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Doctoral Dissertation
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Abstract

In the thesis, we address the task of polynomial regression, i.e., inducing regression models
based on polynomial equations, from data. We aim at improving and extending the existing
approaches to learning polynomial regression models in several directions. First, we improve
the existing methods for addressing the issue of over-fitting and improve the existing methods
for ordering the search space of candidate polynomial equations. Second, we extend the scope
of existing methods towards learning piecewise, multi-target, and classification via regression
polynomial models. The central hypothesis of the thesis is that the improvements and
extensions of the existing approaches are going to improve the performance of the polynomial
models on regression and classification tasks. We also conjecture that their performance will
be comparable to the performance of models obtained with other state-of-the-art regression
and classification approaches.

To accomplish the aims and test the hypotheses, we start with performing a survey
of existing research on learning regression models with focus on evaluation metrics used
for regression. Then we develop new heuristics and refinement operators, and implement
them into the algorithm Ciper for inducing polynomial regression models. The algorithm
is capable of learning piecewise and multi-target polynomial models and polynomial models
for classification via regression. Finally, we perform empirical evaluation and comparative
analysis of the performance of polynomial models obtained with Ciper and the performance
of models obtained with other approaches.

The results of the empirical evaluation and the comparative analysis show that the newly
developed search heuristics and refinement operators lead to improved performance of the
learned regression models. The performance of models induced with Ciper is comparable
to the performance of models induced with other commonly used regression algorithms.
Also, classification models based on multi-target polynomials have predictive performance
comparable to the performance of models obtained with other classification approaches.
Finally, we also show that piecewise polynomial models of limited degree perform comparable
to polynomial models of higher (unlimited) degrees.

The thesis contribution to the field of machine learning is a new machine learning al-
gorithm for inducing regression models based on polynomial equations. The algorithm is
carefully designed by analyzing and comparing the performance of different methods for
generating and evaluating candidate equations. The algorithm also extends the scope of
polynomial regression to piecewise and multi-target regression models that can also serve
well for solving classification tasks following the classification via regression approach.
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Povzetek

V disertaciji obravnavamo nalogo polinomske regresije, t.j. indukcijo regresijskih modelov,
ki temeljijo na polinomskih enačbah, iz podatkov. Naš cilj je namreč izbolǰsanje in razširi-
tev obstoječih pristopov za učenje modelov polinomske regresije v več smereh. Najprej smo
izbolǰsali obstoječe metode za obravnavanje problema pretiranega prilagajanja (angl. over-
fitting) kot tudi obstoječe metode za urejanje preiskovanega prostora polinomskih enačb.
Nato smo razširili področje uporabe obstoječih metod polinomske regresije z učenjem od-
sekoma polinomskih modelov, večciljnih polinomskih modelov in polinomskih modelov za
klasifikacijo z regresijo (angl. classification via regression). Osrednja hipoteza disertacije je,
da bodo izbolǰsave in razširitve obstoječih pristopov izbolǰsale učinkovitosti oz. uspešnost
polinomskih modelov na nalogah regresije in klasifikacije. Prav tako domnevamo, da bo nji-
hova uspešnost primerljiva z uspešnostjo modelov, dobljenih z drugimi sodobnimi pristopi
k regresiji in klasifikaciji.

Za doseganje ciljev in preskus hipoteze smo najprej pregledali obstoječe raziskave na
področju učenja regresijskih modelov, s poudarkom na metrikah vrednotenja, ki se jih upo-
rablja za regresijske modele. Nato smo razvili nove hevristike in izbolǰsane operatorje do-
delave (angl. refinement operators) in jih vgradili v algoritem Ciper za učenje polinomskih
regresijskih modelov. Algoritem je sposoben učenja odsekoma polinomskih in večciljnih
polinomskih modelov kot tudi polinomskih modelov za razvrščanje oz. klasifikacijo z regre-
sijo. Na koncu smo empirično ovrednotili in primerjalno analizirali uspešnost polinomskih
modelov, dobljenih z algoritmom Ciper, in uspešnost modelov, dobljenih z drugimi pristopi.

Rezultati empirične ocene in primerjalne analize kažejo, da na novo razvite preiskovalne
hevristike in izbolǰsani operatorji dodelave vodijo do izbolǰsanja učinkovitosti naučenih re-
gresijskih modelov. Uspešnost modelov, naučenih z algoritmom Ciper, je primerljiva z
uspešnostjo modelov, dobljenih z drugimi pogosto uporabljanimi regresijskimi algoritmi.
Prav tako imajo modeli za klasifikacijo z regresijo, ki temeljijo na večciljnih polinomih, na-
povedno uspešnost primerljivo z uspešnostjo modelov, dobljenih z drugimi klasifikacijskimi
pristopi. Na koncu smo tudi pokazali, da so odsekoma polinomski modeli z omejeno stopnjo
primerljivi s polinomskimi modeli vǐsje stopnje.

Prispevek disertacije k področju strojnega učenja je nov algoritem strojnega učenja za
indukcijo regresijskih modelov, ki temeljijo na polinomskih enačbah. Algoritem je skrbno
zasnovan z analizo ter primerjavo uspešnosti različnih metod za generiranje in vrednotenje
kandidatskih enačb. Algoritem razširja tudi področje polinomske regresije z učenjem odse-
koma polinomskih in večciljnih polinomskih regresijskih modelov, ki lahko služijo tudi za
reševanje klasifikacijskih nalog v skladu s pristopom klasifikacije z regresijo.
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Abbreviations

AIC = Akaike Information Criterion.
BIC = Bayesian Information Criterion.
CE = Classification Error.
Ciper = The Ciper algorithm; Ciper stands for constrained induction of

polynomial equations for regression.
CV = Cross-Validation.
CVCiper = The Ciper algorithm using the CV heuristics.
CVCiperX = The CVCiper algorithm using expansion of attributes. The algo-

rithm induces piecewise polynomial models.
CiperX = The Ciper algorithm using expansion of attributes and one of the

MDL or the CV heuristic. The algorithm induces piecewise poly-
nomial models.

J48 = The WEKA Java implementation of the C4.5 algorithm for learning
decision trees.

LR = The WEKA Java implementation of the Linear Regression.
MCD = Model Complexity by Polynomial Degree.
MCL = Model Complexity by Polynomial Length.
MCS = Model Complexity by Polynomial Size.
MDL = Minimum Description Length.
MDLCiper = The Ciper algorithm using the MDL heuristics.
MDLCiperX = The MDLCiper algorithm using expansion of attributes. The al-

gorithm induces piecewise polynomial models.
MSE = Mean Squared Error
MT = The WEKA Java implementation of the M5 algorithm for inducing

Model Trees.
NaiveBayes = The WEKA Java implementation of the Naive Bayes classifier.
NML = Normalized Maximum Likelihood.
RMSE = Root Mean Squared Error.
RRMSE = Relative Root Mean Squared Error.
RSS = Residual Sum of Squares.
RT = The WEKA Java implementation of the M5 algorithm for inducing

Regression Trees.
SMO = The WEKA Java implementation of support vector machines,

which uses the Sequential Minimal Optimization algorithm for effi-
ciently solving the optimization problem in training SVMs.

SVM = Support Vector Machines.
SMO-E1 = SMO with polynomial kernel with exponent 1.
SMO-E2 = SMO with polynomial kernel with exponent 2.
SMO-KR = SMO with a kernel with a radial basis function.
SSC = Search Space Complexity.
WEKA = Waikato Environment for Knowledge Analysis is a collection of ma-

chine learning algorithms for data mining tasks.
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1 Introduction

Regression models [27] predict the value of a dependent numeric variable from the values of
independent variables, also referred to as predictors (in statistics, predictors are also referred
to as regressors). The regression task is the problem of inducing or learning a regression
model from a table of measured values of the dependent and independent variables. The
simplest approach to the regression task is linear regression, where the dependent variable
is modeled as a linear combination of the predictors. More advanced regression approaches
and models include regression and model trees [4] as well as multivariate adaptive regression
splines (MARS) [18].

This thesis deals with the task of polynomial regression, i.e., the task of inducing a
regression model in the form of a polynomial equation that predicts the value of a dependent
numeric variable. We build upon an existing approach to polynomial regression, Ciper
[61]. Ciper performs heuristic search through the space of candidate polynomial equations
starting with the simplest polynomial and adding terms to it at each step of the search to
arrive at more complex ones. Each candidate structure is matched against training data
and values of constant parameters are obtained that lead to the maximal fit to the data.
However, using only degree of fit to guide the search is not a good idea, since it certainly
leads to over-fitting the training data [27]. Note that polynomial models can perfectly
interpolate any data, since it is known that any n points can be perfectly interpolated with
an (n− 1)-th degree polynomial. To address this issue, Ciper combines the degree of fit
with the polynomial’s complexity to guide the heuristic search.

We address several limitations of the original version ofCiper in this thesis. First, Ciper
uses an ad-hoc weighting scheme to combine degree of fit with the polynomial’s complexity
to obtain the value of the heuristic function for a given candidate polynomial. In contrast, we
perform here an in-depth exploration of different strategies to fight the issue of over-fitting
with polynomial regression models. Second, Ciper uses a straightforward simple-to-complex
ordering of the search space that, combined with a specific heuristic function, might lead to
under-searching the space of candidate models. In the thesis, we explore different refinement
operators for ordering the space of polynomial models. Third, Ciper focuses on learning a
polynomial model that predicts the value of a single dependent variable and is valid over
the whole training dataset. Here, we extend the scope of polynomial regression toward
multi-target regression models that can simultaneously predict several dependent variables.
Also, we develop approaches to learning piecewise polynomial models. Finally, we use multi-
target polynomial models on classification task by applying the classification via regression
approach.

1.1 Aims and Goals

The central aim of this thesis is to overcome the three limitations of Ciper outlined above.
To address the issue of over-fitting, we implement and analyze the performance of two

well-known strategies used in other machine learning approaches. The first is the minimal
description length (MDL) principle [23] that introduces bias towards simpler models to
avoid over-fitting. To this end, we are going to develop a proper MDL scheme for evaluating
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polynomial regression models and compare its performance to the ad-hoc MDL scheme based
on the Akaike information criterion [1] and Bayesian information criterion [53, 61], used in
the original version of Ciper. The second strategy for avoiding over-fitting that we are
going to apply in the context of polynomial regression is the use of a separate validation
dataset for model evaluation. More specifically, we are going to perform a cross-validation
of the candidate polynomial structure, in order to estimate its performance on unseen data.

Note that the issue of an optimal heuristic function is closely related to the ordering of
the search space. In particular, combining a proper MDL (or cross-validation) scheme as
a heuristic function with a simple ordering scheme of candidate polynomials might lead to
under-searching the space of candidates. To address this problem, we are going to explore
different refinement operators to order the space of candidate polynomial structures. As
opposed to the simple refinement operator used in the original Ciper [61] that allows small
elementary changes of the current polynomial structures to generate more complex ones,
the new refinement operator, implemented and analyzed here, will allow for more complex
changes of the polynomial structure at each step.

Moreover, we explore the issue of learning complex polynomial models. Namely, the
current version of Ciper can only induce a simple regression model, i.e., a single polynomial
equation that predicts the values of a single dependent variable and is valid on the whole
dataset. In the thesis, we are going to develop approaches to polynomial regression capable
of inducing piecewise polynomial models. We are also going to develop approaches to multi-
target regression modeling, where a single model can simultaneously predict the values of
multiple dependent variables.

Finally, we also aim to evaluate the developed approaches by performing an empirical
comparative analysis of their performance with other state-of-the-art regression approaches.
We are also going to evaluate the developed approach for multi-target regression in the
context of classification by performing classification-via-regression [17]. We are going to
perform the evaluation on a number of standard benchmark datasets for regression and
classification.

1.2 Hypotheses and Methodology

The presented goals of the thesis can be formalized in the five central hypotheses of this
thesis as follows.

H1 The newly developed heuristics for evaluating polynomial regression models, based
on a proper minimal description length scheme for polynomial regression and cross-
validation estimates of a model’s predictive performance on unseen data, improve the
performance of the learned polynomial regression models.

H2 The new refinement operator for ordering the search space of candidate polynomials
that allows for larger changes of the candidate structure at each search step improves
the performance of the learned polynomial regression models.

H3 The polynomial regression models, induced with the approaches developed within the
thesis, have predictive performance comparable to the performance of other commonly
used regression algorithms.

H4 The classification models based on multi-target polynomial regression have predictive
performance equal to or better than other classification via regression approaches, as
well as other classification models.

H5 Piecewise polynomial models of a limited degree achieve predictive performance com-
parable to the performance of polynomial regression models with unlimited degree.
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We use a standard methodological framework for testing the validity of the hypotheses.
First, we survey existing research on learning regression models from data. The focus of the
survey is on metrics for evaluating regression models, including those that are based on the
predictive error of the model, as well as metrics for measuring the complexity of the models.

Second, we develop and implement a new version of Ciper for polynomial regression
that includes the newly developed heuristic measures for evaluating polynomial models, the
new refinement operators, and the new approaches to learning multi-target and piecewise
polynomial models.

Third, we use the new implementation of Ciper to perform an extensive comparative
analysis of its performance and the performance of other state-of-the-art regression and
classification approaches. The experiments include standard regression and classification
benchmark problems used in related studies. The collection of datasets to be used include
single-target regression, multi-target regression, and classification datasets. The analysis of
the experimental results will allow us to test the validity of the five hypotheses outlined
above.

1.3 Scientific Contributions

The work presented within this thesis is expected to lead to the following original contribu-
tions to the fields of machine learning and data mining:

• New heuristic functions and refinement operators for searching the space of polynomial
equations and empirical comparison of their performance with the performance of the
existing ones.

• Generalization of simple polynomial regression models to more complex ones: piece-
wise and multi-target polynomial models for regression.

• Implementation of a machine learning algorithm for inducing simple and complex
regression polynomial models from data incorporating the above elements, as well as
classification models via multi-target polynomial regression.

1.4 Structure of the Thesis

Chapter 2 provides a survey of the existing regression approaches and elaborative descrip-
tion of the previous approaches to polynomial regression. The chapter also provides an
introduction to the minimal description principle and its applications to regression.

The Ciper algorithm for polynomial regression is introduced in Chapter 3. The last
section of this chapter outlines the limitations of Ciper that are going to be addressed in
the rest of the thesis.

Chapter 4 presents the main contributions of the thesis integrated in the new version
of Ciper: the newly developed heuristic measures for evaluating polynomial models, the
new refinement operators, and the new approaches to learning piecewise and multi-target
polynomial models.

The next three chapters deal with the empirical evaluation and the comparative analysis
of the Ciper performance. Chapter 5 introduces the experimental setup and the method-
ology for performing the empirical evaluation and the comparative analysis. Chapter 6
reports and discusses the results of evaluating the performance of the Ciper improvements,
i.e., the newly developed heuristic measures and refinement operators, also in the context of
state-of-the-art regression methods. Similarly, Chapter 7 reports and discusses the results
of evaluating the performance of the Ciper extensions toward multi-target and piecewise
regression models, also in the context of classification.
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The final Chapter 8 provides a summary of the thesis’ contributions and outlines direc-
tions for further research.
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2 Background

In this chapter, we present a summary of the basic concepts used in this thesis. An overview
of machine learning is given in Section 2.1. The research in this thesis builds on top of
linear regression. An introduction to this subject is given in Section 2.2. More specifically
this thesis is about machine learning of polynomial models. In Section 2.3, we present an
introduction to polynomial models.

An introduction into model assessment and selection is presented in Section 2.4. For
solving classification tasks by using the approaches presented in this thesis, we follow the
classification via regression approach, presented in Section 2.5. One of the heuristic functions
that we use for model selection in the thesis is based on ensemble learning. We cover this
subject in Section 2.6. Another heuristic function used is based on the minimum description
length principle. An introduction into this subject is presented in Section 2.7.

2.1 Machine Learning

Machine learning is a branch of artificial intelligence, concerned with the design and devel-
opment of algorithms that are able to improve their behavior based on empirical data. The
empirical data take a form of examples that illustrate relations between observed variables.
A major focus of machine learning research is to automatically learn to recognize patterns
in the examples and make intelligent decisions [22, 39].

A large part of machine learning deals with the task of modeling, i.e., building predictive
models. This models predict the value of a dependent variable from the values of independent
variables, also referred to as predictors. Predictive modeling problems can be divided into
classification and regression problems.

Classification problems involve predicting the values of a categorical (nominal) output
variable. One or more continuous or categorical input variables can be used as predic-
tors. There are a number of methods for solving classification problems that involve simple
continuous predictors, categorical predictors, or both.

Regression problems involve predicting the value of a continuous variable from one or
more continuous or categorical variables. For example, one may want to predict the selling
price of a single family home from various other continuous variables and categorical (nom-
inal) variables. Multiple regression can be applied for this problem, to find a linear equation
that can be used to predict the selling prices from the other variables.

Within machine learning, a number of advanced statistical methods exist for handling
regression and classification tasks with multiple input variables and (typically) a single out-
put variable. These methods include Support Vector Machines (SVM) for classification and
regression, Naive Bayes for classification, k-Nearest Neighbors (KNN) for classification and
regression, Classification and Regression Trees (CART), Multivariate Adaptive Regression
Splines (MARSplines), and others [27]. Large family of regression methods is the class of
general linear regression methods, described below.
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2.2 General Linear Regression

The roots of regression analysis go back to the beginnings of mathematics. The theory of
algebraic invariants developed from the work of 19th century mathematicians such as Gauss,
Boole, Cayley and Sylvester made the linear regression model possible. The theory identifies
those quantities in systems of equations that remain unchanged under linear transformations
of the variables in the system. Some of the new concepts introduced by this theory are
eigenvalues, eigenvectors, determinants, and matrix decomposition methods.

19th century 20th century

Gauss

Linear regression model

Multiple Regression

General Linear Model

Generalized Linear Models

Structural Equation Modeling

Theory of algebraic invariants.
Eigenvalues, eigenvectors, determinants.

The theory was soon extended to the linear regression model and correlation methods.
They serve as the basis for the development of the general linear model. The general linear
model can be seen as an extension of linear multiple regression for a single output variable
[28].

2.2.1 Multiple Regression

The general purpose of multiple regression1 is to quantify the relationship between several
input variables and an output variable. It is assumed that the output (dependent) variable
y is linearly related to the input (independent, predictor) variables X1, · · · ,Xp as below,

y= β0+β1X1+β2X2+ . . .+βpXp+ ε = β0+
p

∑
i=1
Xi ·β j+ ε (1)

where ε is an unobservable random variable (the error component) with mean 0 and variance
σ2. The relationship described by Equation 1 is known as a linear regression model, where
β0,β1, . . . ,βp are unknown parameters and σ2 > 0 is an unknown error variance. The linearity
of the model is a result of its linearity in the parameters β0,β1, . . . ,βp. Transformations
of the input variables (such as powers Xjd and products Xj ·Xk ) can be included in the
model without it losing its characterization as a linear regression model. The regression
coefficients (β0,β1, . . . ,βp) represent the independent contributions of each input variable to
the prediction of the output variable.

Typically, the parameters β are estimated from a set of training data (x1,y1), . . . ,(xN ,yN).
Each xi = (xi,1,xi,2, . . . ,xi,p) is a vector of feature measurements for the i-th case. The most
popular estimation method is least squares, in which the coefficients β = (β0,β1, . . . ,βp)
minimize the residual sum of squares

RSS(β ) =
N

∑
i=1

(yi− (β0+
p

∑
j=1
xi, j ·β j))2 (2)

Denote by X the N× (p+1) matrix with each row an input vector (with a 1 in the first
position, X = (1,X1, . . . ,Xp) ). Similarly, let y = (y0,y1, · · · ,yN) be the N dimensional vector

1In statistics, multiple regression is also referred to as linear regression
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of outputs in the training set. The equation 1 can be rewriten as follows:




y0
y1
...
yN


=




1 x1,1 . . . x1,p
1 x2,1 . . . x2,p
...

...
...

...
1 xN,1 . . . xN,p


 ·




β0
β1
...

βp


+




ε0
ε1
...

εN


 (3)

where (ε0,ε1, · · · ,εN) is the vector of errors/residuals ε.
The residual sum of squares is then:

RSS(β ) = (y−Xβ )T · (y−Xβ ). (4)

Assuming that X has full column rank, and hence XTX is positive definite, by setting
the first derivative to zero

XT · (y−Xβ ) = 0 (5)

the unique solution to the minimization problem defined by Equation 2 is found to be:

β̂ = (XTX)−1 ·XTy. (6)

The variance of residuals σ2 is estimated using the equation:

σ̂2 =
1

(N− p−1)

N

∑
i=1

(yi− ŷi)2 (7)

where ŷi is the predicted value of y at xi.
The multiple regression model can be used to analyze only a single output variable. It

can not provide a solution for the regression coefficients when the independent variables X
are linearly dependent and the inverse of XTX does not exist. Different approaches presented
below can be used to address these issues.

2.2.2 Multiple Output Variables

The general linear model can handle several output variables at once. The y vector of N
observations of a single variable can be replaced by a Y matrix of N observations of m
different Y variables. Similarly, the β vector of regression coefficients for a single Y variable
can be replaced by a β matrix of regression coefficients, with one vector of β coefficients
for each of the m output variables. These substitutions yield what is sometimes called the
multivariate regression model, but it should be emphasized that the matrix formulations
of the multiple and multivariate regression models are identical, except for the number of
columns in the Y and β matrices. The method for solving for the β coefficients is also
identical, that is, m different sets of regression coefficients are separately found for the m
different output variables in the multivariate regression model.

The general linear model can provide a solution for the Equation 2 when the input
variables are linearly dependent and thus the inverse of XTX does not exist. A non-full-rank
matrix doesn’t have a regular inverse. This problem is solved in the general linear model by
using a generalized inverse of the XTX matrix. One way of doing this is to use regularization
approaches like in ridge regression [29] that penalizes the magnitude of the β coefficients.
The ridge regression solutions are given by the following equations:

β λ = (XTX+λ I)−1 ·XTy (8)

where λ controls the amount of penalty related to the magnitude of the coefficients.
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2.2.3 Categorical Variables

The general linear model is frequently applied to analyze data that has categorical (nominal)
input variables. For example, gender is clearly a categorical level variable. There are two
basic methods by which gender can be coded into one or more input variables: the sigma-
restricted method and the overparameterized method [28].

Using the sigma-restricted method, the males are assigned with the value −1 and the
females are assigned with the value 1. The values on the resulting input variable, 1 and −1,
represent a quantitative contrast between males and females. If the regression coefficient
for the variable is positive, the group coded as 1 on the input variable will have a higher
predicted value on the output variable, and if the regression coefficient is negative, the group
coded as −1 on the input variable will have a higher predicted value on the output variable.
The sigma-restricted parametrization of categorical input variables usually leads to XTX
matrices which do not require a generalized inverse for solving the minimization problem
defined by Equation 2.

The overparameterized method for recoding categorical predictors is the indicator vari-
able approach. In this method, a separate input variable is coded for each group identified
by a categorical input variable. For example, females might be assigned a value of 1 and
males a value of 0 on a first input variable identifying membership in the female gender
group. Males would then be assigned a value of 1 and females a value of 0 on a second
input variable identifying membership in the male gender group. This method of recoding
categorical variables will always lead to XTX matrices with redundant columns. Thus, it
requires a generalized inverse for solving the minimization problem defined by Equation 2.

2.2.4 Generalized Linear Models

There are many relationships that cannot be described [40] by a linear equation. There are
two major reasons for this.

The first reason is the distribution of the output variable. The output variable of interest
may have a noncontinuous distribution, and thus, the predicted values should also follow
the respective distribution. For example, we may be interested in predicting one of three
possible discrete outcomes. The output variable can only take on 3 distinct values, and
the distribution of the output variable is said to be multinomial. Or suppose we are trying
to predict how many children families will have, as a function of income and various other
socioeconomic indicators. The output variable number of children is discrete, and most
likely the distribution of that variable is highly skewed (i.e., most families have 1, 2, or 3
children, fewer will have 4 or 5, very few will have 6 or 7, and so on). In this case, it is
reasonable to assume that the output variable follows a Poisson distribution.

The second reason, why the linear model might be inadequate to describe a particular
relationship, is that the effect of the predictors on the output variable may not be linear in
nature. For example, the relationship between a person’s age and various indicators of health
is most likely not linear. The generalized linear model can be used to predict responses both
for output variables with discrete distributions and for output variables which are nonlinearly
related to the predictors with a link function.

In the generalized linear model, the relationship between the output variable y and the
input variables X is assumed to be

y= g(β0+β1X1+β2X2+ . . .+βkXp)+ ε (9)

where g is a function. The inverse function of g, say f , is called the link function.

f (ŷ) = β0+β1X1+β2X2+ . . .+βkXp+ ε (10)

where ŷ stands for the expected value of y. Various link functions can be chosen, depending
on the assumed distribution of the y variable:



Background 9

• Identity link: f (z) = z

• Log link: f (z) = log(z)

• Power link: f (z) = za, for a given a

• Logit link: f (z) = log(z/(1− z)).

The parameters β are usually estimated by maximum likelihood estimation, which re-
quires the use of iterative computational procedures.

2.2.5 Building Generalized Linear Models on Subsets of Predictors

When building generalized linear models in addition to fitting a model of the specified type
using all available predictors, different methods for automatic model building can be em-
ployed that select the used predictors in different ways. For the specific type of model at
hand, to build models on subsets of predictors, we can employ different methods for auto-
matic model building. They include: forward entry, backward removal, forward stepwise,
backward stepwise procedures, and best-subset search procedures. In forward methods of
selection of effects (variables) to include in the model, score statistics are compared to select
new significant effects.

Stepwise regression procedures involve identifying an initial model, repeatedly altering
the model at the previous step by adding or removing an input variable in accordance with
the stepping criteria, and terminating the search when stepping is no longer possible given
the stepping criteria. For the forward stepwise and forward entry methods, the initial model
always includes the regression intercept. The initial model may include one or more effects
specified to be forced into the model.

In best-subset regression, the number of possible submodels increases very rapidly as the
number of effects (variables) included in the model increases. The amount of computation
required to perform all-possible-subsets regression increases as the number of possible sub-
models increases, and holding all else constant, also increases very rapidly as the number of
levels for effects involving categorical predictors increases, thus resulting in more columns
in the design matrix X . All possible subsets of up to a dozen or so effects could certainly
theoretically be computed for a design that includes two dozen or so effects, all of which
have many levels, but the computation would be very time consuming.

2.3 Polynomial Models and Polynomial Regression

A polynomial over variables X1,X2, . . . ,Xn can be written in the form:

P= β0+
m

∑
i=1

βi ·Ti (11)

where Ti = ∏n
j=1Xj

ai, j , ai, j are variable degrees, ai, j ≥ 0, and βi, i = 0, · · · ,n are constants,
βi �= 0, i > 0. All Ti are referred to as terms or monomials in P. The length of P
is Len(P) = ∑mi=1 ∑nj=1 ai, j, the size of P is size(P) = m and the degree of P is Deg(P) =
maxmi=1∑nj=1 ai, j. An example polynomial equation is P= 1.2X2

1X2+3.5X1X3
2 +5X1X3+2. This

equation has size 3, degree 4 and length 9.
Historically, polynomial models are among the most frequently used empirical models

for fitting functions. These models are popular for the following reasons:

• In mathematical analysis, the Weierstrass approximation theorem states that every
continuous function defined on an interval [a,b] can be uniformly approximated as
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closely as desired by a polynomial function2 [60]. They have a simple form, and well
known and understood properties. They have a moderate flexibility of shapes, and
they are computationally easy to use.

• Polynomial functions are a closed family. Linear transformations in the data result
in a polynomial model being mapped to another polynomial model. That means that
the polynomial models are not dependent on the underlying metric.

Polynomial models also have the following limitations:

• Polynomial models have poor interpolatory and extrapolatory properties. High-degree
polynomials are known for oscillation at the edges of an interval3 producing poor
interpolatory properties. While polynomials may provide good fits within the range
of data, the degree of fit frequently deteriorates rapidly outside the range of the data
resulting in poor extrapolatory properties.

• Polynomial models have poor asymptotic properties. They have a finite response for
finite values and have an infinite response if some variable takes an infinite value. Thus
polynomials may not model asymptotic phenomena very well.

• Polynomial models have a shape/degree tradeoff. In order to model data with a
complicated structure, the degree of the model must be high, indicating that the
associated number of parameters to be estimated will also be high. This can result in
highly unstable models.

Polynomial regression is a form of linear regression in which the relationship between the
input variables x and the output variable y is modeled as a polynomial. Although polynomial
regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in
the sense that the regression function is linear in the unknown parameters that are estimated
from the data. For this reason, polynomial regression is considered to be a special case of
linear regression.

2.4 Model Selection and Assessment

The generalization performance of a learning method relates to its prediction capability on
independent test data. Assessment of this performance is extremely important in practice.
It guides the choice of learning method or model and gives us a measure of the quality of
the ultimately chosen model [27].

2.4.1 Cross-Validation

Probably the most widely used method for estimating prediction error is cross-validation.
Ideally, given enough data, a validation set can be set aside and used to assess the perfor-
mance of our prediction model. Since data are often scarce, this is usually not possible. To
solve this problem of data scarcity, K-fold cross-validation uses a part of the available data
to fit the model, and a different part to test it. The data is split into K roughly equal-sized
parts. For example, K-fold cross-validation when K = 5 is illustrated in Figure 1. For the
kth part (the third in Figure 1), the model is fitted to the other K− 1 parts of the data,
and the prediction error of the fitted model is calculated for the kth part of the data. This
is done for each k = 1,2, · · · ,K and the K estimates of the prediction error are combined to
give the cross-validation estimate of the prediction error.

2The original version of this result was established by Karl Weierstrass in 1885.
3For feature details please see Runge’s phenomenon [51].
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Figure 1: A partition of a dataset used for 5-fold cross-validation. The dataset is split into 5 parts
(folds). When one part of the data (in this case the third) is used for validation, the model is fit
to the other four parts of the data. The prediction error is calculated on the validation part of the
data. This is done in turn for each of the 5 parts and the 5 error estimates are combined.

Typical choices for K are the values of 5 or 10. The case where K equals the number of
examples in the dataset is known as leave-one-out cross-validation. In this case, the cross-
validation estimator is unbiased for the expected prediction error. Also, the estimate can
have high variance because the training sets for each fold are very similar to one another.
The computational burden is also considerable for large datasets, requiring large number of
applications of the learning method.

On the other hand, for low values of K, (such as K = 5), the cross-validation estimate
has lower variance. But the bias could be a problem, depending on how the performance of
the learning method varies with the size of the training set. Overall, tenfold cross-validation
is recommended as a good compromise [3].

2.4.2 Akaike Information Criterion

Akaike’s information criterion (AIC) [1] is a measure of the goodness of fit of an estimated
statistical model. It measures the information lost when using a specific model. As such it
is based on the concept of entropy. It is usually used as a tradeoff between bias and variance
in model construction.

Note that AIC is not a test of the model in the sense of hypothesis testing. It is a tool
for model selection. Given a dataset, several competing models may be ranked according to
their AIC, with the one having the lowest AIC being the best [7].

In the general case, the AIC is defined as

AIC = 2p+N · ln(RSS
N

) (12)

where RSS is the estimated residual sum of squares of the fitted model, p is the number of
parameters and N is the size of the sample. AIC rewards the goodness of fit and includes a
penalty for the number of estimated parameters. This penalty discourages over-fitting.

It is important to realize that the AIC value assigned to a model is only meant to rank
competing models and to determine which is the best among the given alternatives. The
absolute values of the AIC for different models have no meaning. Only relative differences
can be ascribed meaning.

When the sample size is small, a modified version of AIC, namely AICc should be used.
AICc is defined as:

AICc = AIC+
2p(p+1)
N− p−1

(13)

We can notice that AICc has a greater penalty for the extra parameters as compared to AIC.
Since AICc converges to AIC as n gets large, AICc can be employed regardless of sample
size [7].

2.4.3 Bayesian Information Criterion

The Bayesian information criterion (BIC) or Schwarz criterion [53] is a criterion for model
selection among a class of parametric models with different numbers of parameters. The
generic form of BIC is

BIC =−2 ·N · lnRSS+ p ln(N). (14)
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where RSS is the estimated residual (sum of squares) of the fitted model, p is the number
of parameters and N is the size of the sample.

When estimating model parameters, it is possible to increase the model likelihood by
adding parameters, which may result in over-fitting. The BIC resolves this problem by
introducing a penalty term for the number of parameters in the model.

Given any two estimated models, the model with the lower value of BIC is the one
to be preferred. BIC generally penalizes free parameters more strongly than the Akaike
information criterion, though this depends on the size of N and the relative magnitude of N
and p.

2.4.4 Statistical Comparisons of Predictive Models

A t-test is a statistical hypothesis test, most commonly applied when the test statistic follows
a normal distribution. It is commonly used to test if the means of two normally distributed
populations are equal. Such tests are often referred to as unpaired t-tests. The t-test can
also be applied to test whether the difference between two responses measured on the same
statistical unit has a mean value of zero. Such a t-test is often referred to as a paired t-test
or paired difference test.

An F-test is any statistical hypothesis test in which the test statistic has an F-distribution
under the null hypothesis. It is commonly used to test if the means of two normally dis-
tributed populations that have the same standard deviation are equal. The F-test plays an
important role in the analysis of variance (ANOVA). Another usage of the F-test is to test if
a proposed regression model fits the data well. Exact F-tests mainly arise when the models
have been fitted to the data using the least squares approach.

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test for the case
of two related samples or repeated measurements on a single sample. It can be used as an
alternative to the paired Student’s t-test (described above) when the population cannot be
assumed to be normally distributed [67].

The Friedman test [20] [19] is a non-parametric statistical test used to detect differences
in treatments across multiple test attempts. The procedure involves ranking each row (or
block) together, then considering the values of ranks by columns. A classical example
of usage is in the case when we have n judges (datasets) that rate k different predictors
(models build by machine learning algorithms). We can determine if any predictors are
ranked consistently higher or lower than the others.

2.5 Classification via Regression

It is possible to use regression methods to solve classification tasks. In order to apply
the continuous prediction technique of regression models to discrete classification problems,
an approximation of the conditional class probability function can be considered. During
classification, the class whose model yields the greatest approximated probability value is
chosen as the predicted class [17]. This approach is called classification via regression.

For each of the classes (class values) of the target attribute from the original dataset,
a new dataset is created. Each derived dataset is the same as the original, except for the
class value which is set to 1 or 0 depending on whether that instance has the appropriate
original class value or not. Next, a regression algorithm is used to generate a model for
each of the datasets. For a specific instance, the output of one of these models constitutes
an approximation to the probability that this instance belongs to the associated class. An
instance of unknown class is processed by each of the regression models. The class whose
regression model gives the highest value is chosen as the predicted class.

Frank et al. exploit this approach by using model trees as regression functions. Model
trees are binary decision trees with linear regression functions at the leaf nodes: Thus,



Background 13

Classification
Dataset
classes:

A
B
C

Regression
Dataset

class==A
class==B
class==C

targets:

Regression
functions

fa (0,1)
fb (0,1)
fc (0,1)

Classification

Class is 
argmax
of the 
regression
functions

Figure 2: The process of classification via regression.

they can represent any piecewise linear approximation to an unknown function [44]. The
construction and use of model trees is clearly described in Quinlan account of the M5
algorithm. An implementation of M5, called M5’ is described by Wang and Witten.

Frank et al. show that the classifiers based on the smoothed model trees generated by
M5’ are significantly more accurate than the pruned decision trees generated by C5.04.
This is true for the majority of datasets, particularly those with numeric attributes. Frank
et al. also achieve surprisingly good results using basic linear regression for the regression
functions.

2.6 Ensemble Learning

Supervised learning algorithms are commonly described as performing the task of searching
through a hypothesis space to find a suitable hypothesis that will make good predictions
for a particular problem. Even if the hypothesis space contains hypotheses that are very
well-suited for a particular problem, it may be very difficult to find a good one. Ensembles
combine multiple hypotheses to form a better hypothesis.

Evaluating the prediction of an ensemble typically requires more computation than eval-
uating the prediction of a single model, so ensembles may be thought of as a way to com-
pensate for the poor performance of individual learning algorithms by performing a lot of
extra computation. Fast algorithms, such as decision tree learners are commonly used with
ensembles, although slower algorithms can benefit from ensemble techniques as well.

An ensemble learning method is itself a supervised learning algorithm, because it can
be trained and then used to make predictions. The trained ensemble represents a single
hypothesis. This hypothesis need not necessarily be contained within the hypothesis space
of the models from which it is built. Thus, ensembles have more flexibility in the functions
they can represent. While this flexibility can enable them to over-fit the training data more
than a single model would, in practice ensemble techniques tend to reduce problems related
to over-fitting of the training data.

Ensembles tend to yield better results when there is a significant diversity among the
models [38] [58]. Many ensemble methods seek to promote diversity among the models they
combine [6]. Although perhaps non-intuitive, randomized algorithms can be used to produce
stronger ensembles than deterministic algorithms. Using a variety of learning algorithms has
been shown to be more effective than using techniques that attempt to over-simplify the
models in order to promote diversity [21].

2.7 The Minimum Description Length Principle

The Minimum Description Length (MDL) Principle is a relatively recent method for induc-
tive inference that provides a generic solution to the model selection problem. MDL was
introduced by Jorma Rissanen in 1978. It is based on the following insight: any regularity
in the data can be used to compress the data, describing it using fewer symbols than the

4C5.0 is the successor of C4.5 [44].
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number of symbols needed to describe the data literally [23]. The more regularities there
are, the more the data can be compressed. In this way, learning is equal to finding regularity:
The more we are able to compress the data, the more he have learned about it.

Despite its simplicity, the idea represents a drastically different view of modeling. The
model class has to be such that its members can be described or encoded in terms of a
finite number of symbols, e.g., binary. The length of the compressed data is a measure of
its complexity.

The Kolmogorov complexity K of a string is the length of the string’s shortest description
in some fixed description language. This is the length of the shortest program that produces
the string. The most problematic issue about Kolmogorov complexity is that K is not a
computable function, i.e., there is no program which takes a string s as input and produces
the integer K(s) as output. But for a specific domain, there sometimes is a way of calculating
complexity. This is an objective measure for the complexity of a model and yielding a formal
way of comparing different models. This is the beginning of the Minimum Description
Length (MDL) theory.

A fundamental construct in the MDL approach to modeling is the universal model defined
by the considered class of models. The code length of the data obtainable by a special
universal model is called the stochastic complexity of the data, relative to the model class.

2.7.1 Stochastic Complexity

Let yn be a sequence of n observations. A model class is defined as a set of probability densi-
ties { f (yn; θ) : θ} over such sequences of observations, parametrized by a finite-dimensional
parameter vector θ . The maximum likelihood estimator of the parameter vector is denoted
by θ̂(yn) gives us (for a sequence of observations yn) the value of the probability vector θ
that maximizes the probability of observing yn.

The normalized maximum likelihood (NML) density for a model class parametrized by
a parameter vector θ is defined by

f̂ (yn) =
f (yn; θ̂(yn))

Cn
(15)

where Cn is a normalizing constant and θ̂(yn) is the maximum likelihood estimator.

The NML code is said to be universal in that it gives the shortest description of the
data achievable with a given model class5. It thus defines the stochastic complexity of the
data for the model class. The MDL principle chooses the model class for which stochastic
complexity is minimized.

NML can be seen as seeking a balance between fit and complexity. The numerator
measures how well the best model in the model class can represent the data. The denomi-
nator penalizes complex model classes. The logarithm of the denominator, ln(Cn), is named
parametric complexity of the model class6. One of the most active areas of research within
the MDL framework is the problem of unbounded parametric complexity. Which makes it
impossible to define the NML density for models from the geometric, Poisson, and Gaussian
families [23].

For model classes with unbounded parametric complexity, Rissanen [47] proposes to use
a two-part scheme. The range of the data is first encoded using a code based on a universal
code for integers. Then the data is encoded using NML, taking advantage of the restricted
range. Stine [59] gives an analysis of similar schemes, where the range of the parameters is
restricted instead of the data. The weakness in such solutions is that they typically result
in two-part codes that are not complete, i.e., the corresponding density integrates to less
than one.

5For further details please see [54] and [49]
6For more details please see [23] and [49]
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2.7.2 Stochastic Complexity of a Linear Regression Model

Rissanen [48] describes an elegant renormalization scheme where the hyperparameters defin-
ing the range of the data are first optimized. A second normalization is then performed such
that the resulting code is complete. This renormalized NML can be used for model selection
in linear regression and denoising.

Based on this, Rissanen provides a formula for calculating the stochastic complexity of
a linear regression model generated by using the method of least squares

W = min
γ
{(N− p)log(τ̂)+ p log(N R̂)+(N− p−1)log(

N
N− p)− (p+1)log(p)} (16)

where the γ index goes through all the possible subsets of variables involved in the linear
regression, p is the number of elements in γ, N is the size of the dataset, τ̂ is the maximum

likelihood estimation of the model error, and R̂= 1
N β̂

T
(XTX)β̂ (where β̂ = (XTX)−1XTy and

X = (1,X1, . . . ,Xp) is the data matrix7). The stochastic complexity of the model is then 2W
(For further details, please see [26], [48], and [50]).

Intuitively, this corresponds to the length of the code necessary to encode the errors of
the linear regression model together with the constant parameters of the linear model. The
two are closely related and thus the constant parameters are not encoded separately or with
the model structure, which is what is usually done in machine learning algorithms when
using the MDL principle in an ad-hoc manner.

7For details on multiple regression, please see Section 2.2.1.
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3 Ciper: Constrained Induction of Polynomial Equa-

tions for Regression

Ciper
Refinement Operator

AdHoc MDL Heuristic

Beam Search Algorithm

In this chapter, we present Ciper [61], a machine learning algorithm for finding polynomial
equations. Ciper is a heuristic algorithm that searches through the space of polynomial
equations and finds one (or several equations) that satisfy a given set of constraints and
have an optimal value of the given heuristic function. It uses beam search to heuristically
search through the space of possible equations for ones that fit the data best. Ciper uses
ideas from stepwise regression, best-subset regression and machine learning.

As mentioned in Section 2.3, a polynomial over variables X1,X2, . . . ,Xn can be written in
the form:

P= β0+
m

∑
i=1

βi ·Ti (17)

where Ti = ∏n
j=1Xj

ai, j , βi , i = 1..m and β0 are constants, and βi �= 0. We also defined the
length of P as Len(P) = ∑mi=1 ∑nj=1 ai, j, the size of P as size(P) =m, the degree of a term Ti as
Deg(Ti) = ∑nj=1 ai, j, and the degree of P as Deg(P) = maxmi=1Deg(Ti).

Historically, polynomial models are among the most frequently used empirical models
for fitting functions. They are popular because they have a simple form; they have well-
known and understood properties; they have a moderate flexibility of shapes; and they are
computationally easy to use. Also, every continuous function defined on an interval [a,b] can
be uniformly approximated as closely as desired by a polynomial function (the Weierstrass
approximation theorem)[60] made them even more desirable.

The consequence of the Weierstrass theorem for polynomial regression is that there are
many polynomials that can provide good fit to a given finite dataset. One way to cope with
this problem is to constrain the space of candidate polynomial equations. Ciper makes use
of two classes of constraints for this purpose.

• Language constraints are given in the form of a sub/super polynomial of the polynomial
we are looking for. They restrict the structure of the possible polynomial models.
Formally, a polynomial P is a sub-polynomial of a polynomial Q if for every term X in
P, there exists a term Y in Q, such that the degree of every variable in Y is larger or
equal than the degree of the same variable in X . For example, xy2 is a sub-polynomial
of x2y4z.

• Complexity constraints limit the complexity of a polynomial. With them we specify the
maximum length, maximum degree, and maximum number of terms in the polynomial.
For example, one might be interested in equations of degree at most 3 with at most 4
terms.
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3.1 Polynomial Regression as Search

A refinement operator implements a function that takes as input an equation structure and
generates a new equation structure by modifying the old one. The original Ciper refinement
operator increases the length of an equation by one, either by adding a first degree term or by
multiplying an existing term with a variable (Figure 3). Starting with the simplest equation
(a constant), and iteratively applying this refinement operator, all polynomial equations
can be generated. In the case of sub/super polynomial constraints, we start with an initial
polynomial equation: By applying the refinement operator all super/sub polynomials of the
initial equation can be generated.

Given an expression x+ y, we can refine it in two ways. First, we can include a new
linear term yielding x+y+z. Second, we can replace an existing term in the expression (e.g,
x) by multiplying it with a variable (e.g, z), yielding a new expression (e.g, xz+ y).

C

x y

x+yxyx² y²

x²+yx²+x xy+x xy+y y²+x y²+yx³

Figure 3: A lattice of polynomial equation structures generated by the original Ciper refinement
operator. Equation length is increased by one in each refinement step.

Assume we measure the complexity of the polynomial equation as its length. The refine-
ment operator increases the complexity of the equation by one, either by adding a new linear
term or by adding a variable to an existing term. First, an arbitrary linear (first degree)
term can be added to the current equation. Special care is taken that the newly introduced
term is different from all the terms in the current equation. Second, we can increase the
complexity by adding a variable to one of the terms. Again, care should be taken that the
resulting term is different from all the other terms in the current equation. Note that the
refinements of a given polynomial are super-polynomials of it. They are minimal refinements
in the sense that they increase its complexity by one unit.

The branching factor of the presented refinement operator depends on the number of
variables V and number of terms r in the current equation with degree d. The upper bound
of the branching factor is O(V+V ·r) =O(V ·r), since there are at most V possible refinements
that increase r and at most V · r possible refinements that increase d.

3.2 The Ad-Hoc MDL Heuristic

To evaluate equations, we calculate different measures of the degree of fit of an equation to
a given dataset. Two measures commonly used for regression are the mean squared error
(MSE) and the multiple correlation coefficient R. Various other types of prediction error
measures are often used. These include mean absolute error, maximum absolute error, and
root mean square error (RMSE =

√
MSE). Most of these are well-known from statistics. In

the machine learning literature, the measure RE, defined as RE2 = MSE
σ2 , where σ2 is the

variance of the dependent variable, is often used to evaluate the performance of regression
approaches. The normalization with the variance allows for comparisons of performance
across different datasets.
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The original Ciper implementation uses the AdHoc heuristic, defined as follows

AdHoc(P) = len(P) · log(m)+m · log(MSE(P)) (18)

where P is the polynomial equation being evaluated, len(P) is its length, MSE(P) is its mean
squared error, and m is the number of training examples. This evaluation function is based
on the Akaike and Bayesian information criteria1 for regression model selection [61]. The
second term of the AdHoc heuristic function measures the degree of fit of a given equation
to the data and the first term introduces a penalty for the complexity of the equation. With
this penalty, the AdHoc heuristic function introduces a preference toward simpler equations.

3.3 The Algorithm

Ciper searches through the space of possible equations by using a beam search algorithm.
At any point in time, it maintains a set of b best possible equations (the beam) that satisfy
the imposed constraints. The output of Ciper consists of the final contents of its beam,
i.e., the best polynomial equations, accordingly to the ad-hoc heuristic function defined in
the previous section.

The top-level outline of the Ciper algorithm is shown in Table 1. First, the beam is
initialized either with the simplest polynomial equation P=C (where C is constant), or with
a user specified minimal polynomial. In every search iteration, a set of new, more complex
polynomials is generated from the polynomials in the beam by using a refinement operator.

The coefficients before the terms in a polynomial are fitted by using the method of
least squares. For each of the generated polynomials, the value of the AdHoc heuristic is
calculated. At the end of the iteration, the equations with smallest heuristic values are
retained in the beam.

The search evaluation stops when the refinement operator can not generate new equa-
tions. It can also stop if the content of the beam is unchanged in the last iteration. Such a
situation occurs when every polynomial generated in the last iteration has a worse heuristic
score estimate than the polynomials already in the beam.

Table 1: A top-level outline of the Ciper algorithm. Q is the set of b best equations (the beam) and
Qr is the set of refined equations.

procedure Ciper (Data, InitialPolynomial, Constraints)
InitialPolynomial = FitParameters(InitialPolynomial, Data)
Q= {InitialPolynomial}
repeat
Qr = refinements of equation structures in Q that satisfy
the given Constraints
foreach equation structure E ∈ Qr do
E = FitParameters(E, Data)

endfor
Q= {best b equations from Q∪Qr}

until Q unchanged during the last iteration
print Q

Some optimizations for fitting the coefficients of the generated polynomial structure can
be introduced. The data are represented as a matrix X , where the number of rows is the
number of instances, and the number of columns is the number of terms (r) plus one (the first

1For a short introduction to the Akaike and Bayesian information criteria, see Sections 2.4.2 and 2.4.3.
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column is filled with ones). The least squares estimate for the coefficients β = (β0,β1, · · · ,βr)
of the equation is

β = (XT ·X)−1 · (XT · y) (19)

where y is the vector of values we are trying to predict2.
In Equation 19, the multiplication is computationally expensive because of the large

number of rows. Let T1 and T2 be terms in equation A, T3 and T4 terms in equation B,
such that T1 ·T2 = T3 ·T4. Then the appropriate elements in the matrices XTA ·XA and XTB ·
XB are equal. We store all generated elements from the matrices XT ·X . We reuse them
for calculating the matrices of the subsequently generated polynomials. This optimization
considerably lowers the computational cost of Ciper at the expense of some memory.

3.4 Evaluating Ciper

The empirical evaluation by Todorovski et al. shows that Ciper outperforms linear regres-
sion and stepwise linear regression on most of the experimental datasets considered. The
stepwise regression methods gain accuracy with increasing the maximal degree of precom-
puted terms d, but they induce much more complex models and tend to over-fit the training
data. The results of stepwise regression indicate that further improvement is possible if we
increase the degree further: however, this is intractable for large datasets.

Stepwise regression tends to produce more and more complex models as d increases,
and the performance of stepwise polynomial regression is very sensitive to the value of d.
Selecting the optimal d value is a nontrivial problem, since it can differ from one dataset to
another. For practical reasons, the selection would be guided by computational complexity
issues (the number of precomputed higher degree terms) [61].

The overall accuracy of Ciper is comparable to the accuracy of regression trees. The
relative accuracy improvement is higher for smaller datasets. The latter provide insufficient
statistical support for a number of partial models derived from parts of the dataset (as in
regression trees and model trees), but sufficient support for a single equation over the entire
dataset (as in Ciper ) [61].

3.5 The Limitations of Ciper

The limitations of Ciper include a limited refinement operator, an ad-hoc heuristic function,
and the inherent limitation of the language of polynomial equations. In this thesis, we set
out to develop improvements and extensions of Ciper that overcome these limitations.
Before describing the improvements, we discuss briefly each of the above mentioned Ciper
limitations.

Ciper has a very limited refinement operator. Adding a term to a linear (in the param-
eters) equation always decreases its error (at least on training data). However, replacing a
term with a more complex version doesn’t necessarily decrease the error of the equation.
If we add z to x+ y, yielding x+ y+ z, we will reduce the error of the equation. However,
if we replace x with xz, yielding xz+ y, xz need not be strongly correlated with x and the
replacement might actually increase the error of the equation. This motivated us to develop
a improved refinement operator.

The Ciper heuristic function is based on the AIC and BIC criteria and implements the
MDL principle in an ad-hoc fashion. Using a theoretically sound MDL heuristic would be
more appropriate. We focused our research on finding an MDL heuristic for polynomial
equations. We also experimented with using a cross-validation error estimate as a heuristic.

In cross-validation, we construct a model by omitting each fold and using it as a vali-
dation set. The resulting models learned with each of ten folds left out, are combined in

2For a short introduction to multiple regression, see Section 2.2.1.
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an ensemble yielding one final polynomial model. The sum of polynomial models is again a
polynomial model, which doesn’t necessary hold for other model structures( such as regres-
sion trees).

Polynomial equations have certain inherent limitations, as mentioned in Section 2.3. To
overcome them, we will extend the Ciper algorithm to learn piecewise models by introducing
new attributes (based on the existing ones) that split the instance space into several parts.

We generalize the Ciper algorithm to support multiple targets. We use a similar ap-
proach as for general linear models3. This multi-target version of Ciper is then used for
classification via regression.

3For a short introduction to the general linear model, see Section 2.2.2.
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4 The New Ciper Algorithm
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4.1 Improvements of Ciper

In this section, we introduce several improvements of the original Ciper algorithm. We first
introduce the improved refinement operator, a major improvement over the old one. We next
introduce the improved MDL heuristic, followed by a heuristic based on a cross-validation
estimate of prediction error. Finally, we describe the handling of categorical attributes.

4.1.1 Improving the Refinement Operator

Adding a term to a linear (in the parameters) equation always decreases its error (at least
on training data). However, replacing a term with a more complex version of it (multiplied
by a variable) doesn’t necessarily decrease the error of the equation. If we add y to x,
yielding x+y, we will reduce the error of the equation. However, if we replace x with xy, the
replacement might actually increase the error of the equation.

This has motivated us to modify the refinement operator in Ciper. Besides the two
types of refinements considered in the original version of Ciper, we introduce a third one.
We take a term in the equation, make a copy, multiply the copy with a new variable and add
the product back to the equation. For example, with the new operator x+ y can be refined
to x+ y+ xy by copying the term x, multiplying it with y, and adding the newly obtained
term xy to the equation.

The old refinement operator always increases the complexity of an equation by one.
As illustrated in Figure 4, the new refinement operator can increase the complexity of an
equation considerably. Because of this, we introduce an extra simplification step in Ciper.
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For every equation in the beam, we try removing each of its terms: if this yields an equation
with a better heuristic value, as compared to the original equation, we add the newly formed
simplified equation to the beam.

The extra simplification step is the last type of refinements that we use within the new
refinement operator. Note that the new refinement operator has now four types of refine-
ments: the original two, i.e., adding a single variable term (e.g., x→ x+y) and multiplying a
term (e.g., x→ x ·y), the third refinement type that adds a multiplied term (e.g., x→ x+x ·y)
and the last type of simplification refinement (e.g., x+ y+ x · y→ x+ x · y).
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Figure 4: The improved Ciper refinement operator. The length of an equation can increase by more
than one in each refinement step.

The branching factor of the new refinement operator depends on the number of variables
V and the number of terms in the current equation r. The upper bound of the branching
factor is O(V +V · r+V · r) = O(V · r), since there are at most V +V · r possible refinements
that increase the number of terms r and at most V · r possible refinements that increase only
the degree d, but not the number of terms.

The partial complexity of the extra simplification step is simply the number of terms
of the equation O(r). The simplification step is repeated until there are better equations
generated with it. In theory, if this step is repeated r times, we can produce a constant
equation. Hence the complexity of the extra simplification step is O(r2).

In Section 3.1, we have calculated the branching factor of the old refinement operator
as O(V · r). As we can see, the old and the new refinement operators have similar branching
factors i.e., O(V · r) and O(V · r)+O(r2), respectively.

4.1.2 MDL Scheme for Polynomial Regression

4.1.2.1 Encoding the Polynomial Structure

In order to encode the structure of a polynomial, we follow the refined MDL1 approach [23].
We first partition the space of candidate models into subgroups Hc of models with equal
complexity c. A particular model H ∈Hc can be then encoded using N = log |Hc| (log stands
for the binary logarithm) bits, where |Hc| denotes the number of models in the class Hc.

In the case of polynomials, we partition the space of candidate polynomial structures into
classes at several levels. At the highest level, we group together the candidate polynomials
with the same length l and the same size m. Recall that for a polynomial p(x1,x2, · · · ,xn) =
β0 +∑mi=1 βi∏n

j=1 x
ai, j , the size m is defined as the number of terms m, and the length l is

1For a short introduction to the MDL theory, please see Section 2.7.
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defined as Len(P) = ∑mi=1 ∑nj=1 ai, j (note also that m≤ l). We refer to these classes as G(m, l).
For example G(1,1), contains polynomial structures with a single term, which has to be
linear (length 1). Similarly, G(1,2) contains structures with a single term of second degree,
while G(2,4) contains structures with two terms, and the degrees of the terms can be up to
four (since the length is 4).

At the second level, we partition each G(m, l) in subclasses with fixed term degrees
G�(a1,a2, · · · ,am). All polynomials in this subclass have m terms with degrees a1 ≥ a2 ≥ ·· · ≥
am. Note that ∑mi=1 ai = l. For example, G(2,4) can be broken into two subclasses of G�(1,3),
and G�(2,2). The first subclass G�(1,3) contains polynomial structures with one linear term
and one third-degree term, while the second subclass G�(2,2) contains polynomial structures
with two second-degree terms.

Now we have to calculate how many sub-classes G� there are in a single G(m, l) class and
also calculate how many polynomial structures there are in each G�(a1,a2, · · · ,am) class.

The number of structures in each G�, |G�(a1,a2, · · · ,am)| can be easily calculated using a
procedure roughly depicted in Figure 5. Given the degree of the first term a1, we have to
choose a1 variables from the set {x1,x2, · · · ,xn}, where variables can appear in the selection
more than once. Thus, the number of possibilities for the first term equals the number of
combinations with repetition, where we select a1 elements from a set of n elements. This
number equals

�n+a1−1
a1

�
. Continuing the same reasoning for all m terms, we find the number

of possible structures in G�(a1,a2, · · · ,am) to be ∏m
i=1

�n+ai−1
ai

�
. However, if there are several

ai values that are equal, we will encounter the same term many times, which means that the
above formula over-estimates the number of possible structures. The remedy is to divide the
number with the factorial of repetitions observed in the tuple. For example, when dealing
with the case G�(5,5,3,2,2,2), we have to divide the above product with 2!3!, since a fifth
degree term appears twice (2!) and a second degree term appears three times (3!). Note also
that each multiplicative term decreases by 1 for each degree value repetition (see Figure 5).

Equation
structure

Terms with degree i Terms with degree k

i i i k k k

n

n n

Figure 5: Calculating the number of polynomial structures in G�(a1,a2, · · · ,am). At the bottom, we
have the sets of terms (two sets are depicted, one with terms of degree i and one with terms of degree
k). In the middle layer, they are combined into equation structures, where s(i) and s(k) denote the
numbers of repetitions of the i and k values respectively.

Having the number of equation structures in each G� class, we now turn to the problem
of calculating the number of G� classes within each G(m, l). The size of G grows according
to the recursive formula |G(m, l)|=|G(m− 1, l− 1)| + |G(m, l−m)|. The first additive term
corresponds to the cases when the G� classes contain linear terms (there is an ai with value
1), while the second corresponds to the cases when all terms in the G� classes have a degree
at least 2 (all ai> 1). In the first case, when removing the linear term, we obtain polynomials
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with m−1 terms and length l−1. In the second case, we can remove one variable from each
of the terms, which leads to polynomials with the same number of terms (m) and length
m− l. Take for example G(2,4), mentioned above: |G(2,4)|=|G(1,3)| + |G(2,2)|, G(1,3)
contains structures with one term that has degree 3, up to degree two, and G(2,2) contains
structures with two terms, up to degree 2. Figure 6 depicts the relationship between the G
and G� classes of polynomial structures.

Figure 6: A general overview of the partitioning of polynomial structures. The small sets correspond
to G� classes (e.g., the set G�(5,2,1)). In turn, we group them into larger classes of structures G that
have the same length and size.

The recursive formula always leads to one of the two simple G classes, which contain a
single G� subclass. The first is G(1, l) with a single subclass G�(l), where |G(1, l)|=|G�(l)|.
The second simple class is G(l, l) with a single subclass G�(1,1, · · · ,1), where 1 is repeated l
times. In this case, |G(l, l)|=| G�(1,1, · · · ,1)|. Finally, note that the recursive formula above
can lead to the illegal situation G(m, l−m) with m> l−m; in such cases |G(m, l−m)|= 0.

Now, having this partitioning and the number of polynomials in each partition, we can
decompose the code for each candidate polynomial into four components. First, we have to
encode its length l and for this we need log l+2log(log l) bits (the second double logarithm
term is necessary, since we do not know the magnitude of l in advance). Second, we encode
the number of terms m, for which we need log l bits (remember that m ≤ l). Third, we
can identify a particular G� class within the class G(m, l) using log |G(m, l)| bits. Finally, we
identify the specific polynomial structure within G� using log |G�(a1,a2, · · · ,am)| bits. Putting
these four components together gives us the final formula:

L(H) = 2log l+2log(log l)+ log |G(n, l)|+ log |G�(a1,a2, · · · ,an)| (20)

for the number of bits necessary to encode the polynomial structure.

4.1.2.2 Extending MDL to Support Binary Attributes

Note that for any binary attribute2 X , Xd = X , for an arbitrary degree d. Taking this into
account, the number of structures in each G� subclass has to be adjusted. Note also that
we need an additional bit to encode the fact that a polynomial structure contains a binary
attribute.

From here on, we assume that a polynomial structure contains one or more binary
attributes. Consequently, there are polynomials in the G�(a1,a2, · · · ,am) class that are equiv-
alent because of the binary attributes. Thus this number should be recalculated. First, we

2Binary attributes are part of piecewise polynomial models, see Section 4.2.1 and of handling discrete
attributes, see Section 4.1.4
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need one bit of information to identify if the polynomial has binary attributes. If it does
not, then the number is calculated just like before.

Let the number of binary attributes be nb. If the polynomial has binary attributes, then
for every monomial, we need to encode the number of binary attributes that that monomial
contains. For this we need ∑ logai bits of information (as the number of binary attributes
is smaller then the degree of the monomial). Let the i-th monomial contain bi, binary
attributes. The number of monomials that have degree ai−bi is

�n−nb+ai−bi−1
ai−bi

�
. The number

of monomials that have degree bi for which every variable is contained only once, is
�nb
bi

�
. The

number of monomials that have degree ai and have bi binary attributes is
�n−nb+ai−bi−1

ai−bi
�
·
�nb
bi

�
.

The number of possible structures in G�(a1,a2, · · ·am) is

|G�(a1,a2, · · · ,am)|=
m

∏
i=1

�
n−nb+ai−bi−1

ai−bi

�
·
�
nb
bi

�
.

If there are several (ai,bi) values that are equal, we will encounter the same term many
times. The remedy is to divide the number with the factorial of repetitions observed in the
tuple.

4.1.2.3 The Complete Scheme

The complexity of the polynomial structure, explained above, plus the stochastic complexity
of the linear regression model3 gives the total complexity of the model:

MDL(H) = L(H)+2W(H,D) (21)

The stochastic complexity of the linear regression model is calculated with equation 16
proposed by Rissanen and explained in Section 2.7.

An illustration of the stochastic complexity of the linear model and the complexity of
the polynomial structure is given in Table 2. For this examples we use the auto-price dataset
[16]. This data-set has a single target and 33 attributes, which include curbWeight, width,
length and the other attributes that appear in Table 2.

In the case of a multi-target model4, the structure of the polynomial does not change,
the complexity of encoding it is the same for the multi-target case and the single target
case. We need, however, to sum the stochastic complexities of the linear models for each
of the targets with the complexity of the structure they yield the total complexity of the
multi-target model.

An illustration of the stochastic complexity of the linear models and the complexity of
the polynomial structure for the multi-target case is given in Table 3. For this example we
use the sigmeareal dataset [11]. This dataset has 2 targets and 8 attributes, which include
X , Y , angle, visualAngle, and minDistance.

4.1.3 Using Error on Unseen Data as Search Heuristic

As an alternative to the MDL scheme described above, we propose to use as a heuristic the
error of a polynomial equation as estimated on unseen data. The procedure is very similar
to the procedure for cross-validation described in Section 2.4.1. We split the train set into
10 parts. We build a model on 9 parts and we use the 10th part for validation. Let the
squared relative error on the 9 parts for a given model be reTrain2 and the squared relative
error on the 10th part be reTest2. For each model, we keep the tuple (reTrain2,reTest2). The
heuristic value of the model is max(reTrain2,reTest2) (the smaller the better). We modify
the beam search procedure in Ciper so that a (child) model generated from this model
(using the refinement operator) can enter the beam only if its heuristic value is smaller than
min(reTrain2,reTest2).

3A short introduction to stochastic complexity is given in Section 2.7.
4The multi-target approach is introduced in Section 4.2.2.
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Table 2: Stochastic complexity of the linear model (2W ) and the complexity of the polynomial
structure L and the total complexity of the polynomial model (MDL) for several polynomial models
learned on the auto-price dataset. The components needed to calculate L according to Equation 20,
i.e., l, | G |, and | G� |, as well as those needed to calculate W according to Equation 16, i.e., τ̂ and
R̂, are also given. The number of independent variables is n = 15 and the number of examples is
N = 159 for this dataset.

Polynomial l | G | | G� | R̂ τ̂ W L MDL

p1 =−15378.219+
+10.90 · curbWeight 1 1 15 1.58 ·108 2629.59 1846.87 5.91 3699.65

p2 =−61636+
+8.04 · curbWeight+
+812.25 ·width 2 1 105 1.59 ·108 2511.70 3616.94 11.21 3721.22

p3 =−35220+
+0.13 ·width · curbWeight+
+398 ·width 3 1 1800 1.59 ·108 2451.6 1849.57 16.81 3715.95

p4 =−6030.87+
+0.011 ·wheelBase2 · length+
−0.001 · length3+

−0.416 ·height2+
+52.19 · engineSize+
−1097 · stroke+
+0.021 · curbWeight ·horsepower 12 11 1.73 ·1011 1.59 ·108 2509.54 1926.2 51.96 3904.38

Table 3: The stochastic complexity of the linear model for the first target - 2W1, for the second
target - 2W2, the complexity of the polynomial structure L and the total complexity of the multi-
target polynomial model MDL for several models learned on the sigmareal dataset.

Polynomial W1 W2 L MDL

p1 = (−2.469,−7.052)+(6.115,17.507) · visualAngle 1043.96 2112.63 4.58 6317.77

p2 = (−8.068,−22.136)+(9.709,27.190) · visualAngle+
+(0.141,0.381) ·minDistance 920.20 1961.86 8.41 5772.51

p3 = (−0.224,−0.612)+(4.139,5.215) · visualAngle2+
+(1.531,4.010) · visualAngle3+
+(0.316,1.262) ·angle · visualAngle2+
+(−0.111,−0.320) ·Y · visualAngle2+
+(0.0001,0.0003) ·Y 2+

+(0.0006,0.1670) ·X · visualAngle2 723.31 1637.07 43.57 4764.33

p4 = (0.067,0.020)+(0.000,0.000) ·X3+
+(0.000,0.000) ·Y 3+
+(0.000,0.000) ·X2 ·Y +
+(0.000,0.000) ·X ·Y 2+
+(0.002,0.006) ·X ·Y 1373.95 2526.66 39.15 7840.36

While we could consider only the error on the validation set, the Ciper search procedure
generates many new models from a single model. The probability that some of them will
have a smaller error on the validation set than the parent model, just by coincidence, is
high. To avoid over-fitting we also consider the error on the train set. The error on the
train set should be smaller than the error on the validation set. If this is not the case, we
will not generate refined models from this model: The refinement operator will not consider
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Figure 7: Constructing an ensemble model by CVCiper. After leaving each fold out, a model is
constructed from the remaining folds by using the CV heuristic to select models.

this polynomial in the future generations. We can still over-fit, but the probability of this
would be smaller.

After we build 10 models, leaving each of the ten parts out, we need to make the final
model. We average all the models to make one final model. The final model can be viewed
as ensemble of polynomial models5. The process of constructing the ensemble is illustrated
in Figure 7.

In the case of multi-target models6 the heuristic is the tuple

(
t

∑
i=1

reTrain2

t
,
t

∑
i=1

reTest2

t
)

where t is the number of targets. Because we use relative error, the worse value of the values
in the heuristic is at 1 and bigger. The best value of the heuristic is at 0. We will refer to
this heuristic as CV heuristic.

The top-level outline of the CVCiper algorithm is shown in Table 4. First the Data is
split into several folds. For each F of the folds, first the beam Q is initialized either with the
simplest polynomial equation P = C, or with a user specified polynomial. In every search
iteration, a set of new, more complex polynomials is generated from the polynomials in the
beam by using a refinement operator.

The coefficients before the terms in a polynomial are fitted on the train data F.train of
the fold F . For each of the generated polynomials T , we calculate the value of the heuristic
(T.ErrorOnTrain,T.ErrorOnValidation). At the end of the iteration, the equations with the
smallest heuristic values are retained in the beam.

The search evaluation for this fold F stops when the refinement operator can not generate
any new equations. It can also stop if the content of the beam is unchanged in the last
iteration. Such a situation occurs when every polynomial generated in the last iteration has
a worse CV heuristic estimate than the polynomials already in the beam.

The best equation e from the beam Q is appended to the set of best equations E. One
such equation is generated for each of the folds. The average of this equations is the final
polynomial equation R.

4.1.4 Handling Discrete Attributes

The original Ciper can only handle numeric attributes. To allow for discrete (nominal)
attributes, we use a procedure that first converts the discrete attributes to binary attributes.
For this, we use the overparametrized method, described in Section 2.2.3.

5For short introduction of ensemble learning, please see Section 2.6.
6The multi-target approach is introduced in Section 4.2.2.
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Table 4: A top-level outline of the CVCiper algorithm. Q is the set of best b equations (the beam)
and Qr is the set of refined equations. S is the set of ten folds that the Data is split into. Each fold F
is a tuple (Train,Validation) where F.Train is used for both training and validation, while F.Validation
is used only to validate the current equation. For each of these tuples, a polynomial equation is
generated. E is the set of these equations. The resulting polynomial equation R is the average of all
equations in E.

procedure CVCiper (Data, InitialPolynomial, Constraints)
S = SplitIntoFolds(Data, numberOfFolds)
E = /0
foreach F ∈ S do
InitialPolynomial = FitParameters(InitialPolynomial, F.Train)
Q= {InitialPolynomial}
repeat
Qr = refinements of equation structures in Q that satisfy
the given Constraints
foreach equation structure T ∈ Qr do
T = FitParameters(T , F.Train)
T.ErrorOnTrain = EvaluateError(t, F.Train)
T.ErrorOnValidation = EvaluateError(t, F.Validation)

endfor
Q= {best b equations from Q∪Qr}

until Q unchanged during the last iteration
e= best equation in Q
E = E ∪{e}
endfor
R = Average(E)

Original dataset
Nominal attribute X 
with three values

A
B
C

 X1: X==A
 X2: X==B
 X3: X==C

Transformed dataset
Three binary 

attributes

Figure 8: Handling discrete attributes.

Let the values of a discrete attribute X be v1,v2, ...,vk, where k stands for the number
of different values the attribute X has. We replace the discrete attribute X with k binary
attributes in the transformed dataset. Each binary attribute Xi is defined as Xi ≡ (X == vi),
meaning:

�
Xi = 1, if X == vi
Xi = 0, otherwise

The originalCiper handles binary attributes as numeric. Note however, that each binary
attribute X has the property that Xd = X for an arbitrary degree d. Thus, in the new Ciper
we modified the search procedure to consider only the first degree of the binary variables,
since all the higher degrees are equivalent to the first degree.
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4.2 Extensions of Ciper

In this section, we describe the extensions of Ciper in directions of learning piecewise
polynomial models, multi-target polynomial regression, and classification via regression.

4.2.1 Piecewise Polynomial Models

In order to extend Ciper models in the direction of model trees, we consider piecewise
polynomial models. Unlike trees, we partition the space along each continuous dimension
before the search begins and not during the search. The partitioning is not dependent on
the target.

For a given array A of real values, we partition the array in k arrays A1,A2, · · · ,Ak. Let
mi be the mean of the values in the array Ai. Then the heuristic H for this partitioning is
given with:

H(A1,A2, · · · ,Ak) = k · (
k

∑
j=2

(
mj−mj−1

2
)2+ ∑

x∈A

k
min
j=1

(x−mj)2) (22)
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Figure 9: Example of a piecewise model. The upper image is a graph of a normal (non-piecewise)
linear (polynomial) function f (x,y) = x+ y. The second image is a graph of a piecewise linear (poly-

nomial) function f (x,y) = 1−sgn(x)
2 · x+ sgn(y)+1

2 · y= x+y
2 + ysgn(y)−xsgn(x)

2 .

If the above heuristic value of the k - partitioning A1,A2, · · · ,Ak is considerably smaller
than ∑x∈A(x−mean(A))2, then we say that this array can be split into k sets: A1,A2, · · · ,Ak.
If such a partitioning exists, then we say that the number k is a possible split for the array
A. Given k, the partitioning As1, · · · ,Ask is called best if k is a possible split and

H(As1,A
s
2, · · · ,Ask)≤ H(A1,A2, · · · ,Ak) (23)

for any other partitioning A1,A2, · · · ,Ak of the array A.
Let Pk(A) = (As1,A

s
2, · · · ,Ask), i.e., Pk(A) be a function that finds the best partitioning of

an array A into k arrays.
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Figure 10: Graphical representation of the output of the procedure for finding the best partitioning
of a given attribute.

Given k, attribute A and the best partitioning Pk(A) of the array A, we can create k new
binary attributes according to the set Asj the value belongs to. The procedure of creating
binary attributes for a given continuous attribute is illustrated in Figure 10.

Given a pair (a,b) and an array A, then a partitioning Pk(A) is called best on (a,b) if
H(Pk(A)) ≤ H(P j(A)) for all j = a, · · · ,b. Such a partitioning into at least a and at most
b arrays is denoted Pba(A). We introduce a procedure called expand that for each of the
attributes Ai of a given dataset identifies the best partitioning P9

2(Ai) (into at least two and
at most 9 arrays) and then for each, such partitioning creates new binary attributes.

The binary attributes effectively slice the space into parts. Hence, the model that has
binary attributes is a piecewise model. Just like trees use splits to divide the instance space,
polynomials use binary attributes for a similar purpose, as shown in Figure 9.

4.2.2 Multi-target Polynomial Regression

The task of multi-target polynomial regression is to induce from data a polynomial equation
that can predict the value of several variables.

The multi-target polynomial model is based on the general linear model7. It can be
defined as:

P= β 0+
m

∑
i=1

β i ·Ti (24)

where Ti = ∏n
j=1Xj

ai, j are the terms. Here β i, i = 1, · · · ,m and β 0 are constant vectors (not

constants) and β i �=�0. The dimension of these vectors is the number of targets we want to
predict.

An example of a multi-target polynomial equation is

P= (1, 2, 5) ·X2
1X2+(3, 5, 7) ·X1X3

2 +(2, 3, 10).

This equation model predicts three targets. It is equivalent to the three single target poly-
nomial equations given below, i.e., P= (P1,P2,P3), where

P1 =1 ·X2
1X2+3 ·X1X3

2 +2

P2 =2 ·X2
1X2+5 ·X1X3

2 +3

P3 =5 ·X2
1X2+7 ·X1X3

2 +10

The three equations P1, P2, and P3 have same structure, but different coefficients for each
target variable. For another consider Figure 11. The two functions x2+2x−1 and −0.5x2−
x+1 look very different but are actually very similar by structure.

7 For short introduction of the general linear model, please see Section 2.2.2.
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Figure 11: An example of two polynomial functions x2 +2x−1 and −0.5x2 − x+1, which look very
different, but contain the same monomials and can be fitted simultaneously by using the multi-target
version of Ciper.

In this way a single equation can be used for predicting several targets. The idea is that
the complexity of this equation will be smaller than the complexity of a set of equations
(one equation per each target). If the single target equations depend on the same terms,
then we will need less information to encode the multi-target model than the tuple of single
target models. In this case, we may obtain a model that has better predictive capabilities,
because the risk of over-fitting will be smaller.

As already described in Section 4.1.2.3, by summing the stochastic complexities of the
linear model for each target with the complexity of the structure we obtain the total com-
plexity of the multi-target model.

The new Ciper algorithm for multi-target polynomial regression works just the same as
in the single target case (Table 1). The data can be represented as a matrix X , where the
number of rows is the number of instances, and the number of columns is the number of
terms (m) plus one (the first column is filled with ones). We calculate the coefficients β i of
the equation as

β = (XT ·X)−1 · (XT ·Y ) (25)

where Y is the matrix of values we are trying to predict.
We have introduced some optimizations of the calculation of the coefficients. In this

equation, the multiplication is computationally expensive because of the large number of
rows. If we have terms T1, T2, T3 and T4, such that T1 · T2 = T3 · T4, then the appropriate
elements in the matrices XTT1,T2 ·XT1,T2 and XTT3,T4 ·XT3,T4 are equal. We store all generated

elements from the matrices XT · X . We use them later to calculate the matrices of the
subsequently generated polynomials. Moreover, these matrices are the same for all targets.
This optimization considerably lowers the amount of computation.

In the example in Figure 11, two functions, x2 + 2x− 1 and −0.5x2 − x+ 1, are shown.
Instead of searching for two models, one for each target, the multi-target version of Ciper
can find only one. Notice that, even thought they look very different, they still have the
same structure. The multi-target version of Ciper will find the multi-target polynomial
(1,−0.5)x2+(2,−1)x+(−1,1) as a single model for predicting both targets simultaneously.

4.2.3 Classification via Multi-Target Regression

The new Ciper , just as the old one, is designed to solve regression problems with continuous
targets. In order to apply Ciper to solve discrete classification problems, we consider the
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conditional class probability function and seek an approximation to it8. During classification,
the class value whose model generates the greatest approximated probability value is chosen
as the predicted class [17].

For each of the class values of the target attribute from the original dataset, we create
a new dataset. Each derived dataset is the same as the original one, except for the class
value which is set to 1 or 0 depending on whether that instance has the appropriate class or
not. Next, a regression algorithm generates a model for each of the datasets. For a specific
instance, the output of one of these models constitutes an approximation to the probability
that this instance belongs to the associated class. An instance of unknown class is processed
by each of the regression models. The class whose regression model gives the highest value
is chosen as the predicted class. This process is illustrated in Figure 12.

Classification
Dataset

Classes:

A
B
C

Multi-Target
Regression Dataset

CA   class==A
CB   class==B
CC   class==C

Targets = (CA, CB, CC)

Multi-target
polynomials

fa (0,1)
fb (0,1)
fc (0,1)

Classification

Class is 
argmax
of the 
regression
functions

PABC=(fA, fB, fC)

Figure 12: The process of classification via multi-target regression with Ciper.

In our case, we can use multiple runs of the Ciper algorithm for each of the binary
targets, or, we can use the multi-target version of Ciper for a derived multi-target dataset
which has the same attributes as the original dataset and the vector of all binary variables. If
we consider the fact that the binary targets are semantically connected (as they were derived
from the same desired target), it is reasonable to assume that the regression models should
have similar structure. Therefor, the multi-target version of Ciper is more appropriate.
Learning a single Ciper model as compared to learning several models, one for each target,
considerably lowers the computational time. In some cases, the reduction factor can be
larger than the number of targets. This is because of the semantic relationship that exists
between the binary targets, and because of the decreased probability for over-fitting.

4.3 Implementation Details

The implementation of the new Ciper algorithm went through several cycles. The old
version of the Ciper algorithm was implemented in C++ visual studio by Peter Ljubič.
Using the specification described in Todorovski et al., we implemented a new version in
java (2005). It was possible to use it within the WEKA data mining software toolkit [24].
A new version was then implemented in Python, and in Ruby (2006) as part of the IQ
(Inducing Queries for Mining Patterns and Models) project. The Ruby version implemented
an example of a framework for generating different kinds of models and combining them in
order to generate better ones. Both the Python and the Ruby version included the new
refinement operator and the new MDL heuristic. The Ruby version was the last to support
the Ad-Hoc heuristic.

The version of Ciper was implemented in Free Pascal. It included assembler subroutines
for using SSE processor instructions to speed up calculations (2007). Here SSE stands
for Streaming SIMD Extensions and SIMD means Single instruction, multiple data. This
version of Ciper was the first to support piecewise polynomial models, multiple targets and
classification via regression.

8For short introduction of classification via regression, please see Section 2.5 and [17].
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The final version was implemented in C++ (2007 - 2010). It was again based on a
framework designed for the IQ project for generic mining of different types of models. We
compiled the code with optimizations so that it uses vectorization.

The handmade assembler procedures from the Free Pascal version were automatically
made for every for-cycle that can be optimized by using SSE instructions. The compiler
directive produces code that unrolls the for-cycles and executes up to four floating point
operations simultaneously, depending on the type of precision we are using (single or double).
We also included OpenMP support, so that the software can use the multiple cores that the
machine may have. This optimization unrolls the for-cycles into several threads and then
executes every thread separately. For some applications, this can speed up the calculations
several times.

The software has the following options:

train ’train.arff’ [test ’test.arff’]

[targets n1,n2,id1,id2,...] [attributes n1,n2,id1,id2,...]

[remove n1,n2,...,id1,id2,...] [mostImportantTargets n1,n2,id1,id2]

[initial ’polstr’] [maxvardeg ’num’ (5)]

[maxDegree ’num’ (9)] [maxSize ’num’ (400)] [maxNonBinaryDegree ’num’ (9)]

[noHeuristic mdl (mdl)] [expand]

[smallBeam largeBeam (largeBeam)]

[validationNumberOfFolds ’num’ (10)] [classification]

[cv foldId numberOfFolds]

Ciper can read data in the arff file format, introduced by the WEKA data mining toolkit
[24]. Ciper does not read discrete (nominal) attributes. For converting discrete attributes
into numeric, we are using the WEKA software procedure nominal to binary. There are some
Ciper related specifications relating the arff format. For example, we added the option to
specify if the attribute is binary, additive, or multiplicative. The additive attributes will
never be used for multiplication and the multiplicative attributes will be used only for
multiplication with terms in the structure.

The next options concern the specification of the targets and the attributes. We have
included important targets because sometimes we want to find models that best fit the im-
portant targets, and to avoid over-fitting we want some supporting targets. We can specify
the attributes we want to use, and we can remove the attributes we don’t want to use. The
heuristic value for the important targets is multiplied by a coefficient coefForMostImpor-
tantTargets that has a default value of 4.

The initial, maxvardeg, maxDegree, and maxSize parameters are used to constrain the
search space. maxNonBinaryDegree constrains the degree of the non-binary attributes for
all the terms of the polynomial structure9. Initial specifies the initial polynomial structure.
The maxvardeg specifies the maximum degree a variable can have; maxDegree, and max-
Size specify the maximum degree and the maximum number of terms that the polynomial
equation can have.

The noHeuristic option specifies the CV heuristic, and themdl option the MDL heuristic.
The expand option specifies whether we want piecewise models.The beam size option comes
with two possibilities: smallBeam (size 8) and largeBeam (size 100). For the CV Heuristic
we can choose the number of folds, with the validationNumberOfFolds option.

We can also specify that we want Ciper to solve a classification task with the classifica-
tion option. For estimating the performance of Ciper using cross-validation we can use the
cv option. This will generate results only on a specific singe fold from the cross-validation.
We can use a small awk scripts to obtain the final results from the cross-validation. Since we
are interested in comparisons with other algorithms, we used WEKA to split the datasets

9For more on maximum non-binary constraint, please see Section 7.1.
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into train sets and tests sets using the method implemented there. In this way, we will use
exactly the same folds by our algorithm and by other algorithms implemented WEKA.
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5 Experimental Evaluation - Methodology
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In this chapter, we will present the methodology used to evaluate the approaches presented
in this thesis and to compare them to other existing approaches. We will first describe the
measures used for evaluating the performance of the algorithms. We will then present the
datasets on which we performed the evaluation and comparisons. Finally, we will present a
roadmap of the evaluation and comparison process.

5.1 Performance Measures

We will analyze the performance of the new Ciper algorithm along three dimensions. The
first dimension is the predictive performance of the models obtained with Ciper. The
second dimension is the complexity of the search space explored with Ciper when solving
a particular task. The third dimension is the size of the obtained polynomial models.
With the analysis of the predictive performance, we will evaluate the predictive capabilities
of the algorithm. With the analysis of the search space complexity, we will evaluate the
computational demands of the algorithm. Finally, with the analysis of the model size, we
will evaluate how complex the models are. This is also related to the interpretability of the
models, since smaller models are easier to interpret.

5.1.1 Predictive Performance

For regression models, we will use the relative root mean squared error (rrmse ) to measure
the predictive performance. For single target models, the rrmse of a model P is calculated
as follows:

rrmse(P) =

�
∑Ni=1 (P(xi)− yi)2
∑Ni=1 (E(Y )− yi)2

(26)

For multi-target models, we look at the rrmse for each target separately.
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For classification models, we consider the classification error:

ce(P) =
number of incorrectly classified instances with P

total number of instances
(27)

Classification error is in the range of [0,1], where 0 corresponds to the best performance.

To estimate the predictive performance of the obtained models on test data, unseen
in the training phase, we follow the standard 10-fold cross-validation method. For a short
introduction into cross-validation, please see Section 2.4.1. For a short introduction to model
assessment and selection in general, please see Section 2.4. We use the acronyms rrmse and
ce in the tables and graphs in Chapters 6 and 7 and in the Appendices A and B to refer to
the predictive performance of the models measured in the way described above, estimated
for unseen data by 10-fold cross-validation.

To test the statistical significance of the differences in performances between different
algorithms on a single dataset, we apply a paired t-test to the results of the two algorithms
on each of the folds of 10 fold cross-validation1. A paired t-test is a statistical hypothesis test
that checks whether the difference between two responses measured on the same statistical
unit has a mean value of zero. For example, suppose we measure the value of rrmse of an
algorithm with and without some improvement. On a single dataset, we use the t-test to
check whether the improved algorithm performs significantly better on the dataset at hand.
We can also compare the algorithms on multiple datasets. If the improvement is effective,
we expect that it will be significantly better on more datasets.

To test the statistical significance of the difference in performance between different
algorithms on a number of datasets, we employ the Wilcoxon signed-rank test [67]. The
Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used to evaluate
whether the means of two population samples are different. Like the paired t-test, the
Wilcoxon signed-rank test is a paired difference test. It is used as an alternative to the
paired t-test when the population can not be assumed to be normally distributed or when
the data has ordinal scales.

An algorithm performs better than (or outperforms) another algorithm, if it leads to
models with a significantly smaller value of rrmse on the datasets considered, the significance
being measured by the considered statistical significance test with respect to the chosen
significance level, i.e., p-value.

The p-value used for the statistical significance testing both for the paired t-test and
for the Wilcoxon signed-rank test is 0.01. The p-value is the probability of obtaining a test
statistic at least as extreme as the one that was observed. The null hypothesis is ‘rejected’
when the p-value is less than some significance level, in our case 0.01. Then the result is
said to be statistically significant.

5.1.2 Search Space Complexity

We will measure the search space complexity with the number of equations that were gen-
erated by Ciper during the search. Given a dataset, the number of models generated for
that dataset represents the complexity of the search space explored by the algorithm. We
will refer to this number as ssc.

For a realistic estimate of this value, given the algorithm and a dataset, we use the values
of ssc calculated on each of the 10 folds. We estimate it as the average of these values. We
say that an algorithm performs better than another algorithm in terms of search space
complexity, if it leads to models with a significantly smaller value of ssc on the datasets
considered, the significance measured by the Wilcoxon signed-rank test.

1For short description of statistical comparisons of classifiers, see Section 2.4.4.
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5.1.3 Model Complexity

We will compare estimates of the model complexity in terms of the following measures,
introduced in Section 2.3:

• Degree, defined as the highest degree a term in the polynomial. The model is considered
more complex if its degree is higher. This number is denoted by mcd and it is estimated
as the average of the degrees of the polynomials on each fold.

• Length, defined as the sum of the degrees of all terms in the polynomial. The model
is considered more complex if its length is higher. This number is denoted by mcl and
it is estimated as the average of the lengths of the polynomials on each fold.

• Size, defined as the number of terms in the polynomial. The model is considered more
complex if it has more terms. This number is denoted by mcs and it is estimated as
the average of the sizes of the polynomials on each fold.

Note that we use an MDL measure of complexity to select polynomials during the learning
phase. This is not to be confused with the measures discussed above. We consider these
simplified measures of complexity of a model for the purpose of easily showing the difference
between the models.

We say that an algorithm performs better than another algorithm in terms of model
complexity, if it leads to models with a significantly smaller value of mcl on the datasets
considered, the significance being measured by the Wilcoxon signed-rank test. When an
algorithm performs better when measuring the length - mcl, then it usually performs better
when measuring the other two measures (the degree - mcd and the size - mcs). This is the
reason we only report mcl in the discussion of the results.

5.2 Tasks and Datasets

We used 33 regression datasets to evaluate the different approaches to the task of single
target polynomial regression. Out of the 33 datasets, 10 datasets contain discrete (nominal)
attributes. The list of datasets that do not contain discrete attributes, is given in Table
5. The list of datasets that contain discrete attributes is given in Table 6. On these 33
datasets, we evaluate the different Ciper improvements and extensions and compare their
performance to the performance of other machine learning algorithms for regression.

We also used 10 multi-target regression datasets, listed in Table 7. These datasets
were used to evaluate the capability of Ciper to solve the task of multi-target regression
by learning polynomial models. In the context of this task, we also evaluate some of the
improvements of Ciper that may influence the performance of the resulting models.

We tested our approach of classification via regression using Ciper on the 20 datasets
in Table 8. We empirically evaluate several Ciper improvements on these datasets. Finally,
we use them to compare our approach to other classification approaches.

All of the single target (classification and regression) datasets are publicly available. The
classification datasets come from the UCI Machine Learning Repository [16]. The single-
target regression datasets come from the UCI repository, as well as Delve [42], StatLib [64]
and Luis Torgo dataset collections [62], discussed bellow.

The UCI Machine Learning Repository [16] is widely used by researchers as a primary
source of machine learning datasets. It is one of the top 100 most cited references in all of
computer science. We used both regression and classification datasets from the UCI repos-
itory. Delve [42] is another repository, designed for similar purposes as the UCI repository.
It is an environment designed to evaluate the performance of many methods that learn re-
lationships from empirical data. The datasets in delve are also used for comparing different
learning methods. StatLib [64] is a system for distributing statistical software, datasets,



40 Experimental Evaluation - Methodology

Table 5: The list of regression datasets that have numerical variables only. For each dataset, we give
the acronym, its basic properties, and a reference to its source.

Dataset Instances (I) Attributes (A) Reference
01. 2dplanes 40768 11 [4]
02. auto-price 159 16 [16]
03. bank32nh 8129 33 [42]
04. baskball 96 5 [56]
05. bodyfat 252 15 [64]
06. cal-housing 20640 9 [43]
07. cpu-small 8192 13 [16]
08. delta-ailerons 7129 6 [62]
09. delta-elevators 9517 7 [62]
10. elevators 16599 19 [62]
11. elusage 55 3 [8]
12. fried-delve 40768 11 [18]
13. house-8l 22786 9 [42]
14. housing 506 14 [16]
15. mbagrade 61 3 [30]
16. mv 40768 11 [62]
17. pw-linear 200 11 [16]
18. pyrim 74 28 [34]
19. quake 2178 4 [56]
20. triazines 186 61 [35]
21. vineyard 52 4 [56]
22. kin-8nm 8192 9 [42]
23. puma32h 8192 33 [42]

and information by electronic mail, FTP and WWW. Another repository that we use is an
online dataset archive made available by Luis Torgo [62].

Table 6: The list of regression datasets that also have discrete (nominal) variables. For each dataset,
we give the acronym, its basic properties (number of instances, number of all and discrete attributes)
and a reference to its source.

Dataset I A Discrete Attributes (N) Reference
01. cloud 194 7 2 [41]
02. cholesterol 297 14 11 [16]
03. fruitfly 125 5 2 [25]
04. lowbwt 189 10 7 [16]
05. meta 528 22 2 [2]
06. pharynx 193 12 10 [16]
07. sensory 576 12 11 [5]
08. servo 167 5 4 [46]
09. strike 625 7 1 [66]
10. veteran 137 8 4 [31]

5.3 Comparison Roadmap

The evaluation of Ciper that we perform can be divided in three parts:

• Single target regression. Performed on the datasets from Tables 5 and 6. The purpose
here is to evaluate the improvements of Ciper described in Section 4.1. Single target
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Table 7: The list of multi-target regression datasets. For each dataset we give the acronym, its basic
properties (number of instances, number of all and discrete (nominal) attributes, and the number of
continuous target variables) and a reference to its source.

Dataset I A N Targets Reference

01. edm 154 18 2 2 [32]
02. solar-flare1 323 30 3 3 [16]
03. solar-flare2 1066 30 3 3 [16]
04. water-quality 1060 30 0 14 [14]
05. sigmeareal 818 8 0 2 [11]
06. habitat-hectares 16967 46 1 7 [36]
07. soil-quality 1946 159 0 3 [10]
08. prespa-lake 218 127 0 15 [37]
09. soil-resilience 26 16 1 8 [10]
10. sigmea-simulated 10369 13 2 2 [13]

Table 8: The list of classification datasets. For each dataset, we give its acronym, its basic properties
(number of instances, number of attributes, and the number of targets, i.e., values of the class
variable) as well as a reference to its source.

Dataset I A Targets Reference

01. mushroom 8124 23 2 [16]
02. glass 214 10 6 [15]
03. segment 2310 20 7 [16]
04. vote 150 5 2 [52]
05. anneal 898 25 5 [16]
06. autos 193 25 6 [33]
07. balance-scale 625 5 3 [55]
08. cleveland-14 296 14 2 [16]
09. german 1000 21 2 [16]
10. heart-statlog 270 14 2 [16]
11. hepatitis 118 18 2 [12]
12. hungarian-14 261 11 2 [16]
13. ionosphere 351 35 2 [16]
14. lymphography 148 19 19 [16]
15. pima-indians 768 9 2 [57]
16. sick 3621 24 2 [16]
17. sonar 208 61 2 [16]
18. vehicle 846 19 4 [16]
19. zoo 101 18 7 [16]
20. vowel 990 14 11 [63]

regression is the basic task considered by Ciper and a starting point for addressing
the other tasks.

• Multi-target regression. Performed on the datasets from Table 7. The purpose is to
show that the multi-target version of Ciper is efficient and effective at solving this
task and that it can be successfully used for solving multi-target problems. We can
argue that it is even better to perform multi-target regression to solve some single
target problems. By using attributes that we know are related to the target, we can



42 Experimental Evaluation - Methodology

lower the probability of over-fitting and produce better models.

• Classification. Performed on the datasets from Table 8. Here we perform classification
via multi-target regression by using Ciper. We evaluate most of the improvements of
Ciper, but now with a focus on the classification task.

The first improvements we made to the original version of Ciper are the new refinement
operator and the new improved MDL heuristic: we will start by evaluating them. In the
first of the evaluations, Ciper uses the old AdHoc heuristic, and we focus on comparing the
new refinement operator to the old one. Since we have significant improvements, we further
use the better (new) refinement operator and focus on the heuristic. In the next step, Ciper
with the new MDL heuristic is compared to Ciper with the old AdHoc heuristic. After this
step, we already draw some conclusions on what Ciper options should be used for further
comparisons.

We then investigate what happens when we modify the size of the beam, and what
happens when we constrain the degree of the polynomials considered. Smaller beam sizes
should reduce the execution time, i.e., lower the search space complexity. Constraining the
degree will have a similar impact on the search space complexity, but will also influence the
predictive performance of the learned models. We want to prove that polynomial equations
have better predictive performance than linear and quadratic equations. It would be un-
reasonable to design an algorithm that learns polynomial equations if they perform worse.
We are also interested in the performance of piecewise models. We are interested in the
following questions about them: Do they yield any performance improvements, are there
cases where they are useful, and because of the many new attributes introduced, do they
increase the risk of over-fitting.

In the end, we will compare Ciper with other regression algorithms, such as linear
regression, regression trees, and model trees. The purpose of this evaluation is to prove
that Ciper, with the improvements we introduced, performs at least as well as most of the
machine learning algorithms for the regression task.

We will then evaluate piecewise Ciper in the context of the regression classification task.
The goal is to determine the effect that the use of piecewise models have on the performance
of the algorithm. We will try to prove that piecewise models with a lower degree are as good
as polynomial models. For this evaluation, we will need to constrain only the degree of the
continuous variables. We will compare linear piecewise models, quadratic piecewise models
and polynomial piecewise models with piecewise polynomial models.

The next step in the evaluation process addresses the task of multi-target regression.
Here we will determine what heuristic is better for this task. The goal here is to set and
evaluate Ciper as a multi-target algorithm that performs the task of regression for all targets
specified. If there is a strong dependence among the targets, we even expect that Ciper
will turn this into an advantage for building better models. We will also consider piecewise
polynomial models in this context.

We finally turn to evaluating Ciper on the classification task. Because this task is
different from regression, we will again evaluate the effect of constraining the degree of
the learned polynomial models.We want to prove that polynomial equations have better
predictive performance than linear and quadratic equations, also when considered in the
context of classification. We will also consider piecewise polynomial models in this context.

We will then compare Ciper to other classification via regression algorithms. We will
also compare it to other classification algorithms. The purpose is to show that Ciper
performs this task as well as (if not better then) any other classification algorithm.

In the evaluation, we use many different versions of Ciper. The most commonly used
versions will be referred to as follows:

• Old Ciper - The baseline, implemented with the old refinement operator and the old
AdHoc heuristic.
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• MDLCiper - Ciper with the new refinement operator and the new MDL heuristic.

• CVCiper - Ciper with the new refinement operator and the new CV heuristic.

• MDLCiperX - Piecewise Ciper with the new refinement operator and the MDL
heuristic.

• CVCiperX - Piecewise Ciper with the new refinement operator and the CV heuristic.

For the purpose of comparing Ciper with other algorithms, we used the WEKA data
mining toolkit [24]. All datasets, prior to the evaluation, were split into folds by using this
software. In this way, the folds that the WEKA algorithms used and that Ciper used are
exactly the same. The regression algorithms from WEKA that we used in our comparisons
are: linear regression (LR), regression trees2 (RT), and model trees3 (MT).

WEKA implements a meta algorithm for classification via regression, that can be used
with any regression algorithm in WEKA to perform the classification task. We compare
Ciper to classification via linear regression (LR) and classification via model trees4 (MT).

Finally, we compare Ciper with the following classification algorithms: decision trees5

(J48); support vector machines6 (SMO) with 3 different kernels: polynomial kernel with
exponent 1 (SMO-E1), polynomial kernel with exponent 2 (SMO-E2) and a kernel with a
radial basis function (SMO-KR); and Naive Bayes.

We will present the results in a step-wise fashion. We will use the best parameter settings
for Ciper obtained so far in the subsequent comparisons. This means that we will always try
to go from the worst performing parameter settings to best performing parameter settings.
We will then use the best Ciper setting for the next round of evaluations.

2For a short introduction to regression trees, please see [4]
3For an introduction into model trees, please see [65]
4For more details, please see [17]
5For an introduction to decision trees, please see [45] and [44].
6For an introduction to support vector machines, please see [9].
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6 Evaluating Ciper Improvements

In this chapter, we present the results of the empirical evaluation of the different Ciper im-
provements. Recall from Section 4.1 that these include the introduction of a new (improved)
refinement operator and two search heuristics, one based on a new MDL encoding of poly-
nomial models and the other based on cross-validated (CV) estimation of accuracy (error)
on unseen data. Three sections report each of these aspects of evaluation and compare the
effects of different Ciper improvement on its performance.

Two more sections consider the combined effects of the new search heuristics and the
settings of twoCiper parameters. The parameters considered are beam size, i.e., the number
of candidate equation structures kept at each stage of the search, and degree, i.e., the
maximum degree that a polynomial induced by Ciper can have. The final section compares
the two versions of Ciper (with the MDL and CV heuristics) and several standard regression
algorithms (linear regression, regression trees and model trees).

The results of the evaluations are reported in this chapter in a condensed form, summa-
rizing the results on two different collections of datasets, as explained below. The complete
results can be found in Appendix A, which provides verbose tables with detailed results on
each individual datasets from the collection. The summary results have the form of Tables
and Figures, which have the structure and meaning described below.

Each summary table presents a statistical comparison of the performance of two versions
of Ciper (and possibly some other regression algorithms) and follows a uniform structure.
The first row in the table reports a summary of a per-dataset comparison of the difference in
performance, i.e., the number of significant wins and losses of the first algorithm against the
second algorithm. The significance is assessed according to the paired t-test, applied to the
performance measure of the two algorithms on the 10 folds of 10-fold cross-validation, where
a significance threshold of p= 0.01 is used. It is reported in the form of a w : l score, where w
and l denote the number of significant wins and loses for the first algorithm, respectively. A
win for the first algorithm is a dataset where it has a significantly better performance for the
metric considered (e.g., lower rrmse). The w : l score is reported for all three performance
measures, i.e., relative root mean square error (rrmse), the search space complexity (ssc)
and model complexity (mcl): lower values are better for all three.

The second row in the table reports the significance of the difference in performance as
measured by using the Wilcoxon signed-rank test. The outcome of the test is reported in
the form of the p-value. Values larger than 0.99 or smaller than 0.01 denote a significantly
different performance of the two algorithms: if p > 0.99 the first algorithm is better and if
p< 0.01 the second algorithm is better.

Where possible, we also provide a visual comparison of the performance of the two
algorithms on the individual datasets from the collection used for the evaluation. The graphs
are structured as follows. The x-axis represents the rrmse while the y-axis represents the
computational complexity (sse). Each circle or square corresponds to the performance of an
algorithm applied to a dataset, blue-colored circles correspond to the performance of the first
algorithm, while red-colored squares correspond to the performance of the second version.
The centers of the square and the circle corresponding to the same dataset are connected
with a line. The line is bold and blue if the first algorithm is significantly better than the
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second in terms of rrmse, while it is bold and red if the second algorithm is significantly
better than the first. If the line is thin and black, then the algorithms have similar prediction
performances (which are not significantly different).

The position of the circles and squares simultaneously shows two aspects of the perfor-
mance of an algorithm on a particular dataset. Smaller rrmse means they are positioned
more towards the left, indicating better predictive performance. Smaller search space com-
plexity means they are positioned lower, indicating more efficient search, i.e., lower computa-
tional complexity. The size of the circles and squares denotes the complexity of the obtained
models. A point (small circle or square) placed in the lower left corner of the graph denotes
optimal performance, where we deal with accurate and concise models obtained from a small
search space.

The first two comparisons are related to the Ad-Hoc heuristic and the old refinement
operator. They are implemented in an older version of Ciper, and are the first improvements
that we introduced into Ciper1. For these two comparisons, we used only the datasets
described in Table 5.

All the comparisons in this chapter involve single target regression. With the exception
described above, we use all the regression datasets described in Tables 5 and 6. As already
mentioned, for each comparison, we give tables with results in Appendix A.

6.1 Evaluating the New Refinement Operator

In this section, we compare the old Ciper refinement operator and the new improved refine-
ment operator proposed in Section 4.1.1. The search heuristic that we use for this comparison
is the old Ad-Hoc heuristic used in the old Ciper algorithm. For the comparison, we use
the 23 single-target regression datasets with numeric attributes only, described in Table 5.

Ciper using the improved refinement operator generates models that have significantly
better predictive performance than the models generated by Ciper using the old refinement
operator. We say that Ciper using the improved refinement operator performs better
than Ciper using the old refinement operator2. Ciper using the improved refinement oper-
ator generated models that have better predictive performance on 8 datasets. The outcome
of the Wilcoxon signed-rank test indicates that the difference in performance between the
corresponding versions of Ciper is statistically significant. This can be seen in Figure 13,
where the blue circles are more to the left as compared to the red squares (especially those
connected with a thick line, indicating a significant difference in performance for the specific
dataset).

Table 9: A statistical comparison of the performance of Ciper using the new refinement operator
and the old refinement operator, respectively. Summary of Table 45.

(new ref. op.) : (old ref. op.) rrmse ssc mcl

t-test 8:0 0:23 3:15
w-test 0.9917 0.0 0.0295

Ciper using the old refinement operator searches fewer equations than Ciper using
the improved refinement operator, for each of the 23 datasets. According to the Wilcoxon
signed-rank test, this difference is statistically significant. This can be seen in Figure 13,
where the red squares are placed lower than the blue circles.

Less complex models are generated by Ciper using the old refinement operator than by
Ciper using the improved refinement operator. While Ciper using the improved refinement

1For more on the implementation details of Ciper, please see Section 4.3.
2The predictive performance measures we use are defined and discussed in Section 5.1.1.
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Figure 13: A visual comparison of the performance of Ciper using the new refinement operator and
the old refinement operator, respectively.

operator generates models that have smaller complexity on 3 datasets, Ciper using the old
refinement operator generates models that have smaller complexity on 15 datasets. Accord-
ing to the Wilcoxon signed-rank test, the difference in the size of the models generated by
the two approaches is statistically significant. This can be seen in Figure 13, where the red
squares are smaller than the blue circles.

With the new refinement operator, the refinement of an equation structure will always
have a smaller error (on the training data). The complexity of the equations increases faster
with the new than with the old refinement operator. As more complex equations have
more refinements, the branching factor of the refinement graph is larger for the new oper-
ator. Hence, a larger number of equation structures is considered with the new refinement
operator.

The use of the new refinement operator improves the predictive performance of Ci-
per. The search space is enlarged and more models are explored when using the new
refinement operator. The resulting models are more complex, but also more accurate. We
can thus conclude that it is better to use the new refinement operator than the old refinement
operator. We will use only the new improved refinement operator in the comparisons that
follow.

6.2 Evaluating the Improved MDL Heuristic

In this section, we compare the old Ciper Ad-Hoc heuristic and the new improved MDL
heuristic proposed in Section 4.1.2. For both, the refinement operator in use is the new
improved refinement operator described in Section 4.1.1. For the comparison, we use the 23
single-target regression datasets with numeric attributes only, described in Table 5.

Ciper using the improved MDL heuristic performs better than Ciper using the Ad-
Hoc heuristic. Ciper using the improved MDL heuristic performs significantly better on
8 datasets. According to the Wilcoxon signed-rank test, the difference is statistically sig-
nificant. This can be seen in Figure 14, where the blue circles are mostly to left of the
corresponding red squares.
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Table 10: A statistical comparison of the performance of Ciper using the new improved MDL
heuristic and the old Ad-Hoc heuristic, respectively. Summary of Table 46.

(improved MDL) : (Ad-Hoc) rrmse ssc mcl

t-test 8:0 17:5 21:2
w-test 0.9407 0.9932 0.9997
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Figure 14: A visual comparison of the performance of Ciper using the new improved MDL and the
old Ad-Hoc heuristic, respectively.

Ciper using the improved MDL heuristic searches fewer equations than Ciper using
the Ad-Hoc heuristic. This can be seen in Figure 14: The blue circles are placed lower
than the corresponding red squares. Less complex models are generated by Ciper using
the improved MDL heuristic. This can also be seen in Figure 14, where the blue circles are
smaller than the red squares.

Not only does the MDL heuristic improve the predictive performance of Ciper: Fewer
models are explored when using it. The resulting models are also less complex. We can
conclude that it is better to use the new improved MDL heuristic than the old Ad-Hoc
heuristic. For further comparisons, we will not use the Ad-Hoc heuristic function.

The first two improvements, the improved refinement operator and the improved MDL
heuristic produce better models in the sense of prediction accuracy, complexity of the models,
and search space complexity. We will now consider the use of the CV heuristic, proposed in
Section 4.1.3.

6.3 Comparing the Two New Search Heuristics: CV vs MDL

In this section, we compare the CV heuristic proposed in Section 4.1.3 and the MDL Heuristic
proposed in Section 4.1.2. Ciper that uses the MDL heuristic will be referred to as MDLCi-
per, while Ciper that uses the CV heuristic will be referred to as CVCiper. MDLCiper
and CVCiper will be applied to the 33 single-target regression datasets described in Tables
5 and 6.



Evaluating Ciper Improvements 49

MDLCiper (Ciper with the MDL heuristic) and CVCiper (Ciper with the CV heuris-
tic) have similar predictive performance. CVCiper performs significantly better thanMDL-
Ciper on 4 datasets and worse on 4 datasets. The outcome of the Wilcoxon signed-rank
test suggests that the difference in performance is not statistically significant.

Table 11: A statistical comparison of the performance of CVCiper and MDLCiper. Summary of
Table 47.

CVCiper : MDLCiper rrmse ssc mcl

t-test 4:4 0:31 0:31
w-test 0.5141 0.0 0.0
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Figure 15: A visual comparison of the performance of CVCiper and MDLCiper, respectively.

MDLCiper searches a smaller space of equations as compared to CVCiper. This can
be seen in Figure 15, where the red squares are placed lower than the corresponding blue
circles. Less complex models are generated by MDLCiper than by CVCiper. This can
also be seen in Figure 15, where the red squares are smaller than the blue circles.

We can conclude that MDLCiper and CVCiper have similar predictive performance.
Given that MDLCiper explores fewer models and generates simpler models, we can say
that MDLCiper is the better of the two for the single target regression task.

6.4 Evaluating the Effect of Beam Size

In this section, we evaluate the effect the beam size has on the performance of the algorithm.
We do this by comparing Ciper using a small beam size (8) and Ciper using a large beam
size (100). In both, the refinement operator used is the new improved refinement operator
described in Section 4.1.1. The heuristics used are the improved MDL heuristic described
in Section 4.1.2 and the new CV heuristic described in Section 4.1.3. The comparison uses
the 33 single-target regression datasets described in Tables 5 and 6.
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Ciper using the improved MDL heuristic

Ciper using a small beam and Ciper using a large beam have similar predictive perfor-
mance. Ciper using a large beam is significantly better on 5 datasets and worse on 2
datasets. According to the Wilcoxon signed-rank test, the difference between the two beam
sizes is not statistically significant.

Table 12: A statistical comparison of Ciper using the improved MDL heuristic with a large beam
and a small beam, respectively. Summary of Table 48.

(large beam) : (small beam) rrmse ssc mcl

t-test 5:2 1:25 4:12
w-test 0.8969 0.0 0.0057
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Figure 16: A visual comparison of Ciper using the improved MDL heuristic with a large beam and
a small beam, respectively.

Ciper using a small beam searches fewer equations than Ciper using a large beam.
This can be seen in Figure 16, where the red squares are placed lower than the blue circles.
Less complex models are generated with Ciper by using a small beam than by using a large
beam, as can also be seen in Figure 16: the red squares are smaller than the blue circles.

Ciper using the CV heuristic

Ciper using a large beam performs better thanCiper using a small beam, being significantly
better on 13 datasets. The Wilcoxon signed-rank test indicates that the difference between
using a large and a small beam is statistically significant. This can be seen in Figure 17,
where the blue circles are mostly on the left of the corresponding red squares.

Ciper using a small beam considers fewer equations, as can be seen in Figure 17, where
the red squares are placed lower than the blue circles. Simpler models are generated with
Ciper by using a small beam than by using with a large beam. This can also be seen in
Figure 17, where the red squares are smaller than the blue circles.
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Table 13: A statistical comparison of Ciper using the CV heuristic, with a large beam and a small
beam, respectively. Summary of Table 49.

(large beam) : (small beam) rrmse ssc mcl

t-test 13:1 0:30 0:30
w-test 0.9997 0.0 0.0
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Figure 17: A visual comparison of Ciper using the CV heuristic with a large beam and a small
beam, respectively.

The use of a large beam improves the predictive performance of the resulting models.
More models are explored when using a large beam size and the resulting models are more
complex. We can conclude that it is better to use a large beam than a small one if we place
the emphasis on predictive performance and are willing to accept the extra computational
and model complexity.

6.5 Evaluating the Effect of Degree

In this section, we evaluate the effect that the maximum allowed degree of the considered
polynomials has on the performance of the Ciper algorithm. We do this in two steps. We
first compare quadratic equations (learned by Ciper with a limitation of the maximum
degree to 2) and linear equations (learned by Ciper with a limitation of the maximum
degree to 1). We then compare polynomial equations (learned by Ciper with no limitation
on the degree) and quadratic equations. The goal is to empirically prove that modeling
with polynomial equations is better than modeling with linear or quadratic equations. The
refinement operator used is the new improved refinement operator described in Section 4.1.1.
The heuristic functions used are the improved MDL heuristic described in Section 4.1.2
and the CV heuristic described in Section 4.1.3. The comparison uses the 33 single-target
regression datasets described in Tables 5 and 6.
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Ciper using the MDL heuristic: Quadratic vs Linear Equations

The algorithm that generates quadratic equations (Ciper with a limitation of the maximum
degree to 2) performs better than the algorithm that generates linear equations (Ciper with
a limitation of the maximum degree to 1). The algorithm that generates quadratic equations
performs significantly better on 8 datasets. The Wilcoxon signed-rank test indicates that
the difference between quadratic and linear equations is statistically significant. This can
be seen in Figure 18, where the blue circles are to the left of the corresponding red squares.

Table 14: A statistical comparison of Ciper using the improved MDL heuristic to learn quadratic
and linear equations, respectively. Summary of Table 50.

quadratic : linear rrmse ssc mcl

t-test 8:0 0:22 1:15
w-test 0.9963 0.0 0.0
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Figure 18: A visual comparison of Ciper using the improved MDL heuristic to learn quadratic and
linear equations, respectively.

The algorithm that generates linear equations searches fewer equations than the algo-
rithm that generates quadratic equations. This can be seen in Figure 18, where the red
squares are closer to the bottom than the blue circles. Simpler models are generated by
the algorithm that generates linear equations, as can be seen in Figure 18, where the red
squares are smaller than the blue circles.

Ciper using the CV Heuristic: Quadratic vs Linear Equations

The algorithm that generates quadratic equations performs better than the algorithm that
generates linear equations, being significantly better on 15 datasets and worse on 2 datasets.
According to the Wilcoxon signed-rank test, the difference in performance between quadratic
and linear equations is statistically significant. This can be seen in Figure 19, where the
blue circles are to the left of the red squares.
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Table 15: A statistical comparison of Ciper using the CV heuristic to learn quadratic and linear
equations, respectively. Summary of Table 51.

quadratic : linear rrmse ssc mcl

t-test 15:2 0:32 0:32
w-test 1.0 0.0 0.0
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Figure 19: A visual comparison of Ciper using the CV heuristic to learn quadratic equations and
linear equations, respectively.

The algorithm that generates linear equations searches fewer equations than the algo-
rithm that generates quadratic equations. This can be seen in Figure 19, where the red
squares are placed lower than the blue circles. Simpler models are generated by the algo-
rithm that generates linear equations, as can also be seen in Figure 19, where the red squares
are smaller than the blue circles.

Ciper using MDL Heuristic: Polynomial vs Quadratic Equations

The algorithm that generates polynomial equations (Ciper with no limitation on the degree)
performs better than the algorithm that generates quadratic equations, being significantly
better on 15 datasets. The Wilcoxon signed-rank test indicates the difference between
polynomial and quadratic equations is statistically significant. This can be seen in Figure
20, where the blue circles are to the left of the red squares.

Table 16: A statistical comparison of Ciper using the improved MDL heuristic to learn polynomial
and quadratic equations, respectively. Summary of Table 52.

polynomial : quadratic rrmse ssc mcl

t-test 15:0 0:25 0:14
w-test 0.9959 0.0 0.0
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Figure 20: A visual comparison of Ciper using the improved MDL heuristic to learn polynomial and
quadratic equations, respectively.

The algorithm that generates quadratic equations searches fewer equations, as can be
seen in Figure 20, where the red squares are placed lower than the blue circles. The quadratic
models are simpler. This can be also seen in Figure 20, where the red squares are smaller
than the blue circles.

Ciper using the CV Heuristic: Polynomial vs Quadratic Equations

The algorithm that generates polynomial equations performs better than the algorithm that
generates quadratic equations, being significantly better on 12 datasets. According to the
Wilcoxon signed-rank test, the difference in performance between polynomial and quadratic
equations is statistically significant. This can be seen in Figure 21, where the blue circles
are to the left of the red circles.

Table 17: A statistical comparison of Ciper using the CV heuristic to learn polynomial and quadratic
equations, respectively. Summary of Table 53.

polynomial : quadratic rrmse ssc mcl

t-test 12:0 0:31 0:28
w-test 0.9831 0.0 0.0

The algorithm that generates quadratic equations searches fewer equations than the
algorithm that generates polynomial equations. This can be seen in Figure 21, where the
red squares are placed lower than the blue circles. The quadratic equations are simpler, as
can also be seen in Figure 21, where the red squares are smaller than the blue circles.

Quadratic equations improve the predictive performance of Ciper as compared to linear
equations, and polynomial equations improve the predictive performance of Ciper as com-
pared to quadratic equations. More models are explored when learning quadratic equations
than when learning linear equations. The resulting models are also more complex. With a
focus on predictive performance, we can conclude that it is better to learn polynomial equa-
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Figure 21: A visual comparison of Ciper using the CV heuristic to learn polynomial equations and
quadratic equations, respectively.

tions than quadratic and linear ones, and it is better to learn quadratic equations than linear
ones. Linear and quadratic equations are not always enough. In most cases, polynomials
provide a reasonable and powerful extension that (as we have shown empirically) provides
better models in terms of predictive accuracy. For future comparisons (Section 6.6), Ciper
will learn polynomial equations without a limitation on the degree.

6.6 Ciper vs LR, RT, and MT

In this section, we compare MDLCiper and CVCiper with other machine learning al-
gorithms for regression as described in Section 5.3. The comparison is made on the 33
single-target regression datasets described in Tables 5 and 6. The regression algorithms are
implemented in the WEKA data mining toolkit [24]. All datasets, prior to evaluation, were
split into folds using this software. In this way, the WEKA algorithms and our algorithm
used exactly the same folds. The regression algorithms from WEKA that we used in the
comparison are: linear regression (LR), regression trees3 (RT), and model trees4 (MT).

Table 18: Comparison of MDLCiper to LR,
RT, and MT in terms of predictive performance.
Summary of Table 54.

MDLCiper : LR RT MT

t-test 11:2 13:1 3:3
w-test 0.9674 0.9974 0.148

Table 19: Comparison of CVCiper vs LR, RT,
and MT in terms of predictive performance.
Summary of Table 55.

CVCiper : LR RT MT

t-test 12:0 13:1 3:4
w-test 0.9969 0.9999 0.1279

Tables 18 and 19 compare the performance of MDLCiper (respectively CVCiper).
MDLCiper performs better than linear regression, being significantly better on 11 datasets
and worse on 2 datasets. The Wilcoxon signed-rank test indicates that the difference between

3For short introduction about regression trees, please see [4]
4For short introduction about model trees, please see [65]
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MDLCiper and linear regression is statistically significant. MDLCiper performs better
than regression trees, being significantly better on 13 datasets and worse on 1 dataset. Ac-
cording to the Wilcoxon signed-rank test, the difference between MDLCiper and regression
trees is statistically significant. MDLCiper and model trees have similar predictive perfor-
mance, MDLCiper being significantly better on 3 datasets and worse on 3 datasets. The
Wilcoxon signed-rank test indicates that the difference betweenMDLCiper and model trees
is not statistically significant.

CVCiper performs better than linear regression, being significantly better on 12 datasets.
According to the Wilcoxon signed-rank test, the difference between CVCiper and linear
regression is statistically significant. CVCiper performs better than regression trees, be-
ing significantly better on 12 datasets and worse on 1 dataset. According to the Wilcoxon
signed-rank test, the difference between CVCiper and regression trees is statistically signif-
icant. CVCiper and model trees have similar predictive performance, CVCiper performs
better on 3 datasets and model trees on 4 datasets. Overall, the difference is not statistically
significant.

We can conclude that MDLCiper and CVCiper perform better than linear regression
and regression trees. As established in Section 6.3, they have similar predictive performance
when comparing between themselves. They also have similar predictive performance as
compared to model trees.

6.7 Summary

This section summarizes the results presented in the previous sections of this chapter.

We first evaluated (Section 6.1) the new improved Ciper refinement operator, comparing
it to the old one. In this evaluation, we used the old Ad-Hoc search heuristic from the old
Ciper algorithm. The new refinement operator improved the predictive performance of
Ciper. However, more models are explored when using the new refinement operator and
the resulting models are more complex. With an emphasis on predictive performance, we
concluded that it is better to use the new refinement operator and used it in all further
comparisons/evaluations.

The old Ciper Ad-Hoc heuristic and the new improved MDL heuristic were compared
next (Section 6.2). The new refinement operator was used for this comparison. The use
of the new MDL heuristic improved the predictive performance of Ciper. Furthermore,
fewer models are explored when using the new MDL heuristic and the resulting models are
simpler. For each of the three metrics that we use, the decision is unanimous: it is better
to use the improved MDL heuristic than the Ad-Hoc heuristic.

We next consider an additional search heuristic, based on a cross-validation estimate of
the error of the polynomial equations. In Section 6.3, we compared CVCiper and MDL-
Ciper (using the CV and MDL heuristics, respectively). MDLCiper and CVCiper have
similar predictive performance. However, MDLCiper explores fewer candidate models and
generates simpler models.

We then investigated (Section6.4) the effect that the beam size has on the performance
of Ciper. We considered a small beam size (8) and a large beam size (100) and compared
the performance of Ciper using each of these. These settings were used in conjunction with
each of the new heuristics, MDL and CV. The use of a large beam improved the predictive
performance of Ciper, especially when using the CV heuristic. However, more candidate
models are explored when using a large beam size and the generated polynomials are more
complex. With an emphasis on predictive performance, we concluded that it is better to
use a large beam size: We use this in all comparisons, except for those in Section 6.4.

We further evaluated (Section 6.5) the effect that the maximum allowed degree of the
learned polynomial models has on the performance of Ciper. We first compared Ciper
learning quadratic and linear equations, then Ciper learning polynomial and quadratic
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equations. Quadratic equations learned by Ciper performed better than linear equations
and polynomial equations performed best. The number of models explored and the complex-
ity of the resulting models increased with the performance. With an emphasis on predictive
performance, we concluded that it is better to use polynomial than quadratic (and quadratic
than linear) equations. The development of better machine learning algorithms that generate
polynomial equations, the major goal of the present thesis, is thus appropriately justified.

Finally (Section 6.6), we compared MDLCiper and CVCiper with other standard
machine learning algorithms for regression. These included linear regression, regression
trees, and model trees. The results of the comparison show that MDLCiper and CVCiper
perform better than linear regression and regression trees and have predictive performance
similar to that of model trees.
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7 Evaluating Ciper Extensions

In this chapter, we present the results of the empirical evaluation of the different Ciper
extensions. Recall from Section 4.2 that these include the learning of piecewise polynomial
models, the learning of multi-target polynomial models, and the use of polynomial models
in the context of classification via regresssion. The first three sections of this chapter report
on the results of the evaluation of the performance of each of these extensions. The last
section summarizes the findings of these evaluation efforts.

We first investigate the performance of piecewise polynomial models as compared to or-
dinary polynomial models. In this context, we also consider the influence of the maximum
degree that a polynomial induced by Ciper can have and the influence of the search heuristic
used within Ciper (MDL or CV). We also compare the performance of the piecewise poly-
nomial models learned by Ciper to the performance of models learned by several standard
regression algorithms (linear regression, regression trees and model trees). The comparisons
in this section are performed on the 33 single-target regression datasets described in Tables
5 and 6.

We then turn to the task of multi-target regression. Here we investigate the relative
performance of ordinary and piecewise models. We also consider the influence of the search
heuristic (MDL or CV). The comparisons in this section are performed on the 10 multi-target
regression datasets described in Table 7.

We finally consider the task of classification, solving it with the approach of classification
via multi-target regression. In this context, we use both ordinary and piecewise polynomial
models. Orthogonally to this, we study the influence of the maximum degree that a poly-
nomial can have and the influence of the search heuristic used within Ciper (MDL or CV).
We also compare classification via regression with Ciper to classification via several stan-
dard regression algorithms (linear regression, regression trees and model trees), as well as
to several standard classification algorithms (decision trees, support vector machines, naive
Bayes). The comparisons in this section are performed on the 20 classification datasets
described in Table 8.

The results of the evaluations are reported in this chapter in a condensed form, sum-
marizing the results on different collections of datasets, as explained above. The complete
results can be found in Appendix B, which provides verbose tables with detailed results on
each individual dataset from the collection at hand. The summary results have the form of
Tables and Figures, which have the structure and meaning described below.

Each summary table presents a statistical comparison of the performance of two versions
of Ciper (and possibly some other regression algorithms) and follows a uniform structure.
The first row in the table reports a summary of a per-dataset comparison of the difference in
performance, i.e., the number of significant wins and losses of the first algorithm against the
second algorithm. The significance is assessed according to the paired t-test, applied to the
performance measure of the two algorithms on the 10 folds of 10-fold cross-validation, where
a significance threshold of p= 0.01 is used. It is reported in the form of a w : l score, where
w and l denote the number of significant wins and loses for the first algorithm, respectively.
A win for the first algorithm is a dataset where it has a significantly better performance for
the metric considered (e.g., lower rrmse). The w : l score is reported for three performance
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measures, i.e., the predictive error, the search space complexity (ssc) and model complexity
(mcl): lower values are better for all three. Predictive error is measured by the relative root
mean square error (rrmse) for regression and by classification error (ce) for classification.

The second row in the table reports the significance of the difference in performance as
measured by using the Wilcoxon signed-rank test. The outcome of the test is reported in
the form of the p-value. Values larger than 0.99 or smaller than 0.01 denote a significantly
different performance of the two algorithms: if p > 0.99 the first algorithm is better and if
p< 0.01 the second algorithm is better.

Where possible, we also provide a visual comparison of the performance of the two
algorithms on the individual datasets from the collection used for the evaluation. The
graphs are structured as follows. The x-axis represents the rrmse (or the ce, depending on
the task), while the y-axis represents the computational complexity (sse). Each circle or
square corresponds to the performance of an algorithm in predicting a single target from
a given dataset. Blue-colored circles correspond to the first algorithm, while red-colored
squares correspond to the second algorithm.

The centers of the square and the circle corresponding to the same dataset/target are
connected with a line. The line is bold and blue if the first algorithm is significantly better
than the second in terms of rrmse, while it is bold and red if the second algorithm is
significantly better than the first. If the line is thin and black, then the algorithms have
similar prediction performances (which are not significantly different).

The position of the circles and squares simultaneously shows two aspects of the perfor-
mance of an algorithm on a particular dataset. Smaller rrmse/ce means they are positioned
more towards the left, indicating better predictive performance. Smaller search space com-
plexity means they are positioned lower, indicating more efficient search, i.e., lower computa-
tional complexity. The size of the circles and squares denotes the complexity of the obtained
models. A point (small circle or square) placed in the lower left corner of the graph denotes
optimal performance, where we deal with accurate and concise models obtained from a small
search space.

For single target datasets, we have one circle/square per dataset, while for multi-target
datasets, we have as many circles/squares as the dataset has targets. Since a single model
is used for predicting all targets, all the circles/squares have the same size. Also, since the
same search space is explored, they have the same value for ssc and are positioned at the
same height.

The statistical significance tests for multi-target algorithms and datasets are performed
as follows. The paired t-test is applied to all pairs of performance figures for the two
compared approaches on the dataset at hand, resulting from 10-fold cross-validation, for
all 10 folds and all targets, taken together. The Wilcoxon signed-rank test comparing the
performance of two approaches on a collection of multi-target datasets is applied to the set
of all pairs of cross-validated estimates of rrmse, for each target and each dataset, taken
together.

7.1 Evaluating Piecewise Polynomial Models

In this section, we evaluate the performance of Ciper learning piecewise polynomial models.
Our goal is to prove that piecewise polynomial models with lower degrees can perform as
well as general polynomial models (of arbitrary degree). In order to limit the degree of the
polynomial, but allow for arbitrary partitions within the piecewise models, we introduce a
constraint (called maximum non-binary degree) that allows terms in the polynomial to have
arbitrarily many binary variables, but limits the degree on the part of the term containing
normal variables. Let x1,x2, · · · ,xna be the non-binary attributes and let z1,z2, · · · ,znb be the

binary attributes. A term in the polynomial structure is xa1
1 · xa2

2 · · ·xanana · zb1
1 · zb2

2 · · ·zbnbnb and a
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limitation of maximum non-binary degree L means that ∑nai=1 ai ≤ L. We can have indefinitely
many binary multipliers but the degree of the non-binary multipliers is limited. In this way,
we can test the effect the piecewise models have compared to normal polynomial models.

The comparison will be performed in several steps: we will compare polynomial models
and piecewise linear models (polynomial models with a maximum non-binary degree con-
strained to 1), then polynomial models and piecewise quadratic models (polynomial models
with a maximum non-binary degree constrained to 2), and finally polynomial models and
piecewise polynomial models without degree constraints. We will also compare the perfor-
mance of the piecewise polynomial models learned by the MDL and CV versions of Ciper.
In the end, we will compare piecewise polynomial models learned by the two versions of
Ciper with the models learned by other regression algorithms.

The piecewise version of MDLCiper is labeled MDLCiperX, and the piecewise version
of CVCiper is labeled CVCiperX. All comparisons in this Section 7.1 are performed on
the 33 single-target regression datasets described in Tables 5 and 6.

7.1.1 Piecewise Linear, Quadratic and Polynomial Models

In this section, we evaluate the performance of Ciper learning piecewise polynomial models
for the classical (single-target) regression task. As already mentioned, we will first com-
pare polynomial models and piecewise linear models, then polynomial models and piecewise
quadratic models, and finally polynomial models and piecewise polynomial models.

MDLCiperX: Polynomial Models vs Piecewise Linear Models

MDLCiper learning general polynomial equations performs better than MDLCiperX gen-
erating piecewise linear equations (MDLCiperX with a limitation of the maximum non-
binary degree to 1). In Figure 22, the blue circles are to the left of the red squares. Polyno-
mial models perform better on 7 datasets, while piecewise linear equations performs better
on 2 datasets. Given the outcome of the Wilcoxon signed-rank test, the difference in per-
formance is statistically significant.

Table 20: A statistical comparison of the performance of polynomial models (learned byMDLCiper)
and piecewise linear models (learned by MDLCiperX). Summary of Table 56.

MDLCiper : (piecewise linear) rrmse ssc mcl

t-test 7:2 6:16 2:11
w-test 0.9665 0.0467 0.0002

MDLCiperX generating piecewise linear equations searches fewer equations thanMDL-
Ciper, where the difference in the number of equations considered is significant. This can
be seen in Figure 22, where the red squares are placed lower as compared to the blue circles.
The piecewise linear models (generated by MDLCiperX) are (statistically significantly)
less complex than the polynomials learned by MDLCiper. This can be seen in Figure 22,
where the red squares are smaller than the blue circles.

CVCiperX: Polynomial Models vs Piecewise Linear Models

The general polynomial equations learned by CVCiper and the piecewise linear equations
learned by CVCiperX (CVCiperX with a limitation of the maximum non-binary degree
to 1) have similar predictive performance. Polynomial models perform better on 9 datasets,
while piecewise linear models perform better on 3 datasets. However, the outcome of the
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Figure 22: A visual comparison of the performance of polynomial models (MDLCiper) and piecewise
linear models (MDLCiperX) on the single-target regression task.

Wilcoxon signed-rank test indicates that the difference in predictive performance is not
statistically significant.

Table 21: A statistical comparison of the performance of polynomial models (learned by CVCiper)
and piecewise linear models (learned by CVCiperX). Summary of Table 57.

CVCiper : (piecewise linear) rrmse ssc mcl

t-test 9:3 11:12 3:20
w-test 0.5491 0.7079 0.0

Less complex models (piecewise linear equations) are generated by CVCiperX than by
CVCiper. This can be seen in Figure 23, where the red squares are smaller than the blue
circles. The search spaces considered by the two approaches are of comparable size.

MDLCiperX: Polynomial Models vs Piecewise Quadratic Models

MDLCiperX generating piecewise quadratic equations and MDLCiper have similar pre-
dictive performance. MDLCiper performs better on 2 datasets. MDLCiperX generating
piecewise quadratic equations performs better on 2 datasets. Given the outcome of the
Wilcoxon signed-rank test, the difference in performance is not statistically significant.

Table 22: A statistical comparison of the performance of polynomial models (MDLCiper) and
piecewise quadratic equations (MDLCiperX). Summary of Table 58.

MDLCiper : (piecewise quadratic) rrmse ssc mcl

t-test 2:2 10:15 4:7
w-test 0.8482 0.1586 0.0181
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Figure 23: A visual comparison of the performance of polynomial models learned by CVCiper, and
piecewise linear models on the single-target regression task.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-0.2  0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

ss
c

rrmse

MDLCiper
Piecewise quadratic equations

Figure 24: A visual comparison of the performance of polynomial models (MDLCiper) and piecewise
quadratic equations (MDLCiperX) on the single-target regression task.

Less complex models are generated by MDLCiperX generating piecewise quadratic
equations than by MDLCiper. This can be seen in Figure 24, where the red squares are
smaller than the blue circles. The search space considered by the two approaches are of
comparable size.
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CVCiperX: Polynomial Models vs Piecewise Quadratic Models

CVCiperX that generates piecewise quadratic equations and CVCiper have similar pre-
dictive performance. CVCiper performs better on 5 datasets. CVCiperX that generates
piecewise quadratic equations performs better on 4 datasets. Given the outcome of the
Wilcoxon signed-rank test, the difference in performance is not statistically significant.

Table 23: A statistical comparison of the performance of polynomial models (CVCiper) and piece-
wise quadratic equations (CVCiperX). Summary of Table 59.

CVCiper : (piecewise quadratic) rrmse ssc mcl

t-test 5:4 15:7 5:14
w-test 0.1209 0.9302 0.001
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Figure 25: A visual comparison of the performance of polynomial models (CVCiper) and piecewise
quadratic models (CVCiperX) on the single-target regression task.

The number of polynomial structures considered byCVCiper is smaller than the number
of piecewise models considered by CVCiperX, but this difference is not significant. The
polynomial models generated byCVCiper are significantly more complex than the piecewise
quadratic models learned by CVCiperX. This can be seen in Figure 25, where the red
squares are smaller than the blue circles.

MDLCiperX: Polynomial Models vs Piecewise Polynomial Models

The piecewise polynomial models learned by MDLCiperX and the polynomial models
learned by MDLCiper have similar predictive performance. The first perform better on 2
datasets and the second perform better on one dataset. The difference in performance is
not statistically significant according to the Wilcoxon signed-rank test.
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Table 24: A statistical comparison of the performance of polynomial models (learned byMDLCiper)
and piecewise polynomial models (learned by MDLCiperX). Summary of Table 60.

MDLCiper : MDLCiperX rrmse ssc mcl

t-test 2:1 15:5 1:7
w-test 0.7612 0.9548 0.0069
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Figure 26: A visual comparison of the performance of polynomial models (MDLCiper) and piecewise
polynomial models (MDLCiperX) on the single-target regression task.

MDLCiper considers fewer polynomial models thanMDLCiperX piecewise polynomial
models. This can be seen in Figure 26, where the blue circles are placed lower than the red
squares. The piecewise polynomial models generated by MDLCiperX are simpler than the
polynomial models learned by MDLCiper. This can be seen in Figure 26, where the red
squares are smaller than the blue circles.

CVCiperX: Polynomial Models vs Piecewise Polynomial Models

The piecewise polynomial models learned by CVCiperX and the polynomial models learned
by CVCiper have similar predictive performance. The first perform better on one dataset
and the second perform better on four datasets. The difference in performance is not sta-
tistically significant according to the Wilcoxon signed-rank test.

Table 25: A statistical comparison of the performance of polynomial models (learned by CVCiper)
and piecewise polynomial models (learned by CVCiperX). Summary of Table 61.

CVCiper : CVCiperX rrmse ssc mcl

t-test 1:4 15:2 3:7
w-test 0.4864 0.9988 0.0369
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Figure 27: A visual comparison of the performance of polynomial models (CVCiper) and piecewise
polynomial models (CVCiperX) on the single-target regression task.

CVCiper considers fewer polynomial models than CVCiperX piecewise polynomial
models. This can be seen in Figure 27, where the blue circles are placed lower than the
red squares. The piecewise polynomial models generated by CVCiperX are simpler than
the polynomial models learned by CVCiper. This can be seen in Figure 27, where the red
squares are smaller than the blue circles.

Summary: Piecewise Polynomial Models vs Polynomial Models

In general, linear piecewise models perform worse as compared to polynomial models.
Quadratic piecewise models improve the predictive performance of linear piecewise mod-
els and have similar predictive performance as compared to polynomial equations. The
quadratic and polynomial piecewise models are also less complex than polynomial models.

More models are explored when learning piecewise polynomial models as compared to
learning polynomial models. When learning quadratic piecewise models, however, there is
no statistically significant difference between the two approaches (Ciper and CiperX), they
explore similar numbers of models.

We have empirically proved that piecewise polynomial models with a lower degree (i.e.,
quadratic models) can have the same predictive performance as general polynomial models.
In addition, similar numbers of models are explored during the learning of each type of
model. Note that ordinary quadratic models perform worse than polynomial models (cf.
Section 6.5) and that the piecewise extension is crucial for quadratic models to perform
comparably to polynomial models.

7.1.2 CV vs MDL for learning piecewise polynomial models

In this section, we compare the performance of the two search heuristics within Ciper in
the context of learning piecewise polynomial models. The maximum non-binary degree is
not limited.

The piecewise polynomial models learned by CVCiperX and MDLCiperX have similar
predictive performance. The ones learned byCVCiperX perform better on 6 datasets, those
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learned by MDLCiperX perform better on 2 datasets. Given the outcome of the Wilcoxon
signed-rank test, the difference in performance is not statistically significant.

Table 26: A statistical comparison of the performance of piecewise polynomial models learned by
CVCiperX and MDLCiperX. Summary of Table 62.

CVCiperX : MDLCiperX rrmse ssc mcl

t-test 6:2 1:30 0:31
w-test 0.7317 0.0 0.0
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Figure 28: A visual comparison of the performance of piecewise polynomial models learned by CV-
CiperX and MDLCiperX on the single-target regression task.

MDLCiperX searches a smaller space of models as compared to CVCiperX. This can
be seen in Figure 28, where the red squares are placed lower than the blue circles. Less
complex models are generated by MDLCiperX than by CVCiperX. This can be seen in
Figure 28, where the red squares are smaller than the blue circles.

We can conclude that MDLCiperX and CVCiperX have similar predictive perfor-
mance. MDLCiperX searches fewer models and produces simpler models. This conclusion
mirrors the conclusion in Section 6.3 where we compared MDLCiper and CVCiper which
learn polynomial models, on the single-target regression task.

7.1.3 Piecewise Ciper vs Other Regression Algorithms

In this section, we compare CVCiperX and MDLCiperX with other machine learning
algorithms for regression. We use three regression algorithms implemented in the WEKA
data mining software [24]. For the 10-fold cross validation, all datasets were split into
folds using WEKA. In this way, the WEKA algorithms and our algorithm used exactly the
same folds. The regression algorithms from the WEKA software that we used are: linear
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regression (LR), regression trees1 (RT), and model trees2 (MT).

Table 27: A statistical comparison of the perfor-
mance ofMDLCiperX with the performance of
LR, RT, and MT. Summary of Table 63.

MDLCiperX : LR RT MT

t-test 13:1 13:1 2:4
w-test 0.9747 0.9956 0.071

Table 28: A statistical comparison of the per-
formance of CVCiperX with the performance
of LR, RT, and MT. Summary of Table 64.

CVCiperX : LR RT MT

t-test 12:0 13:1 3:4
w-test 0.9971 0.9999 0.140

MDLCiperX performs better than linear regression. MDLCiper performs better on
13 datasets, linear regression performs better on 1 dataset. According to the Wilcoxon
signed-rank test, the difference is statistically significant.

MDLCiperX performs better than regression trees. MDLCiperX performs better on
13 datasets and regression trees perform better on 1 dataset. According to the Wilcoxon
signed-rank test, the difference is statistically significant.

MDLCiperX and model trees have similar predictive performance. MDLCiperX per-
forms better on 2 datasets, model trees perform better on 4 datasets. According to the
Wilcoxon signed-rank test, the difference is not statistically significant.

CVCiperX performs better than linear regression. CVCiperX performs better on 12
datasets. According to the Wilcoxon signed-rank test, the difference is statistically signifi-
cant.

CVCiperX performs better than regression trees. CVCiperX performs better on 13
datasets, while regression trees perform better on 1 dataset. Given the outcome of the
Wilcoxon signed-rank test, the difference is statistically significant.

CVCiperX and model trees have similar predictive performance. CVCiperX performs
better on 3 datasets, while model trees perform better on 4 datasets. According to the
Wilcoxon signed-rank test, the difference is not statistically significant.

We can conclude that MDLCiperX and CVCiperX generate models that have better
predictive performance than linear regression. They also perform better than regression
trees. Both MDLCiperX and CVCiperX generate models that have similar predictive
performance with model trees.

7.2 Multi-target Regression

In this section, we compare MDLCiper (Ciper with the improved MDL heuristic) and
CVCiper (Ciper with the CV heuristic) on the task of multi-target regression, described
in Section 4.2.2. The attempt to predict multiple targets simultaneously should in theory
reduce over-fitting. The use of different search heuristics should yield different results, i.e.,
different performance of the resulting models. For this comparison, we use the 10 multi-
target regression datasets described in Table 7.

7.2.1 Polynomial models: CV vs MDL

We first compare polynomial models learned by CVCiper and MDLCiper for the multi-
target regression task. CVCiper performs better than MDLCiper, with MDLCiper being
better on 2 datasets and CVCiper performing better on 3 datasets. According to the
Wilcoxon signed-rank test, the difference in performance is statistically significant. In Figure
29, the red squares are more to the left as compared to the blue circles.

1For a short introduction to regression trees, please see [4].
2For a short introduction to model trees, please see [65].
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While the wins-losses difference is only one dataset, the difference is statistically signifi-
cant. This can be explained as follows: For the multi-target case, each target is considered
separately. CVCiper wins on 3 datasets with a total of 36 targets, while MDLCiper wins
on two datasets with 5 targets.

Table 29: A statistical comparison of the performance of MDLCiper and CVCiper on the multi-
target regression task. Summary of Table 65.

MDLCiper : CVCiper rrmse ssc mcl

t-test 2:3 7:2 9:0
w-test 0.0 0.0536 1.0
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Figure 29: A visual comparison of the performance of the polynomial models learned by MDLCiper
and CVCiper on the multi-target regression task.

MDLCiper and CVCiper have similar search space complexity. Less complex models
are generated by MDLCiper than by CVCiper. This can be seen in Figure 29, where the
blue circles are smaller than the red squares.

We can conclude that it is better to use CVCiper than MDLCiper for the multi-target
regression task. We expect this to be true also for the classification task. We will consider
the classification task in Section 7.3.

7.2.2 Piecewise models: CV vs MDL

We next compare piecewise polynomial models learned by CVCiperX and MDLCiperX.

CVCiperX performs better than MDLCiperX. MDLCiperX performs better on 2
datasets (with a total of 10 targets), while CVCiperX performs better on 1 dataset (with a
total of 11 targets). According to the Wilcoxon signed-rank test, the difference is statistically
significant. In Figure 30, the red circles are to the left of the blue circles. Less complex
models are generated by MDLCiperX. This can be seen in Figure 30, where the blue circles
are smaller than the red circles.
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Table 30: A statistical comparison of the performance of MDLCiperX and CVCiperX on the task
of multi-target regression. Summary of Table 66.

MDLCiperX : CVCiperX rrmse ssc mcl

t-test 2:1 7:1 9:0
w-test 0.0012 0.1487 1.0
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Figure 30: A visual comparison of the performance of the piecewise polynomial models learned by
MDLCiperX and CVCiperX on the multi-target regression task.

We can conclude that CVCiperX performs better than MDLCiperX for the multi-
target task. This conclusion is similar to the conclusion in Section 7.2, where we compared
MDLCiper and CVCiper on the multi-target regression task.

7.3 Classification via Multi-Target Regression

In this section, we evaluate the performance of different versions of Ciper on the classi-
fication task. We will use the classification via regression approach to transform the task
of classification into a multi-target regression task. After the multi-target regression task
is solved with the multi-target version of Ciper, we use the generated model for classifica-
tion via regression, as described in Section 4.2.3. The refinement operator used within all
versions of Ciper is the new improved refinement operator described in Section 4.1.1. The
heuristic functions used for all comparisons are the improved MDL heuristic described in
Section 4.1.2 and the CV heuristic described in Section 4.1.3. For the comparisons, we use
the 20 classification datasets described in Table 8. The performance on classification tasks
is assessed in terms of classification error (ce, see Section 5.1.1.)

7.3.1 Evaluating the Effect of Degree

In this section, we evaluate the effect that the degree of the polynomial learned by the multi-
target version of Ciper has on the performance of the algorithm. We first compare quadratic
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equations (Ciper with a limitation of the maximum degree to 2) and linear equations (Ciper
with a limitation of the maximum degree to 1) and then compare polynomial equations (Ci-
per with no limitation on the degree) and quadratic equations. This comparison is similar
to the comparison performed in Section 6.5 and has the same goal, i.e., to empirically prove
that using polynomial equations is better than using linear or quadratic equations.

MDLCiper: Quadratic vs Linear equations

When used in a classification via regression context, the algorithm that generates quadratic
equations (MDLCiper with a limitation of the maximum degree to 2) performs better
than the algorithm that generates linear equations (MDLCiper with a limitation of the
maximum degree to 1). The algorithm that generates quadratic equations performs better
on 7 datasets. According to the Wilcoxon signed-rank test, the difference is statistically
significant. In Figure 31, the blue circles are to the left of the red squares.

Table 31: A statistical comparison of the performance of quadratic and linear equations learned by
MDLCiper in a classification via multi-target regression context. Summary of Table 67.

quadratic : linear ce ssc mcl

t-test 7:0 0:19 0:19
w-test 0.9843 0.0 0.0
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Figure 31: A visual comparison of the performance of quadratic and linear equations learned by
MDLCiper in the context of the classification via multi-target regression task.

The algorithm that generates linear equations searches fewer equations than the algo-
rithm that generates quadratic equations. This can also be seen in Figure 31, where the red
squares are placed lower then the blue circles. Less complex models are generated by the
algorithm that generates linear equations than by the algorithm that generates quadratic
equations. This can be seen in Figure 31, where the red squares are smaller than the blue
circles.
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CVCiper: Quadratic vs Linear equations

In the context via multi-target regression CVCiper that generates quadratic equations
performs better than CVCiper that generates linear equations. CVCiper that generates
quadratic equations performs better on 8 datasets. According to the Wilcoxon signed-rank
test, the difference is statistically significant. In Figure 32, the blue circles are to the left of
the red squares.

Table 32: A statistical comparison of the performance of quadratic and linear equations learned by
CVCiper in the context of classification via multi-target regression. Summary of Table 68.

quadratic : linear ce ssc mcl

t-test 8:0 0:20 0:20
w-test 0.9997 0.0 0.0
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Figure 32: A visual comparison of the performance of quadratic and linear equations learned by
CVCiper in the context of the classification via multi-target regression task.

CVCiper that generates linear equations searches fewer equations than CVCiper that
generates quadratic equations. This can be seen in Figure 32, where the red squares are
placed lower then the blue circles. Less complex models are generated by CVCiper that
generates linear equations than by CVCiper that generates quadratic equations. This can
be seen in Figure 32, where the red squares are smaller than the blue circles.

MDLCiper: Polynomial vs Quadratic Equations

MDLCiper that generates polynomial equations (without limiting the degree) performs
better than MDLCiper that generates quadratic equations. Polynomial equations per-
form better on 3 datasets. According to the Wilcoxon signed-rank test, the difference is
statistically significant. In Figure 33 the blue circles are left of the red squares.

MDLCiper considers fewer quadratic equations then polynomial equations. This can
be seen in Figure 33, where the red squares are placed lower the blue circles. The quadratic
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Table 33: A statistical comparison of the performance of polynomial and quadratic equations learned
by MDLCiper in the context of classification via multi-target regression. Summary of Table 69.

polynomial : quadratic ce ssc mcl

t-test 3:0 0:19 1:9
w-test 0.9723 0.0 0.0018
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Figure 33: A visual comparison of the performance of polynomial and quadratic equations learned
by MDLCiper in the context of classification via multi-target regression.

equations are less complex than the polynomial equations. This can be seen in Figure 33,
where the red squares are smaller than the blue circles.

CVCiper: Polynomial vs Quadratic Equations

The polynomial equations generated by CVCiper perform better than the corresponding
quadratic equations. The polynomial equations perform better on 5 datasets. According
to the Wilcoxon signed-rank test the difference is statistically significant. In Figure 34, the
blue circles are to the left of the red squares.

Table 34: A statistical comparison of the performance of polynomial and quadratic equations learned
by CVCiper in the context of classification via multi-target regression. Summary of Table 70.

polynomial : quadratic ce ssc mcl

t-test 5:0 0:20 0:19
w-test 0.9809 0.0 0.0

Fewer quadratic equations are searched by CVCiper than polynomial equations. This
can be seen in Figure 34, where the red squares are closer to the bottom as compared to the
blue circles. The quadratic equations are less complex models. This can be seen in Figure
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Figure 34: A visual comparison of the performance of polynomial and quadratic equations learned
by CVCiper in the context of classification via multi-target regression.

34, where the red squares are smaller than the blue circles.

Quadratic equations improve the predictive performance of Ciper as compared to linear
equations. Polynomial equations improve the predictive performance of Ciper as compared
to quadratic equations. More models are explored when learning quadratic equations than
when learning linear equations. The resulting models are also more complex. We can
conclude that it is better to use polynomial equations than quadratic or linear equations,
and it is better to use quadratic equations than linear ones. Linear and quadratic equations
are not always enough. In most cases, polynomials provide a reasonable and powerful
extension.

7.3.2 CV vs MDL

In this section, we compare CVCiper, i.e., Ciper using the CV heuristic proposed in
Section 4.1.3, with MDLCiper, i.e., Ciper using the MDL heuristic proposed in Section
4.1.2. Both are used to learn multi-target polynomial models. These are in turn used in the
context of classification via regression.

CVCiper performs better than MDLCiper. CVCiper performs better on 7 datasets.
Given the outcome of the Wilcoxon signed-rank test, the difference in performance is statis-
tically significant. In Figure 35, the blue circles are closer to the left then the red squares.

Table 35: A statistical comparison of the performance of CVCiper and MDLCiper learning poly-
nomial models in the context of classification via multi-target regression. Summary of Table 71.

CVCiper : MDLCiper ce ssc mcl

t-test 7:0 0:20 0:20
w-test 1.0 0.0 0.0
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Figure 35: A visual comparison of the performance ofCVCiper andMDLCiper learning polynomial
models in the context of classification via multi-target regression.

MDLCiper searches fewer equations than CVCiper. This can be seen in Figure 35,
where the red squares are closer to the bottom than the blue circles. Less complex models
are generated by MDLCiper than by CVCiper. This can also be seen in Figure 35, where
the red squares are smaller than the blue circles.

We can conclude that CVCiper performs better than MDLCiper for the classification
via multi-target regression task. This was expected since CVCiper performs better than
MDLCiper on the multi-target regression task. The small but significant difference in
performance for multi-target regression is amplified in the classification via multi-target
regression context.

7.3.3 Classification via Regression Algorithms

In this section, we compare classification via regression withCiper to two other classification
via regression algorithms, implemented in the WEKA data mining software [24]. All datasets
were split into folds using WEKA. In this way, the WEKA algorithms and our algorithm
used exactly the same folds.

WEKA implements a meta algorithm for classification via regression. This can be used
with any regression algorithm in WEKA to perform the classification task. We compare
classification via multi-target polynomial regression with CVCiper and MDLCiper to
classification via linear regression (LR) and classification via model trees3 (MT).

Classification via linear regression and MDLCiper have similar predictive performance.
Classification via model trees (MT) performs better than MDLCiper. CVCiper performs
better than classification via linear regression (LR). Classification via model trees (MT) and
CVCiper have similar predictive performance.

3For more details please see [17].
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Table 36: A statistical comparison of the perfor-
mance of classification via regression with MDL-
Ciper, linear regression (LR), and model trees
(MT). Summary of Table 72.

MDLCiper : LR MT

t-test 5:2 1:4
w-test 0.6219 0.0181

Table 37: A statistical comparison of the perfor-
mance of classification via regression with CV-
Ciper, linear regression (LR), and model trees
(MT). Summary of Table 73.

CVCiper : LR MT

t-test 7:0 1:1
w-test 0.9907 0.5719

7.3.4 Classification with Ciper vs Other Classification Algorithms

In this section, we compare Ciper to other classification algorithms as already described in
Section 5.3. We compare classification via regression with CVCiper and MDLCiper with
decision trees4 (J48), Naive Bayes, and support vector machines5 (SMO) with 3 different
kernels: polynomial kernel with exponent 1 (SMO-E1), polynomial kernel with exponent 2
(SMO-E2) and a kernel with a radial basis function (SMO-KR).

Decision trees (J48) and classification via regression with MDLCiper have similar pre-
dictive performance. Support vector machines with polynomial kernels with degree 1 (SMO-
E1) and degree 2 (SMO-E2) perform better than MDLCiper. MDLCiper performs better
than support vector machines with a radial basis function (SMO-KR). Naive Bayes and
MDLCiper have similar predictive performance.

Table 38: A statistical comparison of the performance of classification via regression withMDLCiper
to J48, SMO-E1, SMO-E2, SMO-KR, NaiveBayes. Summary of Table 74.

MDLCiper : J48 SMO-E1 SMO-E2 SMO-KR NaiveBayes

t-test 2:5 0:3 0:6 6:1 5:1
w-test 0.318 0.028 0.0436 0.9525 0.7294

Classification via regression with CVCiper performs better than decision trees (J48).
Support vector machines with polynomial kernels with degree 1 (SMO-E1) and degree 2
(SMO-E2) have similar predictive performance to that of CVCiper. CVCiper performs
better than support vector machines with a radial basis function (SMO-KR) and better than
Naive Bayes.

Table 39: A statistical comparison of the performance of classification via regression with CVCiper
to J48, SMO-E1, SMO-E2, SMO-KR, NaiveBayes. Summary of Table 75.

CVCiper : J48 SMO-E1 SMO-E2 SMO-KR NaiveBayes

t-test 4:1 1:0 1:1 11:0 11:0
w-test 0.9925 0.8988 0.6925 0.9984 0.9942

We can conclude that MDLCiper performs better than some classification algorithms,
i.e., support vector machines with a radial basis function (SMO-KR). It has similar predictive
performance with decision trees (J48), Naive Bayes and classification via linear regression.
It has worse predictive performance than support vector machines with polynomial kernels
with degree 1 and 2 (SMO-E1, SMO-E2) and classification via model trees (MT).

4For introduction into decision trees, please see [45] and [44].
5For introduction into support vector machines, please see [9].
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CVCiper performs better than many classification algorithms: classification via linear
regression (LR), one variant of support vector machines (SMO-KR), decision trees (J48), and
Naive Bayes. CVCiper has similar predictive performance with support vector machines
with polynomial kernels with degree 1 and 2 (SMO-E1, SMO-E2), and classification via
model trees (MT).

7.3.5 Classification via Regression with Piecewise Polynomial Models:
CV vs MDL

In the context of classification via multi-target regression, CVCiperX performs better
than MDLCiperX. CVCiperX performs better on 7 datasets. Given the outcome of the
Wilcoxon signed-rank test, the difference is statistically significant. In Figure 36, the blue
circles are to the left of the red squares.

Table 40: A statistical comparison of the performance of CVCiperX and MDLCiperX learning
piecewise polynomial models in the context of classification via multi-target regression. Summary of
Table 76.

CVCiperX : MDLCiperX ce ssc mcl

t-test 7:0 0:20 0:20
w-test 0.9996 0.0 0.0
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Figure 36: A visual comparison of the performance of CVCiperX and MDLCiperX learning piece-
wise polynomial models in the context of classification via multi-target regression.

MDLCiperX searches fewer equations than CVCiperX. This can be seen in Figure 36,
where the red circles are closer to the bottom as compared to the blue circles. Less complex
models are generated by MDLCiperX than by CVCiperX. This can be seen in Figure 36,
where the red circles are smaller than the blue circles.

We can conclude that CVCiperX performs better than MDLCiperX. This was ex-
pected since CVCiperX performs better than MDLCiperX on the multi-target regression
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task. The small but significant difference in performance for multi-target regression is am-
plified in the classification via multi-target regression context. The conclusion is similar
to the conclusion of Section 7.3.2, where we compared MDLCiper and CVCiper on the
classification task.

7.3.6 Piecewise Ciper vs Other Classification via Regression Algorithms

In this section, we compare classification via regression with CVCiperX and MDLCi-
perX to other classification via regression algorithms. WEKA implements a meta algorithm
classification via regression, that can be used with any regression algorithms in WEKA to
perform the classification task. We compare CVCiperX and MDLCiperX to classification
via linear regression (LR) and classification via model trees6 (MT).

Table 41: A statistical comparison of the
performance of classification via regression
with MDLCiperX, linear regression (LR), and
model trees (MT). Summary of Table 77.

MDLCiperX : LR MT

t-test 5:3 1:4
w-test 0.5653 0.0133

Table 42: A statistical comparison of the perfor-
mance of classification via regression with CV-
CiperX, linear regression(LR), and model trees
(MT). Summary of Table 78.

CVCiperX : LR MT

t-test 6:0 1:2
w-test 0.994 0.444

Classification via linear regression (LR) and MDLCiperX have similar predictive per-
formance. Classification via model trees (MT) performs better than MDLCiperX. CVCi-
perX performs better than classification via linear regression (LR). Classification via model
trees (MT) and CVCiperX have similar predictive performance.

7.3.7 Piecewise Ciper vs Other Classification Algorithms

In this section, we compare classification via regression with CVCiperX and MDLCiperX
to other classification algorithms. We compare CVCiperX and MDLCiperX with decision
trees7 (J48), Naive Bayes, and support vector machines8 (SMO) with 3 different kernels:
polynomial kernel with exponent 1 (SMO-E1), polynomial kernel with exponent 2 (SMO-E2)
and a kernel with a radial basis function (SMO-KR).

Decision trees (J48) and MDLCiperX have similar predictive performance. Support
vector machines with polynomial kernels with degree 1 (SMO-E1) and degree 2 (SMO-
E2) perform better than MDLCiperX. MDLCiperX performs better than support vector
machines with a radial basis functions SMO-KR. Naive Bayes andMDLCiperX have similar
predictive performance.

Table 43: A statistical comparison of the performance of classification via regression with MDLCi-
perX and J48, SMO-E1, SMO-E2, SMO-KR, NaiveBayes. Summary of Table 79.

MDLCiperX : J48 SMO-E1 SMO-E2 SMO-KR NaiveBayes

t-test 2:4 0:3 0:6 6:1 5:1
w-test 0.2568 0.0183 0.0277 0.951 0.7294

CVCiperX performs better than decision trees (J48). Support vector machines with
polynomial kernels with degree 1 (SMO-E1) and degree 2 (SMO-E2) have similar predictive

6For more details please see [17].
7For introduction into decision trees please see [45] and [44].
8For introduction into support vector machines please see [9].
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performance to CVCiperX. CVCiperX performs better than support vector machines
with a radial basis function (SMO-KR) as well as Naive Bayes.

Table 44: A statistical comparison of the performance of classification via regression with CVCi-
perXand J48, SMO-E1, SMO-E2, SMO-KR, NaiveBayes. Summary of Table 75.

CVCiperX : J48 SMO-E1 SMO-E2 SMO-KR NaiveBayes

t-test 4:2 1:0 1:1 11:0 10:0
w-test 0.9868 0.8988 0.6925 0.9984 0.9973

We can conclude that MDLCiperX generates models that have better predictive per-
formance than some classification algorithms, i.e., support vector machines with radial basis
function (SMO-KR). It has similar predictive performance with decision trees (J48), Naive
Bayes, and classification via linear regression. It has worse predictive performance than
support vector machines with polynomial kernels with degree 1 and degree 2 (SMO-E1,
SMO-E2) and classification via model trees (MT).

CVCiperX generates models that have better predictive performance than many clas-
sification algorithms: classification via linear regression (LR), one variant of support vector
machines (SMO-KR), decision trees (J48), and Naive Bayes. CVCiperX generates mod-
els that have similar predictive performance with support vector machines with polynomial
kernels with degree 1 and 2 (SMO-E1, SMO-E2), and classification via model trees (MT).
The conclusions are consistent with the conclusions of Section 7.3.3 and Section 7.3.4 where
we compared MDLCiper and CVCiper with the same classification algorithms.

7.4 Summary

This section summarizes the results from all previous sections of this chapter.

In Section 7.1 we have evaluated piecewise polynomial models. In Section 7.1.1 we have
evaluated piecewise linear, quadratic and polynomial equations. We have empirically proved
that piecewise polynomial models can generate models with lower degree than ordinary
polynomial models with the same prediction performance as ordinary polynomial models.

Recall that we have already proved in Section 6.5 that quadratic equations perform worse
than polynomial equations. To prove this we limited the degree of the non-binary variables.
Then we compared polynomial models and piecewise linear models, then polynomial models
and piecewise quadratic models, and in the end polynomial models and piecewise polynomial
models.

Linear piecewise models perform worse as compared to polynomial models. Quadratic
piecewise models improve the predictive performance and have performance similar to that
of polynomial equations. Quadratic and polynomial piecewise models are also less complex
than polynomial models. More models are explored when generating piecewise polynomial
models than when learning polynomial models. But when generating quadratic piecewise
models, there is no statistical difference between the two.

In Section 7.1.2 CVCiperX (piecewise CVCiper) and MDLCiperX (piecewise MDL-
Ciper) were compared. On the regression task we concluded that MDLCiperX and CV-
CiperX have similar predictive performance. MDLCiperX searched fewer models and
produced simpler models.

In Section 7.1.3 we compared CVCiperX and MDLCiperX with other machine learn-
ing algorithms, implemented in the WEKA data mining software [24]: linear regression,
regression trees, and model trees. We concluded that MDLCiperX and CVCiperX per-
form better than linear regression and regression trees. MDLCiperX and CVCiperX have
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similar predictive performance with model trees.
In Section 7.2.1 MDLCiper (Ciper with the improved MDL heuristic) and CVCiper

(Ciper with CV heuristic) were evaluated on the multi-target regression task. We concluded
that CVCiper performs better than MDLCiper, but produces more complex models than
MDLCiper. We concluded that it is better to use CVCiper than MDLCiper for the
multi-target regression task. In Section 7.2.2, we evaluated piecewise Ciper and concluded
that it is better to use CVCiperX than MDLCiperXfor the multi-target regression task.

Section 7.3 evaluates different variants of Ciper on classification tasks by applying the
classification via multitarget regression approach. In Section 7.3.1 we evaluated the effect
that the degree has on the performance of the algorithm for the classification task. This was
done in two steps: we first compared quadratic and linear equations, then polynomial and
quadratic equations. Quadratic equations improved the predictive performance of Ciper as
compared to linear equations and polynomial equations improved the predictive performance
of Ciper compared to quadratic equations. We concluded that it is better to use polynomial
equations than quadratic and linear, and it is better to use quadratic equations than linear.

In Section 7.3.2, we compared CVCiper and MDLCiper, concluding that CVCiper
performs better than MDLCiper on classification tasks. This was expected since CVCiper
performs better than MDLCiper on the multi-target regression task.

In Section 7.3.3 and Section 7.3.4, we compared CVCiper and MDLCiper with other
classification via regression and other classification algorithms. MDLCiper performs better
than support vector machines with a radial basis function (SMO-KR). It has similar per-
formance with decision trees (J48), Naive Bayes and classification via linear regression. It
has worse predictive performance than support vector machines with polynomial kernels of
degree 1 and 2 (SMO-E1 and SMO-E2) and classification via model trees.

CVCiper performs better than many classification algorithms: classification via lin-
ear regression, one variant of support vector machine with a radial basis function kernel
(SMO-KR), decision trees (J48), and Naive Bayes. CVCiper has performance similar to
support vector machines with polynomial kernels of degree 1 and 2 (SMO-E1, SMO-E2),
and classification via model trees.

In Section 7.3.5, we evaluated piecewise Ciper on the classification task. We concluded
that CVCiperX performs better than MDLCiperX. This is similar to the conclusion in
Section 7.3.2, where we compared MDLCiper and CVCiper on the same task.

Finally, in Section 7.3.6 and Section 7.3.7 we compared CVCiperX and MDLCiperX
with other classification via regression and other classification algorithms. MDLCiperX
performs better than some classification algorithms. It has similar predictive performance
with decision trees (J48), Naive Bayes and classification via linear regression. It has worse
predictive performance than Support vector machine with polynomial kernels of degree 1
and 2 (SMO-E1, SMO-E2) and classification via model trees.

CVCiperX performs better than many classification algorithms: classification via linear
regression, one variant of support vector machines (SMO-KR), decision trees (J48), and
Naive Bayes. CVCiperX has predictive performance similar to that of support vector
machines with polynomial kernels of degree 1 and 2 (SMO-E1, SMO-E2), and classification
via model trees (MT).
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8 Conclusions

8.1 Summary and discussion

In this thesis, we have addressed the task of polynomial regression, i.e., learning polynomial
regression models from data. Polynomial models have been used extensively in the past, but
they have been largely forgotten by the machine learning community. Recently, a machine
learning algorithm Ciper for learning polynomial equations for regression has been devel-
oped and evaluated [61]. The algorithm has proved to be a good learner, being comparable
to model trees and outperforming linear and stepwise regression. However, Ciper does
have some limitations: a limited refinement operator, an ad-hoc heuristic function, no sup-
port for multiple targets, and no support for piecewise models (see Section 3.5). The main
motivation for performing the work within this thesis was to overcome these limitations.

To this end, we have developed new methods that improve and extend the Ciper algo-
rithm for polynomial regression. The improvements include new search space strategies (a
refinement operator) and heuristic functions (MDL and CV based heuristics) for evaluat-
ing the performance of polynomial regression models. The extensions broaden the scope of
polynomial regression toward piecewise and multi-target polynomial models and allow the
use of polynomial models to perform classification via regression.

At this point, let us recall the central scientific hypotheses of this dissertation.

H1 The newly developed heuristics for evaluating polynomial regression models, based
on a proper minimal description length scheme for polynomial regression and cross-
validation estimates of a model’s predictive performance on unseen data, improve the
performance of the learned polynomial regression models.

H2 The new refinement operator for ordering the search space of candidate polynomials,
that allows for larger changes of the candidate structure at each search step, improves
the performance of the learned polynomial regression models.

H3 The polynomial regression models, induced with the approaches developed within the
thesis, have predictive performance comparable to the performance of other commonly
used regression algorithms.

H4 The classification models based on multi-target polynomial regression have predictive
performance equal to or better than other classification via regression approaches as
well as other classification models.

H5 Piecewise polynomial models of a limited degree achieve predictive performance com-
parable to the performance of polynomial regression models with unlimited degree.

To examine the validity of these hypotheses, we performed an extensive empirical eval-
uation and comparative analysis of the performance of the newly developed methods on a
number of regression and classification tasks. Below, we summarize the main findings of the
empirical evaluation and discuss how they confirm/support the hypotheses.
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• The results presented in Section 6.1 show that the improved refinement operator that
allows for larger changes of the current polynomial structure (introduced in Section
4.1.1) leads to more complex models that have better predictive performance than the
models learned with the old refinement operator in the initial version of Ciper. This
finding confirms the validity of the hypothesis H2. Note that the results also show
that the improvement is related to the fact that Ciper with the improved refinement
operator considers a larger number of candidate polynomials during the search.

• Section 6.2 presents the results of the evaluation of the improved MDL heuristic,
introduced in Section 4.1.2 for evaluating candidate polynomial models. The results
confirm hypothesis H1 that the new MDL heuristic, developed in a principled manner,
outperforms the old Ad-Hoc MDL heuristic. The models learned with the improved
MDL heuristic are much simpler and have better predictive performance than the
models learned with the initial version of Ciper.

• Taken together, the improved refinement operator and the new MDL heuristic lead to
a smaller search space, simpler polynomial models, and better predictive performance.

• The results of the experiments presented in Section 6.3 show that the CV heuristic that
uses cross-validation to evaluate the performance of polynomial models (introduced in
Section 4.1.3) lead to models with performance comparable to the performance of the
models learned with the improved MDL heuristics. This finding reconfirms the validity
of the hypothesis H1. Note however, that in the context of multi-target regression,
the models learned with the CV heuristic outperform the ones learned with the MDL
heuristic (see the results presented in Section 7.2).

• The results presented in Section 6.5 and Section 7.1.1 show that general polynomials
when used as regression models outperform linear and quadratic equations. This also
holds in the context of classification via multi-target regression (Section 7.3.1).

• The results presented in Section 6.6 show that the newly developed version of Ciper
perform slightly better or equally well as other commonly used regression algorithms.
These results confirm the validity of the hypothesis H3.

• The results presented in Section 7.3 confirm the validity of the hypothesis H4. Multi-
target polynomials when used as classification models perform better or equally well
as classification models learned with other regression and classification algorithms.

• The results of piecewise polynomial models, presented in Section 7.1, show that they
can achieve performance similar to the one of the general polynomial models at lower
degrees. More specifically, linear piecewise models perform worse than the general
ones, while quadratic piecewise models perform equally well as the general ones. At the
same time, the piecewise polynomial models are simpler that the general polynomials.
Note also that classification models based on piecewise polynomials perform better
or equally well as classifiers learned with other classification methods. The results
confirm the validity of the hypothesis H5.

In sum, all of our hypotheses are supported by the empirical evaluation and are thus
confirmed by the investigations performed within this thesis.

8.2 Scientific contributions

We can now state the contributions of this dissertation to science, which closely match our
initial expectations, presented in the introduction. The work presented in this thesis has
lead to the following original contributions to the fields of machine learning and data mining:
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• A new refinement operator that defines the search space of polynomial equations.

• New heuristic functions that guide the search through the space of polynomial equa-
tions. These include a heuristic based on an MDL encoding scheme for polynomial
models and a heuristic based on cross-validated estimates of the predictive performance
of polynomial model on unseen data.

• A generalization of simple polynomial regression models to more complex ones. This
includes multi-target polynomial models for regression, piecewise polynomial models
for single and multi-target regression, and the use of polynomial models for classifica-
tion via regression.

• The design and implementation of a machine learning algorithm for inducing simple
and complex regression polynomial models from data that incorporates all of the above
elements.

• An extensive empirical evaluation of the newly developed algorithm (with all of its
facets) and other existing algorithms on a large number of datasets for single and
multi-target regression, as well as classification.

8.3 Further Work

As mentioned in Section 2.3, polynomial functions have certain limitations. One way of
overcoming them is to consider the more general class of rational function models, i.e.,
ratios of two polynomial functions. They are a generalization of the polynomial models that
includes the class of polynomial models as a subset (in the case when the denominator is a
constant).

Rational function models have many advantages as compared to polynomial models. To
mention a few, they can take an extremely wide range of shapes, they have better inter-
polation properties, and have excellent asymptotic properties. Rational functions with low
degrees are commonly used as models of complicated structures and phenomena. However,
they do have certain disadvantages as well: they are not understood as well as polynomials,
and may have some unwanted asymptotes, but this should not be discouraging. Extending
Ciper toward learning rational models is a promising venue for further work.

Another direction for future work is to consider alternative error metrics. In our current
work, we focus our efforts on minimizing the sum of squared errors, i.e., squared differences
between the observed and the predicted values of the dependent variable(s). Alternative
error metrics consider absolute values of the differences. While this metric has already been
used for linear regression, as in least absolute deviations (LAD), it has not been employed
in the context of polynomial regression. LAD is known to be more robust with regard to
outliers and may behave in the same way for polynomial regression.
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the environment in which I could work. I would like to thank my thesis committee, Prof. Dr.
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A Evaluating Ciper Improvements: Complete Re-

sults

A.1 Evaluating the New Refinement Operator

Table 45: A comparison of the performance of Ciper using the new improved refinement operator
(NewR) and old refinement operator (OldR). The performance is measured in terms of relative root
mean squared error (rrmse), search space complexity (ssc), and model complexity (mcl) given with
the equation length as explained in Chapter 5.

rrmse ssc mcl
dataset NewR t-test OldR NewR t-test OldR NewR t-test OldR

2dplanes 0.228 < 0.262 6.6 ·106 > 2.5 ·106 1.9 ·103 > 1.6 ·103

auto-price 0.427 = 0.398 2.8 ·106 > 1.5 ·106 9.5 ·102 > 7.2 ·102

bank32nh 0.812 < 0.853 7.7 ·104 > 6.5 ·103 3.0 ·102 > 1.0 ·102

baskball 0.817 = 0.852 9.5 ·103 > 9.0 ·102 3.0 ·102 > 1.0 ·102

bodyfat 0.163 = 0.846 2.8 ·106 > 4.1 ·105 1.3 ·103 > 3.7 ·102

cal-housing 0.598 = 0.573 2.7 ·107 > 1.9 ·107 6.0 ·103 < 6.5 ·103

cpu-small 0.453 = 0.501 2.6 ·107 > 1.8 ·107 4.4 ·103 = 4.7 ·103

delta-ailerons 0.628 < 0.635 2.1 ·104 > 1.1 ·103 3.0 ·102 > 1.0 ·102

delta-elevators 0.757 = 0.758 2.3 ·104 > 1.3 ·103 3.0 ·102 > 1.0 ·102

elevators 0.676 < 0.766 7.5 ·104 > 3.7 ·103 5.0 ·102 > 2.0 ·102

elusage 0.401 = 0.401 8.5 ·104 > 2.3 ·104 3.0 ·102 = 3.0 ·102

fried-delve 0.200 = 0.200 7.9 ·106 > 6.1 ·106 2.1 ·103 < 3.1 ·103

house-8l 0.614 < 0.638 2.7 ·107 > 4.2 ·106 8.0 ·103 > 2.7 ·103

housing 0.407 = 0.425 1.4 ·107 > 8.4 ·106 2.9 ·103 = 2.9 ·103

kin8nm 0.846 < 0.852 2.8 ·104 > 1.7 ·103 3.0 ·102 > 1.0 ·102

mbagrade 0.938 = 0.956 2.9 ·103 > 5.0 ·102 1.4 ·102 > 1.0 ·102

mv 0.067 < 0.083 1.7 ·106 > 1.7 ·106 1.4 ·103 > 1.2 ·103

puma32h 0.884 = 0.884 2.7 ·104 > 6.5 ·103 1.0 ·102 = 1.0 ·102

pw-linear 0.333 < 0.455 4.2 ·106 > 1.1 ·106 1.5 ·103 > 1.1 ·103

pyrim 0.993 = 0.848 6.6 ·104 > 5.5 ·103 2.9 ·102 > 1.0 ·102

quake 1.000 = 1.000 1.1 ·103 > 7.0 ·102 8.0 ·101 = 8.0 ·101

triazines 0.984 = 1.011 1.0 ·105 > 1.2 ·104 2.1 ·102 > 1.0 ·102

vineyard 0.510 = 0.590 2.4 ·105 > 5.1 ·104 4.0 ·102 < 4.6 ·102
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A.2 Evaluating the Improved MDL Heuristic

Table 46: The performance of Ciper using the improved refinement operator with the improved
MDL heuristic (MDL) and the old ad-hoc heuristic (ad-hoc).

rrmse ssc mcl
dataset MDL t-test ad-hoc MDL t-test ad-hoc MDL t-test ad-hoc

2dplanes 0.227 = 0.228 8.9 ·105 < 6.6 ·106 2.3 ·102 < 1.9 ·103

auto-price 0.396 = 0.427 1.7 ·105 < 2.8 ·106 5.8 ·101 < 9.5 ·102

bank32nh 0.655 < 0.812 4.0 ·107 > 7.7 ·104 1.1 ·103 > 3.0 ·102

baskball 0.774 = 0.817 2.6 ·103 < 9.5 ·103 2.0 ·101 < 3.0 ·102

bodyfat 0.170 = 0.163 1.5 ·105 < 2.8 ·106 4.7 ·101 < 1.3 ·103

cal-housing 0.829 = 0.598 3.1 ·106 < 2.7 ·107 1.2 ·103 < 6.0 ·103

cpu-small 0.174 < 0.453 5.7 ·106 < 2.6 ·107 8.8 ·102 < 4.4 ·103

delta-ailerons 0.569 < 0.628 1.5 ·104 = 2.1 ·104 3.0 ·101 < 3.0 ·102

delta-elevators 0.631 < 0.757 2.2 ·103 < 2.3 ·104 2.0 ·101 < 3.0 ·102

elevators 0.355 < 0.676 1.4 ·106 > 7.5 ·104 2.7 ·102 < 5.0 ·102

elusage 0.401 = 0.401 3.1 ·102 < 8.5 ·104 3.0 ·101 < 3.0 ·102

fried-delve 0.201 = 0.200 9.0 ·105 < 7.9 ·106 3.3 ·102 < 2.1 ·103

house-8l 0.620 = 0.614 2.1 ·106 < 2.7 ·107 1.1 ·103 < 8.0 ·103

housing 0.397 = 0.407 1.4 ·106 < 1.4 ·107 2.9 ·102 < 2.9 ·103

kin8nm 0.500 < 0.846 2.4 ·106 > 2.8 ·104 1.0 ·103 > 3.0 ·102

mbagrade 1.040 = 0.938 5.6 ·101 < 2.9 ·103 2.0 ·100 < 1.4 ·102

mv 0.029 < 0.067 6.2 ·105 < 1.7 ·106 3.5 ·102 < 1.4 ·103

puma32h 0.271 < 0.884 5.0 ·103 < 2.7 ·104 4.0 ·101 < 1.0 ·102

pw-linear 0.420 = 0.333 2.3 ·105 < 4.2 ·106 1.6 ·102 < 1.5 ·103

pyrim 0.829 = 0.993 2.6 ·105 > 6.6 ·104 4.0 ·101 < 2.9 ·102

quake 1.000 = 1.000 5.0 ·103 > 1.1 ·103 0.0 ·100 < 8.0 ·101

triazines 0.999 = 0.984 2.0 ·103 < 1.0 ·105 2.0 ·100 < 2.1 ·102

vineyard 0.701 = 0.510 8.2 ·103 < 2.4 ·105 3.5 ·101 < 4.0 ·102



Evaluating Ciper Improvements: Complete Results 105

A.3 Comparing the Two New Search Heuristics: CV vs MDL

Table 47: Comparison of the performance of CVCiper - Ciper with the CV heuristic (CV) and
MDLCiper - Ciper with the MDL heuristic (MDL).

rrmse ssc mcl
dataset CV t-test MDL CV t-test MDL CV t-test MDL

2dplanes 0.228 = 0.227 1.4 ·107 > 8.9 ·105 2.6 ·103 > 2.3 ·102

auto-price 0.372 = 0.396 2.8 ·106 > 1.7 ·105 2.2 ·103 > 5.8 ·101

bank32nh 0.670 > 0.655 5.4 ·107 > 4.0 ·107 3.0 ·103 > 1.1 ·103

baskball 0.829 = 0.774 2.7 ·104 > 2.6 ·103 2.6 ·102 > 2.0 ·101

bodyfat 0.166 = 0.170 7.8 ·105 > 1.5 ·105 5.8 ·102 > 4.7 ·101

cal-housing 0.551 = 0.829 1.3 ·107 > 3.1 ·106 4.8 ·103 > 1.2 ·103

cholesterol 1.025 = 1.008 5.2 ·106 > 5.0 ·104 2.4 ·103 > 1.0 ·100

cloud 0.507 = 0.437 8.6 ·105 > 9.6 ·104 1.1 ·103 > 4.5 ·101

cpu-small 0.189 > 0.174 1.0 ·107 > 5.7 ·106 1.3 ·103 > 8.8 ·102

delta-ailerons 0.550 < 0.569 4.3 ·106 > 1.5 ·104 3.0 ·103 > 3.0 ·101

delta-elevators 0.603 < 0.631 3.3 ·106 > 2.2 ·103 1.7 ·103 > 2.0 ·101

elevators 0.367 = 0.355 9.5 ·106 > 1.4 ·106 1.3 ·103 > 2.7 ·102

elusage 0.453 = 0.401 1.4 ·103 > 3.1 ·102 5.7 ·101 > 3.0 ·101

fried-delve 0.201 = 0.201 1.0 ·107 > 9.0 ·105 2.5 ·103 > 3.3 ·102

fruitfly 1.010 = 1.000 5.8 ·103 = 1.1 ·102 2.8 ·101 = 0.0 ·100

house-8l 0.611 = 0.620 1.3 ·107 > 2.1 ·106 4.7 ·103 > 1.1 ·103

housing 0.406 = 0.397 5.0 ·106 > 1.4 ·106 2.4 ·103 > 2.9 ·102

kin8nm 0.579 > 0.500 7.8 ·106 > 2.4 ·106 1.0 ·103 = 1.0 ·103

lowbwt 0.601 = 0.622 2.8 ·106 > 4.2 ·104 1.7 ·103 > 1.0 ·101

mbagrade 0.938 = 1.040 5.5 ·102 > 5.6 ·101 4.4 ·101 > 2.0 ·100

meta 1.500 = 1.052 2.2 ·107 = 2.4 ·107 2.5 ·103 > 6.2 ·102

mv 0.026 < 0.029 7.5 ·106 > 6.2 ·105 1.7 ·103 > 3.5 ·102

pharynx 0.729 = 0.743 2.8 ·106 > 1.6 ·105 8.6 ·102 > 3.1 ·101

puma32h 0.271 = 0.271 1.8 ·107 > 5.0 ·103 1.8 ·103 > 4.0 ·101

pw-linear 0.483 = 0.420 1.2 ·106 > 2.3 ·105 5.6 ·102 > 1.6 ·102

pyrim 0.728 = 0.829 2.2 ·106 > 2.6 ·105 1.0 ·103 > 4.0 ·101

quake 0.997 = 1.000 6.8 ·105 > 5.0 ·103 1.7 ·103 > 0.0 ·100

sensory 0.868 < 0.925 5.6 ·106 > 2.0 ·105 10.0 ·102 > 4.7 ·101

servo 0.483 > 0.302 1.0 ·106 > 6.1 ·105 4.3 ·102 > 3.0 ·102

strike 0.914 = 0.936 4.0 ·106 > 5.1 ·105 1.2 ·103 > 8.5 ·101

triazines 1.152 = 0.999 7.7 ·106 > 2.0 ·103 1.4 ·103 > 2.0 ·100

veteran 0.901 = 1.476 3.5 ·105 > 7.3 ·104 5.1 ·102 > 5.8 ·101

vineyard 0.632 = 0.701 3.8 ·104 > 8.2 ·103 4.3 ·102 > 3.5 ·101
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A.4 Evaluating the Effect of Beam Size

Table 48: The performance of Ciper using the new refinement operator and the MDL heuristic with
a large beam size (L) and a small beam size (S).

rrmse ssc mcl
dataset L t-test S L t-test S L t-test S

2dplanes 0.227 = 0.227 8.9 ·105 > 8.0 ·104 2.3 ·102 = 2.3 ·102

auto-price 0.396 = 0.401 1.7 ·105 > 1.5 ·104 5.8 ·101 > 5.0 ·101

bank32nh 0.655 < 0.672 4.0 ·107 > 6.0 ·105 1.1 ·103 > 3.9 ·102

baskball 0.774 = 0.774 2.6 ·103 = 7.6 ·102 2.0 ·101 = 2.0 ·101

bodyfat 0.170 = 0.160 1.5 ·105 > 9.8 ·103 4.7 ·101 = 1.8 ·101

cal-housing 0.829 = 0.596 3.1 ·106 > 1.6 ·105 1.2 ·103 > 7.1 ·102

cholesterol 1.008 = 1.008 5.0 ·104 > 4.7 ·102 1.0 ·100 = 1.0 ·100

cloud 0.437 = 0.558 9.6 ·104 > 7.2 ·103 4.5 ·101 = 3.3 ·101

cpu-small 0.174 < 0.182 5.7 ·106 > 1.9 ·105 8.8 ·102 > 4.3 ·102

delta-ailerons 0.569 = 0.560 1.5 ·104 = 1.2 ·104 3.0 ·101 < 1.4 ·102

delta-elevators 0.631 > 0.608 2.2 ·103 < 1.0 ·104 2.0 ·101 < 1.1 ·102

elevators 0.355 > 0.341 1.4 ·106 > 4.1 ·105 2.7 ·102 < 4.0 ·102

elusage 0.401 = 0.401 3.1 ·102 = 3.1 ·102 3.0 ·101 = 3.0 ·101

fried-delve 0.201 = 0.201 9.0 ·105 > 1.2 ·105 3.3 ·102 = 3.2 ·102

fruitfly 1.000 = 1.000 1.1 ·102 = 1.1 ·102 0.0 ·100 = 0.0 ·100

house-8l 0.620 = 0.629 2.1 ·106 > 2.2 ·105 1.1 ·103 > 8.4 ·102

housing 0.397 = 0.442 1.4 ·106 > 1.0 ·105 2.9 ·102 > 2.2 ·102

kin8nm 0.500 < 0.604 2.4 ·106 > 8.7 ·104 1.0 ·103 > 4.0 ·102

lowbwt 0.622 = 0.626 4.2 ·104 > 8.8 ·102 1.0 ·101 = 1.1 ·101

mbagrade 1.040 = 1.040 5.6 ·101 = 4.6 ·101 2.0 ·100 = 2.0 ·100

meta 1.052 = 1.500 2.4 ·107 > 4.9 ·105 6.2 ·102 > 2.6 ·102

mv 0.029 < 0.032 6.2 ·105 > 8.0 ·104 3.5 ·102 < 4.1 ·102

pharynx 0.743 = 0.733 1.6 ·105 > 8.0 ·103 3.1 ·101 > 2.2 ·101

puma32h 0.271 = 0.271 5.0 ·103 = 5.0 ·103 4.0 ·101 = 4.0 ·101

pw-linear 0.420 < 0.590 2.3 ·105 > 4.2 ·103 1.6 ·102 > 4.7 ·101

pyrim 0.829 = 1.008 2.6 ·105 > 2.4 ·104 4.0 ·101 = 3.6 ·101

quake 1.000 = 1.000 5.0 ·103 > 7.0 ·101 0.0 ·100 = 0.0 ·100

sensory 0.925 = 0.955 2.0 ·105 > 5.4 ·103 4.7 ·101 > 2.0 ·101

servo 0.302 = 0.286 6.1 ·105 > 4.6 ·104 3.0 ·102 > 2.0 ·102

strike 0.936 = 0.966 5.1 ·105 > 5.2 ·104 8.5 ·101 = 7.7 ·101

triazines 0.999 = 0.999 2.0 ·103 = 1.7 ·103 2.0 ·100 = 2.0 ·100

veteran 1.476 = 0.941 7.3 ·104 > 2.3 ·103 5.8 ·101 = 1.5 ·101

vineyard 0.701 = 0.707 8.2 ·103 > 1.1 ·103 3.5 ·101 = 2.6 ·101
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Table 49: The performance of Ciper using the new refinement operator and the CV heuristic with
a large beam size (L) and a small beam size (S).

rrmse ssc mcl
dataset L t-test S L t-test S L t-test S

2dplanes 0.228 < 0.252 1.4 ·107 > 9.5 ·105 2.6 ·103 > 1.5 ·103

auto-price 0.372 = 0.403 2.8 ·106 > 9.1 ·104 2.2 ·103 > 7.6 ·102

bank32nh 0.670 < 0.677 5.4 ·107 > 3.0 ·106 3.0 ·103 > 1.5 ·103

baskball 0.829 = 0.829 2.7 ·104 > 3.3 ·103 2.6 ·102 > 1.5 ·102

bodyfat 0.166 > 0.160 7.8 ·105 > 2.9 ·104 5.8 ·102 > 1.4 ·102

cal-housing 0.551 < 0.585 1.3 ·107 > 6.2 ·105 4.8 ·103 > 2.3 ·103

cholesterol 1.025 = 0.996 5.2 ·106 > 1.4 ·105 2.4 ·103 > 7.1 ·102

cloud 0.507 = 0.502 8.6 ·105 > 4.1 ·104 1.1 ·103 > 4.4 ·102

cpu-small 0.189 < 0.256 1.0 ·107 > 4.5 ·105 1.3 ·103 > 7.9 ·102

delta-ailerons 0.550 = 0.555 4.3 ·106 > 1.7 ·105 3.0 ·103 > 1.2 ·103

delta-elevators 0.603 < 0.611 3.3 ·106 > 2.1 ·105 1.7 ·103 > 1.0 ·103

elevators 0.367 < 0.430 9.5 ·106 > 5.1 ·105 1.3 ·103 > 8.0 ·102

elusage 0.453 = 0.453 1.4 ·103 = 1.4 ·103 5.7 ·101 = 5.7 ·101

fried-delve 0.201 < 0.230 1.0 ·107 > 8.0 ·105 2.5 ·103 > 1.9 ·103

fruitfly 1.010 = 1.009 5.8 ·103 = 1.4 ·103 2.8 ·101 = 2.2 ·101

house-8l 0.611 < 0.638 1.3 ·107 > 5.7 ·105 4.7 ·103 > 2.3 ·103

housing 0.406 < 0.472 5.0 ·106 > 1.9 ·105 2.4 ·103 > 1.0 ·103

kin8nm 0.579 < 0.613 7.8 ·106 > 5.2 ·105 1.0 ·103 > 6.9 ·102

lowbwt 0.601 = 0.611 2.8 ·106 > 7.2 ·104 1.7 ·103 > 4.8 ·102

mbagrade 0.938 = 0.938 5.5 ·102 = 5.3 ·102 4.4 ·101 = 4.4 ·101

meta 1.500 = 0.973 2.2 ·107 > 3.9 ·105 2.5 ·103 > 5.6 ·102

mv 0.026 < 0.060 7.5 ·106 > 5.6 ·105 1.7 ·103 > 1.0 ·103

pharynx 0.729 = 0.729 2.8 ·106 > 8.0 ·104 8.6 ·102 > 2.9 ·102

puma32h 0.271 = 0.275 1.8 ·107 > 9.2 ·105 1.8 ·103 > 8.4 ·102

pw-linear 0.483 < 0.584 1.2 ·106 > 4.7 ·104 5.6 ·102 > 3.2 ·102

pyrim 0.728 = 1.162 2.2 ·106 > 8.8 ·104 1.0 ·103 > 4.4 ·102

quake 0.997 = 0.996 6.8 ·105 > 1.1 ·105 1.7 ·103 > 1.5 ·103

sensory 0.868 < 0.905 5.6 ·106 > 2.2 ·105 10.0 ·102 > 5.3 ·102

servo 0.483 = 0.556 1.0 ·106 > 3.5 ·104 4.3 ·102 > 2.3 ·102

strike 0.914 = 0.921 4.0 ·106 > 2.1 ·105 1.2 ·103 > 6.4 ·102

triazines 1.152 = 1.153 7.7 ·106 > 2.0 ·105 1.4 ·103 > 4.7 ·102

veteran 0.901 = 0.915 3.5 ·105 > 1.4 ·104 5.1 ·102 > 2.2 ·102

vineyard 0.632 = 0.655 3.8 ·104 > 4.1 ·103 4.3 ·102 > 2.0 ·102



108 Evaluating Ciper Improvements: Complete Results

A.5 Evaluating the Effect of Degree

Table 50: The performance of Ciper is using the new refinement operator and the improved MDL
heuristic when learning quadratic equations - with a maximum degree of 2 (Q) and linear equations
- with a maximum degree of 1 (L).

rrmse ssc mcl
dataset Q t-test L Q t-test L Q t-test L

2dplanes 0.562 < 0.621 1.0 ·104 > 6.2 ·102 1.1 ·102 > 3.0 ·101

auto-price 0.458 = 0.474 3.0 ·104 > 1.2 ·103 4.1 ·101 > 2.3 ·101

bank32nh 0.671 < 0.772 3.2 ·105 > 2.6 ·103 3.3 ·102 > 4.0 ·101

baskball 0.774 = 0.774 5.4 ·102 > 1.0 ·102 2.0 ·101 = 2.0 ·101

bodyfat 0.160 = 0.162 2.0 ·104 > 1.1 ·103 1.2 ·101 < 1.9 ·101

cal-housing 0.648 = 0.647 5.1 ·103 = 6.0 ·102 5.8 ·101 > 3.0 ·101

cholesterol 1.008 = 1.008 2.5 ·104 > 1.3 ·103 1.0 ·100 = 1.0 ·100

cloud 0.383 = 0.383 9.2 ·103 > 3.7 ·102 2.9 ·101 = 2.9 ·101

cpu-small 0.221 < 0.549 2.0 ·104 > 1.1 ·103 1.3 ·102 > 4.0 ·101

delta-ailerons 1.000 = 1.000 1.1 ·102 = 6.0 ·101 0.0 ·100 = 0.0 ·100

delta-elevators 1.000 = 1.000 1.3 ·102 = 7.0 ·101 0.0 ·100 = 0.0 ·100

elevators 1.000 = 1.000 3.3 ·102 = 1.9 ·102 0.0 ·100 = 0.0 ·100

elusage 0.401 = 0.478 1.4 ·102 = 4.0 ·101 3.0 ·101 = 1.0 ·101

fried-delve 0.566 < 0.599 1.0 ·104 > 6.2 ·102 1.1 ·102 > 3.0 ·101

fruitfly 1.000 = 1.000 1.1 ·102 = 9.0 ·101 0.0 ·100 = 0.0 ·100

house-8l 0.734 < 0.794 5.1 ·103 > 6.0 ·102 9.0 ·101 = 3.0 ·101

housing 0.484 = 0.576 2.0 ·104 > 1.1 ·103 1.0 ·102 > 3.0 ·101

kin8nm 0.792 = 0.791 5.1 ·103 = 6.0 ·102 9.0 ·101 = 4.0 ·101

lowbwt 0.626 = 0.626 1.8 ·104 > 1.3 ·103 1.1 ·101 = 1.1 ·101

mbagrade 1.040 = 1.040 5.2 ·101 > 3.3 ·101 2.0 ·100 = 2.0 ·100

meta 0.988 = 1.000 6.4 ·105 > 5.1 ·103 2.5 ·102 > 2.8 ·101

mv 0.116 < 0.435 1.0 ·104 = 6.2 ·102 1.0 ·102 = 3.0 ·101

pharynx 0.740 = 0.733 6.2 ·104 > 1.3 ·103 3.1 ·101 > 2.2 ·101

puma32h 0.884 = 0.884 1.6 ·103 = 6.4 ·102 1.0 ·101 = 1.0 ·101

pw-linear 0.583 = 0.623 1.0 ·104 > 6.2 ·102 1.0 ·102 > 3.0 ·101

pyrim 0.972 = 0.951 7.1 ·104 > 9.0 ·102 3.8 ·101 > 2.0 ·101

quake 1.000 = 1.000 6.0 ·102 = 8.0 ·101 0.0 ·100 = 0.0 ·100

sensory 0.919 < 0.957 8.8 ·104 > 1.5 ·103 5.6 ·101 > 1.8 ·101

servo 0.458 < 0.572 3.5 ·104 > 1.2 ·103 1.1 ·102 > 3.0 ·101

strike 0.932 = 0.937 7.8 ·104 > 1.3 ·103 6.4 ·101 > 3.0 ·101

triazines 0.999 = 0.999 1.7 ·103 = 6.8 ·102 2.0 ·100 = 2.0 ·100

veteran 0.944 = 0.941 8.1 ·103 > 6.1 ·102 1.9 ·101 = 1.5 ·101

vineyard 0.780 = 0.702 5.4 ·102 > 8.0 ·101 3.1 ·101 > 1.2 ·101
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Table 51: The performance of Ciper using the new refinement operator and the CV heuristic when
learning quadratic equations - with a maximum degree of 2 (Q) and linear equations with a maximum
degree of 1 (L).

rrmse ssc mcl
dataset Q t-test L Q t-test L Q t-test L

2dplanes 0.482 < 0.621 1.0 ·105 > 6.2 ·103 3.5 ·102 > 3.0 ·101

auto-price 0.397 < 0.456 3.1 ·105 > 9.9 ·103 6.6 ·102 > 1.1 ·102

bank32nh 0.672 < 0.749 3.0 ·106 > 2.5 ·104 1.3 ·103 > 6.1 ·101

baskball 0.824 = 0.824 2.2 ·103 > 6.6 ·102 8.4 ·101 > 2.9 ·101

bodyfat 0.164 = 0.160 1.4 ·105 > 8.4 ·103 3.2 ·102 > 8.5 ·101

cal-housing 0.643 < 0.646 5.1 ·104 > 6.0 ·103 1.2 ·102 > 3.0 ·101

cholesterol 0.992 = 0.981 5.9 ·105 > 1.0 ·104 7.3 ·102 > 1.0 ·102

cloud 0.399 = 0.414 6.3 ·104 > 2.7 ·103 2.8 ·102 > 4.6 ·101

cpu-small 0.217 < 0.551 2.0 ·105 > 1.1 ·104 3.4 ·102 > 5.6 ·101

delta-ailerons 0.586 > 0.569 1.3 ·104 > 3.0 ·103 8.4 ·101 > 4.8 ·101

delta-elevators 0.648 > 0.611 2.6 ·104 > 3.4 ·103 1.6 ·102 > 5.6 ·101

elevators 0.423 < 0.540 2.4 ·105 > 1.2 ·104 4.4 ·102 > 4.8 ·101

elusage 0.447 = 0.477 9.9 ·102 > 3.6 ·102 3.2 ·101 > 1.0 ·101

fried-delve 0.537 < 0.598 1.0 ·105 > 6.3 ·103 4.0 ·102 > 4.7 ·101

fruitfly 1.009 = 1.010 1.5 ·103 = 8.8 ·102 1.3 ·101 = 8.0 ·100

house-8l 0.717 < 0.793 5.1 ·104 > 6.0 ·103 2.1 ·102 > 5.1 ·101

housing 0.455 < 0.566 2.0 ·105 > 1.1 ·104 5.5 ·102 > 9.2 ·101

kin8nm 0.782 = 0.788 5.1 ·104 > 6.1 ·103 2.3 ·102 > 6.3 ·101

lowbwt 0.607 = 0.608 2.9 ·105 > 1.0 ·104 5.2 ·102 > 7.6 ·101

mbagrade 0.929 = 0.940 5.5 ·102 > 3.2 ·102 4.8 ·101 > 2.0 ·101

meta 1.002 = 0.977 3.1 ·106 > 4.8 ·104 6.7 ·102 > 6.9 ·101

mv 0.117 < 0.433 1.0 ·105 > 7.8 ·103 2.9 ·102 > 8.6 ·101

pharynx 0.716 = 0.724 7.9 ·105 > 10.0 ·103 5.7 ·102 > 6.6 ·101

puma32h 0.885 = 0.884 1.7 ·106 > 2.6 ·104 8.4 ·102 > 8.1 ·101

pw-linear 0.555 < 0.588 7.0 ·104 > 4.2 ·103 3.6 ·102 > 7.2 ·101

pyrim 0.767 = 0.807 5.6 ·105 > 8.3 ·103 5.0 ·102 > 1.1 ·102

quake 0.998 = 0.998 6.6 ·103 > 8.0 ·102 1.2 ·102 > 2.4 ·101

sensory 0.874 < 0.949 1.2 ·106 > 1.1 ·104 7.5 ·102 > 8.6 ·101

servo 0.498 < 0.632 2.3 ·105 > 8.6 ·103 3.7 ·102 > 1.0 ·102

strike 0.910 < 0.931 6.3 ·105 > 1.3 ·104 6.9 ·102 > 9.3 ·101

triazines 0.871 < 0.951 2.1 ·106 > 1.7 ·104 7.1 ·102 > 9.8 ·101

veteran 0.900 = 0.917 3.3 ·104 > 2.4 ·103 2.2 ·102 > 5.1 ·101

vineyard 0.637 = 0.670 2.7 ·103 > 5.6 ·102 1.1 ·102 > 2.4 ·101
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Table 52: The performance of Ciper using the improved MDL heuristic when learning polynomial
equations - Ciper without a limitation on the degree (P) and quadratic equations - Ciper with a
maximum degree of 2 (Q).

rrmse ssc mcl
dataset P t-test Q P t-test Q P t-test Q

2dplanes 0.227 < 0.562 8.9 ·105 > 1.0 ·104 2.3 ·102 > 1.1 ·102

auto-price 0.396 < 0.458 1.7 ·105 > 3.0 ·104 5.8 ·101 > 4.1 ·101

bank32nh 0.655 < 0.671 4.0 ·107 > 3.2 ·105 1.1 ·103 > 3.3 ·102

baskball 0.774 = 0.774 2.6 ·103 = 5.4 ·102 2.0 ·101 = 2.0 ·101

bodyfat 0.170 = 0.160 1.5 ·105 > 2.0 ·104 4.7 ·101 = 1.2 ·101

cal-housing 0.829 = 0.648 3.1 ·106 > 5.1 ·103 1.2 ·103 > 5.8 ·101

cholesterol 1.008 = 1.008 5.0 ·104 > 2.5 ·104 1.0 ·100 = 1.0 ·100

cloud 0.437 = 0.383 9.6 ·104 > 9.2 ·103 4.5 ·101 = 2.9 ·101

cpu-small 0.174 < 0.221 5.7 ·106 > 2.0 ·104 8.8 ·102 > 1.3 ·102

delta-ailerons 0.569 < 1.000 1.5 ·104 = 1.1 ·102 3.0 ·101 = 0.0 ·100

delta-elevators 0.631 < 1.000 2.2 ·103 = 1.3 ·102 2.0 ·101 = 0.0 ·100

elevators 0.355 < 1.000 1.4 ·106 > 3.3 ·102 2.7 ·102 > 0.0 ·100

elusage 0.401 = 0.401 3.1 ·102 = 1.4 ·102 3.0 ·101 = 3.0 ·101

fried-delve 0.201 < 0.566 9.0 ·105 > 1.0 ·104 3.3 ·102 > 1.1 ·102

fruitfly 1.000 = 1.000 1.1 ·102 = 1.1 ·102 0.0 ·100 = 0.0 ·100

house-8l 0.620 < 0.734 2.1 ·106 > 5.1 ·103 1.1 ·103 > 9.0 ·101

housing 0.397 < 0.484 1.4 ·106 > 2.0 ·104 2.9 ·102 > 1.0 ·102

kin8nm 0.500 < 0.792 2.4 ·106 > 5.1 ·103 1.0 ·103 > 9.0 ·101

lowbwt 0.622 = 0.626 4.2 ·104 > 1.8 ·104 1.0 ·101 = 1.1 ·101

mbagrade 1.040 = 1.040 5.6 ·101 = 5.2 ·101 2.0 ·100 = 2.0 ·100

meta 1.052 = 0.988 2.4 ·107 > 6.4 ·105 6.2 ·102 > 2.5 ·102

mv 0.029 < 0.116 6.2 ·105 > 1.0 ·104 3.5 ·102 > 1.0 ·102

pharynx 0.743 = 0.740 1.6 ·105 > 6.2 ·104 3.1 ·101 = 3.1 ·101

puma32h 0.271 < 0.884 5.0 ·103 = 1.6 ·103 4.0 ·101 = 1.0 ·101

pw-linear 0.420 < 0.583 2.3 ·105 > 1.0 ·104 1.6 ·102 = 1.0 ·102

pyrim 0.829 = 0.972 2.6 ·105 > 7.1 ·104 4.0 ·101 = 3.8 ·101

quake 1.000 = 1.000 5.0 ·103 > 6.0 ·102 0.0 ·100 = 0.0 ·100

sensory 0.925 = 0.919 2.0 ·105 > 8.8 ·104 4.7 ·101 = 5.6 ·101

servo 0.302 < 0.458 6.1 ·105 > 3.5 ·104 3.0 ·102 > 1.1 ·102

strike 0.936 = 0.932 5.1 ·105 > 7.8 ·104 8.5 ·101 > 6.4 ·101

triazines 0.999 = 0.999 2.0 ·103 = 1.7 ·103 2.0 ·100 = 2.0 ·100

veteran 1.476 = 0.944 7.3 ·104 > 8.1 ·103 5.8 ·101 = 1.9 ·101

vineyard 0.701 = 0.780 8.2 ·103 > 5.4 ·102 3.5 ·101 = 3.1 ·101



Evaluating Ciper Improvements: Complete Results 111

Table 53: The performance of Ciper using the CV heuristic when learning polynomial equations -
Ciper without a limitation on the degree (P) and quadratic equations - Ciper with a maximum
degree of 2 (Q).

rrmse ssc mcl
dataset P t-test Q P t-test Q P t-test Q

2dplanes 0.228 < 0.503 1.4 ·107 > 1.0 ·105 2.6 ·103 > 3.5 ·102

auto-price 0.372 = 0.394 2.8 ·106 > 3.1 ·105 2.2 ·103 > 6.6 ·102

bank32nh 0.670 = 0.673 5.4 ·107 > 3.0 ·106 3.0 ·103 > 1.3 ·103

baskball 0.829 = 0.821 2.7 ·104 > 2.2 ·103 2.6 ·102 > 8.4 ·101

bodyfat 0.166 = 0.167 7.8 ·105 > 1.4 ·105 5.8 ·102 = 3.2 ·102

cal-housing 0.551 < 0.644 1.3 ·107 > 5.1 ·104 4.8 ·103 > 1.2 ·102

cholesterol 1.025 = 0.980 5.2 ·106 > 5.9 ·105 2.4 ·103 > 7.3 ·102

cloud 0.507 = 0.436 8.6 ·105 > 6.3 ·104 1.1 ·103 > 2.8 ·102

cpu-small 0.189 < 0.217 1.0 ·107 > 2.0 ·105 1.3 ·103 > 3.4 ·102

delta-ailerons 0.550 < 0.569 4.3 ·106 > 1.3 ·104 3.0 ·103 > 8.4 ·101

delta-elevators 0.603 < 0.641 3.3 ·106 > 2.6 ·104 1.7 ·103 > 1.6 ·102

elevators 0.367 = 0.366 9.5 ·106 > 2.4 ·105 1.3 ·103 > 4.4 ·102

elusage 0.453 = 0.446 1.4 ·103 > 9.9 ·102 5.7 ·101 > 3.2 ·101

fried-delve 0.201 < 0.528 1.0 ·107 > 1.0 ·105 2.5 ·103 > 4.0 ·102

fruitfly 1.010 = 1.000 5.8 ·103 = 1.5 ·103 2.8 ·101 = 1.3 ·101

house-8l 0.611 < 0.714 1.3 ·107 > 5.1 ·104 4.7 ·103 > 2.1 ·102

housing 0.406 = 0.427 5.0 ·106 > 2.0 ·105 2.4 ·103 > 5.5 ·102

kin8nm 0.579 < 0.777 7.8 ·106 > 5.1 ·104 1.0 ·103 > 2.3 ·102

lowbwt 0.601 = 0.593 2.8 ·106 > 2.9 ·105 1.7 ·103 > 5.2 ·102

mbagrade 0.938 = 0.925 5.5 ·102 = 5.5 ·102 4.4 ·101 = 4.8 ·101

meta 1.500 = 0.993 2.2 ·107 > 3.1 ·106 2.5 ·103 > 6.7 ·102

mv 0.026 < 0.049 7.5 ·106 > 1.0 ·105 1.7 ·103 > 2.9 ·102

pharynx 0.729 = 0.716 2.8 ·106 > 7.9 ·105 8.6 ·102 > 5.7 ·102

puma32h 0.271 < 0.884 1.8 ·107 > 1.7 ·106 1.8 ·103 = 8.4 ·102

pw-linear 0.483 < 0.559 1.2 ·106 > 7.0 ·104 5.6 ·102 > 3.6 ·102

pyrim 0.728 = 0.625 2.2 ·106 > 5.6 ·105 1.0 ·103 > 5.0 ·102

quake 0.997 = 0.997 6.8 ·105 > 6.6 ·103 1.7 ·103 > 1.2 ·102

sensory 0.868 = 0.859 5.6 ·106 > 1.2 ·106 10.0 ·102 > 7.5 ·102

servo 0.483 > 0.402 1.0 ·106 > 2.3 ·105 4.3 ·102 = 3.7 ·102

strike 0.914 = 0.911 4.0 ·106 > 6.3 ·105 1.2 ·103 > 6.9 ·102

triazines 1.152 = 0.867 7.7 ·106 > 2.1 ·106 1.4 ·103 > 7.1 ·102

veteran 0.901 = 0.890 3.5 ·105 > 3.3 ·104 5.1 ·102 > 2.2 ·102

vineyard 0.632 = 0.650 3.8 ·104 > 2.7 ·103 4.3 ·102 > 1.1 ·102
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A.6 Ciper vs LR, RT, and MT

Table 54: The predictive performance (in terms of rrmse) of MDLCiper (Ciper with the MDL
heuristic) as compared to linear regression (LR), regression trees (RT), and model trees (MT). The
algorithms LR, RT, and MT are used as implemented in the WEKA data mining software [24].

dataset MDLCiper t-test LR t-test RT t-test MT

2dplanes 0.227 < 0.543 = 0.227 = 0.227
auto-price 0.396 = 0.484 = 0.564 = 0.379
bank32nh 0.655 = 0.685 < 0.752 = 0.673
baskball 0.774 = 0.790 = 0.882 = 0.790
bodyfat 0.170 = 0.165 < 0.329 = 0.158
cal-housing 0.829 = 0.603 = 0.515 = 0.486
cholesterol 1.008 = 1.001 = 1.007 = 1.023
cloud 0.437 = 0.387 < 0.738 = 0.381
cpu-small 0.174 < 0.537 < 0.223 = 0.173
delta-ailerons 0.569 = 0.568 = 0.577 = 0.544
delta-elevators 0.631 > 0.610 = 0.622 > 0.600
elevators 0.355 < 0.433 < 0.521 > 0.322
elusage 0.401 = 0.472 = 0.657 = 0.413
fried-delve 0.201 < 0.527 < 0.357 < 0.278
fruitfly 1.000 = 1.000 = 1.000 = 1.000
house-8l 0.620 < 0.788 = 0.622 = 0.594
housing 0.397 < 0.533 < 0.523 = 0.407
kin8nm 0.500 < 0.766 < 0.688 < 0.607
lowbwt 0.622 = 0.605 = 0.640 = 0.609
mbagrade 1.040 = 0.891 = 1.000 = 0.891
meta 1.052 = 0.992 = 0.992 = 1.031
mv 0.029 < 0.431 < 0.048 = 0.013
pharynx 0.743 < 1.190 < 1.095 < 1.053
puma32h 0.271 < 0.885 < 0.290 = 0.270
pw-linear 0.420 = 0.505 < 0.569 = 0.324
pyrim 0.829 = 0.932 = 1.023 = 0.695
quake 1.000 = 0.998 = 1.001 = 0.996
sensory 0.925 = 0.925 = 0.911 > 0.861
servo 0.302 < 0.541 < 0.628 = 0.352
strike 0.936 > 0.912 = 0.942 = 0.910
triazines 0.999 = 0.968 > 0.901 = 0.849
veteran 1.476 = 0.903 = 0.950 = 0.897
vineyard 0.701 = 0.665 = 0.832 = 0.674



Evaluating Ciper Improvements: Complete Results 113

Table 55: The predictive performance of CVCiper (Ciper with the CV heuristic) as compared to
linear regression (LR), regression trees (RT), and model trees (MT). The algorithms LR, RT, and
MT are used as implemented in the WEKA data mining software [24].

dataset CVCiper t-test LR t-test RT t-test MT

2dplanes 0.228 < 0.543 = 0.227 = 0.227
auto-price 0.372 = 0.484 = 0.564 = 0.379
bank32nh 0.670 = 0.685 < 0.752 = 0.673
baskball 0.829 = 0.790 = 0.882 = 0.790
bodyfat 0.166 = 0.165 < 0.329 = 0.158
cal-housing 0.551 < 0.603 > 0.515 > 0.486
cholesterol 1.025 = 1.001 = 1.007 = 1.023
cloud 0.507 = 0.387 < 0.738 = 0.381
cpu-small 0.189 < 0.537 < 0.223 = 0.173
delta-ailerons 0.550 = 0.568 = 0.577 = 0.544
delta-elevators 0.603 = 0.610 = 0.622 = 0.600
elevators 0.367 < 0.433 < 0.521 > 0.322
elusage 0.453 = 0.472 = 0.657 = 0.413
fried-delve 0.201 < 0.527 < 0.357 < 0.278
fruitfly 1.010 = 1.000 = 1.000 = 1.000
house-8l 0.611 < 0.788 = 0.622 = 0.594
housing 0.406 < 0.533 < 0.523 = 0.407
kin8nm 0.579 < 0.766 < 0.688 < 0.607
lowbwt 0.601 = 0.605 = 0.640 = 0.609
mbagrade 0.938 = 0.891 = 1.000 = 0.891
meta 1.500 = 0.992 = 0.992 = 1.031
mv 0.026 < 0.431 < 0.048 = 0.013
pharynx 0.729 < 1.190 < 1.095 < 1.053
puma32h 0.271 < 0.885 < 0.290 = 0.270
pw-linear 0.483 = 0.505 = 0.569 > 0.324
pyrim 0.728 = 0.932 < 1.023 = 0.695
quake 0.997 = 0.998 = 1.001 = 0.996
sensory 0.868 < 0.925 < 0.911 = 0.861
servo 0.483 = 0.541 = 0.628 > 0.352
strike 0.914 = 0.912 = 0.942 = 0.910
triazines 1.152 = 0.968 = 0.901 = 0.849
veteran 0.901 = 0.903 = 0.950 = 0.897
vineyard 0.632 = 0.665 = 0.832 = 0.674
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B Evaluating Ciper Extensions: Complete Results

B.1 Evaluating Piecewise Polynomial Models

Table 56: The performance of polynomial equations learned by MDLCiper (P) compared to the
performance of piecewise linear equations learned by MDLCiperX - with a maximum non-binary
degree variables of 1 (Lx).

rrmse ssc mcl
dataset P t-test Lx P t-test Lx P t-test Lx

2dplanes 0.227 = 0.227 8.9 ·105 < 1.6 ·106 2.3 ·102 > 1.9 ·102

auto-price 0.396 < 0.462 1.7 ·105 > 2.9 ·104 5.8 ·101 > 2.7 ·101

bank32nh 0.655 < 0.678 4.0 ·107 > 1.6 ·107 1.1 ·103 > 3.5 ·102

baskball 0.774 = 0.774 2.6 ·103 = 5.8 ·102 2.0 ·101 = 2.0 ·101

bodyfat 0.170 = 0.162 1.5 ·105 > 1.1 ·103 4.7 ·101 = 1.9 ·101

cal-housing 0.829 = 0.595 3.1 ·106 > 2.7 ·105 1.2 ·103 > 3.0 ·102

cholesterol 1.008 = 1.008 5.0 ·104 > 4.9 ·102 1.0 ·100 = 1.0 ·100

cloud 0.437 = 0.375 9.6 ·104 > 1.4 ·103 4.5 ·101 = 2.8 ·101

cpu-small 0.174 = 1.473 5.7 ·106 > 1.5 ·106 8.8 ·102 > 3.5 ·102

delta-ailerons 0.569 = 0.569 1.5 ·104 = 4.0 ·103 3.0 ·101 = 3.0 ·101

delta-elevators 0.631 > 0.615 2.2 ·103 < 6.0 ·103 2.0 ·101 < 4.5 ·101

elevators 0.355 < 0.430 1.4 ·106 > 1.2 ·105 2.7 ·102 > 1.9 ·102

elusage 0.401 = 0.478 3.1 ·102 = 3.2 ·102 3.0 ·101 = 1.0 ·101

fried-delve 0.201 < 0.376 9.0 ·105 < 1.2 ·107 3.3 ·102 < 6.1 ·102

fruitfly 1.000 = 1.000 1.1 ·102 = 9.0 ·101 0.0 ·100 = 0.0 ·100

house-8l 0.620 < 0.761 2.1 ·106 = 1.8 ·106 1.1 ·103 > 5.6 ·102

housing 0.397 = 0.460 1.4 ·106 > 8.2 ·105 2.9 ·102 > 1.8 ·102

kin8nm 0.500 < 0.663 2.4 ·106 = 7.7 ·106 1.0 ·103 = 6.4 ·102

lowbwt 0.622 = 0.626 4.2 ·104 > 8.6 ·102 1.0 ·101 = 1.1 ·101

mbagrade 1.040 = 1.040 5.6 ·101 = 3.4 ·101 2.0 ·100 = 2.0 ·100

meta 1.052 = 1.410 2.4 ·107 = 2.1 ·107 6.2 ·102 > 4.4 ·102

mv 0.029 > 0.026 6.2 ·105 < 2.1 ·106 3.5 ·102 = 3.3 ·102

pharynx 0.743 = 0.746 1.6 ·105 = 1.3 ·105 3.1 ·101 = 2.6 ·101

puma32h 0.271 < 0.718 5.0 ·103 = 1.3 ·106 4.0 ·101 = 2.3 ·101

pw-linear 0.420 = 0.348 2.3 ·105 < 5.3 ·105 1.6 ·102 = 1.5 ·102

pyrim 0.829 = 1.500 2.6 ·105 = 3.1 ·105 4.0 ·101 = 3.0 ·101

quake 1.000 = 1.000 5.0 ·103 > 1.1 ·102 0.0 ·100 = 0.0 ·100

sensory 0.925 = 0.955 2.0 ·105 > 1.5 ·104 4.7 ·101 > 2.0 ·101

servo 0.302 = 0.309 6.1 ·105 > 5.3 ·105 3.0 ·102 = 3.0 ·102

strike 0.936 = 0.933 5.1 ·105 > 2.7 ·105 8.5 ·101 = 7.7 ·101

triazines 0.999 = 0.999 2.0 ·103 < 3.2 ·103 2.0 ·100 = 2.0 ·100

veteran 1.476 = 0.950 7.3 ·104 > 9.3 ·102 5.8 ·101 = 1.4 ·101

vineyard 0.701 = 0.702 8.2 ·103 > 7.7 ·101 3.5 ·101 > 1.2 ·101
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Table 57: The performance of polynomial equations learned by CVCiper (P) compared to the
performance of piecewise linear equations learned by CVCiperX - with a maximum non-binary
degree variables of 1 (Lx).

rrmse ssc mcl
dataset P t-test Lx P t-test Lx P t-test Lx

2dplanes 0.228 = 0.227 1.4 ·107 < 1.9 ·107 2.6 ·103 > 1.3 ·103

auto-price 0.372 = 0.438 2.8 ·106 > 4.8 ·105 2.2 ·103 > 5.5 ·102

bank32nh 0.670 < 0.685 5.4 ·107 = 6.2 ·107 3.0 ·103 > 1.5 ·103

baskball 0.829 = 0.810 2.7 ·104 > 3.1 ·103 2.6 ·102 > 6.9 ·101

bodyfat 0.166 = 0.160 7.8 ·105 > 8.2 ·103 5.8 ·102 > 9.2 ·101

cal-housing 0.551 < 0.599 1.3 ·107 > 1.1 ·106 4.8 ·103 > 8.3 ·102

cholesterol 1.025 = 0.984 5.2 ·106 = 4.0 ·106 2.4 ·103 > 9.6 ·102

cloud 0.507 = 0.416 8.6 ·105 > 3.1 ·105 1.1 ·103 > 4.3 ·102

cpu-small 0.189 > 0.176 1.0 ·107 > 6.2 ·106 1.3 ·103 = 1.3 ·103

delta-ailerons 0.550 < 0.567 4.3 ·106 > 4.2 ·104 3.0 ·103 > 1.3 ·102

delta-elevators 0.603 < 0.614 3.3 ·106 > 2.3 ·105 1.7 ·103 > 2.9 ·102

elevators 0.367 < 0.436 9.5 ·106 > 8.6 ·105 1.3 ·103 > 5.8 ·102

elusage 0.453 = 0.455 1.4 ·103 = 10.0 ·103 5.7 ·101 < 1.1 ·102

fried-delve 0.201 < 0.366 1.0 ·107 < 6.2 ·107 2.5 ·103 = 2.3 ·103

fruitfly 1.010 = 1.000 5.8 ·103 = 8.0 ·102 2.8 ·101 = 0.0 ·100

house-8l 0.611 < 0.755 1.3 ·107 > 7.7 ·106 4.7 ·103 > 1.5 ·103

housing 0.406 = 0.472 5.0 ·106 = 5.4 ·106 2.4 ·103 > 1.2 ·103

kin8nm 0.579 < 0.667 7.8 ·106 < 2.5 ·107 1.0 ·103 < 1.8 ·103

lowbwt 0.601 = 0.602 2.8 ·106 = 2.4 ·106 1.7 ·103 > 1.1 ·103

mbagrade 0.938 = 0.927 5.5 ·102 > 3.5 ·102 4.4 ·101 > 2.4 ·101

meta 1.500 = 1.001 2.2 ·107 = 1.4 ·107 2.5 ·103 > 6.4 ·102

mv 0.026 = 0.025 7.5 ·106 < 1.7 ·107 1.7 ·103 > 1.0 ·103

pharynx 0.729 = 0.717 2.8 ·106 < 4.0 ·106 8.6 ·102 = 1.0 ·103

puma32h 0.271 < 0.573 1.8 ·107 < 5.1 ·107 1.8 ·103 = 1.2 ·103

pw-linear 0.483 > 0.355 1.2 ·106 < 4.4 ·106 5.6 ·102 = 6.8 ·102

pyrim 0.728 = 0.731 2.2 ·106 < 4.0 ·106 1.0 ·103 = 7.8 ·102

quake 0.997 = 0.997 6.8 ·105 = 1.1 ·106 1.7 ·103 = 1.0 ·103

sensory 0.868 = 0.859 5.6 ·106 < 8.7 ·106 10.0 ·102 = 1.1 ·103

servo 0.483 > 0.402 1.0 ·106 < 1.8 ·106 4.3 ·102 < 5.7 ·102

strike 0.914 = 0.907 4.0 ·106 = 4.1 ·106 1.2 ·103 > 9.1 ·102

triazines 1.152 = 0.897 7.7 ·106 < 2.6 ·107 1.4 ·103 > 1.1 ·103

veteran 0.901 = 0.900 3.5 ·105 = 2.3 ·105 5.1 ·102 = 4.0 ·102

vineyard 0.632 = 0.667 3.8 ·104 > 8.1 ·102 4.3 ·102 > 3.9 ·101
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Table 58: The performance of polynomial equations learned by MDLCiper (P) compared to the
performance of piecewise linear equations learned by MDLCiperX with a maximum non-binary
degree variables of 2 (Qx).

rrmse ssc mcl
dataset P t-test Qx P t-test Qx P t-test Qx

2dplanes 0.227 = 0.227 8.9 ·105 < 1.7 ·106 2.3 ·102 > 1.8 ·102

auto-price 0.396 = 0.430 1.7 ·105 > 3.9 ·104 5.8 ·101 = 4.8 ·101

bank32nh 0.655 = 0.666 4.0 ·107 = 2.5 ·107 1.1 ·103 > 5.1 ·102

baskball 0.774 = 0.774 2.6 ·103 = 1.1 ·103 2.0 ·101 = 2.0 ·101

bodyfat 0.170 = 0.159 1.5 ·105 > 2.0 ·104 4.7 ·101 = 1.0 ·101

cal-housing 0.829 = 0.663 3.1 ·106 > 9.8 ·105 1.2 ·103 > 6.6 ·102

cholesterol 1.008 = 1.008 5.0 ·104 > 6.0 ·102 1.0 ·100 = 1.0 ·100

cloud 0.437 = 0.375 9.6 ·104 > 3.7 ·104 4.5 ·101 = 3.6 ·101

cpu-small 0.174 = 1.473 5.7 ·106 > 2.9 ·106 8.8 ·102 > 5.8 ·102

delta-ailerons 0.569 > 0.558 1.5 ·104 = 1.3 ·104 3.0 ·101 < 1.2 ·102

delta-elevators 0.631 = 0.626 2.2 ·103 < 7.5 ·103 2.0 ·101 < 5.1 ·101

elevators 0.355 > 0.346 1.4 ·106 > 5.3 ·105 2.7 ·102 < 3.1 ·102

elusage 0.401 = 0.401 3.1 ·102 < 5.7 ·102 3.0 ·101 = 3.0 ·101

fried-delve 0.201 < 0.205 9.0 ·105 < 1.1 ·107 3.3 ·102 < 7.1 ·102

fruitfly 1.000 = 1.000 1.1 ·102 = 1.1 ·102 0.0 ·100 = 0.0 ·100

house-8l 0.620 = 0.835 2.1 ·106 < 5.8 ·106 1.1 ·103 = 1.1 ·103

housing 0.397 = 0.423 1.4 ·106 > 1.1 ·106 2.9 ·102 > 2.2 ·102

kin8nm 0.500 < 0.607 2.4 ·106 = 4.0 ·106 1.0 ·103 > 5.7 ·102

lowbwt 0.622 = 0.626 4.2 ·104 > 8.3 ·102 1.0 ·101 = 1.1 ·101

mbagrade 1.040 = 1.040 5.6 ·101 = 4.6 ·101 2.0 ·100 = 2.0 ·100

meta 1.052 = 1.500 2.4 ·107 = 2.3 ·107 6.2 ·102 = 4.8 ·102

mv 0.029 = 0.027 6.2 ·105 < 1.8 ·106 3.5 ·102 = 3.0 ·102

pharynx 0.743 = 0.743 1.6 ·105 = 1.3 ·105 3.1 ·101 = 2.5 ·101

puma32h 0.271 = 0.607 5.0 ·103 < 1.1 ·107 4.0 ·101 = 1.2 ·102

pw-linear 0.420 = 0.368 2.3 ·105 < 4.2 ·105 1.6 ·102 = 1.4 ·102

pyrim 0.829 = 1.157 2.6 ·105 < 3.5 ·105 4.0 ·101 = 3.2 ·101

quake 1.000 = 1.000 5.0 ·103 > 1.4 ·102 0.0 ·100 = 0.0 ·100

sensory 0.925 = 0.955 2.0 ·105 > 1.5 ·104 4.7 ·101 > 2.0 ·101

servo 0.302 = 0.309 6.1 ·105 > 5.3 ·105 3.0 ·102 = 3.0 ·102

strike 0.936 = 0.931 5.1 ·105 > 4.0 ·105 8.5 ·101 = 7.8 ·101

triazines 0.999 = 0.999 2.0 ·103 < 4.0 ·103 2.0 ·100 = 2.0 ·100

veteran 1.476 = 0.950 7.3 ·104 > 2.1 ·103 5.8 ·101 = 1.4 ·101

vineyard 0.701 = 0.770 8.2 ·103 > 5.3 ·102 3.5 ·101 = 3.0 ·101
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Table 59: The performance of polynomial equations learned by CVCiper (P) compared to the
performance of piecewise linear equations learned by CVCiperX with a maximum non-binary degree
variables of 2 (Qx).

rrmse ssc mcl
dataset P t-test Qx P t-test Qx P t-test Qx

2dplanes 0.228 = 0.227 1.4 ·107 = 1.8 ·107 2.6 ·103 > 1.5 ·103

auto-price 0.372 = 0.380 2.8 ·106 > 1.1 ·106 2.2 ·103 > 1.0 ·103

bank32nh 0.670 = 0.672 5.4 ·107 < 1.1 ·108 3.0 ·103 > 1.8 ·103

baskball 0.829 = 0.809 2.7 ·104 = 1.3 ·104 2.6 ·102 = 2.3 ·102

bodyfat 0.166 = 0.167 7.8 ·105 > 1.5 ·105 5.8 ·102 = 4.2 ·102

cal-housing 0.551 = 0.567 1.3 ·107 > 4.4 ·106 4.8 ·103 > 1.6 ·103

cholesterol 1.025 = 0.977 5.2 ·106 = 5.0 ·106 2.4 ·103 > 1.2 ·103

cloud 0.507 = 0.406 8.6 ·105 < 1.1 ·106 1.1 ·103 > 9.2 ·102

cpu-small 0.189 > 0.170 1.0 ·107 = 9.0 ·106 1.3 ·103 < 2.0 ·103

delta-ailerons 0.550 = 0.553 4.3 ·106 > 2.5 ·105 3.0 ·103 > 6.5 ·102

delta-elevators 0.603 < 0.610 3.3 ·106 > 7.0 ·105 1.7 ·103 > 7.1 ·102

elevators 0.367 = 0.366 9.5 ·106 > 2.2 ·106 1.3 ·103 > 9.0 ·102

elusage 0.453 = 0.425 1.4 ·103 < 1.7 ·104 5.7 ·101 < 2.4 ·102

fried-delve 0.201 < 0.208 1.0 ·107 < 6.4 ·107 2.5 ·103 = 2.4 ·103

fruitfly 1.010 = 1.000 5.8 ·103 = 1.0 ·103 2.8 ·101 = 0.0 ·100

house-8l 0.611 < 0.643 1.3 ·107 = 1.3 ·107 4.7 ·103 > 1.9 ·103

housing 0.406 = 0.423 5.0 ·106 < 6.8 ·106 2.4 ·103 > 1.4 ·103

kin8nm 0.579 < 0.621 7.8 ·106 < 2.7 ·107 1.0 ·103 < 1.4 ·103

lowbwt 0.601 = 0.593 2.8 ·106 = 2.7 ·106 1.7 ·103 = 1.4 ·103

mbagrade 0.938 = 0.925 5.5 ·102 = 6.4 ·102 4.4 ·101 = 5.0 ·101

meta 1.500 = 0.983 2.2 ·107 = 1.4 ·107 2.5 ·103 > 7.5 ·102

mv 0.026 > 0.022 7.5 ·106 < 1.7 ·107 1.7 ·103 > 1.2 ·103

pharynx 0.729 = 0.716 2.8 ·106 < 4.3 ·106 8.6 ·102 < 1.1 ·103

puma32h 0.271 < 0.459 1.8 ·107 < 7.7 ·107 1.8 ·103 = 1.5 ·103

pw-linear 0.483 > 0.350 1.2 ·106 < 5.0 ·106 5.6 ·102 = 7.5 ·102

pyrim 0.728 = 1.132 2.2 ·106 < 4.8 ·106 1.0 ·103 = 9.5 ·102

quake 0.997 = 0.994 6.8 ·105 = 1.7 ·106 1.7 ·103 = 1.7 ·103

sensory 0.868 = 0.859 5.6 ·106 < 8.7 ·106 10.0 ·102 = 1.1 ·103

servo 0.483 > 0.402 1.0 ·106 < 1.8 ·106 4.3 ·102 < 5.7 ·102

strike 0.914 = 0.917 4.0 ·106 < 5.6 ·106 1.2 ·103 = 1.1 ·103

triazines 1.152 = 0.888 7.7 ·106 < 2.8 ·107 1.4 ·103 = 1.2 ·103

veteran 0.901 = 0.890 3.5 ·105 = 4.9 ·105 5.1 ·102 = 6.2 ·102

vineyard 0.632 = 0.638 3.8 ·104 > 5.2 ·103 4.3 ·102 > 1.5 ·102
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Table 60: Comparison of polynomial equations learned by MDLCiper (P) to piecewise polynomial
equations learned by MDLCiperX (Px).

rrmse ssc mcl
dataset P t-test Px P t-test Px P t-test Px

2dplanes 0.227 = 0.227 8.9 ·105 < 2.1 ·106 2.3 ·102 = 2.1 ·102

auto-price 0.396 = 0.396 1.7 ·105 < 1.8 ·105 5.8 ·101 = 5.8 ·101

bank32nh 0.655 = 0.659 4.0 ·107 < 1.1 ·108 1.1 ·103 = 1.1 ·103

baskball 0.774 = 0.774 2.6 ·103 = 2.8 ·103 2.0 ·101 = 2.0 ·101

bodyfat 0.170 = 0.170 1.5 ·105 = 1.5 ·105 4.7 ·101 = 4.7 ·101

cal-housing 0.829 = 0.552 3.1 ·106 = 2.1 ·106 1.2 ·103 > 9.2 ·102

cholesterol 1.008 = 1.008 5.0 ·104 < 6.2 ·104 1.0 ·100 = 1.0 ·100

cloud 0.437 = 0.438 9.6 ·104 < 1.2 ·105 4.5 ·101 = 4.4 ·101

cpu-small 0.174 = 0.171 5.7 ·106 > 2.5 ·106 8.8 ·102 > 4.1 ·102

delta-ailerons 0.569 = 0.569 1.5 ·104 = 1.7 ·104 3.0 ·101 = 3.0 ·101

delta-elevators 0.631 = 0.631 2.2 ·103 = 3.0 ·103 2.0 ·101 = 2.0 ·101

elevators 0.355 < 0.368 1.4 ·106 > 7.8 ·105 2.7 ·102 > 1.7 ·102

elusage 0.401 = 0.401 3.1 ·102 < 4.2 ·102 3.0 ·101 = 3.0 ·101

fried-delve 0.201 = 0.210 9.0 ·105 < 2.2 ·106 3.3 ·102 = 3.2 ·102

fruitfly 1.000 = 1.000 1.1 ·102 = 1.1 ·102 0.0 ·100 = 0.0 ·100

house-8l 0.620 = 0.619 2.1 ·106 < 2.3 ·106 1.1 ·103 > 6.0 ·102

housing 0.397 = 0.407 1.4 ·106 < 2.4 ·106 2.9 ·102 = 3.0 ·102

kin8nm 0.500 < 0.610 2.4 ·106 = 2.2 ·106 1.0 ·103 > 4.1 ·102

lowbwt 0.622 = 0.622 4.2 ·104 > 4.2 ·104 1.0 ·101 = 1.0 ·101

mbagrade 1.040 = 1.040 5.6 ·101 = 5.6 ·101 2.0 ·100 = 2.0 ·100

meta 1.052 = 1.465 2.4 ·107 > 6.1 ·106 6.2 ·102 > 1.9 ·102

mv 0.029 = 0.029 6.2 ·105 < 1.7 ·106 3.5 ·102 > 3.0 ·102

pharynx 0.743 = 0.743 1.6 ·105 = 1.6 ·105 3.1 ·101 = 3.1 ·101

puma32h 0.271 > 0.258 5.0 ·103 < 2.3 ·106 4.0 ·101 < 1.0 ·102

pw-linear 0.420 = 0.389 2.3 ·105 < 7.1 ·105 1.6 ·102 = 1.5 ·102

pyrim 0.829 = 0.893 2.6 ·105 < 4.6 ·105 4.0 ·101 = 4.3 ·101

quake 1.000 = 1.000 5.0 ·103 < 1.3 ·104 0.0 ·100 = 0.0 ·100

sensory 0.925 = 0.925 2.0 ·105 = 2.0 ·105 4.7 ·101 = 4.7 ·101

servo 0.302 = 0.302 6.1 ·105 = 6.1 ·105 3.0 ·102 = 3.0 ·102

strike 0.936 = 0.974 5.1 ·105 < 5.9 ·105 8.5 ·101 = 8.6 ·101

triazines 0.999 = 0.999 2.0 ·103 = 2.9 ·103 2.0 ·100 = 2.0 ·100

veteran 1.476 = 1.270 7.3 ·104 = 6.5 ·104 5.8 ·101 = 4.9 ·101

vineyard 0.701 = 0.701 8.2 ·103 > 6.4 ·103 3.5 ·101 = 3.5 ·101
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Table 61: Comparison of polynomial equations learned by CVCiper (P) to piecewise polynomial
equations learned by CVCiperX (Px).

rrmse ssc mcl
dataset P t-test Px P t-test Px P t-test Px

2dplanes 0.228 = 0.227 1.4 ·107 < 2.1 ·107 2.6 ·103 > 2.1 ·103

auto-price 0.372 = 0.376 2.8 ·106 = 2.6 ·106 2.2 ·103 > 1.9 ·103

bank32nh 0.670 < 0.679 5.4 ·107 > 3.4 ·107 3.0 ·103 > 1.1 ·103

baskball 0.829 = 0.829 2.7 ·104 = 3.0 ·104 2.6 ·102 = 2.7 ·102

bodyfat 0.166 = 0.168 7.8 ·105 = 7.5 ·105 5.8 ·102 = 5.6 ·102

cal-housing 0.551 = 0.547 1.3 ·107 = 1.3 ·107 4.8 ·103 > 4.0 ·103

cholesterol 1.025 = 1.018 5.2 ·106 < 6.6 ·106 2.4 ·103 = 2.2 ·103

cloud 0.507 = 0.642 8.6 ·105 < 1.1 ·106 1.1 ·103 = 1.0 ·103

cpu-small 0.189 > 0.172 1.0 ·107 < 1.5 ·107 1.3 ·103 < 2.1 ·103

delta-ailerons 0.550 > 0.543 4.3 ·106 = 5.0 ·106 3.0 ·103 = 3.1 ·103

delta-elevators 0.603 = 0.602 3.3 ·106 < 5.0 ·106 1.7 ·103 = 1.8 ·103

elevators 0.367 = 0.367 9.5 ·106 > 8.9 ·106 1.3 ·103 = 1.3 ·103

elusage 0.453 = 0.452 1.4 ·103 = 3.7 ·103 5.7 ·101 = 8.2 ·101

fried-delve 0.201 = 0.202 1.0 ·107 < 2.7 ·107 2.5 ·103 = 2.2 ·103

fruitfly 1.010 = 1.010 5.8 ·103 = 4.9 ·103 2.8 ·101 = 2.8 ·101

house-8l 0.611 = 0.612 1.3 ·107 < 2.1 ·107 4.7 ·103 > 3.3 ·103

housing 0.406 = 0.430 5.0 ·106 < 7.3 ·106 2.4 ·103 > 2.1 ·103

kin8nm 0.579 = 0.581 7.8 ·106 < 2.4 ·107 1.0 ·103 < 1.4 ·103

lowbwt 0.601 = 0.599 2.8 ·106 = 2.8 ·106 1.7 ·103 = 1.6 ·103

mbagrade 0.938 = 0.938 5.5 ·102 = 5.5 ·102 4.4 ·101 = 4.4 ·101

meta 1.500 = 1.500 2.2 ·107 < 3.3 ·107 2.5 ·103 = 2.1 ·103

mv 0.026 > 0.023 7.5 ·106 < 1.5 ·107 1.7 ·103 > 1.4 ·103

pharynx 0.729 = 0.730 2.8 ·106 = 2.8 ·106 8.6 ·102 = 8.6 ·102

puma32h 0.271 > 0.257 1.8 ·107 = 2.4 ·107 1.8 ·103 = 8.0 ·102

pw-linear 0.483 = 0.459 1.2 ·106 < 3.2 ·106 5.6 ·102 = 7.2 ·102

pyrim 0.728 = 1.500 2.2 ·106 < 3.7 ·106 1.0 ·103 = 9.3 ·102

quake 0.997 = 0.995 6.8 ·105 < 6.1 ·106 1.7 ·103 < 4.0 ·103

sensory 0.868 = 0.868 5.6 ·106 = 5.6 ·106 10.0 ·102 = 10.0 ·102

servo 0.483 = 0.483 1.0 ·106 = 1.0 ·106 4.3 ·102 = 4.3 ·102

strike 0.914 = 0.937 4.0 ·106 = 4.8 ·106 1.2 ·103 = 1.3 ·103

triazines 1.152 = 0.891 7.7 ·106 < 1.8 ·107 1.4 ·103 = 1.3 ·103

veteran 0.901 = 0.911 3.5 ·105 = 3.7 ·105 5.1 ·102 = 5.0 ·102

vineyard 0.632 = 0.625 3.8 ·104 = 3.0 ·104 4.3 ·102 = 3.7 ·102
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Table 62: Comparison of piecewise polynomial equations learned by CVCiperX (CV) and MDL-
CiperX (MDL) on the regression task.

rrmse ssc mcl
dataset CV t-test MDL CV t-test MDL CV t-test MDL

2dplanes 0.227 = 0.227 2.1 ·107 > 2.1 ·106 2.1 ·103 > 2.1 ·102

auto-price 0.376 = 0.396 2.6 ·106 > 1.8 ·105 1.9 ·103 > 5.8 ·101

bank32nh 0.679 > 0.659 3.4 ·107 < 1.1 ·108 1.1 ·103 = 1.1 ·103

baskball 0.829 = 0.774 3.0 ·104 > 2.8 ·103 2.7 ·102 > 2.0 ·101

bodyfat 0.168 = 0.170 7.5 ·105 > 1.5 ·105 5.6 ·102 > 4.7 ·101

cal-housing 0.547 = 0.552 1.3 ·107 > 2.1 ·106 4.0 ·103 > 9.2 ·102

cholesterol 1.018 = 1.008 6.6 ·106 > 6.2 ·104 2.2 ·103 > 1.0 ·100

cloud 0.642 = 0.438 1.1 ·106 > 1.2 ·105 1.0 ·103 > 4.4 ·101

cpu-small 0.172 = 0.171 1.5 ·107 > 2.5 ·106 2.1 ·103 > 4.1 ·102

delta-ailerons 0.543 < 0.569 5.0 ·106 > 1.7 ·104 3.1 ·103 > 3.0 ·101

delta-elevators 0.602 < 0.631 5.0 ·106 > 3.0 ·103 1.8 ·103 > 2.0 ·101

elevators 0.367 = 0.368 8.9 ·106 > 7.8 ·105 1.3 ·103 > 1.7 ·102

elusage 0.452 = 0.401 3.7 ·103 = 4.2 ·102 8.2 ·101 > 3.0 ·101

fried-delve 0.202 = 0.210 2.7 ·107 > 2.2 ·106 2.2 ·103 > 3.2 ·102

fruitfly 1.010 = 1.000 4.9 ·103 = 1.1 ·102 2.8 ·101 = 0.0 ·100

house-8l 0.612 = 0.619 2.1 ·107 > 2.3 ·106 3.3 ·103 > 6.0 ·102

housing 0.430 = 0.407 7.3 ·106 > 2.4 ·106 2.1 ·103 > 3.0 ·102

kin8nm 0.581 < 0.610 2.4 ·107 > 2.2 ·106 1.4 ·103 > 4.1 ·102

lowbwt 0.599 = 0.622 2.8 ·106 > 4.2 ·104 1.6 ·103 > 1.0 ·101

mbagrade 0.938 = 1.040 5.5 ·102 > 5.6 ·101 4.4 ·101 > 2.0 ·100

meta 1.500 = 1.465 3.3 ·107 > 6.1 ·106 2.1 ·103 > 1.9 ·102

mv 0.023 < 0.029 1.5 ·107 > 1.7 ·106 1.4 ·103 > 3.0 ·102

pharynx 0.730 = 0.743 2.8 ·106 > 1.6 ·105 8.6 ·102 > 3.1 ·101

puma32h 0.257 = 0.258 2.4 ·107 > 2.3 ·106 8.0 ·102 > 1.0 ·102

pw-linear 0.459 = 0.389 3.2 ·106 > 7.1 ·105 7.2 ·102 > 1.5 ·102

pyrim 1.500 = 0.893 3.7 ·106 > 4.6 ·105 9.3 ·102 > 4.3 ·101

quake 0.995 = 1.000 6.1 ·106 > 1.3 ·104 4.0 ·103 > 0.0 ·100

sensory 0.868 < 0.925 5.6 ·106 > 2.0 ·105 10.0 ·102 > 4.7 ·101

servo 0.483 > 0.302 1.0 ·106 > 6.1 ·105 4.3 ·102 > 3.0 ·102

strike 0.937 = 0.974 4.8 ·106 > 5.9 ·105 1.3 ·103 > 8.6 ·101

triazines 0.891 < 0.999 1.8 ·107 > 2.9 ·103 1.3 ·103 > 2.0 ·100

veteran 0.911 = 1.270 3.7 ·105 > 6.5 ·104 5.0 ·102 > 4.9 ·101

vineyard 0.625 = 0.701 3.0 ·104 > 6.4 ·103 3.7 ·102 > 3.5 ·101
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Table 63: The predictive performance (in terms of rrmse) of MDLCiperX as compared to linear
regression (LR), regression trees (RT), and model trees (MT). The algorithms are implemented in
the WEKA data mining software [24].

dataset MDLCiper t-test LR t-test RT t-test MT

2dplanes 0.227 < 0.543 = 0.227 = 0.227
auto-price 0.396 = 0.484 = 0.564 = 0.379
bank32nh 0.659 = 0.685 < 0.752 = 0.673
baskball 0.774 = 0.790 = 0.882 = 0.790
bodyfat 0.170 = 0.165 < 0.329 = 0.158
cal-housing 0.552 < 0.603 = 0.515 > 0.486
cholesterol 1.008 = 1.001 = 1.007 = 1.023
cloud 0.438 = 0.387 < 0.738 = 0.381
cpu-small 0.171 < 0.537 < 0.223 = 0.173
delta-ailerons 0.569 = 0.568 = 0.577 = 0.544
delta-elevators 0.631 > 0.610 = 0.622 > 0.600
elevators 0.368 < 0.433 < 0.521 > 0.322
elusage 0.401 = 0.472 = 0.657 = 0.413
fried-delve 0.210 < 0.527 < 0.357 < 0.278
fruitfly 1.000 = 1.000 = 1.000 = 1.000
house-8l 0.619 < 0.788 = 0.622 = 0.594
housing 0.407 < 0.533 < 0.523 = 0.407
kin8nm 0.610 < 0.766 < 0.688 = 0.607
lowbwt 0.622 = 0.605 = 0.640 = 0.609
mbagrade 1.040 = 0.891 = 1.000 = 0.891
meta 1.465 = 0.992 = 0.992 = 1.031
mv 0.029 < 0.431 < 0.048 = 0.013
pharynx 0.743 < 1.190 < 1.095 < 1.053
puma32h 0.258 < 0.885 < 0.290 = 0.270
pw-linear 0.389 < 0.505 < 0.569 = 0.324
pyrim 0.893 = 0.932 = 1.023 = 0.695
quake 1.000 = 0.998 = 1.001 = 0.996
sensory 0.925 = 0.925 = 0.911 > 0.861
servo 0.302 < 0.541 < 0.628 = 0.352
strike 0.974 = 0.912 = 0.942 = 0.910
triazines 0.999 = 0.968 > 0.901 = 0.849
veteran 1.270 = 0.903 = 0.950 = 0.897
vineyard 0.701 = 0.665 = 0.832 = 0.674
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Table 64: The predictive performance (in terms of rrmse) of CVCiperX as compared to linear
regression (LR), regression trees (RT), and model trees (MT). The algorithms are implemented in
the WEKA data mining software [24].

dataset MDLCiper t-test LR t-test RT t-test MT

2dplanes 0.228 < 0.543 = 0.227 = 0.227
auto-price 0.372 = 0.484 = 0.564 = 0.379
bank32nh 0.670 = 0.685 < 0.752 = 0.673
baskball 0.829 = 0.790 = 0.882 = 0.790
bodyfat 0.166 = 0.165 < 0.329 = 0.158
cal-housing 0.551 < 0.603 > 0.515 > 0.486
cholesterol 1.025 = 1.001 = 1.007 = 1.023
cloud 0.507 = 0.387 < 0.738 = 0.381
cpu-small 0.189 < 0.537 < 0.223 = 0.173
delta-ailerons 0.550 = 0.568 = 0.577 = 0.544
delta-elevators 0.603 = 0.610 = 0.622 = 0.600
elevators 0.367 < 0.433 < 0.521 > 0.322
elusage 0.453 = 0.472 = 0.657 = 0.413
fried-delve 0.201 < 0.527 < 0.357 < 0.278
fruitfly 1.010 = 1.000 = 1.000 = 1.000
house-8l 0.611 < 0.788 = 0.622 = 0.594
housing 0.406 < 0.533 < 0.523 = 0.407
kin8nm 0.579 < 0.766 < 0.688 < 0.607
lowbwt 0.601 = 0.605 = 0.640 = 0.609
mbagrade 0.938 = 0.891 = 1.000 = 0.891
meta 1.500 = 0.992 = 0.992 = 1.031
mv 0.026 < 0.431 < 0.048 = 0.013
pharynx 0.729 < 1.190 < 1.095 < 1.053
puma32h 0.271 < 0.885 < 0.290 = 0.270
pw-linear 0.483 = 0.505 = 0.569 > 0.324
pyrim 0.728 = 0.932 < 1.023 = 0.695
quake 0.997 = 0.998 = 1.001 = 0.996
sensory 0.868 < 0.925 < 0.911 = 0.861
servo 0.483 = 0.541 = 0.628 > 0.352
strike 0.914 = 0.912 = 0.942 = 0.910
triazines 1.152 = 0.968 = 0.901 = 0.849
veteran 0.901 = 0.903 = 0.950 = 0.897
vineyard 0.632 = 0.665 = 0.832 = 0.674
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B.2 Multi-target Regression

Table 65: The performance of Ciper on the task of multitarget regression. MDLCiper - Ciper
with the MDL heuristic ( MDL) and CVCiper - Ciper with the CV heuristic ( CV).

target rrmse ssc mcl
dataset MDL t-test CV MDL t-test CV MDL t-test CV

DFlow 0.82 0.77
DGap 0.75 0.74
edm = 4.6 ·105 < 2.2 ·106 1.2 ·102 < 1.5 ·103

c-class 1.06 0.99
m-class 1.04 1.01
x-class 1.30 1.02

solar-flare1 = 3.4 ·105 < 5.0 ·106 8.4 ·101 < 1.4 ·103

c-class 1.07 0.96
m-class 1.26 1.03
x-class 1.16 0.95

solar-flare2 = 1.9 ·106 < 1.0 ·107 2.8 ·102 < 2.0 ·103

Cladophora 2.87 1.18
Gongrosira 3.68 1.03

Oedogonium 4.78 1.12
Stigeoclonium 4.11 1.31

Melosira 1.39 1.11
Nitzschia 2.24 1.19

Audouinella 2.54 1.10
Erpobdella 3.99 1.32
Gammarus 6.16 0.91

Baetis 1.90 1.03
Hydropsyche 6.54 0.99
Rhyacophila 3.55 1.13

Simulium 5.96 1.17
Tubifex 1.90 1.05

water-quality > 1.3 ·107 = 8.7 ·106 1.2 ·103 < 2.2 ·103

Large Tree Score 0.79 0.79
Tree Canopy Score 0.65 0.65
Understorey Score 0.64 0.63

Litter Score 0.64 0.64
Logs Score 0.65 0.65

Weeds Score 0.56 0.56
Recruitment Score 0.73 0.73
habitat-hectares > 1.2 ·107 < 8.4 ·107 5.1 ·102 < 3.2 ·103

Continued on next page
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Table 65 – continued from previous page

targets rrmse ssc mcl
dataset MDL t-test CV MDL t-test CV MDL t-test CV

Temp 1.02 0.98
DisO 1.12 1.01
SD 1.04 1.01

Conduc 1.25 1.00
pH 2.00 1.02

NO2 1.04 1.02
NO3 1.02 1.00
NH4 1.02 1.00

InorgN 1.00 1.03
SO4 1.08 1.00
Na 1.02 1.00
K 1.09 1.00

Mg 1.09 1.02
Cu 1.01 1.00
Mn 1.06 1.02

prespa-lake > 1.0 ·107 > 4.0 ·105 1.7 ·102 = 1.2 ·102

Heat Resistance 1.09 1.50
Heat Resilience 1.03 1.62
Cu Resistance 0.86 0.98
Cu Resilience 0.94 1.61
Over resist eg 1.13 1.07

Over resil 2dc eg 0.77 0.71
1/Cc 0.81 0.98

Ce/Cc 0.82 1.07
soil-resilience = 4.8 ·103 < 1.3 ·105 1.0 ·101 < 3.1 ·102

MF0/00 plR 0.91 0.68
MS0/00 plR 0.92 0.60
sigmea-real = 2.8 ·105 < 4.9 ·105 6.9 ·102 < 1.4 ·103

Dispersal Rate Pollen 0.07 0.09
Dispersal Seeds 0.05 0.07

sigmea-simulated < 4.5 ·106 < 1.1 ·107 8.1 ·102 < 2.7 ·103

acari 0.74 0.80
collembola 0.75 0.80
sh-biodiv 0.78 0.88

soil-quality < 7.6 ·107 > 4.0 ·107 8.5 ·102 < 2.2 ·103
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Table 66: The performance of Ciper on the task of piecewise multitarget regression: comparison of
MDLCiperX (MDL) and CVCiperX (CV) on the multitarget regression task.

target rrmse ssc mcl
dataset MDL t-test CV MDL t-test CV MDL t-test CV

DFlow 0.77 0.71
DGap 0.79 0.73
edm = 6.0 ·105 < 4.1 ·106 9.8 ·101 < 1.6 ·103

c-class 1.06 0.99
m-class 1.04 1.01
x-class 1.30 1.02

solar-flare1 = 3.4 ·105 < 5.0 ·106 8.4 ·101 < 1.4 ·103

c-class 1.07 0.96
m-class 1.26 1.03
x-class 1.16 0.95

solar-flare2 = 1.9 ·106 < 1.0 ·107 2.8 ·102 < 2.0 ·103

Cladophora 2.88 1.18
Gongrosira 3.69 1.03

Oedogonium 4.78 1.12
Stigeoclonium 4.14 1.31

Melosira 1.40 1.11
Nitzschia 2.25 1.19

Audouinella 2.57 1.10
Erpobdella 3.99 1.32
Gammarus 6.17 0.91

Baetis 1.9 1.03
Hydropsyche 6.54 0.99
Rhyacophila 3.55 1.13

Simulium 5.96 1.17
Tubifex 1.92 1.05

water-quality > 1.5 ·107 > 8.7 ·106 1.3 ·103 < 2.2 ·103

Large Tree Score 0.79 0.79
Tree Canopy Score 0.65 0.66
Understorey Score 0.63 0.64

Litter Score 0.64 0.65
Logs Score 0.65 0.66

Weeds Score 0.56 0.57
Recruitment Score 0.73 0.73
habitat-hectares < 2.1 ·107 < 1.0 ·108 5.3 ·102 < 2.5 ·103

Continued on next page
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Table 66 – continued from previous page

target rrmse ssc mcl
dataset MDL t-test CV MDL t-test CV MDL t-test CV

Temp 1.02 0.98
DisO 1.02 1.01
SD 0.99 1.01

Conduc 1.03 1.00
pH 1.01 1.02

NO2 1.01 1.01
NO3 0.99 1.00
NH4 0.99 1.00

InorgN 1.00 1.03
SO4 1.01 1.00
Na 1.02 1.00
K 0.99 1.00

Mg 1.06 1.02
Cu 1.00 1.00
Mn 1.02 1.02

prespa-lake = 6.1 ·106 = 6.6 ·105 5.4 ·101 = 1.3 ·102

Heat Resistance 1.09 1.50
Heat Resilience 1.03 1.28
Cu Resistance 0.86 0.75
Cu Resilience 0.94 1.50
Over resist eg 1.13 1.24

Over resil 2dc eg 0.77 0.86
1/Cc 0.81 0.93

Ce/Cc 0.82 0.94
soil-resilience = 4.8 ·103 < 1.2 ·105 1.0 ·101 < 3.0 ·102

MF0/00 plR 1.80 0.75
MS0/00 plR 0.90 0.66
sigmea-real = 2.9 ·106 < 5.4 ·106 1.1 ·103 < 3.7 ·103

Dispersal Rate Pollen 1.50 0.08
Dispersal Seeds 1.50 0.06

sigmea-simulated = 7.8 ·106 = 3.7 ·107 7.3 ·102 < 3.3 ·103

acari 0.73 0.80
collembola 0.76 0.80
sh-biodiv 0.79 0.85

soil-quality < 9.2 ·107 = 5.3 ·107 8.3 ·102 < 2.1 ·103
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