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Abstract

Matrix factorization represents a popular approach in pattern analysis and is used to
tackle many problems, such as: collaborative �ltering, imputing missing data, denoising
data, dimensionality reduction, data visualization and exploratory analysis.

This thesis is focused on factorization based pattern analysis methods for multiview
learning problems: that is problems where each data instance is represented by multiple
views of an underlying object, encoded by multiple feature sets. As an example of a
multiview problem consider a dataset where each instance has two representations: a
visual image and a textual description. The patterns of interest are pairs of functions over
images and texts that are strongly related over the observed data.

Canonical Correlation Analysis (CCA) is designed to extract patterns from data sets
with two views. This thesis focuses on two generalizations of CCA, which were proposed in
the literature: Sum of Correlations (SUMCOR) and Sum of Squared Correlations SSCOR.
The SUMCOR problem formulation is interesting from the optimization perspective by its
own right, since it emerges in other problems as well.

We study several aspects of the generalizations. We �rst present a provably convergent
novel algorithm for �nding non-linear higher order patterns, which is based on an iterative
approach for solving multivariate eigenvalue problems. We show that SUMCOR in general
is NP-hard and then study its reformulation to a computationally tractable Semide�nite
Programming (SDP) problem. Based on the reformulation we derive several computation-
ally feasible bounds on global optimality, which complement the locally optimal solutions.
We introduce a new preprocessing step for dealing with large scale SDP problems that
arise from an application to cross-lingual text analysis. We investigated how to apply our
methods to real datasets with missing data. The particular structure of missing data in the
problem considered leads to a simpli�cation of the SSCOR optimization problem, which is
reduced to a tractable eigenvalue problem. We show how the algorithms apply to building
cross-lingual similarity models and apply the models on the task of cross-lingual cluster
linking. The approach to cross-lingual cluster linking is used in a real-time global analysis
of news streams in multiple languages.
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Povzetek

Metode, ki temeljijo na matri£ni faktorizaciji, predstavljajo pomemben pristop k analizi
vzorcev in podatkovnemu rudarjenju. Naloge, ki jih lahko prevedemo na matri£ne razcepe,
vklju£ujejo izbiranje s sodelovanjem (ang. collaborative �ltering), vstavljanje manjkajo£ih
podatkov (ang. missing data imputation), zmanj²evanje dimenzij (ang. dimensionality

reduction), odstranjevanje ²uma (ang. denoising), vizualizacijo podatkov (ang. data visu-

alization) in raziskovalno analizo podatkov (ang. exploratory data analysis).
V disertaciji se ukvarjamo z ve£poglednim u£enjem (ang. multiview learning), kjer

predpostavljamo, da imamo za podatke dva ali ve£ pogledov (ang. views), kar konkretneje
pomeni, da imamo za vsako podatkovno instanco na voljo dve ali ve£ mnoºic zna£ilk (ang.
feature sets), ki predstavljajo razli£ne poglede na nek objekt. Primer podatkovne mnoºice,
primerne za ve£pogledno u£enje, je mnoºica parov slik in tekstovnih opisov slik. Predpo-
stavljamo, da lahko slike in besedila predstavimo kot objekte v dveh vektorskih prostorih,
katerih dimenzije ustrezajo zna£ilkam za analizo slik oziroma besedil. V tem primeru
i²£emo vzorce (predstavljene kot funkcionale) v prostoru slik in tekstovnem prostoru, ki so
paroma mo£no povezani (na primer visoko korelirani vzdolº u£ne mnoºice).

Kanoni£na korelacijska analiza (KKA) predstavlja enega od najpomembnej²ih pristo-
pov za analizo podatkov, kjer sta na voljo dva pogleda oziroma dve mnoºici spremenljivk.
V pri£ujo£em delu preu£ujemo dve posplo²itvi metode KKA za analizo poljubnega ²tevila
mnoºic zna£ilk: metodo vsote korelacij (VKOR) (ang. Sum Of Correlations) in metodo
vsote kvadratov korelacij (VKKOR).

Omenjeni posplo²itvi VKOR in VKKOR preu£imo z ve£ vidikov. Prvi prispevek k
znanosti predstavlja dokazano konvergentni algoritem za iskanje ve£ mnoºic nelinearnih
vzorcev, ki temelji na iterativni metodi za re²evanje multivariatnih problemov lastnih
vrednosti (ang. multivariate eigenvalue problems). Dokaºemo, da je problem VKOR v
splo²nem NP-teºak, kar nas privede do analize konveksne relaksacije in prevedbe na opti-
mizacijsko nalogo semide�nitnega programiranja (SDP) (ang. Semide�nite Programming).
Na podlagi SDP formulacije predstavimo ²tevilne nove spodnje meje za vrednost globalno
optimalne re²itve. �eprav so meje izra£unljive v polinomskem £asu, je njihov izra£un v
praksi lahko teºaven. Zato predlagamo pristop, ki temelji na zmanj²anju ²tevila spremen-
ljivk s pomo£jo naklju£nih projekcij. Predstavimo tudi aplikacijo posplo²itev KKA na
problemu u£enja jezikovno neodvisne mere podobnosti, kjer naletimo na problem manj-
kajo£ih u£nih podatkov. Pokaºemo, da dolo£ena struktura manjkajo£ih podatkov pripelje
do poenostavitve optimizacijskega problema VKKOR, ki ga prevedemo na ra£unsko manj
zahteven problem lastnih vrednosti. Pokaºemo, kako lahko uporabimo jezikovno neodvi-
sno mero podobnosti za medjezi£no povezovanje gru£ (ang. clusters) dokumentov. Pristop
uporabimo v sistemu za globalno analizo tokov novic v ve£ jezikih.
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Correlation coe�cient measures the degree of linear dependence between two univariate
random variables.
Canonical Correlation Analysis is a way of measuring the linear relationship between two
multidimensional variables.
Principal Component Analysis is a dimensionality reduction technique based on maximiza-
tion of variance.
Singular Value Decomposition is a factorization of a real or complex matrix.
Vector Space Model is a representation of textual data in a vector space, based on counting
the occurrences of words, which correspond to vector space dimensions.
Latent Semantic Indexing is a text analysis technique based on the singular value decom-
position of the corpus matrix.
k-means Clustering is a grouping algorithm that groups objects according to their similar-
ity.
Symmetric positive semide�nite matrix is a symmetric matrix with nonnegative eigenval-
ues.
Semide�nite programming is a sub�eld of convex optimization concerned with the optimiza-
tion of a linear objective function over the intersection of the cone of positive semide�nite
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Kernel functions provide a way to manipulate data as though it were projected into a
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Chapter 1

Introduction

Pattern analysis is the process of �nding structure or regularity in a set of data. For
example, if each data instance represents a point in a vector space, we might be interested
in the following question: does the dataset lie in a lower dimensional subspace (does it
admit a more compact representation)? In this case, the subspace represents a pattern
(structure or regularity) discovered in the data. Principal Component Analysis provides a
solution to such a question.

This thesis deals with �nding patterns in datasets that exhibit a multi-view aspect:
that is, for each instance of data there are two or more representations (views) available.
We refer to such datasets as aligned (multi-view) datasets. As an example of a two-view
dataset, consider a dataset where each instance is represented by a visual image and a
textual description. Another example is a parallel multi-lingual corpus, where given n
languages, each data instance consists of n documents, one for each language and the
documents are related by being translations of each other. The patterns that we are
interested in represent regularities within each view that have associated regularities in
other views. For example, when dealing with text, a type of pattern that is often of
interest is a distribution over words from a �xed vocabulary, referred to as a topic vector.
Given a collection of documents in a single language, a typical problem is to �nd relevant
topic vectors that summarize the document collection. The multi-view variant of the
problem then corresponds to �nding sets of multiple representations of topic vectors (one
per language). Methods that extract such multi-representation patterns represent the main
subject of the thesis.

There are several possible applications of such an analysis. The patterns themselves
can be of interest for explorative analysis. For example, given an aligned dataset of fMRI
brain scans and visual images that were shown to the subjects as scans were taken, we can
investigate how the brain functions by looking at relationships between brain activation
regions and patterns in visual images. Another example of application is to use the multi-
view patterns as maps into a representation independent space. For example, representing
visual images and textual descriptions in the same space can be used for cross-modal
information retrieval, where one searches for images relevant to a query text, (or documents
relevant to a given image) by using standard information retrieval techniques. In addition,
the optimization problem related to one of the generalizations of Canonical Correlation
Analysis (CCA) that we study appears in applications that range from control theory,
blind source separation to multiple subject fMRI analysis.



2 Chapter 1. Introduction

1.1 Overview and Questions Addressed

We will now provide a high-level overview of the results presented in the thesis and highlight
the related work that motivated or enabled the results, all of which is summarized in
Figure 1.1. Canonical Correlation Analysis (CCA) [1], a well established method that
looks for patterns in two-view datasets, has been extended by other authors in several
ways: a nonlinear extension was proposed in [2], which was later applied to text in [3]. It
has been extended to more than two sets of variables in [4], where a formulation called Sum
of Correlations (SUMCOR) was presented, together with an iterative algorithm to �nding
local solutions, known as the Horst's algorithm. Results on global optimality of a subset
of SUMCOR problems was established in [5] and [6]. Several alternative generalizations of
CCA were proposed in [7], where the most relevant extension to the thesis is the Sum of

Squared Correlations (SSCOR).
The thesis starts with two questions:

• How can we extend the Horst's algorithm to handle nonlinear patterns and how to
�nd several sets of canonical vectors? Does the extension provably converge?

• What is the computational complexity of the SUMCOR problem formulation?

We present an extension that is closely related to [2] and show that it does converge to
local solutions. We prove that in general the computational complexity of the SUMCOR
problem is NP-hard. In light of these results, several questions arose:

• Can we �nd a convex relaxation of the problem?

• Can we obtain computationally tractable bounds on the SUMCOR objective?

We show how to relax the problem to an instance of a Semide�nite Programming (SDP),
whose solutions yield computable bounds on global optimality. The results related to SUM-
COR complexity and SDP relaxations are available in [8] and submitted for publication.

Applying the theory to practice opened up the following questions:

1. How to apply the SDP bounds to high dimensional data?

2. How can one use the methods to perform cross-lingual document analysis?

3. How does one handle missing data?

We addressed the questions in the following way:

1. We proposed a preprocessing step that reduces the number of variables in the SDP
derived from a SUMCOR problem instance which makes the relaxation computa-
tionally tractable.

2. We present the methodology for building cross-lingual similarity functions and apply
it to the task of cross-lingual cluster linking. The application is relevant to global
analysis of high-volume multi-lingual news streams.

3. We address the problem of missing data in our application to cross-lingual text
mining for datasets where data was missing in a structured way and show that
under certain assumptions, the SSCOR problem formulation can be reduced to a low-
dimensional eigenvalue problem. The results related to SSCOR reduction and cross-
lingual applications are available in [9]. An alternative application of the SSCOR
reformulation to cluster linking is published in [10].
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Figure 1.1: The main contributions, represented by text boxes with thick border, are
positioned with respect to the related work.

1.2 Scienti�c Contributions

We now list the main scienti�c contributions of the thesis and their references:

• A novel algorithm based on the Horst's algorithm that can extract several sets of
nonlinear patterns [8]

• A proof that in general the Sum of Correlations problem is NP-hard [8]

• A semide�nite programming relaxation of the SUMCOR problem and several new
bounds on global optimization of the SUMCOR problems [8]

• A novel approach to apply the SDP bounds on high-dimensional data [8]

• A novel approach to building cross-lingual similarity functions and its application to
cross-lingual information retrieval and cross-lingual cluster linking [9][10]

• Addressing the missing data problem, a novel reduction of a subset of SSCOR prob-
lems to eigenvalue problems [9]



4 Chapter 1. Introduction

1.3 Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 introduces notation and some
de�nitions. For background we describe three pattern analysis methods that are the most
relevant for the thesis and explain how they can be adapted for analysis of nonlinear
patterns in Chapter 3. Chapter 4 introduces a central problem of the thesis: generalizations
of Canonical Correlation Analysis (CCA) and the original contributions that extend the
method to nonlinear and higher-dimensional setting. In Chapter 5 we prove the result on
the complexity of a particular generalization and study global optimality guarantees based
on semide�nite relaxations. Chapter 6 discusses an application of multiview learning to
building cross-lingual similarity models. We show how a particular structure of the data
can be exploited to express a particular generalization of CCA as an eigenvector problem.
Chapter 7 then shows how the cross-lingual similarity measures can be used to perform
cross-lingual cluster linking, relevant for large scale monitoring of global news in multiple
languages. In Chapter 8 several experiments are presented both on synthetic and real
datasets. Finally, Chapter 9 concludes the thesis and discusses possible future directions.
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Chapter 2

Notation and De�nitions

We �rst introduce the notation we use throughout the thesis:

• Column vectors are denoted by lowercase letters, e.g. x and matrices are denoted by
uppercase letters, e.g. X.

• Subscripts are used to enumerate vectors or matrices, e.g. x1, x2, X1, except in the
special case of the identity matrix, In and the zero matrix 0k,l. In these cases, the
subscripts denote row and column dimensions.

• We use superscripted symbol T for vector and matrix transpose, e.g. xT .

• Let ‖v‖ or ‖v‖2 denote the `2 norm of the vector v and let ‖A‖F , ‖A‖1 and ‖A‖2
denote the Frobenius norm and the operator norms induced by 1-norm and 2-norm
respectively.

• MATLAB notation [11]

� The i-th element of vector x is denoted by x(i) and the matrix entry in the i-th
row and j-th column is denoted by X(i, j).

� The i-th row of matrix X is denoted by X(i, :) and the j-th column by X(:, j).
matrix elements, rows and columns (e.g. X(i, j), X(i, :), X(:, j))

� Matrix concatenation: [A B] represents horizontal concatenation and [A;B]
represents vertical concatenation.

� diag(v) denotes a diagonal matrix whose diagonal entries correspond to vector
v.

� 1k denotes a column vector with k elements all equal to 1.

• Spaces

� Rn denotes the n-dimensional real vector space.

� Rn×m denotes the (n ·m)-dimensional vector space used when specifying matrix
dimensions.

� N denotes the natural numbers.

� Sn+ denotes the space of symmetric positive semide�nite n-by-n matrices.

� Sn++ denotes the space of symmetric positive de�nite n-by-n matrices.

• Random vectors are denoted by calligraphic letters, e.g. X and X ∈ Rn denotes their
dimension.
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2.1 Sample Datasets and the Multiview Assumption

The following de�nitions will be relevant for our discussion of kernel versions of the methods
relevant to this thesis.

De�nition 2.1. A sample dataset with ` samples and n dimensions is a set

S := {x1, . . . , x`},
where xi ∈ Rn are generated independently and identically distributed (i.i.d.) according
to an underlying distribution.

De�nition 2.2. A n × ` sample matrix based on a dataset S with ` samples and n
dimensions is obtained by horizontally concatenating the samples:

X := [x1 · · ·x`] .
De�nition 2.3. A multiview sample dataset with ` samples and m views is a set:

S =
{(

x
(1)
1 , . . . , x

(m)
1

)
, . . . ,

(
x
(1)
` , . . . , x

(m)
`

)}
,

where x(j)i ∈ Rnj corresponds to the j-th view of the i-th sample. We assume that each
sample point was generated independently and identically distributed (i.i.d.) according to
an underlying distribution with a speci�c structure. We assume that the samples represent
di�erent views of an underlying object, that is, the observed random vectors are functions
of an unobserved random vector:(

X (1), . . . ,X (m)
)

= (f1(O), . . . , fm(O)) .

De�nition 2.4. Given a multiview dataset S with ` samples and m views, we form a
matrix for view i by using horizontal concatenation:

Xi :=
[
x
(i)
1 · · ·x

(i)
`

]
.

We refer to the set {X1, . . . , Xm} as multiview aligned matrices.
In general, we will say that two matrices are aligned, if their columns form observation

vector pairs, related to a multiview dataset.

De�nition 2.5. A multiview stacked matrix based on a dataset S with ` samples and m
views is a matrix obtained by vertically concatenating the multiview aligned matrices:

X := [X1; · · · ;Xm] .

De�nition 2.6. The sample matrix is centered if its rows sum to zero.

De�nition 2.7. Given a n×` sample matrix X, the empirical mean µX ∈ Rn is computed
as:

µX(i) =
1

`

∑

j

X(i, j).

De�nition 2.8. Given a sample matrix X ∈ Rn×` the empirical covariance is de�ned as:

Cov(X) :=
1

n− 1
(X − µX ·~1T` ) · (X − µX ·~1T` )T .

De�nition 2.9. Empirical variance V ar(X) is de�ned as the empirical covariance for
single dimensional sample matrices, that is, when n equals 1.

De�nition 2.10. Given two aligned sample matrices X1 ∈ Rn1×` and X2 ∈ Rn2×` the
empirical cross-covariance is de�ned as:

Cov(X1, X2) :=
1

n− 1
(X1 − µX1 ·~1T` ) · (X2 − µX2 ·~1T` )T .



2.2. Kernel Methods 7

2.2 Kernel Methods

The following de�nitions will be relevant for our discussion of kernel versions of the methods
relevant to this thesis. For de�nitions of standard concepts from topology we refer the
reader to standard texts [12].

De�nition 2.11. A metric space is an ordered pair (M,d), where M is a set and d :
M ×M → R is a metric on M , i.e., a function which satis�es for all x, y, z ∈M :

1. d(x, y) ≥ 0,

2. d(x, y) = 0⇐⇒ x = y,

3. d(x, y) = d(y, x),

4. d(x, z) ≤ d(x, y) + d(y, z).

De�nition 2.12. Let X be a metric space equipped with a metric d : X × X → R. A
sequence (x1, x2, x3, . . .) is a Cauchy sequence, if for every ε > 0 there exists a positive
integer N such that for all m,n > N :

d(xm, xn) < ε.

De�nition 2.13. A metric space X is complete, if every Cauchy sequence of elements in
X converges to an element of X.

De�nition 2.14. A topological spaceH is separable if it contains a countable dense subset;
that is, there exists a sequence (xn)∞n=1 such that every nonempty open subset of the space
contains at least one element of the sequence.

De�nition 2.15. A Hilbert space H is an inner product space that is both separable and
complete.

De�nition 2.16. Let V ⊂ Rn. A kernel is a function κ : V × V → R that satis�es:

κ(x, y) = 〈φ(x), φ(y)〉, ∀x, y ∈ V,

where φ : V → H is a function from V to a Hilbert space.

De�nition 2.17. Given a sample matrix X ∈ Rn×` and a kernel function κ, we de�ne a
kernel matrix K ∈ R`×` as:

K(i, j) := κ(xi, xj).

A special case of a kernel matrix is the Gram matrix, where the standard inner product
is used as the kernel function (also referred to as the linear kernel).

De�nition 2.18. A matrix A is positive semide�nite if:

xTAx ≥ 0, ∀x.

The space of positive semide�nite matrices is denoted by S+.

De�nition 2.19. A matrix A is positive de�nite if:

xTAx > 0, ∀x.

The space of positive de�nite matrices is denoted by S++.
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Chapter 3

Background

The central subjects in the thesis revolve around statistical approaches to �nding structure
in one, two or more sets of variates. We will introduce two methods that �nd structure in
a single set of variates: k-means clustering and Singular Value Decomposition (SVD) for
dimensionality reduction, which is closely related to Principal Component Analysis (PCA).
We will then present Canonical Correlation Analysis (CCA), a method for studying two
sets of variates. We will also brie�y cover kernel method extensions of the methods and
present some results on Semide�nite Programming.

3.1 k-means Clustering

The k-means algorithm [13] is perhaps the most well-known and widely-used clustering
algorithm. In spirit of analysis on multiview methods that is to be presented, we will
formulate k-means as a matrix factorization problem. Given an n× ` sample matrix (Def-
inition 2.2) the goal is to �nd the best rank k approximation under additional constraints:

minimize
C∈Rn×k,P∈R`×k

‖X − C · P T ‖2F ,

subject to P (i, j) ∈ {0, 1}, ∀i, j
∑

j

P (i, j) = 1, ∀i.
(3.1)

The interpretation of the additional constraints on matrix P is that they force each
sample vector (column in X) to select precisely one column of C to approximate it and
the objective function corresponds to minimizing a sum of squared errors made by approx-
imating points with centroids.

The matrix C in Equation 3.1 is uniquely de�ned for a given P , since for any given set
of points in Rn, the point that minimizes the sum of squared distances to the set is the
mean. Since each column of P selects a subset of columns of X, C can be expressed as:

C := X · Pdiag(~1T` · P )−1P T , (3.2)

where the inverse of the diagonal matrix corresponds to division by the set size when
computing the mean (~1T` ·P counts the number of points assigned to each of the k clusters).
In addition, given C, the assignment P that minimizes the sum of squared errors can be
found by:

P (i, j∗) = 1, where j∗ = arg min
j
‖X(:, i)− C(:, j)‖ (3.3)

A popular approach [13] to solving the problem in Equation 3.1 is to start with an initial
assignment and alternate between updating C given P and vice versa. The approach is
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widely used in practice, even though it is susceptible to �nding local minima. In general,
the problem is known to be NP-hard [14].

3.2 Singular Value Decomposition

The second factorization based approach that is relevant to our work is based on the
Truncated Singular Value Decomposition [11] (TSVD). It is closely related to Principal
Component Analysis [15] (PCA), a well established approach to dimensionality reduction.

Given an n× ` sample matrix (De�nition 2.2) the goal is to �nd a best approximation
with rank at most k under additional constraints:

minimize
U∈Rn×k,S∈Rk×k,V ∈R`×k

‖X − U · S · V T ‖F ,

subject to UTU = Ik

V TV = Ik

S = diag(σ), σ ∈ Rk, σ(i) ≥ 0.

(3.4)

The method of PCA is based on a low rank decomposition of the empirical covariance
matrix, computed based on the sample matrix. The main idea is to �nd a subspace that
accounts for as much as variability in the data as possible. The �rst principal component
is de�ned as the one-dimensional subspace that maximizes the variance of the data when
projected onto it. Formally, it solves the following problem:

maximize
u∈Rn

Var(uT ·X),

subject to ‖u‖ = 1.
(3.5)

The other principal vectors can be obtained by de�ation [16], or equivalently solving
the eigenvalue problem:

minimize
U∈Rn×k

‖Cov(X)− U · Λ · UT ‖F ,

subject to UTU = Ik

Λ = diag(λ), λ ∈ Rk.

(3.6)

One of the main applications of PCA is as a dimensionality reduction technique, where
the data is projected to the space spanned by the normalized eigenvectors (also called
principal vectors). In typical applications a truncated eigenvalue decomposition is used,
where one discards the principal vectors with small eigenvalues (similar to truncated SVDs).

If the data matrix is centered, then the solution U of TSVD and the eigenvector basis
U of PCA will coincide.

3.3 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [1] is a general procedure for studying relationships
between two sets of random variables. It is based on analyzing the cross-covariance matrix
between two random vectors with the aim of identifying linear relationships between them.
We will start with intuitions and then give a formal presentation.

Roughly speaking, given two random vectors X (1) and X (2) we are interested in �non-
trivial� pairs of functions (f (1), f (2)) such that there is a �dependence� between f (1)(X (1))
and f (2)(X (2)). The �dependence� we consider is linear (possibly in a Hilbert space). The
�non-triviality� of the functions is a requirement that guards us against trivial solutions,
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such as f (1)(x) := 0 · x, f (2)(y) := 0 · y - that is, f (1)(X (1)) and X (1) should share some
information, and analogously for f (2)(X (2)) and X (2). In other words, f (1) and f (2) should
not destroy the original signals. When we are interested in more than one good pair
of functions, for instance, a family of pairs (f

(1)
i , f

(2)
i ), we typically require additional

constraints to prevent non-trivial solutions by enforcing that f (1)i

(
X (1)

)
and f (1)j 6=i

(
X (1)

)

share no information, and similarly for f (2)i . We are interested in essentially di�erent
function pairs.

There are several possible applications of such an analysis. For example, a common
scenario involves analyzing objects o ∈ O, where O is some underlying space, which are not
directly observable, but are only observable as images of transformations F (1) : O → Rp and
F (2) : O → Rq. That is, we do not have access to o but only to

(
F (1)(o), F (2)(o)

)
. Then

�nding function pairs (f
(1)
i , f

(2)
i ) so that f (1)i (F (1)(o)) behave similarly as f (2)i (F (2)(o))

can be interpreted as �nding coupled parametrizations of image spaces of F (1) and F (2)

which agree on O. This enables applications such as cross-modal information retrieval,
classi�cation, clustering, etc. If F (1) encodes a visual image and F (2) encodes a textual
description of the scene, we can perform text input based search over a collection of images,
see [17]. Bi-lingual document analysis is another application, see [3], [18]. The pattern
functions (f

(1)
i , f

(2)
i ) themselves can be interesting to study for exploratory purposes.

Formally, let

S = {
(
F (1)(o1), F

(2)(o1)
)
, . . . ,

(
F (1)(on), F (2)(on)

)
}

represent a sample of n pairs drawn independently at random according to the under-
lying distribution, where F (1)(xi) ∈ Rp and F (2)(xi) ∈ Rq represent feature vectors
from p and q-dimensional vector spaces. Let X(1) = [F (1)(o1), . . . , F

(1)(on)] and let
X(2) = [F (2)(o1), . . . , F

(2)(on)] be the matrices with observation vectors as columns (using
MATLAB notation).

The idea is to �nd two vectors w(1) ∈ Rp and w(2) ∈ Rq so that the random variables
w(1)T · X (1) and w(2)T · X (2) are maximally correlated (w(1)T and w(2)T map the random
vectors to random variables, by computing weighted sums of vector components). By using
the sample matrix notation X(1) and X(2) this problem can be formulated as the following
optimization problem:

maximize
w(1)∈Rp,w(2)∈Rq

w(1)TCov(X(1), X(2))w(2)

√
w(1)TCov(X(1))w(1)

√
w(2)TCov(X(2))w(2)

, (3.7)

where Cov(X(1)) and Cov(X(2)) are empirical estimates of variances of X (1) and X (2)

respectively and Cov(X(1), X(2)) is an estimate for the covariance matrix as de�ned in
De�nition 2.8 and De�nition 2.10. The optimization problem can be reduced to a gener-
alized eigenvalue problem [17]:

[
0 Cov(X(1), X(2))

Cov(X(2), X(1)) 0

]
·
[
w(1)

w(2)

]
=

λ ·
[
Cov(X(1), X(1)) 0

0 Cov(X(2), X(2))

]
·
[
w(1)

w(2).

]
(3.8)

If the matrices Cov(X(1)) and Cov(X(2)) are not invertible, the problem is ill posed.
One can use a regularization technique by replacing Cov(X(1)) with (1−τ)Cov(X(1))+τI,
where τ ∈ [0, 1] is the regularization coe�cient and I is the identity matrix (and analo-
gously for Cov(X(2))), see [16] for details. A single canonical variable is usually inadequate
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in representing the original random vector and typically one looks for k projection pairs
(w

(1)
1 , w

(2)
1 ), . . . , (w

(1)
k , w

(2)
k ), so that w(1)

i and w(2)
i are highly correlated and w(1)

i is uncor-

related with w(1)
j for j 6= i and analogously for w(2).

The formulation in Equation 3.8 can be reformulated as a symmetric eigenvalue prob-
lem and solved e�ciently. In case the dimensions of the problem p and q are large and
observation vectors are sparse, one can consider an iterative method, for example Lanczos
algorithm [19]). Alternatively, if the number of observation vectors n is not prohibitively
large, one can reformulate the problem to its dual representation which can be combined
with a �kernel trick� [2] to yield nonlinear version of CCA, which will be discussed in the
next section.

3.4 Kernel Methods

The methods discussed so far looked for patterns expressed in the same space as the sample
dataset. We now discuss how we can extend the methods to �nding nonlinear patterns
by using the framework of kernel methods. To look for nonlinear patterns in the original
space, one �rst uses a nonlinear map φ to map the input data into a Hilbert space, where
linear patterns are then extracted. If the Hilbert space is high dimensional the strategy
might be computationally intractable. Let φ denote a feature map and κ its kernel function
as de�ned in De�nition 2.16, that is:

κ(x, y) = 〈φ(x), φ(y)〉.

If evaluating the kernel is feasible, then certain methods can be solved e�ciently, even if
φ is a map to an in�nite dimensional space. If in a given method the data and model
parameters interact only through inner products, then we can attempt to reformulate the
problem in terms of kernel matrices.

The general approach to kernelization of a method is to try to express the solution
in a dual basis, that is, the basis spanned by the training instances. The following two
theorems provide an alternative characterization of kernels and relate the kernel functions
with implicit feature maps. For an extended treatment of the concepts and the proofs we
refer the reader to [16].

Theorem 3.1. A function κ : X × X → R, which is either continuous or has a �nite

domain, is a kernel function if and only if its kernel matrix is symmetric and positive

semide�nite on any �nite set of points.

Theorem 3.2. Given a kernel function κ : X × X → R we can reconstruct the implicit

Hilbert space H and the feature map φ as:

H := {
k∑

i=1

αiκ(xi, ·) : k ∈ N, xi ∈ X},

φ(x) := κ(x, ·),

and the inner product is de�ned as:

〈φ(x), φ(y)〉 := κ(x, y).



3.4. Kernel Methods 13

3.4.1 Kernel k-means

Instead of working directly with columns of X we now work with φ (X(:, i)) for a φ that
corresponds to a choice of kernel κ. Applying the iterative procedure described in Sec-
tion 3.1 to the input space mapped by φ involves computing squared distances between
columns X(:, i) and centroids, which can be expressed as:

‖φ(X(:, i)− 1

|Sk|
∑

j∈Sk

φ(X(:, j))‖2,

where Sk denotes the set of indices of points currently assigned to centroids k. Since
‖x − y‖2 = 〈x − y, x − y〉 = 〈x, x〉 − 2〈x, y〉 + 〈y, y〉 the above quantity can be expressed
using kernel evaluations as:

κ (X(:, i), X(:, i))− 2
1

|Sk|
∑

j∈Sk

κ (X(:, i), (X(:, j)) +
1

|Sk|2
∑

j,`∈Sk

κ (X(:, j), X(:, `)) .

Using Theorem 3.2, a new point x is mapped to κ(x, ·) and assigned the cluster that
minimizes

arg min
k
‖κ(x, ·)− 1

|Sk|
∑

i∈Sk

κ (X(:, i), ·)‖2.

Again, computing the cluster assignment can be fully speci�ed through kernel evaluations.

3.4.2 Kernel PCA

We will assume that the data is centered to simplify presentation. The solution to PCA
is expressed as an eigenvector decomposition of the covariance matrix. There is a direct
correspondence between the eigen-decompositions of the scaled covariance (`− 1)Cov(X)
and the Gram matrix K = XTX. If (v, λ) is an eigenvector-eigenvalue pair for K, then
(Xv, λ) is an eigenvalue pair for (`− 1)Cov(X):

(`− 1)Cov(X)Xv = XXTXv = XKv = λXv.

Since ‖Xv‖ =
√
vTXTXv =

√
λvT v =

√
λ, the solutions to the original problem are

expressed as linear combinations over the training examples of the form
√
λXv. Motivated

by this correspondence, the kernel methods approach thus analyzes the spectrum of the
kernel matrix, given a kernel function.

Since the kernel matrix is symmetric and positive-de�nite, the eigenvectors form an
orthonormal set in the Hilbert space and can thus be used as a projection. The normalized
eigenvector v (with an associated λ) is expressed in the Hilbert space:

√
λ
∑

i

v(i)φ(X(:, i))

which means that projecting a new point φ(x) in the kernel PCA coordinates is computed
as:

P (φ(x))i :=
√
λ
∑

i

v(i)κ(x,X(:, i)).

The centering assumption is not needed, as centering can be implemented as an oper-
ation on the kernel matrix, as we will present in Section 4.4.3.
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3.4.3 Kernel CCA

We will now present how to apply kernel methods to CCA and obtain the method known
as Kernel CCA (KCCA). The idea is to express the optimization problem in its dual form,
where we express the solutions as linear combinations of their corresponding training in-
stances. All the interactions with the data will be expressed through inner products, which
will make the problem compatible with nonlinear feature maps based on their respective
kernels.

Let us express the vectors w(1) and w(2) in Equation 3.8 in their dual form by using
new coordinate vectors α(1) ∈ R` and α(2) ∈ R` so that:

w(1) = X(1)α(1),

w(2) = X(2)α(2).

Assuming that the data is centered, the original optimization problem in Equation 3.9 is
expressed as:

maximize
α(1)∈R`, α(2)∈R`

α(1)TK(1)K(2)α(2)

√
α(1)TK(1)K(1)α(1)

√
α(2)TK(2)K(2)α(2)

. (3.9)

Applying the Lagrangian multiplier technique one can arrive at the dual form of the
generalized eigenvalue problem:

[
0 K(1)K(2)

K(2),K(1) 0

]
·
[
α(1)

α(2)

]
= (3.10)

λ ·
[
K(1)K(1) 0

0 K(2)K(2)

]
·
[
α(1)

α(2).

]
(3.11)

To prevent over�tting, one can regularize the variances (1 − τ)Cov(X(1)) + τIp and
(1 − τ)Cov(X(2)) + τIq. The corresponding regularized dual variances are expressed as:
(1− τ)K(1)K(1) + τK(1) and (1− τ)K(2)K(2) + τK(2) can then replace the diagonal blocks
of the right side of Equation 3.10.

3.5 Semide�nite programming

Semide�nite programming (SDP) problems are a subclass of convex optimization prob-
lems that involve optimizing a linear function over the intersection of the cone of positive
semide�nite matrices with an a�ne space.

A primal SDP is given by:

min
X∈Sn+

Tr (AX)

subject to Tr (BiX) = bi, ∀i = 1, . . . ,m.
(3.12)

A dual SDP problem is closely related to the primal and is given by:

max
y∈Rm

〈b, y〉

subject to A−
m∑

i=1

yiBi ∈ Sn.
(3.13)

An important property of both problems is that they are convex (see [20]) which means
that any locally optimal solution is also globally optimal. The following two theorems relate
the optimal objective values of primal and dual formulations. For proofs of the next two
theorems please refer to a standard textbook on convex optimization [20].
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Theorem 3.3 (Weak duality). Let X∗ denote the optimal solution to the problem 3.12

and y∗ the optimal solution to the problem 3.13. Then

Tr(AX∗)− 〈b, y∗〉 ≥ 0.

The di�erence between the objective values is referred to as the duality gap.

Theorem 3.4 (Strong duality). If the optimization problem 3.12 is bounded from below

(optimal solution X∗ to the problem 3.12 exists) and there exists X0 ∈ Sn++ such that

Tr(X0Bi) = bi, ∀i = 0, . . . ,m, (3.14)

then the optimal solution y∗ to the problem 3.13 exists and:

Tr(AX∗) = 〈b, y∗〉.

Not all SDP problems result in a zero duality gap, but as it will turn out, the problems
that we will be interested in do. This is relevant from a practical perspective, since many
modern optimization SDP solvers, such as primal-dual interior point methods, converge
only when the duality gap is zero.

We now present an important result that has been established [21] on the rank of SDP
solutions (relevant to Chapter 5).

Theorem 3.5. If there is an optimal solution for SDP, then there is an optimal solution

of SDP whose rank r satis�es:
r(r + 1)

2
< m.

There also exists a constructive version of the statement [22]. See [23, Chapter 6.5] for
a proof.

Summary. This chapter introduced some well known data analysis techniques that play
an important role in the following chapters. More concretely, CCA and KCCA serve as the
basis of our proposed extensions in Chapter 4, SVD and k-means are used as benchmarks
for cross-lingual document analysis in Chapter 8 and SVD is used as a preprocessing step
for an original method that will be introduced in Chapter 6. The chapter also introduced
SDP problems, which will be used to obtain global optimality results in Chapter 5.
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Chapter 4

Nonlinear Multiview Canonical

Correlation Analysis

This chapter will discuss generalizations of CCA to analysis of multiple sets of variables.
The problem is then known as the Multi-set Canonical Correlation Analysis (MCCA),
or sometimes Multiview Canonical Correlation Analysis. Whereas it can be shown that
CCA can be solved using an (generalized) eigenvalue computation, MCCA is a much
more di�cult problem. We will describe a generalization proposed in [7] and present an
iterative locally optimal solution proposed in [4], referred to as the Horst's algorithm, which
represents a starting point of our work.

For use in practical applications, we propose a novel algorithm based on two original
contributions of the Horst's algorithm: we adapt the methods to use kernels and to �nd
multi-dimensional solutions, analogous to �nding multiple principal directions in PCA and
multiple pairs of canonical vectors in CCA.

4.1 Related Work

CCA, introduced in Section 3.3, was developed to detect linear relations between two sets of
variables. Typical uses of CCA include statistical tests of dependence between two random
vectors, exploratory analysis on multi-view data, dimensionality reduction and �nding a
common embedding of two random vectors that share mutual information.

CCA has been generalized in two directions: extending the method to �nding nonlinear
relations by using kernel methods [2][17] and extending the method to more than two sets
of variables [7], which we presented in Section 3.4. Among several proposed generalizations
in [7] the most important for our work are the Sum of Correlations (SUMCOR) and Sum

of Squared Correlations (SSCOR) generalizations, where SUMCOR will be the main focus
of the current chapter and Chapter 5 and SSCOR will be studied in Chapter 6.

There the goal is to project m sets of random variables to m univariate random vari-
ables, which are pair-wise highly correlated on average 1. An iterative method to solve the
SUMCOR generalization was proposed in [4] and the proof of convergence was established
in [24]. In [24] it was shown that a generic SUMCOR problem admits exponentially many
locally optimal solutions. In [6] the authors identi�ed a subset of SUMCOR problems for
which the iterative procedure converges to a global maximizer (Their results apply to non-
negative irreducible quadratic forms). In Chapter 5 we will discuss results on the problem
complexity and global optimality conditions.

1Given m univariate random variables, one can compute
(
m
2

)
correlation coe�cients, one for each pair

of variables.



18 Chapter 4. Nonlinear Multiview Canonical Correlation Analysis

}m∑
i=1

ni = N

Cov(X )X

C(1,1)

nmn1 n2

n1

n2

nmC(m,m)

C(1,2)

C(2,1) C(2,2)

C(1,m)

C(2,m)

C(m,1) C(m,2)X (m)

X (2)

X (1)

Figure 4.1: The block structure of the random vector X and the corresponding covariance
block structure.

This chapter will focus on the local iterative approach [4] with the aim of extending
it so it may be used in applications similar to KCCA. Here we show how the method
can be extended to �nding non-linear patterns and �nding more than one set of canonical
variates. Our work is related to [25] where a de�ation scheme is used together with the
Newton method to �nd several sets of canonical variates. Our nonlinear generalization is
related to [26], where the main di�erence lies in the fact that we "kernelized" the problem,
whereas the authors in [26] worked with explicit nonlinear feature representation.

We now list some applications of the SUMCOR formulation. In [27] an optimization
problem for multi-subject functional magnetic resonance imaging (fMRI) alignment is pro-
posed, which can be formulated as a SUMCOR problem (performing whitening on each
set of variables). Another application of the SUMCOR formulation can be found in [25],
where it is used for group blind source separation on fMRI data from multiple subjects.
An optimization problem equivalent to SUMCOR also arises in control theory [28] in the
form of linear sensitivity analysis of systems of di�erential equations.

4.2 Sum of Correlations

In this section we will discuss a generalization of CCA to more than two views, which �nds
a set of directions (one per view) which maximizes the average correlation (computed for
each pair of views).

We assume that we are given a centered random vector X ∈ RN as de�ned in De�ni-
tion 2.3, where X is composed of m subsets of random variables referred to as views. We
assume that the indices of components of each set are contiguous, i.e. X is a concatenation
of blocks that correspond to views.
Additional Notation. Let m denote the number of blocks and N the total number of
variables in X . Then

b := (n1, . . . , nm) ,
m∑

i=1

b (i) = N,

encodes the number of elements in each of the block. We denote the corresponding sub-
vectors as X (i) ∈ Rni (i-th block-row of vector X ) and the sub-matrices as C(i,j) ∈ Rni×nj

(i-th block-row, j-th block column of matrix C); see Figure 4.1. For example, in CCA,
there are only two sets, so m = 2.

Formally, given w ∈ RN we de�ne m random variables Zi (one-dimensional projections
of random block components of X ) as:

Zi :=

ni∑

j=1

X (i) (j)w(i) (j) = X (i)T · w(i).
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Let ρ (x, y) denote the correlation coe�cient between two random variables:

ρ (x, y) =
Cov (x, y)√

Cov (x, x)Cov (y, y)
.

The correlation coe�cient between Zi and Zj can be expressed as:

ρ (Zi,Zj) =
w(i)TC(i,j)w(j)

√
w(i)TC(i,i)w(i)

√
w(j)TC(j,j)w(j)

.

Initial Problem Formulation.
The problem described above can be stated as �nding the set of vectors w(i) which

maximize
m∑

i=1

m∑

j=i+1

ρ (Zi,Zj) . (SUMCOR)

We refer to this problem as Multi-set Canonical Correlation Analysis (MCCA). Note that it
reduces to CCA whenm = 2. The solution - that is, the set of components

(
w(1), . . . , w(m)

)
,

are referred to as the set of canonical vectors.
Another formulation proposed in [7] is the Sum of Squared Correlations (SSCOR)

m∑

i=1

m∑

j=i+1

ρ (Zi,Zj)2 . (SSCOR)

The second formulation is invariant to the signs of the correlation coe�cients. It will be
of importance in Chapter 6.
Reformulating the Optimization Problem.

Expanding SUMCOR, we get:

max
w∈RN

m∑

i=1

m∑

j=i+1

w(i)TC(i,j)w(j)

√
w(i)TC(i,i)w(i)

√
w(j)TC(j,j)w(j)

.

Observe that the solution is invariant to block scaling (only the direction matters): if(
w(1), . . . , w(m)

)
is a solution, then

(
α1 · w(1), . . . , αm · w(m)

)
is also a solution for αi > 0.

We may therefore impose constraints w(i)TC(i,i)w(i) = 1, which only a�ect the norm. This
yields the following equivalent constrained problem:

maximize
w∈RN

m∑

i=1

m∑

j=i+1

w(i)TC(i,j)w(j)

subject to w(i)TC(i,i)w(i) = 1, ∀i = 1, . . . ,m.

(4.1)

We further multiply the objective by 2 and add a constant m. Note that this does not
a�ect the optimal solution. Using the equalities: w(i)TC(i,j)w(j) = w(j)TC(j,i)w(i) and
w(i)TC(i,i)w(i) = 1, we obtain:

maximize
w∈RN

m∑

i=1

m∑

j=1

w(i)TC(i,j)w(j)

subject to w(i)TC(i,i)w(i) = 1, ∀i = 1, . . . ,m.

(4.2)

This transforms the objective function into a quadratic form wTCw. To simplify the
constraints, assume that C(i,i) is strictly positive de�nite. If C(i,i) is not full rank, then
using the eigenvalue decomposition C(i,i) = V ΛV T , where V ∈ Rni×k, Λ ∈ Rni×k, Λ > 0,
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k < ni, we substitute X (i) with V TX (i) ∈ Rk, for which the covariance matrix is strictly
positive de�nite.

From the strict positive de�niteness it follows that C(i,i) admits a Cholesky decompo-
sition: there exists an invertible triangular matrix Di such that C(i,i) = DT

i Di.
Finally, using the block structure b, we substitute w(i) with D−1i x(i) and de�ne A ∈ RN

as:
A(i,j) := Di

−TC(i,j)Dj
−1,

leading to the simpli�ed problem:

max
x∈RN

xTAx

subject to x(i)Tx(i) = 1, ∀i = 1, . . . ,m.
(QCQP)

It turns out that (QCQP) is simpler to manipulate than (SUMCOR), so we use this form
from this point on.

Using the technique of Lagrange multipliers (see [24]) we can relate the stationary
points of the problem in Equation (QCQP) to solutions of a nonlinear system of equations:

m∑

j=1

A(i,j)x(i) = λix
(i), ∀i = 1, . . . ,m, (4.3)

where λ1, . . . , λm ∈ R. This formulation is referred to as a Multivariate Eigenvalue Problem
(MEP). The following theorem has been established [24].

Theorem 4.1. Consider the problem in Equation (4.3). If the matrix A is symmetric and

generic, then the number of solutions to the system is exactly

Πm
i=12ni.

This means that in general the number of solutions grows exponentially with the num-
ber of views. Notice however that A in Equation (QCQP) is not generic as each of the
blocks on its diagonal is an identify matrix.

4.3 Local Solutions

In this section, we give an algorithm that converges to a locally optimal solution of the
problem (QCQP), when the matrix A is symmetric, positive-de�nite and generic (the proof
was established in [24]).

The algorithm can be interpreted as a generalization of the power iteration method (also
known as the Von Mises iteration), a classical approach to �nding the largest solutions to
the eigenvalue problem Ax = λx. The general iterative procedure is given as Algorithm 4.1.

In the case of m = 1, Algorithm 4.1 corresponds exactly to the power iteration. While
the algorithm's convergence to a local optimum is guaranteed, its convergence rate is not
known. In Chapter 8 we will examine the convergence rate on synthetic data.

4.4 Proposed Extensions

Here we present two extensions of MCCA: how to use kernel methods with MCCA to
�nd nonlinear dependencies in the data; and an algorithm to �nding more than one set of
correlation vectors.
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Algorithm 4.1: Horst's algorithm

Input: matrix A ∈ S+N , block structure b = (n1, . . . , nm), initial vector x0 ∈ RN
with ‖x(i)‖ > 0,
x← x0;
for iter = 1 to maxiter do
x← Ax;
for i = 1 to m do
x(i) ← x(i)

‖x(i)‖
end for

end for

Output: x

4.4.1 Dual Representation and Kernels

We return to formulation (4.1):

max
w∈RN

m∑

i=1

m∑

j=i+1

w(i)TC(i,j)w(j)

subject to w(i)TC(i,i)w(i) = 1, ∀i = 1, . . . ,m,

where b = (n1, . . . , nm) denotes the block structure and
∑

i ni = N . In the previous
sections, we focused on manipulating covariance matrices only and omitted details on
their estimation based on �nite samples. In this section, we will use a formulation that
explicitly presents the empirical estimates of covariances, which will enable us to apply
kernel methods. Let X be a random vector distributed over RN with E (X ) = 0. Let
X ∈ RN×s represent a sample of s observations of X , where each observation corresponds
to a column vector. The empirical covariance of X based on the sample matrix X is
expressed as:

Cov (X ) =
1

s− 1
XXT .

If s < N , then Cov (X ) is singular which makes the optimization problem ill-posed and may
lead to over�tting (discovering spurious patterns in the data). These issues are addressed
by using regularization techniques, typically a shrinkage estimator Cov (X )κ is de�ned as:

Cov (X )κ = (1− κ)
1

s− 1
XXT + κIN ,

where κ ∈ [0, 1]. Higher values of the regularization parameter κ lead to better numerical
stability, at a cost of solving a di�erent problem to the one originally posed, with solutions
that may be far from optimal. In practice the parameter has to be tuned using validation
techniques, for example using cross-validation.

Using the block structure b, Equation (4.1) becomes:

max
w∈RN

1

s− 1

m∑

i=1

m∑

j=i+1

w(i)TX(i)X(j)Tw(j)

subject to w(i)T

(
1− κ
s− 1

X(i)X(i)T + κIN

)
w(i) = 1,

∀i = 1, . . . ,m.

(4.4)
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To express each component w(i) in terms of the columns of X(i), let w have block structure
bw = (n1, . . . , nm) where

∑
i ni = N , and let y ∈ Rm·s have block structure by (i) = s, ∀i =

1, . . . ,m. The component w(i) can be expressed as:

w(i) =

s∑

j=1

y(i) (j)X(i) (:, j) = X(i)y(i). (4.5)

We refer to y as dual variables. Let Ki = X(i)TX(i) ∈ Rs×s denote the Gram matrix. We
can now express the problem (4.4) in terms of the dual variables:

max
y∈Rm·s

1

s− 1

m∑

i=1

m∑

j=i+1

y(i)TKiK
T
j y

(j)

subject to y(i)T
(

1− κ
s− 1

KiK
T
i + κKi

)
y(i) = 1,

∀i = 1, . . . ,m.

(4.6)

Expressing the problem in terms of Gram matrices makes it amenable to using kernel
methods (see [16]). It remains to check that the formulations (4.4) and (4.6) are equivalent.

Lemma 4.2. There exists a solution to (4.4) which can be expressed as (4.5).

Proof. We prove the lemma by contradiction. Assume that no optimal solution can be
expressed as (4.5) and let u be an optimal solution to the problem (4.4). Without loss of
generality, assume that u(1) does not lie in the column space of X(1):

u(1) = z⊥ +X(1)y(1),

where

z⊥ 6= 0n1 and X(1)T z⊥ = 0s.

We show that ū, de�ned as ū(i) := u(i), ∀i > 1 and ū(1) := 1
γX

(1)y(1), where

γ :=

√
y(1)TX(1)T

(
1− κ
s− 1

X(1)X(1)T + κIN

)
X(1)y(1),

strictly increases the objective function, which contradicts the assumption that u is optimal.
Clearly, ū is a feasible solution. Positive de�niteness of 1−κ

s−1X
(1)X(1)T +κIN , coupled with

the fact that zT⊥z⊥ > 0, implies that 0 < γ < 1. Let E :=
∑m

j=2

(
X(1)y(1)

)T
X(1)X(j)Tu(j).

If E < 0, then the vector [−u(1)T u(2)T · · · u(m)T ]T strictly increases the objective
function, which is a contradiction. We also obtain a contradiction if E = 0, since any
nonzero v ∈ Rs for which X(1)v 6= 0n1 can be used to obtain a solution to the problem
(4.4) expressed as (4.5) (after re-scaling such that Cov

(
X (1)v

)
κ

= 1 and if necessary

multiplying it by −1 so that
∑m

j=2

(
X(1)v

)T
X(1)X(j)Tu(j) ≥ 0). Thus, we may assume

that E > 0.
The following inequality completes the proof, since it shows that ū increases the objec-

tive function:
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1

s− 1

m∑

j=2

u(1)TX(1)X(j)Tu(j)

=
1

s− 1

m∑

j=2

(
z⊥ +X(1)y(1)

)T
X(1)X(j)Tu(j)

=
1

s− 1

m∑

j=2

(
X(1)y(1)

)T
X(1)X(j)Tu(j)

<
1

s− 1

m∑

j=2

1

γ

(
X(1)y(1)

)T
X(1)X(j)Tu(j).

Typically the matricesKi are ill conditioned (or even singular when the data is centered)
and it is advantageous to constrain the magnitude of dual coe�cients as well as the variance
in the original problem. We address this by introducing a �rst order approximation to the
dual regularized variance. Let

K̃i :=

(√
1− κ
s− 1

Ki +
κ

2

√
s− 1

1− κIs
)
.

The covariance becomes:

Cov
(
X (i)

)
κ

=
1− κ
s− 1

KiK
T
i + κKi ≈ K̃iK̃i

T
.

This approximation has two advantages: it is invertible and is in a factorized form. We
exploit the latter when obtaining a convergent local method. The �nal optimization is
then expressed as:

max
y∈Rm·s

1

s− 1

m∑

i=1

m∑

j=i+1

y(i)TKiK
T
j y

(j)

subject to y(i)T K̃iK̃i
T
y(i) = 1, ∀i = 1, . . . ,m.

(4.7)

The problem can be interpreted as maximizing covariance while constraining variance
and magnitude of dual coe�cients.

4.4.2 Computing Several Sets of Canonical Vectors

Usually a one-dimensional representation does not su�ciently capture all the information
in the data and higher dimensional subspaces are needed. After computing the �rst set of
primal canonical vectors we proceed to computing the next set. The next set should be
almost as highly correlated as the �rst one, but essentially �di�erent� from the �rst one.
We achieve this by imposing additional constraints for every view. Namely, all projection
vectors in view i are uncorrelated with respect to K̃2

i (this is similar to the approach in
two view regularized kernel CCA[2]).

Let Y = [y1, . . . , yk] ∈ Rm·s×k represent k sets of canonical vectors, where

Y (`)T K̃2
` Y

(`) = Ik ∀` = 1, . . . ,m.
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The equation above states that each canonical vector has unit regularized variance and that
di�erent canonical vectors corresponding to the same view are uncorrelated (orthogonal
with respect to K̃2

i ).
We will now extend the set of constraints in the optimization (4.7) to enforce the

orthogonality by introducing a modi�ed optimization problem. The problem will involve
the matrix Y , whose columns represent k sets of canonical vectors and we will show how
to derive the (k + 1)-th set of canonical vectors y whose block components y(i) will be
uncorrelated to corresponding block components of Y (:, j)(i).

max
y∈Rm·s

1

s− 1

m∑

i=1

m∑

j=i+1

y(i)TKiK
T
j y

(j)

subject to y(i)T K̃iK̃i
T
y(i) = 1, ∀i = 1, . . . ,m,

Y (i)T K̃iK̃i
T
y(i) = 0k, ∀i = 1, . . . ,m.

(4.8)

To use the Horst's algorithm, we �rst use the substitutions:

Z(i) = K̃iY
(i), z(i) = K̃iy

(i)

and de�ne the operators

Pi = Is − K̃iY
(i)Y (i)T K̃i = Is − Z(i)Z(i)T ,

which map to the space orthogonal to the columns of K̃iY
(i). Each Pi is a projection

operator: P 2
i = Pi, which follows directly from the identities above. The optimization

problem in the new variables is:

max
z∈Rm·s

1

s− 1

m∑

i=1

m∑

j=i+1

z(i)T K̃i
−T
KiK

T
j K̃j

−1
z(j)

subject to z(i)T z(i) = 1, ∀i = 1, . . . ,m,

Z(i)T z(i) = 0k, ∀i = 1, . . . ,m.

(4.9)

Using the projection operators, this is equivalent to:

max
z∈Rm·s

1

s− 1

m∑

i=1

m∑

j=i+1

z(i)TP Ti K̃i
−T
KiK

T
j K̃j

−1
Pjz

(j)

subject to z(i)T z(i) = 1, ∀i = 1, . . . ,m.

By multiplying the objective by 2 (due to the symmetries of Pi,Ki and K̃i) and shifting
the objective function by m

1−κ , the problem is equivalent to:

max
z∈Rm·s

1

s− 1

m∑

i=1

m∑

j=1
j 6=i

z(i)TP Ti K̃i
−T
KiK

T
j K̃j

−1
Pjz

(j) +
1

1− κ
m∑

i=1

z(i)T z(i)

subject to z(i)T z(i) = 1, ∀i = 1, . . . ,m.

(4.10)

This optimization can be reformulated as:

max
z∈Rm·s

zTAz

subject to z(i)T z(i) = 1, ∀i = 1, . . . ,m,
(4.11)
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where A ∈ Rm·s with block structure b (i) = s, ∀i = 1, . . . ,m, is de�ned by:

A(i,j) =





1

s− 1
P Ti K̃i

−T
KiK

T
j K̃j

−1
Pj for : i 6= j

1

1− κIs for : i = j





Lemma 4.3. The block matrix A de�ned above is positive de�nite (i.e. A ∈ Sm·s++).

Proof. A is symmetric, which follows from Pi = P Ti and Ki = KT
i . Let z ∈ Rm·s. The

goal is to show that zTAz > 0. Let us de�ne an auxiliary matrix W as:

W =
1

1− κ
m∑

i=1

z(i)TP Ti K̃i
−T ·

(
κKi +

κ2 (s− 1)

4 (1− κ)
Is

)
K̃i
−1
Piz

(i)

Each summand is positive-semide�nite, i.e. W ≥ 0 and W > 0 if ∃i : Piz
(i) = z(i). What

follows is a sequence of inequalities, some of which must be strict, as will be established:

zTAz =
1

s− 1

m∑

i=1

m∑

j=1
j 6=i

z(i)TP Ti K̃i
−T
KiK

T
j K̃j

−1
Pjz

(j)

+
1

1− κ
m∑

i=1

z(i)T z(i) (4.12)

≥ 1

s− 1

m∑

i=1

m∑

j=1
j 6=i

z(i)TP Ti K̃i
−T
KiK

T
j K̃j

−1
Pjz

(j)

+
1

1− κ
m∑

i=1

z(i)TP Ti Piz
(i) (4.13)

=
1

s− 1

m∑

i=1

m∑

j=1
j 6=i

z(i)TP Ti K̃i
−T
KiK

T
j K̃j

−1
Pjz

(j)

+
1

1− κ
m∑

i=1

z(i)TP Ti K̃i
−T
K̃i

T
K̃iK̃i

−1
Piz

(i) (4.14)

=
1

s− 1

m∑

i=1

m∑

j=1
j 6=i

z(i)TP Ti K̃i
−T
KiK

T
j K̃j

−1
Pjz

(j)

+
1

s− 1

m∑

i=1

z(i)TP Ti K̃i
−T
KiK

T
i K̃i

−1
Piz

(i) +W (4.15)

= zTBBT z +W ≥ 0,

where B ∈ Rm·s×s, de�ned by B(i) = 1√
s−1(KiK̃i

−1
Pi)

T , with corresponding row block
structure b (i) = s. The inequality after (4.12) holds since projection operators cannot

increase norms. (4.14) is equal to (4.13) using K̃i
−T
K̃i

T
= I. Regrouping the terms and

applying the de�nition of W , we obtain (4.15). The �nal equality follows, since the �rst
two sums form a perfect square.

Now we will show that at least one of the two inequalities is strict. If Piz(i) 6= z(i) for
some i, then the �rst inequality is strict (‖Piz(i)‖ < ‖z(i)‖). Conversely, if Piz(i) = z(i) for
all i, then W > 0, hence the last inequality is strict.
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Matrix A has all the required properties for convergence, so we apply Algorithm 4.1.
Solutions to (4.8) are obtained by back-substituting into y(i) = K̃i

−1
z(i).

The solution to the above problem can be found by solving the following problem:
∑

j 6=i
PiK̃

−1
i KiKjK̃

−1
j Pjαj +

1

(1− κ)2
αi + λiαi = 0,∀i,

followed by multiplying the solutions αi by K̃−1i .
Eigenvalue shifting techniques can be applied to enforce positive-de�niteness. The

algorithm is shown in Algorithm 4.2.

Algorithm 4.2: Horst's algorithm for computing a k-dimensional representation
Input: K1, . . . ,Km, κ, maxiter, k,
Output: Bk

1 , . . . , B
k
m

K̃i = (1− κ)Ki + κI, ∀i
for d = 1 to k do
Choose random vectors α0

1, . . . , α
0
m

if d > 1 then
P di = I − K̃iB

d−1
i Bd−1

i

′
K̃i

Set α0
i ← P di α

0
i , ∀i

else
P di = I ∀i

end if
u0i = KiK̃

−1
i α0

i ,∀i
for i = 1 to maxiter do
for j = 1 to m do

αij ← P dj K̃
−1
j Kj

∑
k 6=j u

i−1
k +

(
1

(1−κ)2

)
αi−1j

αij ←
αi
j√

αi
j
′
αi
j

uij ← KkK̃
−1
k αik

end for
end for
for l = 1 to m do
βdl = K̃−1l αmaxiterl

Bd
l = [Bd

l , β
d
l ] if d > 1

Bd
l = [βdl ] if d = 1

end for
end for

4.4.3 Implementation

The algorithm requires matrix vector multiplications and inverted matrix vector multipli-
cations. If the kernel matrices are products of sparse matrices: Ki = X(i)TX(i) with each
X(i) having s · n elements where s � n, then the kernel matrix vector multiplications
cost is 2ns rather than n2. Rather than computing the full inverses, we solve the system
Kix = y for x, every time K−1i y is needed. Since regularized kernels are symmetric and
multiplying them with vectors is fast (roughly four times slower than multiplication with
the original sparse matrices X(i)), an iterative method like Conjugate Gradient (CG) [11]
is suitable. Higher regularization parameters decrease the condition number of each K̃i

which speeds up CG convergence.
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If we �x the number of iterations, maxiter, and number of CG steps, C, the compu-
tational cost of computing a k-dimensional representation is upper bounded by: O

(
C ·

maxiter · k2 · m · n · s
)
, where m is the number of views, n the number of observations

and s average number of nonzero features of each observation. Since the majority of com-
putations are sparse matrix-vector multiplications, the algorithm can be parallelized (the
sparse matrices are �xed and can be split into multiple blocks).

So far, we have assumed that the data is centered. Centering can be implemented
as a preprocessing step on the kernel matrix, or incorporated in the kernel matrix-vector
multiplication in order to exploit sparsity in the data. Let K := XTX denote the kernel
and µ := 1

`X
~1` denote the empirical mean of the column sample matrix X.

Kernel Matrix Centering. Computing the kernel on centered data is done as follows:

(X − µ~1T` )T (X − µ~1T` ) = XTX −~1`µTX −XTµ~1T` +~1`µ
Tµ~1T`

= XTX − 1

`
~1`~1

T
` X

TX − 1

`
XTX~1`~1

T
` +

1

`

1

`
~1`~1

T
` (~1T` X

TX~1`)

= K − 1

`
~1`(~1

T
` K)− 1

`
(K~1`)~1

T
` +

~1T` K
~1`

`2
~1`~1

T
` .

We see that if computing K is feasible, then the centering only involves a small set
of steps with quadratic complexity, which include kernel-vector multiplication and adding
rank 1 matrices to the kernel.
Centering on the �y. If X ∈ RN×` is sparse, we cannot explicitly compute the kernel
matrix K, but we can perform fast matrix-vector multiplication as Kx = XT (Xx) is
a sequence of two fast multiplications. We will now incorporate centering. Then X is
centered by subtracting the mean from each column, which in matrix notation corresponds
to the matrix X − µ~1T` . Then, centering on the �y corresponds to computing:

(X − µ~1T` )T (X − µ~1T` )x = (X − µ~1T` )T (Xx− (~1T` x)µ)

= XT (Xx)− ((µTX)x)~1` − (~1T` x)(XTµ) + (~1T` x)(µTµ)~1`.

If the computation is dominated by XT (Xx), then centering on the �y is suitable for
black box matrix-vector based methods. Also note that µ, XTµ and (µTµ)~1` can be
pre-computed.

Summary. This chapter presented two extensions of the SUMCOR problem and showed
how the Horst's algorithm can be modi�ed to �nd solutions of the extended formula-
tions. The �rst extension is based on a dual representation of the optimization problem
and enables looking for non-linear pattern analysis using kernel methods. The second ex-
tension enables looking for more than one set of canonical vectors which enables �nding
higher-dimensional projections of data into a common vector space. The next chapter will
investigate the global optimality properties of the problem. Chapter 8 will provide some
experimental results.
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Chapter 5

Relaxations and Bounds

The current chapter focuses on the optimization aspect of the SUMCOR problem. We
present our results on the computational complexity of the SUMCOR problem formulation,
as well as several global optimality bounds.

5.1 NP-Hardness

In this section, we prove that the optimization problem QCQP is not only non-convex but
NP-hard in general. We present a reduction from a general binary quadratic optimization
problem.

Let A ∈ Rm×m. The binary quadratic optimization problem (BQO) is stated as:

max
x∈Rm

xTAx

subject to x (i)2 = 1, ∀i = 1, . . . ,m.
(BQO)

Many hard combinatorial optimization problems (e.g. the maximum cut problem and the
maximum clique problem [29]) can be reduced to BQO [30], which is known to be NP-hard.

We reduce a general instance of a BQO problem to an instance of the problem (QCQP).
That means that despite the special structure of the problem (QCQP) (maximizing a
positive-de�nite quadratic form over a product of spheres), it still falls into the class of
problems that are hard (under the assumption that P 6= NP ). We begin with a general
instance of BQO and through a set of simple transformations, obtain a speci�c instance
of (QCQP), with a block structure b = (1, . . . , 1). More concretely, we will show that
any BQO is equivalent to a BQO problem whose assoicated matrix is a correlation matrix
(positive de�nite with ones on the diagonal), which is an instance of a the problem (QCQP.

Consider a BQO with a corresponding generic matrix A ∈ Rm×m. Since xTAx =

xT
(A+AT )

2 x, we can assume that the matrix A is symmetric. The binary constraints imply
that for any diagonal matrix D the quantity xTDx =

∑
iD (i, i) is constant. This means

that for c > 0 large enough, we can replace the objective with an equivalent objective
xT (A+ c · I)x which is a positive-de�nite quadratic form. Setting c := ‖A‖1+1 guarantees
that A + c · I is positive de�nite, since it is strictly diagonally dominant. From now on,
we assume that the matrix A in the BQO is symmetric and positive-de�nite. Let g =
maxiA (i, i) and let D ∈ Rm×m be the diagonal matrix with elements D (i, i) = g−A (i, i).
The BQO is then equivalent to

max
x∈Rm

xT
(A+D)

g
x

subject to x (i)2 = 1, ∀i = 1, . . . ,m.

(5.1)
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The matrix (A+D)
g is a correlation matrix since it is a symmetric positive-de�nite with

all diagonal entries equal to 1. The optimization problem corresponds to a problem of
maximizing a sum of pairwise correlations between univariate random variables (using
block structure notation: b (i) = 1, ∀i = 1, . . . ,m). This shows that even the simple case of
maximizing the sum of correlations where the optimal axes are known and only directions
need to be determined, is NP-hard.

With a �xed number of views, the complexity is polynomial, which follows from recent
results on the computational complexity of quadratic maps [31]. The degree of the poly-
nomial is asymptotically equal to the product1

∏m
i=1 ni, where ni is the dimensionality of

the i-th view. In many applications (text mining, fMRI analysis) where the ni's are large,
the computational cost becomes prohibitive even with m = 3.

5.2 Semide�nite Programming Relaxation

The Horst's algorithm is scalable and often works well in practice (see Chapter 8). However,
it may not converge to a globally optimal solution. We show how to use a relaxation of the
problem to obtain candidate solutions for the original problem. The relaxation transforms
the problem into a semide�nite program and we prove lower bounds which relates the
extracted SDP solution quality and the optimal QCQP objective value. We also present a
set of upper bounds on the optimal QCQP objective value in Section 5.3. These can serve
as certi�cates of optimality (or closeness to optimality) for the local solutions (obtained
by the local iterative approach for example).

In this section, we relax the formulation QCQP to an SDP problem. Let A ∈ SN×N++ and
B1, . . . , Bm ∈ §N×N+ be matrices which share the block structure b := (n1, . . . , nm) ,

∑
i b (i) =

N . The blocks B(k,l)
i ∈ Rnk×nl for i, k, l = 1, . . . ,m are de�ned as:

B
(k,l)
i :=

{
Ini : k = i, l = i
0k,l : otherwise

,

where Ini ∈ Rni×ni is an identity matrix and 0k,l ∈ Rk×l is a matrix with all entries equal
to zero. Since xTAx = Tr

(
AxxT

)
, (QCQP) can be rewritten as:

max
x∈Rn

Tr
(
AxxT

)

subject to Tr
(
Bixx

T
)

= 1, ∀i = 1, . . . ,m.
(QCQP2)

Substituting the matrix xxT with a positive semide�nite matrix X ∈ Sn+ constrained
to have rank one:

maximize
X∈Sn+

Tr (AX)

subject to Tr (BiX) = 1, ∀i = 1, . . . ,m

rank (X) = 1.

Omitting the rank-one constraint, we obtain a semi-de�nite program in standard form:

max
X∈Sn+

Tr (AX)

subject to Tr (BiX) = 1, ∀i = 1, . . . ,m.
(SDP)

Remark. If the solution of the problem (SDP) is rank-one, i.e. X can be expressed as
X = y · yT , then y is the optimal solution for (QCQP).

1The number of local solutions to our problem of interest is established in [24].
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Low Rank Solutions We use the solutions of the SDP relaxation to extract solutions to
the original QCQP problem. In the process, we obtain a bound which relates the global
SDP bound and the optimal value of QCQP, giving a measure of the quality of the extracted
solution. If the solution is rank-one, then the relaxation is exact. Here we consider the
case where the solutions are low rank (close to rank-one).

Let X∗ be a solution to (SDP) and x∗ be the solution to (QCQP). A straightforward
way to extract a feasible solution to the problem (QCQP) from X∗ is to project its leading
eigenvector to the set of constraints. The following inequality always holds:

Tr (AX∗) ≥ Tr
(
A · x∗ · x∗T

)
.

The quality of the solution depends on how loose this inequality is, or rather how close
the matrix X∗ is to rank-one (Proposition 5.3). These depend on the spectral properties
of matrix X and matrix A.

The projection of a vector y ∈ RN , ‖y(i)‖ 6= 0 to the feasible set of (QCQP) is given by
map π (·) : RN → RN :

π (y) :=

(
y(1)

‖y(1)‖ , . . . ,
y(m)

‖y(m)‖

)T
.

We require the following technical assumption:

Assumption 5.1. Let b = (n1, . . . , nm) denote the block structure and
∑

i ni = N . Let
X∗ be the solution to the problem (SDP). Let xk denote the k-th eigenvector of X∗. The
assumption is the following:

‖x(i)1 ‖ > 0,∀i = 1, . . . ,m.

Remark. The assumption ensures that the projection to the feasible set, π(·), is well
de�ned. In our experiments, this was always the case, but does not hold in general as one
can �nd counterexamples, for example, let m = 2 and de�ne:

A =

[
1 0
0 1

]
, B1 =

[
1 0
0 0

]
, B2 =

[
0 0
0 1

]
.

All symmetric positive de�nite matrices that satisfy the constraints are of the form:

X =

[
1 ε
ε 1

]
,

where ε < 0, and attain the same value Tr (AX) = 2, which is thus optimal. Since this
also holds for X = I where the leading eigenvector can be de�ned as x1 = [01]T , which is
in contrast with the assumption. This counterexample has a speci�c structure: the zeros
on the o�-diagonal of A make the views completely independent and the problem is in
some sense a trivial multi-view problem. It is possible that the assumption holds under
additional conditions, for example, that the matrix is not block diagonalizable under the
problem's block structure.

The following lemma depends on the projection operator and thus relies on the as-
sumption.

Lemma 5.2. Let b = (n1, . . . , nm) denote the block structure and
∑

i ni = N . Let X∗

be the solution to (SDP) for which Assumption 5.1 holds. Let αi := 1

‖x(i)1 ‖
. If X∗ can be

expressed as:
X∗ = λ1x1x

T
1 + λ2x2x

T
2 ,
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where ‖x1‖ = 1, ‖x2‖ = 1, 〈x1, x2〉 and λ1 > 1 > λ2, then

λ1 ≤ αiαj ≤
λ1

1− λ2
.

Proof. The constraints in problem (SDP) are equivalent to:

λ1‖x(i)1 ‖2 + λ2‖x(i)2 ‖2 = 1,∀i = 1, . . . ,m.

Since λ2 < 1 and ‖x(i)2 ‖2 ≤ 1, we see that 0 ≤ λ2‖x(i)2 ‖2 < 1. Consequently:

0 <
1− λ2
λ1

< ‖x(i)2 ‖2 ≤
1

λ1
.

From αi = 1

x
(i)
1

it follows that

√
λ1 ≤ αi ≤

√
λ1

1− λ2
,

and �nally:

λ1 ≤ αiαj ≤
λ1

1− λ2
,∀i, j = 1, . . . ,m.

Proposition 5.3. Let b = (n1, . . . , nm) denote the block structure and
∑

i ni = N . Let
X∗ be the solution to (SDP) and x∗ be the solution to (QCQP). Let xk denote the k-th
eigenvector of X∗, αi := 1

‖x(i)1 ‖
, ψ := Tr (AX∗), and φ := Tr

(
A · x∗ · x∗T

)
. If X∗ can be

expressed as
X∗ = λ1x1x

T
1 + λ2x2x

T
2 ,

where x1 and x2 have unit length and λ1 > 1 > λ2, then:

ψ − π (x1)
T Aπ (x1) ≤

(
1

1− λ2
− 1

)
m2 + λ2‖A‖2.

Proof. First we note that:
ψ ≥ φ ≥ π (x1)

T Aπ (x1) .

We can expand the left hand side in terms of the two eigenvectors. Grouping the elements
by the vector terms and using basic manipulations we arrive at the result.

ψ − π (x1)
T Aπ (x1) = λ1

∑
i,j x

(i)T
1 A(i,j)x

(j)T
1

+λ2
∑

i,j x
(i)T
2 A(i,j)x

(j)T
2 −∑i,j αiαjx

(i)T
1 A(i,j)x

(j)T
1

≤ ∑
i,j(λ1 − αiαj)x

(i)T
1 A(i,j)x

(j)T
1 + λ2‖A‖2

≤ −∑i,j(λ1 − αiαj) · |x
(i)T
1 A(i,j)x

(j)T
1 |+ λ2‖A‖2

≤
(

λ1
1−λ2 − λ1

)
·∑i,j

1
αiαj

+ λ2‖A‖2
≤

(
λ1

1−λ2 − λ1
)
· m2

λ1
+ λ2‖A‖2

=
(

1
1−λ2 − 1

)
·m2 + λ2‖A‖2.

Remark. Proposition 5.3 is based on the assumption that the solution is of rank 2. Al-
though the assumption is very speci�c, it holds in general for m = 3 which is a result of
Theorem 3.5.
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A similar bound can be derived for the general case, provided that the solution to
problem (SDP) is close to rank-one.

Proposition 5.4. Let b = (n1, . . . , nm) denote the block structure and
∑

i ni = N . Let
X∗ be the solution to the problem (SDP) and x∗ the solution to the problem (QCQP).
Let xk denote the k-th eigenvector of X∗, αi := 1

‖x(i)1 ‖
and ψ := Tr (AX∗). If X∗ can be

expressed as
X∗ = λ1x1x

T
1 + λ2x2x

T
2 + · · ·+ λnxnx

T
n ,

where each xi has unit length and λ1 > 1 >
∑

i=2,...,n
λi, then:

ψ − π (x1)
T Aπ (x1)

≤


 1

1− ∑
i=2,...,n

λi
− 1


m2 +


 ∑

i=2,...,n

λi


 ‖A‖2.

5.3 Upper Bounds on QCQP

We now present several upper bounds on the optimal QCQP objective value based on the
spectral properties of the QCQP matrix A. We then bound the values of the SDP solutions
and present two constant relative accuracy guarantees.
L2 Norm Bound We show an upper bound on the objective of (QCQP) based on the
largest eigenvalue of the problem matrix A.

Proposition 5.5. The objective value of (QCQP) is upper bounded by m · ‖A‖2.

Proof. The problem (QCQP) remains the same if we add a redundant constraint xTx = m
obtained by summing the constraints

∑m
i=1

(
x(i)Tx(i) − 1

)
= 0. We then relax the problem

by dropping the original constraints to get:

max
x∈RN

xTAx

subject to xTx = m.
(5.2)

Since ‖A‖2 = max‖x‖2=1x
TAx, it follows that the optimal objective value of the problem

(5.2) equals m · ‖A‖2.

Bound on possible SDP objective values The next lemma establishes two simple
bounds on the optimal value of the SDP problem.

Lemma 5.6. Let X∗ be the solution to the problem (SDP) and let ψ := Tr (AX∗). Then

m ≤ ψ ≤ m2.

Proof. Express X∗ as:
X∗ =

∑

i=1,...,N

λixix
T
i ,

where each xi has unit length and λ1 ≥ . . . ≥ λN ≥ 0. The lower bound follows from the
fact that ψ upper bounds the optimal objective value of problem (QCQP) which is lower
bounded by m. The lower bound corresponds to the case of zero sum of correlations.

To prove the upper bound, �rst observe that the constraints in (SDP) imply that∑
i=1,...,N

λi = m. Let y ∈ RN and ‖y‖ = 1. Let z :=
(
‖y(1)‖, . . . , ‖y(m)‖

)T
. Observe that
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‖z‖ = 1 and that ‖zzT ‖2 = 1. De�ne e ∈ Rm, e (i) = 1, ∀i = 1, . . . ,m. We now bound
‖A‖2:

yTAy =
∑

i,j=1,...,m

y(i)TA(i,j)y(j) =

=
∑

i,j=1,...,m

‖y(i)‖‖y(j)‖ y
(i)T

‖y(i)‖A
(i,j) y(j)

‖y(j)‖ ≤

≤
∑

i,j=1,...,m

‖y(i)‖‖y(j)‖ =

= eT (zzT )e ≤ ‖e‖ · ‖zzT ‖2 · ‖e‖ = m.

We used the fact that y(i)T

‖y(i)‖A
(i,j) y(j)

‖y(j)‖ is a correlation coe�cient and thus bounded by 1.
The upper bound follows:

Tr (AX∗) = Tr


A

∑

i=1,...,N

λix
(i)x(i)T


 =

=
∑

i=1,...,N

λix
(i)TAx(i) ≤

∑

i=1,...,N

λi ·m = m2.

Corollary 5.7. The di�erence (duality gap) between the optimal objective value of the SDP
and its the optimal objective value of its dual formulation (see De�nition 3.12 and De�ni-
tion 3.13) is zero.

Proof. This is a consequence of the boundedness of the optimization problem SDP and the
fact that a strictly feasible point exists, for example:

X0 := I ∈ SN++.

The statement follows from Lemma 5.6 and Theorem 3.4.

Constant Relative Accuracy Guarantee There exists a lower bound on the ratio
between the objective values of the original and the relaxed problem that is independent
on the problem dimension. The bound is based on the following result from [32] (Theorem
2.1). The theorem refers to convex sets in Euclidean spaces [20] and concepts from general
topology ([12]): closed sets, bounded sets and set interior.

Notation Let Square(·) denote componentwise squaring: if y = Square(x) then y(i) =
x(i)2 and let diag(X) denote the vector corresponding to the diagonal of X.

De�nition 5.1. K ⊂ Rn is a convex cone if it is closed under conic combinations: αx +
βy ∈ K for all x ∈ K, y ∈ K,α > 0, β > 0. A cone is pointed if it contains the null vector
(origin) 0n.

Theorem 5.8 ([32, page 5]). Let A ∈ RN×N be symmetric and let F be a set with the

following properties:

• F = {v ∈ K : Bv = c} , where K is a convex closed pointed cone in RN with non-

empty interior, B ∈ Rk×N , c 6= 0k, and {v ∈ intK : Bv = c} 6= ∅.

• F is closed, convex and bounded.
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• There exists a componentwise strictly positive v ∈ F .
Denote:

φ∗ = max
{
xTAx : square (x) ∈ F

}
,

φ∗ = min
{
xTAx : square (x) ∈ F

}
,

ψ∗ = max
{

Tr (AX) : diag (X) ∈ F , X ∈ SN+
}
,

ψ∗ = min
{

Tr (AX) : diag (X) ∈ F , X ∈ SN+
}
,

ψ (α) = αψ∗ + (1− α)ψ∗.

Then

ψ∗ ≤ φ∗ ≤ ψ
(

1− 2

π

)
≤ ψ

(
2

π

)
≤ φ∗ ≤ ψ∗. (5.3)

Theorem 5.9. Let x∗ be the solution to the problem (QCQP2) and X∗ be the solution to

the problem (SDP). Let b = (n1, . . . , nm) denote the block structure where
∑

i ni = N . Let

φ∗ := Tr
(
A · x∗ · x∗T

)
and ψ∗ := Tr (AX∗). Then

2

π
ψ∗ ≤ φ∗ ≤ ψ∗.

Proof. First note that it follows from A ∈ Sn+ that ψ∗ ≥ 0. This is a consequence of
the fact that Tr (AX) ≥ 0, for any X ∈ Sn+ (and therefore for the minimizer X∗).
The positiveness of the trace can be deduced from: Tr (AX) = trace

(
CAC

T
ACXC

T
X

)
=

trace
(
CTXCAC

T
ACX

)
= ‖CTACX‖2F ≥ 0, where A = CAC

T
A and X = CXC

T
X are decom-

positions of A and X, which exist since symmetric matrices are diagonalizable and the
eigenvalues are nonnegative.

We now show that the problems (QCQP2) and (SDP) can be reformulated so that the
Theorem 5.8 applies.

Note that the feasible sets in (QCQP2) and (SDP) are de�ned in terms of equalities.
Since the corresponding objective functions are convex and the feasible sets are closed
and bounded in both cases, the corresponding optima must lie on their borders. For this
reason, we can replace the equality constraints with inequality constraints without loss of
generality: x(i)Tx(i) ≤ 1 in (QCQP2) and Tr (BiX) ≤ 1 in (SDP).

Next, we add redundant constraints to the two problems respectively: Square
(
x(i)
)
≥

0,∀i = 1, . . . ,m and X (j, j) ≥ 0, ∀j = 1, . . . , N .
De�ne F̃ =

{
x ∈ RN |x(i) ∈ ∆ni−1

}
, where

∆k =

{
x ∈ Rk+1|x (i) ≥ 0,∀i and

∑

i

x (i) = 1

}
.

F̃ is a product of standard simplices: F̃ =
∏m
i=1 ∆ni−1. It follows that the set is closed,

bounded and convex.
F̃ can be embedded in RN+1 in order to obtain the desired conic formulation. We now

de�ne the matrices referred to in the theorem:

K := {t ·
[
1 xT

]T |t ≥ 0, x ∈ F̃},
B :=

[
1 0TN

]T
, c = 1, F := K ∩ {x|Bx = c} .

De�ne v =
[
vT1 . . . v

T
m

]T
, where vi (j) = 1

ni
. The vector

[
1 vT

]T is strictly positive

and lies in int (K) ∩
{
x ∈ RN+1|Bx = c

}
. Let Ã ∈ RN+1 be de�ned as Ã (1, i) = 0,

Ã (i, 1) = 0,∀i and Ã (i, j) = A (i− 1, j − 1) , ∀i, j > 1.



36 Chapter 5. Relaxations and Bounds

The optimization problem (QCQP2) is equivalent (with the same optimal objective
value) to:

max
x∈RN+1

Tr
(
ÃxxT

)

subject to Square (x) ∈ F .
The optimization problem (SDP) is likewise equivalent to the problem:

max
X∈SN+1

+

Tr
(
ÃX

)

subject to diag (X) ∈ F .

Using the de�nition of ψ (α) and the fact that ψ∗ ≥ 0 it follows that ψ (α) ≥ αψ∗,∀α ≥
0. Substituting α = 2

π in (5.3) we get the desired result:

2

π
ψ∗ ≤ φ∗ ≤ ψ∗.

Observe that the bound above relates the optimization problems (QCQP) and (SDP)
and not (4.1) with its SDP relaxation. Let φ̃ denote the optimum value of the objective
function in (4.1) and let ψ̃ denote the optimum value of the objective function of the
corresponding SDP relaxation. It is easy to see that 2 · φ̃+m = φ and 2 · ψ̃+m = ψ, which
is a consequence of transformations of the original problems to their equivalent symmetric
positive-de�nite problems. The 2

π constant relative accuracy bound becomes a bit weaker
in terms of the original problem and its relaxation. This fact is stated in the following
corollary.

Corollary 5.10. The optimum values of the objective function in (4.1) and its correspond-
ing relaxation, denoted φ̃ and ψ̃ respectively, are related by:

φ̃ ≥ 2

π
ψ̃ − (1− 2

π )m

2
.

Improved Bound on the Relative Accuracy We can exploit the additional structure
of the problem to obtain a slightly better bound. The result is based on applying Theorem
3.1 from [32]. De�ne

ω (β) := β arcsin (β) +
√

1− β2.
The function ω (β) is increasing and convex with ω (0) = 1 and ω (1) = π

2 .

Theorem 5.11 ([32, page 7]). Denote

τ∗ = max{〈diag(A), v〉 : v ≥, v ∈ F},
τ∗ = min{〈diag(A), v〉 : v ≥, v ∈ F},

β∗ =
ψ∗ − τ∗
ψ∗ − ψ∗

∈ [0, 1],

β∗ =
τ∗ − ψ∗
ψ∗ − ψ∗

∈ [0, 1],

α∗ = max{ 2

π
ω(β∗), 1− β∗},

α∗ = min{1− 2

π
ω(β∗), β∗}.
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The optimal values of the problems in Theorem 5.8 satisfy the following relations:

ψ∗ ≥ φ∗ ≥ ψ(α∗),

ψ∗ ≤ φ∗ ≤ ψ(α∗).

Applying the Theorem 5.11 we obtain the result:

max

{
2

π
ω

(
m

ψ∗

)
,
m

ψ∗

}
ψ∗ ≤ φ∗ ≤ ψ∗.

This results in a minor improvement of the default bound. For example, when m = 3
and the fact that m

ψ∗ ≥ 1
3 we obtain the following:

2

π
ψ∗ ≤ 105

100
· 2

π
ψ∗ ≤ φ∗ ≤ ψ∗.

5.4 Random Projections and Multivariate Regression

Although SDP problems are convex and admit polynomial time solutions, their applicabil-
ity is di�cult when the total number of features and the number of instances are large. For
example, the applications of multiview learning to text analysis typically involve hundreds
of thousands variables and training instances, while typical SDP solvers can �nd solutions
to relaxed forms of QCQPs with up to a few thousand original variables.

To address this issue, we reduce the dimensionality of the feature vectors, resulting in
tractable SDP problem dimensions.

One way to analyze a general dataset (single view) is to perform a singular value
decomposition of the data matrix as we introduced in Section 3.2. A set of singular
vectors corresponding to the largest singular values can be used to project the data into a
lower-dimensional subspace. If computing the basis is too expensive, one can generate a
random larger set of basis vectors that achieve similar reconstruction errors. However, this
random projection basis is not informative in the same sense as the SVD basis is (directions
extracted by SVD re�ect which directions are prevalent in the data, as opposed to random
directions).

When dealing with multiple views, a natural approach to dimensionality reduction is
to compute the TSVD of the multiview stacked matrix (introduced in Chapter 2). Using
random projections to approximate the computation then seems like a good strategy.

We experimentally observed that the number of random projections needed to approx-
imate the TSVD decomposition thus construct a multi-view aligned basis is prohibitively
large - while a relatively small number of random projections is needed to capture the
variance in view, a large number of random projections is needed to approximate all the
cross-covariance matrices simultaneously. Generating random subspaces with a �xed k
sequentially over each view is problematic, since the probability of generating a subspace
for the m-th view that is well correlated to the preceding views decreases as m increases.

Our approach is based on the following idea. Generate a set of random vectors for one
view and use Canonical Correlation Analysis Regression (CCAR)[33] (a method similar to
ridge regression) to �nd their representatives in the other views. Repeat the procedure for
each of the remaining views to prevent bias to a single view. We hypothesize that restricting
our search in the spaces spanned by the constructed bases still leads to good solutions,
which we will demonstrate in Chapter 8. The procedure is detailed in Algorithm 5.1.

Let m be the number of vector spaces corresponding to di�erent views and ni the
dimensionality of the i-th vector space. Let X(i) ∈ Rni×N represent the aligned data
matrix for the i-th view.
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Algorithm 5.1: Random projections basis generation

Input: X(1), . . . X(m), γ - the regularization coe�cient, k - # of projections/block

for i = 1 to m do
P(i,i) := random ni × k matrix with elements sampled i.i.d. from standard normal
distribution.
Re-scale each column of P(i,i) so that its norm is equal to

√
ni
k .

for j = 1 to m do
if j = i then
continue

end if
α(i,j) :=

(
(1− γ)X(j)X(j)T + γIj

)−1

P(i,j) := α(i,j)X
(j)X(i)TP(i,i), where Ij is the nj × nj identity matrix.

end for
end for

Output: matrices P(i,j) for i, j = 1, . . . ,m

The matrices P(i,1), . . . , P(i,m) form the bases of vector spaces corresponding to
X(1), . . . , X(m). By using horizontal matrix concatenation we de�ne the full basis for
the i-th view:

Pi :=
[
P(1,i), . . . , P(m,i)

]
. (5.4)

Remark. The Algorithm 5.1 is a heuristic dimensionality reduction step that tries to re-
duce the dimensionality of the space without destroying the pairwise correlation structure.
In practice we observed that a purely random projection requires a prohibitively high di-
mension in order to capture the highly correlated subspaces. For this reason, starting with
a random subspace of a particular view, we �nd its highly correlated `'counterparts" in the
other views by performing independent pairwise analyses (similar to linear regression).
Remark on SDP optimization. E�ciently solving large SDP problems remains an
active area of research. In this work we relied on an SDP solver implementation of a
primal-dual interior point algorithm, see [34][35] for on overview and modern results. Many
other approaches exist in the literature: a primal-dual combinatorial approach based on the
idea of multiplicative updates [36], �rst-order methods with low memory requirements[37],
spectral bundle methods [38] which can exploit speci�c problem structure, just to name a
few.

Summary. This chapter discussed the optimization aspects of the SUMCOR generaliza-
tion. We �rst presented that the problem is NP-hard in general, which motivated our
results on global optimality bounds. We presented an SDP relaxation of the problem that
yields bounds on the global solution as well as candidate solutions to the original problem
under certain assumptions. Although the bound can be computed in polynomial time,
applying it on a large and high dimensional dataset is a challenge. To address this we
presented a heuristic dimensionality reduction step based on random projections and re-
gression analysis, which signi�cantly reduces the computational cost. This fact will be
demonstrated in Chapter 8 on a high-dimensional dataset.
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Chapter 6

Cross-Lingual Document Similarity

Document similarity is an important component in techniques from text mining and natural
language processing. Many techniques use the similarity as a black box, e.g., a kernel in
Support Vector Machines. Comparison of documents (or other types of text snippets) in a
monolingual setting is a well-studied problem in the �eld of information retrieval [39]. We
�rst formally introduce the problem followed by a description of our novel approach.

6.1 Problem De�nition

We will �rst describe how documents are represented as vectors and how to compare
documents in a mono-lingual setting. We then de�ne a way to measure cross-lingual
similarity which is natural for the models we consider.
Document Representation. The standard vector space model [39] represents documents
as vectors, where each term corresponds to a word or a phrase in a �xed vocabulary.
Formally, document d is represented by a vector x ∈ Rn, where n corresponds to the
size of the vocabulary, and vector elements xk correspond to the number of times term k
occurred in the document, also called term frequency or TFk(d).

For our document representation we applied a term re-weighting scheme that adjusts
for the fact that some words occur more frequently in general. A term weight should corre-
spond to the importance of the term for the given corpus. The common weighting scheme
is called Term Frequency Inverse Document Frequency (TFIDF ) weighting. An Inverse

Document Frequency (IDF ) weight for the dictionary term k is de�ned as log
(

N
DFk

)
,

where DFk is the number of documents in the corpus which contain term k and N is the
total number of documents in the corpus. In the other part of our system, we computed
TFIDF vectors on streams of news articles in multiple languages. There the IDF scores
for each language changed dynamically - for each new document we computed the IDF of
all news articles within a ten day window.

The TFIDF weighted vector space model document representation corresponds to a
map φ : text→ Rn de�ned by:

φ(d)k = TF k(d) log

(
N

DF k

)
.

Monolingual similarity. A common way of computing similarity between documents is
cosine similarity,

sim(d1, d2) =
〈φ(d1), φ(d2)〉
‖φ(d1)‖‖φ(d2)‖

,

where 〈·, ·〉 and ‖ · ‖ are standard inner product and Euclidean norm respectively. When
dealing with two or more languages, one could ignore the language information and build
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a vector space using the union of tokens over the languages. A cosine similarity function in
such a space can be useful to some extent, for example �Internet� or �Bowie� may appear
both in Spanish and English texts and the presence of such terms in both an English and a
Spanish document would contribute to their similarity. In general however, large parts of
vocabularies may not intersect. This means that given a language pair, many words in both
languages cannot contribute to the similarity score. Such cases can make the similarity
function very insensitive to the data.
Cross-Lingual Similarity. Processing a multilingual dataset results in several vector
spaces with varying dimensionality, one for each language. The dimensionality of the
vector space corresponding to the i-th language is denoted by ni and the vector space model
mapping is denoted by φi : text → Rni . The similarity between documents in language i
and language j is de�ned as a bilinear operator represented as a matrix Si,j ∈ Rni×nj :

simi,j(d1, d2) =
〈φi(d1), Si,jφj(d2)〉
‖φi(d1)‖‖φj(d2)‖

,

where d1 and d2 are documents written in the i-th and j-th language respectively. If the
maximal singular value of Si,j is bounded by 1, then the similarity scores will lie on the
interval [−1, 1]. We will provide an overview of the models in Section 6.2, present related
work in Section 6.3 and then introduce additional notation in Section 6.4. Starting with
Section 6.5 and ending with Section 6.8 we will describe some approaches to compute Si,j
given training data.

6.2 Cross-Lingual Models

In this chapter we will describe several approaches to the problem of computing the mul-
tilingual similarities introduced in Section 6.1. We present four approaches: a simple
approach based on k-means clustering in Section 6.5, a standard approach based on sin-
gular value decomposition in Section 6.6, a related approach called Canonical Correlation
Analysis (CCA) in Section 6.7 and �nally a new method, which is an extension of CCA to
more than two languages in Section 6.8.

CCA can be used to �nd correlated patterns for a pair of languages, whereas the
extended method optimizes a Sum of Squared Correlations (SSCOR) between several lan-
guage pairs, which was introduced in [7]. The SSCOR problem is di�cult to solve in our
setting (hundreds of thousands of features, hundreds of thousands of examples). To tackle
this, we propose a method which consists of two ingredients. The �rst one is based on an
observation that certain datasets (such as Wikipedia) are biased towards one language (En-
glish for Wikipedia), which can be exploited to reformulate a di�cult optimization problem
as an eigenvector problem. The second ingredient is dimensionality reduction using CL-
LSI, which makes the eigenvector problem computationally and numerically tractable.

We concentrate on approaches that are based on linear maps rather than alternatives,
such as machine translation and probabilistic models, as discussed in the section on related
work. We will start by introducing some notation.

The thesis so far focused on the SUMCOR problem formulation, where two extensions
were proposed in Chapter 4 while Chapter 5 presented results on the problem complexity
and global optimality bounds. In contrast, this chapter focuses on the SSCOR formulation.
This is due to the fact that under an additional assumption (data is biased towards one
view), the problem simpli�es signi�cantly (we could not derive a similar result for SUM-
COR). At the end of the chapter we will comment further on the SUMCOR formulation
in light of the additional assumption which made SSCOR computationally tractable.
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6.3 Related Work

In this section, we describe previous work described in the literature. We have grouped the
approaches to cross-lingual similarity computation as those that are based on: translation
and dictionaries, probabilistic topic models, matrix factorization, monolingual models and
neural network word embeddings. We also present some related work that also uses the
Wikipedia as a language resource.

Translation and dictionary based. The most obvious way to compare documents
written in di�erent languages is to use machine translation and perform monolingual sim-
ilarity, see [40] and [41] for several variations of translation based approaches. One can
use free tools such as Moses [42] or translation services, such as Google Translate1. There
are two issues with such approaches: they solve a harder problem than needs to be solved
and they are less robust to training resource quality - large sets of translated sentences
are typically needed. Training Moses for languages with scarce linguistic resources is thus
problematic. The issue with using online services such as Google Translate is that the APIs
are limited and not free. The operation e�ciency and cost requirements make translation-
based approaches less suited for our system. Closely related are works Cross-Lingual
Vector Space Model (CL-VSM) [41] and the approach presented in [43] which both com-
pare documents by using dictionaries, which in both cases are EuroVoc dictionaries [44].
The generality of such approaches is limited by the quality of available linguistic resources,
which may be scarce or non-existent for certain language pairs.

Probabilistic topic models. There exist many variants to modelling documents
in a language independent way by using probabilistic graphical models. The models in-
clude: Joint Probabilistic Latent Semantic Analysis (JPLSA) [45], Coupled Probabilis-
tic LSA (CPLSA) [45], Probabilistic Cross-Lingual LSA (PCLLSA) [46] and Polylingual
Topic Models (PLTM) [47] which is a Bayesian version of PCLLSA. The methods (except
for CPLSA) describe the multilingual document collections as samples from generative
probabilistic models, with variations on the assumptions on the model structure. The
topics represent latent variables that are used to generate observed variables (words), a
process speci�c to each language. The parameter estimation is posed as an inference prob-
lem which is typically intractable and one usually solves it using approximate techniques.
Most variants of solutions are based on Gibbs sampling or Variational Inference, which
are nontrivial to implement and may require an experienced practitioner to be applied.
Furthermore, representing a new document as a mixture of topics is another potentially
hard inference problem which must be solved.

Matrix factorization. Several matrix factorization based approaches exist in the lit-
erature. The models include: Non-negative matrix factorization based [48], Cross-Lingual
Latent Semantic Indexing CL-LSI [49] and [40], Canonical Correlation Analysis (CCA) [1],
Oriented Principal Component Analysis (OPCA) [45]. The quadratic time and space de-
pendency of the OPCA method makes it impractical for large scale purposes. In addition,
OPCA forces the vocabulary sizes for all languages to be the same, which is less intuitive.
For our setting, the method in [48] has a prohibitively high computational cost when
building models (it uses dense matrices whose dimensions are a product of the training set
size and the vocabulary size). Our proposed approach combines CCA and CL-LSI. An-
other closely related method is Cross-Lingual Explicit Semantic Analysis (CL-ESA) [50],
which uses Wikipedia (as do we in the current work) to compare documents. It can be
interpreted as using the sample covariance matrix between features of two languages to
de�ne the dot product which is used to compute similarities. The authors of CL-ESA
compare it to CL-LSI and �nd that CL-LSI can outperform CL-ESA in an information

1https://translate.google.com/
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retrieval, but is costlier to optimize over a large corpus (CL-ESA requires no training).
We �nd that the scalability argument does not apply in our case: based on advances in
numerical linear algebra we can solve large CL-LSI problems (millions of documents as
opposed to the 10,000 document limit reported in [50][51]). In addition, CL-ESA is less
suited for computing similarities between two large monolingual streams. For example,
each day we have to compute similarities between 500,000 English and 500,000 German
news articles. Comparing each German news article with 500,000 English news articles is
either prohibitively slow (involves projecting all English articles on Wikipedia) or consumes
too much memory (involves storing the projected English articles, which for a Wikipedia of
size 1,000,000 is a 500,000 by 1,000,000 non-sparse matrix). An interesting combination of
dictionaries, CCA and LSI is presented in [52], where the authors show how to incorporate
multilingual evidence into independently built (monolingual) vector spaces. In [53] the
authors investigated how to optimally select an LSI training dataset for speci�c classi�-
cation tasks and thus built domain speci�c common document representations, which is
interesting but less relevant to our problem setting.

Monolingual. Related work also includes monolingual approaches that treat docu-
ment written in di�erent languages in a monolingual fashion. The intuition is that named
entities (for example, �Bowie�) and cognate words (for example, �tsunami�) are written in
the same or similar fashion in many languages. For example, the Cross-Language Char-
acter n-Gram Model (CL-CNG) [41] represents documents as bags of character n-grams.
Another approach is to use language dependent keyword lists based on cognate words
[43]. These approaches may be suitable for comparing documents written in languages
that share a writing system, which does not apply to the case of global news tracking.

Word embeddings and neural networks. Many approaches in the recent literature
focus on neural network models which construct hierarchical (distributed) representations
of data. See [54],[55],[56] and [57] for an empirical comparison of several architectures over a
variety of tasks. The approaches typically involve many tuning parameters (learning rates,
batch sizes, neural network architectures) and the training tends to be computationally
intensive.

Wikipedia based. Finally, there are some works that use Wikipedia to build models,
but are not necessarily focused on cross-lingual similarity learning. For example [58] use
Wikipedia for building cross-lingual dictionary that maps phrases from other languages
to English wikipedia concepts. Wikipedia was also used to build an entity matching
model [59], with the aim of aligning Wikipedia infoboxes. In [60] the authors investi-
gated several cross-lingual measures between web documents (based on link analysis, as
well as the distribution of cognate words, character n-grams etc.) and found that it espe-
cially valuable for under-resourced languages. Another paper [61] used Wikipedia concepts
as an inverted index to build cross-lingual similarities. The approach represented words as
distributions over Wikipedia concepts, which is closely related to [50].

6.4 Notation

The cross-lingual similarity models presented in this paper are based on comparable cor-
pora. A comparable corpus is a collection of documents in multiple languages, with align-
ment between documents that are of the same topic, or even a rough translation of each
other. Wikipedia is an example of a comparable corpus, where a speci�c entry can be de-
scribed in multiple languages (e.g., �Berlin" is currently described in 222 languages). News
articles represent another example, where the same event can be described by newspapers
in several languages.

More formally, a multilingual document d = (u1, . . . um) is a tuple of m documents
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Figure 6.1: Multilingual corpora and their matrix representations using the vector space
model.

on the same topic (comparable), where ui is the document written in language i. Note
that an individual document ui can be an empty document (missing resource) and each d
must contain at least two nonempty documents. This means that in our analysis we
discard strictly monolingual documents for which no cross-lingual information is available.
A comparable corpus D = d1, . . . , ds is a collection of s multilingual documents. By using
the vector space model, we can represent D as a set of m multiview aligned matrices:
X1, . . . , Xm, where Xi ∈ Rni×s is the matrix corresponding to the language i and ni is the
vocabulary size of language i. Furthermore, let Xi(:, `) denote the `-th column of matrix
Xi and the matrices respect the document alignment - the vector Xi(:, `) corresponds to
the TFIDF vector of the i-th component of multilingual document d`. We use N to denote
the total row dimension of X, i.e., N :=

∑m
i=1 ni. See Figure 6.1 for an illustration of the

introduced notation. The dimensions of each view form a block structure b := (b1, . . . , bm)
and we will use the parenthesis notation x(i) to denote the i-th block according to that
block structure.

We will now describe four models to cross-lingual similarity computation, where the
�rst three are based on methods introduced in Chapter 3 and the fourth one represents an
original contribution.

6.5 k-means

We have introduced the k-means algorithm in Section 3.1 and we now discuss how to apply
it to build a cross-lingual similarity function. In a nutshell, we apply the standard k-means
procedure to the stacked multiview matrix and interpret the centroids as an aligned basis,
which is used to build the CL-similarity model; see Figure 6.2 for an illustration of the
approach.

In order to apply the algorithm, we �rst merge all the term-document matrices into a
single matrix X by stacking the individual term-document matrices (as seen in Figure 6.1):

X :=
[
XT

1 , X
T
2 , · · · , XT

m

]T
,

such that the columns respect the alignment of the documents (here MATLAB notation
for concatenating matrices is used). Therefore, each document is represented by a long
vector indexed by the terms in all languages.
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Figure 6.2: k-means algorithm and coordinate change.

We then run the k-means algorithm and obtain a centroid matrix C ∈ RN×k, where
the k columns represent centroid vectors. The centroid matrix can be split vertically into
m blocks:

C = [C(1)T · · ·C(mT )]T ,

according to the number of dimensions of each language, i.e., C(i) ∈ Rni×k.
To reiterate, the matrices C(i) are computed using a multilingual corpus matrix X

(based on Wikipedia for example).
To compute cross-lingual document similarities on new documents, we interpret each

matrix C(i) as a vector space basis which can be used to map points in Rni into a k-
dimensional space. Given a new vector x ∈ Rni we can express its coordinates as:

(C(i)TC(i))−1C(i)Txi.

The resulting matrix for similarity computation between language i and language j is
de�ned up to a scaling factor as:

C(i)(C(i)TC(i))−1(C(j)TC(j))−1C(j)T .

The matrix is a result of mapping documents in a language independent space using
pseudo-inverses of the centroid matrices Pi = (C(i)TC(i))−1C(i)T and then comparing them
using the standard inner product, which results in the matrix P Ti Pj . For the sake of pre-
sentation, we assumed that the centroid vectors are linearly independent. (An independent
subspace could be obtained using an additional Gram-Schmidt step [11] on the matrix C,
if this was not the case.)

6.6 Cross-Lingual Latent Semantic Indexing

Section 3.2 introduced two closely related approaches to pattern analysis based on spectral
decompositions. This section summarizes how these approaches apply to cross-lingual doc-
ument analysis. Truncated Singular value Decomposition (TSVD) applied to monolingual
document analysis was introduced in [62] where it is referred to as Latent Semantic In-
dexing (LSI). An extension to cross-lingual document analysis was proposed in [49] and is
referred to as Cross-Lingual Latent Semantic Indexing (CL-LSI). Now follows a description
of a variation of CL-LSI, relevant to the thesis.

The method is based on computing a truncated singular value decomposition of mul-
tiview stacked matrix X ≈ USV T . See Figure 6.3 for the decomposition. Representing
documents in �topic� coordinates is done in the same way as in the k-means case (see
Figure 6.2), we will describe how to compute the coordinate change functions.
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Figure 6.3: LSI multilingual corpus matrix decomposition.

The cross-lingual similarity functions are based on a rank-k truncated SVD: X ≈
UΣV T , where U ∈ RN×k are basis vectors of interest and Σ ∈ Rk×k is a truncated
diagonal matrix of singular eigenvalues. An aligned basis is obtained by �rst splitting U
vertically according to the number of dimensions of each language: U = [U (i)T · · ·U (m)T ]T .
The standard CL-LSI approach is to use matrices Ui directly as maps to the common
coordinate space - the cross-lingual similarity function between two documents xi and xj
is given by xTi U

(i)S−1S−1U (j)Txj . We note that in general the blocks are not orthogonal
and the norms of their columns may vary. Our modi�cation to the standard approach is
to treat U (i) as aligned bases, and use their pseudo-inverses to construct projection maps
(exactly k-means centroids were treated). Assuming that the blocks X(i) have full rank
(and thus so are U (i)), the pseudo-inverses can be expressed as Pi := (U (i)TU (i))−1U (i)T .
The matrices Pi are used to change the basis from the standard basis in Rni to the basis
spanned by the columns of Ui.
Implementation note. Since the matrix X can be large we could use an iterative method
like the Lanczos algorithm with re-orthogonalization [11] to �nd the left singular vectors
(columns of U) corresponding to the largest singular values. In our experiments the Lanczos
method converged slowly indicating problems with singular value separation. Moreover, the
Lanczos method is hard to parallelize. Instead, we use a randomized version of the SVD [63]
that can be viewed as a block Lanczos method. That enables us to use parallelization and
speeds up the computation considerably.

To compute the matrices Pi we used the QR algorithm [11] to factorize U (i) as U (i) =
QiRi, where QTi Qi = I and Ri is a triangular matrix. Pi is then obtained by solving
RiPi = Qi.

6.7 Bi-Lingual Document Analysis CCA

CCA can be applied to bi-lingual document analysis given two languages. Let X1 ∈ Rp×`
and X2 ∈q×` denote the two multiview aligned matrices based on a bi-lingual aligned
document collection vectorized using two vector space models. If W (1) ∈ Rp×k and W (2) ∈
Rq×k are solutions comprising of k canonical correlation vector pairs (corresponding to
columns ofW (1) andW (2)) of the generalized eigenvalue problem in Equation 3.8, then the
bi-lingual similarity function that we use is expressed as a cosine similarity after applying
the canonical maps:

sim(x1, x2) ∝
xT1W

(1)W (2)T x2

‖W (1)Tx1‖‖W (2)Tx2‖
.

The intuition behind using the matrices as projectors (even though their columns are not
an orthonormal basis) is that the CCA is equivalent to minimizing the expected distance
between W (1)TX (1) and W (2)TX (2), see Section 6.5 in [16].
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6.8 Hub Language Based CCA Extension

Building cross-lingual similarity models based on comparable corpora is challenging for two
main reasons. The �rst problem is related to missing alignment data: when a number of
languages is large, the dataset of documents that cover all languages is small (or may even
be empty). Even if only two languages are considered, the set of aligned documents can
be small (an extreme example is given by the Piedmontese and Hindi Wikipedias where
no inter-language links are available), in which case none of the methods presented so far
are applicable.

The second challenge is scale - the data is high-dimensional (many languages with
hundreds of thousands of features per language) and the number of multilingual docu-
ments may be large (over one million in case of Wikipedia). The optimization problem
posed by CCA is not trivial to solve: the covariance matrices themselves are prohibitively
large to �t in memory (even storing a 100,000 by 100,000 element matrix requires 80GB
of memory) and iterative matrix-multiplication based approaches to solving generalized
eigenvalue problems are required (the covariance matrices can be expressed as products of
sparse matrices, which means we have fast matrix-vector multiplication).

We now describe an extension of CCA to more than two languages, which can be trained
on large comparable corpora and can handle missing data. The extension we consider is
based on a generalization of CCA to more than two views, introduced in [7], namely the
Sum of Squared Correlations SSCOR, introduced in Equation SSCOR in Section 4.2, which
we will re-state formally later in this section. Our approach exploits a certain characteristic
of the data, namely the hub language characteristic (see below) in two ways: to reduce
the dimensionality of the data and to simplify the optimization problem. We focus on
the SSCOR formulation as opposed to the SCOR formulation which we explored in the
previous chapters, since the Lagrangian problem is easier to solve (That is under the hub
language assumption, which we present next).
Hub language characteristic. In the case of Wikipedia, we observed that even though
the training resources are scarce for certain language pairs, there often exists indirect train-
ing data. By considering a third language, which has training data with both languages
in the pair, we can use the composition of learned maps as a proxy. We refer to this third
language as a hub language.

A hub language is a language with a high proportion of non-empty documents in D =
{d1, ..., d`}. As we have mentioned, we only focus on multilingual documents that include
at least two languages. The prototypical example in the case of Wikipedia is English. Our
notion of the hub language could be interpreted in the following way. If a non-English
Wikipedia page contains one or more links to variants of the page in other languages,
English is very likely to be one of them. That makes English a hub language.

We use the following notation to de�ne subsets of the multilingual comparable corpus:
let a(i, j) denote the index set of all multilingual documents with non-missing data for the
i-th and j-th language:

a(i, j) = {k | dk = (u1, ..., um), ui 6= ∅, uj 6= ∅} ,

and let a(i) denote the index set of all multilingual documents with non missing data for
the i-th language.

We now describe a two step approach to building a cross-lingual similarity matrix. The
�rst part is related to LSI and reduces the dimensionality of the data. The second step
re�nes the linear mappings and optimizes the linear dependence between data.
Step 1: Hub language based dimensionality reduction. The �rst step in our method
is to project X1, . . . , Xm to lower-dimensional spaces without destroying the cross-lingual
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structure. Treating the nonzero columns of Xi as observation vectors sampled from an
underlying distribution X (i) ∈ Rni , we can analyze the empirical cross-covariance matrices:

C(i,j) =
1

|a(i, j)| − 1

∑

`∈a(i,j)

(Xi(:, `)− ci) · (Xj(:, `)− cj)T ,

where ci = 1
|ai|
∑

`∈a(i)Xi(:, `). By �nding low-rank approximations of C(i,j) we can identify

the subspaces that are relevant for extracting linear patterns between X (i) and X (j). LetX1

represent the hub language corpus matrix. The LSI approach to �nding the subspaces is to
perform the singular value decomposition on the full N×N covariance matrix composed of
blocks C(i,j). If |a(i, j)| is small for many language pairs (as it is in the case of Wikipedia),
then many empirical estimates C(i,j) are unreliable, which can result in over�tting. For
this reason, we perform the truncated singular value decomposition on the matrix C =
[C(1,2) · · ·C(1,m)] ≈ USV T , where U ∈ Rn1×k, S ∈ Rk×k, V ∈ R(

∑m
i=2 ni)×k. De�ne T =

[UTV T ]T ∈ RN×k, which is compatible with the block structure b = (n1, . . . , nm). Note
that the columns of T (1) are orthonormal, but that is not true in general for the other
blocks. We proceed by reducing the dimensionality of each Xi by setting: Yi = T (i)T ·Xi,
where Yi ∈ Rk×s. To summarize, the �rst step reduces the dimensionality of the data and
is based on CL-LSI, but optimizes only the hub language related cross-covariance blocks.
Step 2: Simplifying and solving SSCOR. The second step involves solving a gen-
eralized version of canonical correlation analysis on the matrices Yi in order to �nd the
mappings Pi. The approach is based on the sum of squares of correlations formulation
by Kettenring [7], where we consider only correlations between pairs (Y1, Yi), i > 1 due
to the hub language problem characteristic. We will present the original unconstrained
optimization problem, then a constrained formulation based on the hub language problem
characteristic. Then we will simplify the constraints and reformulate the problem as an
eigenvalue problem by using Lagrange multipliers.

The original sum of squared correlations is formulated as an unconstrained problem:

maximize
wi∈Rk

m∑

i<j

ρ(wTi Yi, w
T
j Yj)

2.

We solve a similar problem by restricting i = 1 and omitting the optimization over non-
hub language pairs. Let Di,i ∈ Rk×k denote the empirical covariance of Yi and Di,j denote
the empirical cross-covariance computed based on Yi and Yj . We solve the following
constrained (unit variance constraints) optimization problem:

maximize
wi∈Rk

m∑

i=2

(
wT1D1,iwi

)2
subject to wTi Di,iwi = 1, ∀i = 1, . . . ,m. (6.1)

The constraints wTi Di,iwi can be simpli�ed by using the Cholesky decomposition Di,i =
KT
i · Ki and substitution: yi := Kiwi. By inverting the Ki matrices and de�ning Gi :=

K−T1 D1,iK
−1
i , the problem can be reformulated:

maximize
yi∈Rk

m∑

i=2

(
yT1 Giyi

)2
subject to yTi yi = 1, ∀i = 1, . . . ,m. (6.2)

A necessary condition for optimality is that the derivatives of the Lagrangian vanish. The
Lagrangian of (6.2) is expressed as:

L(y1, . . . , ym, λ1, . . . , λm) =
m∑

i=2

(
yT1 Giyi

)2
+

m∑

i=1

λi
(
yTi yi − 1

)
.
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Stationarity conditions give us:

∂

∂y1
L = 0 ⇒

m∑

i=2

(
yT1 Giyi

)
Giyi + λ1y1 = 0, (6.3)

∂

∂yi
L = 0 ⇒

(
yT1 Giyi

)
GTi y1 + λiyi = 0, i > 1. (6.4)

Multiplying each Equation (6.4) with yTi and applying the constraints, we can eliminate
λi which gives us:

GTi y1 =
(
yT1 Giyi

)
yi, i > 1. (6.5)

Plugging this into Equation (6.3), we obtain an eigenvalue problem:
(

m∑

i=2

GiG
T
i

)
y1 + λ1y1 = 0.

The eigenvectors of
(∑m

i=2GiG
T
i

)
solve the problem for the �rst language. The solutions

for yi are obtained from (6.5): yi :=
GT

i y1
‖GT

i y1‖
. Note that the solution (6.1) can be recovered

by: wi := K−1i yi. The original variables w are then expressed as:

Y1 := eigenvectors of
m∑

i=2

GiG
T
i , (6.6)

W1 = K−11 Y1, (6.7)

Wi = K−1i GTi Y1N, (6.8)

where N is a diagonal matrix that normalizes GTi Y1, with N(j, j) := 1
‖G(iY1(:,j)‖ .

Remark. The technique is related to Generalization of Canonical Correlation Analysis
(GCCA) [64], where an unknown group con�guration variable is de�ned and the objective
is to maximize the sum of squared correlations between the group variable and the others.
The problem can be reformulated as an eigenvalue problem. The di�erence lies in the
fact that we set the unknown group con�guration variable as the hub language, which
simpli�es the solution. The complexity of our method is O(k3), where k is the reduced
dimension from the LSI preprocessing step, whereas solving the GCCA method scales as
O(s3), where s is the number of samples (see [65]). Another issue with GCCA is that it
cannot be directly applied to the case of missing documents.

To summarize, we �rst reduced the dimensionality of our data to k-dimensional features
and then found a new representation (via linear transformation) that maximizes directions
of linear dependence between the languages. The �nal projections that enable mappings
to a common space are de�ned as: Pi(x) := W T

i T
(i)Tx.

Remark on SUMCOR. The original sum of correlations is formulated as an uncon-
strained problem:

maximize
wi∈Rk

m∑

i<j

ρ(wTi Yi, w
T
j Yj).

Under the hub language assumption, this problem is equivalent to (analogous to how we
derived the formulation in Equation 6.2):

maximize
yi∈Rk

m∑

i=2

yT1 Giyi

subject to yTi yi = 1, ∀i = 1, . . . ,m.

(6.9)
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The Lagrangian of (6.9) is expressed as:

L(y1, . . . , ym, λ1, . . . , λm) =
m∑

i=2

yT1 Giyi +
m∑

i=1

λi
(
yTi yi − 1

)
.

Stationarity conditions give us:

∂

∂y1
L = 0 ⇒

m∑

i=2

Giyi + λ1y1 = 0,

∂

∂yi
L = 0 ⇒ GTi y1 + λiyi = 0, i > 1.

(6.10)

It follows that:
Giyi = − 1

λi
GiG

T
i y1,

and thus:
m∑

i=2

− 1

λi
GiG

T
i y1 + λ1y1 = 0.

Since the following equality can be derived:

λ1 =
m∑

i=2

λi

the original problem reduces to

m∑

i=2

− 1

λi
GiG

T
i y1 +

m∑

i=2

λiy1 = 0,

but the solution to that problem does not seem obvious. This is in contrast to the SSCOR
problem, where all λi as well as yi could be eliminated simultaneously.

Summary. This chapter presented the problem of computing cross-lingual document
similarities and then presented four computational approaches to solve the problem. The
last one is an original contribution of the author. It is based on combining an e�cient
preprocessing step with a particular generalization of CCA (SSCOR), which under an
additional assumption (hub language) can be solved e�ciently (both the preprocessing
step as well as the simplifying assumption are crucial for the approach). The next chapter
will discuss an application of cross-lingual similarity learning to a large scale cross-lingual
news analysis system.
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Chapter 7

Applications to Cluster Linking

In online media streams � particularly news articles � there is often duplication of report-
ing, di�erent viewpoints or opinions, all centering around a single event. Typically each
event is covered by many articles and the question we address is how to �nd all the articles
in di�erent languages that are reporting on the same event. The current chapter describes
an application of the cross-lingual similarity presented in Chapter 6 to cross-lingual cluster
linking. The application is relevant for monitoring global news in multiple languages. Pre-
sented in the current chapter is our original approach to cross-lingual cluster linking, which
was published in [9]. The main idea in our approach is to combine semantic information
extraction with cross-lingual document analysis, which we proved to be e�ective in [10].
There we used a simpler set of features to decide which clusters to link and put greater
emphasis on the manual evaluation of the quality.

To prepare the ground for the discussion of the cross-lingual approach, we will �rst
describe how events are de�ned for our purposes and sketch a general approach to event
tracking in a monolingual setting.

The term event is vague and ambiguous, but for the practical purposes, we de�ne it
as �any signi�cant happening that is being reported about in the media�. Examples of
events would include shooting down of the Malaysia Airlines plane over Ukraine on July
18th, 2014 (see Figure 7.1) and HSBC's admittance of aiding their clients in tax evasion
on February 9th, 2015. Events such as these are covered by many articles and the question
is how to �nd all the articles in di�erent languages that are describing a single event.
Generally, events are more speci�c than general themes as the time component plays an
important role � for example, the two wars in Iraq would be considered as separate events.

We take a pragmatic approach where the events are identi�ed as the clusters discov-
ered by stream clustering algorithm that is designed to cluster news articles together if
their content is similar and they are published close in time.

The particular choice of a streaming clustering algorithm is not relevant to the discus-
sion of our approach and we assume that given a monolingual news stream, we have at our
disposal an online clustering component which assigns to each news article a cluster ID. In
this work we used the clustering component of the Event Registry [66] and [67] system.

We now consider the case where we are dealing with several document streams, where
each stream corresponds to a particular language. Running the monolingual streaming
clustering on each stream results in clusters within streams that need to be matched across
streams, which we will state formally.
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Figure 7.1: Events are represented by collections of articles about an event, in this case
the Malaysian Airlines plane which was shot down over Ukraine. The results shown in
the �gure can be obtained using the query http://eventregistry.org/event/997350#

?lang=eng&tab=articles. The content presented is part of the Event Registry system.

http://eventregistry.org/event/997350#?lang=eng&tab=articles
http://eventregistry.org/event/997350#?lang=eng&tab=articles
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English articles Spanish articles 

candidate 
clusters 

Figure 7.2: Clusters composed of English and Spanish news articles. Arrows link En-
glish articles with their Spanish k-nearest neighbor matches according to the cross-lingual
similarity.

7.1 Problem De�nition

The problem of cross-lingual event linking is to match monolingual clusters of news articles
that are describing the same event across languages. For example, we want to match a
cluster of Spanish news articles and a cluster of English news articles that both describe the
same earthquake. We also refer to matched clusters as to being in correspondence. There
are several possible ways of de�ning when events are in correspondence - our approach is
to learn the correspondence based on a classi�cation training dataset (the correspondence
is thus captured by a dataset).

Each article a ∈ A is written in a language `, where ` ∈ L = {`1, `2, ..., `m}. For
each language `, we obtain a set of monolingual clusters C`. More precisely, the articles
corresponding to each cluster c ∈ C` are written in the language `. Given a pair of languages
`a ∈ L, `b ∈ L and `a 6= `b, we would like to identify all cluster pairs (ci, cj) ∈ C`a × C`b
such that ci and cj describe the same event.

Matching of clusters is a generalized matching problem. We cannot assume that there
is only one cluster per language per event, nor can we assume complete coverage � i.e.,
that there exists at least one cluster per event in every language. This is partly due to
news coverage which might be more granular in some languages, partly due to noise and
errors in the event detection process. This implies that we cannot make assumptions on
the matching (e.g., one-to-one or complete matching) and excludes the use of standard
weighted bipartite matching type of algorithms for this problem. An example is shown
in Figure 7.2, where a cluster may contain articles which are closely matched with many
clusters in a di�erent language.

We also seek an algorithm which does not do exhaustive comparison of all clusters,
since that can become prohibitively expensive when working in a real-time setting. More
speci�cally, we wish to avoid testing cluster ci with all the clusters from all the other
languages. Performing exhaustive comparison would result in O(|C|2) tests, where |C| is
the number of all clusters (over all languages), which is not feasible when the number of
clusters is on the order of tens of thousands. We address this by testing only clusters
that are connected with at least one k-nearest neighbor (marked as candidate clusters in
Figure 7.2).
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Algorithm 7.1: Algorithm for identifying candidate clusters C that potentially cor-
respond to ci
input: test cluster ci, a set of clusters C` for each language ` ∈ L
output: a set of clusters C that potentially correspond to ci
C ← {};
for article ai ∈ ci do

for language ` ∈ L do
/* use hub CCA to find 10 most similar articles to article ai in

language ` */

SimilarArticles = getCCASimilarArticles(ai, `);
for article aj ∈ SimilarArticles do

/* find cluster cj to which article aj is assigned to */

cj ← c, such that c ∈ C` and aj ∈ c;
/* add cluster cj to the set of candidates C */

C ← C ∪ {cj};
end

end

end

7.2 Algorithm

In order to identify clusters that correspond to cluster ci, we have developed a novel two-
stage approach. For a cluster ci, we �rst e�ciently identify a small set of candidate clusters
and then �nd those clusters among the candidates, which correspond to ci. An example is
shown in Figure 7.2.

The details of the �rst step are described in Algorithm 7.1. The algorithm begins by
individually inspecting each news article ai in the cluster ci. Using a chosen method for
computing cross-lingual document similarity (see Chapter 6), it identi�es the ten1 most
similar news articles to ai in each language ` ∈ L. For each similar article aj , we identify its
corresponding cluster cj and add it to the set of candidates. The set of candidate clusters
obtained in this way is several orders of magnitude smaller than the number of all clusters,
and at most linear with respect to the number of news articles in cluster ci. In practice,
clusters contain highly related articles and as such similar articles from other languages
mostly fall in only a few candidate clusters.

Although computed document similarities are approximate, our assumption is that
articles in di�erent languages describing the same event will generally have a higher sim-
ilarity than articles about di�erent events. While this assumption does not always hold,
redundancy in the data should mitigate these false positives.

The second stage of the algorithm determines which (if any) of the candidate clusters
correspond to ci. We treat this task as a supervised learning problem. For each candidate
cluster cj ∈ C, we compute a vector of learning features that should be indicative of
whether ci and cj are in correspondence or not and apply a binary classi�cation model
that predicts if the clusters are in correspondence or not. The classi�cation algorithm that
we used to train a model was a linear Support Vector Machine (SVM) method [16].

We use three groups of features to describe a cluster pair (ci, cj). The �rst group is
based on cross-lingual article links, which are derived using cross-lingual similarity:
each news article ai is linked with its 10-nearest neighbors articles from all other languages
(ten per each language). The group contains the following features:

1This parameter was manually selected based on the storage and speed requirements of a real system.
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• linkCount is the number of times any of the news articles from cj is among 10-
nearest neighbors for articles from ci. In other words, it is the number of times an
article from ci has a very similar article (i.e., is among 10 most similar) in cj .

• avgSimScore is the average similarity score of the links, as identi�ed for linkCount,
between the two clusters.

Remark. The size of the nearest neighbor sets in our experiments is set to 10. The pa-
rameter was manually set with the goal of keeping computational and storage requirements
low, while still capturing the cross-lingual correspondences.

The second group are concept-related features. Articles that are imported into
Event Registry are annotated by disambiguating mentioned entities and keywords to the
corresponding Wikipedia pages [68]. Whenever �David Bowie� is, for example, mentioned
in the article, the article is annotated with a link to his Wikipedia page. In the same
way, all mentions of entities (people, locations, organizations) and ordinary keywords (e.g.,
�bank�, �tax�, �ebola�, �plane�, �company�) are annotated. Although the Spanish article
about �Bowie� will be annotated with his Spanish version of the Wikipedia page, in many
cases we can link the Wikipedia pages to their English versions. This can be done since
Wikipedia itself provides information regarding which pages in di�erent languages represent
the same concept/entity. Using this approach, the word �avión� in a Spanish article will
be annotated with the same concept as the word �plane� in an English article. Although
the articles are in di�erent languages, the annotations can therefore provide a language-
independent vocabulary that can be used to compare articles/clusters. By analyzing all
the articles in clusters ci and cj , we can identify the most relevant entities and keywords
for each cluster. Additionally, we can also assign weights to the concepts based on how
frequently they occur in the articles in the cluster. From the list of relevant concepts and
corresponding weights, we consider the following features:

• entityCosSim is the cosine similarity between vectors of entities from clusters ci and
cj .

• keywordCosSim is the cosine similarity between vectors of keywords from clusters ci
and cj .

• entityJaccardSim is Jaccard similarity coe�cient [69] between sets of entities from
clusters ci and cj .

• keywordJaccardSim is Jaccard similarity coe�cient between sets of keywords from
clusters ci and cj .

The last group of features contains three miscellaneous features that seem discrim-
inative but are unrelated to the previous two groups:

• hasSameLocation feature is a boolean variable that is true when the location of the
event in both clusters is the same. The location of events is estimated by considering
the locations mentioned in the articles that form a cluster and is provided by Event
Registry.

• timeDiff is the absolute di�erence in hours between the two events. The publication
time and date of the events is computed as the average publication time and date of
all the articles and is provided by Event Registry.
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• sharedDates is determined as the Jaccard similarity coe�cient between sets of date
mentions extracted from articles. We use extracted mentions of dates provided by
Event Registry, which uses an extensive set of regular expressions to detect and
normalize mentions of dates in di�erent forms.

Summary. This chapter presented an application of the cross-lingual models on the task
of linking news clusters across several languages. The approach is based on formulating
the problem as a classi�cation problem and using several sets of features, most notably:
cross-lingual similarity based and semantic extraction (concepts-related) based features.
In Chapter 8 we will presents some experiments and investigate the applicability of the
proposed approach.
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Chapter 8

Experiments

This chapter presents several experiments that explore how the theory relates to practice.
The �rst set of experiments focuses on global optimality and convergence rates on synthetic
data. We then move to cross-lingual document analysis and examine the performance of
our approach on the task of information retrieval based on training sets with missing data.
Finally we evaluate our approach to cross-lingual cluster linking.

8.1 Synthetic Experiments

We generated several multiview problem instances by varying the number of views and
number of dimensions per view in order to compare the performance of local search methods
and the proposed SDP relaxation. The goal of these experiments was to see under which
conditions and how often do the global bounds provide useful information. The main
observations are that the set of problems where the bounds are useful has a non-zero
measure and that the di�culty of the optimization problem increases with the number of
views and decreases with the number of dimensions per view.

8.1.1 Generating Synthetic Problem Instances

Let m denote the number of views (sets of variables) and ni denote the dimensionality of
i-th view and N :=

∑
i ni. In all cases, we used the same number of dimensions per view

(n1 = n2 = · · · = nm). We used three di�erent methods to generate random correlation
matrices.

The �rst method, the random Gram matrix method (see [70], [71]), generates the
correlation matrices by sampling N vectors v1, . . . , vn for an N -dimensional multivariate
Gaussian distribution (centered at the origin, with an identity covariance matrix), normal-
izing them and computing the correlation matrix C = [ci,j ]N×N as ci,j := vTi · vj .

The second method, the random spectrum method, samples the eigenvalues
λ1, . . . , λN uniformly from a simplex (

∑N
i=1 λi = N) and generates a random correlation

matrix with the prescribed eigenvalues (see [71]).
The �nal method, the random 1-dim structure method, generates a correlation

matrix that has an approximately (due to noise) single-dimensional correlation structure.
We generate a random m dimensional Gram matrix B, and insert it into an N × N
identity matrix according to the block structure to obtain a matrix C0. That is, we set
C0 (i, j) = δ (i, j), where δ is the Kronecker delta. For I, J = 1 . . . ,m, we override the
entries

C0

(
1 +

I−1∑

i=1

ni, 1 +
J−1∑

i=1

ni

)
= B (I, J) ,
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where we used 1-based indexing. We then generate a random Gram matrix D ∈ RN×N
and compute the �nal correlation matrix as C = (1− ε)C0 + εD. In our experiments, we
set ε = 0.001.

The purpose of using a random spectrum method is that as the dimensionality increases,
random vectors tend to be orthogonal, hence the experiments based on random Gram
matrices might be less informative. As the experiments show, the local method su�ers when
all ni = 1 (an instance of a BQO problem). By using the approximately 1-dimensional
correlation matrix sampling, we investigated how the problem behaves when ni > 1.

In all cases, we perform a �nal step that involves computing the per-view Cholesky
decompositions of variances and change of basis (as in QCQP).

8.1.2 Convergence of Horst's algorithm on Synthetic Data

We �rst present an empirical inquiry of the convergence rate of the Horst's algorithm.
In Figure 8.1, we generated 1, 000 random instances of matrices A with block structure
b = (2, 2, 2, 2, 2), where we used the random Gram matrix method. For each matrix, we
generated a starting point x0 and ran the algorithm. The plot depicts the solution change
rate on a logarithmic scale (log10

‖xold−x‖
‖x‖ ). We observe linear convergence over a wide range

of rates of convergence (slopes of the lines). Figure 8.2 shows the convergence properties
for a �xed matrix A with several random initial vectors x0. The problem exhibits a global
and a local solution. For 65% of the initial vectors, the global solution was reached (versus
35% for the local solution). Note that the global solution paths tend to converge faster
(the average global solution path slope is −0.08, compared to −0.05 for the local solution
paths).

8.1.3 SDP and Horst Solutions on Synthetic Problems

We also explored how the number of views and the dimensionality of the problems relates
to the di�culty of �nding globally optimal solutions, for all aforementioned methods of
generating random problem instances. For each sampling scenario and each choice of m
and ni, we generated 100 experiments, and computed 1, 000 solutions based on Algorithm
4.1, the SDP solution (and respective global bounds), and examined the frequencies of the
following events:

• a relaxation gap candidate detected (Tables 8.1, 8.2, 8.3 (a))

• local convergence detected (Tables 8.1, 8.2, 8.3 (b))

• when a local solution is worse than the SDP-based lower bound (Tables 8.1, 8.2,
8.3 (c)).

The possibility of a relaxation gap is detected when the best local solution is lower than
1% of the SDP bound. In this case, the event indicates only the possibility of relaxation
gap � it might be the case that further local algorithm restarts would close the gap. Local
convergence is detected when the objective value of two local solutions di�ers relatively by
at least 10% and absolutely at least by 0.1 (both criteria must be satis�ed simultaneously).
Finally, the event of a local solution being below the SDP lower bound means that it is
below 2

π of the optimal objective value of the SDP relaxation.
We �nd that regardless of the generation technique, the lower SDP bound is useful

only when ni = 1 (Table 8.1, 8.2, 8.3 (c)) and the results are similar for di�erent choices
of m. There are, however, rare instances (less than 0.1%) where the lower bound is useful
for ni = 2 and even rarer (less than 0.01%) for ni = 3.
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Figure 8.1: Convergence plot (1, 000 random matrices A, one random x0 per problem
instance).
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Figure 8.2: Convergence plot (single random A, 1, 000 random initial vectors x0).
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Table 8.1: Random Gram matrix.

(a) Possible relaxation gap.

ni = 3 ni = 2 ni = 1

m = 5 0% 5% 17%
m = 3 0% 0% 9%

(b) Local convergence.

ni = 3 ni = 2 ni = 1

m = 5 1% 5% 48%
m = 3 0% 1% 26%

(c) Local solution below lower SDP bound.

ni = 3 ni = 2 ni = 1

m = 5 0% 0% 14%
m = 3 0% 0% 12%

Table 8.2: Random spectrum sampling.

(a) Possible relaxation gap.

ni = 3 ni = 2 ni = 1

m = 5 0% 5% 36%
m = 3 0% 1% 20%

(b) Local convergence.

ni = 3 ni = 2 ni = 1

m = 5 1% 3% 50%
m = 3 0% 0% 31%

(c) Local solution below lower SDP bound.

ni = 3 ni = 2 ni = 1

m = 5 0% 0% 15%
m = 3 0% 0% 16%

The chance of local convergence increases as the number of views m increases which
can be consistently observed for all choices of ni and sampling strategies. Generating a
generic problem where the local algorithm converges to a local solution is less likely as the
dimensionality increases (Tables 8.1, 8.2).

In the case of noisy embeddings of a 1-dimensional correlation structures, the de-
pendence on ni behaves di�erently: the local convergence (see Table 8.3b) for the case
(m = 5, ni = 3) is more likely than for the case (m = 5, ni = 2). This is unexpected as in
the general case, increasing ni reduces that chance of local convergence, see Table 8.2b,
Table 8.1b.

The relationship between m and ni and the possibility of a relaxation gap behaves
similarly as local convergence - increasing m increases it and increasing ni decreases it
(Table 8.1a, Table 8.2a), except in the case of noisy 1-dim correlation structures, where we
observe the same anomaly when ni = 2 (Table 8.3a).

Therefore we have demonstrated that there exist sets of problems with nonzero measure
where the SDP bounds give useful information.

8.2 Experiments on EuroParl Corpus

Applications of canonical correlation analysis on collections of documents include: di-
mensionality reduction, cross-lingual document retrieval and classi�cation [18] and [72],
multilingual topic extraction [73] and news bias detection [74]. In this section, we explore
the behavior of Algorithm 4.1 with respect to the global bounds on real data, computed
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Table 8.3: Random 1-dim structure sampling.

(a) Possible relaxation gap.

ni = 3 ni = 2 ni = 1

m = 5 24% 16% 23%
m = 3 7% 4% 7%

(b) Local convergence.

ni = 3 ni = 2 ni = 1

m = 5 9% 6% 51%
m = 3 0% 0% 31%

(c) Local solution below lower SDP bound.

ni = 3 ni = 2 ni = 1

m = 5 0% 0% 13%
m = 3 0% 0% 15%

based on Algorithm 5.1, introduced in Section 5.4. We start by describing the data and
then describe a method to reduce the dimensionality of the data in order to apply the SDP
bounds.

8.2.1 Dataset and preprocessing

The experiments were conducted on a subset of EuroParl, Release v3, [75], a multilingual
parallel corpus, where our subset includes Danish, German, English, Spanish, Italian,
Dutch, Portuguese and Swedish. We �rst removed all documents which had one translation
or more missing. Documents (each document is a day of sessions of the parliament) were
then arranged alphabetically and split into smaller documents, such that each speaker
instance represented a separate document. Therefore, we ended up with 12, 000 documents
per language. These roughly correspond to all speeches between 2/25/1999 and 3/25/1999.
We then computed the bag of words (vector space) [39] model for each language, keeping
unigrams, bigrams and trigrams that occurred more than thirty times. For example: �Mr�,
�President� and �Mr President� all occurred more than thirty times in the English part of
the corpus and they each represent a dimension in the vector space.

This resulted in feature spaces with dimensionality ranging from 50, 000 (English) to
150, 000 (German). Finally, we computed the TF-IDF weighting and normalized every
document for each language. Therefore, we obtained corpus matrices X(i) for each lan-
guage, where each matrix has 12, 000 columns and the columns are aligned (X(i) (:, `) and
X(j) (:, `) correspond to translations of the same text).

8.2.2 Local Versus Global Approaches

We now experimentally address two questions: does the random projection based approach
introduced in Section 5.4 enable us to �nd stable patterns and how informative the SDP
bounds are. Stable patterns are represented by highly correlated directions in both the
training and test sets that were not a part of the parameter estimation procedure.

The experiments were conducted on the set of �ve EuroParl languages: English, Span-
ish, German, Italian and Dutch. We set k = 10 which corresponds to ni = 50 dimensions
per view, so the QCQP matrix will be of size 250 × 250. We randomly selected 5000
training documents and 1, 000 test documents. For a range of random projection regular-
ization parameters γ, we computed the mappings Pi based on the train set, as de�ned in
Equation 5.4. We then used the matrices Pi to reduce the dimensionality of the training
and test sets. Then, for a range of QCQP regularization parameters κ, we set up the



8.3. Experiments on the Wikipedia Corpus 63

Table 8.4: Train and test sum of correlation.

(a) Train set sum of correlations.

γ =0.1 γ =0.5 γ =0.9 γ =0.99

κ =0.01 10.0 9.8 9.8 9.8
κ =0.1 10.0 9.8 9.8 9.8
κ =0.5 10.0 9.8 9.8 9.8
κ =0.9 10.0 9.8 9.8 9.8
κ =0.99 10.0 9.8 9.7 9.8

(b) Test set sum of correlations.

γ =0.1 γ =0.5 γ =0.9 γ =0.99

κ =0.01 5.8 8.6 9.6 9.8
κ =0.1 6.2 8.6 9.6 9.8
κ =0.5 7.0 8.6 9.6 9.8
κ =0.9 7.4 8.8 9.6 9.8
κ =0.99 7.4 8.8 9.6 9.8

QCQP problem, computed 1, 000 local solutions (by Horst algorithm) and solved the SDP
relaxation. The whole procedure was repeated 10 times.

For each (γ, κ) pair, we measured the sum of correlations on the test and train sets.
Table 8.4 shows the sums of correlations averaged over 10 experimental trials. The maximal
possible sum of correlations for �ve datasets is

(
5
2

)
= 10. We observed that regularizing

the whole optimization problem is not as vital as regularizing the construction of random
projection vectors. This is intuitive, since �nding the random projection vectors involves a
regression in a high dimensional space, a harder estimation problem as opposed to solving
a lower dimensional QCQP. The choice of γ = 0.1 lead to perfectly correlated solutions
on the training set for all κ values. This turned out to be over-�tted when we evaluated
the sum of correlations on the test set. Perfect correlations on the training set were not
reproduced on the test set (the sum of correlations ranges between 5.8 and 7.4). Note that
higher κ values improved the performance on the test set up to a certain level below 7.5.
As we increased γ to 0.5, we saw a reduction in over�tting and with γ = 0.9 stable patterns
were observed.

We conclude that using appropriate regularization parameters, we can reduce the di-
mensionality of the original QCQP problem and still �nd stable solutions.

The reduced dimensionality of the problem then enabled an investigation of the behav-
ior of the SDP relaxation. For the SDP bounds, we observed behavior that was similar to
the high-dimensional synthetic (generic) case. That is we found that the potential relax-
ation gap was very small and that the SDP and the Horst's algorithm yielded the same
result. For this reason we omit the SDP results from Table 8.4.

8.3 Experiments on the Wikipedia Corpus

We will describe the main dataset for building cross-lingual models, which is based on
Wikipedia, and then present two sets of experiments. The �rst set of experiments estab-
lishes that the hub based approach can deal with language pairs where little or no training
data is available. The second set of experiments compares the main approaches that we
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presented on the task of mate retrieval and the task of event linking. In the mate retrieval
task we are given a test set of document pairs, where each pair consists of a document
and its translation. Given a query document from the test set, the goal is to retrieve its
translation in the other language, which is also referred to as its mate document. Finally,
we examine how di�erent choices of features impact the event linking performance.

8.3.1 Wikipedia Comparable Corpus

The following experiments are based on a large-scale real-world multilingual dataset ex-
tracted from Wikipedia by using inter-language links for alignment. Wikipedia is a large
source of multilingual data that is especially important for the languages for which no
translation tools, multilingual dictionaries (e.g. Eurovoc [44]), or strongly aligned multi-
lingual corpora (e.g. Europarl [75]) are available. Documents in di�erent languages are
related with so-called inter-language links that can be found on the left of the Wikipedia
page. The Wikipedia is constantly growing. At the time of writing the thesis there were
twelve Wikipedias with more than one million articles, 52 with more than one hundred
thousand articles, 129 with more than ten thousand articles, and 236 with more than one
thousand articles.

We now present some details on how the dataset was processed to obtain the cross-
lingual aligned corpus. Each Wikipedia page is embedded in the page tag. First, we
ignored all the pages whose titles started with a Wikipedia namespace (which includes
categories and discussion pages) and all redirection pages (but we stored the redirect link
because inter-language links can point to redirection links also). We removed the markup
of all the pages that we processed.

We constructed the inter-language link matrix using the previously stored redirection
links and inter-language links. Inter-language links that pointed to the redirection links
were replaced with the redirection target links. Since linking is not enforced to be consis-
tent, we obtained a matrixM that was not symmetric. The existence of the inter-language
link in one way (i.e., English to German) does not guarantee that there is an inter-language
link in the reverse direction (German to English). To correct this we symmetrized the ma-
trix M by computing M + MT and thus obtained an undirected graph. In the rare case
that after symmetrization we had multiple links pointing from a document, we kept the
�rst link. Our experiments were based on Wikipedia dumps available in 2013.

8.3.2 Experiments With Missing Alignment Data

In this subsection, we will present the empirical performance of hub CCA approach. We
will demonstrate that this approach can be successfully applied even in the case of fully
missing alignment information. To this purpose, we selected a subset of Wikipedia lan-
guages containing three major languages, English (4,212k articles)�en (hub language),
Spanish (9,686k articles)�es, Russian (9,662k articles)�ru, and �ve minority (in terms of
Wikipedia sizes) languages, Slovenian (136k articles)�sl, Piedmontese (59k articles)�pms,
Waray-Waray (112k articles)�war (all with about 2 million native speakers), Creole (54k
articles)�ht (8 million native speakers), and Hindi (97k articles)�hi (180 million native
speakers). For preprocessing, we removed the documents that contained less than 20 dif-
ferent words (which are referred to as stubs1) and removed words that occurred in less
than 50 documents as well as the top 100 most frequent words (in each language sepa-
rately). We represented the documents as normalized TFIDF [39] weighted vectors. The

1Such documents are typically of low value as a linguistic resource. Examples include the titles of the
columns in the table, remains of the parsing process, or Wikipedia articles with very little or no information
contained in one or two sentences.
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Table 8.5: Training � test sizes (in thousands). The �rst row represents the size of the
training sets used to construct the mappings in low-dimensional language independent
space using en as a hub. The diagonal elements represent the number of the unique
training documents and test documents in each language.

en es ru sl hi war ht pms
en 671 - 4.6 463 - 4.3 369 - 3.2 50.3 - 2.0 14.4 - 2.8 8.58 - 2.4 17 - 2.3 16.6 - 2.7
es 463 - 4.3 187 - 2.9 28.2 - 2.0 8.7 - 2.5 6.9 - 2.4 13.2 - 2 13.8 - 2.6
ru 369 - 3.2 29.6 - 1.9 9.2 - 2.7 2.9 - 1.1 3.2 - 2.2 10.2 - 1.3
sl 50.3 - 2 3.8 - 1.6 1.2 - 0.99 0.95 - 1.2 1.8 - 1.0
hi 14.4 - 2.8 0.58 - 0.8 0.0 - 2.1 0.0 - 0.8
war 8.6 - 2.4 0.04 - 0.5 0.0 - 2.0
ht 17 - 2.3 0.0 - 0.4
pms 16.6 - 2.7

IDF scores were computed for each language based on its aligned documents with the
English Wikipedia. The English language IDF scores were computed based on all English
documents for which aligned Spanish documents existed.

The evaluation is based on splitting the data into training and test sets. We selected the
test set documents as all multilingual documents with at least one nonempty alignment
from the list: (hi, ht), (hi, pms), (war, ht), (war, pms), the remaining documents are
used for training. The test set is suitable for testing the retrieval between language pairs
with possibly empty alignment, since alignments with the hub language were available. In
Table 8.5, we display the corresponding sizes of training and test sets for each language
pair.

On the training set, we used the two step approach described in Section 6.8 to ob-
tain the common document representation as a set of mappings Pi. The test set for each
language pair, denoted by testi,j = {(x`, y`)|` = 1 : n(i, j)}, consists of comparable doc-
ument pairs (linked Wikipedia pages), where n(i, j) is the test set size. We evaluated
the representation by measuring the mate retrieval quality on the test sets as follows:
for each `, we ranked the projected documents Pj(y1), . . . , Pj(yn(i,j)) according to their
similarity with Pi(x`) and computed the rank of the mate document (aligned document)
r(`) = rank(Pj(y`)). The �nal retrieval score (between -100 and 100) was computed as:
100
n(i,j) ·

∑n(i,j)
`=1

(
n(i,j)−r(`)
n(i,j)−1 − 0.5

)
. A score that is less than 0 means that the method per-

formed worse than random retrieval and a score of 100 indicates perfect mate retrieval.
The mate retrieval results are included in Table 8.6.

We observe that the method performs well on all pairs of languages, where at least
50,000 training documents are available(en, es, ru, sl). We note that taking k = 500 or
k = 1, 000 multilingual topics usually results in similar performance, with some notable
exceptions: in the case of (ht, war) the additional topics result in an increase in per-
formance, as opposed to (ht, pms) where performance drops, which suggests over�tting.
The languages where the method performs poorly are ht and war, which can be explained
by the quality of data (see Table 8.7 and explanation that follows). In case of pms, we
demonstrate that solid performance can be achieved for language pairs (pms, sl) and (pms,
hi), where only 2,000 training documents are shared between pms and sl and no training
documents are available between pms and hi. Also observe that in the case of (pms, ht)
the method still obtains a score of 62, even though training set intersection is zero and ht

data is corrupted, which we will show in the next paragraph.
We further inspected the properties of the training sets by roughly estimating the

fraction rank(A)
min(rows(A), cols(A)) for each English training matrix and its corresponding aligned
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Table 8.6: Pairwise retrieval, 500 topics on the left � 1,000 topics on the right.

en es ru sl hi war ht pms
en 98 - 98 95 - 97 97 - 98 82 - 84 76 - 74 53 - 55 96 - 97
es 97 - 98 94 - 96 97 - 98 85 - 84 76 - 77 56 - 57 96 - 96
ru 96 - 97 94 - 95 97 - 97 81 - 82 73 - 74 55 - 56 96 - 96
sl 96 - 97 95 - 95 95 - 95 91 - 91 68 - 68 59 - 69 93 - 93
hi 81 - 82 82 - 81 80 - 80 91 - 91 68 - 67 50 - 55 87 - 86
war 68 - 63 71 - 68 72 - 71 68 - 68 66 - 62 28 - 48 24 - 21
ht 52 - 58 63 - 66 66 - 62 61 - 71 44 - 55 16 - 50 62 - 49
pms 95 - 96 96 - 96 94 - 94 93 - 93 85 - 85 23 - 26 66 - 54

Table 8.7: Dimensionality drift. Each column corresponds to a pair of aligned corpus
matrices between English and another language. The numbers represent the ratio between
the numerical rank and the highest possible rank. For example, the column en � ht tells us
that for the English-Creole pairwise-aligned corpus matrix pair, the English counterpart
has full rank, but the Creole counterpart is far having full rank.

en � es en � ru en � sl en � hi en � war en � ht en � pms
0.81 � 0.89 0.8 � 0.89 0.98 � 0.96 1 � 1 0.74 � 0.56 1 � 0.22 0.89 � 0.38

matrix of the other language, where rows(A) and cols(A) denote the number of rows and
columns respectively. The denominator represents the theoretically highest possible rank
the matrix A could have. Ideally, these two fractions should be approximately the same
- both aligned spaces should have reasonably similar dimensionality. We display these
numbers as pairs in Table 8.7.

It is clear that in the case of the Creole language only at most 22% documents are
unique and suitable for the training. Though we removed the stub documents, many
of the remaining documents are nearly indistinguishable, as the quality of some smaller
Wikipedias is low. This was con�rmed for the Creole, Waray-Waray, and Piedmontese
languages by manual inspection. The low quality documents correspond to templates
about the year, person, town, etc. and contain very few unique words.

There is also a problem with the quality of the test data. For example, if we look at
the test pair (war, ht) only 386/534 Waray-Waray test documents are unique but on the
other side almost all Creole test documents (523/534) are unique. This indicates a poor
alignment which leads to poor performance.

8.3.3 Evaluation Of Cross-Lingual Event Linking

We now turn our attention to the task of cross-lingual event linking and the evaluation
of the novel approach presented in Chapter 7. In order to determine how accurately
we can predict cluster correspondence, we performed two experiments in a multilingual
setting using English, German and Spanish languages for which we had labelled data to
evaluate the linking performance. In the �rst experiment, we tested how well the individual
approaches for cross-lingual article linking perform when used for linking the clusters about
the same event. In the second experiment we tested how accurate the prediction model is
when trained on di�erent subsets of learning features. To evaluate the prediction accuracy
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for a given dataset we used 10-fold cross validation.
We created a manually labelled dataset in order to evaluate cross-lingual event linking

using two human annotators. The annotators were provided with an interface listing the
articles, their content from and top concepts for a pair of clusters and their task was to
determine if the clusters were in correspondence or not (i.e., discuss same event). To
obtain a pair of clusters (ci, cj) to annotate, we �rst randomly chose a cluster ci, used
Algorithm 7.1 to compute a set of potentially corresponding clusters C and randomly chose
a cluster cj ∈ C. The dataset provided by the annotators contains 808 examples, of which
402 are cluster pairs in correspondence and 406 are not. Clusters in each learning example
are either in English, Spanish or German. Although Event Registry imports articles in
other languages as well, we restricted our experiments to these three languages. We chose
only these three languages since they have a very large number of articles and clusters per
day which makes the cluster linking problem hard due to large number of possible links.

In Chapter 3 and Chapter 6, we described the three main algorithms for identifying
similar articles in di�erent languages. These algorithms were k-means, LSI and hub CCA.
As a training set, we used common Wikipedia alignment for all three languages. To test
which of these algorithms performed best, we made the following test. For each of the
three algorithms, we analyzed all articles in Event Registry and for each article computed
the most similar articles in other languages. To test how informative the identi�ed similar
articles are for cluster linking we then trained three classi�ers as described in Section 7.2
� one for each algorithm. Each classi�er was allowed to use as learning features only
the cross-lingual article linking features for which values are determined based on the
selected algorithm (k-means, LSI and hub CCA). The results of the trained models are
shown in Table 8.8. We also show how the number of topics (the dimensions of the latent
space) in�uences the quality, except in the case of the k-means algorithm, where only the
performance on 500 topic vectors is reported, due to higher computational cost.

We observe that, for the task of cluster linking, LSI and hub CCA perform comparably
and both outperform k-means.

We also compared the proposed approaches on the task of Wikipedia mate retrieval
(the same task as in Section 8.3.2). In our evaluation we used a measure referred to as the
Average Mean Reciprocal Rank (AMRR) [76]. Given a collection of Q queries q1, . . . , qQ
and their corresponding mate documents m1, . . . ,mQ, the Mean Reciprocal Rank (MRR)
is expressed as:

MRR =
1

Q

Q∑

i=1

1

rank(i)
,

where rank(i) refers to the rank position of the mate document mi with respect to the
i-th query qi. The rank is obtained by sorting the similarity scores {sim(qi, rj)}Qj=1 in
descending order. Since we are dealing with more than two languages, we averaged the
MRR scores over several language pairs and this aggregate score is referred to as AMRR.

We computed the AMRR performance of the di�erent approaches on the Wikipedia
data by holding out 15, 000 aligned test documents and using 300, 000 aligned documents
as the training set.

Figure 8.3 shows AMRR score as the function of the number of feature vectors. It is
clear that hub CCA outperforms LSI approach and k-means lags far behind when testing
on Wikipedia data. The hub CCA approach with 500 topic vectors manages to perform
comparably to the LSI-based approach with 1, 000 topic vectors, which shows that the
CCA method can improve both model memory footprint as well as similarity computation
time.

Furthermore, we inspected how the number of topics in�uences the accuracy of cluster
linking. As we can see from Table 8.8 choosing a number of features larger than 500
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Figure 8.3: Average of mean reciprocal ranks.

barely a�ects linking performance, which is in contrast with the fact that additional topics
helped to improve AMMR, see Figure 8.3. Such di�erences may have arisen due to di�erent
domains of training and testing (Wikipedia pages versus news articles).

We also analyzed how cluster size in�uences the accuracy of cluster linking. We would
expect that if the tested pair of clusters has a larger number of articles, then the classi�er
should be able to more accurately predict whether the clusters should be linked or not.
The reasoning is that the large clusters would provide more document linking information
(more articles mean more links to other similar articles) as well as more accurately ag-
gregated semantic information. In the case of smaller clusters, the errors of the similarity
models have greater impact which should decrease the performance of the classi�er, too.
To validate this hypothesis we have split the learning examples into two datasets � one
containing cluster pairs where the combined number of articles from both clusters is below
20 and one dataset where the combined number is 20 or more. The results of the experi-
ment can be seen in Table 8.9. As it can be seen, the results con�rm our expectations: for
smaller clusters it is indeed harder to correctly predict if the cluster pair should be merged
or not.

The hub CCA attains higher precision and classi�cation accuracy on the task of linking
small cluster pairs than the other methods, while LSI is slightly better on linking large
cluster pairs. The gain in precision of LSI over hub CCA on linking large clusters is much
smaller than the gain in precision of hub CCA over LSI on linking small clusters. For
that reason we decided to use hub CCA as the similarity computation component in our
system.

Remark. Computing hub CCA involves LSI as a preprocessing step which is followed
by a low-dimensional eigen-decomposition, which is negligible when compared to the �rst
step. The computational complexity of k-means is NP-hard, but given a �xed number of
iterations, its cost is dominated by inner product computations (centroids-centroids and
dataset-centroids), which is true for LSI as well when one uses a random-projection based
approach [63].

In the second experiment, we evaluated how relevant individual groups of features are
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Table 8.8: Accuracy of cluster linking with 500/800/1,000 topic vectors obtained from
di�erent cross-lingual similarity algorithms. The table shows for each of the algorithms
the obtained classi�cation accuracy, precision and recall. Some results related to k-means
are omitted, since the computation took too long and the algorithm's performance was
consistently lower than the other methods considered.

Models Accuracy % Precision % Recall % F1 %
hub CCA 78.2/79.6/80.3 76.3/78.0/80.5 81.6/82.1/79.9 78.9/80.0/80.2

LSI 78.9/78.7/80.6 76.8/77.0/78.7 83.3/80.6/83.6 79.9/78.8/81.1
k-means 73.9/-/- 69.5/-/- 84.6/-/- 76.3/-/-

Table 8.9: Accuracy of cluster linking using 500 topic vectors on two datasets containing
large (left number) and small (right number) clusters. The dataset with small clusters
contained the subset of learning examples in which the combined number of articles from
both clusters of the cluster pair were below 20. The remaining learning examples were put
into the dataset of large clusters.

Models Accuracy % Precision % Recall % F1 %
hub CCA 81.2 - 77.8 80.5 - 74.5 91.3 - 57.5 85.6 - 64.9

LSI 82.8 - 76.4 81.3 - 70.9 93.1 - 57.5 86.8 - 63.5
k-means 75.5 - 71.2 72.8 - 70.8 95.3 - 36.2 82.5 - 47.9

to correctly determine cluster correspondence. For this purpose, we computed accuracy
using individual groups of features, as well as using di�erent combinations of groups. Since
hub CCA had the best performance of the three algorithms, we used it to compute the
values of the cross-lingual article linking features. The results of the evaluation are shown
in Table 8.10. We can see that using a single group of features, the highest prediction
accuracy can be achieved using concept-related features. The classi�cation accuracy in
this case is 88.5%. By additionally including also the cross-lingual article linking features,
the classi�cation accuracy rises slightly to 89.4%. Using all three groups of features, the
achieved accuracy is 89.2%.

To test if the accuracy of the predictions is language dependent we have also performed
the evaluations separately on individual language pairs. For this experiment we have split
the annotated learning examples into three datasets, where each dataset contained only
examples for one language pair. When training the classi�er all three groups of features
were available. The results are shown in Table 8.11. We can see that the performance of
cluster linking on the English-German dataset is the highest in terms of accuracy, preci-
sion, recall and F1. The performance on the English-Spanish dataset is comparable to the
performance on the English-German dataset, where the former achieves higher recall (and
slightly higher F1 score), while the latter achieves higher precision. A possible explana-
tion of these results is that the higher quantity and quality of English-German language
resources leads to a more accurate cross-lingual article similarity measure as well as to a
more extensive semantic annotation of the articles.

Based on the performed experiments, we can make the following conclusions. The
cross-lingual similarity algorithms provide valuable information that can be used to iden-
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Table 8.10: The accuracy of the classi�er for story linking using di�erent sets of learning
features. See Section 7.2 for a description of di�erent feature sets that were used in classi�-
cation: Concepts for concept-related features, Misc for miscellaneous features and Hub
CCA for features based cross-lingual article links using hub CCA.

Features Accuracy % Precision % Recall % F1 %
Hub CCA 78.3± 5.9 78.2± 7.0 78.9± 5.2 78.4± 5.5
Concepts 88.5± 2.7 88.6± 4.8 88.6± 2.2 88.5± 2.4
Misc 54.8± 6.7 61.8± 16.5 58.2± 30.2 52.4± 13.0

Hub CCA + Concepts 89.4± 2.5 89.4± 4.6 89.6± 2.4 89.4± 2.3
Hub CCA + Misc 78.8± 5.0 78.9± 7.1 79.4± 4.6 79.0± 4.5
Concepts + Misc 88.7± 2.6 88.8± 4.6 88.8± 2.2 88.7± 2.3

All 89.2± 2.6 88.8± 4.9 90.1± 1.9 89.3± 2.3

Table 8.11: The accuracy of the classi�er for story linking on training data for each language
pair separately using all learning features.

Language pair Accuracy % Precision % Recall % F1 %
en, de 91.8± 5.5 91.7± 6.3 93.7± 6.3 92.5± 5.1
en, es 87.7± 5.4 87.7± 7.4 88.5± 9.8 87.6± 5.9
es, de 88.6± 4.3 89.7± 9.1 84.3± 11.9 85.9± 6.0

tify clusters that describe the same event in di�erent languages. For the task of cluster
linking, the cross-lingual article linking features are however signi�cantly less informative
compared to the concept-related features that are extracted from the semantic annota-
tions. Nevertheless, the cross-lingual article similarity features are very important for two
reasons. The �rst is that they allow us to identify for a given cluster a limited set of
candidate clusters that are potentially in correspondence. This is a very important feature
since it reduces the search space by several orders of magnitude. The second reason these
features are important is that concept annotations are not available for all articles as the
annotation of news articles is computationally intensive and can only be done for a subset
of collected articles. The prediction accuracies for individual language pairs are compara-
ble although it seems that the achievable accuracy correlates with the amount of available
language resources.

8.3.4 Remarks on the Scalability of the Implementation

One of the main advantages of our two step approach to cross-lingual cluster linking is
that it is highly scalable. It is fast, very robust to the quality of training data, easily
extendable, simple to implement and has relatively small hardware requirements. The
similarity pipeline is the most computationally intensive part and currently runs on a
machine with two Intel Xeon E5-2667 v2, 3.30GHz processors with 256GB of RAM. This
is su�cient to do similarity computation over a large number of languages if needed. It
currently uses Wikipedia as a freely available knowledge base and experiments show that
the similarity pipeline dramatically reduces the search space when linking clusters.

Currently, we compute similarities over 24 languages with tags: eng, spa, deu, zho, ita,
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fra, rus, swe, nld, tur, jpn, por, ara, �n, ron, kor, hrv, tam, hun, slv, pol, srp, cat, ukr
but we support any language from the top 100 Wikipedia languages. Our data streams
come from the service called Newsfeed (http://newsfeed.ijs.si/) which provides 430k
unique articles per day. Our system currently computes 2 million similarities per second,
that means that we compute 16 · 1010 similarities per day. We store one day bu�er for
each language which requires 1.5 GB of memory with documents stored as 500-dimensional
vectors. We note that the time complexity of the similarity computations scales linearly
with dimension of the feature space and does not depend on the number of languages. For
each article, we compute the top 10 most similar ones in every other language.

For all linear algebra matrix and vector operations, we use high performance numerical
linear algebra libraries as BLAS, OPENBLAS and Intel MKL, which currently allows us
to process more than one million articles per day. In our current implementation, we use
the variation of the hub approach. Our projector matrices are of size 500 × 300, 000, so
every projector takes about 1.1 GB of RAM. Moreover, we need proxy matrices of size
500 × 500 for every language pair. That is 0.5 GB for 24 languages and 9.2 GB for 100
languages. Altogether we need around 135 GB of RAM for the system with 100 languages.
Usage of proxy matrices enables the projection of all input documents in the common
space and handling language pairs with missing or low alignment. That enables us to
do block-wise similarity computations further improving system e�ciency. Our code can
therefore be easily parallelized using matrix multiplication rather than performing more
matrix - vector multiplications. This speeds up our code roughly by a factor of 4. In this
way, we obtain some caching gains and ability to use vectorization. Our system is also
easily extendable. Adding a new language requires the computation of a projector matrix
and proxy matrices with all other already available languages.

8.3.5 Remarks on the Reproducibility of Experiments

We have made both the code and data that were used in the experiments publicly available
at https://github.com/rupnikj/jair_paper.git. The manually labelled dataset used
in the evaluation of event linking is available at in the �dataset� subfolder of the github
repository. The included archive contains two folders: �positive� and �negative�, where
the �rst folder includes examples of cluster pairs in two languages that represent the same
event and the second folder contains pairs of clusters in two languages that do not represent
di�erent events. Each example is a JSON �le that contains at the top level information
about a pair of clusters (including text of the articles) as well as a set of �meta� attributes,
that correspond to features described in Section 7.2.

The �code� folder includes MATLAB scripts for building cross-lingual similarity models
introduced in Chapter 6, which can be used with publicly available Wikipedia corpus
to reproduce the cross-lingual similarity evaluation. We have also made available the
similarity computation over 100 languages as a service at xling.ijs.si.

In addition, the Event Registry system (http://eventregistry.org/) comes with an
API, documented at https://github.com/gregorleban/event-registry-python, that
can be used to download events and articles.

http://newsfeed.ijs.si/
https://github.com/rupnikj/jair_paper.git
xling.ijs.si
http://eventregistry.org/
https://github.com/gregorleban/event-registry-python
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Chapter 9

Conclusions

9.1 Discussion

In the thesis we study a generalization of CCA to more than two sets of variables. We
present a new result that proves that the complexity of the SUMCOR problem is NP-
hard and describe a novel approach to �nding several sets of nonlinear patterns,
based on a locally convergent method. Experimentally, we observed that the performance
of the local method (with linear convergence) is generally good, although we identi�ed
problem settings where convergence to local optima occurs (based on synthetic experi-
ments we observed, that increasing the number of views increases the likelihood of such
events). We present a novel SDP relaxation of the problem, which can be used to obtain
new local solutions and to provide several new computationally tractable bounds on
global optimality of the SUMCOR problem solutions. The usefulness of the bounds is ex-
plored on synthetic problem instances and problems related to cross-lingual text-mining.
We introduce a new preprocessing step based on random projections to reduce
the dimensionality of high dimensional problems such as in document corpora, making
memory requirements tractable. We demonstrate the applicability of the approach on
high-dimensional text data.

We present an application of two generalizations of CCA, the SUMCOR and SSCOR
formulations to cross-lingual similarity function learning. The cross-lingual similarity
functions are applied to the task of cross-lingual cluster linking, where we present and
evaluate a novel approach that combines features based on semantic and language analysis.
The approach is shown to be scalable both in terms of number of articles and number of
languages, while accurately linking events. The approach is used in a system for real-time
monitoring of global news in multiple languages, where a strong server is used to compute
two millions of similarities per second.

On the task of mate retrieval, we observe that re�ning the LSI-based projections with
hub CCA leads to improved retrieval precision (hub CCA achieves 0.7 AMRR, whereas
LSI achieves 0.6, when 500 dimensions are used), but the methods perform comparably on
the task of event linking (see Table 8.8). Further inspection showed that the CCA-based
approach reached a higher precision on smaller clusters. The interpretation is that the
linking features are highly aggregated for large clusters, which compensates the lower per-
document precision of LSI. Another possible reason is that the advantage that we show on
Wikipedia is lost on the news domain. This hypothesis could be validated by testing the
approach on documents from a di�erent domain.

The experiments show that the hub CCA-based features present a good baseline, which
can greatly bene�t from additional semantic-based features (an increase in F1 score from
0.78 to 0.88, see Table 8.10). Even though in our experiments the addition of CCA-based
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features to semantic features did not lead to great performance improvements (marginal
increase in performance when compared to concept based features, see Table 8.10), there
are two important bene�ts in the approach. First, the linking process can be sped up
by using a smaller set of candidate clusters. Second, the approach is robust to languages
where semantic extraction is not available, due to scarce linguistic resources. For example
in Tables 8.5 and 8.6 we demonstrate that similarity models based on our SSCOR refor-
mulation under the hub language assumption can be built for language pairs with
scarce and low quality linguistic resources. For example, the 0.85 retrieval score for the
Piedmontese-Hindi pair reported in Table 8.6 is promising, since their bilingual training
set was empty.

9.2 Future Work

Regarding the work on the SUMCOR formulation, the experiments indicate that the noisy
1-dimensional embeddings present di�culties for the Horst's algorithm, which is in contrast
to the performance on random generic problem instances. A natural question is, are there
other problem structures that result in suboptimal behavior of the local approach?

Our empirical results focus on text data, and an interesting direction is to extend the
analysis to data from other modalities, such as images, sensor streams and graphs.

Also of interest is the complexity analysis of the other generalizations proposed in [7].
Regarding the work on cluster linking, the proposed cross-lingual analysis approaches

represent an important building block in our approach to cross-lingual cluster linking.
The language component is built independently from the cluster linking component. It
is possible that better embeddings can be obtained by methods that jointly optimize a
classi�cation task and the embedding.

Another point of interest is to evaluate our approach to cluster-linking on languages
with scarce linguistic resources, where semantic annotation might not be available. For
this purpose, the labelled dataset of linked clusters should be extended �rst. The mate
retrieval evaluation shows that even for language pairs with no training set overlap, the
hub CCA recovers some signal.

In order to further improve the performance of the classi�er for cluster linking, addi-
tional features should also be extracted from articles and clusters and checked if they can
increase the accuracy of the classi�cation. Since the amount of linguistic resources varies
signi�cantly from language to language, it would also make sense to build a separate clas-
si�er for each language pair. Intuitively, this should improve performance since weights of
individual learning features could be adapted to the tested pair of languages.

X(1) ∈ Rn1×`, X(2) ∈ Rn2×`
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