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Abstract

Multiobjective optimization is the process of simultaneously optimizing two or more con-
flicting objectives and is used for solving real-world optimization problems in various fields,
from product design to process optimization.

One of the most effective ways of solving problems with multiple objectives is to use
multiobjective evolutionary algorithms (MOEAs). MOEAs draw inspiration from adap-
tation processes occurring in nature. In order to find the best solutions, they perform
numerous solution evaluations. If these solution evaluations are time-consuming, the opti-
mization process can take a lot of time.

To obtain the results of such an optimization problem faster (or to obtain them in a
reasonable amount of time), surrogate models can be used to approximate the objective
functions of the problem. Instead of performing time-consuming exact evaluation to eval-
uate a solution, the solution can be approximated with a surrogate model. Using solution
approximations can significantly accelerate the optimization process, but can also spoil the
results if the solution approximations are inaccurate. When comparing approximated solu-
tions, a solution can incorrectly appear to be dominated by inaccurate and over-optimistic
approximations.

To reduce the possibility of incorrect comparisons, we propose new relations under
uncertainty that, in addition to the approximated values, consider also the confidence
intervals for the approximations. The relations under uncertainty were compared with the
Pareto dominance relations in the experiments that confirmed that the use of the proposed
relations reduces the possibility of incorrect comparisons.

We included the relations under uncertainty in a new MOEA called Differential Evolu-
tion for Multiobjective Optimization based on Gaussian Process modeling (GP-DEMO).
GP-DEMO is based on Differential Evolution for Multiobjective Optimization (DEMO),
a steady-state algorithm known to be very effective in solving numerical multiobjective
optimization problems.

GP-DEMO was compared with DEMO and also with another surrogate-model-based
MOEA called Generational Evolution Control (GEC). These algorithms were tested on
12 benchmark problems of different complexities and on two real-world problems – opti-
mization of continuous steel casting and finding the correlation between a simulated and
a measured electrocardiogram (ECG). The empirical analysis of their results showed that
GP-DEMO and DEMO produce similar results, but GP-DEMO needs considerably less
exact evaluations. In comparison to GEC, GP-DEMO achieves better results and the
number of exact evaluations depends on the type of the optimization problem.

In order to determine when to use GP-DEMO instead of DEMO, we calculated for every
test problem how long a single exact solution evaluation should last for the optimization
times of GP-DEMO and DEMO to be equal. So for an arbitrary optimization problem
we can, depending on the assessed complexity and the duration of a single exact solution
evaluation, estimate which of the two algorithms is more suitable.
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Povzetek

Z optimizacijskimi problemi se v različnih oblikah pogosto srečujemo v vsakdanjem ži-
vljenju. Mnogi optimizacijski problemi zahtevajo sočasno optimizacijo več kriterijev, ki si
pogosto nasprotujejo. Takim problemom pravimo večkriterijski optimizacijski problemi.

Eden izmed najučinkovitejših načinov reševanja takih problemov je uporaba večkri-
terijskih evolucijskih algoritmov. Evolucijski algoritmi temeljijo na posnemanju naravne
evolucije in se zgledujejo po procesih prilagajanja, ki se dogajajo v naravi. Ti algoritmi
med optimizacijskim procesom ovrednotijo veliko število rešitev. Če so ta ovrednotenja
računsko zahtevna, lahko optimizacijski proces traja zelo dolgo.

Za pospešitev takega optimizacijskega procesa lahko namesto zamudnega eksaktnega
vrednotenja rešitev del rešitev aproksimiramo z nadomestnimi modeli, ki jih dobimo z
modeliranjem kriterijev optimizacijskega problema. V primerih, ko je zaradi kompleksno-
sti optimizacijskega problema kriterije težko modelirati, lahko nadomestni modeli vračajo
netočne aproksimacije. Posledica tega je, da so pri primerjavi rešitev lahko dobre, eksak-
tno ovrednotene rešitve zavržene, ker izgledajo slabše kot napačno, preveč optimistično
aproksimirane rešitve. To lahko upočasni iskanje najboljših rešitev oziroma celo prepreči
algoritmu, da jih najde.

Za zmanjševanje števila napačnih primerjav smo v disertaciji definirali nove relacije
ob negotovosti, ki za primerjavo rešitev poleg aproksimiranih vrednosti upoštevajo tudi
intervale zaupanja, ki jih vračajo nekatere aproksimacijske metode. Relacije ob negotovosti
smo primerjali z relacijami Pareto dominiranosti in pokazali, da relacije ob negotovosti
zmanjšujejo možnost napačnih primerjav.

Relacije ob negotovosti smo nato vključili v nov algoritem, ki smo ga poimenovali Di-
fferential Evolution for Multiobjective Optimization based on Gaussian Process modeling
(GP-DEMO). Ta algoritem temelji na algoritmu Differential Evolution for Multiobjective
Optimization (DEMO), ki je zelo učinkovit pri reševanju numeričnih večkriterijskih opti-
mizacijskih problemov.

Algoritem GP-DEMO smo primerjali z algoritmom DEMO in z algoritmom Generati-
onal Evolution Control (GEC), ki je tudi večkriterijski evolucijski algoritem in uporablja
nadomestne modele. Algoritme smo primerjali na 12 testnih problemih in na dveh realnih
problemih – optimizaciji kontinuirnega ulivanja jekla in iskanju korelacije med simuliranim
in izmerjenim elektrokardiogramom (EKG). Analiza rezultatov je pokazala, da GP-DEMO
in DEMO dosežeta podobne rezultate, le da GP-DEMO za to potrebuje manj eksaktnih
ovrednotenj rešitev. GP-DEMO v primerjavi z algoritmom GEC doseže boljše rezultate,
število eksaktno ovrednotenih rešitev pa je odvisno od tipa optimizacijskega problema.

Za vsak v disertaciji uporabljen testni optimizacijski problem smo izračunali, kako
dolgo naj bi trajalo posamezno eksaktno ovrednotenje, da bi bilo trajanje optimizacijskega
procesa za algoritma GP-DEMO in DEMO enako. Glede na to, da algoritma vračata
primerljive rezulate, lahko glede na kompleksnost optimizacijskega problema in trajanje
eksaktnega ovrednotenja rešitve za poljuben optimizacijski problem ocenimo, kateri algo-
ritem je primerneje uporabiti.
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Chapter 1

Introduction

This chapter shortly describes the problems addressed in this dissertation and presents
the motivation for our research. Further it presents the hypotheses and goals defined at
the beginning of our work and states the expected scientific contributions. The chapter
concludes with an overview of the dissertation where each chapter is briefly described to
introduce the contents of the dissertation.

1.1 Problem Formulation

Optimization problems are present in everyday life and can be found in various fields, from
product design and process optimization to financial applications. Many of these opti-
mization problems require simultaneous optimization of multiple, often conflicting criteria
(or objectives). These problems are called multiobjective optimization problems. The
solution to such a problem is not a single one, but a family of solutions, known as the
Pareto-optimal set. This set gives the decision-maker an insight into the characteristics of
the problem before a single final solution is chosen.

One of the most effective ways of solving multiobjective optimization problems is to
use multiobjective evolutionary algorithms (MOEAs) (Deb, 2001). MOEAs are population-
based algorithms that draw inspiration from optimization processes that occur in nature.
In order to find a Pareto-optimal set, a lot of different solutions have to be assessed (eval-
uated) during the optimization process. For some optimization problems these solution
evaluations can be costly, dangerous or computationally expensive. In such cases the goal
is to reduce the number of exactly evaluated solutions, but still find the best solutions.
In this dissertation we focus on computationally expensive multiobjective optimization
problems, where a single solution evaluation takes a lot of time.

In order to obtain the results of such an optimization problem more quickly (or obtain
them in a reasonable amount of time), we can use surrogate models in the optimization
process. Surrogate models mimic the behavior of the simulation model used for exact solu-
tion evaluations. A surrogate model is constructed based on modeling the response of the
simulator from a limited number of previously exactly evaluated solutions. The idea is to
build a surrogate model that is as accurate as possible, using as few simulation evaluations
as possible. Then instead of using a time-consuming exact evaluation, a solution can be
approximated with the surrogate model. Since an individual solution approximation is
(much) faster, the whole optimization process can be accelerated.

However, the use of the surrogate models in optimization has two drawbacks. The
first one is that the time needed to create and update the surrogate models prolongs
the optimization process. If exact solution evaluations are quick, it can happen that the
surrogate-model-based optimization takes longer than the optimization without surrogates.
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(a) (b)

Figure 1.1: A problem that can occur when comparing inaccurately approximated solu-
tions: (a) approximated solutions, (b) approximated solutions and corresponding exactly
evaluated solutions.

The second drawback can be observed if the optimization problem is very complex and
therefore hard to model. This results in imprecise surrogate models and the solutions
approximated with these models can be inaccurate. As a consequence, good solutions can
be discarded from the population because they incorrectly appear to be dominated by the
inaccurate and over-optimistic approximations. This can slow the optimization process or
even prevent the algorithm from finding the best solutions.

When approximating solutions, some surrogate models, in addition to the approximated
values, provide also a distribution, from which the confidence interval of the approxima-
tion can be calculated. This confidence interval indicates the region in which the exactly
evaluated solution is most likely to appear. The confidence interval width indicates the
certainty of the approximation. If the confidence interval is narrow, we can be more certain
about the approximation and vice versa.

The solutions represented with confidence intervals, where exact objective values are
unknown, are called solutions under uncertainty and the problems with uncertain solutions
are called uncertain optimization problems. The source of uncertainty can, in addition to
the objective function approximations, be noisy, robust, or time-varying objective functions
(Jin & Branke, 2005).

Regardless of the source of uncertainty, it is better if an algorithm takes uncertainty
into account. Since this uncertainty offers additional information, it can be effectively used
when comparing solutions. Comparing only approximated values without considering un-
certainty can for inaccurate approximations cause incorrect comparisons. Such an example
is shown in Figure 1.1. Solutions xA and yA represent approximated values for solutions
x and y (Figure 1.1 (a)). If we compare approximations and presume that this is a mini-
mization problem, we can see that solutions x is better than solution y. But if we would
exactly evaluate these solutions, we would get different objective values represented with
xE and yE (Figure 1.1 (b)). The comparison of these two solutions shows that solution y
is better than solution x. Therefore comparing only approximated solutions can result in
incorrect relations between solutions.

To prevent these unwanted effects, we propose new relations for comparing solutions
under uncertainty where, in addition to the approximated values of a solution, their con-
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fidence intervals are considered. These relations extend Pareto dominance relations and
cover all possible combinations that can occur when comparing solutions represented with
confidence intervals. New relations also take into consideration the feasibility of solutions
including the uncertainty of feasibility due to the uncertainty of solutions. During the opti-
mization process, some solutions are exactly evaluated and others approximated; therefore,
the relations under uncertainty also cover the comparison of approximated solutions with
exactly evaluated solutions. The relations under uncertainty can be used to compare solu-
tions in any multiobjective optimization algorithm dealing with solutions represented with
confidence intervals.

To check if the use of the proposed relations under uncertainty reduces the possibility
of incorrect comparisons due to the inaccurate approximations, we compare them with
Pareto dominance relations. The comparison is performed with various surrogate models
and on different benchmark problems.

Based on the relations under uncertainty we propose a new surrogate-model-based mul-
tiobjective evolutionary algorithm, called Differential Evolution for Multiobjective Opti-
mization based on Gaussian Process modeling (GP-DEMO). This algorithm is an extension
of the Differential Evolution for Multiobjective Optimization (DEMO) algorithm (Robič
& Filipič, 2005), which uses differential evolution to effectively solve numerical multiob-
jective optimization problems and, in addition, emphasizes the variation operators. As
a surrogate model Gaussian Process modeling is employed to find approximate solution
values together with their confidence intervals. All solution comparisons in GP-DEMO are
performed with new relations under uncertainty. As it works on the same principles as
DEMO, the quality of its results is expected to be similar to the results of DEMO, but
with fewer exact solution evaluations.

To thoroughly test the GP-DEMO algorithm, we compare it with another surrogate-
model-based algorithm and with DEMO on several benchmark and two real-world opti-
mization problems.

1.2 Hypotheses and Goals

This dissertation investigates the following two hypotheses:

(H1) The proposed relations under uncertainty reduce the possibility of incorrect compar-
isons due to inaccurately approximated solutions.

(H2) The proposed surrogate-model-based multiobjective evolutionary algorithm (GP-
DEMO) in comparison to other MOEAs produces comparable results with fewer
exact evaluations of the original objective functions.

In accordance with the purpose of the doctoral dissertation and to verify the hypotheses,
the following goals are expected to be achieved:

• improvement of the surrogate-model-based multiobjective optimization methodology
in terms of achieving high-quality results with as few exact solution evaluations as
possible,

• providing a survey of the state-of-the-art approaches on comparing solutions under
uncertainty and on computationally expensive optimization problems,

• analyzing the pros and cons of the Pareto dominance relations for comparing solutions
under uncertainty,
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• determining the impact of the proposed relations under uncertainty on reducing the
possibility for a surrogate-model-based algorithm to get stuck in a local optimum or
find suboptimal solutions due to inaccurate approximations,

• systematic evaluation and comparison of results from several MOEAs with and with-
out surrogate models,

• analyzing the potential of the proposed approach in real-world applications.

1.3 Methodology

To provide the empirical support for the hypotheses and meet the goals, we use a standard
methodological framework and various methods from the field of machine learning and
multiobjective optimization. The methodology used in this dissertation includes:

• Literature survey. The existing work in the field of surrogate-model-based evolu-
tionary algorithms and also the techniques for comparing solutions represented with
confidence intervals will be reviewed.

• The design and definition of new relations under uncertainty. The relations will cover
all possible scenarios for comparing feasible and infeasible solutions represented with
confidence intervals.

• Design and implementation of an algorithm for measuring the number of incorrect
solution comparisons. This algorithm will be used for comparing the relations under
uncertainty with Pareto dominance relations.

• Design and implementation of a new surrogate-model-based MOEA. By combining
our ideas with existing approaches, the new algorithm based on relations under un-
certainty will be designed.

• Empirical evaluation of various algorithms on benchmark and real-world problems.
The algorithms will be evaluated and their performance analyzed and visually pre-
sented. Moreover, the comparison will be made using various measures.

• Statistical analysis of results. Due to stochastic nature of the evolutionary algorithms,
the t-test statistical hypothesis test will be used to determine if the algorithms differ
significantly.

1.4 Expected Scientific Contributions

Fulfilling the goals and providing empirical support for the hypotheses requires a detailed
examination of the following research areas:

• evolutionary computation,

• multiobjective optimization,

• surrogate-model-based optimization,

• surrogate modeling and solution approximations,

• comparison of solutions under uncertainty.
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Scientific contributions of the dissertation are expected at the intersection of these
research areas. We foresee the following scientific contributions:

• Defining new relations for comparing solutions under uncertainty that are suited for
comparing solutions represented with approximated values and confidence intervals.

• Confirming that the new relations under uncertainty, in comparison to Pareto dom-
inance relations, reduce the possibility of incorrect solution comparisons.

• Designing a surrogate-model-based MOEA called GP-DEMO. This algorithm is suited
for solving multiobjective optimization problems where solution evaluations are com-
putationally expensive.

• Setting guidelines on when, depending on the type of optimization problem, the
GP-DEMO algorithm should be used.

1.5 Overview of the Dissertation

Chapter 2 describes the algorithms, methods and approaches related to our research. It
starts with an explanation of basic concepts of multiobjective optimization and MOEAs.
Next, the DEMO algorithm with its advantages and disadvantages is described. Since
GP-DEMO uses surrogate models and compares solutions under uncertainty, these fields
are thoroughly described and various approaches and concepts are presented. In addition,
two often used modeling techniques, Gaussian Process (GP) modeling and Random Forest
(RF) modeling, are presented.

In Chapter 3, the proposed relations under uncertainty are described. They extend the
Pareto dominance relations, so the latter are presented as well. The process of comparing
solutions under uncertainty is demonstrated for unconstrained and constrained multiob-
jective optimization problems. Further, the hypothesis that using the new relations under
uncertainty reduces the number of incorrect comparisons is tested. To test this hypothesis,
we compared the relations under uncertainty with Pareto dominance relations. This ex-
periment was also used to compare two modeling techniques, RF and GP. The discussion
of results from both comparisons concludes Chapter 3.

Chapter 4 describes the newly designed surrogate-model-based evolutionary algorithm
GP-DEMO. This algorithm extends the DEMO and uses relations under uncertainty to
compare the solutions. The outline of the GP-DEMO algorithm with its pros and cons is
presented. Because of dealing with uncertain solution values, the procedure of comparing
the parent and candidate solutions and the selection procedure are modified. For both
procedures the implementation and properties are described in detail.

Chapter 5 starts with the description of benchmark and real-world problems that were
used for testing. Next, the experimental setup is presented with the interpretation of the
settings selected. For the sake of fair evaluation of the GP-DEMO algorithm, we compared
it with another surrogate-model-based algorithm GEC. Its structure and characteristics are
also fully described in this chapter. The chapter ends with the presentation of the results
gained with all algorithms. For every algorithm the results are presented with tables and
the best fronts are drawn.

The analysis of the results is performed in Chapter 6. The algorithms are pairwise
compared and the statistical analyses are presented. To determine which algorithm is
more suitable for a certain type of optimization problems, the optimization times and the
quality of results were combined to develop the strategy that, depending on the complexity
and exact evaluation times, suggests the appropriate algorithm.
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Chapter 7 concludes the dissertation with the overview of the work done, the scientific
contributions of the dissertation and the ideas for future work.
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Chapter 2

Background and Related Work

In this chapter we explain the main concepts, algorithms and measures used in this disser-
tation, and review the state of the art in the fields of surrogate-model-based multiobjective
optimization and comparison of solutions under uncertainty.

We start with explaining the basic multiobjective optimization principles and domi-
nance relation between solutions with conflicting objectives. Then, we describe the multi-
objective evolutionary algorithms (MOEAs) and identify the reasons for their suitability
for solving multiobjective optimization problems. We present MOEAs basic principles and
outline a very popular MOEA algorithm, Non-dominated Sorting Genetic Algorithm II
(NSGA-II), and its environmental selection procedure. This procedure is used also in the
DEMO algorithm and with some modifications also in the GP-DEMO algorithm.

Further, we describe the algorithms Differential Evolution (DE) and DEMO, since
DEMO is used as the base for GP-DEMO.

Since GP-DEMO uses surrogate models and relations for comparing solutions under
uncertainty, we review these research fields and describe the methods and techniques used
by other authors.

The chapter concludes with presenting two different modeling techniques that, in ad-
dition to the approximations, return also the confidence in the approximations. These
techniques are GP modeling and RF modeling. Both techniques were used in the experi-
ments in this dissertation and GP modeling is also used in GP-DEMO.

2.1 Multiobjective Optimization

In multiobjective optimization, we wish to simultaneously optimize several (possibly con-
flicting) objectives. The scenario considered in this dissertation involves an arbitrary mul-
tiobjective optimization problem (MOP) with m objectives which are, without loss of
generality, all to be minimized and all equally important, i.e., no additional knowledge
about the problem is available. A MOP consists of finding the minimum of the function

f : X → Z (2.1)

f : (x1, ..., xn) 7→ (f1(x1, ..., xn), ..., fm(x1, ..., xn)), (2.2)

subject to:

• boundary constraints:

xmin
i ≤ xi ≤ xmax

i ; (i = 1, ..., n), (2.3)
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• constraints on decision variables:

gj(x) ≤ 0; (j = 1, 2, ...k), (2.4)

• constraints on objectives:

hj(f(x)) ≤ 0; (j = 1, 2, ...l), (2.5)

where n is the number of variables, m is the number of objectives, k is the number of
constraints on decision variables, and l is the number of constraints on objectives. Each
solution x = (x1, ..., xn) ∈ X is called a decision vector, while the corresponding element
z = f(x) ∈ Z is an objective vector (see Figure 2.1).

Figure 2.1: The decision and objective space of a MOP. Red points represent decision and
objective vectors of the best solutions.

The boundary constraints define the search region of an optimization problem by setting
the lower bounds xmin and the upper bounds xmax for the variables. Inside the search
region, the constraints on decision variables further define the feasibility of solutions. An
example of such a constraint would be that the sum of two variables should not exceed
a predefined value. Since these constraints can be complex, the region they define can
also be complex. As an example, the red contour in Figure 2.2 that represents this region
is drawn as a complex shape. The constraints on objectives limit the feasibility of the
objective values. An example of a constraint on objectives would be to set a maximum
budget and a minimum top speed in the optimization problem of finding a fast and cheap
car. The constraints on objectives are typically not very complex, hence the region defined
by these constraints is fairly simple. We call this region feasible objective value region; in
Figure 2.2 it is surrounded by the blue and green lines.

If all constraints are satisfied, the solution is called feasible; otherwise it is infeasible.
All feasible solutions in the decision space constitute the feasible region. The mapping of
this region in the objective space is called feasible region image and this region is marked
with black hatching in Figure 2.2. The feasible solutions of a MOP that are the best with
regard to all objectives create a front of solutions called the Pareto optimal front, which is
indicated by the green line in Figure 2.2.

In multiobjective optimization the comparison of two solutions is based on the concept
of domination (Deb, 2001). Solution x1 dominates solution x2, i.e., (x1 ≺ x2), if:
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Figure 2.2: The objective space of a constrained multiobjective optimization problem.

1. x1 is not worse than x2 in any of the objectives,

2. x1 is strictly better than x2 in at least one objective.

When comparing two solutions, one solution can be better (or not worse) than the
other solution in all objectives, or better in some objectives and worse in others. In the
first case, the first solution is better/dominates the second solution (the second solution is
dominated by the first one), while in the second case no solution is better since the two
solutions are incomparable. If a solution is not dominated by any other solution, it is called
a non-dominated solution. When all feasible solutions are taken into consideration, the
non-dominated solutions are Pareto-optimal solutions forming Pareto-optimal front (see
Figure 2.3).

The concept of domination between two solutions makes it possible to compare solutions
with multiple objectives and is used by most MOEAs.

Since dominated solutions do not improve the results of the MOP, the task of the
multiobjective optimization is to find a set of non-dominated solutions that form Pareto-
optimal front. Although the goal is to find Pareto-optimal solutions, the obtained non-
dominated solutions might not be Pareto-optimal, due to the complexity of the problem
(algorithm cannot find them) or limited number of available solution evaluations.

In addition to finding solutions as close as possible to the Pareto-optimal front, another
goal of the multiobjective optimization algorithms is to find solutions that are as diverse
as possible. The spread and distribution of solutions on the non-dominated front assure a
good set of trade-off solutions among objectives.

2.1.1 Hypervolume

The hypervolume indicator, originally proposed in (Zitzler & Thiele, 1998), is one of the
most frequently used quality indicators to asses the performance of multiobjective optimiz-
ers. It can be used to compare non-dominated fronts or, if Pareto-optimal front is known,
evaluate the closeness of a non-dominated front to it. The hypervolume value is obtained
by calculating the volume covered by a set of non-dominated solutions S. More precisely,



10 Chapter 2. Background and Related Work

Figure 2.3: Dominance relations and Pareto-optimal front.

it calculates the volume between the solutions and a reference point. The coordinates of
the reference point are usually set as the maximum feasible values of the objectives or as
the maximum values of the objectives in the set of nondominated solutions. In this disser-
tation the reference point was determined gradually in a way that it covered all obtained
non-dominated solutions and that the region it defined was as small as possible.

The procedure for calculating hypervolume constructs a hypercube vi for each solution
i ∈ S, where the diagonal corners of the hypercube are the reference point and the solution.
Hypervolume HV is the volume of the union of hypercubes:

HV = volume(

|P|⋃
i

vi) (2.6)

An illustration of calculated hypervolume is shown in Figure 2.4.
Hypervolume can be calculated during the optimization process and can thus measure

the quality of the current non-dominated solutions. By measuring hypervolume, we can
detect if the algorithm has found the Pareto-optimal front (if it is known), or check if
hypervolume is not changing anymore and stop the optimization process. But it has to
be noted that the calculation of hypervolume is computationally expensive, especially in
MOPs with many objectives, so frequent calculation of hypervolume can notably increase
the optimization time.

2.2 Multiobjective Evolutionary Algorithms

The term evolutionary algorithm (EA) stands for a class of stochastic optimization methods
that imitate the principles of the Darwinian theory of evolution. The EAs search for the
optimal solutions by simultaneously processing a set of solutions called population. Using
strong simplifications, solutions in the population are modified using two basic principles:
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Figure 2.4: Illustration of hypervolume for a two-dimensional MOP.

selection and variation. While selection of the best solutions mimics the competition
for reproduction and survival of the fittest, the other principle, variation, imitates the
natural capability of creating “new” living beings by means of recombination (crossover)
and mutation. By applying selection, crossover and mutation to a population of individuals,
they create better and better offspring individuals and thus drive the optimization process
towards optimal solutions.

Although the underlying mechanisms are simple, these algorithms have proven them-
selves as general, robust and powerful search algorithms (Back, Hammel, & Schwefel, 1997).
They are (i) often applied to problems with very large and highly complex search spaces,
(ii) especially applicable for parallelization, and (iii) known to be robust and capable of
handling all types of optimization problems, including problems with discrete search space.

Evolutionary algorithms are very suitable for solving MOPs since they work with a
population of solutions, which means they should be able to capture a population of
Pareto-optimal solutions in a single optimization run. In addition, MOEAs do not require
parameters, such as weight vectors, since the multiobjective problem is not transformed
into a single-objective problem. Moreover, they are able to simultaneously find a diverse
set of multiple non-dominated solutions.

Probably the most widely-used MOEA is the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) (Deb, Pratap, Agarwal, & Meyarivan, 2002). This algorithm was
applied to many real-world problems and contains all the basic concepts of the evolution-
ary algorithms, i.e., selection, crossover and mutation. NSGA-II is outlined in Algorithm
2.1.

NSGA-II starts by initializing the first parent population P0 with randomly created
individuals and sets the first offspring population Q0 to be empty. While the stopping
criterion is not met, in every generation the population Qt is created from the population
Pt. To create the offspring population, the pairs of solutions are selected from Pt using
crowded tournament selection (Deb et al., 2002). These solutions are then combined using
crossover and further modified using mutation. The new solutions are then added to Qt.
After filling the offspring population Qt, the individuals from Pt and Qt are joined to create
a union of solutions Rt. From Rt the new population Pt+1 is filled with the best solutions
from Rt. The best solutions from Rt are chosen according to the environmental selection
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Algorithm 2.1: NSGA-II

Result: A set of non-dominated solutions

Create the initial parent population P0 of random individuals;
Evaluate the solutions in P0;
Set the first offspring population Q0 to be empty;
while stopping criterion not met do

for each pair of individuals pi and pi+1 from Pt do
Modify the individuals pi and pi+1 with crossover;
Modify the individuals pi and pi+1 with mutation;
Add individuals pi and pi+1 to the population Qt;

end
Combine parent and offspring populations Rt = Pt ∪Qt;
Apply an environmental selection procedure on Rt to get the best popSize
solutions (see Subsection 2.2.1);
Use these popSize best solutions to create population Pt+1;

end

procedure based on non-dominated sorting and the crowding distance metric. Since this
environmental selection procedure is used also in DEMO and GP-DEMO algorithms, we
describe it in greater detail.

2.2.1 The NSGA-II Environmental Selection Procedure

By combining current and offspring solutions, the union is usually enlarged after every
generation. In order to maintain constant population size throughout the optimization
process, the environmental selection procedure has to be applied to discard some solutions.
The environmental selection procedure is based on the non-dominated sorting and the
crowding distance metric.

For the non-dominated sorting the individuals in the population are ranked according
to the number of individuals that dominate them. All non-dominated individuals are
allocated into the first front and then the non-dominated sorting is applied again to the
remaining individuals. In this way, we get a unique sequence of fronts, where individuals
from precedent fronts are preferred to those from subsequent fronts. The new (reduced)
population is filled with the individuals from the best fronts. If a front cannot fit into
population entirely, the individuals from this front are further ranked according to the
crowding distance metric.

The crowding distance metric calculates distances between neighboring solutions and
thus identifies and promotes individuals from the less crowded regions. For the individual
xi, the distance dj(xi) between its neighboring individuals xi− and xi+ for objective j is
calculated as:

dj(x
i) =

fj(x
i+)− fj(xi−)

fmax
j − fmin

j

, (2.7)

where fmax
j and fmin

j denote the maximum and minimum value of objective j. The two
solutions with extreme values of fj are assigned the largest possible dj , which ensures that
the spread of solutions is as wide as possible. The crowding distance for solution xi is then
defined as:
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c(xi) =
m∑
j=1

dj(x
i). (2.8)

After calculating the crowding distance for all solutions on the selected front, the solutions
with the largest crowding distance are included in the next population.

An example of carrying out the environmental selection can be seen in Figure 2.5. The
example presents the case where the population size is 7. After the non-dominated sorting
(Figure 2.5 (a)) the whole first front and three solutions from the second front are added to
the next population. To determine which three solutions from the second front are added,
the crowding distances for solutions on this front are calculated (Figure 2.5 (b) shows the
calculation of the crowding distance metric for solution xi). The solutions marked with
black dots have the largest crowding distances and are added to the population. Other
solutions are discarded.

(a) (b)

Figure 2.5: The NSGA-II environmental selection procedure: (a) non-dominated sorting,
(b) crowding distance.

2.3 Differential Evolution for Multiobjective Optimization

In this section we present the DEMO algorithm that is further used as a base for the GP-
DEMO. Since the basic mechanisms for creating and mutating solutions are taken from
the single-objective DE algorithm, the latter are presented first.

2.3.1 The DE Algorithm

DE is an evolutionary algorithm proposed by Price and Storn (1997). It is a simple
population-based algorithm that encodes solutions as vectors. For creating new solutions
from the existing ones the algorithm uses operations such as vector addition, scalar multi-
plication and exchange of components (crossover).

DE, as evolutionary algorithms in general, starts with a population of randomly chosen
solutions. From this initial population better and better solutions are obtained during
the optimization process. In every generation for every solution (called parent) in the
population P, a so-called candidate solution is constructed using one of the many possible
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strategies. After creating the candidate, it is evaluated and compared to its parent. If the
candidate is better than or equal to its parent, it replaces the parent in the population.
Otherwise, the candidate is discarded. After creating, evaluating and comparing all the
candidates, the solutions in the population P are randomly enumerated so that the order of
parents changes. When the stopping criterion is met, the best solution from P is returned.
The outline of the DE algorithm is shown in Algorithm 2.2.

Algorithm 2.2: DE

Result: The best solution from P
Create the initial population P0 of random individuals;
Evaluate the solutions in P0;
while stopping criterion not met do

for each individual pi (i = 1, . . . , popSize) from P do
Create candidate c from parent pi;
Evaluate c;
if c is better than pi then

Replace pi with c;
end
else

Discard c;
end

end
Randomly enumerate the individuals in P;

end

The creation of candidates in DE follows one of the so-called DE-strategies. DE strate-
gies are written using the DE/x/y/z notation, where x represents the method of selecting
the first solution xi1 , which can be selected randomly (rand) or as the best vector so far
(best); y is the number of difference vectors used; and z defines the type of crossover which
can be binomial (bin) or exponential (exp) (Price, Storn, & Lampinen, 2006).

In this dissertation we use the DE/rand/1/bin strategy. This strategy is most frequently
used and the DE using it is also referred to as classic DE (Price et al., 2006). Algorithm
2.3 outlines the candidate creation using this strategy, and Figure 2.6 shows its visual
representation.

The creation of a candidate using this strategy is the following. From the current
population P and for the current parent xi, the candidate c is constructed using three
randomly chosen solutions xi1 , xi2 and xi3 :

c = xi1 + F (xi2 − xi3), (2.9)

where i, i1, i2 and i3 are pairwise different and F is a scaling factor for the difference
vector xi2 − xi3 . This step is often referred to as mutation. Following the mutation, the
candidate is subject to binomial crossover with its parent. During binomial crossover some
components of the parent are copied to the corresponding positions in the candidate. Let
l be a random integer from (1, . . . , n), where n is the number of variables. After binomial
crossover, each candidate’s component ck is equal to:

ck =

{
ck if k = l or rk ≤ CR,

xik otherwise,
(2.10)
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where each rk is chosen randomly from the [0,1] interval, and CR is the crossover probability
used to determine the influence of the parent. Smaller CR means that the candidate
inherits most components from its parent. But if CR = 0, the candidate does not inherit
all components, since the component cl always remains intact for a randomly chosen l.

Algorithm 2.3: Candidate creation with the DE/rand/1/bin strategy

Result: Candidate c

for solution xi (parent) from the population P do
Randomly choose three solutions xi1 , xi2 and xi3 from P, where i, i1, i2 and i3
are pairwise different;
Calculate candidate c as c = xi1 + F (xi2 − xi3);
Modify c by binomial crossover with xi using probability CR;
Repair c if necessary;

end

Figure 2.6: Visual representation of candidate creation with the DE/rand/1/bin strategy.

Sometimes, the newly created candidate falls out of bounds of the decision space. In
such cases, a repair method can be used. Repairing infeasible candidates requires a repair
procedure that modifies a given decision vector in such a way that it does not violate
constraints. We solve this problem by replacing the candidate decision value violating the
boundary constraints with the closest boundary value. In this way, the candidate gets
inside the predefined search region and becomes feasible with only a small alteration. This
ensures that, in order to find solutions not violating boundary constraints, the creation of
new solutions is not necessary. But on the other hand, the repair procedure is biased for
problems where the optimal solution lies on one of the bounds of the decision space.

A repair procedure is needed also in the case when the decision variables are not
continuous. In the discrete decision space the operations of vector addition and scalar
multiplication can result in a point that is not part of the discrete decision space. In such
cases we adopt the Lamarckian repair (Ishibuchi, Kaige, & Narukawa, 2005), where the
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candidate’s values are rounded to the nearest point in the decision space.
The newly obtained good solutions are immediately included in the creation of new

candidates, which speeds up the convergence to the optimal solutions. Moreover, since
no solution can be removed from the population unless a better solution is found, DE
implicitly incorporates elitism that assures the preservation of good solutions. Besides its
good convergence properties and suitability for parallelization, perhaps the key advantage
of DE is its conceptual simplicity and ease of use.

2.3.2 The DEMO Algorithm

The DEMO algorithm proposed by Robič and Filipič (2005) is multiobjective evolutionary
algorithm based on DE. Like DE, DEMO is easy to understand and implement, and very
effective on numerical problems. DEMO is a steady-state evolutionary algorithm that adds
candidate solutions directly to the existing population. Since they are immediately used
for generating new solutions, the algorithm’s convergence is accelerated.

The idea of DEMO is to use DE for exploring the decision space and environmental
selection procedure to select the best individuals for the next population. Various environ-
mental selection procedures can be used in DEMO. In this dissertation the environmental
selection procedure from the NSGA-II algorithm (Deb et al., 2002) presented in Subsection
2.2.1 is used.

The outline of DEMO is shown in Algorithm 2.4. Similarly to DE, the algorithm
starts with a population P of popSize randomly created solutions. In each generation
the following steps are repeated. For every solution (called parent) in P the candidate is
created using the DE/rand/1/bin strategy. The candidate is then evaluated and compared
to its parent. The Pareto dominance relations are used to determine the dominance relation
between the solutions. The candidate replaces the parent if it dominates the parent. If the
parent dominates the candidate, the candidate is discarded. Otherwise (if the candidate
and parent are incomparable), the candidate is added to the population. After repeating
this step for all popSize solutions in P, the population has enlarged and needs to be
truncated back to the size popSize using the environmental selection procedure. In DEMO,
the environmental selection procedure from the NSGA-II algorithm is used (see Subsection
2.2.1). In the end of every generation, the solutions from P are randomly enumerated so
that the order of parents changes in the next generation. After meeting the stopping
criterion, the output of DEMO consists of a front of non-dominated solutions from P.

Because DEMO immediately discards the dominated solution in the comparison be-
tween the candidate and its parent, its population size rarely reaches 2 ∗ popSize before
environmental selection. Therefore, the computational complexity of the employed environ-
mental selection procedure is often smaller than the complexity of the same environmental
selection procedure applied in other MOEAs, for example in NSGA-II.

The DEMO algorithm is characterized by the same advantages and limitations as DE.
When comparing it to other MOEAs, DEMO achieved significantly better results (Tušar,
2007; Tušar & Filipič, 2007). However, it is important to note that both DE and DEMO
are limited to vector representation of solutions and can therefore only be used in numerical
optimization.

2.4 Surrogate-Model-Based Optimization

Most engineering optimization problems require experiments and/or simulations to evalu-
ate objective and constraint functions. For many real world problems, however, a single
simulation can take minutes, hours, or even days to complete. As a result, an optimization
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Algorithm 2.4: DEMO

Result: A set of non-dominated solutions

Create the initial population P of random individuals;
Evaluate the solutions in P;
while stopping criterion not met do

for each individual pi (i = 1, . . . , popSize) from P do
Create candidate c from parent pi;
Calculate the objectives of c;
if c dominates pi then

Replace pi with c;
end
else if pi dominates c then

Discard c;
end
else

Add c to P;
end

end
if there are more than popSize individuals in P then

Apply an environmental selection procedure to get the best popSize
individuals (see Subsection 2.2.1);

end
Randomly enumerate the individuals in P;

end

task that requires thousands or even millions of simulation evaluations becomes almost
impossible. One way of reducing this burden is by constructing approximation models,
known as surrogate models (sometimes called also meta-models), that mimic the behavior
of the simulation model as closely as possible while being computationally cheap(er) to
evaluate. A surrogate model is constructed based on modeling the response of the simu-
lator from a limited number of previously evaluated data points. The idea is to build a
surrogate model that is as accurate as possible, using as few simulation evaluations as pos-
sible. The surrogate model is then used during the optimization processes to approximate
the solution values instead of exactly evaluating them.

In the literature various modeling techniques are utilized for building the surrogate
models. For single- and multiobjective optimization similar techniques are used. Some of
the most commonly used ones are the Response Surface Method (Myers & Montgomery,
1995), Radial Basis Function (Hardy, 1971), Neural Network (Specht, 1990), Krigging
(Stein, 1999) and various types of Gaussian Process modeling (Rasmussen & Williams,
2006; Quinonero-Candela, Rasmussen, & Williams, 2007). These techniques typically
return only one approximated value, which is why in multiobjective optimization these
techniques need to be slightly modified or several surrogate models have to be used, so
that each surrogate model approximates one objective (Jin, 2011).

The essential question to answer in surrogate-model-based optimization is which in-
dividuals should be chosen to be exactly evaluated and which to be approximated with
a surrogate model. As we assume exact evaluations to be time-consuming, the question
is how to adapt the number of exactly evaluated individuals so that the time needed for
optimization process can be reduced as much as possible, while the algorithm still finds
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Figure 2.7: Generation-based evolution control.

the (near-)optimal solutions.
In the literature there are many approaches that include various algorithms and various

modeling techniques. The main difference between the approaches is how and when the
surrogate models are used in the optimization process. In evolutionary algorithms the
mechanism that controls the use of surrogate models is called evolution control (Jin, 2003).

2.4.1 Evolution Control

Using evolution control we can set the balance between (i) solving the optimization problem
as fast as possible by approximating as many solutions as possible, or (ii) by exactly
evaluating a lot of solutions to ensure the high accuracy of the surrogate model to prevent
inaccurate approximations and minimize the possibility of getting stuck in a local optimum.

The evolution control can be either fixed or adaptive. In fixed evolution control, the
number of exact solution evaluations performed during optimization is known in advance
and is invariant to the optimization problem. Fixed evolution control can be further divided
into generation-based and individual-based evolution control.

In generation-based evolution control (Figure 2.7) during the optimization process in
some generations all solutions are approximated and in the others exactly evaluated (Deb
& Nain, 2007). The alternation between approximations and exact evaluations is usually
done in a way that a few generations of exact evaluations are typically followed by a few
generations of approximations. During the generations with the exact evaluations the
newly exactly evaluated solutions are added to the set of all exactly evaluated solutions.
This set of solutions is then used to train or update the surrogate model. The surrogate
model is then used for solution approximations in the next generations.

With individual-based evolution control (Figure 2.8), solution evaluations (exact or ap-
proximations) are determined individually and not for the whole generation. In every
generation some (usually best) solutions are exactly evaluated while the others are ap-
proximated (Grierson & Pak, 1993). Newly exactly evaluated solutions are then used to
update the surrogate model. This approach is convenient for single-objective optimization
problems, but not for multiobjective optimization with sets of non-dominated solutions.
Exactly evaluating best solutions would mean that all non-dominated solutions would have
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Figure 2.8: Individual-based evolution control.

to be exactly evaluated, which could result in exactly evaluating most solutions. Therefore,
for multiobjective problems, we could exactly evaluate a random number of solutions, but
this would result in a lot of unnecessary exact evaluations, and that is why individual-based
evolution control is not very suitable for multiobjective optimization.

With both generation-based and individual-based evolution control the number of exact
evaluations is known before the optimization process and is invariant to the problem. This
means that even if an optimization problem is very simple and can be modeled very accu-
rately, the number of exact evaluations remains the same. For such problems the number
of exactly evaluated solutions could be reduced by mostly using solution approximations
and the obtained results would not change due to accurate approximations.

The approach where the number of exactly evaluated solutions is not known in advance,
but depends on the accuracy of the surrogate model for a given problem, is called adap-
tive evolution control (Figure 2.9). For simpler problems, a small number of solutions get
exactly evaluated, and for more complex problems, where a small number of exactly eval-
uated solutions could lead to inaccurate approximations, the number of exactly evaluated
solutions is higher.

In the literature adaptive evolution control can be found in a lot of approaches. For
example, one can exactly evaluate only solutions that are approximated as better than the
existing solutions (A. Zhou & Q. Zhang, 2010). Another approach would be to use the
surrogate model to find the best solutions, exactly evaluate them, update the surrogate
model with them and repeat the procedure until the found solutions are not changing
any more (Z. Zhou, Ong, Nair, Keane, & Lum, 2007). Another possible use of adaptive
evolution control would be to use the confidence of the approximations for determining
which solutions are perspective and should get exactly evaluated (Ulmer, Streichert, &
Zell, 2003; Jones, Schonlau, & Welch, 1998).

These are just a few examples to illustrate the vast possibilities when using adaptive
evolution control. Since most of the modern algorithms use adaptive evolution control, we
focus our overview on those algorithms.
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Figure 2.9: Adaptive evolution control.

2.4.2 Surrogate-Model-Based Multiobjective Optimization

In single-objective optimization, the usage of surrogate models is well established and
has proven to be successful. In the literature many algorithms and various modeling
techniques are used to solve benchmark and real-world problems (J. Zhang & Sanderson,
2007; Emmerich, Giotis, Özdemir, Bäck, & Giannakoglou, 2002). The results typically
show that the surrogate-model-based optimization in comparison to optimization without
surrogates provides comparable results in fewer exact solution evaluations (Jin, Olhofer, &
Sendhoff, 2001; Z. Zhou et al., 2007).

Similarly, the use of DE in combination with surrogate models also produced promising
results (J. Zhang & Sanderson, 2007). The authors presented an algorithm based on DE
that generates multiple offspring for each parent and chooses the promising ones based on
the confidence and the approximation value of the current surrogate model.

This dissertation specializes in multiobjective optimization where the integration and
application of surrogate models is different than in the surrogate-model-based single-
objective optimization. Since the algorithms and approaches used for multiobjective opti-
mization problems are different, we focus our related work survey to the surrogate-model-
based multiobjective evolutionary algorithms, where the problem of finding (near-)optimal
solutions is even more challenging than in single-objective optimization.

Approaches in the literature differ in terms of which solutions are approximated and
how they use the approximations. Surrogate models can aim at either a global approxi-
mation of the objective function, or a local one, focusing on the neighborhood of the best
current individuals. Of course, like in (Z. Zhou et al., 2007), the combination of local and
global surrogate models can be used for solving optimization problems.

In surrogate-model-based optimization there are two main ways of using surrogate
models: as a part of memetic search or to pre-select the promising individuals which are
then exactly evaluated (Pilat & Neruda, 2012).

In a memetic algorithm, an additional algorithm (e.g., a gradient-based or an evolution-
ary algorithm) is used to find (near-)optimal solutions using the surrogate model. Once
this optimum is found, the best solutions are exactly evaluated and used for updating the
model. In (Pilat & Neruda, 2011), aggregated surrogate models are used in a memetic
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algorithm. The model is based on the distance to the currently known, non-dominated
set and is used to find new, non-dominated individuals using local search. In memetic
algorithms, especially if the surrogate model is not very accurate, a local optimum is often
found instead of the global optimum.

In the case of pre-selecting the promising individuals, the surrogate model is used to find
the promising individuals or drop the low-quality ones even before they are exactly evalu-
ated, thus reducing the number of exact evaluations. For example, OEGADO (Chafekar,
Shi, Rasheed, & Xuan, 2005) creates a surrogate model for each of the objectives. The best
solutions in every objective get also approximated on other objectives, which helps with
finding trade-off individuals. The best individuals are then exactly evaluated and used
to update the models. ParEGO (Knowles, 2006) uses the weighted sum of the objective
functions to perform local search. The weights are generated randomly for each iteration.
When a different model is used for each of the functions, the conversion from the mul-
tiobjective problem to the single-objective one has to be performed (or a multiobjective
optimizer has to be used on the models). Moreover, if there are several models, their errors
can add up, as well as the time needed to train the models.

Surrogate models are also used to rank and filter out offspring according to Pareto-
related indicators like hypervolume (Emmerich, Giannakoglou, & Naujoks, 2006), or a
weighted sum of the objectives (Taboada, Baheranwala, Coit, & Wattanapongsakorn,
2007). The problem with the methods that use hypervolume as a way of finding promis-
ing solutions is the hypervolume calculation time, especially on many objectives. Another
possibility is described in (Li et al., 2009), where the authors present an algorithm that
calculates only non-dominated solutions or solutions that can, because of variance, become
non-dominated.

Some surrogate models, in addition to the approximation value, also return the cer-
tainty of the prediction. The use of this confidence information can help increase the
accuracy of the surrogate model. The early work on uncertainty measures for solution
approximations using GP modeling is presented in (Zilinskas, 1980) and (Mockus, Tiesis,
& Zilinskas, 1978). There are various approaches that use confidence information with
surrogate-model-based optimization algorithms. In (Emmerich et al., 2002), the authors
use confidence information to guide the search towards less explored regions in the search
space. The confidence of the prediction with the approximated value can also be used to
calculate the criterion of expected improvement. A comprehensive discussion of how to
use the criterion of expected improvement including the confidence bounds in evolutionary
multiobjective optimization is found in (Emmerich, 2005). Approaches to applying this
criterion are analyzed in (Wagner, Emmerich, Deutz, & Ponweiser, 2010). An example of
an algorithm that uses an approximated value and variance to calculate the criterion of ex-
pected improvement to decide which solutions should be exactly evaluated is presented in
(Jones et al., 1998). In the same paper it was also shown that in single-objective optimiza-
tion the approximated solutions with higher variance have higher expected improvement.
In (Emmerich, Deutz, & Klinkenberg, 2011), it was later shown that this holds also for
biobjective expected improvement.

When comparing approximated solutions with unknown exact values (solutions under
uncertainty), the comparison techniques can be modified to consider this uncertainty. The
certainty of the prediction obtained with some modeling technique can be included in the
comparison as an additional knowledge to prevent incorrect comparisons or minimize their
number. These techniques for comparing solutions under uncertainty are presented in the
next section.
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2.5 Comparing Solutions Under Uncertainty

Comparison of solutions is an essential step of the optimization process. Comparing so-
lutions helps determine which solution is better and therefore appropriate to drive the
optimization process further, and which one is worse and should be replaced with a better
solution. The comparison of solutions in single-objective optimization is straightforward.
Either both solutions have the same objective values, or one solution is better than the
other, which means that deciding which solution is better is trivial.

In multiobjective optimization we wish to simultaneously optimize several conflicting
objectives. Here, one solution can be better in some objectives and worse in others. Conse-
quently, the comparison of solutions and therefore the whole optimization process becomes
more challenging.

When solving real-world optimization problems, it is often not possible to determine
the objective values without uncertainties. The nature of uncertainties depends on the
problem. In (Jin & Branke, 2005), four types of uncertainty sources are mentioned. The
first one is the noisy fitness functions, where the same input parameters return different
objective values. The second one is the requirement for solution robustness, where the
quality of the obtained solutions should be robust against environmental changes or devia-
tions from the optimal point. The third type is the approximated fitness, where the fitness
functions suffer from approximation errors. The fourth and final type is the time-varying
fitness functions, where the optimum of the problem to be solved changes over time and,
thus, the optimizer should be able to track the optimum continuously.

Regardless of the uncertainty origin, the techniques for comparing solutions under un-
certainty and determining their domination status are similar. Two different approaches
are used when comparing solutions under uncertainty. The first one is to take the ap-
proximated value and variance and transform them into one value and then compare these
single values. The second approach is to calculate the confidence interval and then directly
compare the solutions represented with confidence intervals.

An example of the first approach can be found in (Fieldsend & Everson, 2005), where
probabilistic dominance is defined and, for comparing solutions, the probability of domi-
nance is used rather than outright dominance. If the probability that one solution domi-
nates the other is higher than the specified degree of confidence, then this solution is said
to dominate the other. This probabilistic dominance allows the use of the usual determin-
istic elitist algorithms with certain degree of confidence in the results. The methods to
calculate the probability of dominance vary, depending on the types of uncertainty.

Similarly, in (Gong, Qin, & Sun, 2010) the authors define the dominance relation be-
tween solutions based on the probabilities of one solution objective being better than the
same objective of another solution. For solutions with multiple objectives, the hyper-
cuboids are defined and, similarly, comparing their volume and the center point can deter-
mine the probability of one solution being better than the other. To select diverse solutions,
the paper also redefines the crowding distance defined in (Deb et al., 2002) based on the
location and the volume of the hyper-cuboids of these solutions.

Another example of this approach is presented in (Basseur & Zitzler, 2006), where each
solution is inherently associated with a probability distribution over the objective space.
A probabilistic model that combines quality indicators and uncertainty is created and then
used to calculate the expected value for each solution.

In the second approach, the solutions represented with approximated values and confi-
dence intervals are compared to determine the relation between the solutions.

In (Trautmann, Mehnen, & Naujoks, 2009) and (Voß, Trautmann, & Igel, 2010), the
authors tackle a noisy optimization problem with an algorithm that evaluates every solution
several times (and, if necessary, performs additional evaluations to reduce the uncertainty)
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and calculates the mean value and standard deviation for these evaluations. Modified
Pareto dominance relations are defined for comparing solutions in uncertain environments.
The Pareto dominance relations are modified in a way that solution x dominates solu-
tion y if, for every objective, the mean value plus standard deviation of x dominates the
mean value minus standard deviation of y. If this is not the case, the solutions are non-
dominated. To avoid having too many non-dominated solutions, the promising solutions
are additionally evaluated to make the standard deviation smaller.

In (Soares, Guimaraes, Maia, Vasconcelos, & Jaulin, 2009), a robust multiobjective
evolutionary algorithm was developed for solving optimization problems in which solutions
should be invariant to small input changes. The uncertain parameters are represented
with intervals, which results in solution objectives also being represented with intervals.
The algorithm for comparing solutions then compares the worst-case scenario values of
objectives, i.e., the values at the border of the interval.

In (Babbar, Lakshmikantha, & Goldberg, 2003), the authors tackled noisy optimization
problems with a modified NSGA-II algorithm (Deb et al., 2002) for handling solutions with
uncertainty. The procedure for obtaining the rank of solutions is transformed so that it also
considers the variance of solutions. Dominated solutions can also be ranked on the Pareto
frontier, if the distance to any non-dominated solution, calculated from the fitness values
and variances of solutions, is smaller than the threshold called Neighborhood Restriction
Factor. During the optimization process, this factor becomes smaller and the number of
evaluations taken for non-dominated solutions increases, resulting in a smaller variance
and a more precise set of non-dominated solutions.

A concept of comparing solutions with uncertain objectives represented with intervals
is presented in (Teich, 2001). The authors define the extension of Pareto dominance based
on a theory of probabilistic dominance. They present a case where objective values are
continuously and uniformly distributed inside the interval and by comparing the distribu-
tions the probability of dominance is calculated. The approach is then implemented in the
modified SPEA (Zitzler & Thiele, 1999) algorithm.

Another concept of comparing solutions under uncertainty is presented in (Oumayma,
Nahla, & Talbi, 2013), where new Pareto relations are defined using a possibilistic frame-
work. The solutions characterized by a particular possibility distribution are represented
with triangular possibility distributions, i.e., a triplet of values: most plausible value and
lower and upper borders of distribution that represent the least plausible values. Based on
this representation, the authors define strong Pareto dominance, weak Pareto dominance,
and indifference (where it cannot be determined which solution looks better). They used
this approach on a vehicle routing problem with uncertain demands.

A more theoretical approach to the solution comparison under uncertainty is presented
in (Limbourg, 2005) for optimization problems where the uncertainty of solutions cannot
be reduced by the sampling methods. The solutions are represented with intervals, and
new relations are defined for comparing those intervals. The authors define certain and
uncertain domination criterion for comparing intervals. On this basis they suggest a strong
Pareto dominance relation in cases where the dominance relation can be determined, and
weak Pareto dominance relation when the domination relation cannot be determined be-
cause of uncertainty. In this case, the expected values for every solution are assumed and
these values are then compared.

In (Gunter, 2001), a partial order approach is suggested to enable the comparison
of solutions represented with confidence intervals. This approach does not differentiate
between the cases in which the upper border of one interval dominates the lower border
of another interval and the cases in which some part of intervals overlap. A very similar
approach to handle solutions represented with intervals, called imprecise Pareto relations,
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is presented in (Limbourg & Aponte, 2005).
Bounding boxes representing multiobjective solutions with confidence intervals are de-

fined in (Emmerich & Naujoks, 2004) (they are described in greater detail in Section 3.2).
The authors present various comparison strategies, but in all strategies the comparison of
bounding boxes is simplified to the comparison of bounding box bounds. The individuals
are compared to all solutions in the population and individuals with a small probability
of being competitive are rejected, while individuals with a high probability of being better
are exactly evaluated.

To our knowledge, none of these methods systematically covers all aspects of compar-
ing (constrained) multiobjective solutions with confidence intervals, which is one of the
contributions of this dissertation.

In surrogate-model-based optimization the GP and RF modeling are two well-known
modeling techniques that, in addition to the approximated value, return also the confidence
interval for the approximation which is then used in the comparison under uncertainty.
Both methods are described in detail in the following sections.

2.6 Gaussian Process Models

The GP models are probabilistic non-parametric models based on the principles of Bayesian
probability, which can be used for both regression and classification problems. The name
GP models refers to the assumption that a prior distribution on the function to be modeled
is a stochastic process with a normal distribution, i.e., a Gaussian Process.

GPs were first used in 1940’s for time series prediction (N. Wiener, 1949; Kolmogorov,
1941). In 1970’s, GPs were widely used in the field of geostatistics where the method is
known as Kriging (Matheron, 1973), named after a mining engineer Krige (Krige, 1951).
The Kriging method is similar to GP regression from mathematical point of view, but as
a geostatistical method it is mostly used for two- and three-dimensional input spaces and
tends to ignore any probabilistic interpretations (Cressie, 1993; Stein, 1999). It should be
noted that Kriging uses a prediction error minimization for modeling, which in principle
does not consider uncertainty. To take uncertainty into account, additional computations
are needed (Kleijnen & Beers, 2004; Sacks, Welch, Mitchell, & Wynn, 1989). On the other
hand, GPs use a Bayesian inference which interprets the uncertainty in the probabilistic
way. A Bayesian description of GPs to define prior distributions over functions was pre-
sented and applied to one-dimensional curve fitting in (O’Hagan, 1978). In the machine
learning community, GPs were introduced for supervised learning by Williams and Ras-
mussen (1996). They were inspired by Neal (1996), where it was shown that under certain
conditions Bayesian Neural Networks converge to GPs in the limit of an infinite number
of units. Since the introduction of GPs in supervised learning (Williams & Rasmussen,
1996), GP models have been used for modeling in various fields, e.g., biological systems
(Ažman & Kocijan, 2007; Južnič-Zonta, Kocijan, Flotats, & Vrečko, 2012), environmental
systems (Grašič, Mlakar, & Božnar, 2006), chemical engineering (Likar & Kocijan, 2007)
and many others.

GP models differ from most other black-box identification approaches in that they do
not try to approximate the modeled system by fitting the parameters of the selected basis
functions, but rather by searching for relationships among the measured data. The output
of GP models is a normal distribution expressed in terms of the mean and the variance.
The mean value represents the most likely output, and the variance can be interpreted as
a measure of its confidence. The obtained variance, which depends on the amount and
the quality of the available training data, provides important information when it comes
to distinguishing GP models from other computational intelligence methods.
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As GP models are, due to their probabilistic nature, suitable for interpolation, i.e.,
when data is missing, and in addition to the mean value also provide variance, they have
already been used in stochastic optimization with surrogate models (Viana, Haftka, &
Watson, 2012).

2.6.1 Gaussian Process Modeling

A GP is a collection of random variables that have a joint multivariate Gaussian distribu-
tion. Assuming a relationship of the form y = f(x) between input x and output y, we have
y1, . . . , yN ∼ N (0,K), where Kpq = Cov(yp, yq) = C(xp,xq) gives the covariance between
the output points corresponding to the input points xp and xq. Thus, the mean µ(x) and
the covariance function C(xp,xq) fully specify the GP.

The value of the covariance function C(xp,xq) expresses the correlation between the
individual outputs f(xp) and f(xq) with respect to inputs xp and xq. It should be noted
that the covariance function C(·, ·) can be any function that generates a positive semi-
definite covariance matrix.

A commonly used covariance function is a composition of the square exponential covari-
ance function with “automatic relevance determination” (ARD) hyperparameters (MacKay,
1998) and the constant covariance function assuming white noise:

C(xp,xq) = v1 exp

[
−1

2

D∑
d=1

wd(xdp − xdq)2
]
+ δpqv0, (2.11)

where wd, v1 and v0 are the hyperparameters of the covariance function, D is the input
dimension, and δpq = 1 if p = q and 0 otherwise. It should be noted that this covariance
function is infinitely differentiable and therefore very smooth. In (Stein, 1999), it is ar-
gued that such strong smoothness assumptions are unrealistic for modeling many physical
processes, but probably this covariance function is still the most widely used pragmatic
choice. However, other forms and combinations of covariance functions suitable for various
applications can be found in (Rasmussen & Williams, 2006). The hyperparameters can
be written as a vector Θ = [w1, . . . , wD, v1, v0]

T . The hyperparameters wd indicate the
importance of individual inputs. If wd is zero or near zero, it means the inputs in dimension
d contain little information and could possibly be neglected.

To accurately reflect the correlations present in the training data, the hyperparameter
values of the covariance function need to be optimized. Due to the probabilistic nature
of the GP models, instead of minimizing the model error, the probability of the model is
maximized.

Consider a set of N D-dimensional input vectors X = [x1, x2, . . . ,xN ]T and a vector of
output data y = [y1, y2, . . . , yN ]. Based on the data (X,y), and given a new input vector
x∗, we wish to find the predictive distribution of the corresponding output y∗. From the
training set X, a covariance matrix K of size N × N is determined. The overall prob-
lem of learning unknown parameters from data corresponds to the predictive distribution
p(y∗|y,X,x∗) of the new target y, given the training data (y,X) and a new input x∗. In
order to calculate this posterior distribution, a prior distribution over the hyperparam-
eters p(Θ|y,X) needs to be defined, followed by the integration of the model over the
hyperparameters

p(y∗|y,X,x∗) =
∫
p(y∗|Θ,y,X,x∗)p(Θ|y,X)dΘ. (2.12)

The computation of such integrals can be difficult due to the intractable nature of the
non-linear functions, therefore, the general practice for estimating hyperparameter values
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is the maximum-likelihood estimation, i.e., minimizing the following negative log-likelihood
function:

L(Θ) = −1

2
log(|K|)− 1

2
yTK−1y − N

2
log(2π). (2.13)

GP models can be easily utilized for regression calculation. Based on the training set X,
a covariance matrix K of size N×N is calculated. The aim is to find the distribution of the
corresponding output y∗ for some new input vector x∗ = [x1(N+1), x2(N+1), . . . , xD(N+
1)].

The predictive distribution of the output for a new test input has a normal probability
distribution with a mean and variance

µ(y∗) = k(x∗)TK−1y, (2.14)

σ2(y∗) = κ(x∗)− k(x∗)TK−1k(x∗), (2.15)

where k(x∗) = [C(x1,x
∗), . . . , C(xN ,x

∗)]T is the N × 1 vector of covariances between the
test and the training cases, and κ(x∗) = C(x∗,x∗) is the covariance between the test input
itself.

As can be seen from (2.15), the GP model, in addition to a mean value, also provides
information about the confidence of prediction using the variance. Usually, the confidence
of the prediction is depicted with a 2σ interval, which corresponds to about 95% of the
confidence interval. Considering the confidence intervals of all predictions, we obtain a
confidence band, shown in gray in the example in Figure 2.10. By indicating a wider
confidence band around the predicted mean, it highlights the areas of the input space
where the prediction quality is poor due to the lack of data or noisy data.

2.6.2 Sparse Approximation

A noticeable drawback of “full” GP modeling is the computation load that increases with
the third power of the amount of input data due to the calculation of the inverse of the
covariance matrix. This computational complexity restricts the amount of training data
to, at most, a few thousand instances. As multiobjective evolutionary algorithms usually
require more than a few thousand evaluations, which serve as the training data for GP
models, “full” GP modeling does not seem to be viable for our needs.

To overcome the computational-limitation issues and consequently make the method
viable for large-scale dataset applications, such as stochastic optimization, numerous au-
thors have suggested various sparse approximations. A survey of such methods can be
found in (Quinonero-Candela et al., 2007; Quinonero-Candela & Rasmussen, 2005). A
common property of the sparse-approximation methods is that they try to retain the bulk
of the information contained in the full training dataset, but reduce the size of the covari-
ance matrix so as to facilitate a less computationally demanding implementation of the GP
model. Usually, this subset of the training data is called the active set. The computational
complexity of such algorithms is O(NM2), where N is the amount of training data and
M is the size of the active set.

We decided to use a state-of-the-art sparse-approximation method named Sparse Gaus-
sian Processes using Pseudo-inputs (SPGP) (Snelson & Ghahramani, 2006), which is in
general determined as a fully independent training conditional approximation (Quinonero-
Candela & Rasmussen, 2005; Quinonero-Candela et al., 2007). The idea of this method
is that instead of selecting a subset of the training data, it rather optimizes the locations
of M pseudo-inputs, as this seems to be easier to solve than the discrete subset selection
problem. The pseudo-input locations are optimized based on the covariances between the
training data points and the pseudo-inputs.
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Figure 2.10: Modeling with GP models: in addition to the mean value (prediction), we
obtain a 95% confidence band for the underlying function f (shown in gray).

It should be noted that due to fewer data points being incorporated into the model
(covariance matrix) and their arbitrary locations, the posterior of the SPGP model, espe-
cially the variance, can be somewhat different to the posterior of a “full” GP model. Such a
case is illustrated in Figure 2.11. It is clear that the mean value is very similar to the mean
value obtained with the “full” GP model (Figure 2.10), but the variance (95% confidence
interval) is distinctly different from the variance obtained by the “full” GP model (Figure
2.10).

2.7 Random Forest Models

RF is an algorithm for classification and regression developed by Breiman (2001) that uses
an ensemble of decision trees to make predictions. If the RF is used for classification,
the classification trees are used, otherwise the regression trees are used. The difference
between decision and regression trees is in the values contained in the leaves of the tree. In
classification trees, the leaves contain class labels and in regression trees a (real) number
is set instead. Since solving MOPs requires finding objective values that are continuous,
the regression trees have to be used, thus RF for regression is described and used in this
dissertation.

The RF algorithm is a slightly modified version of the bagging (bootstrap aggregation)
method (Breiman, 1996). In bagging an ensemble of trees is constructed, where each tree
is built using a different bootstrap sample of the data. Bootstrapping means creating new
training sets of size N ′ by randomly sampling the given set (of size N) N ′ ≤ N times with
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Figure 2.11: Modeling with SPGP models: pseudo-inputs (dots) are arbitrarily located,
i.e., not a subset of the training data points (circles).

replacement. This ensures that each tree is trained on a slightly different version of the
data, which helps ensuring the trees are uncorrelated. For regression, the final prediction
for bagging is obtained by calculating the mean of all predictions from all trees built.

The difference between RF and bagging is that RF adds additional layer of randomness
by changing how the regression trees are constructed. Algorithm 2.5 presents the overview
of the RF modeling technique.

In the RF algorithm, as in bagging, each regression tree in the forest is trained using a
bootstrapped sample of the training data. Each tree is built recursively, starting from the
root and unpruned (grown fully), so as to obtain low-bias trees. At each node a randomized
search procedure is applied to determine how the node should be split. The splits are
usually chosen according to the squared error. If by splitting the node the squared error
decreases, the node is split, otherwise the node is not split. When the best split is found,
the decision space is partitioned according to the chosen split, and the procedure is applied
recursively to split the left and right children. Splitting continues until no acceptable split
can be found or the children contain fewer than the predefined number of minimal data
points in leaves.

In contrast to standard trees, where each node is split choosing among all variables,
in RF each node is split using a subset of variables randomly chosen at that node. This
somewhat counter-intuitive strategy turns out to perform very well compared to many
other modeling techniques, including discriminant analysis, support vector machines and
neural networks, and is robust against overfitting (Breiman, 2001). In the same paper the
authors argue that the RF algorithm achieves:
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Algorithm 2.5: RF

Result: A random forest model

Let Ntrees be the number of trees to build;
for each of Ntrees iterations do

Select a new bootstrap sample from training set;
Grow a regression tree on this bootstrap;
At each internal node randomly select a subset of variables and determine the
best split using only these variables;
Do not perform cost complexity pruning. Save tree as is, alongside those built
thus far;

end

• exceptional prediction accuracy,

• low bias,

• low variance.

In addition, the RF algorithm (i) can be used when there are many more variables
than observations, (ii) is very user-friendly in the sense that it has only few parameters to
choose (the number of variables in the random subset at each node, the number of trees
in the forest and the minimal number of solutions in leaves), and (iii) is usually not very
sensitive to their values.
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Chapter 3

Relations for Comparing Solutions
Under Uncertainty

In optimization algorithms, finding relations between solutions is necessary to determine
which solutions are better and which are worse. For multiobjective optimization problems
without uncertainty the Pareto dominance relations are used. For problems with uncer-
tainty modified relations have to be used to additionally include the uncertainty in the
comparison of solutions (Mlakar, Tušar, & Filipič, 2013b, 2014b).

In this chapter we propose new relations under uncertainty for comparing solutions
represented with approximated values and confidence intervals. The use of relations under
uncertainty is demonstrated for unconstrained and constrained problems. In addition, we
compare the new relations under uncertainty with the Pareto dominance relations, and
measure the number of incorrect comparisons performed with each kind of relations. We
test the hypothesis that, in comparison to Pareto dominance relations, the use of relations
under uncertainty reduces the number of incorrect comparisons. Since the number of
incorrect comparisons depends also on the accuracy of the surrogate model, we use two
different modeling techniques, i.e., GP and RF modeling, and compare the results gained
with each one.

The relations without uncertainty and the relations under uncertainty are defined on
the MOP described in Section 2.1. For an arbitrary solution x with n variables and m
objectives, x = (x1, ..., xn) ∈ X is a decision vector, while the corresponding element
z = z(x) = (z1, ..., zm) ∈ Z is an objective vector.

Since the relations under uncertainty are based on the Pareto dominance relations, the
latter concept is described first.

3.1 Relations without Uncertainty

In this section we consider the case where all solutions of a MOP are exactly evaluated,
that is they are without uncertainty.

Definition 3.1 (Pareto dominance). The objective vector z dominates the objective
vector w, z ≺ w, iff zj ≤ wj for all j ∈ {1, ...,m} and zk < wk for at least one k ∈ {1, ...,m}.

Definition 3.2 (Weak Pareto dominance). The objective vector z weakly dominates
the objective vector w, z � w, iff zj ≤ wj for all j ∈ {1, ...,m}.

Definition 3.3 (Strict Pareto dominance). The objective vector z strictly dominates
the objective vector w, z ≺≺ w, iff zj < wj for all j ∈ {1, ...,m}.
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When z = f(x),w = f(y) and z (weakly or strictly) dominates w, we say that solution
x (weakly or strictly) dominates solution y. In other words, solution x is equal to or better
than solution y. The weak Pareto dominance is a natural generalization of the ≤ relation,
and the strict Pareto dominance is the natural generalization of the < relation.

Definition 3.4 (Incomparability). The objective vectors z and w are incomparable, z
|| w, iff z � w and w � z.

Again, if z and w are incomparable, solutions x and y are incomparable.
The above-defined relations are usually used only when solving problems without con-

straints where all solutions are feasible. For cases where the solutions can also be infeasible,
the Pareto dominance relation is slightly modified (Deb et al., 2002) as follows.

Definition 3.5 (Constrained dominance). The objective vector z constrained-domina-
tes the objective vector w, z ≺c w, if any of the following conditions is true:

1. Solution z is feasible and solution w is not.

2. Solutions z and w are both infeasible, but solution z has a smaller overall constraint
violation.

3. Solutions z and w are feasible and solution z Pareto dominates solution w.

When z = f(x),w = f(y) and z constrained-dominates w, we say that solution x
constrained-dominates solution y.

The effect of using the constrained dominance principle is that any feasible solution is
better than any infeasible solution and that of the two infeasible solutions the one closer
to the feasibility region is better.

3.2 Relations under Uncertainty

In this section we consider the case where the objective values of the solutions are rep-
resented with the approximated values and confidence intervals for each approximation.
In such a case, the standard relations described previously are not suitable and must be
adapted to accommodate the uncertainty. Every solution x is represented with a vec-
tor of approximated objective values z = f(x) = (z1, z2, ..., zm) and a confidence vector
ε = (ε1, ε2, ..., εm). For the objective zi the confidence interval is equal to [zi − εi, zi + εi].
In order to be able to compare the solutions represented in this way, the relations between
the solutions under uncertainty are defined on the bounding boxes (BBs) of their objective
values. From the vectors of the approximated values and the confidence intervals, the
bounding box of an objective vector z is designed as (Figure 3.1):

BB(z, ε) = [z1 − ε1, z1 + ε1]× [z2 − ε2, z2 − ε2]× ...× [zm − εm, zm − εm]. (3.1)

This definition of BB presumes that the confidence intervals are symmetric. This is
not always the case, e.g., because of non-symmetric form of noise. Instead of considering
just confidence vector ε, we could define lower-bound confidence vector ε = (ε1, ε2, ..., εm)
and upper-bound confidence vector ε = (ε1, ε2, ..., εm). For the objective zi the confidence
interval would then be equal to [zi − εi, zi + εi], and the definition of the bounding box
that considers the non-symmetric uncertainty intervals would be:

BB(z, ε, ε) = [z1 − ε1, z1 + ε1]× [z2 − ε2, z2 + ε2]× ...× [zm − εm, zm + εm]. (3.2)
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Figure 3.1: The bounding box of an objective vector.

However, since the relations under uncertainty are indifferent to the shape and size of the
bounding boxes, we can for the sake of simplicity assume that the confidence interval is
symmetric.

In addition to bounding boxes, where every objective has its own confidence interval,
multiobjective solutions with uncertainty can also be represented with ellipsoids. Rep-
resentation with ellipsoids restricts all objectives from obtaining their worst-case values
simultaneously. But since comparing multiobjective solutions is performed by compar-
ing pairs of objectives, where the confidence of each objective is inspected, we adopt the
approach with bounding boxes.

We handle relations under uncertainty without constraints and with constraints sepa-
rately.

3.2.1 Relations under Uncertainty without Constraints

Definition 3.6 (Probable Pareto dominance). The bounding box BB(z, ε) probably
dominates the bounding box BB(w, δ), BB(z, ε) ≺u BB(w, δ), iff for every z′ ∈ BB(z, ε)
and every w′ ∈ BB(w, δ): z′ ≺ w′.

If z = f(x) with confidence vector ε, w = f(y) with confidence vector δ, and BB(z, ε)
≺u BB(w, δ), then solution x probably dominates solution y (x ≺u y). In other words, x
dominates y with (high) confidence (depending on ε and δ).

To test whether BB(z, ε) probably dominates BB(w, δ), it is enough to check if the
corner point (z1 + ε1, z2 + ε2, . . . , zm + εm) dominates the corner point (w1 − δ1, w2 −
δ2, . . . , wm − δm). If it does, then BB(z, ε) ≺u BB(w, δ).

Figure 3.2 shows the objective values z1, . . . , z5 and their bounding boxes. We can see
that z1 probably dominates solution z4 (z1 ≺u z4).

Analogously, other relations under uncertainty can be defined.

Definition 3.7 (Probable Pareto non-dominance). The bounding box BB(z, ε) is
probably non-dominated by the bounding box BB(w, δ), BB(z, ε) �u BB(w, δ), iff for
every z′ ∈ BB(z, ε) and w′ ∈ BB(w, δ): z′ ≺ w′ or z′ || w′.

Several examples of probable Pareto non-dominance can be seen in Figure 3.2: z1 �u

z2, z1 �u z3, z1 �u z4, z1 �u z5, z2 �u z4, z3 �u z4.
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Figure 3.2: Approximated solutions presented in the objective space using bounding boxes.

If z = f(x) with confidence vector ε, w = f(y) with confidence vector δ, and BB(z, ε)
�u BB(w, δ), we say that solution x is probably non-dominated by solution y (x �u y).
This means it is expected that either x dominates y or that the solutions are incomparable.

Definition 3.8 (Probable incomparability). The bounding box BB(z, ε) is probably
incomparable with the bounding box BB(w, δ), BB(z, ε) ||u BB(w, δ), iff for every z′ ∈
BB(z, ε) and w′ ∈ BB(w, δ): z′ || w′.

Again, two solutions x and y are probably incomparable when their corresponding
bounding boxes are probably incomparable (x ||u y). In Figure 3.2, z2 is probably incom-
parable with z3.

Finally, when none of the presented relations under uncertainty applies, two solutions
are in an undetermined relation.

Definition 3.9 (Undetermined relation). The bounding box BB(z, ε) is in an unde-
termined relation with the bounding box BB(w, δ), BB(z, ε) ∼u BB(w, δ), iff BB(z, ε) ∩
BB(w, δ) 6= ∅.

If z = f(x) with confidence vector ε, w = f(y) with confidence vector δ, and BB(z, ε)
∼u BB(w, δ), we say that solution x is in an undetermined relation with solution y (x ∼u

y). This means it is expected that either one solution weakly dominates the other or that
the solutions are incomparable. In Figure 3.2, z5 is in an undetermined relation with z2,
z3 and z4.

Two implications can be found between relations under uncertainty. If solution x
probably dominates solution y, then the solution x is also probably non-dominated by the
solution y:

x ≺u y⇒ x �u y. (3.3)

Similarly, probable incomparability implies probable Pareto non-dominance:

x ||u y⇒ x �u y. (3.4)

If all the solutions are exactly evaluated, that is all their corresponding confidence
interval widths equal zero, the relations presented in this section directly translate to those
described in Section 3.1.
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3.2.2 Relations under Uncertainty with Constraints

Similarly to the Pareto dominance relations (Section 3.1), the relations under uncertainty
without constraints (Subsection 3.2.1) are usually applied only if all solutions are feasible.
To compare solutions represented with BBs where the feasibility of solutions is uncertain,
we need to define a measure of feasibility for solutions represented with BBs. Since BBs
are defined on the objective space, we only need to check the feasibility of BBs against
constraints on objectives that define the feasible objective value region F . We assume
that before checking these constraints the solution has already met constraints on decision
values and boundary constraints.

Definition 3.10 (Probable feasibility). The bounding box BB(z, ε) is probably feasible
if BB(z, ε) ∩ F = BB(z, ε), where F is the feasible objective value region of the problem.

Definition 3.11 (Probable infeasibility). The bounding box BB(z, ε) is probably in-
feasible if BB(z, ε) ∩F = ∅, where F is the feasible objective value region of the problem.

Definition 3.12 (Undetermined feasibility). The bounding box BB(z, ε) has undeter-
mined feasibility if BB(z, ε)∩F 6= BB(z, ε) and BB(z, ε)∩F 6= ∅, where F is the feasible
objective value region of the problem.

In the unlikely case of very complex constraints on objectives, it can be difficult to
implement and calculate the intersection between BB and F . However, the procedure
can be simplified by checking the feasibility only for the points on the vertices of the BB.
If all the points are feasible, we can say that the solution is probably feasible; if they
are all infeasible, the solution is probably infeasible; and if some points are feasible and
others are not, we can say the solution has undetermined feasibility. We can assume this
simplification since the widths of the confidence intervals are relatively small and we can
presume that the vertices represent the whole BB sufficiently well.

To compare feasible and infeasible solutions represented with BBs, we define the fol-
lowing four relations under uncertainty with constraints.

Definition 3.13 (Probable constrained dominance). The bounding box BB(z, ε)
probably constrained-dominates the bounding box BB(w, δ), BB(z, ε) ≺uc BB(w, δ), if
any of the following conditions is true:

1. The bounding box BB(z, ε) is probably feasible and the bounding box BB(w, δ) is
probably infeasible.

2. The bounding boxes BB(z, ε) and BB(w, δ) are both probably infeasible, but the
objective vector z has a smaller overall constraint violation.

3. The bounding boxes BB(z, ε) and BB(w, δ) are both probably feasible, and BB(z, ε)
≺u BB(w, δ).

4. The bounding box BB(z, ε) is probably feasible, the bounding box BB(w, δ) has
undetermined feasibility and BB(z, ε) ≺u BB(w, δ).

If z = f(x) with confidence vector ε, w = f(y) with confidence vector δ, and BB(z, ε)
≺uc BB(w, δ), then the solution x probably constrained-dominates the solution y (x ≺uc

y).

Definition 3.14 (Probable constrained non-dominance). The bounding box BB(z, ε)
is probably constrained-non-dominated by the bounding box BB(w, δ), BB(z, ε) �uc BB(
w, δ), if any of the following conditions is true:
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1. The bounding boxes BB(z, ε) and BB(w, δ) are probably feasible, and BB(z, ε) �u

BB(w, δ).

2. The bounding box BB(z, ε) is probably feasible, and the bounding box BB(w, δ) has
undetermined feasibility, and either BB(z, ε) �u BB(w, δ) or BB(z, ε) ||u BB(w, δ).

If z = f(x) with confidence vector ε, w = f(y) with confidence vector δ, and BB(z, ε)
�uc BB(w, δ), then the solution x is probably constrained-non-dominated by the solution
y (x �uc y).

Definition 3.15 (Probable constrained incomparability). The bounding box BB(z, ε)
is probably constrained-incomparable with the bounding box BB(w, δ), BB(z, ε) ||ucBB(
w, δ), if any of the following conditions are true:

1. The bounding boxes BB(z, ε) and BB(w, δ) are probably feasible and BB(z, ε) ||u
BB(w, δ).

2. The bounding boxes BB(z, ε) and BB(w, δ) are both probably infeasible, and both
objective vectors z and w have the same overall constraint violation.

Two solutions x and y are probably constrained-incomparable when the corresponding
bounding boxes are probably constrained-incomparable (x ||uc y).

Definition 3.16 (Undetermined constrained relation). The bounding box BB(z, ε)
is in an undetermined constrained relation with the bounding box BB(w, δ), BB(z, ε) ∼uc

BB(w, δ), if the two bounding boxes are not in any other constrained relation under
uncertainty.

Again, two solutions x and y are in an undetermined constrained relation when the
corresponding bounding boxes are in an undetermined constrained relation (x ∼uc y).

When two solutions are in an undetermined constrained relation, the three following
outcomes are possible: (1) the first solution dominates the second one, (2) the second solu-
tion dominates the first one, or (3) the solutions are incomparable. We present a possible
scenario to clarify why the solutions can be in an undetermined constrained relation due to
their feasibility. We compare solution x with undetermined feasibility, and solution y with
probable feasibility, and x is probably non-dominated by y. This means that if we were to
exactly evaluate solution x and it would be infeasible, the solution y would dominate the
solution x. This implies that the solutions can be in any relation; hence, by definition, they
are in an undetermined constrained relation. Similarly, there are also other cases in which
solutions are in an undetermined constrained relation and we need to exactly evaluate at
least one of the solutions.

All relations for comparing solutions mentioned in this dissertation are summarized in
Tables 3.1–3.3.

3.3 Comparing Solutions under Uncertainty

In iterative optimization algorithms, the process of gradual solution improvement is based
on solution comparisons. By comparing solutions, the algorithm finds which solutions are
better and promotes them further, while those that are found worse are discarded.

In this section we show the use of constrained relations under uncertainty for com-
paring two solutions represented with BBs. This comparison can be implemented in any
multiobjective optimization algorithm. However, since every algorithm applies a specific
search strategy, we present how the relations under uncertainty can be used instead of
Pareto dominance relations.
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Nevertheless, it is to be noted that straightforward use of relations under uncertainty
instead of Pareto dominance relations is not always possible. When the confidence intervals
(at least one) are overlapping, confidence interval reduction procedures have to be applied
in order to be able to determine the result of comparison. These additional procedures
differ regarding of the type of uncertainty. For example, in the case of surrogate-model-
based optimization the additional procedure is exact evaluation, and in the case of noisy
optimization the procedure includes additional evaluations that result in reducing the width
of the confidence interval. In cases where the width of the confidence interval cannot be
changed and the relations between solutions are unknown, another approach needs to be
taken, for example, comparison of the approximated values instead of comparing BBs.

When comparing solution z with confidence vector ε and solution w with confidence
vector δ, we consecutively check the four possibilities listed below.

1. If z ≺uc w, we can consider z and w to be in the Pareto dominance relation (z ≺ w).

Here the solution z is probably better than the solution w; therefore, no confidence
interval reduction is necessary as it would probably not change the dominance rela-
tion.

2. If z ||uc w, we can consider z and w to be incomparable (z || w).

In this case, solutions z and w are probably constrained-incomparable. Even if both
solutions were exactly evaluated, they would probably still be incomparable and the
algorithm would probably still keep both solutions. Hence, no confidence interval
reduction is needed.

3. If z �uc w, the algorithm checks ε. If ε 6= 0, the algorithm performs confidence
interval reduction on z and compares the solutions again. If ε = 0, the algorithm
performs confidence interval reduction on solution w and compares the solutions
again.

In this case, the solution z is probably better in at least one objective and probably
not worse in the others. In order to determine whether either solution z dominates
solution w or they are incomparable, (at least) for one solution the confidence in-
terval reduction needs to be performed. Because z is more promising, its confidence
intervals are checked. If their widths are different from zero, which means that the
solution is approximated, the algorithm performs confidence interval reduction on z
and then compares the solutions again. If the confidence interval widths are equal
to zero, which means that solution z is exactly evaluated, then, in order to be able
to compare the solutions, the algorithm performs confidence interval reduction on w
and compares the solutions again.

4. If z ∼uc w, the algorithm checks the feasibility of solutions. If both solutions have
undetermined feasibility, the algorithm randomly chooses one solution and performs
confidence interval reduction on it. If one solution has undetermined feasibility,
the algorithm performs confidence interval reduction on that solution and compares
the solutions again. If both solutions are probably feasible, the algorithm checks
the confidence vector of a randomly picked solution. If it is not equal to zero, the
algorithm performs confidence interval reduction on this solution and compares the
solutions again. If the confidence vector is equal to zero, the algorithm performs
confidence interval reduction on the other solution and compares the solutions again.

In this case, the only way to find out which solution is better is to perform confidence
interval reduction on (at least) one solution. Because solutions near the borders of
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the feasibility region are usually better, the algorithm first checks and performs con-
fidence interval reduction on these solutions. If both solutions are probably feasible,
the algorithm checks whether the first solution is exactly evaluated. If it is not, the al-
gorithm performs confidence interval reduction on it. If it is, the algorithm performs
additional confidence interval reduction on the other solution and then compares the
solutions again.

3.4 Empirical Proof of Concept

In this section we test the hypothesis that by using the new relations under uncertainty
the number of incorrect comparisons is reduced. We experimentally compared multiobjec-
tive solutions with uncertainty where the uncertainty comes from solution approximations
gained with surrogate models. To be able to compare the number of incorrect comparisons,
every solution comparison was performed with relations under uncertainty and with Pareto
dominance relations. In addition to comparing approximated solution values, we also com-
pared the exact solution values. This allowed us to monitor the accuracy of comparison of
uncertain solutions.

The solutions selected for testing were not generated randomly, but rather produced
by the well-known NSGA-II algorithm (Deb et al., 2002). This ensured that the solution
comparisons were similar to the comparisons performed in multiobjective evolutionary
algorithms and thus provided relevant results.

In every generation NSGA-II creates a new set of solutions, adds them to the current
ones and then performs selection on the union to identify the most promising ones. The
selection procedure includes comparing every solution with all other solutions to determine
its dominance status. On these comparisons we compared the relations under uncertainty
with the Pareto dominance relations.

The comparison was performed on three benchmark problems. One is the Poloni opti-
mization problem (Poloni, Giurgevich, Onesti, & Pediroda, 2000) and two are from (Deb,
2001), called OSY and SRN. All of them are two-objective problems.

GP modeling (Rasmussen & Williams, 2006) was used to build surrogate models for
solution approximations. For the confidence interval width of the approximation we used
two standard deviations (2σ), which corresponds to about 95% of the normal distribution
of the approximations. To test the correlation between the surrogate model accuracy and
the incorrect comparisons, five different models of increasing accuracy were built – each
on larger number of solutions.

The algorithm parameter values used in the experiments were the same for all three
problems. They were set as follows:

• population size: 100,

• number of generations: 100,

• number of runs: 30.

For every problem and for every model we calculated the number of incorrect com-
parisons for each comparison technique. In addition, we calculated the average confidence
interval width, and for relations under uncertainty also the number of cases where, in order
to be able to compare the solutions, confidence interval reduction procedures (in our case
exact evaluations of approximated solutions) were performed.

The results averaged over 30 runs are presented in Tables 3.4–3.6. These results show
that by increasing the number of solutions used for building the surrogate model the
accuracy of the model increases and the number of incorrect comparisons decreases. The
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reason for the high number of incorrect comparisons using the models built on smaller
number of solutions is in the fact that the solutions used for building the surrogate models
do not cover the decision space well enough. Due to the lack of information, the solution
approximations can be incorrect by a large margin. This can also result in the exact solution
values falling out of the bounding boxes. This reflects in some incorrect comparisons also
encountered with the relations under uncertainty.

With the increasing number of solutions used for building the surrogate model the
average confidence interval width also gets narrower. The narrower the confidence intervals,
the smaller the bounding boxes and the number of required additional confidence interval
reductions.

Examining the number of incorrect comparisons for the two relation types, we can
see that by using the Pareto dominance relations the number of incorrect comparisons is
from 3 to 243 times higher than by using relations under uncertainty. Regardless of the
accuracy of the surrogate model, we can conclude that by using relations under uncertainty
the number of incorrect comparisons is reduced.

As we can see, in order to reduce the number of incorrect comparisons, we have to
perform additional confidence interval reductions. This in turn increases the total opti-
mization time, hence a balance between the number of incorrect comparisons and the time
spent performing additional confidence interval reductions needs to be found.

3.5 Comparing GP and RF Modeling Techniques

Since the accuracy of the surrogate model in the surrogate-model-based optimization is
very important, we decided to compare two different modeling techniques (Mlakar, Tušar,
& Filipič, 2014a). In addition to GP we performed the same testing also with the RF
methodology. The reason to choose RF was the fact that the methodology is well-known
and that it (unlike other methods, such as support vector machines and artificial neural
networks), in addition to the approximated solution value, returns also the confidence
interval of the approximation.

The testing procedure was the same as with GP, so we used the same optimization
problems and also used relations under uncertainty and Pareto dominance relations.

With this additional testing we (i) check if the hypothesis that the relations under
uncertainty reduce the number of incorrect comparisons is independent of the surrogate
model, and (ii) compare the accuracy of the surrogate models to see which technique is
more suitable to use.

For testing purposes we used the RF algorithm as proposed in (Breiman, 2001), imple-
mented in program R (Liaw & M. Wiener, 2002). The number of trees used for building
RF was 10,000, and the minimum number of elements in leaves was set to 1. Since building
an RF surrogate model is faster than building a GP surrogate model, we, in addition to
20, 30, 50, 100 and 200 exactly evaluated solutions, also built an RF surrogate model from
1,000 exactly evaluated solutions. We tested how much the larger RF surrogate model
built from 1,000 exactly evaluated solutions increases the accuracy of the approximations.

The results averaged over 30 runs are presented in Tables 3.7–3.9. The results produced
by RF show similar trends as the results by GP. If we look at the number of incorrect
comparisons, it can be seen that also with RF the relations under uncertainty reduce the
number of incorrect comparisons. Since this is also the case with GP and is independent
of the accuracy of a surrogate model, we thus provide empirical support for the hypothesis
that the use of relations under uncertainty reduces the number of incorrect comparisons.

If we compare the results gained with the two modeling techniques (Tables 3.4–3.6),
we can also see some differences. The main difference is in the width of the confidence
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intervals. The RF surrogate models are less confident in their approximations, which can
be seen by wider confidence intervals. Consequently, the number of comparisons with
confidence interval reductions is much higher than this number gained with GP.

In addition to wider confidence intervals, the RF surrogate models are also less accurate.
If we compare the number of incorrect comparisons performed with Pareto dominance
relations where the bounding boxes are not considered, we can see that the number of
incorrect comparisons is higher with the RF surrogate models.

Another difference is in the correlation between the number of solutions used for build-
ing the surrogate model and the accuracy of the surrogate model. By increasing the number
of solutions used, the RF surrogate models do not improve as quickly as the GP models.
Even in cases where 1,000 solutions were used for building the RF surrogate models, the
confidence interval widths are not greatly reduced, and the intervals are still much wider in
comparison to the confidence intervals gained with the GP models built from 200 solutions.

Comparing the number of incorrect comparisons, we can see that by using relations
under uncertainty with RF the results are slightly better than with GP. But the reason
for that is in the fact that, because of relatively wide confidence intervals, the number
of confidence interval reductions with RF is very high. As a result, most solutions have
to be exactly evaluated in order to perform the comparisons. Hence, the reason for a
lower number of incorrect comparisons is not in the better surrogate model, but in the fact
that more solutions are exactly evaluated and are therefore without uncertainty. Since in
surrogate-model-based optimization exactly evaluated solutions are typically “expensive”,
the modeling technique that exactly evaluates most of the solutions is not very suitable.

To summarize, because of better accuracy and narrower confidence intervals, which
result in a lower number of additional confidence interval reductions, GP is a more appro-
priate modeling technique to use in the surrogate-model-based optimization than RF.

3.6 Discussion

In this chapter we proposed new relations for comparing solutions under uncertainty. The
relations under uncertainty are defined on bounding boxes that are based on approximated
values and confidence intervals. These relations extend the Pareto dominance relations
and, in addition to the confidence intervals, also consider the feasibility of solutions. We
presented all possible combinations that can occur when comparing solutions under uncer-
tainty with uncertain feasibility. It was also shown how the new relations under uncertainty
can be used for solution comparison in an arbitrary multiobjective optimization algorithm.
The comparison of relations under uncertainty with the Pareto dominance relations pro-
vided empirical support for our hypothesis that comparing solutions using the proposed
relations under uncertainty reduces the possibility of incorrect comparisons. In addition,
we also compared GP and RF modeling techniques with relations under uncertainty. The
GP modeling provided more accurate approximations with smaller confidence intervals and
proved to be more appropriate for surrogate-model-based optimization. Since this method
is more suitable, we also used it with the proposed GP-DEMO algorithm described in the
next chapter.
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Chapter 4

The GP-DEMO Algorithm

As shown in the previous chapter, the use of new relations under uncertainty reduces
the possibility of incorrect comparisons of inaccurately approximated solutions. Because
of that we decided to design a new surrogate-model-based optimization algorithm with
relations under uncertainty used for comparing solutions (Mlakar, Petelin, Tušar, & Filipič,
2013a, 2015). Since evolutionary algorithms without surrogates are known to be capable
of finding good solutions to hard optimization problems, the idea is to develop a surrogate-
model-based algorithm that uses the same techniques in combination with approximated
solutions. For this reason we took an existing evolutionary multiobjective optimization
algorithm and modified it for the use with relations under uncertainty. The other parts of
optimization procedure, like generating new solutions and selecting the best ones, were kept
unchanged. Since relations under uncertainty reduce the possibility of incorrect solution
comparisons, we expect to achieve similar results regardless of the difficulty of the problem
and of the inaccuracy of the surrogate model approximations. In addition, the algorithm
should perform fewer exact solution evaluations during the optimization process due to the
use of a surrogate model. In optimization problems where exact solution evaluations are
time-consuming, the algorithm should find comparable results faster.

4.1 Algorithm Structure

The GP-DEMO algorithm for surrogate-model-based optimization is, as the name sug-
gests, built upon the DEMO algorithm (see Subsection 2.3.2). The difference between
the algorithms is that GP-DEMO approximates all newly created solutions with surrogate
models and uses relations under uncertainty to compare them. In cases where the relations
between solutions cannot be determined due to the uncertainty, (at least) one solution gets
exactly evaluated. This way the best solutions are always kept in the population and worse
ones are discarded. Algorithm 4.1 presents the GP-DEMO pseudo-code.

After performing initial tests, we decided to use the SPGP sparse approximation
method (see Subsection 2.6.2) for GP modeling as it is of a much lower computational com-
plexity than “full” GP modeling. Although the SPGP is a sparse approximation method,
updating the model is a relatively slow operation. Therefore, we decided not to update
the model after every newly exactly evaluated solution, but only after every generation.
All newly exactly evaluated solutions in the last generation are then used to update the
surrogate model. Such an approach seems natural for evolutionary algorithms and can be
interpreted as batch learning. It should be noted that only exact evaluations are included
in updating the model. This means that after any generation, in the worst case, the num-
ber of exactly evaluated solutions is equal to the population size, and in the best case, no
solution is exactly evaluated and, as a result, there is no need to update the model. The
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Algorithm 4.1: GP-DEMO

Result: A set of exactly evaluated non-dominated solutions

Create the initial population P of random individuals;
Exactly evaluate the solutions in P;
Build the initial GP model;
while stopping criterion not met do

for each individual pi (i = 1, . . . , popSize) from P do
Create candidate c from parent pi;
Approximate c with the GP model;
Compare c and pi under uncertainty and keep either the best one or both
solutions (see Section 4.2);

end
if there are more than popSize individuals in P then

Use selection procedure under uncertainty (see Section 4.3);
end
Update the GP model from the set of exactly evaluated solutions;
Randomly enumerate the individuals in P;

end
Exactly evaluate all approximated solutions on the first front;

number of exactly evaluated solutions depends on the quality of the model. In general, the
more accurate the model, the lower the number of exactly evaluated solutions.

The update of the SPGP model is implemented as some kind of windowing technique.
When updating the surrogate model, n last exactly evaluated solutions are used, where n
is the window size. As we use the SPGP sparse approximation for GP modeling, only m
exactly evaluated solutions are used as the active set. These m solutions are then used
to build the surrogate model. Both parameters, n and m, are the algorithm parameters.
It should be noted that the active set is calculated from scratch during every update,
which means that the active set of the previous model is not used as the initial active
set in the model update. Due to the nature of the optimization process, we do not want
to keep the solutions from the whole decision space, but the solutions near the Pareto
optimal front. Nevertheless, the GP model’s hyperparameters are preserved, as their values
are not supposed to change much with each generation/update, and therefore the model
optimization converges much more quickly.

Since GP approximates only one output value, we needed to create a separate surrogate
model for every objective. The active set and the hypervolume values are set differently
for every surrogate model.

As already mentioned, GP-DEMO is based on DEMO, but uses relations under uncer-
tainty and solutions are represented with (approximated) values and confidence intervals.
Hence some parts of the DEMO algorithm need to be modified. The procedure for creating
a candidate solution from the parent solution is the same as in DEMO, but the comparison
of candidate and parent solutions is modified. The procedure is described in Section 4.2.

After comparing candidates to parents and deciding which solutions to keep and which
to discard, the next modified part in GP-DEMO is the selection procedure. Here the
algorithm limits the number of solutions to the population size. The best solutions are
preserved and among the best the spread of solutions is also considered. Since solutions
are represented with confidence intervals, this selection procedure needs to be performed
differently. The procedure is described in detail in Section 4.3.
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4.2 Comparing Parents and Candidates under Uncertainty

Comparison of the candidate and parent solutions in the GP-DEMO algorithm is based
on the relations under uncertainty (Chapter 3). In Section 3.3 we described the procedure
for comparing two solutions under uncertainty in an arbitrary multiobjective optimization
algorithm. Here we specialize this procedure for comparing candidate and parent solutions
in a surrogate-model-based multiobjective optimization algorithm. When confidence inter-
vals of at least one objective of two solutions are overlapping, exact solution evaluations
are performed in order to be able to determine the result of the comparison.

When comparing candidate c with confidence vector ε and parent p with confidence
vector δ, we consecutively check the six possibilities listed below.

1. If c ≺uc p, solution c is added to the population and solution p is discarded.

Here the solution c is probably better than the solution p, therefore no additional
evaluations are necessary as they would probably not change the dominance relation.

2. If p ≺uc c, solution p is added to the population and solution c is discarded.

This case is similar to the previous one.

3. If c ||uc p, both solutions are added to the population.

In this case, solutions c and p are probably incomparable. Even if both solutions were
exactly evaluated and thus with confidence interval widths equal to zero, they would
probably still be incomparable and the algorithm would still add both solutions to
the population. Hence, no additional evaluations are needed in this case.

4. If c �uc p, the algorithm checks ε. If ε 6= 0, the algorithm exactly evaluates c
and compares the solutions again. If ε = 0, the algorithm exactly evaluates p and
compares the solutions again.

In this case, solution p is probably better in at least one objective and not worse in
the others. In order to determine if either solution c dominates solution p or they are
incomparable, (at least) one solution needs to be exactly evaluated. Because c looks
more promising, its confidence interval width is checked. If it is different from zero,
meaning that the solution is approximated, the algorithm exactly evaluates solution
c and then compares the solutions again. If the confidence interval width is equal
to zero, meaning that c is exactly evaluated, then, in order to be able to compare
the solutions, the algorithm exactly evaluates solution p and compares the solutions
again.

5. If p �uc c, the algorithm checks δ. If δ 6= 0, the algorithm exactly evaluates p
and compares the solutions again. If δ = 0, the algorithm exactly evaluates c and
compares the solutions again.

This case is similar to the previous one, except that the solution p is now more
promising.

6. If c ∼uc p, the algorithm checks ε. If ε 6= 0, the algorithm exactly evaluates c
and compares the solutions again. If ε = 0, the algorithm exactly evaluates p and
compares the solutions again.

In this case, the bounding boxes are overlapping and the only way to determine which
solution is better is to exactly evaluate (at least) one solution. Because the candidate
(offspring) has the potential to be better than the parent, the algorithm first checks
if it is exactly evaluated. If it is not, the algorithm exactly evaluates it. If it is, the
algorithm exactly evaluates the parent and then compares the solutions again.
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4.3 Selection under Uncertainty

The selection procedure in a multiobjective evolutionary algorithm keeps the size of the
population constant and tries to uniformly spread the solutions on the front. The selec-
tion procedure in GP-DEMO is based on the selection procedure used in NSGA-II (Al-
gorithm 2.1). This selection procedure involves non-dominated sorting and ranking using
the crowding distance metric. In non-dominated sorting all the non-dominated individuals
are allocated into the first front and then the non-dominated sorting is applied again to
the remaining individuals. In order to identify solutions of the first non-dominated front,
each solution is compared with every other solution in the population to find out if it is
dominated. At this stage, all individuals in the first non-dominated front are found. In
order to find the individuals in the next front, the solutions of the first front are discounted
temporarily and the above procedure is repeated. This is repeated also for finding the third
and the following fronts. In this way, a sequence of fronts is obtained, where the individuals
from the preceding fronts are preferred to those from the subsequent fronts.

The new population is filled in turn with the individuals from the best fronts. If a
whole front cannot fit into the population entirely, the individuals from this front are
further ranked according to the crowding distance metric.

Sorting based on crowding distance metric prefers individuals from less crowded regions
of the objective space to ensure a good spread of solutions. To get an estimate of the density
of solutions surrounding a particular solution in the population, the average distance of
two solutions on either side of this solution along each of the objectives is calculated. The
solutions with the largest crowding distance are included in the next population. If a
solution is on the edge of a front its crowding distance is set to maximum. This ensures
that the front is as wide as possible.

(a) (b)

Figure 4.1: Selection procedure in GP-DEMO: (a) approximated first front, (b) corrected
first front.

When performing non-dominated sorting with inaccurately approximated solutions,
worse solutions can be incorrectly found as dominating better solutions. This results in
promising solutions being dominated and possibly discarded. As a consequence the process
of finding the best and evenly spread non-dominated solutions is misled. To prevent this
from happening, the NSGA-II selection procedure is slightly modified for the use in GP-
DEMO.
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The main idea of selection procedure in GP-DEMO is to ensure that the solutions on
the first front are actually non-dominated. So when comparing solutions with each other
the relations under uncertainty are used to determine the dominance relation between
solutions. When comparing two solutions if, because of uncertainty, we cannot determine
if a solution is dominated, this solution is marked. After comparing all solutions, the
possibly dominated solutions are non-dominated but also marked solutions. To ensure
that the solutions on the first front are really non-dominated, we exactly evaluate these
possibly dominated solutions and again compare them with other solutions.

With this approach we ensure that the front of non-dominated solutions is always
accurate, there are no deficiencies in the optimization process, and the possibility of getting
stuck in the local optima because of inaccurate approximations is reduced.

An example where the additional exact evaluation changes the first front is shown in
Figure 4.1. The examined solution is presented with the black dot representing approx-
imated value and a red bounding box around it (Figure 4.1 (a)). The relation under
uncertainty between this solution and the solution underneath it is the probable Pareto
non-dominance. So unless we exactly evaluate the examined solution we cannot know
whether it is dominated or incomparable. After exact evaluation of this solution it turns
out that it is dominated and does not belong to the first front (Figure 4.1 (b)).

This procedure of keeping only non-dominated solutions on the first front is very im-
portant in the later stages of optimization when usually all solutions in the population
are non-dominated. With this procedure we discard the dominated solutions and thus
accelerate the optimization process.

When the number of solutions on the front is greater than the size of population, the
ranking using crowding distance metric has to be calculated. The calculation of crowding
distance metric is not modified in GP-DEMO. To calculate the crowding distance metric,
the approximated objective values without bounding boxes are used. In this step, the
algorithm does not exactly evaluate any more approximated solutions to spare as many
exact evaluations as possible.
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Chapter 5

Numerical Evaluation

To check the quality of the GP-DEMO algorithm, we tested it on various benchmark
and real-world optimization problems. This chapter describes the test problems, presents
the settings used for testing, describes the surrogate-model-based algorithm GEC used to
compare the results, and shows the results of the optimization.

5.1 Test Problems

The test problems used in this dissertation are all minimization problems and can be
divided into two groups. The first group consists of known benchmark problems and the
second group consists of two real-world problems. The benchmark problems were divided
into easier and more complex problems to test all the aspects of the algorithms. The first
of the two real-world problems is optimization of the continuous steel casting process and
the second one is the problem of finding the best correlation between a simulated and a
measured electrocardiogram (ECG). Most of these test problems are two-objective, with
the exception of steel casting optimization which involves three objectives.

5.1.1 Benchmark Problems

The benchmark problems are further divided into two subgroups. The first subgroup
consists of three problems from (Deb, 2001) called BNH, OSY and SRN. All the problems
are constrained and have two objectives. These three problems are relatively simple and
are used to measure how many exact evaluations can be saved with surrogate-model-based
algorithms in comparison to DEMO.

The second subgroup consists of the WFG test problems introduced in (Huband,
Barone, While, & Hingston, 2005). The WFG toolkit is used to construct a suite of
problems that provides a thorough test for optimizers. The nine WFG problems, WFG1–
WFG9, are formulated in such a manner that each poses a different challenge to the
optimizers. The WFG toolkit tests the abilities of surrogate-model-based algorithms to
find solutions comparable to the ones gained with DEMO on simple as well as complex
problems.

The time needed to exactly evaluate a single solution for any of the benchmark problems
is just a few milliseconds, hence exactly evaluating all solutions takes a few seconds.

5.1.2 The Continuous Steel Casting Problem

The continuous casting of steel is a very complex metallurgical process where molten steel
is cooled and shaped into semi-manufactures of desired dimensions. The main components
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Figure 5.1: A scheme of the steel casting process.

of the casting system (schematically shown in Figure 5.1) are the ladle, tundish, mold and
cooling subsystems (Robič & Filipič, 2004).

The process of steel casting starts with molten steel being poured into a ladle from an
electric furnace and then led through the tundish that acts as a buffer for the liquid metal,
which is then drained into an open-base copper mold. The water-cooling inside the mold
cools the mold and the hot steel starts solidifying in contact with it. The water flowing
through the channels in the walls of the mold cools the steel. The channels represent the
primary cooling subsystem.

Molten steel with a thin solid shell, now called the strand, exits the base of the mold
into a spray chamber where it is immediately supported by closely spaced water-cooled
rollers. The strand is sprayed with water in the wreath and spray cooling areas in order to
increase the rate of solidification. Together, the wreath and spray cooling areas represent
the secondary cooling subsystem.

When the steel exits the casting system, it is cut into billets of the desired length. The
length of the liquid core in the strand is called the metallurgical length. The metallurgical
length, the thickness of the solid shell at the mold exit, and the strand surface temperature
at the unbending point have a large effect on the quality of the cast steel.

The optimization problem involves input variables (process parameters), output vari-
ables, and the desired output values, determined by the metallurgists at the plant (Mlakar,
Tušar, & Filipič, 2012). The task is to find the input variable settings resulting in val-
ues of the output variables as close as possible to the desired values. Based on empirical
knowledge in the steel production domain, such settings result in high-quality steel.

Since the process of steel casting is expensive, time-consuming and could also be dan-
gerous, it is necessary to have a model to make the optimization of the parameters of the
steel casting possible (Šarler et al., 2011). To model the casting, the numerical model of
steel casting (Vertnik & Šarler, 2009) was used. The four input variables of this numerical
model that are being optimized are the casting speed, the mold outlet coolant temperature,
the wreath system coolant flow, and the spray system coolant flow. The lower and the
upper bounds for these variables were also determined by the metallurgists (see Table 5.1)
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Table 5.1: Input variables and their boundary constraints.

Variable Lower bound Upper bound

Casting speed [m/min] 1.50 2.00
Mold outlet coolant temperature [◦C] 33 35
Wreath system coolant flow [l/min] 10 40
Spray system coolant flow [l/min] 25 65

Table 5.2: Output variables, their bounds and desired values.

Variable Lower bound Upper bound Desired value

Metallurgical length [m] 10 11 10
Shell thickness [mm] 11 15 13
Surface temperature [◦C] 1,115 1,130 1,122.5

and considered as boundary constraints in optimization.
Given the input parameters, the simulator computes the three output variables that are

essential for the quality of cast steel: the metallurgical length, the shell thickness and the
surface temperature at the unbending point. The lower and upper bounds for the output
variables and their desired values are listed in Table 5.2. As an optimization criterion, the
difference between the output variable produced by the numerical simulator and its desired
value is considered. Thus, the goal is to find such values of the input variables that all the
criteria would be 0 or as close to 0 as possible.

The time needed to exactly evaluate a single setting of the input variables, i.e., to
numerically simulate the steel casting process, is approximately 2 minutes on a 3.4-GHz
Intel Core i7 computer with 8 GB RAM.

5.1.3 The ECG Problem

The second real-world test problem is the problem of finding the best correlation between a
simulated and a measured ECG. An ECG is a diagnostic and monitoring tool that records
heart activity by measuring, on the body surface, the electrical currents originating in the
heart. Modeling the electrical activity of a human heart provides useful insight into the
ECG generating mechanisms that can in turn be used to further the understanding of the
ECG and improve its diagnostic benefits.

For this problem the ECG simulator presented in (Depolli, Avbelj, & Trobec, 2008) was
used. The simulator uses a simplified heart cell model consisting of the action potential
(AP), a function which defines the heart cells’ electrical activity. Since we focus only on
the difference between the T waves of the ECG traces, the full resolution and complexity
of this simulator is not needed. Thus, a coarse model consisting of eight times fewer heart
cells than the original model was used, enabling faster simulation.

The input parameters (variables of the optimization problem) of the simulator consist
of two groups of four parameters. Every group defines the AP of the heart’s cell layer.

This optimization problem includes two objectives. For every objective, we first calcu-
late the Pearson correlation coefficient (Rodgers & Nicewander, 1988) between the simu-
lated ECG and the ECG measured on one of the two location points on the body. Then,
in order to get a minimization problem, we calculate the objective value (f) by subtracting
the Pearson correlation coefficient (PCC) from 1:

f = 1− PCC. (5.1)
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When the simulated and the measured ECG are fully correlated, their Pearson correlation
coefficient is equal to 1 and the objective value is equal to 0.

Solving this optimization problem consists of finding the right combination of variable
values for setting the APs of the simulated heart in such a way that the simulated ECG is
as close as possible to the measured ECG.

The time needed to exactly evaluate a single solution of the ECG problem is approxi-
mately 15 seconds on a 3.4-GHz Intel Core i7 computer with 8 GB RAM.

5.2 Experimental Setup

For the purpose of determining the quality of the results obtained with the GP-DEMO
algorithm, a comparison was made with the DEMO algorithm and with the surrogate-
model-based algorithm called Generational Evolution Control (GEC) described in the next
section.

The algorithm parameter values used for the testing were the same for all three algo-
rithms. They were set as follows:

• maximum number of solution evaluations: 10,000,

• population size: 100,

• weight: 0.5,

• crossover probability: 0.3,

• selection method: non-dominated sorting and crowding distance as in NSGA-II (see
Subsection 2.2.1).

The maximum number of solution evaluations for the continuous steel casting prob-
lem was 3,000 instead of 10,000 in order to save time and because after 3,000 solution
evaluations the hypervolume did not increase any more.

The GP-DEMO and the GEC algorithms used GP modeling to create the surrogate
models. The modeling technique and the parameter values used were the same in both
algorithms (see Subsection 2.6.1). The width of the confidence interval was equal to two
standard deviations. This means that the probability the exactly evaluated solution is
within the confidence interval of the approximated solution is 95%. The sizes of the active
set and the window set in GP modeling were determined after trying different settings and
were chosen as the best compromise between the time needed to build the model and the
precision of this model for the approximation. The parameter values were the following:

• active set size: 350,

• window set size: 500.

The window set is relatively small. This ensures that during the optimization process,
when approaching the optimum, the surrogate model uses only exactly evaluated solutions
close to the optimum. This locality enables the surrogate model to be more precise, thus
making the confidence interval narrower.

The experiments were run 20 times for each of the benchmark problems and 10 times
for each of the real-world problems because of similar results and in order to save time.
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Figure 5.2: A sketch of the GEC algorithm.

5.3 The Generational Evolution Control (GEC) Algorithm

In addition to comparing GP-DEMO to DEMO, we also compared it to another surrogate-
model-based algorithm. In this comparison we focused on the quality of results and also
on reducing the number of performed exact evaluations.

The algorithm that we call Generational Evolution Control (GEC) is based on the
NSGA-II-ANN algorithm from (Deb & Nain, 2007). The basic idea of NSGA-II-ANN
is that during the optimization process in some generations all the solutions are exactly
evaluated, while in others, all the solutions are approximated with a surrogate model. The
schematic presentation of this algorithm is shown in Figure 5.2, where n is the number
of generations where only exact evaluations are used and m is the number of generations
where only approximations are used. In their paper, the authors describe different versions
of the NSGA-II-ANN algorithm. For the purpose of this research we chose the version of
the NSGA-II-ANN algorithm that the authors claimed to be better than other versions.
In this version the number of generations for exact evaluations is three, followed by seven
generations of approximated solutions. This combination is then repeated during the whole
optimization process.

To be able to perform a fair comparison, some modifications had to be made to the
NSGA-II-ANN algorithm, and this modified algorithm is called GEC. In the GEC algo-
rithm, GP modeling was used for building the surrogate models instead of the artificial
neural network (ANN), because the use of a different surrogate model would influence the
results. We also used the same modeling parameters (active set size, window set size)
for GP-DEMO and GEC. For creation and comparison of solutions, instead of techniques
used in NSGA-II, GEC uses techniques implemented in GP-DEMO. These are the same
techniques that are used in DEMO. This ensured the same optimization procedure was
used in DEMO, GP-DEMO and GEC hence providing a fair comparison.

At the end of the optimization process with GEC, in order to get a comparable hy-
pervolume and the correct number of non-dominated solutions, all the approximated non-
dominated solutions were exactly evaluated. This ensured that the front of non-dominated
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solutions was accurate and not approximated. Since this was done also with the GP-
DEMO algorithm, the final set of non-dominated solutions can be compared between the
algorithms and also with set of non-dominated solutions obtained with DEMO.

Algorithm 5.1 presents the pseudo-code of the GEC algorithm. There are two major
differences between GEC and GP-DEMO. The first one is based on the relations used for
comparing solutions. GP-DEMO uses relations under uncertainty and GEC uses Pareto
dominance relations without considering confidence intervals. The second major difference
is in the evolution control that determines which solutions are approximated and which
exactly evaluated. GP-DEMO uses adaptive evolution control that considers confidence
interval widths in determining which solutions are exactly evaluated. GEC, on the other
hand, uses the static approach that is the same for all problems. It combines a predefined
number of exact solution evaluations with the solution approximations performed using
the surrogate model.

Algorithm 5.1: GEC

Result: A set of exactly evaluated non-dominated solutions

Create the initial population P of random individuals;
Exactly evaluate the solutions in P;
Build the initial GP model;
while stopping criterion not met do

if exact solution evaluations are used in this generation then
for each individual pi (i = 1, . . . , popSize) from P do

Create candidate c from parent pi;
Exactly evaluate c;
Compare c and pi using Pareto dominance relations;

end
if there are more than popSize individuals in P then

Use selection procedure as in NSGA-II;
end
Add all newly exactly evaluated solutions to the set of exactly evaluated
solutions;
if in the next generation solution approximation are used then

Update the GP model from the set of exactly evaluated solutions;
end
Randomly enumerate the individuals in P;

end
else

for each individual pi (i = 1, . . . , popSize) from P do
Create candidate c from parent pi;
Approximate c with the GP model;
Compare c and pi using Pareto dominance relations;

end
if there are more than popSize individuals in P then

Use selection procedure as in NSGA-II;
end
Randomly enumerate the individuals in P;

end
end
Exactly evaluate all approximated solutions on the front;
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5.4 Results

For every problem, for every run and for every algorithm four different measures were
obtained:

• number of exact evaluations performed during the optimization process,

• final hypervolume,

• duration of the optimization process,

• number of non-dominated solutions on the final front.

The reference points used for calculating the hypervolume values are presented in Table
5.3. Each point was selected in a way that it covered all non-dominated solutions, and
that the region it defined was as small as possible.

Table 5.3: Reference points for calculating the hypervolume values.

Test problem Hypervolume reference point

BNH (150, 50)
OSY (0, 80)
SRN (250, 50)
WFG1 - WFG9 (10, 10)
Continuous casting (1, 2, 15)
ECG (2, 2)

For every problem and for every tested algorithm the best final fronts (according to the
hypervolume) are plotted in Figures 5.3–5.15.
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The analysis of the results with the detailed comparison of all three algorithms is
presented in Section 6.1. The results averaged over all the runs and the standard deviations
(σ) of the final hypervolumes are presented in Tables 6.1–6.3.

We also performed a statistical analysis of the hypervolumes obtained with the algo-
rithms on the test problems. The results of this statistical analysis and the statistical
significance of these results are presented in Section 6.2.
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Chapter 6

Analysis of Results

The evaluation of the GP-DEMO algorithm was done by comparing the algorithm with
two other multiobjective evolutionary algorithms. The first one is DEMO, which is known
to be very effective and was used for comparing the quality of the results. The second
one is GEC, a surrogate-model-based multiobjective evolutionary algorithm that was used
to compare both the quality of the results and the number of exactly evaluated solutions
performed during the optimization process.

6.1 Comparing GP-DEMO, DEMO and GEC

We first compare the results gained on the benchmark problems and then on the real-world
problems. Since the benchmark problems are not computationally expensive, we primarily
focus on the quality of results and less on the optimization time. The benchmark problems
cover various optimization problems so the relation between the problem complexity and
the efficiency of the surrogate-model-based algorithms can be seen.

With real-world optimization problems, the exact evaluations are computationally ex-
pensive, so the surrogate-model-based algorithms should find results faster.

6.1.1 Benchmark Problems

The first set of benchmark optimization problems that was used for the testing (BNH,
OSY and SRN) is composed of relatively simple optimization problems. The results are
presented in Table 6.1. Because of the simplicity of the problems, the GP modeling tech-
nique is able to create very precise models of their objective functions. Therefore, the
approximated solutions have very narrow confidence intervals and are rarely required to
be exactly evaluated. The comparison of the solutions with very narrow confidence inter-
vals can usually be done without exactly evaluating them. This results in GP-DEMO and
GEC getting almost the same hypervolume as DEMO, but with fewer exactly evaluated
solutions. The statistical analysis (Section 6.2) shows that there is no significant difference
between the algorithms. On these problems, GP-DEMO exactly evaluated only between
3% (BNH and SRN) and 15% (OSY) of all evaluated solutions. The particularity of the
GEC algorithm is that the number of exact evaluations performed during the optimization
process differs very little from one problem to another. Since in three out of ten gen-
erations the newly created solutions are exactly evaluated and the maximum number of
evaluated solutions is equal to 10,000, the number of exactly evaluated solutions is at least
3,000. Additional exact evaluations are performed at the end of the optimization process
where all the approximated solutions are exactly evaluated. Because of this strategy the
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number of exact evaluations performed with GEC varies between 3,000 and 3,100 on all
test problems, which is a little more than 30% of all the evaluated solutions.

Table 6.1: Results on BNH, OSY and SRN test problems.

Number of exactly Optimization Non-dominated
Problem Algorithm evaluated solutions Hypervolume ± σ time [h:min:s] solutions

BNH
DEMO 10,000 0.6880 ± 0.0001 00:00:05 100

GP-DEMO 401 0.6880 ± 0.0002 00:05:47 100
GEC 3,080 0.6879 ± 0.0002 00:14:18 100

OSY
DEMO 10,000 0.9645 ± 0.0015 00:00:05 100

GP-DEMO 1,485 0.9645 ± 0.0015 00:24:36 100
GEC 3,078 0.9645 ± 0.0014 00:23:08 99

SRN
DEMO 10,000 0.9550 ± 0.0050 00:00:05 100

GP-DEMO 267 0.9559 ± 0.0049 00:02:49 100
GEC 3,091 0.9558 ± 0.0050 00:14:53 100

The WFG test problems were the second set of benchmark problems. The results
are presented in Table 6.2. These problems are known to be hard optimization problems
designed to thoroughly test any optimization algorithm. Because of their complexity, the
WFG objective functions are very difficult to model. This results in two challenges. The
first one is that the confidence intervals of the approximated solutions are wider than on
the previous set of test problems. Therefore, many solutions need to be exactly evaluated
and the reduction in the number of exactly evaluated solutions was only between 10% and
80%. As the second challenge, the GP model can in some cases be overconfident in what
are actually very inaccurate approximations. Such cases occur when the modeled function
has sudden changes in values and the GP model identifies these changes as outliers or noise.
Since due to its probabilistic nature the GP model smooths them, the approximation is
incorrect. When such changes are relatively large compared to the “usual” changes, the
variance of the approximation is small and therefore the exactly evaluated value is not inside
the confidence interval. In order to prevent solutions from falling out of the confidence
interval, we could make the confidence interval wider, e.g., three standard deviations, but
since this happens rarely and the final results are still reasonable, we did not change
the width of the confidence interval. This case occurred mainly on the WFG1 problem
and the hypervolume obtained with GP-DEMO was slightly worse than the hypervolume
obtained with DEMO (Figure 5.6). The hypervolume values on other WFG problems are
very similar. In some cases, when the fitness function is very complex and the GP model
smooths it, even though the exactly evaluated values are inside confidence intervals, the
variance is too big, so many solutions get exactly evaluated.

The results gained with GEC on the WFG test problems are the worst on all test
problems. The final fronts have fewer solutions and lower hypervolume values. Because
the GEC algorithm does not use the confidence intervals when comparing solutions, the
mistakes, where an approximated solution incorrectly dominates the other solution, occur
more often. Because the surrogate models for the WFG test problems are not very accurate,
the approximation errors are larger and more frequent. On all WFG test problems, just
before the end of the optimization process, the final fronts gained with GEC consisted
of 100 solutions and their hypervolumes were competitive. After exactly evaluating these
solutions, the results got worse. The reason why algorithms like GEC face this difficulty
is that early in the optimization process an incorrectly approximated solution appears to
be very good. This solution then prevents other high-quality solutions from staying in the
population because it dominates them. At the end of the optimization process this solution
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Table 6.2: Results on WFG test problems.

Number of exactly Optimization Non-dominated
Problem Algorithm evaluated solutions Hypervolume ± σ time [h:min:s] solutions

WFG1
DEMO 10,000 0.9362 ± 0.0070 00:00:10 72

GP-DEMO 8,291 0.8932 ± 0.0154 02:42:01 51
GEC 3,100 0.7557 ± 0.0258 00:38:08 11

WFG2
DEMO 10,000 0.9644 ± 0.0001 00:00:09 100

GP-DEMO 3,991 0.9640 ± 0.0021 02:22:54 100
GEC 3,003 0.9607 ± 0.0008 00:38:11 44

WFG3
DEMO 10,000 0.9594 ± 0.0000 00:00:10 100

GP-DEMO 4,864 0.9594 ± 0.0002 02:21:26 100
GEC 3,023 0.9578 ± 0.0014 00:37:26 85

WFG4
DEMO 10,000 0.9342 ± 0.0013 00:00:10 100

GP-DEMO 3,508 0.9298 ± 0.0033 02:33:52 94
GEC 3,025 0.9252 ± 0.0042 00:37:13 25

WFG5
DEMO 10,000 0.9150 ± 0.0021 00:00:09 100

GP-DEMO 6,710 0.9157 ± 0.0020 02:10:04 100
GEC 3,083 0.9123 ± 0.0037 00:38:56 73

WFG6
DEMO 10,000 0.9365 ± 0.0001 00:00:09 100

GP-DEMO 2,003 0.9228 ± 0.0075 02:24:44 71
GEC 3,019 0.9307 ± 0.0033 00:37:33 70

WFG7
DEMO 10,000 0.9368 ± 0.0000 00:00:09 100

GP-DEMO 7,897 0.9368 ± 0.0000 02:52:01 100
GEC 3,080 0.9147 ± 0.0152 00:38:42 23

WFG8
DEMO 10,000 0.8655 ± 0.0020 00:00:10 98

GP-DEMO 3,273 0.8641 ± 0.0042 02:22:14 89
GEC 3,022 0.8560 ± 0.0086 00:36:33 57

WFG9
DEMO 10,000 0.9206 ± 0.0009 00:00:09 100

GP-DEMO 8,988 0.9203 ± 0.0005 02:42:01 100
GEC 3,077 0.8880 ± 0.0194 00:35:18 13

is exactly evaluated as a low-quality solution, lowering the hypervolume since a part of the
decision space gets weakly covered.

In solving any optimization problem, the solutions in the population tend to get closer
together since they all get located on the non-dominated front. Although the solutions
are closer, this usually does not affect the number of exact evaluations needed to compare
them. If the widths of the confidence intervals stayed the same, the smaller distances
would cause the overlap in the confidence intervals and the increase in the number of exact
evaluations. But during the optimization process also the accuracy of the surrogate models
increases. But since the surrogate models are built from recently evaluated solutions, they
adapt to a specific region where the solutions are and increase in accuracy there. The
confidence intervals widths of approximations are narrowed and even though the solutions
are closer, their confidence intervals do not overlap.

Comparing the times needed for optimization, we can see that DEMO finds final fronts
in a few seconds. With GP-DEMO and GEC the optimization times are longer because of
the time spent building the surrogate models. The time needed for updating the surrogate
models during the optimization process depends on the number of exactly evaluated solu-
tions that are used for training, the complexity of the objective function, and also of the
number of objectives, because for every objective a separate surrogate model is created.
Since the exact evaluation of 10,000 solutions for benchmark optimization problems takes
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just a few seconds, the time needed to update the surrogate models is approximately the
same as the optimization time.

6.1.2 Real-World Problems

The analysis of the results from the real-world test problems shows similar findings. The
difference with real-world problems is that the whole optimization process takes longer
because every exact solution evaluation is computationally expensive. The results are
presented in Table 6.3.

Table 6.3: Results on real-world test problems.

Number of exactly Optimization Non-dominated
Problem Algorithm evaluated solutions Hypervolume ± σ time [h:min:s] solutions

Continuous
casting

DEMO 3,000 0.5084 ± 0.0113 112:22:37 100
GP-DEMO 950 0.5117 ± 0.0057 36:20:05 100

GEC 1,090 0.5058 ± 0.0123 39:28:39 97

ECG
DEMO 10,000 0.9988 ± 0.0001 39:21:19 100

GP-DEMO 8,135 0.9986 ± 0.0001 36:35:18 100
GEC 3,100 0.9937 ± 0.0045 13:16:04 22

The first real-world problem is the problem of optimizing the continuous casting process
in order to get the best possible quality of cast steel. The GP modeling technique was
able to create an accurate surrogate model of the continuous steel casting process such
that the hypervolume and the size of the final front were almost identical for all three
algorithms. The GP-DEMO algorithm exactly evaluated just a little over 30% of all the
evaluated solutions. This percentage would be even lower if the stopping criterion would
allow more than 3,000 solution evaluations, because at the beginning the surrogate model
is not as accurate as it becomes after the updates. With more precise surrogate models,
the confidence intervals become narrower and less exact evaluations are needed.

The analysis of the results on the ECG problem shows similar algorithm behavior as
seen on the WFG test problems. The surrogate models created during the optimization
process approximate solutions quite well. However, because the solutions on the front are
very close to zero, and also very close to each other, the confidence intervals of approxi-
mations still turn out to be relatively wide. Due to this GP-DEMO achieves only a small
saving in the number of exactly evaluated solutions, but still produces the results as good
as the ones gained with DEMO. The GEC algorithm has difficulties once again in reaching
the same quality of results, and the number of non-dominated solutions on the final front
is small.

When comparing the optimization times on real-world problems, we can see that DEMO
is now the slowest algorithm. The surrogate-model-based algorithms are designed for hard
numerical problems, so they perform best on these kinds of problems. The difference in the
optimization times depends on the times needed to build the surrogate models and of the
complexity of the problem which results in the number of exact evaluations performed. On
the continuous steel casting problem, because a single exact solution evaluation takes more
than two minutes, the time needed for optimization with GP-DEMO (and also GEC) is
one and a half day, while the optimization with DEMO takes four and a half days, which is
three days longer. The ECG problem is more complex to model and a single exact solution
evaluation takes less time, hence the difference between GP-DEMO and DEMO is not that
big. On this problem the GEC has the shortest optimization time, but at the cost of worse
quality of results.
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6.2 Statistics

We performed also a statistical analysis of the hypervolumes obtained with the algorithms
on the test problems. The idea was to compare the hypervolumes and determine if they
differentiate significantly. The significance of these results was checked with the t-test
(Zimmerman, 1997) statistical hypothesis test. The t-test compares the actual difference
between two means in relation to the variation in the data (expressed as the standard
deviation of the difference between the means).

The null hypothesis was that there is no statistically significant difference between the
results. The results of this statistical analysis are presented in Table 6.4. They show the
probability that there is no significant difference between the hypervolumes obtained with
algorithms. For example, the comparison of hypervolumes gained with GP-DEMO and
DEMO on the BNH test problem shows that the probability of no significant difference
between the hypervolumes is 66%. To reject the null hypothesis, meaning that there is a
significant difference between the results, the probability is usually set to be below 5% (or
sometimes 1%).

6.3 Border Time

Because the duration of the optimization process is important, we performed an analysis
in order to determine in which cases GP-DEMO would be faster than DEMO. In addition
to the duration of a single exact solution evaluation, the optimization time depends also
on the complexity of the optimization problem. More complex optimization problems are
usually very hard to model and the surrogate models are not very accurate. These models
are typically not very confident in the solution approximations, thus resulting in solutions
under uncertainty having wider confidence intervals. Wider confidence intervals result in
more exact solution evaluations performed and for this reason the optimization time on
complex optimization problems is longer.

The border time for a specific optimization problem tells us how long a single exact
solution evaluation should last for the optimization times of GP-DEMO and DEMO to be
equal. Since the benchmark problems cover optimization problems with various complex-
ities, we calculated the border time for every benchmark problem. The calculated border
times are shown in Table 6.5. For example, for the BNH problem, if a single exact solution
evaluation took 0.04 seconds, GP-DEMO and DEMO would be equally fast. Of course, if
the border time was longer, GP-DEMO would be faster.

We can see that the border times vary from less than a second on easier problems
to a few seconds on harder problems, where more solutions are exactly evaluated with
GP-DEMO. The border times could be further reduced by optimizing the GP modeling
procedure. For example, the update of the surrogate models could be made parallel for
every objective and also the update of the GP models could perhaps be performed less
often.

When solving a new optimization problem, if the time needed for a single exact solution
evaluation is known and the difficulty of the optimization problem can be estimated, these
border times can help us choose which algorithm to use in order to get good results as fast
as possible.

6.4 Discussion

To asses the performance of the proposed surrogate-model-based algorithm GP-DEMO,
we tested it on a set of benchmark problems and real-world problems and compared its
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Table 6.4: The probability of no significant difference between hypervolumes.

Test problems Comparisons between algorithms

BNH
GP-DEMO GEC

DEMO 0.6599 0.0389
GP-DEMO 0.0883

OSY
GP-DEMO GEC

DEMO 0.8636 0.8351
GP-DEMO 0.9740

SRN
GP-DEMO GEC

DEMO 0.5665 0.6407
GP-DEMO 0.9165

WFG1
GP-DEMO GEC

DEMO 1.0 · 10−11 2.8 · 10−19

GP-DEMO 1.4 · 10−19

WFG2
GP-DEMO GEC

DEMO 0.1084 3.6 · 10−14

GP-DEMO 7.5 · 10−6

WFG3
GP-DEMO GEC

DEMO 0.1484 4.4 · 10−5

GP-DEMO 6.6 · 10−5

WFG4
GP-DEMO GEC

DEMO 6.5 · 10−6 3.6 · 10−9

GP-DEMO 0.0004

WFG5
GP-DEMO GEC

DEMO 0.3109 0.0070
GP-DEMO 0.0011

WFG6
GP-DEMO GEC

DEMO 1.2 · 10−7 1.4 · 10−7

GP-DEMO 0.0002

WFG7
GP-DEMO GEC

DEMO 0.0047 3.2 · 10−6

GP-DEMO 3.3 · 10−6

WFG8
GP-DEMO GEC

DEMO 0.1845 8.2 · 10−5

GP-DEMO 0.0007

WFG9
GP-DEMO GEC

DEMO 0.1458 4.3 · 10−7

GP-DEMO 5.6 · 10−7

Continuous casting
GP-DEMO GEC

DEMO 0.4456 0.6487
GP-DEMO 0.2143

ECG
GP-DEMO GEC

DEMO 0.0142 0.0060
GP-DEMO 0.0070
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Table 6.5: Border times (in seconds) for the benchmark test problems.

Test problem Border time [s]

BNH 0.04
OSY 0.2
SRN 0.02
WFG1 5.7
WFG2 1.4
WFG3 1.6
WFG4 1.4
WFG5 3.4
WFG6 1.1
WFG7 4.9
WFG8 1.3
WFG9 9.5

results with the results obtained with DEMO and GEC. The measures that we compared
were the number of exactly evaluated solutions, hypervolume value, optimization time and
the number of non-dominated solutions on the final front.

Comparing the hypervolume and the number of non-dominated solutions on the final
fronts, DEMO, as expected, obtained the best results on all problems. With GP-DEMO
we wanted to achieve similar results but with a smaller number of exact evaluations. The
comparison of gained results shows that on the simpler problems the quality of results
is almost the same and the number of exactly evaluated solutions is substantially lower.
On the more complex optimization problems GP-DEMO still achieves similar results to
DEMO. The statistical tests show that on some WFG problems there is a statistically
significant difference between the results, but the difference is very very small. Also the
average number of non-dominated solutions on the final front is similar, and the presen-
tation of the best fronts in Figures 5.6–5.14 shows that the fronts are almost overlapping.
The small difference in the results is caused because of the inaccurate approximations,
where after exactly evaluating the solutions, the objective values fall out of the predicted
confidence intervals. The reason for that is in the complexity of the problem that includes
fast changes in objective function. This complexity cannot be followed by GP, so it is seen
as an outlier or noise and, due to the probabilistic nature, smoothed.

To put GP-DEMO results in perspective, we compared them with GEC. If the GEC
algorithm got similar results, that would mean that GP-DEMO procedure is not better
and that the relations under uncertainty do not prevent the worsening of results due to
the inaccurate approximations.

On simpler problems the results are similar, which is expected. The surrogate models
are very accurate and the number of incorrect comparisons is very low (tests performed in
Section 3.4) so the use of relations under uncertainty does not influence the results that
much. On the other hand, with the more complex optimization problems the surrogate
models are not very accurate. This causes many incorrect comparisons due to the inaccu-
rately approximated solutions. The hypervolumes obtained with GEC are therefore worse
on almost all WFG problems. In addition, the number of non-dominated solutions is also
considerably lower. Since both GP-DEMO and GEC use the same modeling technique,
this difference is due to relations under uncertainty used in GP-DEMO.

Comparison of the optimization times shows that DEMO is the most suitable for the
benchmark problems, but it is not suitable for computationally expensive real-world prob-
lems. In contrast, both surrogate-model-based evolutionary multiobjective algorithms are
more suitable for computationally expensive real-world problems, because the time needed
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for training and updating the surrogate models on the benchmark problems takes most of
the optimization time.

Let us sum up the comparisons. Firstly, GP-DEMO performed better than GEC, since
it spent a smaller number of exact evaluations on easier problems and produced better
results on more complex problems. Secondly, if the solution evaluations are very fast,
the DEMO algorithm performs best, but on real-world problems, where exact solution
evaluations take more time, GP-DEMO becomes more suitable because the optimization
times are shorter and the quality of the results is comparable.

In order to be able to determine when to choose GP-DEMO instead of DEMO, we
decided to calculate border times for the benchmark problems. The border time defines
how long a single exact solution evaluation should last in order for the optimization times
of GP-DEMO and DEMO to be equal. If a single exact solution evaluation is longer than
the border time, the optimization time of DEMO is longer than the optimization time
of GP-DEMO. The border time depends on the complexity of the problem and it varies
from less than a second to a few seconds. Therefore, we can say that in the case of a
multiobjective optimization problem where a single exact solution evaluation takes more
than the expected border time and the quality of the results is important, GP-DEMO is
the algorithm to be used.



71

Chapter 7

Conclusions

We conclude the dissertation with an overview of the work done. Further, we state the
achieved scientific contributions and present the ideas for future work.

7.1 Summary

Optimization problems with time-consuming solution evaluations are usually solved with
surrogate-model-based optimization algorithms. If an optimization problem is very com-
plex and hard to model, solution approximations can be inaccurate. Comparison of inac-
curately approximated solutions can result in incorrect relations between solutions. As a
consequence, high-quality solutions can be discarded, or the applied optimization algorithm
can get stuck in a local optimum.

To overcome these difficulties, this dissertation proposed a surrogate-model-based mul-
tiobjective evolutionary algorithm that, in comparison to other multiobjective evolutionary
algorithms (MOEAs), finds comparable solutions with less exact solution evaluations. To
achieve this, we defined new relations under uncertainty for comparing solutions repre-
sented with approximated values and confidence intervals. Based on these relations we
developed a new surrogate-model-based multiobjective evolutionary algorithm called GP-
DEMO.

Relations under uncertainty extend the Pareto dominance relations and, in addition
to the confidence intervals, also consider the feasibility of solutions. They are defined on
bounding boxes that are calculated from approximated values and confidence intervals.

We compared the relations under uncertainty with the Pareto dominance relations and
provided empirical support for the hypothesis that comparing solutions using the newly
proposed relations reduces the possibility of incorrect comparisons and prevents inaccurate
approximations from spoiling the results. Furthermore, we compared the RF and the GP
modeling techniques and showed that GP modeling is more suitable to use as a surrogate
model. In addition, we also demonstrated how the new relations can be applied to compare
solutions in an arbitrary multiobjective optimization algorithm.

The relations under uncertainty are also used in the GP-DEMO algorithm for all solu-
tion comparisons. GP-DEMO is based on the DEMO algorithm and uses GP modeling to
build surrogate models for solution approximations. Due to uncertainty the procedures for
comparing the candidate and parent solutions, and the selection procedure for maintaining
the population size are modified. Both procedures determine which solutions get exactly
evaluated to reduce the number of incorrect comparisons, and find comparable results to
DEMO with as few exact evaluations as possible.

We compared GP-DEMO with two other multiobjective evolutionary algorithms. The
first one was DEMO and the second one was another surrogate-model-based algorithm
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called Generational Evolution Control (GEC). We chose these two algorithms in order to
compare both the quality of the results and the reduction of the number of exact evalua-
tions performed. The algorithms were tested on 12 benchmark and two computationally
expensive real-world problems.

The comparison provided empirical support for the hypothesis that GP-DEMO in com-
parison to other MOEAs produces comparable results with fewer exact solution evaluations.
The empirical analysis of the results showed that GP-DEMO and DEMO achieve similar
hypervolumes and similar number of non-dominated solutions, but GP-DEMO needs con-
siderably less exact evaluations. In addition, GP-DEMO achieves better results than GEC.
Which algorithm needs less exact evaluations depends on the type of optimization problem.

In order to determine when to use GP-DEMO instead of DEMO, we calculated border
times. The border time for a specific optimization problem tells us how long a single ex-
act solution evaluation should last, in order for the optimization times of GP-DEMO and
DEMO to be equal. The border time correlates mainly with the number of exactly evalu-
ated solutions which depends on the ability to accurately model the optimization problem.
If the optimization problem is simple and can be modeled accurately, the approximated
solutions have narrow confidence intervals and the number of exact solution evaluations is
small, and thus the border time for this problem is short. If the optimization problem is
very complex and hard to model, the border time is longer.

Depending on the appraised complexity of the problem, the border time can be es-
timated. Therefore, if a single exact solution evaluation takes more than the estimated
border time and the quality of the results is important, we can conclude that for this
problem GP-DEMO is a more appropriate choice than DEMO.

7.2 Scientific Contributions

The contributions of this dissertation to science closely match our initial expectations. The
presented work led to the following original scientific contributions:

• Definition of new relations for comparing solutions under uncertainty.
The relations under uncertainty are based on bounding boxes that are calculated
from approximated values and confidence intervals. New relations extend Pareto
dominance relations and are suitable for comparing solutions under uncertainty and
can also be used for comparing solutions with uncertain feasibility. In addition, the
relations under uncertainty also offer the possibility of determining dominance status
of solutions without necessarily knowing their exact values.

• Reduced possibility of incorrect solution comparisons by using relations
under uncertainty. We performed extensive testing on several multiobjective opti-
mization problems with various surrogate models. We confirmed that in comparison
to Pareto dominance relations the new relations under uncertainty reduce the possi-
bility of incorrect solution comparisons.

• A new surrogate-model-based multiobjective optimization algorithm (GP-
DEMO). The algorithm is suited for solving multiobjective optimization problems
where exact solution evaluations are computationally expensive. The algorithm re-
lies on relations under uncertainty and tends to find solutions comparable to other
multiobjective evolutionary algorithms, but reduces the number of the needed exact
solution evaluations.

• Guidelines on when to use the GP-DEMO algorithm. Depending on the
type of the optimization problem and the time needed for a single exact solution
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evaluation, we proposed common guidelines on when GP-DEMO should be used
instead of DEMO.

7.3 Future Work

Despite successfully carrying out the experiments and proving the efficiency of relations
under uncertainty and the GP-DEMO algorithm, we detected several possibilities for im-
proving the results.

The focus of future work will be on improving the GP-DEMO algorithm. A possibility
for its improvement is to speed up the optimization process by updating surrogate models
in parallel. Since we build a separate surrogate model for every objective, the time needed
to build and update them in parallel would be reduced significantly.

In addition to the speed improvement, application of other surrogate models could be
tested. Since different modeling techniques could be suitable for different optimization
problems, choosing an appropriate surrogate model could improve the results. There are
various modeling techniques that are known to be very effective, but their approximations
do not return confidence intervals. To be able to use them with GP-DEMO, we have to
adapt them in order to estimate confidence intervals for the approximations (Bosnić &
Kononenko, 2009). One way of doing that is to use the local sensitivity analysis (Bosnić &
Kononenko, 2008) that aims at determining how much the variation of input can influence
the output. The approach locally modifies the learning set in a controlled manner in order
to explore the sensitivity of the surrogate model in a particular part of the objective space.
The sensitivity is thus related to changes of the approximations of the surrogate model
when the learning set is slightly modified. From the sensitivity the confidence interval of
the approximation can be obtained.

The next possibility to improve GP-DEMO would be to dynamically change the con-
dition that determines when to update surrogate models. Currently, surrogate models are
updated after every algorithm generation. At the beginning of the optimization process
when there are not many exactly evaluated solutions, only a few newly exactly evaluated
solutions can greatly improve the accuracy of the surrogate model. In the final stages of the
optimization process, the new solutions are usually very close to the existing ones, hence
the new solutions usually do not change the surrogate model a lot. To take advantage
of this property, we could update surrogate models adaptively – more often at the early
stages of the optimization process and less often later on.

Another possibility to further improve the results would be to apply several surrogate
models instead of just one. Every solution could be approximated with all included models,
and the surrogate model returning the narrower confidence interval would be considered as
the most confident and thus its approximation would be used. For every objective several
surrogate models, each suitable for a specific type of optimization problems, would be built.
As a result, combined approximations would be more accurate irrespectively of the type
of the optimization problem.

Alternatively, two surrogate models could be used at the same time, one as a local and
the other as a global model. The modeling techniques can either be different (e.g., one fast
and suitable for modeling more solutions, and the other slower and more accurate even with
less solutions) or the same but with a different set of solutions applied to every technique.
For the global model we would use all exactly evaluated solutions and try to get the best
spread of solutions to obtain a comprehensive overview of the whole objective space. For
the local model we would be concentrating only on the current best solutions and thus
the surrogate model would be very accurate around non-dominated solutions. During the
optimization process, the local model would be used more often for approximations, while
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the global model would be used in cases where solutions would fall out of the region where
the local model is very accurate. If in these cases only the local model was used, it could,
due to the lack of other solutions in the neighborhood, treat these solutions as noise. This
would result in very inaccurate approximations and the actual solution values could be out
of the predicted confidence intervals, which could result in promoting worse solutions and
discarding high-quality solutions. The use of global model would prevent these difficulties
and improve the optimization process.

Using more than one surrogate model can improve optimization results and reduce
the number of exact evaluations. But on the other hand, the time needed for building
additional surrogate models and the time needed for additional solution approximations
increase the overall optimization time. Hence, the application of this approach has to be
additionally tested to determine its suitability.
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