
CONDENSING INFORMATION:

FROM SUPERVISED TO CROWDSOURCED

LEARNING

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Ruben Sipos

August 2014

c© 2014 Ruben Sipos

ALL RIGHTS RESERVED

CONDENSING INFORMATION:

FROM SUPERVISED TO CROWDSOURCED LEARNING

Ruben Sipos, Ph.D.

Cornell University 2014

The main focus of this dissertation is new and improved ways of bringing high

quality content to the users by leveraging the power of machine learning. Starting

with a large amount of data we want to condense it into an easily digestible form by

removing redundant and irrelevant parts and retaining only important information

that is of interest to the user. Learning how to perform this from data allows us

to use more complex models that better capture the notion of good content.

Starting with supervised learning, this thesis proposes using structured pre-

diction in conjunction with support vector machines to learn how to produce ex-

tractive summaries of textual documents. Representing summaries as a multivari-

ate objects allows for modeling the dependencies between the summary compo-

nents. An efficient approach to learning and predicting summaries is still possible

by using a submodular objective/scoring function despite complex output space.

The discussed approach can also be adapted to unsupervised setting and used

to condense information in novel ways while retaining the same efficient submod-

ular framework. Incorporating temporal dimension into summarization objective

lead to a new way of visualizing flow of ideas and identifying novel contributions

in a time-stamped corpus, which in turn help users gain a high level insight into

evolution of it.

Lastly, instead of trying to explicitly define an automated function used to

condense information, one can leverage crowdsourcing. In particular, this thesis

considers user feedback on online user-generated content to construct and improve

content rankings. An analysis of a real-world dataset is presented and results

suggest more accurate models of actual user voting patterns. Based on this new

knowledge, an improved content ranking algorithm is proposed that delivers good

content to the users in a shorter timeframe.

BIOGRAPHICAL SKETCH

Ruben Sipos was born in October 1985 in Ljubljana, the capital city of Slovenia. In

2004 he started his studies at University of Ljubljana as a part of newly formed joint

interdisciplinary program carried out by the Faculty of Computer and Information

Science and the Faculty of Mathematics and Physics. He graduated in 2009 with

a bachelor’s degree in Computer Science and Mathematics. In the Fall of 2009 he

began his Ph.D. studies at Cornell University. He received his Doctor of Philosophy

degree in Computer Science in August 2014.

iii

ACKNOWLEDGEMENTS

There is always this one key brick that everything else rests on. If you removed it,

then the pages you are reading right now would fly apart. So, first and foremost my

sincere thanks go to my Ph.D. advisor Thorsten Joachims. Over the years I was

privileged to receive his guidance, in professional and personal matters, insights,

time and limitless amounts of patience. Whenever I felt stuck or lost I had someone

I could turn to and for that I am extremely grateful.

A thesis does not grow without a committee, and therefore I would like to say

thank you to all the rest of my committee members: Noah Snavely, Claire Cardie

and Arpita Ghosh. In addition to their direct influence, they also inspired me

with their exciting research. A special thanks goes to Arpita, who invested a great

amount of time and effort in our meetings and discussions.

A large amount of credit also goes to two of my close collaborators: Pannaga

Shivaswamy, who was a postdoctoral researcher here at Cornell, and Adith Swami-

nathan, my fellow Ph.D. student. Thank you for sharing your ideas, listening to

my ramblings and also your time spend on actually materializing some content of

our papers.

Without the right environment, one suffers greatly. Well, I am happy to tell

you that I was surrounded by great people in stellar location. Cornell University

provided plentiful opportunities for expanding my knowledge and Ithaca a quite

and beautiful surroundings. Many thanks for all heated (and not so heated) dis-

cussions go to my office mates and fellow students. And of course many many

professors for their great lectures in classes and outside of them.

One of the big influences was Machine Learning Discussion Group. It kept

fuelling my thirst for knowledge and provided an opportunity to discuss the far-

fetched ideas. And sorry to all non-voluntary volunteers; but you did make a

iv

difference.

Let me say thank you and once more thank you to all my friends here at Cornell

and back home, who made sure I kept my sanity through sun and hail. Also, I can

not express how thankful I am for all my parents have done for me and all their

sacrifice and encouragement. Furthermore, I have great siblings who were always

there when I needed them.

Last but definitely not least, I have to acknowledge the financial support I

received that made all this possible in the first place. This research was funded

in part by NSF Awards IIS-0812091, IIS-0905467, IIS-1142251, IIS-1217686 and

IIS-1247696, and the Cornell-Technion Research Fund.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . vi
List of Tables . ix
List of Figures . x

I Overview and Preliminaries 1

1 Introduction 2
1.1 Summarization . 3
1.2 Learning . 4
1.3 User Feedback . 5
1.4 Thesis organization . 6

2 Background 7
2.1 Automated Summarization . 7

2.1.1 Algorithmic Approaches to Summarization 7
2.1.2 Different Ways of Summarizing 13
2.1.3 Summaries with Internal Structure 16
2.1.4 Summarizing the Differences 20
2.1.5 Understanding Information Flow 24

2.2 Crowdsourced Summarization . 25
2.2.1 Ranking Reviews . 27
2.2.2 Predicting Review Helpfulness 28

II Supervised Approaches to Condensing Information 30

3 Automatic Document Summarization 32
3.1 Submodular Document Summarization 34

3.1.1 Pairwise Scoring Function 34
3.1.2 Coverage Scoring Function 35
3.1.3 Computing a Summary . 37

3.2 Learning Algorithm for Structured Prediction 38
3.3 Evaluation . 42

3.3.1 How does Learning Compare to Manual Tuning? 43
3.3.2 How Fast does the Algorithm Learn? 45
3.3.3 Where is Room for Improvement? 46
3.3.4 Which Features are Most Useful? 47
3.3.5 How Important is it to Train with Multiple Summaries? . . 48

3.4 Summary . 49

vi

4 Creating Product Comparisons 51
4.1 Motivation . 51
4.2 Model . 53
4.3 Evaluation . 56
4.4 Summary . 61

III Unsupervised Approaches to Condensing Informa-
tion 62

5 Temporal Corpus Summarization 64
5.1 Summarization as Coverage . 66

5.1.1 Information Coverage as Word Coverage 66
5.1.2 Optimization via Greedy Algorithm 68

5.2 Corpus Summarization Problem . 69
5.2.1 Summarization through Influential Documents 71
5.2.2 Timelines of Document Influence 73
5.2.3 Timelines of Author Influence 75
5.2.4 Summarizing Timelines with Key-Phrases 75
5.2.5 Alternate Formulation using Global Optimization and Adap-

tive Budget . 79
5.3 Evaluation . 79

5.3.1 Datasets . 80
5.3.2 Influential Documents . 81
5.3.3 Impact of Using Novelty Score 83
5.3.4 Timelines of Document Influence 85
5.3.5 Timelines of Author Influence 86
5.3.6 Key-phrase Extraction . 87

5.4 Summary . 89

IV Crowdsourced Approaches to Condensing Informa-
tion 92

6 Content Rating Behavior on UGC 94
6.1 Voting Dataset . 96

6.1.1 Rating Accumulation Process 99
6.1.2 Converged Rankings . 100

6.2 Do User Votes Reveal the Absolute Quality of a Review? 103
6.3 How does Context Relate to Voting Polarity? 107

6.3.1 Statistical Analysis . 107
6.3.2 Exploratory Analysis: Global Context 110
6.3.3 Exploratory Analysis: Local Context 112
6.3.4 A Model of Voting Polarity 113

vii

6.4 How does Context Relate to Participation? 115
6.4.1 Statistical Analysis . 116
6.4.2 Exploratory Analysis: Context 119
6.4.3 A Model of Participation . 120

6.5 Discussion of the Analysis . 121
6.5.1 Limitations . 123

7 Content Ranking Algorithms for UGC 127
7.1 Models of User Voting Behavior . 128

7.1.1 Absolute Voting Model . 129
7.1.2 Relative Voting Model . 130

7.2 Voting Simulation Setup . 132
7.2.1 Workflow . 133
7.2.2 Parameter Settings . 134
7.2.3 Metrics for Performance . 138

7.3 The Ratio-Sort Algorithm with Contextual Voting 139
7.3.1 Does Context Bias in Votes Help or Hurt? 140

7.4 A Ranking Algorithm that Models Context Dependent Votes 143
7.4.1 Context Aware Ranking Algorithm 144
7.4.2 Does the New Algorithm Learn Faster? 146
7.4.3 How does Improvement Scale with Strength of Context Bias? 147
7.4.4 Robustness . 149
7.4.5 New Reviews over Time . 150

7.5 Summary . 151

V Conclusion 158

8 Conclusions 159

Bibliography 164

viii

LIST OF TABLES

4.1 Average performance scores of baseline, using uniform weights and
learned weights across product pairs. the described approach out-
performs the baseline and achieves more than 20% improvement on
previously unseen product pairs through learning. 60

5.1 Total citations obtained by the papers selected for influential doc-
uments and baselines using unigrams. All results use 1-NN for
novelty score. The values in parentheses indicate standard error. . 83

5.2 Current citations (i.e. number of citations from papers citing in
that particular year) obtained by the papers selected for timeline
and baselines using unigrams as elements of the universe. All results
are for 10 re-runs of 70% subsampling and using 1-NN for novelty
score. The values in parentheses indicate standard error. 86

5.3 The list of key-phrases for SIGIR-CIKM selected by the greedy
algorithm solving the budgeted coverage problem with budget of 3
and by optimizing the citation score. 90

5.4 Quantitative results of keyphrase extraction. 91

6.1 Voting polarity when the same reviews are presented in different
orders. 108

6.2 Participation when the same reviews are presented in different orders.118

7.1 Simulation settings used for all our experiments unless otherwise
noted. 136

ix

LIST OF FIGURES

3.1 Illustration of the pairwise model. Not all edges are shown for
clarity purposes. Edge thickness denotes the similarity score. . . . 35

3.2 Illustration of the coverage model. Word border thickness repre-
sents importance. 36

3.3 Results obtained on DUC ’03 and ’04 datasets using the supervised
models. Increase in performance over the hand-tuned is statistically
significant (p ≤ 0.05) for the pairwise model on the both datasets,
but only on DUC ’03 for the coverage model. 44

3.4 Learning curve for the pairwise model on DUC ’04 dataset show-
ing ROUGE-1 F scores for different numbers of learning examples
(logarithmic scale). The dashed line represents the preformance of
the hand-tuned model. 45

3.5 Upper bounds on ROUGE-1 F scores: agreement between man-
ual summaries, greedily computed best extractive summaries, best
model fit on the train set (using the best C value) and the test
scores of the pairwise model. 47

3.6 Effects of removing different feature groups on the DUC ’04 dataset.
Bold font marks significant difference (p ≤ 0.05) when compared to
the full pariwise model. The most important are basic similarity
features including all words (similar to [50]). The last feature group
actually lowered the score but is included in the model because we
only found this out later on DUC ’04 dataset. 48

4.1 Illustrative example of a comparative summary for products A and
B. 53

4.2 Aligned snippet pairs selected by the method comparing two tablets. 58

5.1 Illustration of word-coverage objective. 67
5.2 Illustrating the coverage function for revealing influential docu-

ments. 70
5.3 Illustrating the influence of documents in a particular year. 74
5.4 Illustrating the difference in word distributions over time between

a bogus term and a genuine keyword. 77
5.5 Comparison of results of word coverage approach when using differ-

ent values of k (number of nearest neighbors for computing novelty
score) on NIPS and ACL corpus for unigrams and bigrams. The
horizontal axis represents the value of k and the vertical axis rela-
tive performance (number of citations) when compared to not using
the novelty score (i.e. k = 0). 84

x

5.6 An example of applying our framework to select the most impor-
tant authors and the most important papers for the given authors
using our framework. In each of 11 consecutive years of NIPS three
authors are selected and then that author’s most influential paper
is selected in a particular year. The width of the author’s slice (rel-
ative marginal benefit) represents the importance relative to other
selected authors (which is computed as decrease in objective score
if we remove that author from the collected set). 88

5.7 A timeline showing the evolution of the key-phrases selected by the
coverage approach in the NIPS corpus. 91

6.1 Total number of reviews and votes (y-axis) over time (x-axis in days).100
6.2 Number of times (color in log scale, with red being high) a review

with particular daily true rank (x-axis) was presented at a partic-
ular rank (y-axis). Left plot (All) counts over all data, right plot
(Late) only over the last 30 days. 102

6.3 Vote polarity: daily true rank (x-axis), context (y-axis, presented
rank) and average vote polarity (color, red means higher ratio of
positive votes). 109

6.4 Vote polarity in data for local context: daily true rank (x-axis, with
bin widths of 5), context (y-axis, positive values meaning superior)
and average vote polarity (color, red means higher ratio of positive
votes). 110

6.5 Vote polarity: daily true rank (x-axis), presented rank (y-axis) and
vote polarity (color, red being positive). Only using the first 30
days (left) and last 30 days (right) of data. 114

6.6 Participation: daily true rank (x-axis), context (y-axis, presented
rank) and average participation (color, log scale, red being high). . 117

6.7 Participation in data for local context: daily true rank (x-axis, using
bin widths of 5), context (y-axis, positive values meaning superior)
and average participation (color, log scale, red being high). 118

6.8 Participation: daily true rank (x-axis), presented rank (y-axis) and
participation on log scale (color, red being high). Only using the
first or last 30 days of data. 122

6.9 Average ratio of positive to total votes (y-axis) over time (x-axis in
days). 126

7.1 Attention bias for participation with presented ranks on x-axis and
probability of participation on y-axis. Values obtained from real-
world dataset are in blue and the model fit is in red color. 131

7.2 Review quality distributions. 135
7.3 Comparison of AVM (red) and RVM (green) when using the ratio-

sort ranking algorithm. 141

xi

7.4 Comparison between AVM (red) and RVM (green) using ratio-sort
versus RVM with MLE algorithm (blue) using different distribu-
tions of review qualities and different performance measures. 153

7.5 Comparison between AVM (red) and RVM (green) using ratio-sort
versus RVM with MLE algorithm (blue) using different distribu-
tions of review qualities and different performance measures. 154

7.6 Sweep of the main model parameters showing smooth changes in
performance and better performance of the new algorithm in all
cases. 155

7.7 Robustness for fixed assumed parameters α and β by the algorithm,
while the data varies. Comparison plot shows how much better is
the context-aware algorithm compared to the ratio-sort. 156

7.8 A setting where new reviews arrive over time. 157

xii

Part I

Overview and Preliminaries

1

CHAPTER 1

INTRODUCTION

Data. Digital technology revolutionized how we collect, store and share data.

Even if we focus only on text directly targeted for human consumption, there is

still a staggering amount of it and its growth is rapidly accelerating. In the last 25

years the Web became the main hub for information exchange used by businesses,

professionals and a booming number of ordinary everyday users. However, the

benefits of shared knowledge could now be approaching a wall: the limit imposed

by information overload. Because the amount of interesting and relevant content

already exceeds our ability to consume it in its raw form we need a way to select

or condense the data and present it to the user in an easy to consume form that

still retains the information the user actually wanted.

Looking back, we can clearly see one big building block towards this goal: web

search engines. When the web became too complex to navigate, keyword search

and result ranking saved the day. Nowadays we have extremely well polished

search engines that serve the users well – for that particular targeted group of

needs. However, the web has long ago stopped being only a collection of personal

and corporate pages with scattered bits of information. New forms of content have

evolved over time: on the web and web-enabled content networks we can find news

articles, blogs and microblogs, forum and social posts, product, hotel and restau-

rant reviews, personal messages and email, even patents and research publications

to name just a select few in text domain. Information retrieval solutions still allow

us to find and accessing individual documents even within these new content types.

However, we can not blindly hope that this covers all the diverse user needs (which

are also evolving in step with new content).

2

Some of those user needs could be addressed by condensing information. Mul-

tiple news articles, blogs or posts can be condensed into a short passage by remov-

ing redundant information and extracting informative fragments. An insight into

a larger collection might be gained by constructing timelines of how the contents

evolved over time. Ranking user-generated content based on users’ perception of

it can help promote contributions of high quality contributions.

This thesis provides a small step forward towards addressing the challenge of

diverse user needs. First, it explores summarization – instead of picking the right

document, we select the right information and present it to the user in a concise

package. Secondly, because the data now lives in the digital domain (instead of in

the physical form of paper) we can take advantage of how easy it is to manipulate

and process – machine learning provides a way to tune complex summarization

and ranking models by using data instead of hard-to-express high-level expert

knowledge. And thirdly, due to immense number of users and even if only a tiny

fraction of them is altruistic, we can still obtain large amounts of user feedback to

replace or augment expensive labeled examples.

1.1 Summarization

Summarization in not an alternative to search and ranking but a complementary

task. While web search is extremely good at locating a specific piece of information,

summarization provides a way to combine multiple sources and addresses some of

the needs for a more macroscopic view of a document collection and supports

discovery of global insights.

The framework used throughout Parts II and III is based upon submodular

scoring functions. Summaries are represented as sets of items and computed by

3

maximizing a scoring function defined on them. By requiring that this function is

submodular we are able to find efficient solutions: the maximization can be solved

using greedy algorithm with a constant factor approximation guarantee. Looking

at the related literature, we can find many many recent advances in summarization

using the same core idea.

One of the novel contributions of this thesis are new problem formulations

and corresponding scoring functions that produce summaries addressing currently

unanswered user needs. Chapter 4 describes how comparing two products based

on their reviews can be viewed as constructing a summary that helps inform pur-

chasing decisions. Looking at a collection of documents that evolved over time,

Chapter 5 shows how high level visualizations such as timelines of information

spread can be constructed in the same framework.

1.2 Learning

Another big emphasis of this thesis is learning. Simple models are unlikely to

capture what is a good summary with sufficient fidelity. As the complexity of

the models grows, it becomes infeasible to manually tune the parameters. In a

supervised setting, machine learning solves the problem of finding the optimal

model parameters by learning from examples.

Document summarization as described in Chapter 3 (applicable to, for exam-

ple, news articles) uses structured prediction. This means that after learning the

model parameters, the summary for a given collection is predicted as a multivari-

ate object. This enables us to capture dependencies between elements within the

summary itself. Compared to some other related work, we can now, for example,

4

explicitly control for redundancy. If we were to select sentences independently in

the case of extractive summarization we need additional mechanisms to remove

near similar sentences. However, in the structured prediction framework, we can

incorporate non-redundancy directly into optimization objective.

The resulting union of submodular scoring function and structured prediction in

Chapter 3 pushed the state-of-the-art in extractive multi-document summarization

another few steps forward.

1.3 User Feedback

One major hurdle for the learning approaches (at least in this domain) is obtain-

ing quality labeled data. Example summaries created by human annotators are

expensive. And in some cases it is not even clear what is a good label as in the

case of creating timelines. However, there is another way of determining what is

good content that should be surfaced for users.

Looking at today’s web we see that users are not only contributing content

(e.g. forum posts) but are also at the same time willing to supply peer feedback

on the submitted content (e.g. thumbs-up votes on posts). Given large amount of

users, we can collect large amounts of user feedback even if this requires additional

engagement and thus not everyone opts to do so.

The last part of this thesis looks into how we can exploit this free resource to

bring relevant content to the users. Analysis of a real-world dataset (helpfulness

votes cast by the users on product reviews) is presented first with the goal of

trying to understand what are users actually trying to tell us. It shows presence of

5

non-trivial biases in the votes. This new finding is then used to improve content

ranking algorithm.

1.4 Thesis organization

This thesis is structured as follows. Chapter 2 presents overview of related work

in other literature. It discusses the field of summarization, main approaches and

different ways of condensing information. Furthermore, it looks at the approaches

used for ranking user contributed reviews and reviews current understanding of

user voting behaviour in the case of helpfulness votes on product reviews.

Multi-document summarization that combines submodular scoring function

and structured prediction is described in Chapter 3. Evaluation was performed on

a collection of news articles and demonstrated new state-of-the-art performance.

Chapter 4 shows, how we can, by simply changing the objective, create compara-

tive summaries of products based on their corresponding user reviews.

Next, Chapter 5 moves to unsupervised setting and creates high-level overviews

of a document collection. In particular, an approach for building timelines (and

other views) is described. Retaining the submodular framework and defining new

time-aware scoring functions results in macroscopic summaries that outperform

the baselines.

Lastly, learning what is good content from the users is explored in Chapter 6.

An in-depth analysis of real-world voting data for product review helpfulness is

presented. A context-dependent bias is identified and then this new insight is used

to improve the content ranking algorithm in Chapter 7.

6

CHAPTER 2

BACKGROUND

2.1 Automated Summarization

This section looks at related work pertaining to automated summarization. It

reviews traditional algorthmic approaches to summarization and describes some of

the different forms the summaries can take.

2.1.1 Algorithmic Approaches to Summarization

One of the widely known approaches for summarization is Maximal Marginal Rel-

evance [10]. It uses a greedy approach for selection and considers the trade-off

between relevance and redundancy. Later it was extended [27] to support multi-

document settings by incorporating additional information available in this case.

Moreover, this can be reformulated as a knapsack problem and solved using dy-

namic programming [63].

Another avenue of approaches is graph based [66]. LexRank [21] uses sentence

similarities and selects sentences based on graph eigenvector centrality. Other

notable graph based sentence scoring methods are TextRank [67], PageRank [8],

HITS [38] and CIG [31].

Iterative reinforcement approach of [109] simultaneously extracts summary and

keywords aiming to use one to boost the other. In this graph based approach,

sentences are related by content similarity, words by knowledge-based or corpus-

based approach and words in sentences by their relative importance. The main

7

assumption is that saliency should be propagated across links.

Often used tools in summarization are coverage functions. By definition, they

nicely fit the task of selecting content to be included in the summary. Further-

more, the have a diminishing returns property which also fits the intuition about

summaries repeated content does not increase the utility. Because they fall into

the class of submodular functions, there exist efficient algorithms for finding ap-

proximate solutions [35] that exhibit good behavior in practice.

Although recent research used set functions in conjunction with completely

independent elements (i.e. we can select any subset of sentences), the maximization

problem using submodular objective functions can still be efficiently solved in a

more general setting of matroids [9]. This allows us to pose additional constraints

on how the summary is supposed to look, but to my current knowledge has not

yet been sufficiently explored.

Diversity is one of the important aspects when doing information retrieval. One

way of achieving it is by using word coverage approaches [125, 102]. In this paper

they measure diversity based on coverage of subtopics. Because subtopics are not

given for novel documents (only for the training set), they use structural SVM

to learn how to select documents covering diverse set of topics in the absence of

labels.

A similar idea was applied to document summarization [44]. However, in this

case they achieve diversity by incorporating additional constraints into QP for

structural SVM instead of solving a coverage problem. They add constraints for

covering subtopics, promoting diversity (by placing lower weights on common fea-

tures) and balance (the amounts of subtopics should be roughly equal). Fur-

8

thermore, because they do not use coverage objective (which is submodular and

efficiently solvable) they propose a novel way of solving the optimization by use of

independence graphs (which restrict the space possible additions to the summary

to sentences that are not similar to the previous ones).

Determinantal point processes [39] can also be applied to document summa-

rization. In this paper they describe how to apply DPP in supervised setting using

feature-based parameterization. The objective is submodular but not monotone

(therefore the greedy optimization algorithm has no formal approximation guar-

antees) and the learned models have elegant probabilistic interpretation.

A coverage based approach to summarization in the blogosphere is presented

in [20]. They define coverage in a probabilistic way where each post tries to cover

a feature with some probability. This results in diminishing returns property as we

add more posts. Furthermore, the notion of feature coverage by a post is softened

and defined on top of a generative model providing probability of covering it. The

final objective is submodular and can thus be efficiently solved. The authors also

provide a way of personalization by introducing additional weights representing

preferences (for features).

Another submodularity based approach [50, 49] uses pair-wise sentence sim-

ilarities as the basis for scoring the summary. The objective tries to maximize

similarities between the sentences in the summary and the rest of them (promot-

ing coverage) while keeping similarities within the summary low (avoiding redun-

dancy). The terms are traded off using a manually tuned parameter.

9

Supervised Approaches

In the supervised setting, several early methods [40] made independent binary

decisions whether to include a particular sentence in the summary or not. This

ignores dependencies between sentences and can result in high redundancy. The

same problem arises when using learning-to-rank approaches such as ranking sup-

port vector machines, support vector regression and gradient boosted decision trees

to select the most relevant sentences for the summary [65].

A solution is to introduce dependencies between selected elements forming the

summary. HMMs produce summaries by transitioning between sentences included

in the summary and skipped ones while following the original sequence of sen-

tences in the source documents [14]. If we want to employ more powerful features

(depending on the whole document instead of only the current sentence) we can

use CRFs [91]. However, summaries are not necessarily chains of sentences and

therefore we cannot model all types of dependencies between them.

While doing extractive summarization we often include unnecessary words

which are part of the selected sentence. To combat this we can use compres-

sion (by e.g. using MIRA [62]), i.e. removing unnecessary parts of the sentence

before including it in the summary. Authors of [6] use structural SVM frame-

work to learn model parameters and ILP to encode compression model. Arbitrary

parts of the parse tree can be cut to compress the sentence while still preserving

some grammatical structure. Another model employing compression is SEARN

[17] using a vine-growth model to compress and search to construct a policy for

generating summaries.

Evaluating summaries

10

Evaluating the quality of automatically generated summaries is not easy and

using human judges is expensive. Rouge [48] has become one of the most widely

used performance measure because it shows good correlation with human assess-

ments and allows for automatic evaluation (needed in most supervised approaches

to document summarization). The most popular variants of Rouge score are based

on unigram and bigram overlap between generated summaries and gold standard.

Clustering-based Approaches

A parallel to summarization can be found in selecting representative elements of

clusters [24]. Clustering results in diversity of selected representatives. In this

paper authors explore different ways of selecting representatives for each cluster:

average, most and least typical elements (according to distances between elements).

All three have intuitive use cases. The average gives us the sense of overall cluster

content, most typical highlights differences between clusters and least typical are

useful for achieving consensus between clusters.

An example of clustering based document summarization approach is MEAD

[78]. It is a centroid-based method in which sentence scores are computed based

on sentence-level and inter-sentence features.

Targeted specifically at summarization ColabSum [107] combines document

clustering with a graph based approach based on sentence similarities. Using

clustering to achieve diversity and then avoiding redundancy by selecting a repre-

sentative sentence for each cluster [75] can be seen as an extension of MMR with

diversity.

Some summarization methods based on LSA are also designed on similar prin-

11

ciples as clustering based ones [97]. After we obtain topics, we can construct a

summary by selecting the most informative sentence for each topic. A few other

generative models for summarization are explored in [28].

Generative models inspired by LSA can also be extended to apply to summa-

rizing user comments [57]. The news article content and comments posted by users

are both taken into account. Comments are clustered into groups by using dis-

covered topics. Finally, they select representative comments to create a summary.

Note that good comments are considered to be those that closely match content

of the news article (instead of e.g. expressing opinions about the content).

Basic Building Blocks

In many summarization approaches we treat words (or e.g. bigrams) as the basic

units. Instead, we could use relations [22] between entities. All pairs of named en-

tities or frequent nouns are extracted as relations preserving the word order. When

building the summary we select sentences with the highest sum of all relations it

contains (and each relation is weighted as a sum of its constituents). Summary is

built greedily as coverage to avoid redundancy.

Another underutilized type of element is temporal expressions within text. In

contrast to publication time, these offer finer granularity and refer to particular

actions/events. They also give information about story time instead of meta-

information about document creation. The paper [61] describes how we can extract

this information. They also provide a way of comparing two sets of intervals in

terms of coverage.

12

2.1.2 Different Ways of Summarizing

Authors of [90] propose a few different ways of summarizing, all based on minimum

dominating set of the sentence graph. Their method can be applied to produce

a generic summary, a query focused summary (by selecting a dominating set that

also minimizes distances to the query), an update summary (by first constructing

a dominating set for the original set and then extending it for the new content)

and a comparative summary (by finding a complementary dominating set). The

same types of summaries can also be produced based on term coverage and textual

unit similarity [43].

Summarization is not necessarily restricted to only textual content. The ap-

proach of [120] creates timelines of news that contain textual as well as visual

elements. They use an iterative approach based on mutual reinforcement and

co-ranking.

Recommendation Systems

Instead of querying for relevant documents by using keywords, we can pose query

as a small set of documents [19]. Relevant papers are selected based on influence

(across all concepts and all query documents toward selected summary), while

maximizing relevance and diversity. Influence is defined based on citation graph

instantiated for each concept with edge weights representing probability of a direct

influence between two papers for that concept.

Also looking at the influence between papers is [89]. They look at identifying

original ideas contributed by a paper added to a corpus. Using impact and novelty

they define a statistical model of passage impact.

13

Content based recommendation can be combined with collaborative filtering

in a hybrid approach [103]. They explore a few different ways of combining the

two (e.g. using output of one as input for the other, running them in parallel and

combining the produced rankings).

Events and Timelines

When events happened can be used in event-based summarization [98, 2] to con-

struct a summary [118]. Events (e.g. burnt from Yesterday a fire burnt most of

the forest.) are placed on a timeline (split into intervals e.g. days) according to

accompanying temporal expressions (e.g. yesterday or last week). Weights are

then computed using a similar scheme as tf-idf and used to rank the sentences

containing those events.

A summary can also be constructed as a timeline of events [121, 101]. Evo-

lutionary Timeline Summarization aims to produce individual summaries of each

date on a timeline while achieving sufficient content coverage, coherence of the

timeline and cross-date diversity. They define utility function for summaries which

is a linear combination of relevance (towards query), coverage (towards local and

global collections), coherence (between neighboring days) and diversity terms. To

achieve balance across the whole collection and individual days they pose the utility

function as linear combination of global and sub-collection utilities.

Method described in [86] provides a way of automatically finding coherent chain

linking together news articles. An efficient algorithm for connecting two fixed end-

points is described. Good chains are defined as those with no weak links (therefore

they do not average over chain but optimize the minimum) and with influence

between consequent articles.

14

Building on top of the observation that summaries usually select sentences in

temporal sequence, authors of [46] explored how good summaries are constructed

when the collection spans a time interval. They discovered that sentences from

the earliest and the most recent articles get selected more often than the rest.

Grouping documents by time features, clustering and selecting representatives for

each of them provides a weighting of sentences later used to construct a summary.

Many summaries of events in news present a flat structure. A more informative

view would present threads of events within a topic that capture (causal) depen-

dencies between them [71]. They discuss possible ways of modeling the depen-

dencies between events, such as constructing MST based on similarities between

events. Summaries are obtained by clustering the news to obtain events, finding

dependencies between them and creating a relational structure.

Moving in a similar direction, TSCAN [11] models topic anatomy by forming

an evolution graph of the topic. Topics are obtained from the eigenvectors of

a term - temporal block (consecutive parts of the documents, ordered by time)

association matrix and events by looking at the composition of eigenvectors. Graph

of the topic is created by linking temporally and contextually similar events. A

different approach considers intra-corpus relations and describes influence between

documents [88].

Another possible view is looking at how topics change over time [115]. LDA

model is extended with additional observed variable representing documents times-

tamp. Topic content is still unchanging over time, but the amount of documents

covering that topic can vary. Experiments show that the model can capture differ-

ent patterns, such as bursts of documents on particular topic at some time point

and gradual changes over the whole time interval.

15

Citation sentences

In the scientific literature domain we can summarize papers by looking at what

they are cited for [77]. Assuming that citation sentences (i.e. sentences surrounding

the citation to the target paper) cover some part of the information in the cited

paper, they try to select a set of citation sentences best describing the target paper.

This way we obtain a summary of what other think about me.

Single sentence summaries

In some cases we want a really short summary. For example, on Amazon and

Rotten Tomatoes we can find a single sentence representing the overall opinion

on this item, which gives a very concise insight into shared opinion about it. A

supervised approach to this is proposed in [5]. They also explore which features are

helpful in selecting such sentences. Location-wise, the first sentence of a paragraph

is the most likely to be chosen (and this also holds for generic summarization of

news articles [95]). Another good location for such sentences is towards the end of

the review. Furthermore, some words (mostly words directly expressing emotion)

are more common in the summary quotations than the rest of the text.

2.1.3 Summaries with Internal Structure

In contrast with extractive document summarization where we select sentences to

capture the essence of documents, a different approach might be more appropriate

for product reviews. A more structured summary [30] can be constructed by

first identifying product features present in the reviews (in this case authors only

look for explicitly mentioned ones). Next, they identify opinionated sentences,

their polarity and to which feature they refer. Summary then consists of a list of

16

features, each separately listing positive and negative opinions.

A similar kind of summary can be generated in the movie reviews domain [130].

An interesting peculiarity of this domain is that proper nouns (e.g. people names

actors) can be features too. Moreover, a name may be expressed in different forms.

To deal with this problem they incorporate cast library as additional knowledge.

In addition to providing only relevant opinion snippets for each aspect, we can

also try and predict a rating [56]. They take comments consisting of description

and overall rating (from feedback on eBay) and construct separate ratings for

different aspects (e.g. shipping, communication) and highlight phrases providing

the evidence (e.g. fast delivery).

In a similar fashion [114] tries to discover aspects, associated opinion and rel-

ative weight placed on them with respect to the whole review. This can then be

further used to construct summaries pointing out particular good or bad points.

Another useful application is analyzing user behavior. For example, expensive

hotels get high ratings mostly due to good service, while cheap hotels get most

bad ratings due to low cleanliness. Furthermore, we can use this to personalize

rankings such that weights assigned to aspects in the presented reviews align with

his preferences.

Using product specification to mine features [64] is also possible. Multiple

product specifications are clustered to obtain a hierarchy of features. They use

association between features (or, cleverly, in some cases units of measurements)

and opinion words to extract implicit features. Furthermore, they avoid sentiment

classification and only extract frequently occurring words (for example small and

thin for size instead of positive).

17

Instead of presenting a collection of sentences supporting positive and negative

opinions for each aspect, we can instead present to the user a score for each one

of them [122]. The main benefit is more compact summary which allows user to

read them faster and compare more products. However, there is an implicit need

for trust in the scoring system and its alignment with users personal preferences.

Such a summary can be constructed by extracting product features and performing

sentiment classification. Then, using the combination of both we can assign score

to the features.

The approach of [127] takes a different route and does not display opinions

grouped under facets by listing positive and negative sentences. Instead, they

identify the main topics and rank them according to their importance. Then they

select sentences to cover the content of those topics. They do not use LSA but

a simpler frequent word sequence based approach. In order to avoid redundancy

they use MMR.

Set in an information retrieval setting, CREST [41] provides a way to quickly

familiarize ourselves with the consensus opinion on product features in a large

corpus of reviews. The search framework allows us to find high-quality reviews

capturing the consensus opinion on given product attributes. Consensus is mea-

sured by agreement in opinion polarity and confidence by fraction of opinion in

agreement with the majority.

Another approach aimed at finding the consensus opinion is Consento [13].

It is a search engine designed to answer subjective queries by aggregating online

comments referring to an entity. A query retrieves opinion on requested entity (e.g.

movie) and aspect (if specified) as an aggregate fraction of positive and negative

opinions.

18

Summarization can add additional value to search results on Tweeter [58]. If we

perform only keyword search over tweets we might be overwhelmed by the amount

of returned information. In this paper they enhance the returned search results

with a few different summaries: showing most funny tweets, extracted video links,

top keywords and popularity over time.

Balanced Inclusion of Aspects

We can try to summarize sentiments about different aspects without explicitly

pointing them out. One such approach [59] was applied to the restaurants domain.

One important challenge is dealing with underrepresented aspects while avoiding

redundancy. The balanced summary is constructed by touching upon all possible

aspects. The most extreme snippets are selected from each category.

Balanced inclusion of all aspects into summary can also be achieved by adding

aspect balance term to ILP summarization formulation [60]. The new term max-

imizes the amount of the least present aspect or alternatively the sum of aspect

scores.

Aligned Pairs

Most of the approaches that construct a summary as aspects with representative

positive and negative opinions on them usually list supporting evidence without

any additional structure. However, it is possible to present positive and negative

opinions as contrastive pairs [36]. This way we can actually see why and on which

particular detail opinions disagree. For example, one review might claim bad batter

life while surfing the web while the other points out good battery life if reading

19

books.

Comparative LexRank [76] is random walk based approach to scoring pairs of

sentences from opposite viewpoints. One option is to generate a single ranking of

excerpts, separate them into disjoint sets according to polarity and then remove

the redundancy the resulting summary will describe related content from both

viewpoints. Alternatively, we can rank pairs of sentences and remove cases where

both elements come from the same viewpoint. The resulting summary will then

have aligned pairs of sentences showing opposing sentiments.

An interesting take on aligned summaries is shown in [23]. They use topic

modeling to find complementary sentence-tweet pairs on recent news. This is

achieved by combining two-dimensional topic-aspect model with a cross-collection

approach. Presented pairs are selected by co-ranking both the news sentences and

tweets.

2.1.4 Summarizing the Differences

A comparative summary (emphasizing differences between multiple groups of doc-

uments) can also be built using dominating sets [90] on sentence graph. After

finding dominating sets for all groups, we construct comparative summaries by

finding complementary dominating sets (by adding sentences from the current

group while given dominating sets for other groups).

Comparative summaries can also be constructed by extending summary scoring

functions [95] by incorporating a new term pertaining to differences between col-

lections [43]. Coverage based and submodular score of the summary is augmented

with an additional term penalizing sentence-wise similarities between the current

20

summary and all other collections.

Another approach [83] captures similar ideas. They assign weights to terms

based on how likely it is to appear in the target collection versus any other collection

we are comparing against. Each sentence is then assigned a score representing

payload (sum of term scores) per length. Summary is built greedily by adding

highest scoring sentences and setting term weights to zero for all already added

ones (to avoid redundancy).

In the spirit of LSA and LDA [7], [126] tries to find common topics across col-

lection and topics specific to particular collection using generative mixture models.

The generative process selects between background model, common themes (valid

across all collections) and specific themes (corresponding to common themes but

separate for each collection). User set parameters control how much commonality

we want to enforce across collections.

An information theoretic approach to constructing comparative summaries

[113] uses entropy as a basis for building a discriminative classifier. This in turn

can be used to select discriminative sentences and thus create a summary. How-

ever, I think that highly discriminative sentences might not necessarily be useful

to the user. For example, a misspelled word has a high discriminative power but

is useful in helping user decide which product to buy.

A clustering based approach [116] looks at which (content based) clusters span

different documents. Clusters spanning all documents (i.e. being present in all of

them) represent common themes. Document specific clusters represent contrastive

themes and can be used for summarization of differences. A variation of this

approach can also be used for update summarization (by looking at clusters present

21

only in the new documents after we add them to the old ones).

Comparative summaries can also be constructed using linear programming [32].

The objective function tries to maximize concept coverage over both sets of doc-

uments. At the same time, it prefers to include highly contrastive concepts in

the summary (by using contrastivness scores for pairs of concepts). The resulting

summary describes concepts from two opposite or changed viewpoints.

An approach based on sentiment aspect match (SAM) model and KL divergence

is described in [42]. In the case of generic summarization we want to minimize KL

divergence between SAM models for the corpus and the summary. Contrastive

summarization is achieved by additional terms penalizing similarity between sum-

mary and the other set of documents (while still being close to its own set of

documents). This is necessary because if we use penalty for similarity between

the two summaries we can get into degenerate case we describe one of two (same)

prominent aspects (for both products) in each summary instead of smaller but

opposite aspect.

Focusing on microblogs [112] tries to summarize differences using weighted fea-

ture subset non-negative matrix factorization. This unsupervised approach com-

bines clustering with feature selection. Selected keywords do not represent clusters

(as in e.g. LSA) but discriminate between them. Starting with term-microblog ma-

trix, we compute microblog cluster membership and also terms clustering. Terms

with the highest weights are the most discriminating ones.

Another matrix factorization approach [111] is used for multi-document sum-

marization. Symmetric matrix factorization is used to obtain clusters and then

they select representative sentences by maximizing similarity to the topic as well

22

as other sentences in the same cluster.

An interesting application of summarizing the differences is multilingual news.

If we focus on new event, we expect the news articles in different languages to

describe the same content. However, there can be differences in how different

people perceive events. For example, an event can be seen as a political move

against a country while others perceive it as pro. CoRank [108] is a method for

finding differences in this setting. It is a graph based algorithm in which sentences

from both languages are ranked simultaneously in a unified framework. Highly

ranked sentences from both languages are selected as a summary after greedily

removing the redundancy.

Update Summarization

Update summarization strives to provide summaries of new content added to an

already existing corpus of documents. The approach of [54] is based on information

distance. The best summary is the one with the smallest information distance the

whole collection of documents. In the update summarization case, we look for the

smallest distance given that we already know previous documents. Information

distance can be approximated using compression or using semantic information

(e.g. which named entities are the same).

MarginRank [45] is a graph based approach to update summarization. It ex-

tends manifold ranking by adding suppression terms which prevent inclusion of

content present in both corpora.

Hierarchical clustering can be used to generate update summaries [110]. Two

main advantages of this method are incremental construction and hierarchical

23

structure. Sentences are added into a tree, where internal nodes hold summary

sentences for their children and leafs hold all included sentences. Summaries are

generated by cutting the tree to a certain depth so that we obtain summary length

within the budget. Update summarization is performed by including only sentences

from the new documents in the final summary.

2.1.5 Understanding Information Flow

With somewhat similar motivations as in our work [96] the approach [87] also tries

to capture the content and development of a corpus in a succinct way. The main

components are coherent chains of articles (built bottom up). The summary is then

a map of those chains, which can intersect at the shared articles. The objective

used to build the map, in addition to coherence of chains, tries to achieve good

coverage and increase the connectivity (i.e. the number of intersecting chains).

Relational topic model (RTM) can be used to summarize a network of docu-

ments, predict links between them, and predict words within them. This model has

predictive power even when we are missing links are only have node attributes, be-

cause it jointly models node attributes and links. The generative model for content

is similar to LDA. Links are binary and depend on topic assignments. For exam-

ple, RTM could be used to model topics of local news that incorporates geographic

information so that topic retain geographic coherence.

24

2.2 Crowdsourced Summarization

This section looks at related work pertaining to crowdsourced summarization. It

briefly discusses particulars of product reviews, user voting behavior on user gen-

erated content, helpfulness votes (including predicting review quality) and ranking

(based on content and crowdsourced votes).

A study [18] looked at review creation in the setting of expert critics writing

book reviews. They explore possible biases, such as, media outlets being more

likely to review a book by the author that also writes for it. They also explore

other factors influencing the likelihood of a book being reviewed and its rating,

and differences in rating between expert and consumer reviewers (e.g. e.g. expert

critics being more favorable to book that won prizes).

Looking at the helpfulness votes [52] we can also discover many interesting

properties. Most of the feedback tends to be positive (i.e. users vote reviews as

being helpful a lot more than not being helpful). The higher ranked reviews get

a lot more votes (in a behavior similar to number of click in search results) and

reviews published shortly after the release of a new product tend to accumulate

more votes.

Furthermore, [52] notes biases in user voting behavior as causing a deviation

between gold standard ratings from independent human raters and helpfulness

votes. In particular, the imbalance bias mentioned in [52] is potentially closely

related to the issue of voting participation, since it suggests that users might pref-

erentially choose to vote when they have a positive rather than a negative opinion

of a review’s helpfulness. However, [52] only cites user behavior as a possible cause

for divergence between gold standard ratings of quality and aggregated helpfulness

25

votes, and primarily focuses on the problem of identifying features to build an

accurate classifier for separating high and low quality reviews.

Another study [69] looked at review helpfulness using regression as the main

tool. They also tried to look at the differences between experience (e.g. music CD)

and search goods (e.g. digital camera). They found that reviews with extreme

ratings are less helpful in the case of experience goods. Length of the review had

a positive effect on the helpfulness and it has larger impact in the case of search

goods.

Authors of [16] looked at social mechanisms underlying helpfulness evaluation.

They explored whether reviews with a star ranking closer to the average are con-

sidered more helpful; if user vote more for reviews agreeing with their own opinion;

if negative reviewers are perceived as more competent; and if votes are actually

based purely on the quality of the reviews.

More recently, there has been experimental work on herding effects on user

ratings of online reviews [117, 68, 70], investigating how a user’s awareness of

previous votes on a review impacts his own voting decision (e.g. users being more

likely to cast a positive vote after seeing previous positive votes compared to the

case of not being able to observe the previous votes).

Finally, there is a small literature [3, 26] that looks at theoretical questions re-

garding ranking and incentivizing high-quality contributions respectively assuming

simple quality-based Bernoulli models of voting behavior. Our empirical analysis

of user voting patterns can potentially supply richer, more realistic models of rating

behavior upon which to base such theoretical studies on algorithms and mecha-

nisms for eliciting and identifying high-quality online content.

26

2.2.1 Ranking Reviews

A common approach to ranking is using machine learning to learn how to rank

[92, 33, 69, 128]. The learned model relies on textual content, polarity of opinions,

social features and more to predict the content quality. Training data is often

obtained from user feedback (e.g. by allowing users to vote which content is of

high quality) because it is cheaper to obtain than manual annotations.

RevRank [106] is another way of ranking reviews striving to place highly helpful

reviews in top locations. It is unsupervised and content based. The main idea is to

build virtual core review represented by a vector of lexical items that best describe

the whole collection of reviews (they use their own weighting scheme reminiscent

of tf-idf and select the highest scoring terms). Then we can obtain review scores

by computing a distance to the virtual core review.

A coverage based approach [104] selects a set of reviews that best capture

the content of the whole collection. They propose a few different variations of

the objective function (quality based, split into groups based on polarity of the

opinion and requiring to cover all different levels of polarity at the same time).

Their approach performs better than simple baselines, but does not significantly

outperform simply using the longest review on the quality performance measure.

An interesting paper [25] points out that ranking by helpfulness is not the

only option we might want to rank reviews in a way that maximizes sales. They

found out that more subjective reviews lead to increased sales which suggests that

customers prefer to read reviews describing individual experiences of other buyers.

Moreover, reviews containing a mixture of objective and highly subjective sentences

also increased the sales. However, for feature based goods (e.g. electronics) users

27

prefer mainly objective information (confirming facts from product description).

2.2.2 Predicting Review Helpfulness

The majority of this literature has focused on the natural problem of machine-

based methods for inferring and predicting content quality, since the large volume

of user-generated content rules out the possibility of trusted human editors rating

and ranking all contributions to a site. [37, 129, 92, 33, 53, 69, 29, 85] all address

the fundamental question of what features of a contribution can help accurately

predict its quality, where the gold standard for quality is based either on ratings

by independent human raters [52, 85], or the actual received upvotes and down-

votes on the website [37, 129, 92, 53, 85]. A number of features are found to be

predictors of (appropriate notions of) quality in various settings, ranging from tex-

tual content, review length, star rating and product category for Amazon reviews

[37, 129, 69], to comment sentiment in Youtube [92], to the topic and payment

amount on online Q&A sites such as Google Answers [29]. Later work uses in-

creasingly sophisticated features such as social context [1, 55] in addition to the

textual content of a contribution to improve prediction accuracy.

We can rank reviews by their quality expressed as the number of positive help-

fulness votes. For new reviews, however, we do not have this information. A

possible solution is to build a model that predicts helpfulness based on features

[53] such as reviewer expertise, review length and the elapsed time since the in-

troduction of the product. Their model is a weighted sum of individual regression

models for each feature.

Doing binary classification of reviews [52] into low and high quality ones can be

28

done in a supervised manner. Using sentence and product level features, readability

and subjectiveness in conjunction with SVM and manually labeled product quality

they show the feasibility of low quality review detection.

Authors of [129] build a global regression model for predicting review helpful-

ness. They note that the review length is a very weak predictor of helpfulness.

The most of the predictive power comes from shallow syntactic features (e.g. ten-

dency of quantification, comparative adjectives), while subjectivity and similarity

to product description play a minor role.

Another paper [37] also looks into predicting helpfulness in a supervised setting.

They note that the most helpful features were the reviews star rating, its length

and unigram word content (using bigrams suffers from sparsity due to relatively

short reviews). This agrees with finding of other researchers.

Considering the amount of information available in social networks we can try

to incorporate it into review ranking [55]. The authors incorporate additional

features about authors when they try to predict review quality, such as number

of reviews by that author and the quality of his past reviews. Furthermore, they

incorporate link structure between authors as a basis for trust links represent

belief in authors producing high quality content.

29

Part II

Supervised Approaches to

Condensing Information

30

A traditional approach to condensing information is document summarization,

where we take a large collection of text documents and condense the gist of them

into a short summary. Such summary then allows for easier and less time intensive

consumption by the users. Creating such summaries become possible and necessary

with the advances in technology and the amount of available digital data. Due

to automatic way of constructing summaries, we can take this one step further.

Instead of manually tunning the parameters of the approach we can improve it by

combining it with learning. By using supervised learning we can leverage data to

automatically learn how to produce good summaries based on examples.

The following chapter discusses a supervised learning approach to extractive

multi-document summarization. Learning is implemented with a large-margin

method that directly optimizes a convex relaxation of the desired performance

measure. The proposed learning method applies to all summarization methods

with submodular scoring functions. Furthermore, it is possible to use a struc-

tured prediction approach that captures dependencies between elements of the

constructed summary and thus allows to control for redundancy. Experiments

demonstrate this approach’s effectiveness for different scoring functions on multi-

ple datasets and tasks. Compared to functions that were tuned manually, method

described in the following sections significantly improves performance and enables

high-fidelity models with number of parameters well beyond what could reasonably

be tuned by hand.

31

CHAPTER 3

AUTOMATIC DOCUMENT SUMMARIZATION

Automatic document summarization is the problem of constructing a short

text describing the main points in a (set of) document(s). Example applications

range from generating short summaries of news articles, to presenting snippets for

URLs in web-search. This part of the thesis focuses on extractive multi-document

summarization, where the final summary is a subset of the sentences from multiple

input documents. In this way, extractive summarization avoids the hard problem

of generating well-formed natural-language sentences, since only existing sentences

from the input documents are presented as part of the summary.

A current state-of-the-art method for document summarization was recently

proposed by [50], using a submodular scoring function based on inter-sentence

similarity. On the one hand, this scoring function rewards summaries that are

similar to many sentences in the original documents (i.e. promotes coverage). On

the other hand, it penalizes summaries that contain sentences that are similar to

each other (i.e. discourages redundancy). While obtaining the exact summary

that optimizes the objective is computationally hard, they show that a greedy

algorithm is guaranteed to compute a good approximation. However, their work

does not address how to select a good inter-sentence similarity measure, leaving

this problem as well as selecting an appropriate trade-off between coverage and

redundancy to manual tuning.

To overcome this problem, we can construct a supervised learning method

that can learn both the similarity measure as well as the coverage/reduncancy

trade-off from training data. Furthermore, the learning algorithm used is not

limited to the model of [50], but applies to all monotone submodular summarization

32

models. Due to the diminishing-returns property of monotone submodular set

functions and their computational tractability, this class of functions provides a

rich space for designing summarization methods. To illustrate the generality of

this approach, empirical evaluation also includes experiments for a coverage-based

model originally developed for diversified information retrieval [99].

In general, the described method learns a parameterized monotone submodular

scoring function from supervised training data. Given a set of documents and their

summaries as training examples, the learning problem is formulated as a structured

prediction problem using a maximum-margin algorithm in the structural support

vector machine (SVM) framework. Note that, unlike other learning approaches,

this method does not require a heuristic decomposition of the learning task into

binary classification problems [40], but directly optimizes a structured prediction.

This enables the algorithm to directly optimize the desired performance measure

(e.g. ROUGE) during training. Furthermore, the method is not limited to linear-

chain dependencies like [14, 91], but can learn any monotone submodular scoring

function.

This ability to easily train summarization models makes it possible to efficiently

tune models to various types of document collections. In particular, experiments

demonstrate that the learning method can reliably tune models with hundreds

of parameters based on a training set of about 30 examples. This increases the

fidelity of models compared to their hand-tuned counterparts, showing significantly

improved empirical performance. Experimental section also provides a detailed

investigation into the sources of these improvements, identifying further directions

for research.

33

3.1 Submodular Document Summarization

This section illustrates how document summarization can be addressed using sub-

modular set functions. The set of documents to be summarized is split into a set

of individual sentences x = {s1, ..., sn}. The summarization method then selects

a subset ŷ ⊆ x of sentences that maximizes a given scoring function Fx : 2x → R

subject to a budget constraint (e.g. less than B characters).

ŷ = arg max
y⊆x

Fx(y) s.t. |y| ≤ B (3.1)

In the following we restrict the admissible scoring functions F to be submodular.

Definition 1 Given a set x, a function F : 2x → R is submodular iff for all u ∈ U

and all sets s and t such that s ⊆ t ⊆ x, we have,

F (s ∪ {u})− F (s) ≥ F (t ∪ {u})− F (t).

Intuitively, this definition says that adding u to a subset s of t increases f at least

as much as adding it to t. Using two specific submodular functions as examples,

the following sections illustrate how this diminishing returns property naturally

reflects the trade-off between maximizing coverage while minimizing redundancy.

3.1.1 Pairwise Scoring Function

The first submodular scoring function considered here was proposed by [50] and

is based on a model of pairwise sentence similarities. It scores a summary y using

the following function, which [50] show is submodular:

Fx(y) =
∑

i∈x\y,j∈y

σ(i, j)− λ
∑

i,j∈y:i 6=j

σ(i, j). (3.2)

34

Figure 3.1: Illustration of the pairwise model. Not all edges are shown for clarity
purposes. Edge thickness denotes the similarity score.

In the above equation, σ(i, j) ≥ 0 denotes a measure of similarity between pairs of

sentences i and j. The first term in Eq. 3.2 is a measure of how similar the sentences

included in summary y are to the other sentences in x. The second term penalizes

y by how similar its sentences are to each other. λ > 0 is a scalar parameter that

trades off between the two terms. Maximizing Fx(y) amounts to increasing the

similarity of the summary to excluded sentences while minimizing repetitions in

the summary. An example is illustrated in Figure 3.1. In the simplest case, σ(i, j)

may be the TFIDF [84] cosine similarity, but a later description will show how to

learn sophisticated similarity functions.

3.1.2 Coverage Scoring Function

A second scoring function to consider was first proposed for diversified document

retrieval [99, 123], but it naturally applies to document summarization as well [44].

35

It is based on a notion of word coverage, where each word v has some importance

weight ω(v) ≥ 0. A summary y covers a word if at least one of its sentences

contains the word. The score of a summary is then simply the sum of the word

weights its covers (though we could also include a concave discount function that

rewards covering a word multiple times [81]):

Fx(y) =
∑
v∈V (y)

ω(v). (3.3)

In the above equation, V (y) denotes the union of all words in y. This function

is analogous to a maximum coverage problem, which is known to be submodular

[35].

Figure 3.2: Illustration of the coverage model. Word border thickness represents
importance.

An example of how a summary is scored is illustrated in the Figure 3.2. Anal-

ogous to the definition of similarity σ(i, j) in the pairwise model, the choice of the

word importance function ω(v) is crucial in the coverage model. A simple heuris-

tic is to weigh words highly that occur in many sentences of x, but in few other

documents [99]. However, how to learn ω(v) from training data will be shown in

36

the following section.

Algorithm 1 Greedy algorithm for finding the best summary ŷ given a scoring
function Fx(y).

Parameter: r > 0.
ŷ ← ∅
A← x
while A 6= ∅ do

k ← arg max
l∈A

Fx(ŷ ∪ {l})− Fx(ŷ)

(cl)r

if ck+
∑

i∈ŷ ci≤B and Fx(ŷ ∪ {k})− Fx(ŷ)≥0 then
ŷ ← ŷ ∪ {k}

end if
A← A\{k}

end while

3.1.3 Computing a Summary

Computing the summary that maximizes either of the two scoring functions from

above (i.e. Eqns. (3.2) and (3.3)) is NP-hard [63]. However, it is known that the

greedy algorithm 1 can achieve a 1− 1/e approximation to the optimum solution

for any linear budget constraint [50, 35]. Even further, this algorithm provides a

1− 1/e approximation for any monotone submodular scoring function.

The algorithm starts with an empty summarization. In each step, a sentence

is added to the summary that results in the maximum relative increase of the

objective. The increase is relative to the amount of budget that is used by the

added sentence. The algorithm terminates when the budget B is reached.

Note that the algorithm has a parameter r in the denominator of the selection

rule, which [50] report to have some impact on performance. In the algorithm,

ci represents the cost of the sentence (i.e., length). Thus, the algorithm actually

37

selects sentences with large marginal unity relative to their length (trade-off con-

trolled by the parameter r). Selecting r to be less than 1 gives more importance to

“information density” (i.e. sentences that have a higher ratio of score increase per

length). The 1 − 1
e

greedy approximation guarantee holds despite this additional

parameter [50]. More details on the choice of r and its effects are provided in the

experiments section.

3.2 Learning Algorithm for Structured Prediction

This section describes a supervised learning method for training a submodular

scoring function to produce desirable summaries. In particular, for the pairwise

and the coverage model, this encompases learning the similarity function σ(i, j)

and the word importance weights ω(v) respectively. In particular, σ(i, j) and ω(v)

are parameterized using a linear model, allowing that each depends on the full set

of input sentences x:

σx(i, j) = wTφpx(i, j) ωx(v) = wTφcx(v). (3.4)

In the above equations, w is a weight vector that is learned, and φpx(i, j) and φcx(v)

are feature vectors. In the pairwise model, φpx(i, j) may include feature like the

TFIDF cosine between i and j or the number of words from the document titles

that i and j share. In the coverage model, φcx(v) may include features like a binary

indicator of whether v occurs in more than 10% of the sentences in x or whether

v occurs in the document title.

The weights are learned following a large-margin framework using structural

38

SVMs [105]. Structural SVMs learn a discriminant function

h(x) = arg max
y∈Y

w>Ψ(x, y) (3.5)

that predicts a structured output y given a (possibly also structured) input x.

Ψ(x, y) ∈ RN is called the joint feature-map between input x and output y. Note

that both submodular scoring function in Eqns. (3.2) and (3.3) can be brought

into the form wTΨ(x, y) for the linear parametrization in Eq. (3.6) and (3.7):

Ψp(x, y)=
∑

i∈x\y,j∈y

φpx(i, j)− λ
∑

i,j∈y:i 6=j

φpx(i, j), (3.6)

Ψc(x, y)=
∑
v∈V (y)

φcx(v). (3.7)

After this transformation, it is easy to see that computing the maximizing summary

in Eq. (3.1) and the structural SVM prediction rule in Eq. (3.5) are equivalent.

To learn the weight vector w, structural SVMs require training examples (x1, y1),

..., (xn, yn) of input/output pairs. In document summarization, however, the “cor-

rect” extractive summary is typically not known. Instead, training documents xi

are typically annotated with multiple manual (non-extractive) summaries (denoted

by Y i). To determine a single extractive target summary yi for training, we find

the extractive summary that (approximately) optimizes ROUGE score – or some

other loss function ∆(Y i, y) – with respect to Y i.

yi = argmin
y∈Y

∆(Y i, y) (3.8)

The yi determined in this way is called the “target” summary for xi. Note that

yi is a greedily constructed approximate target summary based on its proximity

to Y i via ∆. Because of this, the learned model can only predict approximately

good summaries yi from xi. However, the experiments in Section 3.3.3 suggest

that most of the score difference between manual summaries and yi is due to it

being an extractive summary and not due to greedy construction.

39

Algorithm 2 Cutting-plane algorithm for solving the learning optimization prob-
lem.

Parameter: desired tolerance ε > 0.
∀i :Wi ← ∅
repeat

for ∀i do
ŷ ← arg max

y
wTΨ(xi, y) + ∆(Y i, y)

if wTΨ(xi, yi) + ε ≤ wTΨ(xi, ŷ) + ∆(Y i, ŷ)− ξi then
Wi ←Wi ∪ {ŷ}
w ← solve QP (3.9) using constraints Wi

end if
end for

until no Wi has changed during iteration

Following the structural SVM approach, we can now formulate the problem of

learning w as the following quadratic program (QP):

min
w,ξ≥0

1

2
‖w‖2 +

C

n

n∑
i=1

ξi (3.9)

s.t. w>Ψ(xi, yi)−w>Ψ(xi, ŷi) ≥

∆(ŷi, Y i)− ξi, ∀ŷi 6= yi, ∀1 ≤ i ≤ n.

The above formulation ensures that the scoring function with the target summary

(i.e. w>Ψ(xi, yi)) is larger than the scoring function for any other summary ŷi

(i.e., w>Ψ(xi, ŷi)). The objective function learns a large-margin weight vector w

while trading it off with an upper bound on the empirical loss. The two quantities

are traded off with a parameter C > 0.

Even though the QP has exponentially many constraints in the number of

sentences in the input documents, it can be solved approximately in polynomial

time via a cutting plane algorithm [105]. The steps of the cutting-plane algorithm

are shown in Algorithm 2. In each iteration of the algorithm, for each training

document xi, a summary ŷi which most violates the constraint in (3.9) is found.

40

This is done by finding

ŷ ← arg max
y∈Y

wTΨ(xi, y) + ∆(Y i, y),

for which we use a variant of the greedy algorithm in Figure 1. After a violating

constraint for each training example is added, the resulting quadratic program is

solved. These steps are repeated until all the constraints are satisfied to a required

precision ε.

Finally, special care has to be taken to appropriately define the loss function

∆ given the disparity of Y i and yi. Therefore, we first define an intermediate loss

function

∆R(Y, ŷ) = max(0, 1−ROUGE1F (Y, ŷ)),

based on the ROUGE-1 F score. To ensure that the loss function is zero for the

target label as defined in (3.8), we normalized the above loss as below:

∆(Y i, ŷ) = max(0,∆R(Y i, ŷ)−∆R(Y i, yi)),

The loss ∆ was used in the experiments. Thus training a structural SVM with

this loss aims to maximize the ROUGE-1 F score with the manual summaries

provided in the training examples, while trading it off with margin. Note that we

could also use a different loss function (as the method is not tied to this particular

choice), if we had a different target evaluation metric. Finally, once a w is obtained

from structural SVM training, a predicted summary for a test document x can be

obtained from (3.5).

41

3.3 Evaluation

In this section, the empirical evaluation of the approach described in the preceeding

section is presented. Following [50], experiments were conducted on two different

datasets (DUC ’03 and ’04). These datasets contain document sets with four

manual summaries for each set. For each document set, all the articles were con-

catenated and then split into sentences using the tool provided with the ’03 dataset.

The supervised setting used 10 resamplings with a random 20/5/5 (’03) and 40/5/5

(’04) train/test/validation split. The best C value in (3.9) was determined using

the performance on each validation set and then the average performence was re-

ported over the corresponding test sets. Baseline performance (the approach of

[50]) was computed using all 10 test sets as a single test set. All experiments and

datasets used r = 0.3 in the greedy algorithm as recommended in [50] for the ’03

dataset. Changing r has only a small influence on performance, though setting r

to 1 and thus eliminating the non-linearity does lower the score (e.g. to 0.38466

for the pairwise model on DUC ’03 compared with the results on Figure 3.3).

The construction of features for learning is organized by word groups. The most

trivial group is simply all words (basic). Considering the properties of the words

themselves, several features were constructed from properties such as capitalized

words, non-stop words and words of certain length (cap+stop+len). Another set of

features was obtained from the most frequently occuring words in all the articles

(minmax). The position of a sentence (containing the word) in the article was

also considered as another feature (location). All those word groups can then be

further refined by selecting different thresholds, weighting schemes (e.g. TFIDF)

and forming binned variants of these features.

The pairwise model is defined on top of cosine similarity between sentences

42

using only words in a given word group during computation. In the word coverage

model separate features are created for covering words in different groups. This

gives us fairly comparable feature strength in both models. The only further

addition is the use of different word coverage levels in the coverage model. First,

how well does a sentence cover a word (e.g. a sentence with five instances of

the same word might cover it better than another with only a single instance)?

And secondly, how important it is to cover a word (e.g. if a word appears in

a large fraction of sentences we might want to be sure to cover it)? Combining

those two criteria using different thresholds we get a set of features for each word.

The coverage features are motivated from the approach of [123]. In contrast, the

hand-tuned pairwise baseline uses only TFIDF weighted cosine similarity between

sentences using all words, following the approach in [50].

The resulting summaries are evaluated using ROUGE version 1.5.5 [47]. The

evaluation is based on the ROUGE-1 F measure because it was used by [50] and

because it is one of the commonly used performance scores in recent work. How-

ever, the same learning method applies to other performance measures as well.

Note that the approach uses the ROUGE-1 F measure both for the loss function

during learning, as well as for the evaluation of the predicted summaries.

3.3.1 How does Learning Compare to Manual Tuning?

In the first experiment, the supervised learning approach is compared to the hand-

tuned approach. The results from this experiment are summarized in Figure 3.3.

First, supervised training of the pairwise model [50] resulted in a statistically sig-

nificant (p ≤ 0.05 using paired t-test) increase in performance on both datasets

compared to the reimplementation of the manually tuned pairwise model. Note

43

that the reimplementation of the approach of [50] resulted in slightly different per-

formance numbers than those reported in [50] – better on DUC ’03 and somewhat

lower on DUC ’04, if evaluated on the same selection of test examples as theirs.

We conjecture that this is due to small differences in implementation and/or pre-

processing of the dataset. Furthermore, as authors of [50] note in their paper, the

’03 and ’04 datasets behave quite differently.

model dataset ROUGE-1 F (stderr)
pairwise DUC ’03 0.3929 (0.0074)
coverage 0.3784 (0.0059)
hand-tuned 0.3571 (0.0063)
pairwise DUC ’04 0.4066 (0.0061)
coverage 0.3992 (0.0054)
hand-tuned 0.3935 (0.0052)

Figure 3.3: Results obtained on DUC ’03 and ’04 datasets using the supervised
models. Increase in performance over the hand-tuned is statistically significant
(p ≤ 0.05) for the pairwise model on the both datasets, but only on DUC ’03 for
the coverage model.

Figure 3.3 also reports the performance for the coverage model as trained by the

described algorithm. These results can be compared against those for the pairwise

model. Since the features are of a comparable strength in both approaches, and

they both use the same greedy algorithm and structural SVM learning method,

this comparison largely reflects the quality of models themselves. On the ’04

dataset both models achieve the same performance while on ’03 the pairwise model

performs significantly (p ≤ 0.05) better than the coverage model.

Overall, the pairwise model appears to perform slightly better than the coverage

model with the datasets and features we used. Therefore, the following exploration

focuses on the pairwise model.

44

Figure 3.4: Learning curve for the pairwise model on DUC ’04 dataset showing
ROUGE-1 F scores for different numbers of learning examples (logarithmic scale).
The dashed line represents the preformance of the hand-tuned model.

3.3.2 How Fast does the Algorithm Learn?

Hand-tuned approaches have limited flexibility. Whenever we move to a signif-

icantly different collection of documents we have to reinvest time to retune it.

Learning can make this adaptation to a new collection more automatic and faster

– especially since training data has to be collected even for manual tuning.

Figure 3.4 evaluates how effectively the learning algorithm can make use of a

given amount of training data. In particular, the figure shows the learning curve

for the approach. Even with very few training examples, the learning approach

already outperforms the baseline. Furthermore, at the maximum number of train-

ing examples available to us the curve still increases. Therefore we can conjecture

that more data would further improve performance.

45

3.3.3 Where is Room for Improvement?

To get a rough estimate of what is actually achievable in terms of the final ROUGE-

1 F score, we can look at different “upper bounds” under various scenarios (Figure

3.5). First, ROUGE score is computed by using four manual summaries from

different assessors, so that we can estimate inter-subject disagreement. If one

computes the ROUGE score of a held-out summary against the remaining three

summaries, the resulting performance is given in the row labeled human of Figure

3.5. It provides a reasonable estimate of human performance.

Second, in extractive summarization we can restrict summaries to sentences

from the documents themselves, which is likely to lead to a reduction in ROUGE.

To estimate this drop, the greedy algorithm is used to select the extractive sum-

mary that maximizes ROUGE on the test documents. The resulting performance

is given in the row extractive of Figure 3.5. On both datasets, the drop in per-

formance for this (approximately) optimal extractive summary is about 10 points

of ROUGE. Comparing the greedy algorithm with exhaustive search can give us

some sense of how close to the optimal is the computed approximate solution. In

about half the cases for selecting up to three selected sentences (more than that

would take too long) we get the same solution, in other cases the soultion was on

average about 1% below optimal confirming that greedy selection works quite well.

Third, we expect some drop in performance, since the model may not be able

to fit the optimal extractive summaries due to a lack of expressiveness. This can

be estimated by looking at training set performance, as reported in row model

fit of Figure 3.5. On both datasets, we see a drop of about 5 points of ROUGE

performance. Adding more and better features might help the model fit the data

better.

46

Finally, the last drop in performance may come from overfitting. The test set

ROUGE scores are given in the row prediction of Figure 3.5. Note that the drop

between training and test performance is rather small, so overfitting is not an issue

and is well controlled in our algorithm. Therefore we can conclude that increasing

model fidelity seems like a promising direction for further improvements.

bound dataset ROUGE-1 F
human DUC ’03 0.56235
extractive 0.45497
model fit 0.40873
prediction 0.39294
human DUC ’04 0.55221
extractive 0.45199
model fit 0.40963
prediction 0.40662

Figure 3.5: Upper bounds on ROUGE-1 F scores: agreement between manual
summaries, greedily computed best extractive summaries, best model fit on the
train set (using the best C value) and the test scores of the pairwise model.

3.3.4 Which Features are Most Useful?

To understand which features affected the final performance of our approach, we

can assess the strength of each set of the features. In particular, how does the

final test score change when we remove certain features groups (described in the

beginning of Section 3.3) is shown on Figure 3.6.

The most important group of features are the basic features (pure cosine simi-

larity between sentences) since removing them results in the largest drop in perfor-

mance. However, other features play a significant role too (i.e. only the basic ones

are not enough to achieve good performance). This confirms that performance can

be improved by adding richer fatures instead of using only a single similarity score

47

as in [50]. Using learning for these complex model is essential, since hand-tuning

is likely to be intractable.

The second most important group of features considering the drop in perfor-

mance (i.e. location) looks at positions of sentences in the articles. This makes

intuitive sense because the first sentences in news articles are usually packed with

information. The other three groups do not have a significant impact on their own.

removed ROUGE-1 F
group

none 0.40662
basic 0.38681
all except basic 0.39723
location 0.39782
sent+doc 0.39901
cap+stop+len 0.40273
minmax 0.40721

Figure 3.6: Effects of removing different feature groups on the DUC ’04 dataset.
Bold font marks significant difference (p ≤ 0.05) when compared to the full pari-
wise model. The most important are basic similarity features including all words
(similar to [50]). The last feature group actually lowered the score but is included
in the model because we only found this out later on DUC ’04 dataset.

3.3.5 How Important is it to Train with Multiple Sum-

maries?

While having four manual summaries may be important for computing a reliable

ROUGE score for evaluation, it is not clear whether such an approach is the most

efficient use of annotator resources for training. In the final experiment for this

setting, the method was trained using only a single manual summary for each set

of documents. When using only a single manual summary, the first one out of

48

the provided four reference summaries was arbitrarily selected and used only to

compute the target label for training (instead of using average loss towards all

four of them). Otherwise, the experimental setup was the same as in the previous

subsections, using the pairwise model.

For DUC ’04, the ROUGE-1 F score obtained using only a single summary

per document set was 0.4010, which is slightly but not significantly lower than the

0.4066 obtained with four summaries (as shown on Figure 3.3). Similarly, on DUC

’03 the performance drop from 0.3929 to 0.3838 was not significant as well.

Based on those results, we can conjecture that having more documents sets

with only a single manual summary is more useful for training than fewer training

examples with better labels (i.e. multiple summaries). In both cases, we spend

approximately the same amount of effort (as the summaries are the most expensive

component of the training data), however having more training examples helps

(according to the learning curve presented before) while spending effort on multiple

summaries appears to have only minor benefit for training.

3.4 Summary

This chapter presented a supervised learning approach to extractive document

summarization based on structual SVMs. The learning method applies to all sub-

modular scoring functions, ranging from pairwise-similarity models to coverage-

based approaches. The learning problem is formulated into a convex quadratic

program and was then solved approximately using a cutting-plane method ac-

chieving a constant factor approximation. In an empirical evaluation, the struc-

tural SVM approach significantly outperforms conventional hand-tuned models on

49

the DUC ’03 and ’04 datasets. A key advantage of the learning approach is its

ability to handle large numbers of features, providing substantial flexibility for

building high-fidelity summarization models. Furthermore, it shows good control

of overfitting, making it possible to train models even with only a few training

examples.

50

CHAPTER 4

CREATING PRODUCT COMPARISONS

Drawing inspiration from the approach described in the previous sections, we

can apply the same ideas to a novel task. This will demonstrate the flexibility of

the approach and provide another use case where learning helps to streamline the

information access.

To facilitate direct comparisons between different products, an approach to con-

structing short and comparative summaries based on product reviews is described

in the following sections [94]. In particular, the user can view automatically aligned

pairs of snippets describing reviewers’ opinions on different features (also selected

automatically by the approach) for two selected products. Again, it uses a sub-

modular objective function that avoids redundancy, that is efficient to optimize,

and that aligns the snippets into pairs. Snippets are chosen from product re-

views and thus easy to obtain. The experiments show that the method constructs

qualitatively good summaries, and that it can be tuned via supervised learning.

4.1 Motivation

After deciding what kind of product to buy (e.g. a cell phone), it is often still hard

to make a good choice due to abundance of different brands and models. Using

the internet as a convenient source of information, we can usually find a wealth of

data describing many products – even more so if we plan to make our purchase

online too. First, reading in-depth professional reviews might help us to familiarize

ourselves with strengths and weaknesses of a certain product, but does not directly

give us direct understanding of how it compares to other choices. Second, we

51

can find tables comparing products, but they usually list only product feature

specifications as documented by the manufacturer and do not provide insight into

how those features translate into usefulness during the actual use. Third, we can

find user reviews of products which describe experiences of using the product and

are often helpful in making the purchasing decision. However, the major drawbacks

are the need to read many reviews to get an estimate of agreement between users

and the need to manually compare different products (by keeping the contents of

the reviews in mind).

The aim is to fill-in this space and provide a way of explicitly comparing prod-

ucts of the same type (e.g., competing cell phones). These comparisons should

reflect users’ experiences (i.e., are based on product reviews), so that they can

complement specification-based comparisons tables.

Many online retailer websites already provide user reviews. In this approach,

an additional view of these reviews is providing a compact (to avoid the need to

read many long reviews) and comparative (to facilitate decision support) summary

of them. In other words, the approach selects important snippets from the reviews

of one product and present them aligned with snippets talking about the same

aspect from the reviews of the other product. This allows users to quickly read

through the aligned pairs describing reviewers’ opinions on important aspects of

the two products they are trying to compare.

Figure 4.1 shows an example of what we would expect from the system. Each

pair talks about one aspect of the product and the selection should represent

the most important ones (as defined by the reviewers’ selection of which ones

to mention). The snippets give insight into how well the product specifications

translate into real-world utility based on reviewers’ experiences and how do they

52

Product Comparative Snippet Pairs
A battery lasted for about 7h of web browsing
B I got about 8h but only if I disabled wireless
A screen has a good uniform lighting
B there was a slight light bleed on the screen
A buttons were hard to press
B despite small buttons, they were easy to use

Figure 4.1: Illustrative example of a comparative summary for products A and B.

compare to a competing product. Reading such summary provides an alternative

to time-consuming reading of many reviews and at the same time provides direct

comparison between different purchasing choices.

4.2 Model

Let’s assume that the user selects two products A & B to compare against each

other, and that each product p ∈ {A,B} comes with a respective set of reviews

Rp = rp1, ..., r
p
np (obtained from e.g. online retailer’s website). Each set of reviews

Rp is then split into snippets Sp = sp1, ..., s
p
mp (by e.g. using sentences as snip-

pets). Finally, objective function F is used to select a set of snippet pairs (sAi , s
B
j)

(where both snippets describe the same aspect but for two different products) that

represent the final summary.

Each snippet is represented as a vector (in the simplest case using a bag-of-

words TFIDF scores; otherwise snippets can be represented using any features) and

vpk(x) represents the value of feature x in snippet spk (e.g. TFIDF score of word x).

To construct a pair, we want to select two snippets (one for each product) such that

they talk about the same aspect (i.e. are aligned). To promote good alignment we

use sum of features in the intersection of the two snippets (Eq. 4.1). Furthermore,

53

we want to also account for the information outside the intersection to promote

showing the differences (instead of just finding the most similar snippets). To

achieve this we use the sum of features outside of the intersection (Eq. 4.2), but

clamped to be less or equal to the value of the intersection. Clamping the score

avoids assigning high scores to some bad corner-cases (e.g. two long snippets being

aligned only on the word “the”). Finally, for any candidate (sAi ∈ SA, sBj ∈ SB)

we then use Eq. 4.3 (with the favorable properties of having a good alignment and

including useful comparative information) to score the given pairing of snippets.

c(sAi , s
B
j) =

∑
x∈sAi ∧x∈sBj

vAi (x) (4.1)

g(sAi , s
B
j) = min{

∑
x∈sAi ∧x/∈sBj

vAi (x), c(sAi , s
B
j)} (4.2)

f(sAi , s
B
j) = g(sAi , s

B
j) + c(sAi , s

B
j)+

c(sBj , s
A
i) + g(sBj , s

A
i)

(4.3)

Let’s consider some examples of bad snippet pairs to better understand why

we selected this scoring function. Snippet pair (the battery life is good, the screen

had some light bleed) is a bad choice because the snippets overlap only on the word

“the”. It does not get chosen because the score is limited by the intersection. Pair

(all buttons are big and very easy on the fingers, has buttons) is highly unbalanced

(left snippet adds a lot of weight if we naively summed the word weights) but the

score is again limited by the intersection. In the third example (and the screen has

fantastic colors, while the screen has fantastic colors) we have a large intersection,

but still a low score because we do not have much product specific information (and

54

thus parts outside the intersection do not add much weight). The approach still

includes coverage terms (and thus gives weight to frequently occurring phrases),

however it prefers to select and point out the differences (to facilitate deciding

between the products).

In contrast to scoring a single pair of snippets (Eq. 4.3), the main objective

function (Eq. 4.7) is a submodular set function. In addition to selecting aligned

pairs talking about important aspects, we can now select diverse pairs that give

a good coverage of the source information (original reviews) while avoiding re-

dundancy. We parametrize this objective with weight vector w (where scalar wx

corresponds to the feature x), which allows for supervised learning, but can be

substituted with 1 in the simple case of uniform weights.

The objective function F (Eq. 4.7) follows a similar pattern to the individual

pair scoring. To simplify the notation we use α(S) to represent the union of all

words present in snippets for product A included in S but not for B, similarly β(S)

for words in B but not A and γ(S) for the union of all words in the intersections.

Function H sums the largest weights for all words (thus resulting in diminishing

returns for covering a word multiple times) in the target set (i.e. intersection

X = γ(S) or the remainder corresponding to A or B). The final objective (Eq.

4.7) is composed of four parts (corresponding to intersections and remainders using

weights for A or B).

HA(S,X) =
∑
x∈X

max
(i,j)∈S

wxv
A
i (x) (4.4)

HB(S,X) =
∑
x∈X

max
(i,j)∈S

wxv
B
j (x) (4.5)

55

Gp(S,X) = min{Hp(S,X), Hp(S, γ(S))} (4.6)

F (S) = GA(S, α(S)) +HA(S, γ(S))+

HB(S, γ(S)) +GB(S, β(S))
(4.7)

Eq. 4.7 can be efficiently maximized using a greedy algorithm (linear in the

number of candidate pairs and selected set cardinality) which achieves a constant

factor approximation [73] and works well in practice.

4.3 Evaluation

Data. Evaluation of this approach was performed using reviews from Amazon’s

web site. The reviews were scraped for 8 tablets (from different manufacturers) and

then split into sentences based on punctuation. Next, sentences are parsed and, if

necessary, further split them into smaller snippets (e.g. in the case of two clauses

connected by “and”). By doing this we obtain in the order of 10000 snippets per

product. Experiments were performed using TFIDF weighting, where we treat

each review as one document.

Filtering. Because we are selecting pairs of snippets, the number of candidate

pairs (and thus running time of the greedy algorithm) grows quadratically with

the number of snippets obtained from the reviews. To speed up the selection of

which pairs to present to the user, the set of the top most similar snippets (using

cosine similarity) was precomputed. Each product pair (for which we want to show

a comparison) is limited to the top 10000 most similar pairs while running the

56

greedy algorithm (for performance reasons). This is a reasonable number based

on my empirical observations and the fact that even within this limited set the

similarities in the bottom part already became very weak.

Labels. For the purposes of the evaluation and supervised learning we require

labeled data. The labels are per snippet pair and are defined as follows:

+1.0 a good pair (the two snippets are talking about the same aspect and contain

relevant/useful information about the product)

+0.5 a misaligned pair (at least one snippet contains useful information but it

does not talk about the same thing as the other one, e.g. “battery life was

good” and “the battery is hard to replace”)

-0.5 irrelevant comments (e.g. reviewer discussing seller’s customer service re-

sponse)

-1.0 a bad pair (the pair contains no useful information, is nonsensical, etc.)

Qualitative Evaluation. Figure 4.2 shows the top 5 pairs selected by the

method comparing the Apple iPad with the Google Nexus tablet. All selected

pairs are “good” according to the labeling and they also fit our goals: they are

aligned (both snippets talk about the same aspect, e.g. microsd slot), they are

balanced (no very short snippets paired with extremely long ones), and they talk

about a non-redundant set of topics (e.g. storage space, expansion slots, email

accounts etc.).

Uniform weights. This approach can be used in a non-learning setting (where

we do not require labels except for the evaluation purposes). In this case we

use uniform weights by setting w = 1. The results of this scoring function are

57

snippets for Apple iPad snippets for Google Nexus
an ipod built in so you can listen to
your favorite tunes via the music app
or download new music via the itunes
app

have to download specific apps to be
able to download anything since sa-
fari doesnt handle downloads and you
cant add music to the ipod app with-
out first synching with itunes unless
youre purchasing from itunes on the
device itself

to sync my gmail contacts i had to set
up my gmail account as a microsoft
exchange account this is stupid why
cant i just set it up as a gmail account
and automatically sync my contacts
without the extra hassle

setup was easy and it synced flaw-
lessly with my gmail account auto-
matically downloading apps

no microsd card slots hdmi or any-
thing

miss from other tablets when using
this one is the microsd expansion
slots that so many android tablets
have

millions of people use their comput-
ers for gaming and with the iphone
and ipod touch having taken on a
clear role as a gaming console that
has been as revolutionary for mobile
gaming as the wii was for livingroom
gaming

you plan on gaming and storing mu-
sic you may have a bit of trouble with
running out of space

you care to pay for the extra space or
connectivity is a matter of personal
preference i opted for just the 16 gig
wifi only model

if you think you might like some extra
storage space then i suggest getting
the new 32gb model that was recently
released

Figure 4.2: Aligned snippet pairs selected by the method comparing two tablets.

compared against the following baseline, which simply selects the top most similar

snippets as the final output. The only additional restriction is that no snippet may

be selected more than once. Note that this simple baseline does not account for

redundancy (except for not repeating the same snippet) and coverage of what is

important, but only strives to maximize the intersections of snippets.

Comparison of the method with the baseline for selecting 40 pairs is shown in

58

Table 4.1. It demonstrates that the simple baseline results in substantially worse

performance than using the approach with uniform weights. Furthermore, after

manually comparing them it appears that the pairs selected by the baseline are

qualitatively worse overall than the ones selected by the described approach.

Learning. The goal of learning in this approach is to generalize across product

pairs. For example, if we get some labels for comparison of camera models A

and B, we would like to use this information to improve the performance for the

comparisons of C and D as well. We can expect this to be possible because, for

example, indicating that resolution is an important factor most likely applies across

all models.

In the experiments for the supervised learning case, an online setting is simu-

lated as we would expect it in a deployed version. For a given product pair that

we want to compare, 5 pairs to be presented to the user are selected using the

approach. For each individual pair, we receive user feedback expressed as labels as

defined in the Labels paragraph. After each such iteration, the model is retrained

using all the labels obtained so far. This is easily doable due to small number of

training examples, but one could also use an incremental learning approach. Fur-

thermore, to facilitate exploration and to simplify the labeling process, the same

pair is not allowed to be selected again in the following iterations. In this way

100 labels are obtained by doing 20 iterations of presenting 5 pairs (using weights

computed in the previous iteration). Altogether, one annotator labeled 100 train-

ing snippet pairs for each of 4 distinct product pairs. The training used a linear

support vector regression (using the label values) on a bag-of-words representa-

tion (with TFIDF weighting). Note that it is possible to use structured prediction

here (similar to how it was done in the Section 3.2). However, this would require

59

Table 4.1: Average performance scores of baseline, using uniform weights and
learned weights across product pairs. the described approach outperforms the
baseline and achieves more than 20% improvement on previously unseen product
pairs through learning.

method score standard error
baseline 7.6 4.2
uniform weights 17.3 0.9
learned weights 22.1 1.1

more complex labels, while simpler independent approach already achieves good

performance.

The performance is measured by selecting 40 pairs from a different product pair

with a disjoint set of reviews (to avoid any possible overlap in the data) but using

the same weights, and computing the score according to the labeling. The reason

for selecting a larger set of pairs (40) is to obtain a more robust score, because

measuring smaller performance changes on only 5 pairs is unreliable due to low

granularity. The results are then averaged across all combinations of one training

and one testing product pair. The comparison in Table 4.1 shows more than 20%

increase in the performance above the uniformly weighted case (which is already

good in itself by looking at the qualitative evaluation on Figure 4.2).

Model variants. I experimented with other possible features in addition to

bag-of-words TFIDF scores, but the ones tried did not noticeably improve the

score (which is already high for the basic model). Furthermore, minor changes to

the scoring function do not immediately break the model from what was observed.

Also, selecting pairs individually instead of using the global submodular objective

still produces reasonable results, but introduces noticeable amounts of redundancy

into the summary as expected.

60

4.4 Summary

Building upon the framework presented in the previous chapter, this chapter de-

scribed an approach to selecting pairs of snippets from reviews in a way that

creates a summarizing product comparison demonstrating the flexibility – sum-

marization is not limited only to condensing articles into short passages of text,

but can also be used to create different kinds of summaries. The modified scoring

function strives to select aligned pairs (both snippets are about the same aspect)

with good coverage of important aspects and low redundancy. The objective func-

tion is again submodular and thus efficient to optimize. The experiments show

that it outperforms a naive baseline even with the uniform weights model. Using a

supervised learning provides generalization across different product pairs by using

labes obtained from user feedback on the presented pairs.

61

Part III

Unsupervised Approaches to

Condensing Information

62

The previous chapter used supervised learning to improve performance of document-

focused summarization approaches. This chapter describes how we can leverage

large amounts of unlabeled data to create interesting summaries providing high-

level insight into contents of document collections. The focus moves from within-

document to corpus-wide temporal evolution of the contents. The two tasks, how-

ever, still remain connected via similar objective function – the described method

uses the same framework of submodular scoring functions as before, but now uses

it to define an unsupervised task.

Currently, we have only rather limited methods for analyzing and understand-

ing electronic archives (reaching back for well over two decades) such as the body

of research papers in computer science. While keyword-based retrieval systems

allow efficient access to individual documents in archives, we still lack methods for

understanding a corpus as a whole. This chapter explores methods that provide a

temporal summary of such corpora in terms of landmark documents, authors, and

topics. In particular, the temporal nature of influence between documents is ex-

plicitly modeled, while summarization is re-interpreted as a coverage problem over

words anchored in time. The resulting models provide monotone sub-modular ob-

jectives for computing informative and non-redundant summaries over time, which

can be efficiently optimized with greedy algorithms. The empirical study shows

the effectiveness of the approach over several baselines.

63

CHAPTER 5

TEMPORAL CORPUS SUMMARIZATION

From news and blogs to twitter feeds, and from research papers to patents,

we are accumulating unprecedented amounts of text in digital form. Advances

in storage technology have allowed us to maintain complete records of these text

streams, and information retrieval research has developed excellent tools for ac-

cessing individual documents in the resulting collections. However, our ability to

analyze and interpret archives on a macroscopic level is still limited. Macroscopic

questions one may ask about a collection range from the creation of a timeline

of influential documents or authors, to the automatic summarization of the main

chains of discussion.

To answer such macroscopic questions about a corpus of text documents, we

can draw upon methods from document summarization (see Chapter 2 and [74]).

Instead of summarizing a single (or small number of) individual documents using

extracted sentences, the aim is to summarize a collection using extracted docu-

ments, authors, or keywords. This shift implies substantial differences in what

constitutes a meaningful summary. In particular, time is more important for the

creation of corpus summaries than it is for conventional summaries, and we can

argue that corpus summaries should reflect the influence that a document or au-

thor had on the future development of the collection. Therefore, the summaries

now take the form of timelines, where components of a summary are defined with

respect to intervals or points of time.

More specifically, we can formulate several variants of the corpus summarization

problem. First, we seek to identify k documents that had the largest influence on

the content of the corpus. Second, for each point in time, we seek to identify those

64

documents that were most influential for that time. Third, we similarly want to

identify the most influential authors for each time-point. And fourth, we would

like to identify key phrases at each time-point that were influential and represent

a coherent segment of the corpus.

All four corpus-summarization problems will be formulated as coverage prob-

lems, where coverage of words in time approximates coverage of abstract con-

cepts. For conventional summarization and diversified retrieval, coverage ap-

proaches [100, 125, 82, 102, 95] and, more generally, submodular summarization

methods [51] represent the state of the art. In particular, they provide an elegant

model of the relevance/redundancy trade-off inherent in all summarization prob-

lems. The key technical challenge for the problem of corpus summarization is the

ability to model time-points and time-intervals effectively, without sacrificing the

computational approximation guarantees that the greedy algorithm provides for

submodular function maximization [72, 35]. This approach models the fact that

different ideas have varied novelty, and that the influence of an idea changes over

time. An important feature of the approach is that it does not rely on observed

or inferred link structure between documents, but requires only the time-stamped

document text. This makes the approach applicable to a wide range of corpora

for which citation information is not available or not reliable. Furthermore, it

allows us to use citation information as “ground truth” for quantitative evalua-

tion. Such evaluations were performed on three scientific corpora and compared to

several baselines. Results show that the described method provides qualitatively

interesting results.

65

5.1 Summarization as Coverage

This chapter explores several variants of the corpus summarization problem, pro-

viding a temporal summary of the corpus in terms of landmark papers, authors

and key-phrases. All approaches are formulated as maximum coverage problems,

which have been found to provide elegant and effective methods for conventional

summarization and diversified retrieval problems [51, 125, 100]. Let’s start by re-

viewing the coverage-based summarization idea in the remainder of this section,

and then extend it to corpus summarization in Section 5.2.

5.1.1 Information Coverage as Word Coverage

Coverage-based summarization methods make a direct analogy between a sum-

mary covering the information content in the object to be summarized, and max-

imum coverage problems as defined in theoretical computer science [35]. The key

assumption of coverage-based summarization methods is that coverage of words

can be used as a proxy for the coverage of information content. By achieving a

good coverage over words, the word coverage approach aims to select a summary

which covers different topics. In this way, coverage-based summarization methods

elegantly avoid redundancy and promote diversity.

While document summarization involves selecting a diverse set of sentences

from it, the idea can be naturally extended to corpus summarization by selecting

a diverse set of documents that maximizes coverage. In this approach, every word

in a document has a weight associated with it, indicating how important it is to

cover this word in the summary. These document weights are either determined

through a heuristic [51] or learned [95]. Documents are selected so that the total

66

Figure 5.1: Illustration of word-coverage objective.

weight of the covered words is maximized; this is illustrated in Figure 5.1. In this

example we want to select at most two documents out of three and each covered

word has unit weight. We see that by selecting d1 and d2 we achieve the best score

of the summary, since we cover the maximum number of words. Note that this is

very similar to the problem described in Section 3.1.2, however here we are now

selecting documents instead of sentences when constructing a summary.

Formally, let U = {d1, d2, . . .} be the set of all documents in the corpus, where

67

each document is represented as a bag of words. The word coverage objective

function, for any S ⊆ U , is defined as follows:

F (S) =
∑
w

θ(w) max
d∈S

φ(d, w), (5.1)

where, φ(d, w) represents the weight of a word w in the document d. One common

choice of φ is the TFIDF score [84]. Moreover θ(w) is the weight for the word w

depending on our belief of the word’s importance. Again, this is similar in general

form to the coverage based scoring function used in Section 3.1.2, except that now

the candidate set consists of documents instead of sentences and thus the summary

can be now described as a set of whole documnets.

5.1.2 Optimization via Greedy Algorithm

With the objective function defining the score of a summarization S, corpus sum-

maries are constructed by finding the set S with the highest score F (S). To obtain

a summary we have to solve the following optimization problem:

S∗ = arg max
S⊆U

F (S). (5.2)

An important property that enables the fast and accurate solution of this opti-

mization problem lies in the structure of F (S). It is well known that the coverage

objective F (S) is monotone (i.e. |S ′| ≥ |S| =⇒ F (S ′) ≥ F (S)) and submodular

[35]. This is now the same setting as was described in Section 3.1.3. The main dif-

ference here is that we have a cardinality constraint (instead of length-dependent

cost) on the number of selected documents in the summary. The greedy Algo-

rithm 3 now proceeds as follows. The algorithm starts with an empty summary.

In each step, a document is added to the summary that results in the maximum

68

Algorithm 3 for greedy submodular function maximization with cardinality con-
straint.
S∗ ← ∅
A← U = {d1, ...}
while A 6= ∅ and |S∗| < k do
z ← arg max

d∈A
F (S∗ ∪ {d})− F (S∗)

S∗ ← S∗ ∪ {z}
A← A\{z}

end while

relative increase of the objective. The algorithm terminates when the budget k is

reached.

5.2 Corpus Summarization Problem

While submodular summarization approaches have been very successful for conven-

tional summarization problems, corpus summarization should not only optimize

coverage of information content, but also reflect which documents and authors were

important in the development of the corpus. In particular, the aim is to include

influence between documents into the summarization objective.

To illustrate the difference between a conventional summarization problem and

the type of corpus summarization envisioned here, consider a corpus consisting

of research papers covering two decades of a particular field. In such a scenario,

conventional word-based coverage approaches would pick several (non-redundant)

survey papers, or papers that otherwise touch on a lot of different areas, since

their union will tend to cover the largest subset of words in the corpus. How-

ever, while these survey papers are indeed a good summary of the content, this

selection will not provide any information about how the corpus developed over

time, what papers opened new areas of activity, and which authors influenced the

69

direction of the field. The subsequent sub-sections will show how the conventional

coverage-based approach can be extended to provide summaries that not only op-

timize information content, but also reflect influence and importance of individual

documents and authors.

To achieve this goal, the remainder of this section shows how to (a) incor-

porate time into the summarization problems, (b) formulate the summarization

objective in terms of influence, and (c) show how corpora can be summarized

not only through landmark documents, but also through influential authors and

key-phrases.

Figure 5.2: Illustrating the coverage function for revealing influential documents.

70

5.2.1 Summarization through Influential Documents

Let’s now explore how the word-based coverage objective can be extended to sum-

marize a corpus through a non-redundant set of influential documents. A pictorial

illustration is shown in Figure 5.2, indicating how influential documents introduce

ideas that increasingly cover the content of documents observed in later years. To

get to an operational formalization of influence in the coverage model, we start

with the following properties:

Spread: An influential document contains ideas that spread to other documents.

The more an idea spreads, the greater is its influence. Note that this aspect

of influence requires us to include a notion of time into the coverage objective,

since ideas can only spread forward in time.

Novelty: A document should only be credited for generating influence with re-

spect to some idea, if this idea was first proposed in that document. If an

earlier document already contained that idea, influence should be credited

to that earlier document. Note that this can be quite different from citation-

based impact measures, which may credit influence to review papers or other

papers that popularize an existing idea.

To capture novelty in the word-based coverage approach, we can redefine φ(d, w)

in the coverage objective (5.1). Intuitively, we do not want to give document d

credit for an idea – as represented by its word distribution – if there already exist

older documents d′, t(d′) < t(d) that already cover this idea. t(d) denotes the year

of publication of the document d. More formally, let N (d) denote the k-nearest

neighbors (for example, based on cosine similarity) of the document d among all

the documents published before it, then we capture the novel contribution of a

71

document as

ν(d, w) = max

{
0, min

d′∈N (d)
{φ(d, w)− φ(d′, w)}

}
. (5.3)

In order to capture spread in the coverage objective, we enlarge the set of

objects that need to be covered to word-time pairs wy for all words w and years

y. This allows the coverage objective to make a distinction between covering the

word w in a year y and covering the same word in year y′. Formally, we generalize

θ(w) in (5.1) and make it dependent on time, where each θ(w, y) separately defines

how important word w is for the given time y. We say that the importance of a

word w in year y is determined by the sum of the TFIDF scores of the documents

in year y:

θ(w, y) =
∑

d:t(d)=y

TFIDF (d, w). (5.4)

Other weighting schemes can work here too (e.g. per-year inverse document fre-

quencies) because the model is oblivious to the precise choice of θ (as long as it

well represents the spread). Note that this allows for modeling the fact that some

documents cover a word in certain years, but not in others. In particular, we say

that a document d only covers a word in those years that are later than its pub-

lication date t(d). This allows us to formulate the objective for finding influential

papers as follows:

F (S) =
∑
w

∑
y

θ(w, y) max
d∈S,y>t(d)

ν(d, w). (5.5)

The above objective multiplies the novel aspect of a word in a paper with how

important a word is in the future years. Intuitively, the score is large when the

set of selected documents S contains documents with high novelty scores as well

as a high influence in the future. We can maximize the above objective using the

greedy Algorithm 3.

72

Note that this approach will not tend to select survey papers unlike the word

coverage approach for two reasons. First (and most importantly), a survey paper

will have a low novelty score since it is mostly based on previous work. Second,

usually survey papers are written after a field is well developed, hence it does not

cover all those documents that appeared before it in (5.5).

The key feature that differentiates this model from related coverage-based ap-

proaches is the insight that modelling the temporal context in which words appear

(and not just the within-document context) can provide a strong signal for sum-

marization tasks. This is achieved by not just using words as proxies for ideas in a

coverage objective, but anchor words at specific time-points to gauge the influence.

Additionally, modelling novelty helps us correctly attribute impact and avoids the

pitfalls of citation-based impact measures.

5.2.2 Timelines of Document Influence

The previous section showed how the coverage objective can be extended to focus

on influential papers, producing summaries that are organized by the publication

date of the influential documents. However, dual to such summaries, we may also

ask the following question: for each year y, what are the documents that most

influenced the content of this year? This is illustrated in Figure 5.3.

The following subsection formulates a coverage objective that identifies the k

documents that had the most influence in a year (for every year). Intuitively, a

document d influences a year y, if it was published before year y, i.e. t(d) < y,

and the novel ideas from d have substantial coverage in year y. Instead of selecting

documents independent of year as in the previous section, we now allow our method

73

Figure 5.3: Illustrating the influence of documents in a particular year.

to select an influential document to cover a particular year y. This means that

our optimization problem now selects from a universe of document-year pairs Uy =

{(di, yi), ...}. Here di is any document from the corpus, and yi is any year such

that yi > t(di). This leads to the following objective which we seek to maximize.

F (S) =
∑
w

∑
y

θ(w, y) max
(d, yd) ∈ S

y = yd > t(d)

ν(d, w). (5.6)

Similar to (5.5), the above objective multiplies the novelty score of word w in a

document d with the importance of the word for a year y. However, (5.6) allows

picking a different set of documents for each year yi.

It is easy to see that F (S) in (5.6) decomposes into a set of independent op-

timization problems – one for each year. We may therefore solve the following

74

subproblem separately for each year and concatenate the solution for each year to

obtain the solution of the original problem. Formally,

Fy(Sy) =
∑
w

θ(w, y) max
d∈Sy ,y>t(d)

ν(d, w). (5.7)

Each of the above objectives is monotone submodular and can be solved using the

greedy Algorithm 3.

5.2.3 Timelines of Author Influence

Analogous to selecting documents that had a large influence on a given year, we can

also ask which authors were most influential. It is easy to extend the optimization

problem from the previous section so that it selects influential authors. Denote with

d(a) the documents in the corpus that were authored by author a. The universe of

items to select from now consists of author-year pairs Uy = {(ai, yi), ...}. Selecting

an author ai for year yi implies that all documents the author wrote before year

yi get selected. This leads to the following objective,

F (S) =
∑
w

∑
y

θ(w, y) max
(a, ya) ∈ S

d ∈ d(a)

y = ya > t(d)

ν(d, w). (5.8)

which again can be broken into independent optimization problems for each year.

5.2.4 Summarizing Timelines with Key-Phrases

Summaries in terms of documents and authors still require the user to read through

some documents from the collection. Let’s now explore whether timelines of influ-

ence can be summarized through key-phrases. In particular, the aim is to identify

75

the points in time when new and influential ideas – as represented by a key-phrase

– entered the collection.

While we already have operational definitions of novelty and influence, we still

need to define what makes a key-phrase a good representative of an idea. We can

conjecture that a key-phrase that represents an idea well will be accompanied by

stable word distribution over the years. For instance, documents that mention

the phrase “HITS algorithm” will probably also mention several words related to

that idea, whereas documents mentioning “Related work” need not have such a

coherent set of overlapping words. The keyphrase T1 in Figure 5.4 is an example of

a good key-phrase, since documents that contain T1 also share many other words.

On the other hand, a key-phrase that is not a good representative of an idea may

occur in documents talking about a variety of different ideas. T2 in Figure 5.4 is

an example of a bad key-phrase.

Let’s formalize this definition of key-phrases as follows. Define the universe

of elements to choose from, U = {(p, y), . . . }, where p is a candidate key-phrase

and y denotes the year when the key-phrase became influential. Let the subset of

the corpus that mentions a candidate key-phrase p be Dp. Intuitively, we wish to

associate with (p, y) a representative document d∗ ∈ Dp which was published in

year y and which was the most influential document in the subsequent development

of Dp. According to the conjecture, for a bogus keyphrase, the associated d∗ will

achieve very poor coverage of the word content observed in documents of Dp that

were published after y, while influential keyphrases will have a document that

covers the associated stable word distribution very well. Following (5.4), we can

model the importance of covering a word in Dp as θ(w, y)p. More precisely,

θ(w, y)p =
∑

d∈Dp:t(d)=y

TFIDF (d, w).

76

Figure 5.4: Illustrating the difference in word distributions over time between a
bogus term and a genuine keyword.

d∗(p, y) = arg max
d∈Dp:t(d)=y

∑
w

∑
y′>y

θ(w, y′)
p
ν(d, w).

With this d∗ for each element in U , we can formulate the objective

F (S) =
∑
w

∑
y

max
(pi, yi) ∈ S

y = yi

ν(d∗(pi, yi), w)θ(w, y)pi . (5.9)

Again, the objective decomposes into independent sub-problems for each year, and

77

Algorithm 4 for greedy submodular function maximization with budget con-
straint.
S∗ ← ∅
A← U = {p1, ...}
z∗ ← arg max

p∈A|C(p)<k

F ({p})

while A 6= ∅ and C(S∗) < k do

z ← arg max
p∈A

F (S∗ ∪ {p})− F (S∗)

C(p)
S∗ ← S∗ ∪ {z}
A← A\{z}

end while
if F (S∗) < F (z∗) then

return z∗

else
return S∗

end if

we can rewrite it for each year y as,

Fy(S) =
∑
w

max
(pi,yi)∈S,yi=y

ν(d∗(pi, yi), w)θ(w, y)pi . (5.10)

Unlike in the previous optimization problems, we now associate a cost C(p, y) =

|{d ∈ Dp : t(d) = y}| with each element of S. This is done to encourage associating

a key-phrase with the point in time when it begins to gain popularity. The number

of documents published in a year mentioning a key-phrase is used as a proxy for

the maturity of an idea. The optimization problem is,

Sy
∗ = arg max

S⊂U
Fy(S)

subject to
∑

(p,y)∈S

C(p, y) ≤ K.

This formulation is an instance of the budgeted coverage problem with a linear

cost constraint, and the greedy Algorithm 4 is (1− 1/
√
e) optimal [51, 35].

78

5.2.5 Alternate Formulation using Global Optimization and

Adaptive Budget

For simplicity, the timeline-generating optimization problems so far were decom-

posed into independent sub-problems, one for each year. This was possible since

we imposed a cardinality constraint for each year. However, we can also define a

global optimization problem across all years that constrains the maximum amount

of content covered in each year. This results in a summary that will choose more

documents from years that actually contain more interesting information. For-

mally, we change the global objective from (5.6) into

F (S) =
∑
w

∑
y

min{Fy(Sy), τFy(Uy)}, (5.11)

where the parameter τ determines how much relative word content per year we

want to cover, Fy(Sy) is as defined in (5.7) and Uy is the whole universe for year y.

This global F (S) is also monotone submodular and can be solved using the greedy

Algorithm 3. Whereas earlier we had a cardinality constraint parameter k to set

for each year, we have to set one global parameter τ (setting it higher results in

more detailed summary) and one global k (higher values result in longer summary)

now.

5.3 Evaluation

In this section, the proposed models are empirically evaluated on publicly available

datasets. I first describe the datasets and then present the results of the experi-

ments along with evaluation metrics. The experimental results show the advantage

79

of the approaches compared to other baselines in addition to good qualitative re-

sults.

5.3.1 Datasets

Three corpora containing research publications were used for evaluating the pro-

posed approaches. The Neural Information Processing Systems (NIPS) corpus

contains 1955 published papers over a span of 14 years. Similarly, the Association

for Computational Linguistics (ACL) corpus [79] contains 18041 papers published

in a number of conferences over a span of 39 years. A set of papers published

in the proceedings of SIGIR and CIKM conferences over the years was collected

from CiteSeer. This corpus contains 2097 papers published over a span of 18 years

(the last year being 2007). In all cases, each document (paper) is associated with

its publication year and the collection is limitd to 12 consecutive years ending at

the year before last (the citation graph is also constrained only to those years).

Since novelty of a document is computed based on the nearest neighbors from

the past, the year immediately before this subset is used for this purpose in the

subsequent experiments. The last year is skipped because it does not have any

citations from the future. The early years in ACL and SIGIR-CIKM corpus were

not used because they contain significantly less papers and citations compared to

other years.

All datasets include citation graphs which are used for evaluation purposes,

however the method does not require citation information and could thus be easily

applied to other document collections. Note that the citation graphs are sparse

as they do not include references to and from the papers outside the corpus. The

NIPS collection has 1512, the ACL collection has 82892 and the SIGIR-CIKM

80

collection has 1750 citations between papers inside the corpus. In addition to

regular research papers, NIPS corpus also contains meta documents representing

volume indices. Such documents were manually removed since they are very easy

to spot. Also, the words were pruned and only those words which occurred at least

twice in a document and in at least three documents in the corpus were retained.

This simple heuristic removed a lot of noise introduced by the OCR system, and

allowed for meaningfully interpreting the influence. Every document is represented

by the TFIDF score (computed on the whole corpus) of the words contained in

it after pruning, and the resulting document vector is normalized to unit length.

The cosine similarity between the document vectors is used to compute the nearest

neighbor in the past (to determine novelty). The exact nearest neighbors are not

required, and in the case of a very large corpus, approximate methods to find

similar documents can be employed to sidestep the quadratic time complexity of

this step.

5.3.2 Influential Documents

The word coverage approach (from Section 5.1) obtains a summary by maximizing

the word coverage. Section 5.2.1 argued that influential documents have novel

ideas which subsequently spread through the corpus. This experiment selects the

most influential papers based on the objective (5.5) which captures novelty of a

document and its sphere of influence, and compares it with those selected by the

simple word coverage objective (5.1). Since there is no standard way of measuring

the influence of a paper, the citation structure available in the corpora is used

instead. The total citation count for the set of papers (i.e., the number of times

these papers were cited by documents in the corpus) selected by any algorithm. is

81

used to quantitatively evaluate whether the selected papers were indeed influential.

There have been several criticisms of citation-based impact measures and some

effort [12, 119] addresses them. However, for a comparative study, citation counts

appera to be the least biased choice in this setup.

Several baselines are considered to provide a point of comparison for the cov-

erage based approaches. The simplest baseline is to randomly select documents

until the budget is reached (random). Another baseline that was considered is to

select the most prolific authors in the conference (in terms of number of accepted

papers) and then select the required number of papers from the union of their

papers (authors). More concretely, the authors are first ranked according to the

number of papers in the collection they authored. Next, the 10 most prolific au-

thors are selected. Finally, the same number of papers for each author are sampled

uniformly at random with replacement from the set of authored papers. Selecting

papers with the highest observed citation inlinks in the corpus (bound) is used to

compute the upper bound on the total possible citation count.

In the experiment, 100 documents are selected from the NIPS, SIGIR-CIKM

and ACL corpus that maximize the respective objective function. The experiments

presented here are using unigrams as the elements in the universe. However, the

methods can use other types of elements (e.g. bigrams formed from consecutive

words, for which we observed a similar trend in the results). The results of this

experiments are provided in Table 5.1. Table also also provides standard errors of

these results; they were estimated from the citation count on 10 re-runs of 70%

subsampling of the corpus.

From the table, it is clear that the new approach (infl. papers) gets signifi-

cantly higher citations compared to the word-coverage approach (word cover) in

82

all corpora. Moreover, finding influential papers is computationally cheap (with

running time linear in the size of the corpus multiplied by the number of selected

papers if we do not count the preprocessing step of computing nearest neighbors

for novelty score) and, for example, takes a few seconds for the NIPS corpus on a

standard desktop computer.

method NIPS ACL SIGIR-CIKM
Random 64 (4.6) 422 (41) 84 (7.9)
Authors 115 (4.0) 1097 (49) 86 (4.8)
Word Cover 92 (2.7) 799 (170) 96 (5.2)
Infl. Papers 196 (12.8) 1842 (111) 217 (14.5)
Bound 521 (11.0) 9787 (143) 815 (13.5)

Table 5.1: Total citations obtained by the papers selected for influential documents
and baselines using unigrams. All results use 1-NN for novelty score. The values
in parentheses indicate standard error.

5.3.3 Impact of Using Novelty Score

The approach uses the novelty score (introduced in Section 5.2.1, Eq. (5.3)) to

credit a document for an idea only if it was the first one proposing it. Novelty

is captured by considering k nearest neighbors in the past and subtracting their

word weights (clipping at 0 to prevent negative values) from the current document.

This subsection explores the impact of choosing different values of parameter k.

Results for the word coverage approach on NIPS and ACL (as examples of two

slightly different behaviors) using unigrams or bigrams as elements in the universe

are presented in Figure 5.5 . We would expect word coverage to improve when using

novelty scores because the coverage most likely does not choose the initial (highly

cited) paper but some later one with better coverage (e.g. a derivative paper that

also incorporates some other ideas). This intuition is confirmed by the results

83

Figure 5.5: Comparison of results of word coverage approach when using different
values of k (number of nearest neighbors for computing novelty score) on NIPS
and ACL corpus for unigrams and bigrams. The horizontal axis represents the
value of k and the vertical axis relative performance (number of citations) when
compared to not using the novelty score (i.e. k = 0).

showing that using more neighbors improves the score as we incorporate more and

more information about novelty. After a point we can see that performance starts

dropping again because we are subtracting too much content.

Almost all coverage approaches benefit from using 1-NN, but increasing k only

improves performance for word coverage approach. I believe that using 1-NN helps

because it mimics a language background model and penalizes frequent non-content

words, while increasing k above that does not bring significant benefits because we

already model temporal behavior with the choice of our model.

84

5.3.4 Timelines of Document Influence

This sub-section evaluates the approach to create timelines of document influence

and compares it against several other baselines. For each NIPS, ACL and SIGIR-

CIKM corpus, 10 documents are selected for each year.

Again, we can consider the random baseline (random) and the 10 most prolific

authors (authors). The authors baseline is constructed as follows: first create a

union of all papers by 10 authors with the highest number of accepted papers, and

for each year select 10 documents randomly from this union (with replacement)

published on or before this year. The upper bound on the citations (bound) is

computed by selecting papers with highest citation count in a given year (i.e. we

count only citations occurring in that particular year) – let’s call this the current

citations.

The selections are evaluated based on the citation network as before. In the

previous section, the evaluation was based on the total number of citations a paper

obtained. However, in this section, it is based on the current citations. To select

a timeline of influential papers, we select papers that have maximum influence in

a particular year (for each year). So, to quantitatively evaluate the selections, if

a paper is selected as influential in the year y, we should count the number of

citations it gets in the year y (i.e. only citations from papers citing it in this year

count) and then sum them across all years.

Results for this experiment are summarized in Table 5.2. We can see that

random baseline and authors have inferior performance compared to described

approach (timeline). Note that the gap between our approach (timeline) and the

bound is larger than in the influential papers experiment. I believe this is due

85

to timeline being an inherently harder problem – not only do we have to find

influential papers but we also have to specify exactly when were they influential

(as the evaluation metric counts only citations from papers citing in that selected

year). The approach to constructing timelines is fast to compute (time complexity

is linear in the number of years, papers selected and corpus size) and, e.g., takes

less than 3 seconds on the NIPS corpus on a standard desktop computer.

method NIPS ACL SIGIR-CIKM
Random 14 (1.4) 85 (11) 11 (1.2)
Authors 14 (1.2) 84 (14) 7 (1.0)
Timeline 60 (3.0) 190 (14) 30 (1.9)
Bound 269 (3.0) 3316 (11) 367 (4.1)

Table 5.2: Current citations (i.e. number of citations from papers citing in that
particular year) obtained by the papers selected for timeline and baselines using
unigrams as elements of the universe. All results are for 10 re-runs of 70% sub-
sampling and using 1-NN for novelty score. The values in parentheses indicate
standard error.

5.3.5 Timelines of Author Influence

This section describes experiments based on the objective proposed in Section 5.2.3

to select timelines of Author Influence. Instead of selecting papers we now con-

sider meta-documents describing authors and construct a timeline showing which

authors were important and when. In addition to this, for each selected author

we constrain the corpus to that author’s papers and find the most influential ones

(including their timeframe of prominence).

A visualization of the results for NIPS corpus is presented on Figure 5.6. By just

looking at the plot it is easy to gain some insight into the development and content

of the corpus. Features such as some authors having an influence throughout the

86

whole corpus (e.g. Jordan, Sejnowski) are easy to spot. We can also see that some

authors have had more influence only in specific timeframes (e.g. Hinton in the

early years and Smola in the later years). In addition, looking at the selection of

an author’s most influential papers gives us insight into what topics they usually

write about.

Although there are quantitative metrics which might be used to judge the

output of the system to pick influential authors (e.g. H-index), note that we require

these metrics to be computed for the timeframe of the collection only. Given the

very sparse citation graph, using only observed intra-collection citations is expected

to be a noisy signal. Qualitative results clearly indicate good performance of our

approach and I feel that any simple adaptation of existing measures would not give

a significantly better insight.

5.3.6 Key-phrase Extraction

Experiments to find prominent key-phrases in each of the scientific corpora were ran

with the formulation described in 5.2.4. The trigrams and bigrams that occurred in

at least 0.2% of the documents in the respective corpus were considered for the set

of candidate key-phrases. Moreover, if a trigram is admitted to the set of candidate

key-phrases, the constituent bigrams are not considered as candidates. This is a

simple heuristic that recognizes that the lexical unit for phrases is usually a trigram

or bigram and greedily prefers trigrams. More sophisticated ways to determine the

set of candidates are possible, say independently running a Part-Of-Speech tagger

and considering only noun phrases. The number of candidate key-phrases using

this heuristic rule is 3035 for the NIPS corpus, 8139 for the SIGIR-CIKM corpus

and 4687 for the ACL corpus. The fewer number of candidates in the ACL corpus is

87

Figure 5.6: An example of applying our framework to select the most important
authors and the most important papers for the given authors using our framework.
In each of 11 consecutive years of NIPS three authors are selected and then that
author’s most influential paper is selected in a particular year. The width of the
author’s slice (relative marginal benefit) represents the importance relative to other
selected authors (which is computed as decrease in objective score if we remove
that author from the collected set).

explained by the fact that requiring the document frequency of bigrams or trigrams

to be 0.2% of a much larger corpus is a more restrictive filter.

There are no ground truth key-phrases to evaluate the output of the system;

also, it is hard to quantitatively judge the quality of an influential key-phrase’s

associated timestamp. Therefore the average number of citations in the collec-

tion of documents that mentions a key-phrase is used as a measure of its quality.

Concretely, for a key-phrase p and the subset of the corpus Dp that mentions it,

Score(p) =
∑

d∈Dp;d′∈Dp;d′ 6=d

Cite(d← d′)/ |Dp|

where Cite(d ← d′) indicates that document d is cited by d′. The objective in

88

Section 5.2.4 is optimized for each year with a budget of 3, and the set of all unique

key-phrases is then collected. The reported scores for this approach (presented as

TimeCov in Table 5.4) are the sum of Score(p) for each unique collected key-phrase

p. As a point of comparison, the number of unique key-phrases collected as Count

is also reported. A simple baseline for this experiment would be to pick the most

frequent key-phrases occurring in the corpus in each year: this approach is hindered

by the frequent occurrence of redundant phrases. For instance, “neural network” in

the NIPS corpus,“natural language” in the ACL corpus and “information retrieval”

in the SIGIR-CIKM corpus appear in such an overwhelming majority of documents

over all the years as to drown out other informative candidates. This baseline is

reported as MostFreq in the results. Another approach we can compare with

is to pick candidates that optimize the Score directly in each year; this can be

interpreted as an upper bound for this evaluation metric. Table 5.3 also provides

the collected candidates from the coverage approach and one that optimizes the

Score(t) directly for the SIGIR-CIKM corpus. Several informative phrases that

come from diverse areas of research covered in SIGIR and CIKM get selected in

the coverage approach. Furthermore, a visualization of the key-phrases over years

for the NIPS corpus is shown in Fig. 5.7. Area of the shaded region corresponding

to a term represents the fraction of documents observed in the corpus in that year

that mention that particular term.

5.4 Summary

This chapter presented a submodular framework for temporal corpus summariza-

tion. The notion of word coverage was extended by asserting that summaries cover

important concepts by covering associated words over a time interval. A timeline

89

Year Coverage CiteScore
Keyword Marginal Keyword Marginal

Influence Keyword Influence

1995
relevant document 17.240 information retrieval 20.0
query expansion 5.464 singular value 5.0

training set 5.0

1996
search engine 8.228 speech recognition 3.5
semantic indexing lsi 6.034 block size 2.0
filtering system 2.818

1997
web search 11.853 retrieval system 5.0
training data 7.871 test collection 5.0
language model 6.760

1998
language model 5.411 summarization system 8.0
retrieval model 4.799 naive bayes 7.0
learning algorithm 4.024 unjudged document 6.0

1999
language model 12.358 general english 10.0

pearson correlation 5.0

2000
clustering result 4.354 cumulative gain 8.0
document model 3.130 expansion term 4.0
cori algorithm 2.645 event detection 4.0

2001
cross-language inf. 4.897 smoothing method 14.5
user information 3.450 topic distillation 7.0
hits algorithm 3.044

2002
training example 2.099 translation disambig. 3.0
term dependency 1.868 hoc retrieval 3.0
input stream 1.698

2003
query language 2.509 image feature 5.0
feature selection 1.779 finding expert 5.0
document clustering 1.751 novelty detection 4.0

2004
training image 1.887 regularized logistic regr. 3.0
inverted index 1.413 label information 3.0
element retrieval 1.100 web browser 3.0

2005
xml retrieval 3.926 existing retrieval fun. 3.0

new system 2.0
index construction 2.0

Table 5.3: The list of key-phrases for SIGIR-CIKM selected by the greedy algo-
rithm solving the budgeted coverage problem with budget of 3 and by optimizing
the citation score.

of influential documents, or authors, or coherent key phrases was constructed us-

ing this approach, providing concrete suggestions for further and more detailed

90

Figure 5.7: A timeline showing the evolution of the key-phrases selected by the
coverage approach in the NIPS corpus.

NIPS ACL SIGIR-CIKM
Method Count Score Count Score Count Score
MostFreq 13 2.13 20 34.33 20 7.41
TimeCov 17 4.68 77 116.92 29 12.28
Bound 13 6.09 96 124.10 29 18.82

Table 5.4: Quantitative results of keyphrase extraction.

exploration of the corpus contents. The approach leveraged both the novelty of

a document as well as its influence in the development of the corpus and relied

only on word features; in particular, it does not require a citation structure to

infer influence across time. Therefore it is applicable to any textual collection

which provides timestamped documents. The optimization objectives used mono-

tone submodular functions to trade-off relevance and redundancy elegantly, and

were again solved using an efficient greedy algorithm with a constant factor ap-

proximation guarantee. Experiments empirically demonstrated that the approach

performs better than several baselines using citation based performance measures.

Results also include qualitative timelines for a few scientific corpora.

91

Part IV

Crowdsourced Approaches to

Condensing Information

92

The previous chapters described how we can use summarization to condense

information and thus answer some user needs. One of the challenges was specifying

what is a good summary and obtaining labeled data. However, a possible alterna-

tive is to take by the users for the users approach. Let users express their wants by

giving us feedback on presented content, which in turn can then be used to rank

and surface good content (where “good” is defined by the users themselves) for

their consumption.

The following sections first try to understand if users are giving us straightfor-

ward answers with their feedback and if not, what are the biases in their voting

behavior. The second part of this chapter then shows how we can use the better

understanding of the users’ voting model gained form real-world data to improve

the ranking algorithm.

93

CHAPTER 6

CONTENT RATING BEHAVIOR ON UGC

User-generated content (UGC) is now one of the primary sources of useful

content on the Web. But while there is a tremendous volume of it — thanks to

a lack of barrier to contribution — not all of it is equally good. This means that

sorting and ranking content is essential to making UGC actually useful to a site’s

viewers. To this effect, most sites with user-generated content — such as reviews

on Amazon, answers on online Q&A sites like StackOverflow, articles on Digg

or Reddit, or comments on news articles and YouTube videos — allow viewers

to rate content and use these ratings to determine the order in which to display

contributions.

In an ideal world, users would respond to questions about rating — such as

Amazon’s “Was this review helpful to you? Yes/No” query — by judging each

contribution exclusively based on its absolute merits, independent of the contribu-

tion’s display context or its previous ratings. But does real user voting behavior

resemble this ideal?

Addressing this question and understanding user rating behavior is important

for more than one reason. First, when contributions are displayed in order of

aggregate user ratings (such as the ratio of “yes” votes to total votes), whether

higher quality contributions are indeed ranked higher or not depends on what a vote

actually means: if user voting behavior is such that votes are unfavorably biased by

other factors, the resulting ranking may not be the one the website seeks. Second,

an accurate model of user behavior is important for designing optimal algorithms

to quickly learn contributions’ qualities from votes. In particular, the performance

of learning algorithms based on user ratings will depend on correctly interpreting

94

the information conveyed by the votes in the first place.

This chapter address the question of how users rate content, using data collected

over 5 months on 595 products from Amazon, with daily statistics on the received

votes for each review in this set of products. An absolute rating model, where

users cast votes that depend purely on judging a review’s merit in isolation, is

inaccurate and does not fit observed voting patterns. Instead, users appear to cast

votes that reflect relative, rather than absolute, judgments about reviews’ quality.

In particular, both how a user rates the review, as well as whether a user votes on

it at all, varies with the review’s context — the relative quality of the surrounding

reviews, as well as its current ranking due to ratings from previous voters.

Note that ratings on Amazon reviews provide a relatively “neutral” sample

of user-generated content, which makes them a good environment for understand

voting behavior. In other rating environments, such as comments on news articles

or answers on Q&A sites, votes could (and are anecdotally known to) indicate not

only content quality, but also “Agree/Disagree” or “I like/dislike your opinion”. In

contrast, reviews on Amazon — at least for the vast majority of non-controversial

products1 — are rated by users before the user has experienced the product (since

users would typically read reviews on Amazon to help decide whether or not to

purchase a product), so that thumbs-up/down ratings of reviews on Amazon are

more likely to relate to the review’s quality rather than to reflect agreement or

differences of opinion with it.

1Some books on Amazon do appear to have highly polarized reviews.

95

6.1 Voting Dataset

To understand how users vote on online content, we need a dataset that contains

information on how votes are cast. Publicly available datasets on user-generated

content are typically snapshots of a particular site (such as Amazon) at a spe-

cific point in time, containing information about the content on the site at that

point, current rankings of the content (i.e., the order in which contributions are

displayed), and cumulative ratings (e.g., how many users found each contribu-

tion helpful during its lifetime up until the snapshot). While this allows reason-

ing about, for example, how the content of a contribution influences the votes

it receives, it is not sufficient to address voting behavior — when and why the

contributions accumulated the votes they did.

This led to a creation of a new dataset, which is scraped from publicly viewable

data on Amazon. For every product, Amazon displays a list of all its reviews, as

well as the accumulated votes on each review — how many Amazon users rated

that particular review helpful (or not), up-to that point. A python script was

used to retrieve and parse these web pages to obtain a sequence of snapshots that

contained (for every product) the list of reviews, in what order Amazon displayed

these reviews (i.e., their current rankings), and the number of “yes” and “no”

votes for each review.

A set of 595 products2 was chosen from the top 100 products of six Amazon

“Hot New Releases” lists (Books, Video Games, Music, Movies & TV, Toys &

Games, Electronics) as of 2nd October 2012. These products were tracked daily

for a period of 5 months from October 2012 to March 2013. Over this period,

the script was periodically ran to collect data on the 50 most helpful reviews (or

2Five items in two lists did not parse correctly and were automatically excluded.

96

fewer, if there are less than 50 reviews) for each of these products. The choices in

data collection were driven by the following reasons. (i) First, a subset of products

was chosen rather than all products because tracking all products on Amazon

would be unjustifiably resource-intensive. (ii) The focus was on popular products

which receive more reviews than niche products3 to ensure adequate data points

for each review. (iii) Finally, following products from ‘the beginning’, i.e., from

the time of their launch on Amazon or close to it is desired because we want to

include early votes on early reviews on products in the dataset. Amazon’s “Hot

New Releases” lists were used as a proxy for future popularity, and to address

the problem of choosing a subset of popular products which also allows observing

the early voting dynamics: these lists contain new (just or soon-to-be released)

products that Amazon expects to be popular enough to satisfy the criterion for

(predicted) high reviewing and voting volume. The tracked products were all

selected at the same time, which was at the beginning of the data collection period.

Each product is restrictd to no more than 50 top reviews to politeness concerns,

since there are a small number of popular products that are collecting thousands of

reviews — a single pass using a reasonable delay between HTTP requests already

required over an hour, even when restricted to 595 products with at most 50 reviews

per product.

The interval between the script runs was one day (although the time of day

when the script ran was not fixed, and changed over time). This lead to a dataset

containing 150 daily snapshots, 71504 reviews and 497088 votes. The key feature

of this dataset is that it allows us to study how votes were cast over time, and as a

function of the context in which the review was viewed. In particular, we can see

3Note that this means that the observations regarding voting behavior are possibly only valid
for reviews on popular products. However, this is arguably the most relevant set of reviews for
which to study voting behavior, since reviews on frequently-purchased products are likely the
most useful category of reviews on Amazon.

97

how many votes a review received on a particular day, its rank on that day, and

how other reviews were ranked in relation to it.

Note that there are some important caveats about the data, however. (i) The

data only consists of daily snapshots and not individual user interactions, so that

users, and rankings, are aggregated at the daily level. Specifically, this means that

if the ranking changed more often than once per day, we have a mismatch between

the data and some actual users’ experiences, which can blur the measurements.

(ii) We do not have a way of tracking page views. This is relevant to the analysis of

participation, i.e., when users choose to vote; see Section6.4. (iii) Finally, there are

a few instances of incorrect parsing due to changes in Amazon’s webpage structure,

which needed to be manually corrected for the final dataset. Nevertheless, there

remain rare instances of mismatched data as a natural consequence of the temporal

nature of the data we seek (since the script could not be rerun to correct any given

snapshot after the corresponding day had passed).

Filtering. The dataset is filtered to focus on voting behavior on the “average

review”, eliminating all (day, review) pairs where a review received more than 10

positive or negative votes between consecutive snapshots (except for the analysis

described in Section6.3.1 and Section6.4.1). This is to prevent such rare, very

popular reviews from dominating and overshadowing the overall pattern of voting

on reviews, since most reviews — even for the subset of popular products — receive

at most a few votes (if any) between consecutive snapshots (i.e., within a single

day interval). Note that this means that the results are likely not indicative of

voting behavior on the extremely popular reviews which might have interestingly

different voting patterns. The focus here is on the remaining datapoints (after

filtering ¿90% of datapoints and ¿60% of votes are retained) which represent the

98

more typical review on Amazon (for this dataset the average number of votes in

a day is less than 2 even if we exclude days with no votes). Let’s note, however,

that the trends observed in the plots in Section6.4 and Section6.3 can still be seen

when this data is not filtered out, albeit with more noise.

6.1.1 Rating Accumulation Process

Let’s now discuss how reviews and ratings accumulate as a function of time elapsed

following a product’s release. Figure 6.1 shows that the rate at which new reviews

appear remains roughly constant for almost the first 4 months of the 5-month data

collection period, and remains non-negligible, although clearly lower, even in the

last month. The plot does not start at zero reviews because the lists of products on

“Hot New Releases” can also contain already released products, so that some very

early reviews may already be present at t = 0. Also, since only the first 50 reviews

are scraped for each product, any new reviews that appear below the 50th rank

are ignored (unless and until they place in the top 50) — so this plot is essentially

a lower bound on the actual total number of reviews4.

Similarly, new votes appear throughout the collection interval (Figure 6.1).

Again, the rate slows down over time but remains substantially larger than zero.

The kinks in this plot arise from cross-listing — a jump occurs when Amazon

cross-lists a review (along with its votes) from one product (not in the dataset) to

another similar one (that is tracked) on that day. Figure 6.1 suggests that observed

the voting patterns are not particularly influenced by the “age” of the reviews, in

the sense that most of the reviewing and voting does not occur only very early in

4This is also the reason why we can have more than 29750 (595 products times 50) reviews in
total, since all reviews that have ever been in the top 50 are included into the total, even if they
are not seen in all snapshots.

99

Figure 6.1: Total number of reviews and votes (y-axis) over time (x-axis in days).

the data set5.

6.1.2 Converged Rankings

Approximately 4 months after the end of the data collection period, the full ranking

of all reviews is collected for all products in the dataset (i.e., not restricting it to

the top 50 reviews as for the daily snapshots). The rank of a review in this final

snapshot is reffered to as its final true rank, accounting for ties6.

Comparing these final true ranks to the observed ranks towards the end of the

data collection period shows that the top 30 positions of the rankings are largely

stable by this time. In particular, Figure 6.2(b) shows that during the last 30

5A natural concern could be that voting stops shortly after product’s introduction and this
results in skewed averages when using the whole length of the data.

6Reviews with the same number of helpful and unhelpful votes are considered tied; these
largely occur between reviews with 0 or 1 total votes, of which there are many in the dataset.
Note that if such reviews were not considered tied at the same rank, then rankings would not
stabilize since Amazon appears to continue to reorder such reviews with the same (low) number
of positive and negative votes.

100

days of the data collection period, most reviews are already consistently close to

the ranking positions observed 4 months later (after removing reviews that were

published after the data collection period ended). Therefore we can conclude that

the ranking process converges and that the relative ordering of reviews stabilizes.

How Amazon computes a ranking in response to the helpfulness votes was

empirically investigated to sanity-check that this convergence is not a pathology

of the (secret) ranking algorithm that Amazon uses (e.g., Amazon may just decide

to fix the ordering after a few months). In particular, a smoothed version of the

ratio of “yes” votes to total votes as the ranking criterion (specifically, ranking

by “yes” votes divided by total number of votes plus one) is considered. This

simple ranking criterion achieves a Kendall-tau rank correlation coefficient (with

ties) of 0.84 (using only reviews with at least 10 total votes and products with

at least 2 reviews). While the correlation is not perfect (Amazon may use factors

beyond user ratings, exploration strategies, and possibly more complex functions

of the ratings themselves), we can conclude that the presented rankings correlate

strongly with the observed helpfulness votes.

The final true ranks of the top 30 reviews7 will be used as an axis for some

of the plots in the analysis. Anecdotally, I believe that these top 30 reviews are

reasonably ordered by review quality, and we can note that Amazon has a large

commercial incentive to provide good rankings. Furthermore, only the relative

ordering of the top 30 results is considered, and the top of the ranking has seen

substantial attention from the users. But even if the final rankings do not reflect

a perfect ordering by review quality, the voting patterns identified below reveal

strong dependencies that illuminate how users cast votes.

7On the figures only the top 30 ranks out of 50 collected positions are used due to data
sparsity.

101

(a) All

(b) Late

Figure 6.2: Number of times (color in log scale, with red being high) a review with
particular daily true rank (x-axis) was presented at a particular rank (y-axis). Left
plot (All) counts over all data, right plot (Late) only over the last 30 days.

102

6.2 Do User Votes Reveal the Absolute Quality of a Re-

view?

When users are asked to rate content, the final goal is to reach some assessment

of the quality of this content. Throughout the following sections, users’ voting

behavior when answering the question “Was this review helpful to you?”, and how

these votes relate to quality is empirically investigated. Let’s start by considering

a natural and simple model of voting behavior, which was assumed in prior work

[129, 26].

Absolute Voting Model. The most natural model of how people vote is

that they simply answer the question “Was this review helpful to you?” in an

independent and objective way. Formally, this can be modeled as each different

user u having a certain probability pur of clicking “yes” for any particular review

r. Over any distribution of users, the observed votes under this model follow a

Bernoulli distribution, where pr = E[pur] is the probability of observing a “yes”

vote on review r, where the expectation is taken over the distribution of users:

P (yes|pr) = pr. (6.1)

Under this model, pr directly reflects the expected quality of review r in an absolute

manner, since pr becomes synonymous with quality. Furthermore, estimating pr

for each review r can simply be done by using the observed fraction of “yes” and

“no” votes, which is the maximum likelihood estimator:

pr =
number of yes votes on r

total number of votes on r
. (6.2)

Let’s call this model of voting behavior the Absolute Voting Model (AVM). Note

that this model, as well as the other models in this section, only describe the

103

polarity of a vote, but not the decision of whether to cast a vote at all or not – this

participation decision is studied in Section6.4.

How accurate is this model of voting polarity and is it supported by the empir-

ical data? Choosing an appropriate test to investigate the merit of the Absolute

Voting Model is somewhat subtle, and a number of obvious tests turn out to be

flawed. For example, a natural test would be splitting the data into two cases: one

includes all the instances where a review is presented above its final rank and the

other the rest. Then we could use e.g. a paired Student t-test with null hypothesis

that votes in both cases originate from the same distribution. If voting is based

purely on a review’s inherent characteristics alone — as in the AVM model —

then being displayed above or below one’s ‘correct’ rank (as given, e.g., by the

final converged rankings) should not change the vote’s polarity. However, this

test introduces a bias: we only get a paired sample when we observe instances in

both bins. For example, such a test would exclude all samples where currently

over-ranked reviews get even more positive votes (and thus never become under-

ranked), while including over-ranked reviews that do obtain negative votes (which

would falsely support a hypothesis where users vote to fix the ranking).

In order to avoid flawed tests where the split of samples into cases to study

voting patterns depends on the votes themselves, the following likelihood-ratio test

that uses the Absolute Voting Model as the null hypothesis is used instead. The

test will identify whether presentation effects — even in their simplest form — can

significantly better explain users’ voting decisions.

Extended Absolute Voting Model. Consider a simple extension of the

AVM, where the probability with which a user votes “yes” or “no” on a particular

review r not only depends on its inherent quality (as in the AVM), but also on

104

the position where this review was presented in the ranked list. Specifically, the

probability of a “yes” vote on a review with inherent quality parameter qr and

presented rank σpres is given by the following logistic model:

P (yes|qr, β, σpres) = logit−1(qr + β σpres). (6.3)

Note that the Extended AVM model has one free parameter qr for each review and

a globally shared parameter β that models the influence of the presented rank σpres

(which is observed). These parameters are estimated using maximum likelihood.

This maximum-likelihood objective is convex, which means that the associated

optimization problem can be solve globally optimally.

Note that the AVM is a special case of the Extended AVM model with β =

0. The Extended AVM with β = 0 merely parameterizes the AVM in terms

of a quality parameter qr, which is bijectively linked to the pr parameter of the

AVM through pr = logit−1(qr). Furthermore, maximum likelihood estimation in

the Extended AVM with β = 0 leads to exactly the same estimate of pr as in

Equation (6.2).

Testing the Influence of Presentation. The nested structure of the AVM

and the Extended AVM enables us to perform a likelihood ratio test that has the

AVM model as its null hypothesis. The test compares the likelihood of the observed

data under the null hypothesis (i.e. β = 0) with the likelihood of the unrestricted

model. If the improvement in likelihood is sufficiently large (i.e., larger than one

would expect from simply having more parameters to optimize over), then the

likelihood ratio test rejects the null hypothesis.

The log-likelihood of the AVM (β = 0) model is −59267.78. The log-likelihood

of the Extended AVM model is −57861.41. Both models are estimated from 136009

datapoints with 233512 total votes. The critical value according to the χ2 statistics

105

for one degree-of-freedom at the 95% confidence level is 3.84, which is much smaller

than the observed difference in log-likelihoods of 1406.37. We can therefore reject

the AVM model in favor of the Extended AVM model with high confidence (p <

0.001). Clearly, users do not give independent assessments of the review quality.

Simply presenting the review in a different position has a substantial effect on their

voting behavior, which means that we cannot take the observed ratios of “yes” and

“no” votes as an absolute measure of quality as assumed in the AVM model.

The rest of the chapter will explore improved models for how users make voting

decisions. As a first step toward such models, let’s look the the estimated β of the

Extended AVM model, which is β = 0.0722. Somewhat surprisingly, this value is

positive, indicating that users are more likely to vote “yes” (as opposed to “no”) if

the review is presented lower down in the ranking. This stands in stark contrast to

other settings where endorsements are used to rank items, especially Web Search

where clicks are used as endorsements. Positive endorsements in Web Search follow

a strong rich-get-richer pattern, where a result gets more positive endorsements

(i.e., clicks) the higher it is presented in the ranking [34]. While the types of

endorsement (e.g., explicit positive and negative votes vs. positive clicks only)

and the timing of the endorsement (e.g., before or after consuming the content)

are different in the two settings, it is nevertheless evident that the two settings

require very different machine learning methods for aggregating endorsements into

an optimal ranking.

106

6.3 How does Context Relate to Voting Polarity?

The previous experiment showed that the rank at which a review is presented is

correlated with the polarity of the vote users cast. Is there a plausible model of the

user’s decision process that could lead to this bias in user behavior? One can con-

jecture a large number of factors that causally influence a user’s decision, ranging

from position itself having causal effect, all the way to biases involving the time of

day or week8. It is also conceivable that the history of votes so far also changes the

user’s perception of a review itself, as in herding phenomena [68]. Most promising,

however, we can conjecture that the context — the quality of surrounding reviews

— might lead a user to change her opinion about the helpfulness of a given re-

view. In particular, the following section explores whether voting polarity shows

any dependence on the degree to which a review is “misordered” relative to its

context.

6.3.1 Statistical Analysis

A statistical analysis was conducted to see if voting polarity depended on misorder-

ings in the ranking. To provide the tightest amount of control against confounding

factors, the focus of the statistical analysis is the voting behavior in the top three

positions of the ranking — a more global analysis follows in the subsequent sub-

sections. Since Amazon by default presents three reviews, the choice of three is

natural. Let r1, r2 and r3 be the best three reviews for a given product as deter-

mined by their final ranks (see Section6.1.2). Table 6.1 compares the polarity of

the votes on r1 and r2 under two different conditions, namely when the reviews

8For example, the user population visiting the site primarily during weekends might be in a
better overall mood and thus vote more positively.

107

were presented in the order r1 − r2 − r3 vs. the order r2 − r1 − r3. The average

polarity is computed for each product and each condition separately (using only

votes from those snapshots where the top three reviews appear in the desired lo-

cations) and the table shows macro averages over products. Note that the set of

three results is the same under both rankings, and the key difference is the switch

in ordering between r1 and r2.

Table 6.1 shows that the polarity of votes on r1 is more positive in the swapped

condition, while the polarity of votes on r2 is more negative. Both differences are

statistically significant according to a two-tailed paired Student t-test (a pair for

each product) with p < 0.05, as shown in the last row of the table. This is in

agreement with a model of user behavior where users cast their vote to “fix” the

perceived misordering in the ranking by upvoting a review that is ranked too low,

and downvoting a review that is ranked too high in relation to its context. Note

that this is opposite to the biases identified for clicking behavior in web search

that were observed in an analogous experiment [34].

Ordering review r1 review r2
r1 − r2 − r3 0.912 0.881
r2 − r1 − r3 0.946 0.811
p-value 0.0395 0.0183

Table 6.1: Voting polarity when the same reviews are presented in different orders.

After this microscopic study of the first three positions (where a hypothesis

test showed a significant depencence between review ordering and voting polarity),

let’s now perform a macroscopic exploratory analysis of whether misorderings also

correlate with observed changes in polarity over the whole ranking. To do this,

let’s consider two different measures of how misordered a ranking is, which are

called “global context” and “local context”.

108

(a) global context, data

(b) global context, model

Figure 6.3: Vote polarity: daily true rank (x-axis), context (y-axis, presented rank)
and average vote polarity (color, red means higher ratio of positive votes).

109

Figure 6.4: Vote polarity in data for local context: daily true rank (x-axis, with
bin widths of 5), context (y-axis, positive values meaning superior) and average
vote polarity (color, red means higher ratio of positive votes).

6.3.2 Exploratory Analysis: Global Context

The first measure of how misranked a particular review is relates the current po-

sition of a review to where it “should be” in a globally sorted ranking. To make

this more precise, let’s define a quantity called the daily true rank of a review as

follows.

Since new reviews for any given product might appear during the course of

the data collection, we need a way to compute the “true rank” of a review —

the “correct” rank that review “ought” to be displayed at — among the reviews

present on any particular day9. To this effect, reviews which were not yet published

by that day are disregarded, and the already existing reviews are sorted by their

final true rank. This results in the daily true rank of a review. A review is called

overranked if it is presented above its daily true rank, and underranked if it is

9Note that this can be different from the set of all reviews present on the last day

110

presented below.

Figure 6.3(a) displays the average polarity of the votes (color from negative in

blue to positive in red) as a function of daily true rank on the x-axis and presented

rank on the y-axis. The figure shows that the more a review is presented above the

rank it deserves, the more negative the polarity of the votes is. On the other hand,

when a review is presented too low relative to its deserved rank, the polarity of the

votes is more positive. These observations hold across a wide range of presented

ranks and daily true ranks. This can be interpreted as users upvoting reviews that

are rated ‘too low’, and downvoting reviews that are rated ‘too high’. Note that

the notion of converged ranks is carefully defined using rankings collected 4 months

after the end of the daily snapshot collection to mitigate self-fulfilling prophecies

in terms of using the same votes to understand behavior as to determine what

is too low or high, as described in Section6.1.2. Furthermore, a possible bias of

it correlating with the likelihood of being over-ranked (e.g., the best review can

never be over-ranked) and skewing the averages (i.e., positive votes from good

reviews contributing mainly to under-ranked polarity average) is avoided by fixing

the daily true rank (each one has its own bin on x-axis).

Voting Polarity over Time. Because the data was collected over a long

timespan (a few months) there might be differences in the voting behavior between

early and late periods. To explore this, analogues of Figure 6.3(a) are separately

ploted using only data from the first and the last 30 days of the collection period,

respectively. The resulting plots are shown in Figures 6.5(a) and 6.5(b). While

the plots are more noisy due to the smaller datasets, the observed patterns are

remarkably stable over time.

111

6.3.3 Exploratory Analysis: Local Context

Using global context to model a user’s perception of how misordered the ranking

is assumes that the user has a global understanding of the ranking. This clearly

can only be true in an approximate sense. More likely, a user bases her voting

decision on a more local view of misordering. Since Amazon displays reviews as a

ranked list, a user will see any particular review in the context of the other reviews

surrounding it at that time. The reviews presented immediately above and below

a particular review are reffered to as the local context of the review. For the data

analysis, the local context is defined as the 3 reviews appearing immediately above

and below a review at any given time unless otherwise specified10.

Local superiority and inferiority. The following measure is used to capture how

the quality of a review relates to the 6 reviews in its local context: the daily true

rank of the review under consideration is subtracted from the average of the daily

true ranks of these 6 reviews. The review is locally superior (of higher quality

compared to its surrounding reviews) when this difference is positive, and locally

inferior when the difference is negative.

Figure 6.4 demonstrates that local context does indeed correlate with the po-

larity of votes received by a review. The x-axis ranges over values of the daily

true rank (each bin is 5 ranks wide), and the y-axis measures the relative quality,

where negative values correspond to local inferiority and positive to local superi-

10Presentation-induced anomalies such as those created by page breaks are ignored, i.e., the
fact that reviews near the top or bottom of a page are not visually surrounded by their local
context on both side in the same pageview. Also, I verified that the specific choice of the number
3, as well as considering reviews appearing only above or below a review does not alter the results
(since it is conceivable that reviews appearing immediately before a review would influence the
vote cast on that review more than those that are read after it); the pattern of the fraction of
positive votes received as a function of local context appears to be quite robust to the specifics
of exactly how the local context is defined.

112

ority. The color of a point (x, y) is the polarity of votes received by a review when

it has daily true rank x and local context y. If local context did not correlate with

voting patters, there should be no gradient in color along the y-axis. However,

Figure 6.4 displays a noticeable increase in the fraction of positive votes when a

review is locally superior, and vice versa when the review is locally inferior.

Note that the effect of global and local context on voting polarity closely re-

semble each other: a review receives more positive votes when it is under-ranked

(a global measure) as well as when it is locally superior, and fewer positive votes

when it is over-ranked as well as when it is locally inferior. That is, the inter-

pretation that users vote to correct misorderings in the ranking is not sensitive

to this particular measure for misordering, and in fact leads to similar qualitative

observations for two different measures of misordered rankings.

6.3.4 A Model of Voting Polarity

This section abstracts the observed voting polarity patterns into a general model.

The reason for this is twofold. First, such models of voting polarity are needed

for designing content-ranking algorithms that make optimal use of the votes they

elicit. Second, a formal model can be tested and verified also in other content-

rating settings.

Voting polarity is modeled using a traditional form of logistic regression (with

two variables capturing insights gained in the previous sections). Each review r

has an inherent quality qr that is unknown. In addition to inherent quality, the

model considers the context δctxt of a review at the time a user casts a vote. A

positive δctxt means that review r is better than its context, a negative δctxt means

113

(a) Early

(b) Late

Figure 6.5: Vote polarity: daily true rank (x-axis), presented rank (y-axis) and
vote polarity (color, red being positive). Only using the first 30 days (left) and
last 30 days (right) of data.

114

that it is worse. The strength with which δctxt influences polarity is captured by

the parameter β:

P (yes|qr, β, δctxt) = logit−1(qr + β δctxt). (6.4)

Both global context (i.e., the difference between presented rank and daily true

rank) and local context as defined above can be used in approximations of context.

However, it is unreasonable to assume a linear relationship between δctxt and these

rank-based measures. Instead, the following transfer function is used and de-

emphasizes the impact of large rank differences. Let δctxtrank be either the local or

the global context in terms of rank, then

δctxt = sign
(
δctxtrank

)
log
(
1 +

∣∣δctxtrank

∣∣) . (6.5)

Using this transfer function and global context as a proxy for δctxt, the fitted

model has a log-likelihood of −57051 with parameter β = 0.415 (under-ranked

reviews have more positive δctxt which in turn means more positive polarity due

to a positive β). Figure 6.3(b) plots the fitted model, which can be compared

directly to Figure 6.3(a). In particular, Figure 6.3(b) is produced by replaying the

observed rankings that produced Figure 6.3(a) and then, for each cell, averaging

the predicted probabilities of the model instead of the observed vote polarities.

Overall, the model captures the key trends in the data, including a decrease in

voting polarity with rank on the diagonal, and the increase in voting polarity for

reviews that are ranked too low.

6.4 How does Context Relate to Participation?

So far explored user voting behavior was only explored in terms of polarity (i.e.,

how the users cast “yes” vs. “no” votes). A second, equally important dimension

115

is participation — when does a review receive votes? A first guess would be

that the number of votes a review receives depends largely on its presented rank,

corresponding to an attention bias whereby more users read, and therefore vote

on, reviews that are displayed at higher rather than lower ranks. However, this is

not the entire story — participation also depends on context, as we show below.

Ideally, participation would be measured as the ratio of the total number (posi-

tive plus negative) of votes on a review to the number of views it receives. However,

since the data does not include information about pageviews, we have to assume

that there is a constant number of pageviews (for each position) in each period

between snapshots (note that the actual number of such pageviews does not mat-

ter since we are only interested in relative comparisons). An additional issue is

sparsity of data — most reviews receive no or one vote on most days. To deal

with these issues, participation is measured using the following statistic. Consider

a particular bin (x, y) defined by some value of the x and y variables (daily true

rank and local/global context). As a measure of participation, we can use the ratio

of the number of intervals (between two consecutive snapshots) where at least one

new vote was cast on reviews in this bin to the total number of observed intervals

in the bin.

6.4.1 Statistical Analysis

To investigate whether there is a dependence of participation on context similar to

polarity, let us start by considering the same experiment setup as in Section6.3.1.

Table 6.2 shows participation at rank 1 and rank 2 conditioned on the ordering

of the top two results. When r1 is correctly ordered before r2, there is a strong

decay in participation, as one would expect from an attention bias (see [34] for

116

(a) global context, data

(b) global context, model

Figure 6.6: Participation: daily true rank (x-axis), context (y-axis, presented rank)
and average participation (color, log scale, red being high).

117

Figure 6.7: Participation in data for local context: daily true rank (x-axis, using
bin widths of 5), context (y-axis, positive values meaning superior) and average
participation (color, log scale, red being high).

similar attention biases in web search). Once r1 gets misordered into position 2,

however, voting participation on position 2 significantly (two-tailed paired Student

t-test, p < 0.05) increases compared to the correct ordering. It appears that users

are motivated to participate once they see that the ranking is misordered. Voting

participation on rank 1 does not change significantly. A plausible explanation is

that users typically do not go “back” up the ranking to vote once they have realized

that there was a misordering.

rank 1 rank 2
r1 − r2 − r3 4.34 2.33
r2 − r1 − r3 3.71 4.19
p-value 0.395 0.004

Table 6.2: Participation when the same reviews are presented in different orders.

Similar to the argument for polarity, let’s now explore how far this microscopic

finding about participation extends more macroscopically.

118

6.4.2 Exploratory Analysis: Context

First, let’s investigate how participation varies as a function of global context. Fig-

ure 6.6(a) plots participation (from low participation in blue to high participation

in red) as a function of presented rank and daily true rank. As expected, there is

an attention bias. Amongst reviews that are correctly ranked (i.e., presented at

their daily true rank), reviews with higher ranks are voted on more often (note that

the color scale is logarithmic). This can be observed from the diagonal elements in

Figure 6.6(a). Furthermore, note that there is a special attention bias for the top

three presented ranks, which receive much larger participation. This is because

Amazon presents the top 3 reviews on the product page, while an additional click

is required to display more of the ranking.

Beyond attention bias, Figure 6.6(a) shows that context affects participation as

well — reviews receive more votes when they are incorrectly ranked. Comparing

the off-diagonal elements in Figure 6.6(a) with the diagonal ones, we see that

reviews get voted on more often when they are not in their correct position. The

upper triangular portion of Figure 6.6(a) demonstrates the same effect that was

already observed in previous subsection’s experiment — a good review that is

ranked too low receives more votes. Unlike in the statistical analysis of the top

three positions, however, the lower triangular portion of Figure 6.6(a) shows that

participation at lower presented ranks also increases when a review is presented

too high. A plausible explanation is that for reviews at lower presented ranks, the

user has already formed a reliable expectation about the review quality of the next

review, upon which the user can judge misordering.

Similar trends also emerge in the analogous Figure 6.7 for local context. Re-

views that are locally superior or inferior (non-zero bins on y-axis) get voted on

119

more often.

Voting Participation over Time. Similarly to polarity (Section6.3.2), tem-

poral consistency is observed in voting participation. Both Figure 6.8(a) and Fig-

ure 6.8(b) are analogous to Figure 6.6(a), but are restricted to the first 30 days

and the last 30 days of the data collection period, respectively. Both plots show

the same general v-shaped pattern, indicating that participation follows a stable

pattern over time.

6.4.3 A Model of Participation

The following proposes a model of participation that is analogous to the one derived

in Section6.3.4 for polarity. For each position p, we model the “normal” amount

of attention a review at this rank gets using the parameter zp. Variable δctxt is the

context of review r as defined for polarity, and we use the same transfer function

from Equation 6.5 to connect δctxt to the rank-based measures of global and local

context. However, since participation is symmetric in δctxt, we use its absolute

value. The parameter α models the influence of context:

P (vote|zp, α, δctxt) = logit−1
(
zp + α

∣∣δctxt∣∣) . (6.6)

This participation model is fit directly to the observed participation frequencies

from Figure 6.3(a) using maximum likelihood, where each cell receives the same

weight in the maximum likelihood estimate. This is done because the number of

observations in the first few presented ranks otherwise dominates the likelihood

and biases the parameters towards a fit to only those cells. The parameters zp

are smoothed to lie on a curve zp = γ0 + γ1/p
γ2 , where γ0, γ1, and γ2 are fitted

parameters. This step is added to produce smoother estimates of the zp despite

120

data sparsity at low ranks, but it is not essential for capturing the general trends.

The resulting model is plotted in Figure 6.6(b), and it is analogous to the plot

of the observed data in Figure 6.6(a). The parameter α of the fitted model is 0.228.

This means that the more misranked a review is according to |δctxt|, the higher the

participation. While the model underestimates participation at the top presented

ranks (which is due to the equal weighting of the cells during maximum likelihood

estimation), the plot overall resembles the patterns in the observed data.

6.5 Discussion of the Analysis

Previous sections analyzed user voting patterns on Amazon reviews, over time and

as a function of the context in which the review was rated by the user. Using

a dataset of daily snapshots of reviews and their ratings, we can observe that

voting polarity (i.e., whether to assign a positive or negative helpfulness vote to a

review) as well as participation (i.e., whether to vote at all) depend not only on

the inherent quality of a review, but also on the context in which it is presented

at the time of voting. In particular, a hypothesis test provided evidence that the

observed connection between context and voting behavior cannot be captured by

an absolute voting model (Section6.2), where users make absolute and independent

judgments about helpfulness.

As an alternative to the absolute voting model, models of voting incorporating

context in addition to a review’s inherent quality were described, and they provide

a much closer fit to the observed data. Notably, voting polarity becomes more pos-

itive/negative, if a review is better/worse than its context. Furthermore, voting

participation generally increases if a review is misranked. These patterns are sub-

121

(a) Early

(b) Late

Figure 6.8: Participation: daily true rank (x-axis), presented rank (y-axis) and
participation on log scale (color, red being high). Only using the first or last 30
days of data.

122

stantially different from other setting where endorsements are used to rank items,

most prominently Web Search, which means that methods for learning rankings

in one setting cannot be naively transferred to another.

6.5.1 Limitations

As the previous sections pointed out, the study design and analysis have some

limitations which are further discussed below. These provide several interesting

directions for further work.

(i) Observational Data. The analysis, which is based on observational rather

than experimental data, comes with the limitations typically associated with de-

riving models from observational data. While non-uniformity in the presented

ranks provided natural experiments which allowed us to investigate correlations,

only experiments with controlled interventions can ultimately validate the causal

reliability of the conclusions and models.

(ii) Snapshot Granularity. Recording one snapshot per day is too infrequent to

capture all the voting events that occur on Amazon. In particular, there are re-

views that receive more than a hundred votes in a single day, and rankings can also

change very fast. A separate dataset containing snapshots at intervals of about one

hour was collected over the course of one day; even here there were products where

review rankings changed between snapshots. However, the observations on this

dataset showed that rankings do not change drastically (e.g., often only reviews

with the same number of votes swapping places), so that using daily snapshots

123

does provide an acceptable approximation for studying voting patterns on typical

reviews on Amazon. Nevertheless, studying a more fine-grained dataset can po-

tentially lead to new insights on very frequently read reviews.

(iii) No Independent Assessments of True Quality. Ideally, one would have liked

to use independent assessments to determine the true quality (i.e., true rank) of

each review where this quantity is used in the analysis. However, this was infea-

sible since even with access to grading resources, it would have been unclear how

to judge which reviews truly are helpful to the (unknown) user population. A

possible concern with an analysis that uses final ranks as a proxy for true quality

is that the data used to analyze voting behavior also contributes to defining the

true qualities (namely the final ranks): for example, a review with a given final

rank k might have been ranked lower, i.e., been underranked, at some earlier point

in the dataset, and then received an above-average share (relative to the entire set

of votes that contribute to the final rank) of positive votes after this time to climb

up to its final rank. This can lead to a self-fulfilling prophecy where ‘underranked’

reviews receive an above-average share of positive votes, and ‘overranked’ reviews

a below-average share. The following points help mitigate concerns regarding such

self-fulfilling prophecies: (a) The final true ranks are computed based on a snap-

shot recorded 4 months after the last sample in the data used for the analysis of

voting patterns. That is, the final ranks also include a large number of votes cast

over a long interval that does not overlap with the interval corresponding to the

votes in the empirical analysis (see Section6.1.2); (b) The statistical analysis in

Section6.2 does not make use of final ranks at all, but still shows that voting is

not based purely on inherent review quality.

124

(iv) Aggregate vs. Individual Voting Models. The models do not claim to de-

scribe the actions of any individual user, but merely the aggregate behavior of a

user population. For example, we cannot ask whether each individual user modi-

fies polarity based on rank (even though that is a plausible conjecture), but only

observe that the population of users displays this aggregate behavior. The same

aggregate behavior, however, could also be explained by other factors, such as het-

erogeneity in user populations (different types of users may have different baseline

polarities and may explore rankings to different depths). Investigating the effect

of such alternate hypotheses is an interesting open direction.

(v) Macroscopic Participation and Polarity. The model for participation pre-

dicts that a review displayed at its correct rank should receive fewer votes. This

means once rankings converge to the right ordering of reviews, participation should

globally decrease. This is indeed observed in the data. Figure 6.2(b) shows that

rankings stabilize after a few months, and Figure 6.1 shows that voting also de-

creases at this time. Regarding voting polarity, Figure 6.9 shows that the average

vote polarity becomes more positive with time. This is to be expected. Since

converged rankings have ‘good’ reviews at the top (with high attention bias),

these reviews have to maintain a high fraction of yes votes (or regain that ra-

tio once their rank has dropped). Trends in participation and polarity could also

have other causes, however. For example, participation could be explained by a

product becoming outdated and consequently fewer users reading and voting on

reviews. Similarly, an alternate explanation for polarity is that users continue to

give positive votes to reviews they like even when rankings are accurate, but do

not downvote reviews unless necessary to correct the ranking.

125

Figure 6.9: Average ratio of positive to total votes (y-axis) over time (x-axis in
days).

(vi) Perception versus Action. A final intriguing question that is not addressed

is the mechanism by which context affects voting: does a review’s context cause

a user to actually change her perception of its helpfulness, or merely her action?

One possibility is that a user may truly value a review less if it is presented next

to an even better review. A different possibility is that each user might have

some absolute quality capturing each review’s helpfulness, and vote in order to

‘correct’ the current vote ratio (of current “yes” to current total votes) towards

her opinion of the review’s quality. Preliminary explorations indicate that both

effects (modified perception and modified action) might be supported by the data.

An experimental study, or analysis of a more detailed dataset, could lead to clearer

conclusions on this question.

126

CHAPTER 7

CONTENT RANKING ALGORITHMS FOR UGC

Not all of user-generated content is of equal quality, which poses a quality

estimation and ranking problem in order to present the best content to viewers.

Since the massive scale of UGC makes it infeasible for most websites to manually

rate their content, sites often crowdsource this evaluation problem to their audience

by allowing viewers to vote on quality. An example is Amazon asking users “Was

this review helpful to you? Yes/No”, and other websites employ similar feedback

mechanisms.

A straighforward estimator of quality — and one that appears most commonly

used among these websites — is the ratio of positive to total votes received (or

possibly a small modification thereof). This estimator, while simple, does have

a clean theoretical basis in a world where each vote is a Bernoulli coin toss with

success probability q, where q ∈ [0, 1] is some measure of the contribution’s under-

lying quality. Under this model, the ratio of positive to total received votes is an

unbiased estimate of q. Previous sections suggest, however, that user voting be-

havior in real websites is more complicated than described by this simple ‘absolute

voting’ model. In particular, users do not make absolute, independent judgements

of contributions’ qualities; rather, a model of voting behavior that incorporates

the context in which a contribution was viewed yields a much better fit to observed

voting data. What are the implications of this refined model of voting behavior

on estimating content quality and ranking content?

The following sections investigate two questions to this effect. The first question

regards an analysis of current practice: how does the basic widely-used algorithm

that ranks contributions according to the ratio of positive to total votes — the

127

maximum likelihood estimator for a absolute voting model — perform when its

data instead comes from a more realistic contextual model of user voting behavior?

In particular, one may be worried that this mismatch between the model that

justifies the estimator and the actual data generating process could lead to poor

ranking performance. Fortuitously, quite the contrary happens. The complex

voting behavior displayed by real users turns out to actually be more informative

than if users were voting according to the simpler and more natural Bernoulli

model. Specifically, the basic ranking algorithm converges faster, and to a more

accurate ranking, with voting behavior described by a contextual voting model

than when votes are drawn according to the absolute voting model with Bernoulli

votes (Section7.3).

The second question regards design: can one converge to the good ranking

even faster by using a more sophisticated estimator designed specifically for such a

contextual voting model? A new algorithm is proposed that employs an improved

estimator that outperforms the conventional ranking algorithm, both in terms of

accuracy and speed of convergence (Section7.4). Then, how much improvement in

performance results from using the sophisticated estimator relative to the naive

estimator for a range of parameter values in the contextual voting model is inves-

tigated in Section7.4.3. Finally, the robustness of this algorithm to the parameters

of the data for which it is designed in explored in Section7.4.4.

7.1 Models of User Voting Behavior

In order to design and analyze methods for estimating quality estimation based

on user feedback, it is necessary to have an accurate model of how users issue

this feedback. In the following, we describe two possible models of how users vote

128

on content. The first is the Absolute Voting Model (AVM), which assumes that

users make independent voting decisions for each piece of content and was already

partially introduced in 6.2. The second is the Relative Voting Model (RVM) based

on description in Section 6.3.4, which models both the polarity of the vote, as

well as the user’s decision to participate in voting, as dependent on the context

in which the review was presented. The RVM model was shown to fit observed

voting behavior on Amazon reviews significantly and substantially better than the

conventional AVM [93].

7.1.1 Absolute Voting Model

A natural first model of voting behavior on user-generated content [129, 26] is a

naive IID Bernoulli voting model, whereby viewers independently cast Bernoulli

votes on each contribution. We call this the Absolute Voting Model (AVM). Under

this model, the observed votes directly reveal a cardinal score describing the con-

tribution’s inherent ‘quality’, where the quality of a contribution is an unobserved

abstract parameter that might depend on, for example, its actual textual content,

its ‘opinion’ content (such as the star rating it gives to a product on Amazon), the

identity of the author, social features, and so on. This model was already described

and discussed in 6.2. Note that if votes are cast according to this model, the ratio

of positive to total votes is the maximum likelihood estimator of the true quality

pr for each contribution. This estimator is unbiased.

Participation. The Bernoulli voting process only describes the polarity of

the votes cast by each viewer, conditional on a vote being cast. But not all con-

tributions might receive votes from each viewer; we therefore also need a model

describing participation, i.e., the number of votes that a contribution will receive.

129

Again, a simple model of participation is that the number of viewers, and there-

fore the number of votes cast, drops off with the rank p at which a contribution is

displayed:

P (vote|zp) = zp. (7.1)

Note that the probability of a vote depends only on the presented rank, but not

on the quality of the content itself. To model the drop-off in attention, we use

the following decay model, where γ ≥ 0 is a parameter that controls the speed of

attention decay:

zp = p−γ. (7.2)

The drop-off is steep for the top few ranks, but there is still some non-negligible

amount of voting even on the low ranks. This reflects observed voting behavior

from Amazon (based on data from [93]) with best γ = 0.8. Note that Section 6.4.3

already touches on this subject, but here we even further simplify the attention

bias model while still retaining a good fit to the observed data. Figure 7.1 shows

users’ participation (y-axis) in relation to presented rank (x-axis) and we can see

that the chosen polynomial model has a good fit (and it gives qualitatively better

fit than exponential decay used for e.g. web search [15]). The probability of

participation on the first rank is rescaled to be equal to 1, because data [93] uses

arbitrary temporal units (and thus the scale does not matter, it only changes the

time interval between pageviews).

7.1.2 Relative Voting Model

An analysis of voting data from Amazon reviews [93] suggests that users, when

asked the question “Was this review helpful to you? Yes/No”, answer it with

votes that cannot be explained by the Cardinal Voting Model described above. A

130

Figure 7.1: Attention bias for participation with presented ranks on x-axis and
probability of participation on y-axis. Values obtained from real-world dataset are
in blue and the model fit is in red color.

Relative Voting Model (RVM) [93], however, that incorporates the instantaneous

context in which the contribution was viewed at the time of voting yields a much

better fit to the observed voting patterns in the data.

The Relative Voting Model refines the Absolute Voting Model, recognizing that

the voting behavior on a piece of content may be influenced by the quality of the

other content items. In particular, the RVM introduces the notion of a context that

captures how “misranked” a particular piece of content is. Section 6.3.4 already

presents one such context-dependent model for voting polarity. RVM is almost

identical to Eq. 6.4, except for the form of parameter β which here becomes easier

to interpret, and is captured by the following probabilistic model. Let qi be the

true (unknown) quality of content i, then a positive (negative) value of context

δctxti,t indicates that it is better (worse) than its context at time t. True quality qi

and current context δctxti,t are then combined using a binomial logit link function to

131

model the polarity of a vote:

P (yes|qi, β, δctxti,t) = logit−1((1− β)qi + β δctxti,t). (7.3)

Parameter β ∈ [0, 1] is a tradeoff between quality and context-based votes. Note

that for β = 0 the RVM is isomorphic to the AVM, and that maximum-likelihood

estimation of the qi results in a model that is identical to using the estimator in

(6.2). The following simulation experiments use a local notion of context to define

the value of δctxti,t (see Section 6.3.3), using only one review above and below it, and

with identity for the transfer function (instead of Eq. 6.5).

Participation. For the participation part, RVM uses the same form as was

introduced in Section 6.4.3 with attention bias falloff using the same shape as AVM

in the previous subsection.

7.2 Voting Simulation Setup

This section describes the simulation setup used to address the two questions we

are primarily interested in—first, investigating the performance of the naive ratio-

of-votes ranking algorithm when votes are cast according to the Relative, rather

than the Absolute voting model, and second, comparing the performance of an

estimation and ranking method designed for the RVM to that of the naive model,

which is an optimal estimator for the AVM. Addressing either of these questions

satisfactorily via evaluation on ‘real data’ is quite hard—an empirical study with

existing voting data from any real website (which uses a particular ranking algo-

rithm and corresponds to one specific voting pattern) makes comparisons infeasible,

while an experimental study (using e.g. crowdsourcing) would face issues related

to selection biases in the participant population, and concerns about the validity

132

of conclusions regarding ‘real’ user behavior on real websites. This leads to use of

simulations, using votes that are drawn from models of real user behavior fitted to

empirically observed data, as a means to addressing these questions.

7.2.1 Workflow

The simulations follow the high-level structure outlined in Algorithm 5, and are

meant to mimic the voting and ranking process on a real user-generated content

website. Each run of the experiment evaluates the performance of a given ranking

algorithm on a set of products1, each with reviews whose qualities are randomly

drawn from some specified distribution, when votes are cast according to a given

model of voting behavior.

Each iteration in a run of the experiment can be interpreted as corresponding

to a single user, who chooses which reviews to vote on (participation) and what

vote to cast (polarity) according to one of the AVM or RVM models, again with

some specified parameters. Note that multiple votes can be cast during a single

iteration, but at most one vote is cast per review. An alternative view is that each

iteration represents a fixed time interval (chosen so that we get at most one vote on

each review) during which different users cast votes on any review in accordance

with attention bias.

The ranking algorithm under consideration recomputes the ranking of reviews

for each product after one round of votes, i.e., once after each user has finished

casting votes. This is a reasonable design choice—recomputing the ranking after

1Note that simulating multiple products, say n products, is equivalent in this setup to repeat-
ing one run of the experiment n times on a single product (i.e., with a fresh set of reviews each
time) to lower the variance in the results.

133

each single vote is expensive, and also does not correspond to a believable user

experience where a user sees the rankings of displayed content change while she

is browsing through the reviews for a single product. Note that this workflow

setting is general enough so that it can be easily modified to allow for performing

multiple iterations (instead of just one) between recalculating the ordering to lower

computational costs if necessary.

Algorithm 5 Simulation workflow.

for all products do
generate reviews
for all iterations do

for all reviews do
if decide to participate then

cast helpfulness vote
end if

end for
estimate model parameters
rerank items

end for
end for

7.2.2 Parameter Settings

In the following sections, Algorithm 5 will be used to compare the performance

of different ranking algorithms (in particular, estimators of content quality) under

different user voting models. The settings for the parameters in Algorithm 5 that

are common across all the simulations are presented in Table 7.1; the rationale

behind some of these choices is discussed below.

Number of products. The number of products, or equivalently the number

of simulation reruns, was chosen as a tradeoff between the size of error bars and

computation time: increasing the number of products decreases the standard error

134

(a) observed data

(b) lognormal distribution

Figure 7.2: Review quality distributions.

(due to larger sample size) but increases computational cost. Therefore a value

was chosen that is large enough to get sufficiently small standard error (for making

performance significance comparisons between different experiments) while still

allowing simulations to terminate in a reasonable amount of time.

135

Parameter Value
Number of products 100
Number of reviews 30
Number of iterations 100
Comparison point 200 votes
α 0.228
β 0.415
γ 0.8
Mean and variance of normal µ = 0.8, σ = 0.1
Mean and variance of lognormal µ = 0, σ = 1

Table 7.1: Simulation settings used for all our experiments unless otherwise noted.

Number of reviews. Simulation runs on 30 reviews because this is equivalent

to more than one page of reviews presented on Amazon (they show 10 reviews per

page) and because [93] used this number (products on Amazon have overall enough

reviews to get enough data about the top 30).

Number of iterations. The number of iterations should be chosen to allow

adequate time for the rankings to converge, so that the steady-state error/performance

of algorithms can be measured and compared, as well as the time to convergence.

Varying number of votes. Note that two experiments with the same number of

iterations, i.e., users arriving at the website, can still have a different number of

actual accumulated votes, for two reasons: (i) first, changing the parameters in the

model of user voting participation can lead to a smaller or larger number of expected

votes cast, even if the number of users who vote does not vary (for example, if there

is a sharper attention bias falloff, each user will vote on fewer reviews), and (ii) the

decision of whether to vote on any given review or not—participation—is a random

variable, so that the actual number of cast votes may differ across iterations even if

the participation parameters, and therefore the expected number of votes, remain

the same across runs.

136

Comparison point. When we want to compare two traces of runs we need

a point of comparison (i.e., at which timepoint do we consider the difference in

the loss of utility). Using a mesure that directly compares two traces (by e.g.

norm of the difference in performance between all points in traces) can be biased

by including more or less of the converged state. Therefore 200 votes were chosen

becuase this gives the algorithm some time to collect information2 but is well before

convergence (i.e., we do not care so much about how good a ranking is after very

long time has passed because users moved on to other products).

Choice of model parameters (α, β, γ). Parameter γ used in siumations

was obtained by fitting the model to real-world data [93]. Models in [93] using α

and β are not exactly the same (although they do have the same functional form)

as the ones we use in this paper (we use context defined by qualities, while the

published parameter values correspond to global context defined by logarithm of

rank difference). However, we do know that they should be non-zero and choosing

small numbers falls into pessimistic case (we get better performance when context

plays larger role as discussed later in the paper).

Distribution of content quality. The polarity of the votes cast on a review

in both the absolute and relative voting models depends on the review’s quality. It

is, therefore, quite possible that the performance of an algorithm—which depends

on the the computed rankings at each step, which in turn depends on the vector of

cast votes—might depend strongly on the distribution from which review qualities

are drawn. Therefore the performance comparsions are repeated across multiple

distributions—the uniform, the normal, and the lognormal.

2To completely specify a ranking of 30 review we need at least 187 votes. Expecting users to
optimally select reviews to cast votes on is unrealistic. Therefore we should not expect conver-
gence before a lot more votes than this are cast.

137

The parameters of the normal distribution were chosen such that it is not sym-

metric with respect to good and bad content (i.e., the mean is not at quality of 0.5)

and has noticeably narrow peak (to contrast with uniform distribution). In addi-

tion to this we can see by looking at (transformed) lognormal distribution shown

on Figure 7.2(b) that it qualitatively appears very similar to what we observed

in the data (Figure 7.2(a)). The observed distribution of qualities was obtained

from data in [93] (using their rank-based global context model). To obtain the

desired shape the following transformations are performed: the x-axis is rescaled

by factor 0.2, the direction is reversed using 1 − x and the values are clamped to

[0, 1] interval.

7.2.3 Metrics for Performance

The primary quantity of interest when evaluating an algorithm is the ‘goodness’ of

the ranking it produces. While all described algorithms also do compute estimates

of reviews’ true qualities, the focus is on the accuracy of the overall rankings rather

than the accuracy of individual quality estimates, since it is the ranking returned

by the algorithm, rather than the quality estimates, which determine the utility of

the presented content to a viewer on the website.

There is a range of different measures to capture the ‘goodness’ of a ranking; the

measure used here is the loss of utility defined as the sum of squared differences

between item’s true quality (known due to siumlated setting) and its eastimate

from the model. Another possible measue to use is the number of bubble sort swaps

necessary to correct the presented ranking into the correct one. This measure also

results in qualitatively similar figures.

138

7.3 The Ratio-Sort Algorithm with Contextual Voting

This section analyzes the performance of the widely used ratio-sort algorithm which

ranks contributions in decreasing order of the ratio of positive to total received

votes, when votes are drawn from the contextual voting model. The ratio of the

positive to total received votes is the minimum-variance unbiased estimator as well

as the maximum-likelihood estimator of a review’s true quality q if the polarity of

cast votes are drawn IID Bernoulli(q), i.e., if users vote according to the absolute

voting model (AVM). Ranking according to this ratio, therefore, is a natural choice

for a website that wants to display higher quality content at higher ranks—provided

the AVM accurately describes user behavior, which, as shown in [93], it does not.

How does this ‘optimal’ estimator for the AVM perform when its input comes from

‘real’ users who cast context-dependent votes instead?

First, we need to fully specify the ratio-sort algorithm by defining what happens

to items with no votes, and how we resolve ties between items with the same ratio.

To do this, the algorithm is modified slightly to sort according to the ratio of

positive votes to total votes plus one (7.4), with a small added random perturbation

ε for tiebreaking:

pr =
number of yes votes on r

total number of votes on r + 1
+ ε. (7.4)

Sorting according to this ratio instead of the ratio of positive to total votes does

not change the ordering of items, except for those with no votes (which previously

had an undefined score)—these now have a score of zero and are therefore placed

at the bottom of the rankings. The additive perturbation of ε implements random

tie-breaking between items with the same vote ratio. Note that depending on the

magnitude of ε, this additive random noise can also reverse the ordering between

139

items simulating exploration. To minimize effect of this and emphasise only tie-

breaking a small random ε ∈ [0, 0.001] is chosen.

7.3.1 Does Context Bias in Votes Help or Hurt?

Let’s now use the simulation setup described in Section7.2 to analyze the per-

formance of the ratio-sort algorithm, which could be interepreted as designed for

absolute voting, under a contextual voting model. We can now compare the per-

formance of the ratio-sort algorithm when votes are drawn according to the RVM

(i.e., where context biases the votes cast on a review, which is a better model of

observed user voting patterns) against that when votes are cast based purely on

content quality according to the AVM. We can conduct two runs of the simulation

which are identical in all parameters except users’ voting participation and polarity

models, with votes drawn from the AVM in one run and from the RVM in another.

The results of this comparison is shown on Figure 7.3. The x-axis corresponds

to time and measures the cummulative number of received votes over all reviews;

as described in Section7.2, the y-axis is the sum-of-squares distance between the

quality vectors corresponding to the current and true rankings. Data points are

plotted at each iteration with error bars corresponding to standard error over all

products.

The ratio-sort algorithm achieves similarly poor utility in its first few itera-

tions on both sets of inputs. This is likely due to the randomness in the initial

rankings—at first, the context of each contribution is essentially random and does

not significantly alter voting relative to the AVM, and becomes relevant only in

later iterations where users strive to fix the ranking where necessary (and convey

140

Figure 7.3: Comparison of AVM (red) and RVM (green) when using the ratio-sort
ranking algorithm.

more information through their votes than with independent quality-based votes).

The more interesting dynamics occur after the initial phase—the algorithm with

input votes from the RVM suffers much lower utility losses at the same number

of votes collected over all reviews (i.e., the amount of user feedback) compared

to when votes are cast according to the AVM; also the ratio-sort algorithm with

inputs from the RVM achieves the same level of performance with far fewer votes

than with inputs from the AVM. There is no visible convergence towards zero

loss on figures becuase the variance of cast votes is high relative to differences in

true qualities between reviews (meaning that we need a large number of votes to

correctly order the reviews that are very close in quality).

The higher performance after any given number of votes as well as the smaller

time required to achieve any given performance in Figure 7.3 suggests that the

ratio-sort algorithm, designed to be optimal for the absolute voting model, in fact

performs even better with context-dependent votes—that is, the particular kind

141

of contextual voting displayed by users is ‘more informative’ than independently

drawn votes that are based only on a contribution’s quality.

Informativeness of contextual votes. We saw that contextual votes (RVM)

carry more information (i.e., we can compute a better ranking with the same

amount of received user feedback) than pure quality based voting. Why is that?

From the theoiretical perspective we can consider the following case. Let’s focus

on ratio-sort algorithm and assume that we do not have a correct estimate (i.e.,

the ratio of positive votes differs from the item’s true quality value) but think

that the quality is lower than the truth (i.e., item is under-ranked). What is the

expected number of new votes we need (added to the ones received in the past)

to be able to obtain the correct estimate (up to some precision)? Because of the

contextual term in RVM, we know that the probability of a positive vote will be

slightly higher (due to being under-ranked) than in the AVM case (which cares

only about the inherent quality). Therefore, the expect number of votes needed to

correct/increase our current estimate/ratio will be lower for the RVM case (due to

it having a higher probability of a positive vote).

Another case we can analyze is comparison between AVM and deterministic

upvotes/downvotes. The later is defined as RVM with β = 1 (i.e., purely contex-

tul) and deterministic votes: if the item is under-ranked it always gets a positive

vote and vice versa. The AVM case (votes are n independent Bernoulli random

variables) can be analyzed by applying Hoeffding’s inequality: the variance of the

quality estimate drops with 1/
√
n.

For the detrministic upvote/downvote case we can use induction to derive the

bound on the estimate. Base case is a single vote, either 0/1 or 1/1, which is within

1/1 of the true quality. Assuming that in the previous induction step we had ratio

142

d/n (i.e., d positive out of n total votes) which was within 1/n of the true quality.

After one more positive vote we have (d+1)/(n+1) for the under-ranked case (the

other one is similar). In the worst case (the previous estimate was only ε below the

true quality) we move at most (d+ 1)/(n+ 1)− d/n = 1/(n+ 1) into over-ranked

scenario (otherwise we improve the estimate for 1/(n + 1) which brings us within

1/(n2 + n) ≤ 1/(n + 1) of the true value). Therefore the estimate of the quality

falls within 1/n (i.e., it is better than AVM case).

7.4 A Ranking Algorithm that Models Context Dependent

Votes

The previous section looked only at what happens in the case that users vote dif-

ferently than we expected when we are using the helpfulness vote ratio to estimate

content quality. We saw that votes depending on context help even if the ranking

function isn’t aware of it. But, can we do better if we do know about it?

Lets use this additional knowledge to improve the results. Given a model of

users voting behavior we can design an estimator of content quality tailored to the

votes we are receiving. This way we create a consistent setting where users’ model

agrees with web page’s expected model and thus allows us to extract more from

the same feedback.

143

7.4.1 Context Aware Ranking Algorithm

Instead of using the ratio of positive to total votes to rank we want to use the

true qualities to sort the items. In the case of RVM the accumulated votes do not

always directly reflect the item’s true quality – the decision about which ranking

to present to the user can affect the polarity of received votes (e.g. under-ranked

items get more positive votes).

Assuming the RVM, we have an explicit parameter qr representing true quality

of item r. To obtain these we need to compute the parameters for the new model

by fitting it to the data. Here we can use maximum likelihood estimation to fit the

model. If we assume prior knowledge of trade-off parameters α and β then RVM

becomes traditional logistic regression and can be efficiently solved. By doing this

we obtain item qualities (as the fitted parameters of the model) and can use them

for sorting to create new ranking.

In this section we assume that trade-off parameters α and β are constant, known

and provided to us. This is a reasonable assumption because they can be obtained

by fitting a large amount of historical data and we would expect them to remain

more or less constant – we can conjecture that they depend mainly on web site

design (e.g. wording of the question eliciting the feedback, target demographic etc).

Also, we do not need very accurate estimates of these parameters as is discussed

later on in subsection 7.4.4 on robustness. Another option is to estimate these

two parameters at the same time as we estimate the rest of the model during each

iteration. However, the model is not traditional logistic regression anymore and

requires more work to estimate.

As for the first experiment we can again use simulations to explore this new

144

algorithm. The overall workflow stays the same as in the previous section, but now

the ratio-sort ranking algorithm is replaced with the context aware one. The model

is refit to the collected data (from all previous iterations within the same simulation

run) after each iteration of voting. The model is independent between products (a

possible exception to this would be cross-listed reviews3 which is not considered

in the simulations) and can therefore be independently fitted. When necessary for

computational reasons, one could consider incremental updates (instead of fitting

the whole model from scratch during each iteration) or re-estimating the qualities

only every k iterations instead of each one (in this case we trade computational

cost for possible loss of utility due to not immediately exploiting all the available

information).

This iterative approach of collecting votes and refitting the model, however, has

the following caveat: the samples used in maximum likelihood estimation are not

IID. Votes collected up until now determine the next presented ranking which in

turn influences the new votes – ranking controls the context and context modifies

polarity of votes and participation. However, in the experiments this does not

seem to have a noticeable determential effect. Comparisons with (a) holding the

ranking fixed for a multiple iterations (and thus improving IID-ness of samples)

and (b) cheating (i.e., computing loss on the estimated ranking but presenting a

random one to the simulated user resulting in IID samples) do not show a noticeable

difference.

3For example, Amazon sometimes lists the same review for multiple different products.

145

7.4.2 Does the New Algorithm Learn Faster?

Previous comparison between AVM and RVM was performed by changing users’

behavior but keeping the ranking algorithm the same (naive ratio based). Now we

want to see if we can further improve on this by changing the algorithm. Switching

to context aware ranking algorithm (described in previous subsection) should give

us better results than the naive one due to it being tailored to the received feedback.

Figures 7.4 and 7.5 show the comparison between ratio-sort (green) and context

aware (blue) algorithm when users vote according to RVM. There is not much

difference during the initial few votes because the context is still random (i.e.,

the ranking starts as random ordering and thus has meaningless context). After

that the new algorithm manages to recognize contextual votes and accounts for

them when estimating the quality (i.e., contextual votes represent user’s desire to

change the position of an item and do not directly describe the absolute quality).

This leads to better performance (as soon as context becomes informative, i.e.,

non-random). The ratio-sort algorithm incorrectly interprets contextual votes and

converges more slowly due to higher variance in the estimates of quality.

Another interesting detail can be observed if we focus on the first few iterations.

We see that the new algorithm appears to be doing worse for a bit before it

overtakes the ratio-sort one. This could be explained by the fact that it is trying

to fit a more complex model with a very small amount of data – we are trying

to estimate attention bias (zp for all ranks p), item qualities (qr for all items r)

and interactions with context using only a handful of votes, while on the other

hand naive algorithm only cares about quality estimates. However, as soon as we

get enough data we can form better estimates based on knowledge of the voting

process.

146

7.4.3 How does Improvement Scale with Strength of Con-

text Bias?

We saw that in case of RVM we obtain more information from the feedback and

achieve better ranking performance. However, we did not yet address the question

of what role do α in β play. Do we get the same improvement for all possible

choices of these two parameters (hint: obviously no, setting them to 0 results in

special case of AVM)? And, why are we even asking this question – these two

parameters are constant and given to us? First, we want to know if the approach

is applicable across a broad range of websites – is is unrealistic to expect that they

all have the same value of there parameters. And secondly, if we know in which

case we get the best results we can then try and design websites in such a way that

they elicit feedback in the desired range of this spectrum.

In line with previous experiments simulations are used but this time with vary-

ing degrees of contextual influence. Note that robustness will be evaluated sep-

arately in the next subsection. The following experiment is performed. For a

given choice of α and β simulations are run with RVM and both algorithms. Then

the performance is compared at the total of 200 votes point. This number was

chosen to be after the initial volatile part but before a large number of votes is

collected (200 votes spread over 30 reviews is less than 10 per on average). The

first is necessary to get low variance in comparisons and later because we do not

care (that much) about utility after a long time has passed (for example, having

perfect rankings on old products does not help if users moved to new ones – which

now have bad rankings due to being new).

Results are presented on Figure 7.6(a). Parameters α = β are changed simulta-

147

neously within the [0, 1] interval (shown on x-axis). Then we can compare ratio-sort

and new algorithm by loss of utility (y-axis). When both α = β = 0 we are in

special case where the context-aware algorithm becomes the same as the ratio-sort

one (and votes follwo AVM); so the same performance is expected. On the other

extreme we have purely context based votes – they are only up and down votes

with no explicit information about quality. If we measure expected loss of utility

(difference between the estimated quality and the true quality in the simulation)

then even if we get correct ordering in the ranking (from the observed votes) we

can still have incorrect estimates of quality – so we should not realistically expect

zero-loss when using this performance measure.

From the figure we can see that increase in contextual part of votes leads to

better performance for both algorithms. However, having algorithm designed for

the voting model results in better rankings throughout the spectrum. From this

we can conclude that as long as we have additional knowledge about the voting

model we should exploit it – the gains might vary from application to application,

but the benefit can be obtained in all cases.

A possibly important difference across websites (in addition to amount of con-

textual information in the votes) could be the steepness of the attention bias drop-

off for participation captured in the models by γ. We should ask ourselves how

well can we perform when users look only at the top results, or perhaps tend to

look through most of the content. Parameter γ is intrinsic to a given site and used

in the simulations, but note that it is not necessary for the model estimation part

(i.e., we do not need to know its value to be able to estiamte model parameters

zp).

Figure 7.6(b) looks at the behavior associated with varying γ in the interval

148

[0, 1.5] (larger values correspond to more pronounced attention bias). In this case

too the context-aware algorithm outperforms other choices and we see smooth

degradation in performace as we get higher attention bias (reviews lower in the

ranking get less votes and thus we have a poorer estimate of their quality).

7.4.4 Robustness

The new algorithm and RVM itself result in gains across widely ranging amounts

of contextual information included in the votes. Up until now it was assumed

that we know the correct values of parameters α and β (i.e., they are provided to

us, e.g. based on historical data). How robust is this approach to less accurate

estimates of these parameters? For example, will this approach still work if we

have bad estimates or if they change over time; or are we better off playing safe

and using the ratio-sort algorithm?

Robustness is explored on Figure 7.7(a). The belief about true α and β is

fixed and the actual values are varied in data via simulations. If the approach is

robust then we should see smooth and slow degradation of performance as data

moves further away from the belief of the algorithm. All points on figure use

α = β = 0.5 in the algorithm, while data spans a large interval. We can observe

that performance does not change drastically. Another important observation is

that as we move further towards higher influence of the context the performance

steadily increases (and reverse for the opposite direction) despite the parameter

estimates being more and more wrong. This is because the results in this plot

show the joint effect of incorrect parameter estimates and higher informativeness

of contextual votes. Because the latter turns out to be a larger factor we can

observe gradient in performance on this figure that is aligned with the parameter

149

values.

To get a better sense of what is actually good or bad, we can comapare the

results to using ratio-sort algoritm as a baseline. Figure 7.7(b) shows differences in

the performance, with positive values meaning that the context-aware algorithm

performs better than the baseline ratio-sort approach. Note that the standard

error is approximately 0.05 when drawing conclusions about the differences. We

see that context-aware algorithm performs better for the most part, except for

being about equal when assuming high amount of contextual information while

the data is mostly from AVM.

7.4.5 New Reviews over Time

Another important case we should consider (becuase it is closer to real-world sce-

narios) is new reviews arriving over time (instead of all already being present at

the beggining as in the previous experiments). We can modify the framework to

start with a single review and then add new ones over time.

Figure 7.8(a) shows results for the case of adding one new review each iteration

(until we reach the full set of 30 reviews). Performance is measured only on the

reviews existing at that timepoint. Note that total loss of utility increases with

larger number of reviews (due to how it is defined) even if the average per review

quality estimates have the same or lower variance. This is why we see increase in

loss until iteration 30, after which all reviews are present. In this experiment too,

we can observe the same performance characteristics as before (i.e., the context-

aware algorithm outperforms ratio-sort and RVM gives more information than

AVM).

150

If new reviews do not arrive every iteration but at longer regular intervals

we get traces as seen on Figure 7.8(b). Here, a new review gets added every 10

iterations. Afterwards, its quality estimate rapidly improves over the nnext few

iterations. Ratio-sort algorithm is significantly worse in this case too.

7.5 Summary

Focusing on user generated content (e.g. product reviews) and the need to promote

good content (by e.g. collecting user feedback on helpfulness of contributions), This

chapter explored interactions between user voting models and ranking algorithms.

Two competing models were discussed: Absolute Voting Model (where users vote

according to content quality) and Relative Voting Model (where context in which

an item is presented plays a role). Analysis of data suggests that real-world votes

are not cast according to AVM, but include context bias. Based on simulations we

see that votes cast according to RVM carry more information and allow ratio-sort

based ranking algorithm (i.e., quality of a contribution is estimated by ratio of

positive to all votes) to converge faster despite it not being aware of mismatch

between the RVM votes and its assumption of the model (AVM).

Knowing more about the user voting model allows us to tailor the ranking

algorithm to the actual users’ behavior. To improve upon ratio-base algorithm,

MLE was used for obtaining content qualities based on RVM. Again, using a

simulated setting we see that this does indeed further improve the performance.

Furthermore, this improvement scales smoothly with the increase in the amount

of contextual information in the votes.

The approach is robust to varying amounts of contextual influence. If the

151

ranking algorithm assumes a certain amount of contextual information in the votes,

good performance (i.e., better than using ratio-sort in the interesting part of the

parameter space) is achieved even if data does not come from the exactly same

distribution.

Let’s note here a related line of work: bandit algorithms. A classical multiarmed

bandit setting [4] is remeniscent of AVM in combination with ratio-sort algorithm,

where we try to discern the true values of content items and attan higest user

satisfaction by presenting best content in the most viewed spots. The purely

contextual version of RVM (at β = 1) is in broad view related to dueling bandits

[124], where we look at the preferences between items. The approach described

here in its entirety, however, deals with a mixture of both and allows for receiving

multiple (possibly dependent) pieces of feedback at the same time. Furthermore,

the approach specifies how to estimate content quality but does not prevent us

from incorporating an additional exploration strategy on top of it (e.g. it could be

combined with [80]).

To sum up, this chapter showed presence of context bias in observed data and

then demonstrated that votes including contextual information (in addition to item

quality) carry more information and result in faster ranking convergence even if

the ranking algorithm is not aware of the change in the model of users’ behavior.

Moreover, even better performance can be achieved by exploiting model knowledge

and estimating content quality in accordance with users’ voting model.

152

(a) lognormal, utility loss

(b) lognormal, swaps

Figure 7.4: Comparison between AVM (red) and RVM (green) using ratio-sort
versus RVM with MLE algorithm (blue) using different distributions of review
qualities and different performance measures.

153

(a) uniform, utility loss

(b) normal, utility loss

Figure 7.5: Comparison between AVM (red) and RVM (green) using ratio-sort
versus RVM with MLE algorithm (blue) using different distributions of review
qualities and different performance measures.

154

(a) context trade-off α = β

(b) attention bias γ

Figure 7.6: Sweep of the main model parameters showing smooth changes in per-
formance and better performance of the new algorithm in all cases.

155

(a) RVM with MLE

(b) comparison with baseline

Figure 7.7: Robustness for fixed assumed parameters α and β by the algorithm,
while the data varies. Comparison plot shows how much better is the context-aware
algorithm compared to the ratio-sort.

156

(a) new review each iteration

(b) new review every 10 iterations

Figure 7.8: A setting where new reviews arrive over time.

157

Part V

Conclusion

158

CHAPTER 8

CONCLUSIONS

Vast and rapidly growing amounts of digital data are a big contributor to accel-

erating technology progress we are all experiencing. New developments are fueled

by accumulated information and shared knowledge. On the other side of the coin,

the growth is outpacing our own abilities to filter, process and assimilate desired

information. To counteract this, we have also been building information retrieval

and other systems on the parallel tract to data collection. For example, we already

have very sophisticated (and effective) keyword-based web search engines. There

is also past work that covers other user needs by e.g. condensing information

distilling large amounts of data into small packages that contain all relevant infor-

mation, avoid redundancy, give high-level insight and are easily consumable by us

in a limited timeframe. This thesis strives to add another piece to this by expand-

ing the toolbox with novel automated approaches covering as-of-yet unaddressed

user needs.

The first half of this thesis focuses on condensing information by summarizing.

Starting with a large amount of data, one can construct a brief summary that

contains relevant information for the user who can then in a short amount of time

obtain the desired insight. Summarization in the sense of information condensation

is not limited to plain text but can take other forms to address specific user needs

(e.g. summary can be a timeline). The latter half focuses on crowdsourcing. The

main idea is to collaborate with the users and use freely provided user feedback

to help surface the good content (and thus distill larger collections into quality

content).

Starting with improvements to approaches for traditional summarization task,

159

Chapter 3 presented a supervised learning approach to extractive multi-document

summarization using structured output prediction based on structual SVMs, which

models summaries as multivariate objects and can thus capture dependencies

within them. The learning method applies to all submodular scoring functions,

ranging from pairwise-similarity models to coverage based approaches. Submod-

ular functions have the desirable property of diminishing returns and have also

been applied to many other summarization-like tasks. The learning problem was

formulated as a convex quadratic program and was then solved approximately us-

ing a cutting-plane method. The submodular objective can be optimized greedily

and has a constant factor approximation guarantee. In an empirical evaluation,

the structural SVM approach significantly outperforms conventional hand-tuned

models. A key advantage of the learning approach is its ability to handle large

numbers of features, providing substantial flexibility for building high-fidelity sum-

marization models. Furthermore, it shows good control of overfitting, making it

possible to train models even with only a few training examples.

The framework of submodular scoring functions is flexible and can be applied

to a different information condensation task. Chapter 4 presents an approach

to selecting pairs of snippets from reviews in a way that creates a summarizing

product comparison. The scoring function strives to select aligned pairs (both

snippets are about the same aspect) with good coverage of important aspects

and low redundancy. The objective function is submodular and thus efficient

to optimize with a constant factor approximation. The experiments show that

it outperforms a naive baseline even with the uniform weights model. Using a

supervised learning approach it can achieve generalization across different product

pairs by using user feedback on the presented pairs.

160

Adding temporal dimension and using unsupervised setting we can define an-

other task that helps the user gain insight into evolution of a given corpus over

time. Chapter 5 presents a submodular framework for temporal corpus summa-

rization which is an extension of objective functions used in the previous chapters.

The notion of word coverage is extended so that the summaries cover important

concepts by covering associated words over a time interval. A timeline of influ-

ential documents, or authors, or coherent key phrases can be constructed using

this approach, thus providing concrete suggestions for further and more detailed

exploration of the corpus contents. The approach leveraged both the novelty of a

document (i.e. document introduces novel ideas into the corpus) as well as its influ-

ence (i.e. documents at the later dates expand upon its ideas) in the development

of the corpus and relied only on word features; in particular, it does not require a ci-

tation structure to infer influence across time in a corpus of scientific publications.

Therefore it is applicable to any textual collection which provides timestamped

documents. The optimization objectives is again monotone submodular which can

be efficiently solved. The evaluation demonstrates that the approach performs

better than several baselines using citation based performance measures.

To leverage the crowdsourcing, we should first understand the user behavior and

their feedback. Chapter 6 provides an analysis of user voting patterns on Amazon

reviews, over time and as a function of the context in which the review was rated

by the user. Using a newly collected dataset of daily snapshots of reviews and their

ratings, we can observe that voting polarity (i.e., whether to assign a positive or

negative helpfulness vote to a review) as well as participation (i.e., whether to vote

at all) depends not only on the inherent quality of a review, but also on the context

in which it is presented at the time of voting. In particular, there is evidence that

the observed connection between context and voting behavior cannot be captured

161

by absolute and independent judgments about helpfulness.

An alternative descriptive model of the behavior that incorporates the context

provides a better fit to the observed data. Notably, voting polarity becomes more

positive/negative, if a review is better/worse than its context. Furthermore, voting

participation generally increases if a review is misranked. The discovered patterns

are substantially different from other setting where endorsements are used to rank

items (e.g. Web Search).

After gaining some insight into the user behavior, we can try to exploit this

additional knowledge to improve ranking of the content (and thus help the user by

surfacing the good content). Chapter 7 explores interactions between user voting

models and ranking algorithms. Two competing models: Absolute Voting Model

(where users vote according to content quality) and Relative Voting Model (where

context in which an item is presented plays a role) are compared using simulations.

Votes cast according to RVM carry more information and allow ratio-sort based

ranking algorithm (i.e., quality of a contribution is estimated by ratio of positive

to all votes) to converge faster despite it not being aware of mismatch between

the RVM votes and its assumption of the model (AVM). Knowing more about the

user voting model allows us to tailor the ranking algorithm to the actual users’

behavior. The ranking convergence speed can be further improved by using MLE

instead of the nave ratio-sort algorithm for estimating review qualities based on

votes cast according to RVM. This improvement scales smoothly with the increase

in the amount of contextual information in the votes.

This thesis presented an improved way of summarizing that combined sub-

modular objective functions (which can be efficiently optimized) with supervised

learning to achieve new state-of-the-art performance. The same framework can

162

be applied to different tasks, ranging from traditional summarization to temporal

and comparative summaries, thus covering different user needs by automatically

condensing information in different ways. An important resource is also user feed-

back. The second part of this thesis asks how can we condense information and

bring good content to the user in the crowdsourced setting where we get free user

feedback. An analysis of a real-world data shows that votes cast by users can be

biased by the context in which they were cast. By building upon the descriptive

models of the observed behavior we can improve ranking algorithms and achieve

faster convergence of the ranking of the content and thus bring good and relevant

content to the user.

163

BIBLIOGRAPHY

[1] Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gionis, and
Gilad Mishne. Finding high-quality content in social media. In Proceedings of
the 2008 International Conference on Web Search and Data Mining, WSDM
’08, pages 183–194, New York, NY, USA, 2008. ACM.

[2] James Allan, Rahul Gupta, and Vikas Khandelwal. Temporal summaries of
new topics. In SIGIR, pages 10–18, New York, NY, USA, 2001. ACM.

[3] Georgios Askalidis and Greg Stoddard. A theoretical analysis of crowd-
sourced content curation. In The 3rd Workshop on Social Computing and
User Generated Content, 2013.

[4] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of
the multiarmed bandit problem. Mach. Learn., 47(2-3):235–256, May 2002.

[5] Philip Beineke, Trevor Hastie, Christopher Manning, and Shivakumar
Vaithyanathan. Exploring sentiment summarization. In AAAI Spring Sym-
posium, 2004.

[6] T. Berg-Kirkpatrick, D. Gillick, and D. Klein. Jointly learning to extract
and compress. In ACL, 2011.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:993–1022, March 2003.

[8] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. In WWW, 1998.

[9] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maxi-
mizing a submodular set function subject to a matroid constraint (extended
abstract). In Proceedings of the 12th International Conference on Integer
Programming and Combinatorial Optimization, IPCO ’07, pages 182–196,
Berlin, Heidelberg, 2007. Springer-Verlag.

[10] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based rerank-
ing for reordering documents and producing summaries. In SIGIR, pages
335–336, New York, NY, USA, 1998. ACM.

[11] Chien Chin Chen and Meng Chang Chen. Tscan: a novel method for topic

164

summarization and content anatomy. In SIGIR, pages 579–586, New York,
NY, USA, 2008. ACM.

[12] P. Chen, H. Xie, S. Maslov, and S. Redner. Finding scientific gems with
google’s pagerank algorithm. Journal of Informetrics, 1(1):8 – 15, 2007.

[13] Jaehoon Choi, Donghyeon Kim, Seongsoon Kim, Junkyu Lee, Sangrak Lim,
Sunwon Lee, and Jaewoo Kang. Consento: a new framework for opinion
based entity search and summarization. In CIKM, pages 1935–1939, New
York, NY, USA, 2012. ACM.

[14] J. M. Conroy and D. P. O’leary. Text summarization via hidden markov
models. In SIGIR, 2001.

[15] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. An experi-
mental comparison of click position-bias models. In Proceedings of the 2008
International Conference on Web Search and Data Mining, WSDM ’08, pages
87–94, New York, NY, USA, 2008. ACM.

[16] Cristian Danescu-Niculescu-Mizil, Gueorgi Kossinets, Jon Kleinberg, and
Lillian Lee. How opinions are received by online communities: A case study
on amazon.com helpfulness votes. In Proceedings of the 18th international
conference on World wide web, WWW ’09, pages 141–150, New York, NY,
USA, 2009. ACM.

[17] Harold Charles Daume, III. Practical Structured Learning Techniques for
Natural Language Processing. PhD thesis, Los Angeles, CA, USA, 2006.
AAI3337548.

[18] Loretti I. Dobrescu, Michael Luca, and Alberto Motta. What makes a critic
tick? Connected authors and the determinants of book reviews. Journal of
Economic Behavior & Organization, 96(C):85–103, 2013.

[19] Khalid El-Arini and Carlos Guestrin. Beyond keyword search: discovering
relevant scientific literature. In KDD, pages 439–447, New York, NY, USA,
2011. ACM.

[20] Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos Guestrin. Turning
down the noise in the blogosphere. In KDD, pages 289–298, New York, NY,
USA, 2009. ACM.

[21] G. Erkan and D. R. Radev. Lexrank: Graph-based lexical centrality as

165

salience in text summarization. Journal of Artificial Intelligence Research,
22:457–479, 2004.

[22] E. Filatova and V. Hatzivassiloglou. Event-based extractive summarization.
In ACL Workshop on Summarization, 2004.

[23] Wei Gao, Peng Li, and Kareem Darwish. Joint topic modeling for event sum-
marization across news and social media streams. In Proceedings of the 21st
ACM International Conference on Information and Knowledge Management,
CIKM ’12, pages 1173–1182, New York, NY, USA, 2012. ACM.

[24] Alexander F. Gelbukh, Mikhail Alexandrov, Ales Bourek, and Pavel Mak-
agonov. Selection of representative documents for clusters in a document
collection. In Antje Dsterhft and Bernhard Thalheim, editors, NLDB, vol-
ume 29 of LNI, pages 120–126. GI, 2003.

[25] Anindya Ghose and Panagiotis G. Ipeirotis. Designing novel review ranking
systems: Predicting the usefulness and impact of reviews. In Proceedings
of the Ninth International Conference on Electronic Commerce, ICEC ’07,
pages 303–310, New York, NY, USA, 2007. ACM.

[26] Arpita Ghosh and Preston McAfee. Incentivizing high-quality user-generated
content. In Proceedings of the 20th international conference on World wide
web, WWW ’11, pages 137–146, New York, NY, USA, 2011. ACM.

[27] J. Goldstein, V. Mittal, J. Carbonell, and M. Kantrowitz. Multi-document
summarization by sentence extraction. In NAACL-ANLP, 2000.

[28] Aria Haghighi and Lucy Vanderwende. Exploring content models for multi-
document summarization. In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Associ-
ation for Computational Linguistics, NAACL ’09, pages 362–370, Strouds-
burg, PA, USA, 2009. Association for Computational Linguistics.

[29] F. Maxwell Harper, Daphne Raban, Sheizaf Rafaeli, and Joseph A. Konstan.
Predictors of answer quality in online Q&A sites. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’08,
pages 865–874, New York, NY, USA, 2008. ACM.

[30] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In
Proceedings of the Tenth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages 168–177, New York, NY,
USA, 2004. ACM.

166

[31] He Huang and Chunping Li. A unified graph model for chinese product
review summarization using richer information. In Proceedings of the First
International Workshop on Issues of Sentiment Discovery and Opinion Min-
ing, WISDOM ’12, pages 2:1–2:9, New York, NY, USA, 2012. ACM.

[32] Xiaojiang Huang, Xiaojun Wan, and Jianguo Xiao. Comparative news sum-
marization using linear programming. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies: Short Papers - Volume 2, HLT ’11, pages 648–653, Strouds-
burg, PA, USA, 2011. Association for Computational Linguistics.

[33] Nitin Jindal and Bing Liu. Review spam detection. In Proceedings of the 16th
international conference on World Wide Web, WWW ’07, pages 1189–1190,
New York, NY, USA, 2007. ACM.

[34] T. Joachims, L. Granka, Bing Pan, H. Hembrooke, F. Radlinski, and G. Gay.
Evaluating the accuracy of implicit feedback from clicks and query reformu-
lations in web search. ACM Transactions on Information Systems (TOIS),
25(2), April 2007.

[35] Samir Khuller, Anna Moss, and Joseph (Seffi) Naor. The budgeted maximum
coverage problem. Information Processing Letters, 70(1), 1999.

[36] Hyun Duk Kim and ChengXiang Zhai. Generating comparative summaries
of contradictory opinions in text. In CIKM, pages 385–394, New York, NY,
USA, 2009. ACM.

[37] Soo-Min Kim, Patrick Pantel, Tim Chklovski, and Marco Pennacchiotti.
Automatically assessing review helpfulness. In Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP ’06,
pages 423–430, Stroudsburg, PA, USA, 2006. Association for Computational
Linguistics.

[38] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46:604–632, 1999.

[39] A. Kulesza and B. Taskar. Learning determinantal point processes. In UAI,
2011.

[40] J. Kupiec, J. Pedersen, and F. Chen. A trainable document summarizer. In
SIGIR, 1995.

167

[41] Theodoros Lappas and Dimitrios Gunopulos. Efficient confident search in
large review corpora. In ECML PKDD, pages 195–210, Berlin, Heidelberg,
2010. Springer-Verlag.

[42] Kevin Lerman and Ryan McDonald. Contrastive summarization: An ex-
periment with consumer reviews. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, Companion Volume: Short
Papers, NAACL-Short ’09, pages 113–116, Stroudsburg, PA, USA, 2009.
Association for Computational Linguistics.

[43] Jingxuan Li, Lei Li, and Tao Li. Multi-document summarization via sub-
modularity. Applied Intelligence, 37(3):420–430, October 2012.

[44] L. Li, Ke Zhou, G. Xue, H. Zha, and Y. Yu. Enhancing diversity, coverage
and balance for summarization through structure learning. In WWW, 2009.

[45] Xuan Li, Liang Du, and Yi-Dong Shen. Graph-based marginal ranking for
update summarization. In SDM, pages 486–497. SIAM / Omnipress, 2011.

[46] Jung-Min Lim, In-Su Kang, Jae-Hak Bae, and Jong-Hyeok Lee. Sentence
extraction using time features in multi-document summarization. In Infor-
mation Retrieval Technology, volume 3411 of Lecture Notes in Computer
Science, pages 82–93. Springer Berlin / Heidelberg, 2005.

[47] C. Y. Lin and E. Hovy. Automatic evaluation of summaries using n-gram
co-occurrence statistics. In NAACL, 2003.

[48] Chin-Yew Lin. Rouge: A package for automatic evaluation of sum-
maries. In Stan Szpakowicz Marie-Francine Moens, editor, Text Summa-
rization Branches Out: Proceedings of the ACL-04 Workshop, pages 74–81,
Barcelona, Spain, July 2004. Association for Computational Linguistics.

[49] H. Lin and J. Bilmes. A class of submodular functions for document sum-
marization. In ACL-HLT, 2011.

[50] H. Lin and J. Bilmes. Multi-document summarization via budgeted maxi-
mization of submodular functions. In 2010, NAACL-HLT.

[51] Hui Lin and Jeff Bilmes. Multi-document summarization via budgeted max-
imization of submodular functions. In HLT, pages 912–920, Stroudsburg,
PA, USA, 2010. Association for Computational Linguistics.

168

[52] Jingjing Liu, Yunbo Cao, Chin Y. Lin, Yalou Huang, and Ming Zhou. Low-
Quality Product Review Detection in Opinion Summarization. In Proceedings
of the 2007 Joint Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning (EMNLP-CoNLL),
pages 334–342, 2007.

[53] Yang Liu, Xiangji Huang, Aijun An, and Xiaohui Yu. Modeling and pre-
dicting the helpfulness of online reviews. In Data Mining, 2008. ICDM ’08.
Eighth IEEE International Conference on, pages 443–452, 2008.

[54] Chong Long, Min-Lie Huang, Xiao-Yan Zhu, and Ming Li. A new ap-
proach for multi-document update summarization. J. Comput. Sci. Technol.,
25(4):739–749, July 2010.

[55] Yue Lu, Panayiotis Tsaparas, Alexandros Ntoulas, and Livia Polanyi. Ex-
ploiting social context for review quality prediction. In Proceedings of the
19th international conference on World wide web, WWW ’10, pages 691–700,
New York, NY, USA, 2010. ACM.

[56] Yue Lu, ChengXiang Zhai, and Neel Sundaresan. Rated aspect summariza-
tion of short comments. In Proceedings of the 18th International Conference
on World Wide Web, WWW ’09, pages 131–140, New York, NY, USA, 2009.
ACM.

[57] Zongyang Ma, Aixin Sun, Quan Yuan, and Gao Cong. Topic-driven reader
comments summarization. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12, pages
265–274, New York, NY, USA, 2012. ACM.

[58] Walid Magdy, Ahmed Ali, and Kareem Darwish. A summarization tool for
time-sensitive social media. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12, pages
2695–2697, New York, NY, USA, 2012. ACM.

[59] Milind Mahajan, Patrick Nguyen, and Geoffrey Zweig. Summarization of
multiple user reviews in the restaurant domain. Technical Report MSR-TR-
2007-126, Microsoft Research, 2007.

[60] Takuya Makino, Hiroya Takamura, and Manabu Okumura. Balanced cover-
age of aspects for text summarization. In Proceedings of the 21st ACM In-
ternational Conference on Information and Knowledge Management, CIKM
’12, pages 1742–1746, New York, NY, USA, 2012. ACM.

169

[61] Juha Makkonen and Helena Ahonen-Myka. Utilizing temporal information
in topic detection and tracking. In Traugott Koch and Ingeborg Slvberg,
editors, ECDL, volume 2769 of Lecture Notes in Computer Science, pages
393–404. Springer, 2003.

[62] F. T. Martins and N. A. Smith. Summarization with a joint model for
sentence extraction and compression. In ACL Workshop on Integer Linear
Programming for Natural Language Processing, 2009.

[63] R. McDonald. A study of global inference algorithms. In Lecture Notes in
Computer Science, 2007.

[64] Xinfan Meng and Houfeng Wang. Mining user reviews: from specification to
summarization. In ACL-IJCNLP Short Papers, pages 177–180, Stroudsburg,
PA, USA, 2009. ACL.

[65] D. Metzler and T. Kanungo. Machine learned sentence selection strategies
for query-biased summarization. In SIGIR, 2008.

[66] R. Mihalcea. Graph-based ranking algorithms for sentence extraction, ap-
plied to text summarization. In ACL on Interactive poster and demonstration
sessions, 2004.

[67] R. Mihalcea and P. Tarau. Textrank: Bringing order into texts. In EMNLP,
2004.

[68] Lev Muchnik, Sinan Aral, and Sean J. Taylor. Social influence bias: A
randomized experiment. Science, 341(6146):647–651, 2013.

[69] Susan M. Mudambi and David Schuff. What makes a helpful online review?
A study of customer reviews on amazon.com. MIS Q., 34(1):185–200, March
2010.

[70] Makoto Nakayama and Yun Wan. An exploratory study: “Blind-testing”
consumers how they rate helpfulness of online reviews. In Conf-IRM, 2012.

[71] Ramesh Nallapati, Ao Feng, Fuchun Peng, and James Allan. Event threading
within news topics. In CIKM, pages 446–453, New York, NY, USA, 2004.
ACM.

[72] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approxima-

170

tions for maximizing submodular set functions. Mathematical Programming,
14:265–294, 1978.

[73] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approxima-
tions for maximizing submodular set functions–i. Mathematical Program-
ming, 14(1):265–294, 1978.

[74] Ani Nenkova and Kathleen McKeown. Automatic summarization. Founda-
tions and Trends in Information Retrieval, 5(2-3):103–233, 2011.

[75] T. Nomoto and Y. Matsumoto. A new approach to unsupervised text sum-
marization. In SIGIR, 2001.

[76] Michael J. Paul, ChengXiang Zhai, and Roxana Girju. Summarizing con-
trastive viewpoints in opinionated text. In EMNLP, pages 66–76, Strouds-
burg, PA, USA, 2010. ACL.

[77] V. Qazvinian, D. R. Radev, and A. Özgür. Citation summarization through
keyphrase extraction. In COLING, 2010.

[78] Dragomir R. Radev, Hongyan Jing, Malgorzata Styś, and Daniel Tam.
Centroid-based summarization of multiple documents. Inf. Process. Man-
age., 40(6):919–938, November 2004.

[79] Dragomir R. Radev, Pradeep Muthukrishnan, and Vahed Qazvinian. The
ACL anthology network corpus. In Proceedings, ACL Workshop on Natural
Language Processing and Information Retrieval for Digital Libraries, Singa-
pore, 2009.

[80] Filip Radlinski and Thorsten Joachims. Active exploration for learning rank-
ings from clickthrough data. In Proceedings of the 13th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD ’07,
pages 570–579, New York, NY, USA, 2007. ACM.

[81] K. Raman, T. Joachims, and P. Shivaswamy. Structured learning of two-level
dynamic rankings. In CIKM, 2011.

[82] Karthik Raman, Thorsten Joachims, and Pannanaga Shivaswamy. Struc-
tured learning of two-level dynamic rankings. In CIKM, 2011.

[83] Gobaan Raveendran and Charles L.A. Clarke. Lightweight contrastive sum-

171

marization for news comment mining. In SIGIR, pages 1103–1104, New York,
NY, USA, 2012. ACM.

[84] Gerard Salton and Chris Buckley. Term weighting approaches in automatic
text retrieval. Technical report, Cornell University, Ithaca, NY, USA, 1987.

[85] Shilad Sen, F. Maxwell Harper, Adam LaPitz, and John Riedl. The quest
for quality tags. In Proceedings of the 2007 international ACM conference on
Supporting group work, GROUP ’07, pages 361–370, New York, NY, USA,
2007. ACM.

[86] Dafna Shahaf and Carlos Guestrin. Connecting the dots between news ar-
ticles. In Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’10, pages 623–632, New
York, NY, USA, 2010. ACM.

[87] Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. Trains of thought: Gener-
ating information maps. In Proceedings of the 21st International Conference
on World Wide Web, WWW ’12, pages 899–908, New York, NY, USA, 2012.
ACM.

[88] B. Shaparenko and T. Joachims. Information genealogy: Uncovering the flow
of ideas in non-hyperlinked document databases. In KDD, pages 619–628,
2007.

[89] Benyah Shaparenko and Thorsten Joachims. Identifying the original contri-
bution of a document via language modeling. In Proceedings of the 32Nd
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’09, pages 696–697, New York, NY, USA, 2009.
ACM.

[90] Chao Shen and Tao Li. Multi-document summarization via the minimum
dominating set. In COLING, pages 984–992, Stroudsburg, PA, USA, 2010.
ACL.

[91] D. Shen, J. T. Sun, H. Li, Q. Yang, and Z. Chen. Document summarization
using conditional random fields. In IJCAI, 2007.

[92] Stefan Siersdorfer, Sergiu Chelaru, Wolfgang Nejdl, and Jose San Pedro. How
useful are your comments?: Analyzing and predicting youtube comments
and comment ratings. In Proceedings of the 19th international conference
on World wide web, WWW ’10, pages 891–900, New York, NY, USA, 2010.
ACM.

172

[93] Ruben Sipos, Arpita Ghosh, and Thorsten Joachims. Was this review helpful
to you?: It depends! context and voting patterns in online content. In Pro-
ceedings of the 23rd International Conference on World Wide Web, WWW
’14, pages 337–348, Republic and Canton of Geneva, Switzerland, 2014. In-
ternational World Wide Web Conferences Steering Committee.

[94] Ruben Sipos and Thorsten Joachims. Generating comparative summaries
from reviews. In Proceedings of the 22Nd ACM International Conference
on Conference on Information & Knowledge Management, CIKM ’13,
pages 1853–1856, New York, NY, USA, 2013. ACM.

[95] Ruben Sipos, Pannaga Shivaswamy, and Thorsten Joachims. Large-margin
learning of submodular summarization models. In Proceedings of the 13th
Conference of the European Chapter of the Association for Computational
Linguistics, EACL ’12, pages 224–233, Stroudsburg, PA, USA, 2012. Asso-
ciation for Computational Linguistics.

[96] Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy, and Thorsten
Joachims. Temporal corpus summarization using submodular word cover-
age. In Proceedings of the 21st ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’12, pages 754–763, New York, NY,
USA, 2012. ACM.

[97] Josef Steinberger and Karel Jeek. Using latent semantic analysis in text
summarization and summary evaluation. In In Proc. ISIM 04, pages 93–
100, 2004.

[98] Ilija Subašić and Bettina Berendt. From bursty patterns to bursty facts:
The effectiveness of temporal text mining for news. In ECAI, pages 517–522,
Amsterdam, The Netherlands, The Netherlands, 2010. IOS Press.

[99] A. Swaminathan, C. V. Mathew, and D. Kirovski. Essential pages. In WI-
IAT, IEEE Computer Society, 2009.

[100] Ashwin Swaminthan, Cherian Metthew, and Darko Kirovski. Essential pages.
In Technical Report, MSR-TR-2008-15, Microsoft Research, 2008.

[101] Russell Swan and James Allan. Automatic generation of overview timelines.
In SIGIR, pages 49–56, New York, NY, USA, 2000. ACM.

[102] Hiroya Takamura and Manabu Okumura. Text summarization model based
on maximum coverage problem and its variant. In EACL, pages 781–789,
Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

173

[103] Roberto Torres, Sean M. McNee, Mara Abel, Joseph A. Konstan, and John
Riedl. Enhancing digital libraries with techlens+. In Proceedings of the
4th ACM/IEEE-CS joint conference on Digital libraries, JCDL ’04, pages
228–236, New York, NY, USA, 2004. ACM.

[104] Panayiotis Tsaparas, Alexandros Ntoulas, and Evimaria Terzi. Selecting a
comprehensive set of reviews. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
’11, pages 168–176, New York, NY, USA, 2011. ACM.

[105] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Large margin
methods for structured and interdependent output variables. Journal of
Machine Learning Research, 6:1453–1484, 2005.

[106] Oren Tsur and Ari Rappoport. Revrank: A fully unsupervised algorithm
for selecting the most helpful book reviews. In Eytan Adar, Matthew Hurst,
Tim Finin, Natalie S. Glance, Nicolas Nicolov, and Belle L. Tseng, editors,
ICWSM. The AAAI Press, 2009.

[107] X. Wan, J. Yang, and J. Xiao. Collabsum: Exploiting multiple document
clustering for collaborative single document summarizations. In SIGIR, 2007.

[108] Xiaojun Wan, Houping Jia, Shanshan Huang, and Jianguo Xiao. Summa-
rizing the differences in multilingual news. In SIGIR, pages 735–744, New
York, NY, USA, 2011. ACM.

[109] Xiaojun Wan, Jianwu Yang, and Jianguo Xiao. Towards an iterative rein-
forcement approach for simultaneous document summarization and keyword
extraction. In John A. Carroll, Antal van den Bosch, and Annie Zaenen,
editors, ACL. The Association for Computational Linguistics, 2007.

[110] Dingding Wang and Tao Li. Document update summarization using incre-
mental hierarchical clustering. In Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, CIKM ’10, pages
279–288, New York, NY, USA, 2010. ACM.

[111] Dingding Wang, Tao Li, Shenghuo Zhu, and Chris Ding. Multi-document
summarization via sentence-level semantic analysis and symmetric matrix
factorization. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
’08, pages 307–314, New York, NY, USA, 2008. ACM.

174

[112] Dingding Wang, Mitsunori Ogihara, and Tao Li. Summarizing the differ-
ences from microblogs. In Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
’12, pages 1147–1148, New York, NY, USA, 2012. ACM.

[113] Dingding Wang, Shenghuo Zhu, Tao Li, and Yihong Gong. Comparative
document summarization via discriminative sentence selection. ACM Trans.
Knowl. Discov. Data, 7(1):2:1–2:18, March 2013.

[114] Hongning Wang, Yue Lu, and Chengxiang Zhai. Latent aspect rating analysis
on review text data: a rating regression approach. In SIGKDD, pages 783–
792, New York, NY, USA, 2010. ACM.

[115] Xuerui Wang and Andrew McCallum. Topics over time: A non-markov
continuous-time model of topical trends. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’06, pages 424–433, New York, NY, USA, 2006. ACM.

[116] René Witte and Sabine Bergler. Next-Generation Summarization: Con-
trastive, Focused, and Update Summaries. In International Conference on
Recent Advances in Natural Language Processing (RANLP 2007), Borovets,
Bulgaria, September 27–29 2007.

[117] Fang Wu and BernardoA. Huberman. How public opinion forms. In Chris-
tos Papadimitriou and Shuzhong Zhang, editors, Internet and Network Eco-
nomics, volume 5385 of Lecture Notes in Computer Science, pages 334–341.
Springer Berlin Heidelberg, 2008.

[118] Mingli Wu, Wenjie Li, Qin Lu, and Kam-Fai Wong. Event-based summariza-
tion using time features. In Proceedings of the 8th International Conference
on Computational Linguistics and Intelligent Text Processing, CICLing ’07,
pages 563–574, Berlin, Heidelberg, 2007. Springer-Verlag.

[119] Erjia Yan and Ying Ding. Weighted citation: An indicator of an article’s
prestige. Journal of the American Society for Information Science and Tech-
nology, 61(8):1635–1643, 2010.

[120] Rui Yan, Xiaojun Wan, Mirella Lapata, Wayne Xin Zhao, Pu-Jen Cheng,
and Xiaoming Li. Visualizing timelines: Evolutionary summarization via it-
erative reinforcement between text and image streams. In Proceedings of the
21st ACM International Conference on Information and Knowledge Man-
agement, CIKM ’12, pages 275–284, New York, NY, USA, 2012. ACM.

175

[121] Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong, Xiaoming Li, and
Yan Zhang. Evolutionary timeline summarization: a balanced optimization
framework via iterative substitution. In SIGIR, pages 745–754, New York,
NY, USA, 2011. ACM.

[122] Jung-Yeon Yang, Jaeseok Myung, and Sang-goo Lee. The method for a
summarization of product reviews using the user’s opinion. In Proceedings of
the 2009 International Conference on Information, Process, and Knowledge
Management, EKNOW ’09, pages 84–89, Washington, DC, USA, 2009. IEEE
Computer Society.

[123] Y. Yue and T. Joachims. Predicting diverse subsets using structural svms.
In ICML, 2008.

[124] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The
k-armed dueling bandits problem. J. Comput. Syst. Sci., 78(5):1538–1556,
September 2012.

[125] Yisong Yue and T. Joachims. Predicting diverse subsets using structural
SVMs. In ICML, pages 271–278, 2008.

[126] ChengXiang Zhai, Atulya Velivelli, and Bei Yu. A cross-collection mix-
ture model for comparative text mining. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’04, pages 743–748, New York, NY, USA, 2004. ACM.

[127] Jiaming Zhan, Han Tong Loh, and Ying Liu. Gather customer concerns from
online product reviews - a text summarization approach. Expert Syst. Appl.,
36(2):2107–2115, March 2009.

[128] Richong Zhang and Thomas T. Tran. Probabilistic modeling of user-
generated reviews. In Web Intelligence, pages 171–175, 2010.

[129] Zhu Zhang and Balaji Varadarajan. Utility scoring of product reviews. In
Proceedings of the 15th ACM international conference on Information and
knowledge management, CIKM ’06, pages 51–57, New York, NY, USA, 2006.
ACM.

[130] Li Zhuang, Feng Jing, and Xiao-Yan Zhu. Movie review mining and summa-
rization. In Proceedings of the 15th ACM International Conference on In-
formation and Knowledge Management, CIKM ’06, pages 43–50, New York,
NY, USA, 2006. ACM.

176

