .0 0 0 1 .0 0 0 
primary-tumor 0 .401 0 .407 0 .410 0 .395 0 .345 0 .392 0 .360 0 .345 
soybean 0 .921 0 .908 0 .903 0 .909 0 .852 0 .915 0 .924 0 .883 
tic-tac-toe 0 .982 0 .976 0 .892 0 .974 0 .980 0 .978 0 .976 0 .818 
zoo 0 .872 0 .892 0 .882 0 .892 0 .823 0 .871 0 .921 0 .961 

Table 11 
Comparison of classification accuracy (CA) and average rule length (ARL) of classification rule 
learning algorithms on the UCI adult data set. Data set is split in 70:30 ratio. Models are induced 
using estimated default parameters. SC-ILL results are not included as its training took more than 
5 hours of CPU time. 

Measure RL-MM RL-ILM RL-WM RL-IPM RL-PM Ripper SC-ILL CN2 
CA 0 .834 0 .851 0 .852 0 .854 0 .835 0 .845 / 0 .815 
ARL 2 .909 2 .824 1 .938 2 .684 1 .214 4 .333 / 2 .531 

Fig. 11. Comparison of training times for classification rule learning algorithms on the adult data set. The horizontal axis shows the number of training instances and the 
vertical axis shows the training time in seconds. 
rithm. Fig. 11 shows that the Ripper algorithm is the fastest clas- 
sification rule learner. Algorithms RL-IPM and RL-ILM have almost 
identical training times and are the most inefficient. An interest- 
ing observation is that DoubleBeam-RL algorithms, which use in- 
verted heuristics in their refinement phase, produce slightly more 
accurate models ( Table 11 ) than their Laplace counterparts at the 
cost of being less efficient. Fig. 11 reveals that algorithms RL-ILM, 
RL-IPM, RL-MM, and RL-WM may use less time in spite of larger 
training set. Further investigation revealed relatively large variance 
of measured times. For specific points the mentioned algorithms 
produce models with fewer rules and fewer conditions. 

Based on our experimental work, there can be no clear recom- 
mendation for the user which algorithm to use, as the differences 
in classification accuracy are not statistically significant. However, 
several algorithms with two heuristics produces on average more 
accurate rules than Ripper and CN2, the most accurate being SC- 
ILL and RL-MM. For large data sets where computational efficiency 
is crucial, Ripper is clearly the best choice. 

5. Conclusions 
This paper introduces two new algorithms for rule learning, 

one for subgroup discovery and one for classification rule learn- 
ing. Both algorithms use beam search and offer the possibility to 
use separate heuristics for rule refinement and rule selection. 

The experiments were performed on 20 UCI data sets. The per- 
formance of each of the considered algorithms depends on its 
parameters. In order to systematically choose the default param- 
eters for each algorithm, we initially performed 10-fold double- 
loop cross-validation training on 10 randomly chosen data sets. The 
conclusions about the performance of the discussed algorithms are 
obtained after ten-fold cross-validation testing on the remaining 10 
data sets, which have not been used for parameter setting and are 
exclusively used for algorithm evaluation. 

The experiments indicate that the subgroup describing rules 
created using the SD-WRACC algorithm are more interesting than 
the subgroups induced by other state-of-the-art subgroup discov- 
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ery algorithms. The difference between most of the algorithms are 
not statistically significant, however SD-WRACC and CN2-SD pro- 
duce statistically significantly more interesting rules than SD and 
APRIORI-SD. 

In the context of classification rule learning we proposed a new, 
the DoubleBeam-RL algorithm, which offers the possibility for us- 
ing separate rule refinement and selection heuristics. Among the 
tested 49 variants of refinement and selection heuristics inside 
the DoubleBeam-RL algorithm and their comparison with Ripper 
and CN2, the best performing variants in terms of classification 
accuracy were the algorithms that use the m-estimate as their 
selection heuristic. In particular, the best performing variant of 
the DoubleBeam-RL algorithm was the variant that uses the m- 
estimate both as its selection and refinement heuristic. The dif- 
ferences are, however, not statistically significant. The algorithms 
which use inverted heuristic perform slightly better than the algo- 
rithms using the standard heuristics (RL-IPM and RL-ILM compared 
to RL-PM and RL-WM). All five of our algorithms perform better 
than the CN2 algorithm, and three of our algorithms perform bet- 
ter than the Ripper algorithm. 

The main advantage of DoubleBeam-SD and DoubleBeam-RL al- 
gorithms is their ability to use separate heuristics for the refine- 
ment and selection phase of rule learning. Different heuristics can 
take advantage of the data properties and contribute to better 
rules (rules with improved unusualness or rules with improved 
accuracy). The experimental results suggest that both algorithms 
provide rules with comparable or better quality than those ob- 
tained by the state-of-the-art algorithms for rule learning and sub- 
group discovery, respectively. The use of two beams in combination 
with separate heuristics for each phase of the learning processes 
widens the algorithms’ search space thus improving the probabil- 
ity of finding better quality rules. However, this also increases the 
chances of data overfitting, an aspect which our algorithms do not 
explicitly address at this point. 

In contrast to the APRIORI-SD algorithm which uses exhaustive 
search, the DoubleBeam-SD algorithm is a heuristic search algo- 
rithm (similar to the SD and the CN2-SD algorithm). Despite be- 
ing faster than the APRIORI-SD algorithm and ability to handle 
medium size data sets, the current DoubleBeam-SD algorithm is 
still not able to handle large data sets, due to space and time 
complexity. In fact, this is one of the main disadvantages of all 
rule learning algorithms using a covering approach. Lower memory 
consumption could be achieved with more efficient data structures, 
while significant speedups could be gained with instance sampling 
and feature subset selection, as well as with parallelization of the 
algorithms. Due to two beams, large degree of parallelization could 
be achieved with DoubleBeam algorithms. 

While our DoubleBeam-SD and DoubleBeam-RL algorithms 
show promising results, their increased search power demands fur- 
ther research in terms of stopping criteria and rule pruning heuris- 
tics. Using a post-processing rule pruning step similar to the Rip- 
per is a promising research direction. We plan to explore also the 
rule pruning method proposed by Sikora (2011) . 

Experimental results on subgroup discovery revealed the advan- 
tage of using WRACC over the traditional rule learning heuristics in 
obtaining interesting subgroups. We believe that developing new 
heuristics specialized for the detection of interesting subgroups is 
a promising research path. 

Subgroup discovery is a useful approach in the analysis of 
medical data. In line with our work on Parkinson’s disease data 
( Valmarska, Miljkovic, Robnik-Šikonja, & Lavra ̌c, 2016 ), we plan a 
case-study comparing results of different subgroup discovery algo- 
rithms on Parkinson’s disease patients data set. In order to increase 
the interpretability of the induced subgroup describing rules we 
also plan on presenting a method for subgroup visualization. In 
this way we will assist experts (e.g. physicians) in their decision 

whether a certain subgroup discovery rule is interesting and rele- 
vant for their work. 
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Chapter 5

Detection of Parkinson’s Disease
Progression Patterns

Careful management of patient’s condition is crucial to ensure the patient’s independence
and quality of life. This is achieved by personalized treatment based on individual patient’s
symptoms and medical history. The aim of this chapter is to determine patient groups
with similar disease progression patterns coupled with patterns of medication changes that
lead to the improvement or decline of patients’ quality of life symptoms. To this end,
this chapter proposes a new methodology for clustering of short time series of patients’
symptoms and prescribed medications data, and time sequence data analysis using skip-
grams to monitor disease progression. The chapter is divided into two sections. We first
introduce the problem description and then we present the published Journal of Intelligent
Information Systems paper that addresses the described problem.

5.1 Problem Description

Parkinson’s disease symptoms affect the quality of life of both the patients and their closest
communities. There is no cure for Parkinson’s disease and the treatment of patients is
directed towards managing their symptoms with antiparkinson medication and prolonging
their independence. In time patients begin to lose independence and rely heavily on the
support of their families. Both the medical treatment and the patients’ inability to play a
more active role in their countries economies present a heavy economic pressure on countries
worldwide. Early diagnosis and response to patients’ symptoms in adequate time are of
essential importance to contain the progression and degradation of patients’ normal quality
of life.

Data mining techniques for Parkinson’s disease have been limited to disease diagnosis,
symptoms recognition, or subtype detection. An important and still unresearched area is
the problem of disease progression. Patients can have different patterns of disease progres-
sion depending both on their symptoms status as well as their clinicians’ reaction to their
status with medications. Determining patterns of disease progression can help clinicians
focus their attention on the therapies that have proven to be best for patients covered by
a certain disease progression pattern and thus prolong the independence of their patients.

The progression of patients’ disease can be followed by monitoring their overall status
over time. The PPMI data record patients’ symptoms for each visit to the clinician.
The combination of symptoms and their severity a patient experiences on a visit gives
information about the patient’s status at that time. Based on the experienced symptoms
at two consecutive visits, patients’ status can either improve, degrade, or stay unchanged.
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We address the issue of determining the overall status of patients’ by dividing them into
groups of patients with similar symptoms. We use descriptive methods to determine the
severity of patients status in each group. Descriptions of clusters allow for at least partial
ordering of patients’ status according to the severity of symptoms of their member patients.
As the patients’ status changes through time, so will the patients’ cluster membership.
Change of patients’ cluster assignment between two consecutive visits indicates a change
in their overall status thus drawing the trajectory of their disease progression. Analysis
of all trajectories of disease progression will reveal patterns of disease progression shared
among Parkinson’s disease patients.

As mentioned in Chapter 3, the data describing the status of Parkinson’s disease pa-
tients is obtained from multiple sources and describes different aspects of the patients’
lives. We address the division of patients into groups in two settings where we look into
their i) overall status based on the sum of their symptoms severities and ii) the patients’
status as presented from multiple angles (multi-view learning). Based on these divisions of
patients, we demonstrate that motor and autonomic symptoms are the most informative
for evaluating the quality of life of Parkinson’s disease patients.

We also address the issue of medications therapy changes. We are interested in patterns
of medications changes that influence the improvement or the degradation of the patients’
status. By following the evolution of symptoms for each patient separately, we are able to
determine patterns of medication changes that can lead to the improvement or degradation
of the patients’ quality of life.

5.2 Related Publication

The rest of this chapter presents the Journal of Intelligent Information Systems paper.

Publication related to this contribution

Journal Paper

Valmarska, A., Miljkovic, D., Lavrač, N., & Robnik-Šikonja, M. (2018). Analysis of medi-
cations change in Parkinson’s disease progression data. Journal of Intelligent Infor-
mation Systems. doi:10.1007/s10844-018-0502-y1

This publication contains the following contributions:

• We present the unaddressed issue of Parkinson’s disease progression analysis with
data mining.

• We present our clustering-based methodology for determining patterns of disease
progression. The methodology can employ both single or multi-view clustering ap-
proaches.

• We use external cluster validation measures to determine the best clusters.

• We empirically show that patients can be divided into clusters with similar symptoms.
These clusters can be at least partially ordered based on the severity of symptoms of
patients assigned to them.

1ERRATUM: Figure 4 and Figure 5 on page 75 of the PhD thesis have mistakenly been switched, while
the captions of Figure 4 and Figure 5 are correct and correspond to the references in the text.

http://dx.doi.org/10.1007/s10844-018-0502-y
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• We empirically confirm the importance of motor and autonomic symptoms on the
patients’ overall status.

• We present the reasoning behind following the changes of patients’ cluster assign-
ments to determine patterns of disease progression and use skip-grams to obtain
robust patterns of disease progression.

• We present patterns of disease progression and the characteristics of patients for a
few subjectively chosen patterns of progression.

• We present an algorithm for determining patterns of medications dosage changes
that influence the improvement or decline of the patients’ status. We present these
patterns.

The authors’ contributions are as follows. Anita Valmarska initiated the idea of
clustering-based analysis of short-time series Parkinson’s disease symptoms and medica-
tion data to determine patterns of disease progression and therapy modifications. Marko
Robnik-Šikonja suggested using skip-grams in order to obtain more robust patterns of dis-
ease progression. The methodology was designed and developed by Anita Valmarska with
the insights from Marko Robnik-Šikonja. Anita Valmarska implemented the methodology
and performed the experimental work. Marko Robnik-Šikonja and Nada Lavrač supervised
the implementation of the algorithms. Nada Lavrač has suggested to address the prob-
lem of Parkinson’s disease data analysis and gave insightful comments on data mining of
medical data. Dragana Miljkovic provided insights into data mining of Parkinson’s disease
data. All authors contributed to the text of the manuscript.
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1 Introduction

Parkinson’s disease is a neurodegenerative disorder that affects people worldwide. Due
to the death of nigral neurons, there are changes in dopamine levels in the human brain
causing several motor symptoms: tremor, rigidity, bradykinesia and postural instability.
In addition to motor symptoms, Parkinson’s disease is associated also with non-motor
symptoms, which include cognitive, behavioral, and autonomic problems. These symptoms
significantly decrease the quality of life of the patients affected by Parkinson’s disease.

Over 6.3 million people have the condition worldwide (European Parkinson’s Disease
Association 2016). In Europe, more than one million people live with Parkinson’s disease
and this number is expected to double by 2030 (Dorsey et al. 2007). Parkinson’s disease
is the second most common neurodegenerative disease (after Alzheimer’s disease) and its
prevalence continues to grow as the population ages. Currently, there is no cure for Parkin-
son’s disease. The reasons for the cell death are still poorly understood. The management
of symptoms is of crucial importance for patients’ quality of life, mainly addressed with
antiparkinson medication, such as levodopa and dopamine agonists.

While numerous studies address specific aspects of the disease, there are few research
efforts that adopt a holistic approach to disease management (Gatsios et al. 2016). The PER-
FORM (Tzallas et al. 2014), REMPARK (Samà et al. 2015) and SENSE-PARK (SENSE-
PARK 2016) systems are intelligent closed-loop systems that seamlessly integrate a range of
wearable sensors (mainly accelerometers and gyroscopes), constantly monitoring several
motor signals of the patients and enabling the prescribing clinicians to remotely assess the sta-
tus of the patients, given a real-time image of each patient’s condition. Based on individual
patient’s response to the prescribed therapy (manifested by the change of the motor symp-
toms), the physician is able to adjustmedication schedules andpersonalize the treatment (Gat-
sios et al. 2016). However, no data mining paradigms are used in the mentioned systems.

In the development of the PD manager’s m-Health platform for patient-centric Parkin-
son’s disease management (PD manager: m-Health platform for Parkinson’s disease man-
agement 2015), one of the investigated approaches is data mining, aiming to provide
decision support to clinicians and patients in personalized disease management. The individ-
ual patient’s data, recorded in consecutive visits to the prescribing physician, are collected
from different sources offering different ‘views’ of the data describing the same patient by
multiple distinct feature sets. This setting suggests a multi-view learning approach.

Multi-view learning—a relatively new but well-established machine learning technique—
is often appropriate for this type of data, as it aims to build models from multiple views
(multiple data sets) by considering the diversity of different views (Xu et al. 2013). These
views represent data obtained frommultiple sources or different feature subsets and describe
the same set of examples. We decided for a multi-view clustering approach, aiming to
construct disjoint partitioning of objects (patients) described by multiple feature sets. This
partitioning is aimed at identifying clusters of patients that share similar symptoms which
enables automatic detection of interesting patterns.

Our work explores and tries to give answers to important medical questions which nobody
(to the best of our knowledge) has tried to answer: How medications therapy of Parkinson’s
disease patients changes in response to the patients’ change of overall status, and what are
the directions in which the disease would develop based on the patients’ symptoms and
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their therapies. The goal of this paper is to develop a new clustering-based methodology for
disease progression data, which will—based on the patients’ allocation to clusters at given
time points and their history of medication therapies—be able to make suggestions about
modifications of particular patient’s therapy, with the aim to improve the patient’s quality of
life. Patients’ allocation to clusters represent their disease status, and their changed cluster
allocation through time represents their disease progression. The analysis of the clusters can
reveal what is the most common status of the patients, and the analysis of cluster changes
can reveal how their symptoms change in time. Learning on the history of changes between
clusters allows us to infer significant features and relevant medications changes for groups
of patients and to suggest medications changes for the individual patients.

In order to increase the robustness of our results, we model the sequences of changes of
patient’s status between the clusters by using skip-grams (Guthrie et al. 2006), an approach
upgrading the more standard n-grams approach (Broder et al. 1997) that is regularly used in
the analysis of data sequences. The introduction of skip-grams results in increased number
of investigated n-grams, providing a more stable distribution of the possible cluster changes.

This paper significantly extends our previous work (Valmarska et al. 2016). We extended
the methodology for analysis of Parkinson’s disease data to include three threads of cluster-
ing (Section 4). A pseudo code of the approach for dividing Parkinson’s disease patients into
groups with similar symptoms and ordering these groups of patients in accordance with the
severity of their overall status is outlined in Section 4.2. The changes of patients antiparkin-
son medications dosages in relation to the change of their overall status is explored in
Section 4.3, where we introduce Algorithm 2 to determine the change in medications dosage
with respect to the change of patient’s status. In Section 4.4 we present the skip-grams based
approach for determining groups of patients with different patterns of disease progression
based on the changes of their overall status. Finally, we have significantly extended the
empirical evaluation in Section 5 by updating the previous symptoms analysis and medica-
tions analysis results with the results for determining the number of clusters and patterns of
disease progression. We also present the results of detailed analysis of patients who were
identified as following a certain pattern of disease progression.

The paper is structured as follows.After presenting themotivation, the background and the
related work in Section 2, Section 3 describes the Parkinson’s ProgressionMarkers Initiative
(PPMI)data (Marek et al. 2011) used inour experiments. Section 4proposes themethodology
for analyzing the Parkinson’s disease data through clustering of short time series symptoms
data and connecting the changes of symptoms-based clustering of patients to the changes in
medication therapies with the goal to find treatment recommendation patterns and disease
progression patterns. The latter is addressed by introducing the so-called skip-grams for
analyzing the cluster change patterns and the progression of the disease. Section 5 presents
the results of data analysis, tested on two data set variants. Finally, Section 6 presents the
conclusions and ideas for further work. The paper contains four appendices which contain
detailed results of analyzes: comparison of clustering algorithms (Appendix A), unsuper-
vised feature selection (Appendix B), evaluation of different views in multi-view clustering
(Appendix C), and descriptive rules for multi-view clusters (Appendix D).

2 Background

Parkinson’s disease is a heterogeneous neurodegenerative condition with different clin-
ical phenotypes, genetics, pathology, brain imaging characteristics and disease duration
(Foltynie et al. 2002). This variability indicates the existence of disease subtypes. Moreover,
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Parkinson’s disease symptoms overlap with symptoms from other diseases, thus hampering
the diagnosis of new PD patients and decreasing the overall success of the diagnosis pro-
cess. Only 75% of clinical diagnoses of Parkinson’s disease are confirmed to be idiopathic
Parkinson’s disease at autopsy (Hughes et al. 1992).

Given the heterogeneous nature of Parkinson’s disease (PD), the nature of data describing
PD patients is also heterogeneous, possibly gathered in different databases. Our data set
(Marek et al. 2011) contains symptoms of patients suffering from Parkinson’s disease where
the symptoms are divided into several views. We test the union of all views with standard
clustering approaches as well as several subsets of views using multi-view clustering in
order to identify clusters of patients that share similar symptoms.

Patients’ symptoms change through time depending on the received therapies, develop-
ment of the disease, everyday habits, etc. We treat patients’ symptoms at each time point as
one training instance. This leads to patients’ allocation to different clusters in different time
points depending on the progression of the disease. We aim to suggest modifications of the
medication treatments based on identified migration patterns of patients from one cluster to
another with the goal to keep the patients in the clusters with symptoms that allow a good
quality of life. To reach this goal we developed a new clustering-based methodology for
disease progression data.

The reminder of this section presents Parkinson’s disease related data mining research, an
overview of relevant multi-view clustering approaches, and a short overview of methods for
short time series analysis, including the introduction of skip-grams for sequence data analysis.

2.1 Parkinson’s disease related data mining research

Data mining research in the field of Parkinson’s disease (PD) can be divided into four
groups: classification of PD patients, detection of PD symptoms, detection of subtypes of
PD patients, and assessing success of deep brain stimulation surgery as a last resort in the
treatment of Parkinson’s disease patients.

The use of classification techniques offers decision support to specialists by increas-
ing the accuracy and reliability of diagnosis and reducing possible errors. Gil and Johnson
(2009) use Artificial Neural Networks (ANN) and Support Vector Machines (SVM) to
distinguish PD patients from healthy subjects. Ramani and Sivagami (2011) compare the
effectiveness of different data mining algorithms in the diagnosis of PD patients.

Tremor is one of the symptoms strongly associated with Parkinson’s disease. Several
methods for numerical assessment of the intensity of tremor have been proposed. These
methods include time series analysis (Timmer et al. 1993), spectral analysis (Riviere et al.
1997) and non-linear analysis (Riviere et al. 1997) and they address tremor detection
and quantification. Recent works are based on body fixed sensors (BFS) for long-term
monitoring of patients (Patel et al. 2009).

In the course of their disease, patients are prescribed antiparkinson medications therapies
in order to control the troubling symptoms. As the disease progresses, the medications treat-
ment can become ineffective and—as a last resort—clinicians use deep brain stimulation
(DBS) surgery to control the Parkinson’s disease symptoms. Data mining research confirms
that DBS significantly improves the patients’ motor function (Liu et al. 2014). Depending
on the chosen method for DBS, a great reduction in dose of medication, or conservation
of cognitive functions can be achieved. In order to predict the neurological effects related
to different electrode-contact stimulation, Szymański et al. (2015) tracked the connections
between the stimulated part of subthalamic nucleus and the cortex with the help of diffusion
tensor imaging (DTI).
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Identification of Parkinson’s disease subtypes is presented in the work of Lewis et al.
(2005), and has been confirmed by the conclusions from Reijnders et al. (2009) and Ma
et al. (2015). While clustering usually focuses on patient grouping with the aim of diag-
nosing new patients, none of the listed methods follows the progression of the disease,
and to the best of our knowledge, no data mining research in the field of Parkinson’s dis-
ease analyzed the development of the disease in combination with the medications that
the patients receive. Identification of groups of patients based on the similarity of their
symptoms and the clinicians’ reaction with medications modification in order to keep the
patients as stable and in good status as possible, can be helpful in the assignment of per-
sonalized therapies and an adequate patient treatment. For that purpose, we propose a
methodology for identification of groups of patients based on the severity of their symp-
toms, determination of disease progression, and the consequent patterns of medications
modifications.

2.2 Multi-view clustering

Multi-view clustering is concerned with clustering of data by considering the information
shared by each of the separate views. Many multi-view clustering algorithms initially trans-
form the available views into one common subspace (early integration), where they perform
the clustering process (Xu et al. 2013). Chaudhuri et al. (2009) propose a method for multi-
view clustering where the translation to a lower vector space is done by using Canonical
Correlation Analysis (CCA). Tzortzis and Likas (2009) propose a multi-view convex mix-
ture model that locates clusters’ representatives (exemplars) using all views simultaneously.
These exemplars are identified by defining a convex mixture model distribution for each
view. Cleuziou et al. (2009) present a method where in each view they obtain a specific orga-
nization using fuzzy k-means (Bezdek 1981) and introduce a penalty term in order to reduce
the disagreement between organizations in the different views. Cai et al. (2013) propose
a multi-view k-means clustering algorithm for big data. The algorithm utilizes a common
cluster indicator in order to establish common patterns across the views.

Co-training (Blum and Mitchell 1998) is one of the earliest representatives of multi-
view learning. This approach considers two views consisted of both labeled and unlabeled
data. Using labeled data, co-training constructs a separate classifier for each view. The most
confident predictions of each classifier on the unlabeled data are then used to iteratively
construct additional labeled training data. Kumar and III (2011) apply the co-training prin-
ciple (Blum and Mitchell 1998) in unsupervised learning. Clustering is performed on both
views, then cluster points from one view are used to modify the clustering structure of the
other view. Appice and Malerba (2016) employ the co-training principle in the multi-view
setting for process mining clustering. The above-mentioned approaches presume that each
of the respective views is capable of producing clusters of similar quality when considered
separately. He et al. (2014) do not make that presumption. They combine multiple views
under a principled framework, CoNMF (Co-regularized Non-negative Matrix Factoriza-
tion), which extends NMF (Non-negative matrix factorization) for multi-view clustering by
jointly factorizing the multiple matrices through co-regularization. The matrix factorization
process is constrained by maximizing the correlation between pairs of views, thus utilizing
information from each of the considered views. CoNMF is a multi-view clustering approach
with intermediate integration of views, where different views are fused during the cluster-
ing process. The co-regularization of each pair of views makes the clustering process more
robust to noisy views. The decision to use the CoNMF approach in our work was made
based on this algorithm property and on the availability of its Python code.
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2.3 Analysis of short time series

A time series is a series of data points indexed in time order. Time series data analysis was
used to study a wide range of biological and ecological systems (Bence 1995). The use of
time series allows for studying the dynamics of a system. Short time series (8 points or less)
constitute more than 80% of all time series data sets (Ernst et al. 2005). The small number
of available time points does not allow for identification of statistically significant temporal
profiles (Ernst and Bar-Joseph 2006). Bence (1995) examines methods for adjusting con-
fidence intervals of the mean and parameters of a linear regression for autocorrelation. De
Alba et al. (2007) suggest that simpler models can be more effective on short time series.
They show that the Bayesian approach is superior to the traditional approach when applied
to short time series but inferior when applied on longer time series (De Alba et al. 2007).
Most of the research in short time series analysis is related to the analysis of short time
series microarray gene expression data. Ernst et al. (2005) present a method for clustering
of short time series gene expression data, followed by the introduction of the STEM (Short
Time-series Expression Miner) software program (Ernst and Bar-Joseph 2006) specifically
designed for the analysis of short time series microarray gene expression data.

In thehealthcare domain,Choi et al. (2017) incorporate temporalmodelingusing the recur-
rent neural network (RNN)model to predict heart failure. Imhoff et al. (1998) apply short time
series analysis to monitor lab variables after liver surgery, and to offer support to clinicians
in their decision-making process for the treatment of acute respiratory distress syndrome.
Schieb et al. (2013) evaluate the clustering of stroke hospitalization rates, patterns of the
clustering over time, and associations with community level characteristics. They generate
clusters of high and low-stroke hospitalization rates during two periods of time. According
to the place of residence of patients, counties in USA are assigned to a cluster. Following
the transition of counties between clusters between these two periods, counties are labeled
as having a persistently high, transitional, or persistently low-stroke hospitalization rate.

Murugesan et al. (2017) present a hierarchicalmulti-scale approach for visualizing spatial
and functional cluster evaluation patterns. Their visualization method is two-stage method
based on sequence of community detection at each time stamp and community tracking
between steps. Greene et al. (2010) address the issue of identifying communities in dynamic
networks. Appice (2017) uses social network analysis as a basic approach for organizational
mining, aimed at understanding the life cycle of a dynamic organizational structures.

Zhao et al. (2017) explore different representations of temporal data from electronic
health records to improve prediction of adverse drug events. They obtain sequences of sym-
bols by transforming time series of individual feature into strings (Lin et al. 2007). These
strings reflect the temporal nature of the original values. Results from their empirical inves-
tigation show that transformation of sequences to tabular form based on edit distance of
sub-sequences to representative shaplets leads to improvements in the predictive perfor-
mance. This approach reduces the feature sequence diversity by finding informative random
sub-sequences. The goal of Zhao et al. (2017) is to predict whether patients will develop
adverse drug reactions. They use the history of patients symptoms in order to predict a sin-
gle event (adverse drug event: yes or no), while we follow the patients’ disease development
and changes in their overall status as a result of therapy changes. Another difference is our
use of skip-grams which reduces noise and enforces strong transition patterns.

To the best of our knowledge, the temporal nature of medical data has not been explored
in research directed toward determining the progression of a particular disease and determin-
ing the therapy recommendations in order to stabilize the disease progression. We present
a clustering based methodology on short time series symptoms data of Parkinson’s disease
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patients in an attempt to discover how the disease develops through time, reflected by the
change of patients’ symptoms. Simultaneously, we use the temporal data about their med-
ications therapy to determine how clinicians react to patients’ symptoms changes. Each
Parkinson’s disease patient is described with his/her symptoms and medications treatment
through time. The temporal data is flattened to records from single time points, referred in
this manuscript as instances, where any change of patients’ symptoms between two con-
secutive points is referred as change in their status. Changes in status are then connected to
possible changes in medications therapies.

2.4 Skip-grams for sequence data analysis

Patient’s allocation to clusters in sequential time points can be viewed as a sequence of
items. Analysis of contiguous sequences of items for every patient’s cluster allocation can
provide an insight into the disease progression and reveal patterns how (and how often) the
patient’s symptoms improve or degrade.

In this paper we use an approach to sequence data analysis, where we borrow the method-
ology initially developed in the field of natural language processing (NLP). In NLP, a
contiguous sequence of n items from a given sequence of text or speech is called an n-gram
(Broder et al. 1997). Skip-grams are a generalization of n-grams in which the components
(typically words) need not be consecutive in the text under consideration but may leave
gaps that are skipped over (Guthrie et al. 2006). They provide a way of overcoming the data
sparsity problem found with conventional n-gram analysis.

Another use of skip-grams is in producing word embeddings into a vector form to reduce
dimensionality and sparsity of bag-of-words representation. Mikolov et al. (2013) proposed
word2vec embedding based on deep learning, which has subsequently been used in many
NLP applications, including some with clinical text data (Minarro-Giménez et al. 2013; De
Vine et al. 2014) (PubMed abstracts, disease progression reports) and to learn relationships
between clinical processes or unified medical language system (UMLS) concepts (Choi
et al. 2017). Our use of skip-grams is entirely different as we do not use embeddings but
use skip-grams directly as a more robust version of n-grams.

In the context of our analysis, skip-grams allow for robust identification of frequent paths
through clusters and reveal typical disease progression patterns. The patient’s overall status
at a given visit to the clinician, as determined by the (patient, visit) pair cluster assignment,
can be seen as an item, and changes of clusters as sequences of items, which can be analyzed
with the skip-grams based approach developed in NLP. This is novel in the analysis of
Parkinson’s disease data and allows us to follow the progression of the patient’s overall
status without taking into account noise in the form of sudden changes in the patient’s status.
Such changes are not necessary due to Parkinson’s disease, but can be attributed to other
stressful events in the patient’s life (such as loss of a pet, loss of a loved one, etc). To the best
of our knowledge, there has not been any study involving skip-grams that uses the actual
symptoms of patients in order to explore patient’s disease progression and the clinicians’
response by changing the medications therapy. A formal definition of skip-grams and their
use are presented in Section 4.4.

3 Data

In this study, we use the PPMI data collection (Marek et al. 2011) gathered in the observa-
tional clinical study to verify progression markers in Parkinson’s disease. The PPMI data
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collection consists of data sets describing different aspects of the patients’ daily life. Below
we describe the selection of PPMI data used in the experiments.

3.1 PPMI symptoms data sets

The medical condition and the quality of life of a patient suffering from Parkinson’s disease
can be determined using the Movement Disorder Society (MDS) sponsored revision of Uni-
fied Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz et al. 2008). It is a question-
naire consisting of 65 questions concerning the progression of disease symptoms. MDS-
UPDRS is divided into four parts. Part I consists of questions about the ‘non-motor experi-
ences of daily living’. These questions address complex behaviors, such as hallucinations,
depression, apathy, etc., and patient’s experiences of daily living, such as sleeping prob-
lems, daytime sleepiness, urinary problems, etc. Part II expresses ‘motor experiences of
daily living’. This part of the questionnaire examines whether the patient experiences speech
problems, the need for assistance with the daily routines such as eating or dressing, etc. Part
III is referred to as the ‘motor examination’, while Part IV concerns ‘motor complications’,
which are mostly developed when the main antiparkinson drug levodopa is used for a longer
time period. Each question is anchored with five responses that are linked to commonly
accepted clinical terms: 0 = normal (patient’s condition is normal, symptom is not present),
1 = slight (symptom is present and has a slight influence on the patient’s quality of life), 2 =
mild, 3 = moderate, and 4 = severe (symptom is present and severely affects the normal and
independent functioning of the patient, i.e. her quality of life is significantly decreased).

Montreal Cognitive Assessment (MoCA) (Dalrymple-Alford et al. 2010) is a rapid
screening instrument for mild cognitive dysfunction. It is a 30 point questionnaire consisting
of 11 questions, designed to assess different cognitive domains: attention and concentration,
executive functions, memory, language, visuoconstructional skills, conceptual thinking,
calculations, and orientation.

Scales for Outcomes in Parkinson’s disease – Autonomic (SCOPA-AUT) is a specific
scale to assess autonomic dysfunction in Parkinson’s disease patients (Visser et al. 2004).
Physical Activity Scale for the Elderly (PASE) (Washburn et al. 1993) is a questionnaire
which is a practical and widely used approach for physical activity assessment in epidemi-
ologic investigations. The above data sets are periodically updated to allow the clinicians
to monitor patients’ disease development through time. Answers to the questions from each
questionnaire form the vectors of attribute values.

Table 1 summarizes the symptoms data sets considered in our research. It lists the number
of considered questions from each questionnaire, the range of attribute values, and the nature
of the attribute values. All of the considered questions have ordered values, and—with the
exception of questions from MoCA and PASE—increased values suggest higher symptom
severity and decreased quality of life.

When considering the possibility of using a multi-view framework, the independence
of the separate views should be inspected. In their work, Goetz et al. (2008) present that
the MDS-UPDRS shows high internal consistency (Cronbach’s alpha = 0.79—0.93 across
parts). MDS-UPDRS across-part correlations range from 0.22 to 0.66. Reliable factor struc-
tures for each part are obtained (comparative fit index> 0.90 for each part), which supports
the use of sum scores for each part, when compared to using a total score of all parts.

3.2 PPMI concomitant medications log

The PPMI data collection offers information about all of the concomitant medications that
the patients used during their involvement in the study. These medications are described
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Table 1 Characteristics of the questionnaire data used in the analysis

Questionnaire Number of Answers Ordered Higher value indicates

questions value range values higher symptom severity

MDS-UPDRS Part I 6 0–4 Yes Yes

MDS-UPDRS Part Ip 7 0–4 Yes Yes

MDS-UPDRS Part II 13 0–4 Yes Yes

MDS-UPDRS Part III 35 0–4 Yes Yes

MoCA 11 0–1 Yes No

PASE 7 1–2 Yes No

SCOPA-AUT 21 0–3 Yes Yes

by their name, the medical condition they are prescribed for, as well as the time when
the patient started and (if) ended the medications therapy. For the purpose of our research,
we initially concentrate only on whether the patient receives a therapy with antiparkinson
medications, and which combination of antiparkinson medications the patient has received
between each of the time points when the MDS-UPDRS test and the MoCA test were
administered. The main families of drugs used for treating motor symptoms are levodopa,
dopamine agonists and MAO-B inhibitors (National Collaborating Centre for Chronic Con-
ditions 2006). Medications which treat Parkinson’s disease-related symptoms but are not
from the above-mentioned groups of medications are referred to as other.

3.3 Experimental data

Symptoms of patients suffering from Parkinson’s disease are grouped into several data sets,
representing distinct views of the data. These views consist of data from MoCA test, motor
experiences of daily living, non-motor experiences of daily living, complex motor exami-
nation data, etc. For each patient these data are obtained and updated periodically (on each
patient’s visit to the clinician)—at the beginning of the patient’s involvement in the PPMI
study, and approximately every 6 months, in total duration of 5 years—providing the clini-
cians with the opportunity to follow the development of the disease. The visits of each patient
can be viewed as time points, and the collected data on each visit is the data about the patient in
the respective time point. All time points collected for one patient form a short time series.

In the experiments we address two settings: the analysis of merged symptoms data and
the analysis of multi-view symptoms data.

Merged symptoms data are represented in a single data table, constructed by using the
sums of values of attributes of the following data sets: MDS-UPDRS Part I (subpart 1
and subpart 2), Part II, Part III, MoCA, PASE, and SCOPA-AUT.1 Goetz et al. (2015) use
sums of symptoms values as an overall severity measure of a given aspect of Parkinson’s
disease. Similarly, we use sums of attribute values from different data sets to present the
overall status of patients concerning respective aspects of their everyday living. Table 2
outlines the attributes used to construct the merged symptoms data, together with their
range of values. This is a simplified representation using seven attributes, each represent-
ing the severity of symptoms of a given symptoms group, which proved to be valuable in
the initial experiments (Valmarska et al. 2016).

1Appendix B presents the clustering quality results on data set obtained by feature selection.
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Table 2 List of attributes used in the merged symptoms data set

Dataset Attribute Value Higher value indicates

name range higher symptom severity

MDS-UPDRS Part I NP1SUM 0–24 Yes

MDS-UPDRS Part Ip NP1PSUM 0–28 Yes

MDS-UPDRS Part II NP2SUM 0–52 Yes

MDS-UPDRS Part III NP3SUM 0–138 Yes

MoCA MCATOT 0–30 No

PASE PASESUM 0–24 No

SCOPA-AUT SCAUSUM 0–63 Yes

Multi-view symptoms data consist of seven data sets: MDS-UPDRS Part I, Part Ip, Part
II, Part III, MoCA, SCOPA-AUT, and PASE. Each of these data sets consists of values
of attributes, which represent answers to the questions from a particular questionnaire.
Similarly to Goetz et al. (2015), we added an additional attribute to each data set, which
is the sum of values of attributes in the given data set (this equals the values of individual
attributes used in the merged symptoms data).

The experimental data include symptoms and medications data of 405 Parkinson’s dis-
ease patients from the PPMI study. Out of these 405 patients, 265 patients are male and
140 are female. The youngest patient was 33 years old at the beginning of the study (base-
line visit), and the oldest patient was 84 years old. The average age of patients is 61.09
years. The experimental data contains from 1 to 5 visits to the clinician. The average num-
ber of recorded visits is 3.321. The experimental data consist of 1,345 patient’s visits and
each visit is considered a separate data instance, representing the basic building block of the
methodology described in Section 4.

Fig. 1 Outline of the approach to Parkinson’s disease quality of life data analysis
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4 Methodology

To assist the clinicians in making decisions regarding the patients’ therapy, we propose
a procedure which involves a combination of clustering patients’ symptoms data and the
analysis of histories of patients’ medication treatments, followed by disease progression
analysis. Figure 1 shows an outline of the proposed methodology, which addresses changes
of data over time (i.e. over several patient’s visits) with the goal to suggest possible modifi-
cations of the medication treatment. Moreover, our goal is to analyze the rate of progression
of Parkinson’s disease and discover the most frequent patterns of symptoms change; we
address this goal by using skip-grams on patients’ changes of clusters. The usage of skip-
grams can reveal groups of patients with an unusual pattern of symptoms change which
deserve a more thorough look into the characteristics of that groups.

The input to the methodology are PPMI data sets of patient symptoms (described in
Section 3.1) and the PPMI medications log data (described in Section 3.2), and the outputs
are treatment recommendation patterns that can assist the clinician in deciding about further
treatment of a patient, as well as the disease progression patterns providing insight into dis-
ease development. The methodology2 consists of three separate threads whose outputs are
combined to identify treatment recommendation patterns and disease progression patterns.

Symptoms analysis. The first thread, referred to as Symptoms analysis in the top part of
Fig. 1, finds groups of patients with similar symptoms by grouping the instances, defined
as (patient, visit) pairs. It uses clustering and describes the discovered patient groups with
induced classification rules where classes correspond to individual cluster labels. Details
of this thread are presented in Section 4.2.

Medications analysis. The second thread, referred to asMedication analysis in the bottom
part of Fig. 1, is concerned with finding changes of medications and their dosages based
on patients’ symptoms changes between two consecutive visits to the clinician (e.g., dis-
ease aggravation, improvement or no change). In this thread we observe the patients
moving from one cluster to another cluster in two consecutive time points, i.e. two con-
secutive visits to the clinician. The outcomes of the two threads are combined to a set of
treatment recommendation patterns (i.e. increased/decreased/unchanged dosage of med-
ications) for the four groups of medications mentioned in Section 3.2. We elaborate on
this thread in Section 4.3.

Disease progression analysis. The third thread, referred to as Disease progression analy-
sis in the middle part of Fig. 1, is concerned with finding patterns of disease progression,
using skip-grams analysis on cluster crossing sequences. Details are given in Section 4.4.

The first step of the methodology is the construction of individual patient-visit pairs
(pi, vij ), representing individual instances or items. For each patient pi a set of pairs
(pi, vij ) is constructed, where vij describes the symptoms recorded at an individual patient’s
visit to the clinician. These instances (patient-visit pairs) are the items representing the basic
unit of analysis in the Symptoms analysis thread of the methodology. The attribute values
of instance (pi, vij ) correspond to symptoms of patient pi on visit j , and vij and vij+1
correspond to two consecutive patient’s visits. This is followed by clustering of instances.

The basic unit of the Medications analysis thread of the methodology are (pi, vij , cij ,
mij , vij+1, cij+1, mij+1) tuples, where cij is the cluster label for instance (pi, vij ) and mij

are the medications that patient pi takes at the time of visit j . Elements cij+1 andmij+1 are

2The code is available upon request. Please note, we do not have a permission to share the data. Users can
obtain permission from the Parkinson’s Progression Markers Initiative (PPMI): http://www.ppmi-info.org/
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the cluster label and prescribed medications of the same patient on visit j + 1, i.e. at the
time of the next visit.

The basic unit of theDisease progression analysis thread are patients’ sequences of cluster
crossings. Patientpi cluster crossing sequence isSeqi , defined as a sequenceof cluster assign-
ments for patient pi at time points vi1, vi2, ..., viki , where vij correspond to the symptoms
recorded at visit vij of patient pi , and ki is the number of visits to the clinician by patient pi .

As our methodology is based on clustering, in Section 4.1 we first present cluster validity
indices used to asses the quality of clusters produced by different tested methods.

4.1 Cluster validity indices

The number of groups (clusters) of similar patients was unknown before the start of the
data analysis. In order to estimate the optimal number of clusters, we used internal cluster
validity indices (Arbelaitz et al. 2013), which are—in the absence of ground truth labels—
used to estimate the quality of generated clusters. The clustering quality is determined
based on cluster compactness—how close are the related objects in each cluster, and cluster
separation—how distinct or well-separated is each cluster from other clusters.

Many clustering validity indices (i.e. cluster quality measures) exist. We use three of
the best performing indices from Arbelaitz et al. (2013): Silhouette analysis index (SA)
(Rousseeuw 1987), Davies-Bouldin index (DB) (Davies and Bouldin 1979), and Calinski-
Harabasz index (CH) (Caliński and Harabasz 1974). Below we present definitions and
intuition behind these indices.

Let data set X be a set of N objects represented as vectors in an F -dimensional space,
X = {x1, x2, ..., xN } ⊆ ℜF . Clustering ofX is a set of disjoint clusters that partitionsX into
K groups. Clustering C is defined as disjoint partition of objects in X, C = {c1, c2, ..., cK },
where

⋃
ck∈C ck = X, ck ∩ cl = ∅, ∀k ̸= l. Centroid of a cluster ck is defined as ck =

1
|ck |

∑
xi∈ck xi . Similarly, the global centroid is defined as X = 1

N

∑
xi∈X xi . The Euclidean

distance between two objects xi and xj is denoted as de(xi, xj ) (Arbelaitz et al. 2013).

Silhouette index is a normalized summation-type index. The compactness is measured
based on the distance between all the objects in the same cluster and the separation is based
on the nearest neighbor distance (Arbelaitz et al. 2013; Rousseeuw 1987; Kaufman and
Rousseeuw 1990).

SA(C) = 1
N

∑

ck∈C

∑

xi∈ck

b(xi, ck) − a(xi, ck)

max {a(xi, ck), b(xi, ck)}
(1)

where
a(xi, ck) =

1
|ck|

∑

xj∈ck
de(xi, xj ) (2)

is the normalized distance of object xi to all the objects in the same cluster (low values of
this term are indicators of high compactness), and

b(xi, ck) = min
cl∈C\ck

⎧
⎨

⎩
1
|cl |

∑

xj∈cl
de(xi, xj )

⎫
⎬

⎭ (3)

is the normalized distance from objectxi to all objecs from its closest neighbor cluster (high
values of this term are indicators of high separation). For each object, the quotient in (1)
is a value between −1 and 1. A value close to 1 indicates that the object is well placed
in its current cluster, while a value close to −1 indicates that it would be better placed in
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the nearest cluster. Value 0 indicates a borderline quality of placement. An average over all
objects gives an estimate on the overall quality of clusters. If there are too many or too few
clusters as a result of inappropriate choice of the number of clusters K , many quotients will
be low and the average score will reflect that.

Davies-Bouldin index estimates the compactness based on the distance of objects in a
cluster to its centroid and the separation based on the distance between centroids (Arbelaitz
et al. 2013; Davies and Bouldin 1979).

DB(C) = 1
K

∑

ck∈C
max

cl∈C\ck

{
S(ck)+ S(cl)

de(ck, cl)

}
(4)

where
S(ck) =

1
|ck|

∑
xi∈ck

de(xi, ck) (5)

is an average distance from objects in a cluster to its centroid. The S(ck) is a measure of
the compactness for cluster ck (the lower the value the more compact is the cluster). The
quotients in (4) are indicators of separations between two clusters, ck and cl (the lower
the quotient the better the two clusters are separated). By taking the maximum over these
quotients we get the estimation of the worst case separation (i.e. for cluster ck and its closest
cluster). The average over these maxima is the value of DB index, whose lower values
indicate better clusterings.

Calinski-Harabasz (CH) index estimates the compactness based on the distances from
the objects in a cluster to its centroid (see the denominator below). The separation is based
on the distance from the centroids to the global centroid X (see the nominator) (Arbelaitz
et al. 2013; Caliński and Harabasz 1974).

CH(C) = N − K

K − 1

∑
ck∈Cde(ck,X)
∑

ck∈CS(ck)
(6)

Factor K − 1 normalizes the distances of cluster centroids to global centroid, and factor
N − K = ∑K

k=1(|ck| − 1) normalizes the distances of objects to their centroids. Good
clustering should have a large value in the nominator (large distances of clusters to global
centroid) and a low value in the denominator (low distances of objects to their centroids)
and therefore a large value of the CH score.

4.2 Symptoms analysis methodology

After constructing the instances—i.e. (patient, visit) pairs—in step ST1 of the methodology,
the symptoms analysis thread (top of Fig. 1) consists of three further steps: clustering, rule
learning and cluster ordering, corresponding to the individual steps ofAlgorithm1 (lines 1-3).

The main input to Algorithm 1 is a set of symptoms views D, describing the same n

instances, which hold the symptoms data about p patients. This collection consists ofm data
sets (views). The k-th view (1 ≤ k ≤ m) is defined as Dk , which is a matrix with n rows
(the number of instances) and |Ak| attributes. The concatenated data set, denoted as F, is a
matrix consisting of n rows and

∑ |Ak| columns (union of attributes across all the views).
The medication data set, denoted by M, is a matrix consisting of n rows and 4 columns—
i.e. dosage data about the 4 PD medication groups. An auxiliary input is I, a matrix which
holds the indices of instances, defining the (pi , vij ) pairs.

The outputs of the algorithm are the assigned cluster labels c (vector of length n).
The clustering of patients uses the provided views (symptoms data sets) and the chosen
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clustering method (line 1 and line 2). The probability scores of dosage change of Parkin-
son’s disease medications when patients’ statuses improve or degrade are computed in line
4 with Algorithm 2) and are part of the medications change analysis methodology. These
probability scores are estimates of medication impact on the change of symptoms.

In step ST2 of the methodology outlined in Fig. 1, we perform clustering on instances i.e.
patient’s i symptoms recorded at a visit v,ij in order to determine groups of patients with sim-
ilar symptoms. Note that the clustering step is performed once on the collection of views D
which describes the instances. Ourmethodology can address both themerged symptoms data
and the multi-view data analysis setting. The only difference is the clustering method applied
in stepST2 of themethodology. In the case ofmerged symptoms data we performed k-means
clustering (line 1 in Algorithm 1), while for clustering of the multi-view data we used the
multi-view clustering approach proposed in He et al. (2014) (line 2 in Algorithm 1).

In the next step, ST3, we use the cluster labels (c) as classes in rule learning in order to
obtain meaningful descriptions of patients in each cluster (step ST3, line 3 in Algorithm 1).
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Cluster labels obtained in step ST2 are input to step ST3 and are used as class labels in
the rule learning process. The purpose of rule learning in step ST3 is to induce explanatory
rules describing the induced clusters. These rules are presented to the experts (step ST4) to
evaluate whether the induced clusters make sense and to determine an ordering of clusters
according to the severity of symptoms of instances assigned to them. The rule sets describ-
ing the data are induced on a concatenated data set consisting of data sets considered in the
clustering step ST2 (input F of Algorithm 1).

The rule sets for each class variable are learned using our recently developed
DoubleBeam-RL algorithm (Valmarska et al. 2017; Valmarska et al. 2015). This is a
separate-and-conquer classification rule learning algorithm which uses two beams and sep-
arate heuristics for rule refinement and rule selection. Stecher et al. (2014) showed that the
two phases of rule learning, rule refinement and rule selection, should be separated and
use different rule evaluation heuristics in order to obtain rules with improved quality. They
also introduce the idea of using the so-called inverted heuristics in the refinement phase in
order to obtain rules that maximize the number of covered positive examples. By using the
heuristics that take full advantage of the refinement and selection process separately, the
DoubleBeam-RL algorithm is able to find rules which maximize the number of covered pos-
itive examples and minimize the number of covered negative examples, which is the goal of
classification rule learning algorithms (Stecher et al. 2014). The DoubleBeam-RL algorithm
generates rules with comparable accuracy to the rules generated by the state-of-the-art algo-
rithms for classification rule learning (Valmarska et al. 2017), but as a side effect of using
the inverted heuristics in the refinement phase, the induced rules have more conditions.
The resulting longer rules with improved expressive power (Stecher et al. 2014; Michalski
1983) are preferred by the clinicians (Gamberger and Lavraċ 2002). This is the reason for
choosing the DoubleBeam-RL algorithm as the description tool in step ST 3. Note that the
DoubleBeam-RL algorithm does not perform rule pruning.

In the final step, ST4, the experts are presented with the descriptions of the obtained clus-
ters, where the expert knowledge is used to interpret the obtained groups of patients and to
order them according to the severity of symptoms exhibited by the patients assigned to them.
The produced ordering of clusters may be total (all pairs of clusters are comparable) or partial
(some clusters may not be comparable). Our methodology works for both cases as described
below, but if in this step we get many incomparable clusters, this may be an indication that we
have toomany irrelevant or redundant attributes andwe shall employ feature subset selection.

Based on the expert’s interpretation of clusters and the ordering it produces, we take into
account only comparable clusters and consider these cluster changes to be either positive
or negative. When a patient moves from a cluster described by symptoms indicating worse
quality of life to the one described by better quality of life indicators, we consider this
change to be positive. A negative cluster change occurs when the symptoms of a patient
degrade. Transitions between incomparable clusters are left out of our analysis.

In O1, we combine detected medications changes from step ST 8 and cluster severity
information from step ST4. The combined information contains medications changes for
positive cluster changes and for negative cluster changes i.e. medications changes with
improvement or aggravation of the patients’ symptoms. Cluster changes are determined in
line 5 of Algorithm 1 and the approach is further explained in Section 4.3.

4.3 Medications change analysis methodology

In this thread of the methodology (bottom of Fig. 1, lines 4–6 in Algorithm 1) we determine
the medications changes that have occurred simultaneously with moves between clusters
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observed in patients during two consecutive time points (two consecutive visits). An impor-
tant benefit of our approach is that each patient provides a context (similar observed and
unobserved variables) for himself/herself. By following the development of symptoms for
each patient separately, we remove the influence of other conditions the patient is treated for.

The information about patients’ assignment to clusters and theirmedication therapy in two
consecutivevisits is held in (pi, vij , cij , mij , vij+1, cij+1,mij+1) tuples. In stepST 8 onFig. 1
we follow all patients through time. For each pair of patient’spi consecutive visits to the clin-
ician, we record the cluster change that has occurred between the two visits, cij → cij+1, as
well as the change inmedications prescriptions,!(mij ,mij+1),which the patients received in
the consecutive timepoints. For each antiparkinsondruggroup (levodopa, dopamine agonists,
MAO-B inhibitors, and others) we record whether their dosage has increased, decreased or
stayed unchanged between the two visits. Dosages of PD medications are translated into
a common Levodopa Equivalent Daily Dosage (LEDD) which allows for comparison of
different therapies (different medications with personalized daily plans of intake).

Algorithm 2 presents the pseudocode of the getMedsChangeP robabilities function. It
describes how we determine the changes of medications dosages co-occurring with shifts in
patients’ symptoms (characterized by a change of clusters). This function (called in line 4 of
Algorithm 1) estimates the probability score of medications dosage changes when patients’
symptoms have changed (patients have crossed clusters) or stayed the same (patient did
not change clusters between two consecutive visits). Additionally, it also counts the type of
medication modifications for each cluster crossing. The algorithm takes as an input patients’
medications data M, the index data set I, and the assigned cluster labels c. The output are
two matrices, medsChangeP rob and medChange of the dimension K ×K × 4× 3 (K is
the number of clusters, we have 4 medication groups and 3 possible changes in severity of
symptoms). Each cell of the output matrix medsChangeP rob contains a probability that
a given medication group will change value (increase, decrease, or stay unchanged) for a
certain cluster crossing. Similarly, themedsChange matrix contains the number of changes
of each type for each group and each crossing.

For each patient (line 5 in Algorithm 2), we track his/her status development through
time. For each two consecutive visits (line 7), we register the clusters the patients were
assigned to (lines 8 and 9). These consecutive cluster assignments represent a so-called
cluster crossing (line 10). For each patient, we also follow therapy changes between two
consecutive visits (lines 11 and 12). We consider therapy changes to be dosage changes
of any of the antiparkinsonian medications (line 13). For each medications group, we
record whether the LED dosage between two consecutive time has increased, decreased,
or stayed unchanged (line 14). We record the number of therapy changes for each clus-
ter crossing (line 15). The probability of medications change is calculated in line 24 of
Algorithm 2 as the ratio between the recorded number of therapy modifications per cluster
crossing and the number of cluster crossings. The output of Algorithm 2 are two matrices,
medsChangeP rob and medsChange, described above.

Both matrices are returned to Algorithm 1. Matrix medsChange is further processed
in line 5 with function getSummedMedsPatterns. Based on the clusters ordered by the
experts according to the severity of symptoms and the information on medications changes
for each cluster crossing, we determine patterns of medications adaptations, related to the
improvement or aggravation of patients’ symptoms. Cluster crossings are classified as either
positive or negative. We aggregate (sum) the medications change patterns from cluster
changes of the same nature (positive or negative) to determine the patterns of medication
modifications when the patients’ status improved or worsened. The results are visualized in
line 6 of Algorithm 1 (for the results, see Fig. 3).
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4.4 Disease progression analysis using skip-grams

In this thread of the methodology (middle of Fig. 1, step ST 9) we determine patterns of
cluster changes, resulting in O2 combining the patients’ cluster change patterns with the
patients’ medication data. This allows us to determine patterns of disease progression (indi-
cated by the patterns of cluster change) and impact of medications on these patterns. Outputs
O1 and O2 are presented to the expert for analysis and validation.

Medical status of each patient’s status at successive time points can be expressed as a
sequence of clusters. The status of patient pi at time point vij is responsible for patient’s
assignment to cluster cij at that point. Let Seqi be a sequence of cluster assignments for
patient pi at time points vi1, vi2, ..., viki , denoted as Seqi = (ci1, ci2, ..., ciki ) ⊆ C, where
ki is the number of visits to the clinician by patient pi and C = {c1, c2, ..., cK } is the
clustering (set of cluster labels) on the symptoms data. We denote the set of all cluster
switching sequences for all patients as Seq

Seq=
⋃

1≤i≤p

Seqi, (7)

where p denotes the number of analyzed Parkinson’s disease patients.
The approach is inspired by natural language processing (NLP) approaches. In NLP,

an n-gram is defined as a contiguous sequence of n items from a given sequence of text
or speech. In order to analyze the patterns of symptoms changes across all the patients,
we perform skip-gram analysis on Seq. A patient’s sequence Seqi can be regarded as an
individual document in corpus Seq, where each cluster assignment cij represents the j -th
word in document Seqi .

The definition of k-skip-n-grams (Guthrie et al. 2006) for a document constructed from
words w1...wl can be expressed as

{wi1 , wi2 , ..., win |
∑

1≤j≤n

ij − ij−1 < k} (8)

Skip-grams reported for a certain skip distance k allow a total of k or less skips to con-
struct the n-gram. Thus, 3-skip-n-gram results include 3 skips, 2 skips, 1 skip, and 0 skips.
The 0-skip-n-grams are n-grams formed from adjacent words. The algorithmic construc-
tion of k-skip-n-grams starts with unigrams (which are 0-skip-1-grams) and progressively
increases both the skip and the length of the sequence until the required k and n are
reached.

We use skip-grams to determine the most frequent statuses of patients, and the most
frequent patterns of their symptoms changes. Using skip-grams, the number of investi-
gated n-grams significantly increases, thus providing more reliable introspection into cluster
crossings. By skipping certain time points, we take into account that patients’ statuses may
occasionally result from other factors rather than the natural progression of the disease or
the medication therapy. For example, the patient’s non-motor symptoms (i.e. depression,
apathy, etc.) may worsen due to a sudden death in the family, loss of a friend or loss of a
pet. In other words, skip-grams make the resulting patterns more robust compared to the
n-grams.

We present an example illustrating the advantage of using skip-grams instead of n-grams
in analyzes of sequences. Lets say that a Parkinson’s disease patient (pi) has had 5 visits to
the clinician. Based on the patient’s symptoms, in each visit the patient was assigned to the
following clusters Seqi = (1, 0, 2, 0, 1) (on visit 1, the patient was assigned to the cluster
labeled as 1, on the second visit, the patient was assigned to the cluster with label 0, etc.).
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The sets of sequences obtained for bigrams, 2-skip-bigrams, trigrams, and 2-skip-trigrams
are presented below:

bigrams: {10, 02, 20, 01}
2-skip-bigrams: {10, 12, 10, 02, 00, 01, 20, 21, 01}
trigrams: {102, 020, 201}
2-skip-trigrams: {102, 100, 101, 120, 121, 101, 020, 021, 001, 201}

Using skip-grams to identify interesting patterns in short series of disease progression
(reflected by cluster changes) is novel and we are not aware of other equally effective and
noise-tolerant method for analysis of really short series. Another seemingly related approach
would be to compute frequent itemsets used with association rules (Agrawal et al. 1993)
but note that itemsets do not preserve temporal aspect of sequences which is an important
information for disease progression.

5 Results of data analysis

The experimental work of this paper is divided into four parts. Initially, we are inter-
ested in whether Parkinson’s disease patients can be divided into groups of patients with
similar symptoms. After determining the appropriate number of clusters in Section 5.1,
we report results of two experimental settings: i) using k-means clustering of the merged
symptoms data set, and ii) using multi-view clustering on seven separate data sets (seven
separate views). The results of both clustering experiments are presented in Section 5.2.
This analysis was followed by an attempt to understand the effects of medications changes
on the changes of patients’ symptoms; these results are presented in Section 5.3. Finally, in
Section 5.4 we present the results of experiments intended to find patterns in Parkinson’s
disease progression. The four groups of reported results were obtained with methodology
described in Sections 4.1, 4.2, 4.3, and 4.4, respectively.

5.1 Determining the number of clusters

In order to determine the optimum number of clusters we ran the k-means clustering algo-
rithm on the merged data set using different values for k. The obtained clusters were
evaluated using the cluster validity indices introduced in Section 4.1. In terms of these clus-
ter validity indices, better clustering quality is indicated by larger values of SA and CH
indexes and lower values of DB index (Liu et al. 2010).

The results of k-means clustering presented in Table 3 show scores obtained for different
values of k. The table indicates that k-means clustering produces the best clusters when the
value of k is set to 2 or 3. The clustering quality decreases for k > 3, as indicated by all of
the considered cluster validity indices.

We hypothesize that the reason for no difference in DB and CH indexes when k = 2 and
k = 3, while there is a significant difference in SA, is due to differences how these indices
are computed: DB and CH compare distances to centroids, while SA uses nearest neighbors
between the instances.

Setting the value of k to 2 would divide patients into two groups: one with a good status
and the other with a bad status of PD symptoms; this grouping would not take into account
other values of symptoms except the ones characterized as either normal or very problematic
for the patients. For this reason and to provide more variability we set the value of k to 3 to
get three patient clusters instead of just two.
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Table 3 Values of clustering
validity scores for different
number of clusters. Clusters are
generated on the merged data set,
using the k-means clustering
algorithm

Number Silhouette Davies-Bouldin Calinski-Harabasz

of clusters index (SA) index (DB) index (CH)

2 0.516 0.916 162.540

3 0.347 0.916 162.540

4 0.371 1.266 54.103

5 0.279 1.133 40.545

6 0.276 1.458 32.412

7 0.258 1.489 26.992

Please note that the selection of k-means approach for clustering the merged data set
was done after series of experiments. We checked three clustering approaches: k-means, k-
medoids (Kaufman and Rousseeuw 1987), and DBSCAN (Ester et al. 1996). For each of
the considered approaches, we evaluated the produced clusters using the validity indices
SA (Rousseeuw 1987), DB (Davies and Bouldin 1979), and CH (Caliński and Harabasz
1974). Based on the results, we decided to use k-means as our clustering method of choice.
Evaluation details for the considered clustering approaches can be found in Appendix A in
Table 5.

5.2 Results of symptoms data analysis

To determine the progression of patients’ symptoms, for each Parkinson’s disease patient
from our data set and for each two consecutive time points we investigated changes of clus-
ters in which the patient participated. With the help of the expert, we order the clusters
according to the quality of life indicators (i.e. severity of symptoms) of patients in the clus-
ters. The evaluation of the quality of discovered clusters is two-fold. Clusters are initially
evaluated using the internal cluster validity indices: SA, DB, and CH. The generated clusters
are described by rules produced with the DoubleBeam-RL algorithm, and these descriptions
are presented to experts. Based on the rules, experts order clusters according to the severity
of symptoms of patients involved in each cluster.

5.2.1 Results of merged symptoms data analysis

The classification rules describing the clusters obtained from the merged symptoms data
analysis are presented in Table 4. The rules indicate that the clusters are linearly ordered
(with indexes 0, 1, and 2) and contain instances (patients symptoms recorded at a certain
time point) with different severity of their motor symptoms. Cluster 0 consists of instances
with the sum of motor symptoms severity up to 22 (out of 138). Patients that have slightly
worse motor symptoms are assigned to Cluster 1 (sum of motor symptoms severity between
23 and 42). In Cluster 2 there are patients whose motor symptoms significantly affect their
motor functions (sum of motor symptoms severity greater than 42). The worsening of motor
symptoms is followed by the aggravation of non-motor symptoms, mostly autonomic symp-
toms (sleeping, urinary, or constipation problems). This can be observed by the increased
values of attributes SCAUSUM and NP2SUM in the rule sets describing Cluster 1 and
Cluster 2.

Inspection of the time line of cluster changes for a single patient. In order to illus-
trate the cluster changes for a patient, we subjectively chose a patient who already completed
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Table 4 Rules describing clusters obtained by k-means clustering on the concatenated data set of attribute
sums. Variables p and n denote the number of covered true positive and false positive examples respectively.
We present the complete rules generated by the DoubleBeam-RL algorithm which does not prune its learned
rules

Rule p n

Rules for cluster 0

NP3SUM ≤ 20 → cluster = 0 488 4

NP3SUM ≤ 21 AND NP2SUM ≤ 6 → cluster = 0 321 0

NP3SUM = (19, 22] AND NP1SUM = 0 → cluster = 0 54 23

Rules for cluster 1

NP3SUM = (22,30] → cluster = 1 323 13

NP3SUM = (30, 39] AND SCAUSUM = (4, 10] → cluster = 1 91 17

NP3SUM = (22, 42] AND NP2SUM = (0, 6] → cluster = 1 206 6

NP3SUM = (22, 34] AND SCAUSUM = (10, 17] AND

PASESUM >9 → cluster = 1 101 6

Rules for cluster 2

NP3SUM >42 → cluster = 2 125 1

NP3SUM >37 AND NP1PSUM >5 AND MCAVFNUM ≤ 18 → cluster = 2 123 6

NP3SUM >30 AND NP2SUM >17 → cluster = 2 82 0

SCAUSUM >20 AND NP2SUM >9 AND MCAVFNUM ≤ 24 → cluster = 2 54 18

NP3SUM >30 AND SCAUSUM >11 AND NP2SUM >12 → cluster = 2 123 2

NP3SUM >36 AND SCAUSUM >6 AND NP2SUM >6 AND

NP1PSUM >2 → cluster = 2 168 6

involvement in the PPMI study, and present her changes in the overall status in Fig. 2. The
disease status can be tracked through changes in the patient’s cluster assignments recorded
during consecutive visits to the clinician. We also present the changes in medications
therapy, made in order to keep the patient’s symptoms as stable as possible.

We presented the figure (as well as the symptoms and medications data) to our consulting
clinician for interpretation. He commented that the particular treatment was in accordance
with the standard practice and guidelines for the treatment of Parkinson’s disease patients.
The usual practice is that clinicians almost always start with MAO-B inhibitors (such
as Azilect) to protect neurons and later introduce dopamine agonists (such as Requip or
Neupro) in order to manage Parkinson’s disease (European Parkinson’s Disease Association
2016). The usage of levodopa (Carbidopa/Levodopa) is delayed as long as possible—
symptoms allowing—in order to avoid the side effects of prolonged usage of levodopa, such
as dyskinesia and on/off fluctuations.

As evident from the diagram, the initial status of the patient was good. The clinician
started the treatment of Parkinson’s disease by introducing a MAO-B inhibitor (Azilect).
Then clinician increased the dosage, trying to find an appropriate dosage for the specific
patient. Once the patient’s symptoms worsen (as indicated by the cluster changes between
visits V04 and V06), the clinician introduced dopamine agonists to stabilize the symptoms.
There were several adjustments aiming to find the appropriate dopamine agonist therapy
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Fig. 2 Inspection of a cluster change time line of a single patient. Points on the time line present visits the
patients has made to the clinician. Patient’s medications therapy is presented by the groups of antiparkinson
medications the patient has received during her involvement in the PPMI study. The color of medications
therapy determines the group of antiparkinson medications—MAO-B inhibitors are presented with the green
line, dopamine agonists are presented with the blue line, and levodopa based medications are presented with
the red line on the top. Line width indicates the value of LEDD, i.e. the ticker the line the higher the value
of LEDD. Endpoints of lines indicate beginnings and ends of treatments with particular medications. For
example, the patient was treated with Requip (a dopamine agonist medication) starting between visit 6 (V06)
and visit 8 (V08) and ending sometimes after visit 8. The treatment with Neupro (with almost the same
value of LEDD) started immediately after the treatment with Requip stopped and was ongoing even after the
patient finished her involvement in the PPMI study (V12)

for the patient: the clinician started with Requip and changed the medication’s dosage sev-
eral times (represented by the steep increase of the blue line). The patient initially reacted
well to this change and her overall status was improved (V08). However, the status then
worsened and the clinician changed the therapy by ending the intake of Requip and intro-
ducing Neupro. This medication change did not improve the patient’s status at visit V10,
and by visit V12 her status got even worse (our methodology assigned the patient to cluster
2 at visit V12). Since the patient’s status was bad and the quality of life has significantly
declined, the clinician was forced to introduce levodopa.

5.2.2 Results of multi-view symptoms data analysis

In addition to analyzing the merged symptoms data, we performed a number of experiments
on multi-view symptoms data consisting of seven separate symptoms data sets. In these
experiments, we used the CoNMF multi-view clustering algorithm (He et al. 2014). Simi-
larly to the merged view clustering approach, we tried to compare the clusters obtained by
the multi-view approach by the severity of patients’ symptoms assigned to them. The anal-
ysis has revealed that there were no significant intersections of the instances assigned to the
clusters obtained by the multi-view approach compared to the clusters obtained by k-means
(k = 3) clustering of the merged symptoms data set. Furthermore, given that the distinc-
tion between the three produced clusters was unclear, the ordering and comparison of the
clusters was not possible This result means that we were not able to interpret the clustering
produced by the CoNMF algorithm. In Appendix C we present the results of further analysis
on impact different views have in the multi-view clustering process.

Results from Table 8,3 and Table 10 in Appendix C show that the quality of clusters
induced using the CoNMF approach is lower than the quality of clusters generated on

3Note that in Table 9 we present the Adjusted Random Index values where we compare the cluster similarity
between the three best performing bi-view clustering settings.
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the merged data set. Results reveal that it is beneficial to combine multiple data sets in
order to obtain better clusters and better overall picture of the patients that were assigned
to these clusters. However, when including new views, one must be careful, since the
inclusion of seemingly uncorrelated views can hinder the performance of the multi-view
approach. Results from Table 10 show that the best quality clusters are obtained when using
only three data sets (views): SCOPA-AUT, MDS-UPDRS Part II, and MDS-UPDRS Part
III. Due to low quality of induced clusters, we decided not to investigate the changes of
medications dosages with respect to the changes of clusters generated in the multi-view
clustering setting. However, in future, we will consider also other multi-view clustering
algorithms.

Rules discovered with the best multi-view clustering are presented in Tables 11, 12,
and 13 in Appendix D. The groups of patients are described mostly by their motor symptoms
and descriptions are supported by attributes from the data set SCOPA-AUT. The SCOPA-
AUT data set contains information about the autonomic symptoms of patients, namely
mostly constipation and urinary problems. Even though the resulting multi-view clustering
is of low quality and the experts were not able to order the produced clusters by the severity
of the symptoms of patients involved in them, the consulted experts were pleased with the
discovery that autonomic symptoms from SCOPA-AUT play an important role in produced
clusters, as recent research shows that autonomic symptoms can be a potential premotor
marker of Parkinson’s disease (Ceravolo et al. 2010).

5.3 Results of medications change analysis

The experts were able to order clusters obtained from the merged symptoms data (presented
in Table 4) by the severity of symptoms. The order was total (all clusters were compara-
ble), so we assigned the three clusters indexes 0, 1, and 2 (lower index means lower severity
of symptoms). When a patient moves from a cluster with a lower index to the one with a
higher index, the patient’s symptoms have worsened and we consider this change to be neg-
ative. A positive cluster change is recorded if the patient’s symptoms have improved and the
patient moves to a cluster with a lower index. The medications change patterns for positive
and negative cluster change were obtained with the approach described in Section 4.3. The
results are shown in Fig. 3.

Figure 3a shows the medications changes when a positive cluster change has occurred.
The red bars represent the number of times the dosage of medications from cer-
tain medication group has increased. Similarly, the number of times the medication
dosage has decreased is shown in green. Blue bars present the number of times
when a positive cluster change has occurred, but the medication dosage has stayed
unchanged.

Figure 3b outlines the medications changes when a negative cluster change has taken
place. These two graphs show patterns of medications modifications as a result of signif-
icant changes in the patient’s status (patient’s symptoms in two consecutive time points
changed significantly, thus prompting a cluster change).

Figure 3 indicates that the patients’ motor symptoms improve when the dosage of med-
ications from the levodopa drug group is increased and the dosage of dopamine agonists is
decreased or stays the same. When the dosage of both levodopa medications and dopamine
agonists is increased the motor symptoms of the patients worsen. Clinicians prescribe and
gradually increase the dosages of levodopa to handle the motor symptoms of patients. The
usage of high dosages of dopamine agonists produces side effects affecting the non-motor
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Positive cluster change.

Negative cluster change.

(a)

(b)

Fig. 3 Recorded Parkinson’s disease medications changes when patient’s cluster allocation has changed.
Clusters were obtained from merged symptoms data set. A positive cluster change indicates that the patient’s
symptoms improved. A negative cluster change occurs when the patient’s symptoms worsen. Medication
groups are visually divided by vertical dashed lines

symptoms of the patients. A decrease of dosage eliminates these side effects and improves
the patient’s status.

5.4 Disease progression patterns

Figure 4 presents the results from the 3-skip-2-gram analysis of cluster crossings in the
merged symptoms clustering setting. The results indicate that the patients’ status is mostly
stable over the considered time points. Patients tend to stay in the clusters they were
initially assigned to. This is followed by a portion of patients whose symptoms worsen
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Fig. 4 Histogram resulting from 3-skip-2-gram analysis. The possible cluster crossings are listed on the X-
axis (e.g., 01 indicates that a patient has moved from Cluster 0 to Cluster 1), while the Y-axis represents the
number of cluster crossings

(cluster crossings 01 and 12) and those whose symptoms improve (cluster crossings 10
and 21). These symptoms changes have all occurred gradually—patients have moved to
the adjacent cluster. The number of patients whose symptoms have significantly changed
(cluster crossings 02 and 20) is much lower.

The analysis of bigrams (2-grams) in Fig. 4 cannot reveal trends in patients’ status over
longer time period. Figure 5 presents the patterns of 4 almost consecutive cluster crossings
obtained by 3-skip-4-gram analysis of the sequences of cluster crossings on the merged data
set. It confirms the results from Fig. 4 which indicate that patients’ status is usually stable
and they tend to stay in the same cluster to which they were initially assigned.

Figure 5 reveals existence of interesting and slightly unexpected patterns of symptoms
change: 1001, 0110, and 2000. We selected these sequences (subjectively) as patients’ con-
ditions are not steadily deteriorating and use them to illustrate our approach—the patients
with similar symptoms have similar patterns of disease progression. We discuss groups of
patients with 0110 and 2000 pattern below.

The analysis of patients with the 0110 cluster change pattern reveals that these are
younger patients (50–64 years old) who were enrolled in the PPMI study soon after

Fig. 5 Histogram resulting from 3-skip-4-gram analysis. The possible cluster crossings are listed on the
X-axis and the Y-axis represents the number of cluster crossings
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their Parkinson’s disease diagnosis (in less than 6 months). A common thread of these
patients is that they have had problems with anxiety at some point of the disease (quan-
tified with score 1 – a symptom is present and has a slight influence on the patient’s
quality of life). Most of these patients have also started feeling a decline in their
cognitive functions. These patients were treated with the combinations of dopamine ago-
nists and MAO-B inhibitors. When patients motor symptoms have slightly worsened,
the clinicians have tried to stabilize them by increasing the dosage of dopamine ago-
nists, changing the dopamine agonists medication, or in rare cases introducing levodopa.
These treatments are in accordance with the new practices for Parkinson’s disease—
clinicians introduce MAO-B inhibitors to protect the neural system of the patient, and
prescribe dopamine agonists in order to control motor symptoms that are bothering the
patients, and in that way they prolong the time before levodopa is introduced in the
therapy.

An inspection of patients with cluster change pattern 2000 reveals that two patients
who exhibit this pattern are elder female patients (more than 71 years old), with two years
between the time of their diagnosis and their enrolment into the PPMI study. In the time
of their initial visits, both patients had problems with their facial expression, problems
with fingerntapping, hand movement, pronation-supination, toe-tapping, leg agility, pos-
tural tremor, rest tremor amplitude and constancy of rest tremor. For both patients, these
symptoms were prominent on the left-hand side. In addition to their motor problems, both
patients have experienced problems with depression and anxiety. Patients’ medications log
reveals that once the patients’ motor symptoms were deemed problematic (at that time point
the patients were assigned to Cluster 2), their respective clinicians started the symptoms
treatment with levodopa medications. The introduction of levodopa lead to stabilization of
the symptoms, and in our research, we observe a crossing of the patients from Cluster 2 to
Cluster 0.

6 Conclusions

The aim of our research is to develop a methodology which will make suggestions to the
clinicians about the possible treatment changes that will improve the patient’s quality of
life. We also aim to discover groups of patients that follow interesting patterns of symptoms
change in hope that their disease progression will reveal common symptoms and medica-
tions threads, which could benefit the future patients. Our methodology contains tracking
the changes in medication patterns, clustering, rule learning and skip-grams. The results
confirm known facts about the Parkinson’s disease: the motor symptoms, tremor, shaking,
involuntary movement, etc. are the characteristic symptoms of the disease and significantly
affect the quality of life of the suffering patient. We show that Parkinson’s disease patients
can be divided into clusters ordered in accordance with the severity of their symptoms. By
following the evolution of symptoms for each patient separately, we were able to determine
patterns of medications change which can lead to the improvement or worsening of the
patients’ quality of life.

We introduced skip-grams as a method for following the progression of the disease. The
analysis showed that the progression of the disease is mostly steady in the period of five
years involvement in the PPMI study—the patients stay in the initially assigned clusters or
they move to the adjacent clusters. Analysis of 3-skip-4-grams outlined groups of patients
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with interesting patterns of cluster changes. We detected a group of older patients, who were
not treated for a longer period and whose treatment consists of direct introduction of lev-
odopa for treatment of motor symptoms. The other interesting group are younger patients,
who were recently diagnosed with Parkinson’s disease and whose treatment included the
combinations of MAO-B inhibitors and dopamine agonists. In further work, we will consult
medical experts for specific patients with interesting sequences and ask them to interpret
their etymological characteristics, motor symptoms, and changes of therapy.

Results from the multi-view clustering setting are underwhelming in terms of the quality
of produced clusters. However, the results reveal the importance of autonomic symptoms to
the quality of life of Parkinson’s disease patients.

The rules describing the obtained clusters were either very general (merged view setting)
or very specific (multi-view setting) and may not be of sufficient assistance to clinicians.
This is due to the nature of the used data, i.e. a vector of attribute sums (merged view) or a
high-dimensional vector of attributes with numeric values. In future work, we will test our
methodology with only a handful of carefully chosen attributes. These attributes, selected
with the help of Parkinson’s disease specialists, will be described by nominal values used
in the clinicians’ everyday practice i.e. normal, non-problematic, problematic. We believe
that by an expert-assisted decrease of feature space dimensionality, we will be able to obtain
descriptions of groups of patients which are even more meaningful and helpful to the clini-
cians. Additionally, we will improve the medications suggestion process to produce numeri-
cal suggestions of medications dosages which should be prescribed to the patients. An inter-
esting direction for further work is to explore other clustering approaches, in particularly
hierarchical clustering. Attributes from the MDS-UPDRS and MoCA questionnaires can be
ordered hierarchically and exploiting this characteristic may lead to better defined groups of
patients with similar symptoms. Transitions between such clusters could reveal more spe-
cific and detailed patterns of disease progression. Besides skip-grams we plan to explore
other possibilities to handle temporal data. For example, we want to compare the state of
a patient in a given time point with all of its past time points (not only the immediately
preceding one).
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Appendix A: Comparison of clustering algorithms on merged data set

We considered three clustering approaches for the merged data set: k-means, k-medoids, and
DBSCAN. We clustered the merged data into different number of clusters and evaluated the
quality of the produced clusters with the internal cluster validity metrics: SA (Rousseeuw
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Table 5 Cluster validation measures for k-means, k-medoids, and DBSCAN, where k presents the number
of clusters. Clustering was performed on the merged data set. Better clusters quality is marked with higher
values of SA and CH, and lower values of DB

k-means k-medoids DBSCAN

k SA DB CH SA DB CH SA DB CH

2 0.516 0.916 162.540 0.505 0.918 162.539 -0.362 0.996 16.946

3 0.368 0.916 162.540 0.336 0.918 162.539 -0.132 0.996 16.946

4 0.371 1.263 54.103 0.318 1.387 54.099 0.250 0.796 297.712

5 0.287 1.151 40.546 0.259 1.235 40.546 nan nan inf

6 0.275 1.256 32.412 0.253 1.283 32.412 nan nan inf

7 0.284 1.619 26.991 0.253 1.364 26.990 nan nan inf

1987), DB (Davies and Bouldin 1979), and CH (Caliński and Harabasz 1974). Table 5
presents the results of cluster validation for the selected clustering methods and the chosen
number of clusters. The results show that the best performing approach is k-means.

Appendix B: Features selected by unsupervised feature selection

We used unsupervised feature subset selection to select the most relevant attributes for
clustering algorithms. We used the SPEC algorithm (Zhao and Liu 2007) implemented in

Fig. 6 Attribute rank vs attribute importance as determined by the SPEC algorithm (the most influential
attribute has rank 1)
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Table 6 The most important
attributes ordered according to
SPEC (see Fig. 6)

Attribute Attribute description Data set

MCAREC4 Delayed recall - daisy MoCA

NHY Hoehn and Yahr score MDS-UPDRS Part III

NP3PTRML Postural tremor (left hand) MDS-UPDRS Part III

NP3SPCH Speech problems MDS-UPDRS Part III

NP2EAT Eating tasks MDS-UPDRS Part II

NP1SLPD Daytime sleepiness MDS-UPDRS Part Ip

NP3RIGLU Rigidity (left arm) MDS-UPDRS Part III

NP1PAIN Pain and other sensations MDS-UPDRS Part Ip

NP3FTAPL Finger tapping (left hand) MDS-UPDRS Part III

NP3RTCON Constancy of rest MDS-UPDRS Part III

Python (Li et al. 2016). Figure 6 presents the evaluation of attributes relevance. Based on
the results, we selected the attributes left from the red line in Fig. 6. This resulted in a list
of 10 attributes, presented in detail in Table 6.

In Table 7 we present the cluster validation values on the data set containing only the best
attributes (listed in Table 6). The results reveal that the merged data set (consisting of sums
of attributes) produces better quality clusters than the data set reduced with feature subset
selection.

Results from Tables 5 and 7 show that better clusters are produced when sums of attribute
values from the considered views are used as attributes in the merged data set. Parkinson’s
disease patients experience a whole range of symptoms, both motor and non-motor, and
it is tougher for traditional clustering algorithms to separate them into groups of similar
patients. The introduction of sums makes it possible to have a view of the overall status
of the patients concerning particular sets of symptoms (i.e. motor symptoms, non-motor
symptoms, autonomic symtptoms etc.).

Table 7 Cluster validation measures for k-means, k-medoids, and DBSCAN, where k presents the number
of clusters. Clustering was performed on the data set containing only attributes from Table 6

k-means k-medoids DBSCAN

k SA DB CH SA DB CH SA DB CH

2 0.379 1.199 102.657 0.379 1.199 102.657 0.379 1.199 102.657

3 0.337 1.199 102.657 0.283 1.199 102.657 nan 1.199 102.657

4 0.296 1.590 34.168 0.217 1.781 34.168 nan nan inf

5 0.279 1.580 25.608 0.170 1.745 25.607 nan nan inf

6 0.267 1.617 20.471 0.189 1.649 20.471 nan nan inf

7 0.262 1.694 17.046 0.182 1.969 17.047 nan nan inf
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Appendix C: Evaluation of multi-view clusterings

In order to determine how the choice of data sets influence the results of multi-view clus-
tering, we executed multi-view clustering on all 21 pairs of views, i.e. 7·6

2 pairs. Clusters
resulting from each pair were evaluated using SA (Rousseeuw 1987) and the results are
presented in Table 8. SA is a normalized value (range from −1 to 1) and is used to com-
pare cluster quality on these data sets. Since clustering was performed on different data sets
(each pair is effectively a different data set) and values of DB and CH are not comparable
across data sets, we do not present these values. The value of each cell in Table 8 corre-
sponds to the quality of clusters obtained by multi-view clustering on the data sets from the
corresponding row and column. For example, SA (Rousseeuw 1987) on clusters obtained
by multi-view clustering on the MDS-UPDRS Part I (NUPDRS1) and MoCA is 0.021. The
best cluster is marked with bold.

The results show that all pairs produce clusters with low quality, but the three best per-
forming pairs according to SA are: (SCOPA-AUT, MDS-UPDRS Part II), (MDS-UPDRS
Part III, MDS-UPDRS Part II), and (PASE, MDS-UPDRS Part II).

We used the Adjusted Rand Index (ARI) (Hubert and Arabie 1985) to compare clus-
ter structures discovered by different cluster configurations. The value of ARI is 0 for two
random clusterings and 1 for two identical clusterings. Table 9 presents the ARI score com-
puted on pairs of the winning two-view clustering settings. Results reveal that all pairs of
clusterings are quite similar, and the (NUPDRS3, NUPDRS2P) and (PASE, NUPDRS2P)
pairs produce almost identical clusters (ARI = 0.966). As the quality of individual pairs
is rather low (see Table 8), there is little chance that further combinations of views would
improve the quality.

Nevertheless, we constructed two additional settings for multi-view clustering by sys-
tematically adding views (data sets) to the winning bi-view clustering setting (SCOPA-AUT,
MDS-UPDRS Part III). We in turn added the remaining data sets from the second (MDS-
UPDRS Part II and MDS-UPDRS Part III) and third (PASE and MDS-UPDRS Part
III) best performing bi-view clustering setting, thus obtaining two new multi-view set-
tings: (SCOPA-AUT, MDS-UPDRS Part II, MDS-UPDRS Part III) and (SCOPA-AUT,
MDS-UPDRS Part II, MDS-UPDRS Part III, PASE). We evaluated the quality of clus-
ters produced by these three settings and presented the results in Table 10, where we also

Table 8 Value of SA on clusters discovered with multi-view clustering on pairs of data sets. Higher values
of SA indicate clusters with better quality

MOCA NUPDRS1 NUPDRS1P NUPDRS2P NUPDRS3 PASE

NUPDRS1 0.021

NUPDRS1P 0.023 0.014

NUPDRS2P 0.022 0.033 0.024

NUPDRS3 0.025 0.038 0.015 0.168

PASE 0.023 0.059 0.013 0.162 0.048

SCOPA-AUT 0.024 0.018 0.013 0.173 0.047 0.031
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Table 9 ARI scores for the best performing pairs of two-view multi-view clusterings

(NUPDRS3, NUPDRS2P) (PASE, NUPDRS2P)

(SCOPA, NUPDRS2P) 0.488 0.504

(NUPDRS3, NUPDRS2P) 0.966

included the cluster quality measures when all views are considered and the scores of the
best single view clustering on the merged data set. Please note that since clustering was
performed on different data sets, values of DB and CH are not comparable. SA is a nor-
malized value (range from −1 to 1) and is used to compare cluster quality on these data
sets.

Based on the SA values from Table 10, clustering with the best clustering is produced
on the merged data set that consists only of sums of attribute values from 7 data sets
from Section 3.3. In the multi-view setting, best results were obtained when three data
sets were considered (SCOPA-AUT, MDS-UPDRAS Part II, MDS-UPDRS Part III). The
SCOPA-AUT data set contains attributes describing the autonomic symptoms of patients.
The MDS-UPDRS Part II data expresses ‘motor experiences of daily living’, includ-
ing speech problems, the need for assistance with the daily routines such as eating or
dressing, etc, while the MDS-UPDRS Part III data set describes the motor symptoms
which are the most characteristic symptoms of Parkinson’s disease. Even though the clus-
ters produced by the multi-view setting are of lower quality than those produced on the
merged data set, results from Table 10 reveal that it might be beneficial to combine
multiple data sets: the inclusion of the MDS-UPDRS Part III data set in the best per-
forming bi-view clustering setting (SCOPA-AUT, MDS-UPDRS Part II) (SA = 0.173)
produces clusters with an improved quality (SA = 0.205). These results also show that
the inclusion of other, seemingly uncorrelated data sets (PASE, MOCA, MDS-UPDRS
Part I, MDS-UPDRS Part Ip) can lead toward significant decrease in the quality of
clusters.

In addition to the work presented above, we also used unsupervised feature subset selec-
tion to select the most relevant attributes from each of the seven views (data sets). We
evaluated the quality of clusters on the newly generated data sets following the procedure
presented in this section. Results showed that the quality of the clusters in these new set-

Table 10 Comparison of cluster
quality using silhouette analysis
(SA) for different setting of
multi-view clustering

Data set SA

SCOPA, NUPDRS2P 0.173

SCOPA, NUPDRS2P, NUPDRS3 0.205

SCOPA, NUPDRS2P, NUPDRS3, PASE 0.0195

All 7 data sets 0.0514

Merged data set 0.347
The Data set column presents the
symptoms data sets that are used
in the multi-view clustering
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tings was significantly lower than the quality of clusters presented here. For that reason we
did not include this part of research into the paper.

Appendix D : Rules describing multi-view clusters

We present rules describing clusters obtained by multi-view clustering using three views
(SCOPA-AUT, MDS-UPDRS Part II, and MDS-UPDRS Part III) i.e. the best multi-view
clustering according to SA from Table 10. Attributes with the prefix SCAU are symptoms
from the SCOPA-AUT data set. The suffix in the names of these attributes designates the
nature of the autonomic symptoms. Attributes SCAU1-SCAU7 describe gastrointestinal
symptoms, urinary problems are recorded by attributes SCAU8-SCAU13, while attributes
SCAU14-SCAU16 hold information about patient’s cardiovascular problems. Attributes
SCAU17-SCAU18, SCAU20-SCAU21 describe thermoregulatory problems, while attribute
SCAU19 describes any pupillomotor issues that a patient might be experiencing. Attribute
prefixes determine the data set of their origin. Attributes with prefix NP2 are from the MDS-
UPDRS Part II, while the prefix NP3 designates attributes from the MDS-UPDRS Part III
data set (including attributes NHY and DYSKPRES).

Tables 11, 12, and 13 present rules describing cluster 0, cluster 1, and cluster 2 respec-
tively, obtained by multi-view clustering. Rules are induced on the data set that is a
concatenation of the three views: SCOPA-AUT, MDS-UPDRS Part II, and MDS-UPDRS
Part III. Contrary to the rules obtained by the single view clustering on the merged data set
where groups of patients were described by the severity of their overall status, the multi-
view clusters are described by symptoms. These rules mostly describe the motor status of
Parkinson’s disease patients (attributes from MDS-UPDRS Part III), and are supported by
their motor ability in daily living (attributes fromMDS-UPDRS Part II) and their autonomic
symptoms (SCOPA-AUT).

Table 11 Description rules for cluster 0 of the multi-view clustering approach generating clusters with best
quality. Views were represented by the SCOPA-AUT, MDS-UPDRS Part II, and MDS-UPDRS Part III data
sets

Rule p n

IF:

SCAU19 ≤ 2 AND NP3PSTBL ≤ 2 AND NP3HMOVL > 2 AND

NP3GAIT ≤ 1 AND NP3RTARU ≤ 0 ← cluster = 0 58 0

ELSE IF:

NP3RISNG ≤ 1 AND NP3FTAPR ≤ 0 AND NP3HMOVL > 0 AND

NP3HMOVR ≤ 0 AND NP3RTARU ≤ 0 AND NP3FACXP ≤ 2 ← cluster = 0 146 8

ELSE IF:

NP3FTAPL > 1 AND NP2FREZ ≤ 0 AND NP3RTARU ≤ 0 AND

NP3RTALU > 0 ← cluster = 0 87 0

ELSE IF:

NP2SALV ≤ 3 AND NP3FRZGT ≤ 0 AND NP3FTAPL > 2 AND

NP3LGAGL > 0 ← cluster = 0 25 4
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Table 12 Description rules for cluster 1 of the multi-view clustering approach generating clusters with best
quality. Views were represented by the SCOPA-AUT, MDS-UPDRS Part II, and MDS-UPDRS Part III data
sets

Rule p n

IF:

NP3RIGLU ≤ 0 AND NP3RIGN ≤ 1 AND NP3RTARU > 1 ← cluster = 1 143 3

ELSE IF:

NP3RTCON > 2 AND SCAU18 ≤ 1 AND NP2SUM ≤ 15 AND

NP3RTARU > 1 AND NP3FACXP ≤ 2 ← cluster = 1 83 3

ELSE IF:

NP3RIGLL ≤ 0 AND NHY ≤ 1 AND NP3RTARU > 0 AND

SCAU6 ≤ 1 ← cluster = 1 40 6

ELSE IF:

NP3PRSPL ≤ 0 AND NP3RTCON > 1 AND NP3RTARU > 0 ← cluster = 1 37 2

ELSE IF:

SCAU12 ≤ 1 AND NP3RTALL ≤ 0 AND NP2TRMR > 0 AND

NP2EAT ≤ 0 AND NP3HMOVL ≤ 0 AND SCAU20 ≤ 0 AND

NP3RTARU > 0 AND SCAU7 ≤ 0 ← cluster = 1 15 3

ELSE IF:

NP3RIGLU = (0,1] AND NP3RTCON > 1 AND SCAU17 ≤ 1 AND

NHY ≤ 2 AND NP3RTARU > 1 ← cluster = 1 19 4

ELSE IF:

NP3RTCON > 2 AND NP2HWRT > 0 AND NP3LGAGL ≤ 0 AND

NP3TTAPL = (0,1] AND SCAU6 ≤ 1 ← cluster = 1 7 2

ELSE IF:

NP2SALV ≤ 0 AND NP3RIGLU ≤ 0 AND SCAU17 ≤ 1 AND

NP2WALK ≤ 0 AND NP3RTARL > 0 ← cluster = 1 5 2

ELSE IF:

NP2EAT > 0 AND NP3GAIT ≤ 0 AND NP3RTARU > 0 AND

NP2SPCH ≤ 0 AND SCAU4 ≤ 1 ← cluster = 1 6 1

ELSE IF:

SCAU18 > 0 AND NP2DRES > 0 AND NP3SPCH ≤ 0 AND

NP3RTARU > 1 AND NP3RTALU ≤ 0 ← cluster = 1 4 0
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Table 13 Description rules for cluster 2 of the multi-view clustering approach generating clusters with best
quality. Views were represented by the SCOPA-AUT, MDS-UPDRS Part II, and MDS-UPDRS Part III data
sets

Rule p n

IF:

SCAUSUM > 5 AND NP3RTCON ≤ 0 AND NP3FTAPR > 2 ← cluster = 2 36 1

ELSE IF:

NP3RTCON ≤ 0 AND NP2TRMR ≤ 0 AND NP3TTAPL ≤ 0 ← cluster = 2 53 1

ELSE IF:

NP3RTCON ≤ 0 AND NP3HMOVR > 0 AND NP3TTAPL ≤ 0 ← cluster = 2 52 0

ELSE IF:

NP3RTCON ≤ 0 AND NP3PTRML ≤ 0 AND NP3TTAPR > 1 ← cluster = 2 73 12

ELSE IF:

NP3RTCON = (0,1] AND NP3HMOVR > 2 AND NP3TTAPR > 0 ← cluster = 2 15 1

ELSE IF:

NP3RTALJ ≤ 0 AND NP3GAIT ≤ 1 AND SCAU8 > 2 AND

NP3RTALU ≤ 0 AND SCAU4 ≤ 1 ← cluster = 2 13 2

ELSE IF:

NP3RTCON ≤ 0 AND NP2WALK > 0 AND NP3PSTBL ≤ 2 AND

NP2HWRT > 0 AND NP2SWAL > 1 AND SCAU6 ≤ 2 ← cluster = 2 10 0

ELSE IF:

NHY > 1 AND NP3KTRML ≤ 0 AND PN3RIGRL > 1 AND

NP3RTARU = (0,1] ← cluster = 2 38 23

ELSE IF:

NP3RTCON ≤ 0 AND NP3HMOVL ≤ 0 AND NP3RTARU ≤ 0 AND

NP3TTAPR > 0 ← cluster = 2 23 0

ELSE IF:

NP3PSTBL > 2 AND NP2DRES > 0 AND NP3RTARU > 1 ← cluster = 2 7 0

ELSE IF:

NP3RTCON = (0,1] AND NHY > 1 AND NP3FTAPR > 1 AND

NP3RTARL ≤ 0 AND NP2HOBB ≤ 1 AND NP2SPCH > 0 AND

NP3FACXP > 0 AND NP3RTALU ≤ 0 ← cluster = 2 24 11

ELSE IF:

NP3PRSPL ≤ 0 AND NP3RTCON ≤ 0 AND NP3POSTR ≤ 2 AND

SCAU18 ≤ 1 AND NP3RIGLL ≤ 0 AND NP3RTARU ≤ 0 AND

SCAU3 ≤ 0 ← cluster = 2 20 4
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Chapter 6

Detection of Medications Change
Patterns

This chapter extends the work presented in Chapter 5 by introducing a Relief-like algorithm
for determining the symptoms that influence the change of Parkinson’s disease patients’
quality of life. The algorithm takes into account the temporal nature of symptoms data
and detects influential symptoms that improve or worsen as the status of patients im-
proves or degrades. We present a novel methodology for analysis of medication changes in
Parkinson’s disease progression data using multitask learning—where multiple related tasks
are learned simultaneously on a shared attribute space—to simultaneously predict dosage
changes of different groups of antiparkinson medications. Our aim is to establish a basis
for more personalized medications therapy modifications based on the patients’ symptoms.
The chapter is divided into two sections: problem description and the published Artificial
Intelligence in Medicine journal paper which addresses the described problem.

6.1 Problem Description

In Chapter 5 we addressed the issue of determining patterns of Parkinson’s disease pro-
gression as well as patterns of medications changes that occur when the overall status of
Parkinson’s disease patients improves or degrades. However, we did not address exactly
which symptoms changes cause the change in the patients’ overall status and how the
clinicians react with therapy modifications.

The determination of influential symptoms may help the clinicians to focus on a small
set of most important symptoms, of which medications treatment would lead to a more
stable status of the patient. In this chapter, we present our algorithm for determining
the symptoms that affect the progression of the disease. The algorithm builds upon the
work presented in Chapter 5 and is closely related to the feature evaluation algorithms
Relief (Kira & Rendell, 1992; Kononenko, 1994; Robnik-Šikonja & Kononenko, 2003). We
determine the importance of attributes based on the difference of their values when the
overall status of the patient changes, i.e. when in two consecutive visits the patient is
assigned to different clusters.

Similarly to our approach to determining the importance of symptoms for the overall
disease progression, the feature evaluation algorithms Relief and ReliefF also compare
feature values of similar instances from the same class and similar values from a different
class. However, if applied to our problem, these algorithms cannot take into account the
temporal progress of patients, i.e. they cannot track individual patients on their consecutive
visits to the clinician. In effect, they show which attributes influence the initial assignment
of patients into clusters, but reveal no information about the attributes which are the
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most influential for changes of the patients’ overall status (i.e. for the crossing of clusters
of patients with a similar status).

Modifications of patients’ therapies are motivated by the status of patients. The status
is a result of the symptoms that develop due to the natural progression of the disease as well
as the side-effect symptoms caused by the prolonged usage of antiparkinson medications.
The goal of clinicians is to keep the patient’s symptoms stable, preclude the side-effects,
and prolong the patients’ independence. Customarily, a clinician will lower the dosage
of one group of medications and simultaneously increase the dosage of another group of
medications. For example, clinicians usually start the treatment of motor symptoms in
younger Parkinson’s disease patients by introducing dopamine agonists. However, a known
side effect of prolonged usage of dopamine agonists is impulsivity. When confronted with
such conditions, the clinician will lower the dosage of dopamine agonists and simultaneously
introduce levodopa in order to keep the motor symptoms stable. Clinicians’ decisions
for therapy modifications are made based on the patients’ status and follow the official
guidelines for the treatment of Parkinson’s disease, e.g. (Ferreira et al., 2013; Fox et al.,
2011; National Collaborating Centre for Chronic Conditions, 2006; Olanow, Watts, &
Koller, 2001; Seppi et al., 2011).

These therapy modifications happen simultaneously and are a motivation for multi-
task learning. Compared to single-task learning, multitask learning can improve model
generalization and prevent overfitting (Caruana, 1997). In this chapter, we address the
issue of changes in antiparkinson medications (yes/no model) by modeling them with pre-
dictive clustering trees (PCT). The comprehensive models generated by PCT serve three
purposes: i) identification of therapy modification scenarios, ii) identification of symp-
toms influencing the therapy modifications, and iii) determining subgroups of patients
with shared similarities in their symptoms and therapy modifications. Multitask learning
allows for determining what dosage changes of antiparkinson medications occurred simul-
taneously and by following the model we are able to determine the symptoms that affected
these changes.

6.2 Related Publication

The rest of this chapter presents the Artificial Intelligence in Medicine journal paper.

Publication related to this contribution

Journal Paper

Valmarska, A., Miljkovic, D., Konitsiotis, S., Gatsios, D., Lavrač, N., & Robnik-Šikonja, M.
(2018). Symptoms and medications change patterns for Parkinson’s disease patients
stratification. Artificial Intelligence in Medicine (accepted).

This publication contains the following contributions:

• We present an algorithm for determining the symptoms that are influential for the
progression of the disease.

• We present a list of symptoms influencing the improvement or the degradation of
the patients’ status. This list is supported by a medical interpretation from our
consulting clinician and references in the medical literature.

• We present a multitask learning based methodology for determining patterns of med-
ication dosage changes based on the status of the patients. The methodology uses
predictive clustering trees (PCTs) to model changes in patients’ therapies.



6.2. Related Publication 91

• The presented methodology can be interpreted three-fold: i) the tree leaves present
changes of medications therapies, ii) paths from the tree root to its leaves outline the
symptoms influencing the changes of therapies, and iii) patients covered by the rules
from the root of the tree to its leaves form groups of patients that are similar based
on both their symptoms and their medications therapies.

• We empirically show that the changes of medications therapies can be modeled by
multitask learning models. Predictive clustering trees are a good approach as in
addition to the increased classification accuracy of the multitask model over the
predictive performance of single task models, they also offer a simultaneous insight
into what happens to the dosage of all antiparkinson medications.

The authors’ contributions are as follows. The methodology was designed and devel-
oped by Anita Valmarska with the insights from Marko Robnik-Šikonja. Nada Lavrač has
suggested using PCTs to model modifications of the patients’ therapies. Anita Valmarska
implemented the methodology and performed the experimental work. Marko Robnik-
Šikonja and Nada Lavrač supervised the implementation of the algorithms. Dragana
Miljkovic provided insights into data mining of Parkinson’s disease data. Dimitris Gat-
sios and Spiros Konitsiotis helped with the interpretation of the results and their medical
justification. All authors contributed to the text of the manuscript.
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Abstract. Quality of life of patients with Parkinson’s disease degrades
significantly with disease progression. This paper presents a step towards
personalized management of Parkinson’s disease patients, based on dis-
covering groups of similar patients. Similarity is based on patients’ med-
ical conditions and changes in the prescribed therapy when the medical
conditions change. We present two novel approaches. The first algorithm
discovers symptoms’ impact on Parkinson’s disease progression. Exper-
iments on the Parkinson Progression Markers Initiative (PPMI) data
reveal a subset of symptoms influencing disease progression which are
already established in Parkinson’s disease literature, as well as symp-
toms that are considered only recently as possible indicators of disease
progression by clinicians. The second novelty is a methodology for detect-
ing patterns of medications dosage changes based on the patient status.
The methodology combines multitask learning using predictive clustering
trees and short time series analysis to better understand when a change
in medications is required. The experiments on PPMI data demonstrate
that, using the proposed methodology, we can identify some clinically
confirmed patients’ symptoms suggesting medications change. In terms
of predictive performance, our multitask predictive clustering tree ap-
proach is comparable to the random forest multitask model, but has an
advantage of model interpretability.

Keywords: Parkinson’s disease; analysis of disease progression; multitask learn-
ing; analysis of medications treatment; symptoms impact

1 Introduction

Data mining algorithms have been successfully used to learn predictive models
and to discover insightful patterns in the data. Predictive and descriptive data
mining approaches have been successfully used also in medical data analysis.
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The use of data mining methods may improve diagnostics, disease treatment and
detection of causes of diseases. In personalized healthcare [16], data mining can
be used to improve drug recommendations and medical decision support, leading
to reduced costs of medical treatment. The discovered patterns can provide the
clinicians with new insights regarding the status of the treated patients and can
support decisions regarding therapy recommendations.

Parkinson’s disease is the second most common neurodegenerative disease
(after Alzheimer’s disease) that a↵ects many people worldwide. Due to the death
of nigral neurons, patients experience both motor and non-motor symptoms, af-
fecting their quality of life. The reasons for the cell death are still poorly un-
derstood, and there is currently no cure for Parkinson’s disease. Physicians try
to manage patients’ symptoms by introducing medications therapies, using an-
tiparkinson medications. Physicians need to carefully prescribe medications ther-
apies since the prolonged intake—in particular of higher dosages of antiparkinson
medications—can have significant side-e↵ects.

Changes of the status of Parkinson’s disease patients through time is a result
of the natural progression of the disease and the medications that the patients
are prescribed in order to keep their status stable as long as possible. Physicians
follow the guidelines for therapy prescription and the response of patients to
medications is usually recorded in clinical studies using simple statistical meth-
ods. For example, in our previous work [43], we describe the disease progression
of a patient who starts with a good status and only of one type of medications
(MAO-B inhibitors). As the disease progressed and the patients motor symp-
toms worsened, the clinician started the treatment with another type of medica-
tions (dopamine agonists) and was successful in keeping the motor symptoms as
tremor, bradykinesia, and rigidity stable for about two years. As the e↵ective-
ness of these medications wore o↵, the clinician was forced into introducing the
third group of medications (levodopa).

To the best of our knowledge, data mining techniques have not yet been
used for analyzing clinicians’ decisions of changing drug prescription as a reac-
tion to the change of patients’ symptoms when using antiparkinson medications
through prolonged periods of time. A possible reason for little data mining re-
search in the field of Parkinson’s disease progression may be the unavailability
of a monotone measure/test that determines the stages of Parkinson’s disease,
as the currently used Hoehn and Yahr scale [15] determines the stages of Parkin-
son’s disease through a subjective evaluation of clinicians and response of pa-
tients to the prescribed medications. This paper uses multitask learning with
predictive clustering trees [4] on short time series data—describing the patients’
status at multiple time points—in order to determine the symptoms that trigger
the physicians’ decisions to modify the medications therapy. We consider trigger
symptoms to be the symptoms that a patient cannot tolerate and the physi-
cian is pressed to change the medications therapy in order to control them. The
proposed methodology addresses the task of determining subgroups of patients
with similar symptoms and therapy. As each patient usually receives drugs from
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several di↵erent groups of medications, predicting their changes with multitask
learning can lead to improved control over drug interactions.

This work significantly extends the conference paper [42] by extending the
experiments, results, and their medical interpretation. We introduce a novel al-
gorithm for determining the symptoms that have the highest influence on the
change of the patients’ status, which extends the methodology used to determine
the status of Parkinson’s disease patients based on an extensive set of symptoms
[43, 44]. We present a solution to the problem of feature ranking with the aim of
finding the most influential symptoms a↵ecting the changed status of patients,
which may help the clinicians to focus on a small set of the most important
symptoms, whose medications treatment would lead to a more stable status
of the patient. Our research provides references to the already known findings
in Parkinson’s disease literature, as well as references to findings about possi-
ble influential symptoms that have only recently started being discussed in the
Parkinson’s disease medical community as early indicators of Parkinson’s disease
progression. We significantly extend the experiments with PCT models, analyze
di↵erent sets of attributes, and discuss reasons for particular medications dosage
change patterns from the medical perspective. The consulting clinician takes into
account trigger symptoms from the trees as well as the patients’ overall status
concerning their motor and non-motor symptoms.

This paper is structured into six sections. After presenting the background
and related work in Section 2, Section 3 describes the Parkinson’s Progression
Markers Initiative (PPMI) symptoms data set [24], together with the data de-
scribing the medications used for symptoms control, available from the so-called
PPMI concomitant medications log data set. Section 4 outlines our methodol-
ogy. In Section 4.1 we present a new algorithm for determining the most in-
fluential symptoms. Section 4.2 proposes a methodology for analyzing Parkin-
son’s disease symptoms by learning predictive clustering trees from short data
sequences. Results are presented in Section 5. Section 5.1 presents the most in-
fluential symptoms, while Section 5.2 describes the results of applying the pro-
posed methodology to the detection of changes in symptoms-based clustering of
patients, connected to the changes in medications therapies and finding patterns
of symptoms which trigger therapy modifications. In Section 5.3 we explore the
influence of the above-mentioned symptoms on clinicians’ decisions regarding the
modification of dosages of prescribed medications. Finally, Section 6 presents the
conclusions and plans for further work.

2 Background and Related Work

Our work is related to several subareas of data analysis. We first present ap-
proaches to Parkinson’s disease data analysis in Section 2.1 and Parkinson’s
disease progression in Section 2.2. In Parkinson’s disease management, several
groups of medications are used together. We apply multitarget modeling with
predictive clustering trees to capture their joint e↵ects and discuss related work
from this area in Section 2.3. We are interested in the importance of symptoms
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a↵ecting the overall status of the disease, which is a problem addressed in fea-
ture ranking/evaluation research. We compare and contrast the algorithm we
propose with existing approaches in Section 2.4.

2.1 Parkinson’s disease data analysis

Data mining research in the field of Parkinson’s disease can be divided into three
groups: classification of Parkinson’s disease patients, detection of Parkinson’s
disease symptoms (computational assessment from e.g., wearable sensors), and
detection of subtypes of Parkinson’s disease patients, as discussed below.

Due to the overlap of Parkinson’s disease symptoms with other diseases, only
75% of clinical diagnoses of Parkinson’s disease are confirmed to be idiopathic
Parkinson disease at autopsy [17]. Classification techniques o↵er decision support
to specialists by increasing the accuracy and reliability of diagnosis and reducing
possible errors. Gil and Johnson [13] use Artificial Neural Networks (ANN) and
Support Vector Machines (SVM) to distinguish Parkinson’s disease patients from
healthy subjects. Ramani and Sivagami [29] compare the e↵ectiveness of di↵erent
data mining algorithms in the diagnosis of Parkinson’s disease patients, where
the data set consists of 31 people, 23 of which are Parkinson’s disease patients.

Tremor is a symptom strongly associated with Parkinson’s disease. Several
approaches to computational assessment of tremor have been proposed. Methods
such as time series analysis [41], spectral analysis [33], and non-linear analysis
[33] have addressed tremor detection and quantification. Many recent works are
based on body fixed sensors (BFS) for long-term monitoring of patients [26].

Parkinson’s disease is a heterogeneous neurodegenerative condition with dif-
ferent clinical phenotypes, genetics, pathology, brain imaging characteristics and
disease duration [11]. This variability indicates the existence of disease subtypes.
Using k-means clustering, Ma et al. [23] identify four groups of Parkinson’s dis-
ease patients which is consistent with the conclusions from [22, 31]. This division
of Parkinson’s patients into homogeneous subgroups was done on symptoms data
recorded only once for each patient. It does not take into account the progres-
sion of the disease and changes in the patients’ status due to the medications
treatment. Our analysis uses a di↵erent data set (see Section 3) which allows us
to take these issues into account.

Classification and clustering models usually focus on diagnosing new patients.
None of the listed methods follow the progression of the disease, and to the best
of our knowledge, no data mining research in the field of Parkinson’s disease an-
alyzed the development of the disease in combination with the medications that
the patients receive. Identification of groups of patients based on how they react
to a certain therapy can be helpful in the assignment of personalized therapies
and more adequate patient treatment. To this end, we propose a methodol-
ogy for determining trigger symptoms, which influence the physician’s decision
about therapy modification. In addition, our methodology aims to uncover the
side-e↵ects of the modified therapy.
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2.2 Parkinson’s disease progression

There are no specific medical tests to determine the progression of Parkinson’s
disease for an individual patient. Currently, the clinicians commonly use the
Hoehn and Yahr scale system [15] to describe the progression of Parkinson’s
disease symptoms. This evaluation can be seen as the clinicians’ aggregate eval-
uation of the patient’s motor status. Patient’s status changes through time and
even though the status of the patient is going to get worse during their treat-
ment, there are periods where carefully prescribed medications therapies can
cause an improvement of the patient’s overall status. This improvement can be
reflected in both the patient’s motor and non-motor symptoms.

In our earlier work [43, 44], we first used unsupervised learning (k-means clus-
tering) to divide Parkinson’s disease patients from the PPMI study into three
groups with similar severity of their motor and non-motor symptoms. We then
applied supervised classification rule learning techniques to obtain descriptions
for each of the obtained groups. The results suggested that these groups can be
described with the aggregated severity of their motor symptoms. In addition,
the rules also contained the information about the status of their non-motor
symptoms.

The three groups of patients were ordered according to the sum of evalua-
tion values for their motor symptoms from MDS-UPDRS Part III (NP3SUM).
The first cluster (cluster 0 ) consisted of patients whose motor symptoms were
considered as normal, and the sum of MDS-UPDRS Part III was below 22.
The second cluster (cluster 1 ) contained patients whose motor symptoms were
slightly worse, and the sum of MDS-UPDRS Part III was between 22 and 42.
In the third cluster (cluster 2 ) there were the patients whose sum of evaluation
symptoms values from MDS-UPDRS Part III were higher than 42. Note that
based on the sum of motor symptoms, the status of patients from cluster 2 is
worse than the status of patients from cluster 0 and cluster 1.

The patients’ symptoms are recorded regularly (on their visit to the clin-
icians) and based on these symptoms, at each visit, the patients are assigned
to a cluster. Assignments to clusters may change during di↵erent visits to the
clinicians. Following these assignments to clusters through their recorded visits
to the clinicians gives an overview of the changes in the overall status and on
the disease progresses through time.

The separation of patients into three groups provides the information about
patients’ status based on their aggregate score for the motor symptoms. Unfortu-
nately, it does not provide any information about the symptoms that are partic-
ularly bothersome for the patients, and whose change would have the strongest
impact on the assignment of patients into a given cluster.

The identification of symptoms that strongly influence the change of the pa-
tient’s overall status (the patient’s assignment to one of the clusters), can help
clinicians to focus their attention to a smaller set of symptoms when deciding
possible treatment modifications1 of the patients. Using the real world data, our

1 A treatment modification is any change in overall LEDD (levodopa equivalent daily
dosage) (change of frequency intake, change of medications group etc.).
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aim is to reveal the symptoms that are the most susceptible to improvement
or decline when the overall status of the patient changes. When deciding on
the modification of patient’s treatment, the clinicians may consider these symp-
toms in order to keep patient’s status stable as long as possible. We present the
algorithm for identification of the most impactful symbols in Section 4.1.

2.3 Multitask learning

In multitask learning (MTL), multiple related tasks are learned simultaneously
on a shared attribute space. Compared to single task learning, MLT can improve
model generalization and prevent overfitting [6]. This is achieved by transfer of
intermediate knowledge between jointly learned tasks, e.g., constructed relevant
paths in tree-based models or important joint subconcepts in neural networks.
In this way, the learning does not focus on a single task (thus preventing over-
fitting) and what is learned for one task can help other tasks (thus improving
generalization).

Caruana et al. [7] use knowledge from the future to rank patients accord-
ing to their risk to die from pneumonia. The shared attribute space consists
of patients’ at the time they are admitted to the hospital. The multiple tasks
which are learned by the model are a set of hospital tests performed to de-
termine whether the patients are of a risk of dying of pneumonia. Zhou et
al. [51] use multitask learning to model Alzheimer’s disease progression. They
use two clinical/cognitive measures, Mini Mental State Examination (MMSE)
and Alzheimer’s Disease Assessment Scale cognitive subscale (ADAS-Cog) as
multiple evaluations to determine the progression of the disease. Zhang et al.
[50] propose a multitask model for prediction of multiple regression and clas-
sification variables in Alzheimer’s disease, which takes advantage of the multi-
modal nature of patient’s symptoms. Similarly to Parkinson’s disease patients,
Alzheimer’s patients can be described by symptoms collected from multiple
sources. All of these approaches use quantitative data “from the future” (values
of tests taken in the future) to determine how the disease progresses. The au-
thors take historical data and use multitask learning to predict the two years in
the future results of two tests (the MMSE and the ADAS-Cog questionnaire).
Using the baseline MRI, FDG-PET, and CSF data they estimate the disease
progression by predicting these two values and predicting the conversion of pa-
tients with a mild cognitive disorder (MCI) to patients with Alzheimer’s disease
(AD). Unfortunately, there are no tests to appropriately measure the progres-
sion of Parkinson’s disease. None of the above-mentioned methods look at the
medications patients are receiving to decelerate the disease progression.

We use multitask learning with the aim to simultaneously predicting the val-
ues of several target attributes (medications in our case). We use a supervised
learning method called predictive clustering trees (PCTs) [3, 4]. This method
adapts the basic top-down induction of decision trees with clustering and allows
for multitask learning. The PCT learning algorithm used is implemented in the
CLUS data mining framework [4]. We obtain multitask decision trees, simulta-
neously predicting three target variables: change of levodopa dosage, change of
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dopamine agonists dosage, and change of MAO-B inhibitors dosage, referring
to three most important medication groups used in Parkinson’s disease patient
management. The PCT-based approach is described in Section 4.2, and evalu-
ated in Sections 5.2 and 5.3.

2.4 Feature evaluation

Feature subset selection can improve the accuracy, e�ciency, applicability, and
comprehensibility of a learning process and its resulting model [2]. For this rea-
son, many feature subset selection approaches have been proposed. In general,
three types of feature selection methods exist: wrapper, filter, and embedded
methods. Wrapper methods use the performance of a given learning algorithm
as the criterion to include/exclude attributes. Embedded methods use feature
selection as an integral part of their learning process. Filter methods introduce
some external criterion independent of the predictor. They evaluate features ac-
cording to that criterion, which allows for ranking of features and selection of a
suitable subset. This is fit for our purpose.

Our approach to determining the importance of symptoms for the overall
disease progression is strongly related to the well-known Relief family of algo-
rithms [19, 34, 32]. These algorithms evaluate attributes based on their ability to
distinguish between similar instances with di↵erent class values. Contrary to the
majority of feature evaluation heuristics (e.g., information gain, gini index, etc.)
that assume conditional independence of attributes w.r.t. the target variable,
the Relief approaches do not make this assumption and are suitable for prob-
lems that involve feature interaction. The Relief algorithms randomly select an
instance and find the nearest instance from the same class and nearest instances
from di↵erent classes. When comparing feature values of near instances the al-
gorithm rewards features that separate instances with di↵erent class values and
punishes features that separate instances with the same class value. The whole
process is repeated for large enough sample. The approach we propose also uses
similar instances but uses cluster membership as a criterion for similarity instead
of a distance in the feature space. When updating the importance of features our
approach assesses joint transitions from one cluster to another or from better
patient status to a worse one, while Relief algorithms use similarities in target
variable.

Some recent feature selection approaches try to explore the interconnection
between the features by exploring the similarity graph of features [30, 38]. Other
approaches pose feature selection as an optimization problem, for example, Sun
et al. [40] use optimization in combination with a game theory based method. Our
approach also uses a graph of transitions between clusters to assess similarity of
patients, but we work in an unsupervised scenario and use time order of patients’
visits as links between nodes. Details are explained in Sections 4.1 and 4.2.
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3 Parkinson’s Disease Data Set

In this paper we use the PPMI data collection [24] gathered in the observational
clinical study to verify progression markers in Parkinson’s disease. In Section
3.1 we present the PPMI symptoms data sets and in Section 3.2 we present the
medications data used in the experiments. As there are altogether 114 attributes
in described data sets, in their everyday practice, physicians focus on a subset of
chosen symptoms to follow the development of the disease and decide when to
intervene with medication modifications. The symptoms which are in the focus
of physician’s attention are discussed in Section 3.3.

3.1 PPMI symptoms data sets

The medical condition and the quality of life of a patient su↵ering from Parkin-
son’s disease is determined using the Movement Disorder Society (MDS)-spon-
sored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
[14]. This is a four-part questionnaire consisting of 65 questions concerning the
development of the disease symptoms. Part I consists of questions about the
“non-motor experiences of daily living”. These questions address complex behav-
iors, such as hallucinations, depression, apathy, etc., and patient’s experiences
of daily living, such as sleeping problems, daytime sleepiness, urinary problems,
etc. Part II expresses “motor experiences of daily living”. This part of the ques-
tionnaire examines whether the patient experiences speech problems, the need
for assistance with the daily routines such as eating or dressing, etc. Part III is
referred to as the “motor examination”, while Part IV concerns “motor complica-
tions”, which are mostly developed when the main antiparkinson drug levodopa
is used for a longer time period. Questions from the MDS-UPDRS represent
symptoms characteristic for Parkinson’s disease, while their answers indicate
the symptom’s severity that a patient is experiencing. Each answer is given on
a five-point Likert scale, where 0 = normal (patient’s condition is normal, the
symptom is not present), and 4 = severe (symptom is present and severely a↵ects
the independent functioning of the patient).

Cognitive state of a patient is determined using the Montreal Cognitive As-
sessment (MoCA) [8] questionnaire consisting of 11 questions (maximum 30
points), assessing di↵erent cognitive domains. In addition to the MoCA data,
physicians also use the Questionnaire for Impulsive-Compulsive Disorders (QUIP)
[48] to address four major and three minor impulsive-compulsive disorders.

Scales for Outcomes in Parkinson’s disease—Autonomic (SCOPA-AUT) is
a specific scale to assess autonomic dysfunction in Parkinson’s disease patients
[45]. Physical Activity Scale for the Elderly (PASE) [46] is a questionnaire which
is a practical and widely used approach for physical activity assessment in epi-
demiologic investigations. Cognitive Categorization (COGCAT) is a question-
naire filled in by clinicians evaluating the cognitive state and possible cognitive
decline of patients. The above data sets are periodically updated to allow the
clinicians to monitor patients’ disease development through time. Answers to
the questions from each questionnaire form the vectors of attribute values.
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Table 1 presents a summary of the symptoms data sets used in our research.2

It lists the number of considered questions from each questionnaire, the range of
attribute values, and the nature of the attribute values. Answers to the questions
from questionnaires presented in Table 1 represent the combined set of symptoms
used in our research to determine the status of Parkinson’s disease patients. The
total number of symptoms from the mentioned questionnaires is 114.

Answers to the considered questions are ordered values and, with the ex-
ception of MoCA and PASE questions, larger values suggest higher symptom
severity and decreased quality of life for Parkinson’s disease patients.

Table 1. Characteristics of the questionnaire data used in the analysis.

Questionnaire Number of Answers Ordered Higher value indicates
questions value range values higher symptom severity

MDS-UPDRS Part I 6 0–4 Yes Yes
MDS-UPDRS Part Ip 7 0–4 Yes Yes
MDS-UPDRS Part II 13 0–4 Yes Yes
MDS-UPDRS Part III 35 0–4 Yes Yes
MDS-UPDRS Part IV 6 0–4 Yes Yes
MoCA 11 0–1 Yes No
PASE 7 1–2 Yes No
SCOPA-AUT 21 0–3 Yes Yes
COGCAT 4 0–1 Yes Yes
QUIP 4 0–1 Yes Yes
Total 114

3.2 PPMI concomitant medications log

The PPMI data collection o↵ers information about all of the concomitant med-
ications that the patients used during their involvement in the study. We con-
centrate on whether a patient receives a therapy with antiparkinson medications
and which combination of antiparkinson medications she/he received between
two consecutive time points when the MDS-UPDRS and MoCA tests were ad-
ministered. The three main families of drugs used for treating motor symptoms
are levodopa, dopamine agonists, and MAO-B inhibitors [25].

The medications therapy for Parkinson’s disease patients is highly person-
alized. Patients take di↵erent medications with personalized plans of intake. In
order to be able to compare di↵erent therapies, dosages of Parkinson’s disease
medications are translated into a common Levodopa Equivalent Daily Dosage
(LEDD).

2 We do not have permission to share the data. Access to data can be obtained
on the PPMI website: http://www.ppmi-info.org/access-data-specimens/
download-data/.
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3.3 Experimental symptoms data selected by clinicians

In their everyday practice, physicians use a vector of chosen symptoms to follow
the development of the disease and decide when to intervene with medication
modifications. They focus their attention on both motor and non-motor aspects
of patients’ quality of life. Physicians evaluate the motor aspect of patient’s qual-
ity of life using the following symptoms: bradykinesia, tremor, gait, dyskinesia,
and ON/OFF fluctuations. The non-motor aspect of patient’s quality of life is
determined using daytime sleepiness, impulsivity, depression, hallucinations, and
cognitive disorder. In addition to motor and non-motor symptoms, physicians
also consider epidemiological symptoms which include age, employment, living
alone, and disease duration. According to the collaborating clinicians, physicians
are inclined to change the therapy of younger patients (younger than 653), who
are still active, who live alone, and for the patients diagnosed with Parkinson’s
disease for a shorter time (less than 8 years). For these patients, physicians will
try more changes to the therapy in order to find the most suitable therapy, rather
than therapy prolongation with increased medications dosage strategy which is
applied to older Parkinson’s disease patients.

In modifying the patient’s medications based on the numerical evaluation of
symptoms, the physicians decide whether the symptom is problematic and needs
their immediate attention or not. Table 2 presents the motor and non-motor

symptoms influencing the physicians’ decisions for medications modifications,
the data sets they are part of, and the intervals of values that are considered
normal or problematic for Parkinson’s disease patients. For example, the value
of tremor is defined as the mean value of all questions concerning tremor from
MDS-UPDRS Part II and Part III. Intervals of normal and problematic values
are determined by the clinical expert. For all UPDRS items, value 0 is normal,
value 1 is slight or minor, value 2 is mild, 3 is moderate and 4 is severe. Thus, in
most cases and given the progressive nature of Parkinson’s disease, values 0 and
1 of symptoms are not problematic and are baring for the patients, but become
annoying and hampering when they progress in the range 2–4: this leads to dis-
tinguishing between values normal and problematic [14]. The selection of these
10 motor and non-motor symptoms, and age as an epidemilogical symptom,
constituted the subset of attributes considered in the experiments presented in
Section 5.2. The reason for excluding employment, living alone, and cognitive

disorder, which could be important epidemilogical attributes, is that the PPMI
data collection does not have data about patients’ employment and living ar-
rangements. We omitted the cognitive disorder attribute due to its values in the
database, which were either normal or missing

4.
For each patient in the data set, the motor and non-motor symptoms data

were obtained and updated periodically (on each patient’s visit to the clinician’s),

3 Retirement age for men (https://en.wikipedia.org/wiki/Retirement_age).
4 We explored the option of handling ‘structurally missing’ data, where the cognitive

disorder attribute was kept in the final analysis. Across all attributes a new attribute
value missing was introduced. The generated model had a lower classification accu-
racy than the model presented in Section 5.2.
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Table 2. Description of motor (upper part) and non-motor (lower part) symptoms
used by Parkinson’s disease physicians in everyday practice to estimate patient’s quality
of live. The values intervals (normal and problematic) are defined by the clinician.

Symptom Data set Question Normal Problematic
number values interval values interval

bradykinesia MDS-UPDRS Part III 3.14 0–1 2–4
tremor MDS-UPDRS Part II and III mean value 0 1–4
gait MDS-UPDRS Part III 3.10 0–1 2–4
dyskinesia MDS-UPDRS Part IV 4.3 0–1 2–4
ON/OFF fluctuations MDS-UPDRS Part IV 4.5 0 1–4
daytime sleepiness MDS-UPDRS Part I 1.8 0–1 2–4
impulsivity QUIP SUM 0–1 � 2
depression MDS-UPDRS Part I 1.3 0–1 2–4
hallucinations MDS-UPDRS Part I 1.2 0–1 2–4
cognitive disorder MoCA SUM 26–30 <26

providing the clinicians with the opportunity to follow the development of the
disease. The data set contains 897 instances, containing information about 368
PPMI patients. Most of the considered patients have records about two or three
visits to the clinician. The maximum number of visits is 4.

4 Methodology

In this section, we present two methodologies: a methodology for patients’ symp-
toms impact on the Parkinson’s disease progression and a methodology for de-
tecting medications dosage change patterns as a result of the patient’s symp-
toms. Section 4.1 outlines an algorithm for determining which symptoms have
the strongest impact on the patients’ overall status. The patients’ overall sta-
tus is determined by the severity of a large set of symptoms (see Section 3.1).
This methodology is closely related to our previous research on Parkinson’s dis-
ease progression, shortly summarized in Section 2.2 as well as the work done
on feature evaluation (Section 2.4). Results from this methodology, i.e. a list of
symptoms that our algorithm finds to have the strongest impact on the change
of patients’ overall status are presented in Section 5.1.

Section 4.2 presents our methodology for detecting medications dosage change
patterns as a result of the patient’s symptoms. This methodology serves two
aims: detecting patterns of medications dosage changes based on the patient’s
overall status as well as identifying clinically confirmed symptoms suggesting
medications change. Our methodology is related to the work done on multitask
learning (Section 2.3). Results from the evaluation of the methodology on the
set of symptoms data selected by clinicians are presented in Section 5.2.

4.1 Symptoms’ impact on Parkinson’s disease progression

This section outlines a pseudo code of the algorithm which estimates the impact
of symptoms on the change of patients’ overall status—their change of clus-
ters. The most important symptoms found by this algorithm are presented in
Section 5.1.
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The getAttrChangeProbabilities function, presented in Algorithm 1, is a
supervised approach that estimates the probabilities that feature (symptom)
values changed when the patients’ overall status also changed (i.e. when the
patients have crossed clusters) or stayed the same (the patients have not changed
clusters between two consecutive visits).

As the input Algorithm 1 takes F, patients’ symptoms data described in
Section 3.1, the index data set I, and the assigned cluster labels c. The patients’
symptoms data F contains the information about the patients’ symptoms values
at di↵erent visits to the clinicians. It is a matrix of dimension n (number of
instances) times |A| (number of considered symptoms). The features data set F
contains the information on 114 motor and non-motor symptoms of Parkinson’s
disease patients. F rows represent the instances (patient pi on visit vij), and the
columns present patients’ symptoms. The index data set I holds the instance
indexes represented as a combination of patients and their visits. Vector c holds
the information about the cluster to which a patient in a certain visit has been
assigned to (i.e. cij marks the cluster patient pi was assigned to on visit vij , see
Section 2.2).

The output of the algorithm is two matrices, attrChangeProbability and
attrSameProbability, of dimension K ⇥K ⇥ |A| (K is the number of clusters),
which hold the probabilities that an attribute will change value or stay the same
for a certain cluster crossing, respectively.

The algorithm first initializes its working spaces and storage matrixes (lines 2
- 6). For each patient and for each two consecutive visits, the algorithm compares
the assigned cluster labels for each instance (for each combination of (pi, vij , cij)
and (pi, vij+1, cij+1)) in lines 8 - 24. For each cluster change combination, the
algorithm also takes note of what happens to the symptoms’ values—whether
they changed or stayed the same (lines 15 - 21). The recorded changes of symp-
toms and clusters are normalized with the total number of cluster crossing (lines
25 - 37) and the resulting probabilities are returned (line 38).

As a result of Algorithm 1, we get probabilities which reflect the impact
of the attributes on cluster changes. This can serve in inference on the disease
progression but also to select only the most influential attributes and thereby
decrease the dimensionality of attribute space. We discuss the use of Algorithm 1
in Section 5.1.

4.2 Medications dosage change patterns

Our goal is to support physicians in their decisions regarding the patients’ ther-
apies. The physicians have several groups of medications at their disposal with
which they try to preserve the good quality of patient’s life. They use and switch
between di↵erent groups of drugs and their dosages to treat di↵erent symptoms
(e.g., levodopa is used for motor symptoms), and also to prevent overuse of
any specific drug in order to reduce side-e↵ects and undesired drug interactions.
Our multitask learning approach based on Predictive Clustering Trees (PCTs)
[4] (introduced in Section 2.3) allows for modeling of all medication groups si-
multaneously. By simultaneously predicting several target variables, the model
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1 getAttrChangeProbabilities(F,I,c):

Input : F – concatenated view (feature data set);

A – attribute space;

I – indices of patient-visit combinations;

c – assigned cluster labels;

Parameters : K – number of clusters in c;

Output : attrChangeProbability;

attrSameProbability;

// Count for each cluster crossing. Matrix noOfCrossings
K⇥K is initialized to 0.

2 noOfCrossings = {1:K, 1:K}  0

// Number of value changes for each attribute and each cluster crossing.

// Matrix attrChangeNo
K⇥K⇥|A| is initialized to 0.

3 attrChangeNo = {1:K, 1:K, 1:|A|}  0

// Probability of value changes for each attribute and each cluster crossing.

// Matrix attrChangeProbability
K⇥K⇥|A| is initialized to 0.

4 attrChangeProbability = {1:K, 1:K, 1:|A|}  0

// Number of unchanged values for each attribute and each cluster crossing.

// Matrix attrSameNo
K⇥K⇥|A| is initialized to 0.

5 attrSameNo = {1:K, 1:K, 1:|A|}  0

// Pobability of unchanged values for each attribute and each cluster crossing.

// Matrix attrSameProbability
K⇥K⇥|A| is initialized to 0.

6 attrSameProbability = {1:K, 1:K, 1:|A|}  0

7 for patient in [1:p] do

// consecutive visits for a given patient
8 patientsVisits  I[patient,1:allVisits[patient]]

9 for vj , vj+1 in patientsVisits do

10 prevCluster  c[patient][vj ]

11 currCluster  c[patient][vj+1]

12 incrementByOne(noOfCrossings[prevCluster, currCluster])

13 prevFeatures  F[vj ]

14 currFeatures  F[vj+1]

15 for attr in A do

16 if di↵ers(prevFeatures[attr],currFeatures[attr]) then

17 incrementByOne(attrChangeNo[prevCluster, currCluster][attr])

18 end

19 else

20 incrementByOne(attrSameNo[prevCluster, currCluster][attr])

21 end

22 end

23 end

24 end

// Determine the probability of changed/unchanged attribute values
// for each cluster crossing.

25 for c1 in [1:K] do

26 for c2 in [1:K] do

27 clusterCrosses = noOfCrossings[c1,c2]

28 for attr in attrChangeNo[c1,c2] do

29 attrChanges = attrChangeNo[c1,c2][attr]

30 attrChangeProbability[c1,c2][attr] =
attrChanges

clusterCrosses
31 end

32 for attr in attrSameNo[c1,c2] do

33 attrSame = attrSameNo[c1,c2][attr]

34 attrSameProbability[c1,c2][attr] =
attrSame

clusterCrosses
35 end

36 end

37 end

38 return attrChangeProbability, attrSameProbability

Algorithm 1: Assessment of feature impact on cluster changes.
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Fig. 1. Outline of the methodology for determining medications change patterns in
PPMI data using predictive clustering trees.

allows physicians to observe the interactions between di↵erent groups of medi-
cations, which is not possible with univariate models. As training data, we use
time-stamped symptoms and medications data. Figure 1 outlines the proposed
five-step methodology, which uses symptoms data collected over time (i.e. over
several patient’s visits) and respective changes in medications therapies. Our
goal is to identify symptoms scenarios for which the physicians need to consider
modifications of therapies.

The input to the methodology are PPMI data sets of patient symptoms
(described in Section 3.1) and the PPMI medications log data set (described in
Section 3.2). The output of the methodology are patterns of patients’ symptoms
for which particular changes of medications were administered by the clinicians.

In step A we construct a time-stamped symptoms data set consisting of the
symptoms (attributes) described in Section 3.1. This data set consists of patient-
visit pairs (pi, vij) describing the patients and their visits to the clinician.

In step B we construct a data set of medications changes which are repre-
sented with (pi,mij ,mij+1) tuples, where mij and mij+1 are medication ther-
apies of patient pi in two consecutive visits, vij and vij+1. A patient receives a
therapy which is any combination of levodopa, dopamine agonists, and MAO-B
inhibitors. For each of the three medications groups, we determine whether its
dosage in the time of visit vij+1 has changed (increased or decreased) or re-
mained unchanged with respect to the dosage at visit vij . The output of step
B is a data set of medications changes, presented as tuples (Lij , Dij ,Mij), indi-
cating whether between visits vij and vij+1 a change of dosage in levodopa (L),
dopamine agonist (D), or MAO-B inhibitors (M) took place.

In step C we concatenate the data sets obtained in steps A and B into a
merged data set of symptoms and medications data. We use patient-visit pairs
(pi, vij) describing patient’s symptoms at visit vij and the changes of medications
in the same visit with respect to the next visit vij+1. These data consist of a set
of attributes describing the condition of the patient, and three attributes (lev-
odopa, dopamine agonists, and MAO-B) indicating the changes in their dosage,
respectively. The set of symptoms describing the condition of the patient can
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be preselected by clinicians, automatically selected, or a combination of both
approaches.

The merged data set is used in step D to determine medications change
patterns. The three medications groups are used as multitask variables (mul-
tiple classes) in the predictive clustering trees learning approach. We want to
determine which symptoms influence decisions of physicians to modify the ther-
apies that patients receive. The discovered therapy modifications patterns are
analyzed by the physician in step E .

Models produced by the PCT approach serve three aims: determining pat-
terns of medications dosage changes, identification of Parkinson’s disease symp-
toms suggesting medications dosage changes, and discovering groups of similar
patients. These aims depend on the interpretation of the PCTs. Patterns of med-
ications dosage changes are found in the leaves of the tree. Branches from the
root of the tree to its leaves identify the symptoms influencing a particular pat-
tern of medications dosage change, while patients experiencing these symptoms
and medications dosage changes construct groups of patients that are similar
based on both their symptoms and their medications therapy modifications.

We test the proposed methodology in two experimental settings, using two
di↵erent symptoms data sets described in more detail below. In the first ex-
perimental setting, (Section 5.2) we use symptoms which were selected by our
consulting clinician. In the second experimental setting (Section 5.3), we test
the proposed methodology for determination of the symptoms’ impact (see Sec-
tion 4.1) and form a merged data set with symptoms selected by the clinician
and the most influential symptoms according to Algorithm 1. We analyze symp-
tom patterns for which the physicians modified the patients’ therapies. We use
the changes of the three medications groups as the target classification variables.
Changes in dosage (increase or decrease) are marked with the class label yes,
while unchanged drug dosages are marked with the class label no.

5 Evaluation

We split the evaluation of the proposed methodology into three parts. In Section
5.1 we use Algorithm 1 to find the most influential symptoms. In Section 5.2
we analyze the medications dosage change patterns detected from symptoms
selected by clinicians (see Section 3.3). The most influential symptoms from
Section 5.1 together with the symptoms selected by clinicians form a new data
set and are analyzed in Section 5.3.

5.1 The most influential symptoms

When patients change clusters between two consecutive visits, this change can
be considered as positive or negative. A positive cluster change occurs when
between two consecutive visits a patient has crossed from a cluster with higher
index (e.g., cluster 2 ) to a cluster with lower index (e.g., cluster 1 ). Given the
cluster descriptions from [44], this change indicates that the overall status of
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Algorithm1:	
getAttrChangeProbabilities	

Input:	
F	-	feature	data	set	from	Table	1;		
I	–	indices	and	
c	- cluster	labels	from		
Valmarska	et	al.	(2018);	

Output:	

Probabilities	attrChangeProbability	
and		attrSameProbability;	

Fig. 2. A flowchart presenting the input, output, and method used for determining the
most influential symptoms. Details about the input data can be found in Table 1 and
[43, 44].

the patient concerning her/his motor symptoms has improved (indicated with
lower MDS-UPDRS values). Contrarily, when in two consecutive visits a patient
moves from a cluster with lower index (e.g., cluster 1 ) to a cluster with higher
index (e.g., cluster 2 ) her/his overall status has worsen (as indicated by the sum
of the motor symptom).

We ran the Algorithm 1 twice, the first time using numerical scores of symp-
toms (values 0-4 for MDS-UPDRS symptoms), and the second time using dis-
cretized values of the symptoms (normal and problematic). A flowchart present-
ing the input, output, and method used in this experimental setting is presented
in Figure 2. For each run, the algorithm returned the probabilities of symptom
changes and symptoms staying unchanged. Ranking the symptoms by the de-
creased probability of symptom changes and intersecting the top 255 features we
get a list of symptoms that have the strongest impact on cluster changes. These
are symptoms that have most frequently changed values, and whose change of
values brought significant improvement (from problematic to normal) or decline
(from normal to problematic).

Table 3 presents the intersection of lists obtained by two runs of the algo-
rithm, for symptoms whose values have changed most frequently when a cluster
change has occurred. The symptoms are presented with their code names from
the PPMI data collection and with their descriptions. The results are ordered
according to the decreased probability of cluster changes (weighted positive and
negative changes).

We can note that the upper part of Table 3 is populated with the motor symp-
toms from MDS-UPDRS Part III. This is not surprising since as we mentioned
above, the obtained clusters were ordered in accordance with the aggregate score
of their motor symptoms from MDS-UPDRS Part III. In addition to the influen-
tial motor symptoms, the algorithm finds also a subset of influential non-motor
symptoms whose values vary as the overall status of the patient’s changes.

In practice, positive and negative changes are not treated equally and may not
be caused by the same symptoms. Clinicians try to avoid negative changes and
actively promote positive changes. We first report symptoms indicating positive
changes, followed by the symptoms indicating negative changes.

5 The number of top-ranked features was set experimentally so that the length of the
intersection list is su�ciently informative and manageable for clinicians.
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Table 3. List of most influential symptoms according to Algorithm 1. The symptoms
are ordered according to their average rank of positive and negative impact.

PPMI attribute Attribute description PPMI data set Attribute importance
for cluster change

NP3BRADY Bradykinesia MDS-UPDRS Part III 0.314
NP3TTAPL Toe tapping (left) MDS-UPDRS Part III 0.297
NP3RTCON Constancy of rest MDS-UPDRS Part III 0.291
NP3FACXP Facial expression MDS-UPDRS Part III 0.282
NP3FTAPL Finger tapping (left) MDS-UPDRS Part III 0.273
NP3FTAPR Finger tapping (right) MDS-UPDRS Part III 0.255
NP3PRSPL Hand pronation/supination (left) MDS-UPDRS Part III 0.244
NP3TTAPR Toe tapping (right) MDS-UPDRS Part III 0.239
NP3PRSPR Hand pronation/supination (right) MDS-UPDRS Part III 0.203
NP1SLPN Sleep problems (night) MDS-UPDRS Part Ip 0.155
NP1SLPD Daytime sleepiness MDS-UPDRS Part Ip 0.147
NP2HWRT Handwriting MDS-UPDRS Part II 0.144
NP1FATG Fatigue MDS-UPDRS Part Ip 0.138
NP1URIN Urinary problems MDS-UPDRS Part Ip 0.134
NP1PAIN Pain and other sensations MDS-UPDRS Part Ip 0.117
MCATOT MoCA total score (cognition) MoCA 0.097

Figure 3 presents the symptoms whose values improve most frequently when
the patients make a positive cluster change (their overall status between two
consecutive visits improves). The results suggest that in over 37% of cases when
the patient’s status improves, also the value of their constancy of rest improves
(NP3RTCON). The second most frequently improved symptom is bradykinesia
(NP3BRADY), followed by the finger tapping in the left hand (NP3FTAPL).

Figure 4 presents the results for the symptoms whose values degrade most
frequently when the patients make a negative cluster change and their overall
status between two consecutive visits worsens. The results suggest that in over
30% of cases when the patients’ status worsens, they experience problems with
toe taping, facial expression, and bradykinesia.

Rigidity is a relevant and bothersome symptom for patients that was not
detected by Algorithm 1. A reason for this omission may be the fact that rigidity
is reported through five questions from MDS-UPDRS Part III (both hands, both
legs, and neck). Patients can experience rigidity problems on di↵erent parts of
the body and each of this parts may not be statistically strong enough to be
ranked high by Algorithm 1. A way to alleviate this problem would be to combine
answers from multiple questions concerning the same underlying symptom before
running Algorithm 1. We plan such detailed analysis for our further work as well
as a selection of two separate lists of symptoms which improve or decline most
frequently. This could lead to distinguishing the symptoms for which change of
medications dosage is the most e↵ective, as well as those who are most inclined
to worsening as the disease progresses.

Similarly to our approach to determining the importance of symptoms for
the overall disease progression, the feature evaluation algorithms Relief and Re-
liefF [19, 34] also compare feature values of similar instances from the same class
and similar values from a di↵erent class. Relief and ReliefF reward the features
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Fig. 3. Symptoms whose values improved most frequently when the overall status of
patients improved. The acronyms are explained in Table 3.

that separate instances with di↵erent class values and punish the features that
separate the instances with the same class value. If applied to our problem, these
algorithms cannot take into account temporal progress of patients, i.e. they can-
not track individual patients on their consecutive visits to the clinician. In e↵ect,
they show which attributes influence the initial assignment of patients into clus-
ters, but reveal no information about attributes which are the most influential
for changes of patients’ overall status (i.e., for crossing of clusters). We note
that the assignment to clusters was done based on the patients’ overall status
represented with sums of attributes values from the respective questionnaires
presented in Section 3.1. Nevertheless, we evaluated the symptoms using the
ReliefF algorithm [34, 35]. Out of the best 16 symptoms as evaluated by the Re-
liefF algorithm, 9 were selected into the top 16 most most influential symptoms
(see Table 3) by Algorithm 1 (MCATOT, NP1SLPD, NP1URIN, NP3RTCON,
NP1SLPN, NP1FATG, NP3PRSPL, NP3TTAPR, NP3TTAPL). Symptoms—
such as bradykinesia—that are strong indicators of the disease progression were
evaluated as insignificant by the ReliefF algorithm. For this reason, the results
of ReliefF for symptom evaluation are not included.
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Fig. 4. Symptoms whose values worsen most frequently when the overall status of
patients degraded. The acronyms are explained in Table 3.

5.1.1 Medical interpretation of the results

According to the consulting clinician, in general, the computed symptom impor-
tance is in accordance with the medical literature on Parkinson’s disease [10, 1].
Below we present some further interesting findings.

Cognitive decline, as depicted by the MoCA total score, and bradykinesia are
very important factors when considering changing patients’ medications [10, 1].
Braykinesia is a score combining toe tapping [18, 14] (for lower limbs bradykine-
sia assessment), hand pronation/supination, and finger tapping (for upper limbs
bradykinesia assessment) [21]. As confirmed by the expert, the constancy of
rest tremor and pain are symptoms which are important for some patients who
find these symptoms particularly bothersome and demand an intervention with
medications. Dyskinesia and fluctuations are important symptoms not ranked
at the top of the list according to our Algorithm 1. The reason is that the PPMI
database includes many newly diagnosed and early-stage patients, for who these
symptoms do not change values often.

The importance of handwriting is an interesting finding of the study and
confirms recent studies [9] suggesting that handwriting could be a useful marker
for disease diagnosis [36] and progression [27]. Our further analysis of patients
with problematic handwriting revealed that these patients experience more prob-
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Methodology	for	determining	
medications	change	patterns	

(see	Figure	1)	

Input:	
S	–	symptoms	data	set		
from	Table	2;		
M	– medications	data	set;	

Output:	

PCTs	showing	medications	change	
patterns.	

Fig. 5. A flowchart presenting the input, output, and method used for determining
medications dosage change patterns detected from symptoms selected by clinicians.
Details about the used symptoms data can be found in Table 2.

lems with their motor symptoms (reflected by the sum of symptoms from MDS-
UPDRS Part III), and also su↵er from bradykinesia, pain, and rigidity with
higher severity than patients who do not have problems with handwriting. Re-
sults of our analysis also suggest that patient’s handwriting sensitively reflects
improvements and worsening of patients’ motor symptoms.

5.2 Medications dosage change patterns detected from symptoms
selected by clinicians

For this set of evaluations, we use the data set composed of symptoms selected
by clinicians (see Section 3.3). A flowchart with the input, output, and method
used in this experimental setting is presented in Figure 5. A pruned predic-
tive clustering tree (PCT) model of medications changes based on the patient’s
status is shown in Figure 6. The PCT models the dosage changes of all three an-
tiparkinson medication groups simultaneously, allowing for the detection of drug
interactions based on the patient’s status. Notice that in PCT construction, the
user can decide how to prune the tree. In our experiments, we used the default
pruning method, called C4.5 [39, 28].

The leaves of the predictive clustering tree hold information about the recorded
therapy modifications. The components of the lists presented in each tree leaf
predict dosage changes of levodopa, dopamine agonists, and MAO-B inhibitors,
respectively. The list of numbers in the leaves represents the total number of
instances that are described by the symptoms from the root to the leaf. The
number of instances for which the proposed medications dosage change has ac-
tually happened are written in the square brackets. For example, the list [yes,
yes, yes] presented in the first leaf on the left (Path 1), indicates that the dosages
of levodopa, dopamine agonists, and MAO-B changed. The total number of cov-
ered instances is 20. Out of these 20 patients, for 17 the dosage of levodopa
changed, for 12 the dosage of dopamine agonists changed and for 12 the dosage
of MAO-B inhibitors changed.

The attributes of instances (patient-visit pairs) influencing this change are
presented along the path from the tree root to the respective leaf. In this ex-
ample, these are the patients who are younger than 65, have problems with
ON/OFF fluctuations, and have problems with their impulsivity. The leaf [yes,
no, no] on the right (Path 2) suggests that physicians only considered changes
in levodopa. These dosage changes can be justified by the patients’ symptoms,
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Fig. 6. Pruned predictive clustering tree modeling dosage changes for three groups of
medications. Medication dosage changes are modeled by patients’ symptoms.

i.e. patients have problems with ON/OFF fluctuations and no problems with
their impulsivity. Moreover, in younger patients without ON/OFF fluctuation
problems but with other problematic symptoms: impulsivity, bradykinesia and
daytime sleepiness, the physicians also change only levodopa dosages (Path 4
in Figure 6). This might reflect the current clinical practice—many patients
want treatment of their motor symptoms first, which usually improve based on
increased levodopa dosages.

Path 4 in Figure 6 shows that for younger patients with problematic im-
pulsivity and without problems with ON/OFF fluctuations and bradykinesia,
physicians change the dosages of all three medication groups. These results are
in accordance with the literature on Parkinson’s disease [47] and were confirmed
by the clinical expert.

The results reveal that if the patient experiences ON/OFF fluctuations prob-
lems (left subtree in Figure 6), physicians will react with the change of dosage
of levodopa medications [12]. If the patients experience non-motor symptoms
(e.g., impulsivity, depression), physicians will react by modifying the dosages of
dopamine agonists [37]. This is in accordance with the literature on Parkinson’s
disease and was confirmed by the expert. Increased dosages of dopamine agonists
can produce non-motor related side-e↵ects. Physicians will react by lowering the
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Table 4. Comparison of the classification accuracy obtained by the default model, the
pruned multitask model, the pruned single-task models, and the random forest models.

Medications Default Multitask Single-task Random forest
group model PCT model PCT model ensembles
Levodopa 0.637 0.685 0.686 0.695
Dopamine agonists 0.501 0.642 0.642 0.622
MAO-B 0.518 0.602 0.586 0.601

dosage of dopamine agonists (consequently increasing the dosage of levodopa).
This was revealed in our post analysis, where we followed the actual changes
of levodopa and dopamine agonists. In this post analysis the target variables
(levodopa and dopamine agonists) had three values: increase, decrease, and un-

change. The PCT model was built on the symptoms data presented in Section 3.3
in combination with the newly generated target features.

While prediction is not the ultimate goal of the developed methodology, rea-
sonably high classification accuracy on a separate data set can increase clinicians’
trust in using the model. Table 4 presents the classification accuracy of four mod-
els: i) the default model (predicting the most probable value for each target), ii)
the multitask PCT classification model, iii) the single-task decision tree models
constructed separately for each medications group, and iv) the multitask ran-
dom forest model [5, 20]. The results are obtained using 10-fold cross-validation.
The results show that random forests generate models that have slightly better
classification accuracy for levodopa. However, the PCT models yield better clas-
sification accuracy for dopamine agonists. Multitask PCT model and random
forests return comparable classification accuracy for MAO-B. The advantage
of using the multitask tree approach is the ability to observe the interactions
between the targets.

We employed the Wilcoxon [49] paired test to examine whether there are
statistical di↵erences between the performance of the multitask approach and
the single task approach, and the multitask approach and random forest. Results
showed that there are no statistical di↵erences at the level of significance ↵=0.05
for any pair of the above pairs. We used the same folds across all approaches.

5.2.1 Impact of symptoms history

We analyzed the temporal aspect of the proposed approach. Our data set o↵ers
certain time-related information (1-4 observations are available for each patient
in the data set, one for each visit). So far we only analyzed the changes in
symptoms and dosage between two consecutive visits. According to our consulted
clinicians, the current state of the patient is all that matters to the clinician when
considering their therapy, so this makes sense. However, the question remains if
taking into account more than one historical event can improve models.

To adequately answer this comment, we conducted a separate set of experi-
ments. We looked further back into patients’ history to see how their medications
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have changed, based on symptoms from more distant visits. Comparison of 10-
fold cross validation classification accuracy on models with di↵erent spans of
look-back showed that the classification accuracy of models decreases as we in-
clude references to more distant visits. The highest accuracy is achieved when
we consider only the actual state of the patients (these results are presented in
this section).

5.3 Medications Dosage Change Patterns Detected from Extended
Symptoms Data

The PCT model from Section 5.2 was generated on a set of symptoms selected
based on the expert’s choice. In this Section, we explore the model for dosage
change of antiparkinson medications if in addition to the symptoms that are
pre-selected by the clinicians we include also the most influential attributes
from Table 3. We present the description of the newly introduced symptoms,
the predictive clustering tree model generated on this extended data set, short
interpretation of the tree, the classification accuracy of the models, and a short
discussion on the di↵erences between the original model (Section 5.2) and the
revised model (Section 5.3.2).

5.3.1 Extended data set

As already mentioned, when monitoring the patient’s status and deciding about
the modification of their medications therapy, clinicians think in terms whether
the symptom’s severity is normal for a Parkinson’s disease patient or it is prob-
lematic and a change of dosage of antiparkinson medications is needed. Table 5
presents the most influential motor and non-motor symptoms according to Al-
gorithm 1 and the intervals for their quantization into normal and problematic

symptoms values. Six of the symptoms from Table 3 were merged into three
new (revised) symptoms. These six symptoms were pairs of three underlying
symptoms, each concerning a di↵erent side of the body (left or right), and were
therefore paired into three new symptoms. The three new symptoms are: toe tap-
ping, finger tapping, and hand pronation/supination. The values of the newly
constructed symptoms are obtained as the maximum of the two basic symptoms
values (left and right).

The extended symptoms data set used in the experiments below is presented
in Table 6. These symptoms aremotor, non-motor, and epidemilogical, consisting
of the symptoms that were pre-selected by our consulting expert (see Section 3.3)
and the most influential symptoms returned by Algorithm 1 (Table 5). We de-
cided to omit the cognitive disorder attribute due to the fact that its only values
present in the database were normal and missing. The reason for this is that in
this analysis we only consider patients with included medications data.

Note that out of the 16 symptoms that were top-ranked by Algorithm 1, our
consulting clinician reported 3 as the symptoms they consider when deciding
about the change of Parkinson’s disease patient’s therapy. These symptoms are
cognition, daytime sleepiness, and bradykinesia (marked in bold in Table 5).
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Table 5. Description of the motor (upper part) and non-motor (lower part) symptoms
which are reported as the most influential by Algorithm 1. Toe tapping, finger tapping,
and hand pronation/supination were generated as the maximum value of the basic
symptom on the patient’s left and right side. The values intervals (normal and prob-

lematic) were defined by the clinician. The three symptoms marked with bold typeface
were independently selected by clinicians as the most important.

Symptom Data set Question Normal Problematic
number values interval values interval

bradykinesia MDS-UPDRS Part III 3.14 0–1 2–4
toe tapping MDS-UPDRS Part III max(3.7a, 3.7b) 0–1 2–4
constancy of rest MDS-UPDRS Part III 3.18 0–1 2–4
facial expression MDS-UPDRS Part III 3.2 0–1 2–4
finger tapping MDS-UPDRS Part III max(3.4a, 3.4b) 0–1 2–4
hand pronation/supination MDS-UPDRS Part III max(3.6a, 3.6b) 0–1 2–4
sleep problems MDS-UPDRS Part Ip 1.7 0–1 2–4
daytime sleepiness MDS-UPDRS Part I 1.8 0–1 2–4
handwriting MDS-UPDRS Part II 2.7 0–1 2–4
fatigue MDS-UPDRS Part Ip 1.13 0–1 2–4
urinary problems MDS-UPDRS Part Ip 1.10 0–1 2–4
pain and other sensations MDS-UPDRS Part Ip 1.9 0–1 2–4
cognitive disorder MoCA SUM 26–30 <26

Table 6. Extended symptoms data set consisting of symptoms handpicked by the
expert and the most influential symptoms ranked by Algorithm 1. Details about the
symptoms can be found in Tables 2 and 5.

Motor symptoms Non-motor symptoms Epidemilogical symptoms
bradykinesia daytime sleepiness age

tremor impulsivity disease duration

gait depression

dyskinesia hallucinations

ON/OFF fluctuations sleep problems

toe tapping handwriting

constancy of rest fatigue

facial expression urinary problems

finger tapping pain and other sensations

hand pronation/supination

5.3.2 Revised results and discussion

The extended symptoms data set was used as an input to our methodology for
determining medications dosage change patterns in PPMI data using predic-
tive clustering trees (presented in Section 4.2). A flowchart outlining the input,
output, and method used in this experimental setting is presented in Figure 7.
The obtained model for symptoms scenarios that caused clinicians reaction with
medications dosage change is presented in Figure 8.

The revised model for dosage changes is slightly di↵erent from the original
model presented in Figure 6. The roots of the trees are the same, i.e. the clin-
ician’s decision about modifying the patient’s medications treatment is mostly
influenced by the age of the patient. For younger patients, the decision is influ-
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Fig. 7. A flowchart presenting the input, output, and method used for determining pat-
terns of medications dosage change from the extended symptoms data. The extended
symptoms data set is presented in Table 6.

Fig. 8. Pruned predictive clustering tree modeling the dosage changes for three groups
of medications. The model is generated on the extended set of Parkinson’s disease
patients symptoms. For improved model readability, the minimal number of covered
instances is set to 20.

enced also by their on/o↵ fluctuations and impulsivity. The right-hand side of the
subtree concerning younger patients is di↵erent. In this subtree, the symptoms
that influence the dosage change of antiparkinson medications are the newly in-
troduced symptoms: pain and other sensations, hand pronation/supination, and
handwriting. Path 1 and Path 2 are the same in both models. Path 4 in both
models reveals medications change pattern [yes, no, no], indicating that based
on the symptoms patterns (the paths from the root to the leaf of the tree) the
clinicians consider changing the dosage of levodopa, and leave the dosages of
dopamine agonists and MAO-B inhibitors unchanged. Paths 3.1 and 3.2 sug-
gest that the clinician should consider updating the dosages of all antiparkinson
medications which is similar to Path 3 of Figure 6.

For each of the medications groups, Table 7 presents the classification accu-
racy of the default model, revised multitask PCT model, revised single-task PCT
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Table 7. Comparison of the classification accuracy obtained by the default model, the
pruned multitask PCT model, the pruned single-task PCT models, and the random
forest ensemble model on the extended symptoms data set.

Medications Default Multitask Single-task Random forest
group model PCT model PCT model ensemble
Levodopa 0.637 0.657 0.671 0.683
Dopamine agonists 0.501 0.631 0.630 0.642
MAO-B 0.518 0.583 0.572 0.615

models, and random forest multitask model. Results are obtained using 10-fold
cross-validation. As it is the case with the model from Figure 6, the accuracy
values obtained by the multitask PCT model are comparable to those obtained
by the single-task PCT model and are better when compared to the default
model. The multitask random forest ensemble returned the best classification
accuracy for all targets. This model also has an improved classification accu-
racy for dopamine agonists and MAO-B compared to models from Section 5.2
(see Figure 6 and Table 4). This improvement can be explained with the ad-
ditional information available in the extended set of attributes and non-trivial
interactions between di↵erent targets, which can be captured by ensembles. The
main disadvantage of the ensemble multitask models is their lack of model inter-
pretability. The Wilcoxon [49] paired test revealed that for the target variable
levodopa the random forest ensemble performs significantly better than our mul-
titask approach (↵=0.05, p-value=0.012). For the target variable MAO-B, the
multitask approach performs significantly better than the single-task approach
(↵=0.05, p-value=0.018). Other di↵erences were not significant. We used the
same folds across approaches.

The classification accuracy of both the revised multitask PCT model and the
revised single-task PCT models are lower than the accuracies of the models gen-
erated on the original symptoms data set (Table 2). A reason for this di↵erence
may be the fact that our models are trained on and reflect the history of clin-
icians’ decisions, and do not necessarily reflect the actual symptoms clinicians
should react to.

5.3.3 Medical evaluation of the results

For patients covered by rules from Path 1 and Path 2 it is reasonable to introduce
levodopa and try to provide the optimal dosage even in younger patients (average
age of 53 years) when they have on/o↵ fluctuations (i.e. disease is rapidly pro-
gressing). The presence of impulsivity dictates the medications dosage changes
the clinician should make. Path 3.1 covers younger patients (average age of
52.42 years) who su↵er from severe bradykinesia (NP3BRADY = 1.94± 0.846).
Their overall motor symptoms are severe, i.e. the sum of MDS-UPDRS Part III

6 In further analysis of the tree leaves in the model from Figure 8 we calculated average
symptom values of covered patients.
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(NP3SUM) is 34.03± 11.99. Patients’ quality of daily living is a↵ected, i.e. the
sum of MDS-UPDRS Part II (NP2SUM) is 13.85 ± 6.36. Along with the pres-
ence of pain, many changes in medications dosages are done in an e↵ort to better
manage the advanced disease severity. Patients who do not have problems with
pain and are treated with [no,yes,yes] medications dosage change pattern are
patients who also have severe motor symptoms (NP3SUM = 31.06 ± 0.84 and
disturbing bradykinesia (NP3BRADY = 1.71 ± 0.84)). However, their overall
status is slightly better and the mild problems with pain lead to more dosage
changes of dopamine agonists and MAO-B inhibitors, and a stable treatment
with levodopa.

Patients covered by Path 4 are overall in a better condition that patients
mentioned in previous paths. Their motor symptoms are less severe (NP3SUM =
20.39±9.15), they do not have problems with on/o↵ fluctuations, they have mild
bradykinesia, and have no cognitive problems. Their handwriting seems to be a
useful marker of disease progression which leads to dosage changes in levodopa.
Changes of medication dosages for patients covered by Path 3.2 are imposed
by the problematic impulsivity. Dosages of dopamine agonists are lowered to
stabilize impulsivity, while levodopa is increased in order to control the motor
symptoms. Younger patients who do not have problems with impulsivity (nor
problems with on/o↵ fluctuations, hand pronation/supination, handwriting) and
are treated with [no,yes,yes] medications dosage change pattern are patients who
are in better condition than all the other patients included in the predictive
clustering tree from Figure 8. Reasonably, only dopamine agonists and MAO-
B inhibitors are modified in an e↵ort for better management of the disease.
Levodopa is either not prescribed or only low dosages are prescribed. Older
patients (average age of 68.45±4.87 years) have problems with many symptoms.
The disease is managed with levodopa, and an optimal regime is sought through
changes.

6 Conclusions

We present the methodology to detect trigger symptoms for change of medica-
tions therapy of Parkinson’s disease patients. We consider trigger symptoms to
be the ones which press the physicians to make modifications of the treatment for
their patients. We test the developed methodology on a chosen subset of time-
stamped PPMI data. The data set o↵ers an insight into the patients’ symptoms
progression through time, as well as the response of physicians following prob-
lematic states of either motor or non-motor symptoms. We identify clinically
confirmed patients’ symptoms indicating the need for medication changes.

The proposed approach allows identifying patient subgroups for which certain
medications modifications have either a positive or a negative e↵ect. By post
analysis of the patients who respond well to the medications modification and
those who do not, and the underlying characteristics of each group, we may be
able to assist the physicians with the therapy modifications for a given patient
by narrowing the number of possible medication prescriptions scenarios.
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We also present an algorithm for determining the symptoms which have
the largest influence on the change of the Parkinson’s disease patients’ overall
status. These are the symptoms that change most frequently as the status of the
patient improves/declines. We relate this work with our previous work, where
we developed a methodology for determining groups of patients with similar
severity of symptoms and establishing how the disease progresses in terms of the
severity of several groups of symptoms.

Our results show that some of the most impactful symptoms for changes in
the patients overall status detected by Algorithm 1, are currently not considered
by the clinicians when deciding about the change of antiparkinson medication
dosages. This requires further study and o↵ers an opportunity for improved
disease management in the future.

In future work, we plan to apply model explanation approaches to describe
relevant subgroups of patients, therapy change patterns with a positive influence
on the control of symptoms, and therapy patterns which are more likely to lead
to side e↵ects. There are some open opportunities in the analysis of more than
one previous time point. Taking longer history into account we might be able to
detect groups of patients which do not react well to the changes in antiparkinson
medications.
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Zanuy. Analysis of in-air movement in handwriting: A novel marker for Parkin-
son’s disease. Computer Methods and Programs in Biomedicine, 117(3):405–411,
2014.

[10] J. Ferreira, R. Katzenschlager, B. Bloem, U. Bonuccelli, D. Burn, G. Deuschl,
E. Dietrichs, G. Fabbrini, A. Friedman, P. Kanovsky, et al. Summary of the
recommendations of the EFNS/MDS-ES review on therapeutic management of
Parkinson’s disease. European Journal of Neurology, 20(1):5–15, 2013.

[11] T. Foltynie, C. Brayne, and R. A. Barker. The heterogeneity of idiopathic Parkin-
son’s disease. Journal of Neurology, 249(2):138–145, 2002.

[12] S. H. Fox, R. Katzenschlager, S.-Y. Lim, B. Ravina, K. Seppi, M. Coelho,
W. Poewe, O. Rascol, C. G. Goetz, and C. Sampaio. The movement disorder
society evidence-based medicine review update: Treatments for the motor symp-
toms of Parkinson’s disease. Movement Disorders, 26(S3):S2–S41, 2011.

[13] D. Gil and M. Johnson. Diagnosing Parkinson by using artificial neural networks
and support vector machines. Global Journal of Computer Science and Technol-

ogy, 9(4):63–71, 2009.
[14] C. G. Goetz, B. C. Tilley, S. R. Shaftman, G. T. Stebbins, S. Fahn, P. Martinez-

Martin, W. Poewe, C. Sampaio, M. B. Stern, R. Dodel, et al. Movement Disorder
Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS): Scale presentation and clinimetric testing results. Movement Disorders,
23(15):2129–2170, 2008.

[15] M. M. Hoehn and M. D. Yahr. Parkinsonism onset, progression, and mortality.
Neurology, 17(5):427–427, 1967.

[16] A. Holzinger. Trends in interactive knowledge discovery for personalized medicine:
Cognitive science meets machine learning. IEEE Intelligent Informatics Bulletin,
15(1):6–14, 2014.

[17] A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees. Accuracy of clinical
diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100
cases. Journal of Neurology, Neurosurgery & Psychiatry, 55(3):181–184, 1992.

[18] J.-W. Kim, Y. Kwon, Y.-M. Kim, H.-Y. Chung, G.-M. Eom, J.-H. Jun, J.-W. Lee,
S.-B. Koh, B. K. Park, and D.-K. Kwon. Analysis of lower limb bradykinesia in
Parkinson’s disease patients. Geriatrics & Gerontology International, 12(2):257–
264, 2012.

[19] K. Kira and L. A. Rendell. The feature selection problem: Traditional methods
and a new algorithm. In Proceedings of the Tenth National Conference on Artificial

Intelligence, volume 2, pages 129–134, 1992.

6.2. Related Publication 121



[20] D. Kocev, C. Vens, J. Struyf, and S. Džeroski. Ensembles of multi-objective
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Chapter 7

Conclusions

Our work provides novel approaches to descriptive data mining of Parkinson’s disease data.
We address Parkinson’s disease progression and therapy modification. In this chapter, we
provide a summary of the hypotheses from Chapter 1 and the scientific contributions
covered in Chapters 4, 5 and 6. We conclude our work with ideas for future work.

7.1 Summary of Contributions

The thesis presents improvements in three research problems related to Parkinson’s disease
progression management.

1. Development of improved algorithms for classification rule learning and subgroup dis-
covery. We examined the advantage of separating the refinement and selection phase
of the rule learning process. For that purpose, in Chapter 4 we introduced two new
beam search algorithms for rule learning, one for subgroup discovery (DoubleBeam-
SD) and one for classification rule learning (DoubleBeam-RL). Both algorithms em-
ploy a two-step phase separation: i) they use separate beams for the refinement
and selection phase of rule learning and ii) they offer the possibility to use sepa-
rate heuristics for rule refinement and rule selection. The deployment of separate
heuristics exploiting specifics of the refinement and selection phase and the utiliza-
tion of separate beams widens the search space and can construct rules which might
otherwise not have been found by the current state-of-the-art algorithms.

We compared the performance of the DoubleBeam-SD algorithm and the DoubleBeam-
RL to their state-of-the-art counterparts. Experiments on 20 UCI data sets showed
that the performance of each of the considered algorithms depends on their param-
eters. In the classification rule learning, the experimental results confirm previously
shown benefits of using two separate heuristics for rule refinement and rule selec-
tion—comparable or increased predictive power and rules with better descriptive
power. In subgroup discovery, DoubleBeam-SD algorithm variants outperform sev-
eral state-of-the-art related algorithms.

2. Development of a methodology for Parkinson’s disease progression. We developed
a methodology for the analysis of short time series Parkinson’s disease data. The
methodology is based on clustering of temporal symptoms data (Chapter 4). We
show that patients are divided into groups which can be characterized with similar
symptoms, i.e. their overall status. The results show that these groups of patients
can be ordered (either totally or partially) in accordance with the severity of the
symptoms indicating the patients’ overall status. Since the status of patients is
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bound to change through time due to both the natural progression of the disease as
well as the antiparkinson therapies, the patients change cluster membership between
time points, thus indicating the improvement or degradation of their status.

As a starting point for determining frequent patterns of disease progression, we use
patient’s assignment to clusters. Since the number of available time points for each
patient is limited, we adapted the skip-grams approach to obtain more robust and
more reliable patterns of disease progression. Post analysis showed that patients
that share similar patterns of disease progression also share etymological, motor, and
non-motor symptoms.

3. Development of a methodology for detection of medications changes. We presented
a methodology for detecting patterns of medications dosage changes based on the
patients’ status (Chapter 6). We introduced a predictive clustering trees (PCT)-
based methodology for detection of medications changes. The generated models
serve three purposes: i) determine which symptoms influence the clinicians to modify
the patients’ therapies, ii) determine patterns of antiparkinson medications dosage
changes in response to the patients’ symptoms, and iii) identify groups of patients
that are similar in regards to both the symptoms they are experiencing as well as
the prescribed therapy modifications.

The experiments show that the multitask models exhibit comparable or better predic-
tive performance in comparison to the respective single task models, with the added
advantage of simultaneously assessing changes in patients’ therapies. The identifi-
cation of patterns in therapy modifications and groups of similar patients is a step
closer to a more personalized treatment of Parkinson’s disease patients. The method-
ology can be adapted to other areas where the status conditioned on actual changes
need to be examined. The methodology can be used as a foundation for building a
decision support system, where the expert knowledge and the knowledge obtained
from our methodology are merged. We also present the algorithm which detects the
symptoms with the strongest impact on significant changes in the patients’ overall
status.

7.2 Summary of Hypotheses Confirmations

In Section 1.3 we hypothesized that the separation of the two phases of the rule learn-
ing process will lead towards the classification rule learning algorithms and the subgroup
discovery algorithms generating rules with the improved quality compared to the rules pro-
duced by their state-of-the-art counterparts. We also hypothesized that the introduction
of two beams and separate heuristics for each of the phases in the rule learning process will
widen the search space and enable the algorithms to encounter rules which would otherwise
be missed by standard algorithms. We address these issues in the publication included in
Section 4.2. We present two new algorithms for subgroup discovery and rule learning, and
we empirically show that the two-fold separation of the rule learning phases can widen
the search place and thus enable the new algorithms to generate rules which would have
otherwise been missed. The hypothesis was partly confirmed since the rules generated by
our algorithms are comparable and in some cases better than the rules generated by the
state-of-the-art algorithms used in the comparison.

Our second hypothesis was that Parkinson’s disease patients can be divided into groups
of patients with similar symptoms. These groups of patients can be partially ordered
according to the severity of the symptoms describing each of the clusters. We address
these issues in the publication included in Section 5.2. The hypothesis was confirmed. We
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empirically show that the patients’ status will change through time and will be reflected
through patients’ membership in different groups at separate time points. We show that
the clusters are at least partially ordered, and the transition between two clusters can
indicate a transition in the overall status of the patient, thus signaling an improvement or
a deterioration of the patients’ quality of life. Using skip-grams we were able to discover
robust patterns of disease progression based on the patients’ change of cluster assignments.

Our third hypothesis was that by using multitask approach we will be able to determine
symptoms that trigger changes in medication dosages. The hypothesis was confirmed. In
the published publication from Section 6.2 we empirically show that therapy dosage mod-
ifications are the result of the patients’ status reflected by the clinical evaluation of their
symptoms. We also include the consulting clinicians’ interpretation of modifications of pa-
tients’ therapies as well as references to the medical literature for treatment of Parkinson’s
disease patients.

7.3 Strenghts and Limitations of the Developed Approaches

In this section, we analyze the strengths of the algorithms and methodologies presented in
the thesis, and critically evaluate their limitations.

7.3.1 Strenghts

The developed algorithms and methodologies are directed towards improved methods for
the analysis of Parkinson’s disease progression data, emphasizing the importance of using
descriptive data mining methods for medical data analysis for a more personalized care of
patients.

• The DoubleBeam-SD and DoubleBeam-RL algorithms exploit the use of separate
heuristics for the refinement and selection phase in the rule learning process.

• The introduction of two beams and separate heuristics for each phase widens the
search space thus allowing for the discovery of good rules which might have otherwise
been overlooked.

• Side effects of the presented inverted heuristics are longer rules which may offer higher
descriptive power to the built models.

• DoubleBeam-RL and DoubleBeam-SD algorithms are publicly available on GitHub
and in the ClowdFlows platform which allows for the repeatability of experiments.

• The proposed methodologies address an important issue of determining patterns
of disease progression and medication therapy modifications in order to keep the
patients’ status stable.

• The methodology for determining disease progression patterns using skip-grams pre-
serves the temporal nature of patients’ data which is not the case when using other
methods for pattern detection such as itemsets from association rule learning.

• The methodologies for the analysis of Parkinson’s disease progression and medications
dosage changes preserve the individuality of each patient. Patterns are determined
based on the changes in the overall status or in therapy modifications of each patient
separately.
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7.3.2 Limitations

Users of the algorithms and methodologies presented in the thesis should be aware of the
following issues:

• The DoubleBeam-SD and DoubleBeam-RL algorithms do not employ pruning tech-
niques. The increased search space can lead to overfitting. Users can use a separate
validation data set to select the optimal size of the rules.

• The DoubleBeam-SD and DoubleBeam-RL algorithms are unable to handle big data.

• The performance of the DoubleBeam-RL algorithm and the DoubleBeam-SD algo-
rithm depends on their parameters. As a start, the users can use the default pa-
rameters from Chapter 4. We suggest using cross-validation to determine optimal
parameter values.

• Patterns of disease progression are based on clustering computed on the aggregate
data presenting the overall status of Parkinson’s disease patients. Even though
Parkinson’s disease clinicians often use this approach as a validator of the overall
status of their patients (Goetz et al., 2008), the approach does not reveal the actual
symptoms affecting the change of patients’ status over time. A possible solution are
better multi-view clustering approaches.

• Discovered patterns of medications change are overly general. We obtain them with
a yes/no model indicating whether a change in the LEDD value of a particular
antiparkinson medication has occurred or not. Further investigation of the models
and instances covered by each pattern can reveal what are the actual medications
dosage changes that have occurred. This is a time-consuming process which is not
yet automated.

• The methodology is able to handle only preprocessed PPMI data and cannot handle
data from wearable sensors of Parkinson’s disease patients. The performance of our
methodologies depends on the quality of the used data, which can be subjectively
influenced by both the clinicians and the patients when evaluating the symptoms.
Even though the clinicians follow the guidelines for the evaluation of Parkinson’s
disease patients, the final mark is subject to their own personal decision.

• The results are evaluated by consulting clinicians and either confirmed or refused
with references from the Parkinson’s disease medical literature. The disadvantage
of this approach is that the clinicians may confirm or deny findings based on their
experience and knowledge, and not based on objective criteria.

• The methods developed in Chapters 5 and 6 are not made publicly available due to
their close dependence and integration with the data sets used. The interested reader
is welcome to contact the author.

7.4 Further Work

The three main research contributions described in Chapters 4, 5, and 6 show promising
results and deserve further investigation.

The newly developed algorithms for rule learning and subgroup discovery (DoubleBeam-
RL and DoubleBeam-SD) demand further research in terms of stopping criteria and rule
pruning heuristics, e.g., a post-processing rule pruning similar to the one available in Rip-
per. In the subgroup discovery setting, experimental results showed the advantage of using
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WRACC over the traditional rule learning heuristics in obtaining interesting subgroups.
Given the interest of clinicians in detecting interesting subgroups of patients, the develop-
ment of new heuristics specialized for the detection of interesting subgroups is a promising
research path which should be explored in the future. An interesting approach is to evalu-
ate the performance of lift, the heuristic used in the Hedwig system (Vavpetič et al., 2013)
for semantic subgroup discovery.

Despite being faster than the APRIORI-SD algorithm and the ability to handle medium
size data sets, the DoubleBeam-SD algorithm is not able to handle large data sets due
to space and time complexity. Also, DoubleBeam-RL cannot handle very large data sets.
This is one of the main disadvantages of rule learning algorithms using a covering approach.
Lower memory consumption could be achieved with more efficient data structures, while
significant speedups could be gained with instance sampling and feature subset selection,
as well as with parallelization of the algorithms. Due to the two beams, a degree of
parallelization could be achieved with DoubleBeam algorithms.

Results from the multi-view clustering setting for determining groups of similar patients
are underwhelming in terms of the quality of produced clusters. However, the results show
the importance of autonomic symptoms for the quality of life of Parkinson’s disease pa-
tients. Other approaches to multi-view learning should be explored as this could reveal
interesting knowledge about the importance of symptoms and possibly new patterns of
disease progression. An interesting direction for further work is also to explore other clus-
tering approaches, in particular, hierarchical clustering. Attributes from the MDS-UPDRS
and MoCA questionnaires can be ordered hierarchically and exploiting this characteristic
may lead to better-defined groups of patients with similar symptoms. Transitions between
such clusters could reveal more specific and detailed patterns of disease progression.

The rules describing the obtained clusters are either very general (merged view setting)
or very specific (multi-view setting) and may not be of sufficient assistance to the clinicians.
This is due to the nature of the used data, i.e. a vector of attribute sums (merged view)
or a high-dimensional vector of attributes with numeric values. The performance of the
methodology for disease progression patterns should be tested with only a handful of
carefully chosen attributes. Current symptoms’ evaluations are mainly numerical values
which can include evaluation bias either by the clinicians or by the patients. Quantization
of attribute evaluation by nominal values used in the clinicians’ everyday practice (i.e.
normal, non-problematic, problematic) could decrease the variance in attribute evaluation,
potentially improving the performance of the methodology. An expert-assisted decrease of
feature space dimensionality may contribute to more meaningful and helpful descriptions
of groups of patients.

The discovered groups of patients with similar patterns of disease progression require
further study and offer an opportunity for improved disease management. Investigation
of the symptoms, mostly epidemiological, that are significant for the patients from each
group can provide knowledge that can help the clinicians to prepare trajectories of disease
progression for their patients and decide what steps they can take to slow the disease pro-
gression. An interesting route is to look also into the intersection of disease progression
and medication therapy modification patterns described in Chapter 6. Knowing the char-
acteristics of groups of patients that react well to therapy modifications and have a stable
disease progression can rank therapies according to their success.

Descriptive models could be used to describe relevant subgroups of patients for whom
certain therapy change patterns can have a positive influence on the control of symptoms,
or therapy patterns which are more likely to lead to undesired side effects.

In time series analysis there are opportunities for analyzing more than one previous
time point. Taking longer history into account might lead to the detection of groups of
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patients which do not react well to the changes in antiparkinson medications.
In terms of therapy modifications, the issue of actual dosage changes in antiparkinson

medications (increase, decrease, or unchanged medication dosage) should be addressed.
One step closer towards a more personalized treatment of Parkinson’s disease patients is
to numerically predict dosage changes. Another interesting path for research is to see
how the actual therapy influences the status of the patients. Currently, this thesis only
addresses the Levodopa Equivalent Daily Dosage of antiparkinson medications and does
not take into account any knowledge of how the frequency and prescribed dosage for one
intake influence the improvement of the patients’ status. We will also explore the impact
of medication changes on the patients’ status and their future symptoms.

Finally, the proposed technologies have to be integrated into the medical practice.
We see an opportunity for this through recent initiatives for personalized medicine and
exploitation of electronic health records. The methodology can be used as a foundation
for building a decision support system, where the expert knowledge and the knowledge
obtained from our methodology are combined in order to generate better decision support
models.
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Appendix A

A.1 Appendix to Chapter 5

Algorithm A.1 presents the pseudo code of the methodology for detection disease pro-
gression patterns using skip-grams. The groundwork for this methodology is presented in
Chapter 5. The input to the methodology is the vector of assigned cluster labels (see Al-
gorithm 1 in Chapter 5) and output is the vector of detected disease progression patterns.
The output is generated over the cluster crossing sequences for all patients. More details
can be found in Chapter 5.

Algorithm A.1: Pseudo code of the methodology for detection disease progres-
sion patterns using skip-grams. This methodology is presented in Chapter 5.

Input: : c — assigned cluster labels;

p — number of patients;

Output: : diseaseProgressionPatterns — patterns of disease progression;

Parameters: : s — number of skips;

n — lenght of n-gram;

// Initialize the vector of cluster crossing sequences to an empty list.

clusterCrossingSequences  []

// Fill the vector for cluster crossing sequences with sequences from all patients.

for patient in [1 : p] do

clusterCrossingSequences  getClusterCrossingSequence(c, pi)
end

// Get patterns of disease progression using skip-grams.

patterns  skipGrams(clusterCrossingSequences, s, n)

diseaseProgressionPatterns  sort.ByDecreasingFrequency(patterns)

A.2 Appendix to Chapter 6

Algorithm A.2 presents the pseudo code of the methodology for detection of medications
change patterns as a result of the current status of the patient. This is a multitask learn-
ing methodology that uses predictive clustering trees to detect dosage changes for all
three groups of antiparkinson medications: levodopa, dopamine agonsists, and MAO-B
inhibitors. The methodology is presented in Chapter 6.

A very important step in the methodology is the preparation of data. After the initial
time-stamping of both the symptoms and medications data, the symptoms data is pre-
processed, constructed, and evaluated according to the consulting clinicians’ instructions.
A short description of these instructions can be found in Chapter 6. Medication data is
preprocessed in such a way that for each patient and each medication group, the algorithm
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records dosage changes which occurred between two consecutive visits. These changes are
associated with the current.

The symptoms are merged with the medication changes between the current and the
next visit. Medication change patterns are detected using multitask predictive clustering
trees (PCT).

Algorithm A.2: Pseudo code of the methodology for detection of medications
change patterns from Chapter 6.

Input: : S — PPMI symptoms data;

M — PPMI medications data;

Output: : PCT tree with medications change patterns;

// Time-stamp symptoms data. Associate the symptoms with the patient and the visit.

TS  timeStampData(S)

// Time-stamp medications data. Associate the medications data with the patient and the

visit.

TM  timeStampData(M)

// Pre-process symptoms data. Select, construct, and evaluate symptoms according to the

clinicians’ instructions.

PTS  preProcessSymptomsData(TS)

// Pre-process medications data. For each instance (patient-visit pair) and each

medications group record whether a dosage change has occurred between two consecutive

time points (yes/no ).
PTM  timeStampData(TM)

// Merge pre-processed symptoms and medications data.

data  mergeData(PTS, PTM)

// Detect medication change patterns using multitask predictive clustering trees (PCT).

Target variables are the three antiparkinsonian medications groups: levodopa, dopamine

agonists, and MAO-B inhibitors.

PCT  trainPCT(data, targetVariables = {levodopa, dopag, MAOB})
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