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Abstract

In biological sciences, the growth of experimental data is not uniform for different types of
biological mechanisms, hence some biological mechanisms still have few datasets available.
The thesis describes a novel methodology for the construction of biological models by eliciting
the relevant knowledge from literature and domain experts. The methodology has been
applied to build the model of defence response in plants, and can be used to construct models
of other biological mechanisms. The methodology addresses two aspects of biological model
construction: the model structure as well as the model dynamics.

The motivation of the developed methodology is to enable building biological models
without or with scarce experimental data. The methodology consists of several steps, where
the standard approach to the construction of dynamic models is enhanced with the following
methods: a method for model structure revision by means of natural language processing
techniques, a method for incremental model structure revision, and a method for automatic
optimisation of model parameters guided by the expert knowledge in the form of constraints.

In the proposed approach, the initial model structure was constructed manually by
defining the representation formalism, encoding the information from public databases and
literature, and composing a pathway diagram. In order to complement the model structure
with potentially missing relations, a new approach to automated information extraction from
biological literature was developed. This approach, named Bio3graph, allows for automated
extraction of biological relations in the form of triplets followed by the construction of a graph
structure which can be visualised, compared to the manually constructed model structure,
and examined by the experts. Using a plant defence response vocabulary of components and
reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting
in 137 newly detected relations. The resulting pathway diagram of plant defence signalling
represents a valuable source for further computational modelling and interpretation of omics
data. The Bio3graph approach, implemented as an executable language processing and
graph visualisation workflow, can be utilised for modelling other biological systems, given
that an appropriate vocabulary is provided.

An incremental variant of the Bio3graph tool was developed to enable easy updating of
a given model structure with new relations. The incremented approach allows for periodic
updates of network structures based on newly published scientific literature. The incremen-
tal approach was demonstrated on two use cases. In the first use case, a simple plant defence
network with 37 components and 49 relations, created manually, was extended in two in-
cremental steps yielding the extended model with 183 relations. In the second use case, a
complex model structure of defence response in Arabidopsis thaliana, consisting of 175 nodes
and 524 relations, was incrementally updated with the information extracted from recently
published articles, resulting in an enhanced network with 628 relations. The results show
that by using the incremental approach it is possible to follow the development of knowledge
of specific biological relations in recent literature. The implemented components offer an
effective way of merging and visualising model structures and the triplet graphs generated
from texts, thus enabling fast discovery of new relations.

One obstacle in developing dynamic models, useful for simulation, is the lack of kinetic
data from which the model parameters could be determined. This problem was addressed
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by proposing a method for iterative improvement of model parameters until the simulation
results come close to the expectations of the biology experts. These expectations can be
formulated as constraints to be satisfied by model simulations. To estimate the parameters
of the salicylic acid pathway, the most important pathway of plant defence response, three
iterative steps were performed in order to meet the expectations of the biology experts.
The method enabled us to improve results of individual simulations and to optimise model
parameters which provide a deeper insight into the observed biological system. As a result,
the constraint-driven optimisation approach allows for efficient exploration of the dynamic
behaviour of biological models and, at the same time, increases their reliability.

The thesis also contributes to publicly available biological models and scientific software.
The structure of the developed models of defence response in Arabidopsis thaliana in the form
of directed graphs is available for download. Also, the implemented Bio3graph approach for
triplet extraction from literature is provided as a publicly accessible scientific workflow.
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Povzetek

V bioloških znanostih količina eksperimentalnih podatkov o različnih bioloških mehanizmih
narašča neenakomerno in za nekatere biološke mehanizme je na voljo le malo podatkov.
Disertacija opisuje novo metodologijo za gradnjo bioloških modelov z zajemanjem znanja
iz literature in ekspertnega znanja v domenah, kjer primanjkuje eksperimentalnih podat-
kov. Metodologija je bila uporabljena za gradnjo modela obrambnega mehanizma rastlin, v
splošnem pa jo je mogoče uporabiti tudi za gradnjo modelov drugih bioloških mehanizmov.
Metodologija obravnava gradnjo bioloških modelov tako z vidika strukture modela kot tudi
njegove dinamike.

Cilj razvite metodologije je omogočiti gradnjo bioloških modelov brez, oziroma z majhno
količino razpoložljivih eksperimentalnih podatkov. Sestavljena je iz več korakov, pri čemer je
običajni pristop h gradnji dinamičnih modelov dopolnjen z naslednjimi metodami: uporaba
tehnik obdelave naravnega jezika za izbolǰsavo strukture modela, postopek inkrementalne
izbolǰsave modela ter avtomatska optimizacija parametrov, vodena z ekspertnim znanjem v
obliki omejitev.

V predlaganem pristopu je bila začetna struktura modela zgrajena ročno z določitvijo
formalizma predstavitve modela, vnosom informacij iz javno dostopnih podatkovnih baz in
literature ter z izgradnjo bioloških poti. Da bi strukturo modela lahko dopolnili z morebi-
tnimi manjkajočimi relacijami, smo razvili nov pristop k avtomatskemu zajemanju informacij
iz biološke literature. Ta pristop, ki smo ga poimenovali Bio3graph, omogoča avtomatsko
luščenje bioloških relacij v obliki trojčkov ter gradnjo omrežja, ki ga lahko prikažemo v obliki
grafa in primerjamo z ročno zgrajenim modelom, omogoča pa tudi obravnavo s strani eks-
pertov. S slovarjem komponent in vrst reakcij obrambnega mehanizma rastlin je bil pristop
Bio3graph uporabljen na množici 9.586 znanstvenih člankov, kar je privedlo do odkritja 137
novih relacij. Izpopolnjen obrambni mehanizem rastlin predstavlja dragocen vir za nadaljnje
računalnǐsko modeliranje in razlago bioloških podatkov. Pristop Bio3graph, ki je implemen-
tiran kot delotok komponent za procesiranje naravnega jezika ter grafičnega prikaza omrežij,
je mogoče uporabiti tudi za modeliranje drugih bioloških sistemov, če je na voljo primeren
slovar komponent in relacij.

Da bi omogočili enostavno nadgradnjo strukture modela z novimi relacijami, smo razvili
še inkrementalno različico pristopa Bio3graph. Le-ta omogoča ponavljajoče nadgrajevanje
omrežnih struktur modelov z upoštevanjem novo objavljene znanstvene literature. Uporaba
inkrementalnega pristopa je prikazana na dveh primerih. V prvem primeru je bil preprost,
ročno zgrajen model obrambnega mehanizma rastlin s 37 komponentami in 49 relacijami
nadgrajen v dveh zaporednih korakih, ki sta privedla do končnega, razširjenega modela
s 183 relacijami. V drugem primeru pa je bila nadgrajena struktura naprednega modela
obrambnega mehanizma navadnega repnjakovca (Arabidopsis thaliana), ki je vseboval 175
komponent in 524 relacij. Struktura modela je bila razširjena z informacijami, pridobljenimi
iz novo objavljenih znanstvenih člankov, kar je privedlo do izbolǰsane strukture s 628 relaci-
jami. Rezultati kažejo, da je z uporabo inkrementalnega pristopa mogoče slediti znanstve-
nim spoznanjem o izbranih bioloških relacijah v novo objavljeni literaturi. Implementirane
komponente nudijo učinkovit način zlivanja in grafičnega prikazovanja struktur modelov ter
omrežij trojčkov, pridobljenih iz besedil, kar omogoča hitro odkrivanje novih relacij.
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Ena od ovir pri razvoju dinamičnih modelov, ki so primerni za simulacijo, je pomanjkanje
kinetičnih podatkov, s pomočjo katerih je mogoče določiti parametre modela. Predlagana
rešitev temelji na iterativni izbolǰsavi parametrov, ki se lahko izvaja vse dokler rezultati
simulacije ne zadostijo pričakovanjem ekspertov. Takšna pričakovanja je mogoče izraziti
v obliki omejitev, ki jim mora zadostiti simulacija modela. Da bi ocenili parametre poti
salicilne kisline, ki je najpomembneǰsa pot v obrambnem mehanizmu rastlin, smo izvedli
tri zaporedne korake izbolǰsave parametrov. Predlagana metoda je omogočila izbolǰsavo
rezultatov posameznih simulacij ter optimizacijo parametrov modela, to pa je pripomoglo
tudi k bolǰsemu vpogledu v opazovani biološki sistem. Zaključimo lahko, da optimizacija
z omejitvami omogoča učinkovito raziskovanje dinamičnega obnašanja bioloških modelov,
poveča pa tudi njihovo zanesljivost.

Disertacija doprinaša tudi k javno dostopnim biološkim modelom ter programski opremi
v znanosti. Razvite strukture modelov obrambnega mehanizma navadnega repnjakovca
(Arabidopsis thaliana) so prosto dostopne na spletu, prav tako pa je širši javnosti na voljo
tudi implementacija pristopa Bio3graph v obliki delotoka.
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1 Introduction

My goal is simple. It is complete understanding of

the universe, why it is as it is and why it exists at all.

Stephen Hawking

In recent years, computer science is rapidly developing new tools that are used to store,
maintain and analyse biological information. On the other hand, with the development of
new techniques like DNA microarrays, biologists are able to perform more experiments and
produce higher amounts of experimental data. In such circumstances, at the intersection
of computer science and biology, new disciplines have emerged, one of them being systems
biology.

This chapter introduces the biological background of the topic, the context of this thesis,
the terminology used and describes the motivation for the work. In addition, we present
the related work relevant for the thesis, the research hypothesis and the main thesis goals
followed by the list of scientific contributions. The chapter concludes by outlining the thesis
structure.

1.1 Biological background

The term systems biology was used for the first time in 1978 (Hogeweg and Hesper, 1978).
Since then it has developed to a specific branch of bioinformatics that is concerned with
modelling of dynamic systems behaviour and attracts raising interest of both computer
scientists and biology experts. After having used the reductionist approach in biology and
formulating knowledge on separate small subsets of the global biological mechanisms, the
need for unifying the knowledge and studying biological systems as a ”whole” has emerged.
Also, a ”whole” is more than just a simple sum of its parts, since there are additional
relationships between the parts that influence the dynamic behaviour of the ”whole”. The
goal of systems biology is to study biological processes at the system level and construct
their models by using different computer science and mathematical approaches (Kitano,
2002).

The basic concepts in systems biology include biological components, reactions and net-
works. In general, there are several types of biological components of interest:

• Nucleic acids. Five nucleic acids form DNA and RNA chains (Bean, 1973). DNA
contains genetic information, i.e. a specific gene codes for a specific protein, while
RNA is necessary for the process of extracting the genetic information, i.e. protein
synthesis.

• Genes. A gene is a unit of inheritance. It is a sequence of DNA that codes for a
specific function or a protein. The production of either RNA or protein is named gene
expression, while the resulting molecule represents a gene product (Sarkar, 2008). A
gene can be over- or underexpressed. The overexpressed genes produce their products
in increased quantities, while the underexpressed genes produce products in a smaller
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quantity than expected. Gene expression is influenced by activator or inhibitor pro-
teins, which activate or inhibit the gene expression process.

• Proteins. Proteins are organic molecules made of amino-acid sequences (Branden,
1999). The functions of proteins are manifold. They have a structural function (all
organisms are made of proteins), a mechanical function (muscles are getting contracted
as a result of protein activity), a function in cell signalling, immune responses, cell
cycle, a function of an enzyme (catalyzing biochemical reactions), etc.

• Small compounds (metabolites). They are organic molecules with lower molecular
weight, which are not polymers by definition. They include water, different minerals
and free radicals. Small compounds are the reactants and the products in metabolic
networks.

All the above mentioned biological molecules participate in many biological reactions.
They can also have different roles depending on the reaction type, such as protein activation,
positive regulation, phosphorylation, protein inhibition, negative regulation, dephosphorila-
tion, ubiquitination, binding, dissociation, transport, etc. Protein activation represents its
transformation from an inactive into its active form which allows the protein to carry out
its function. In positive regulation, a transcription factor has to bind at the promoter in
order to enable or enhance gene expression (gene expression is defined as the constant or
regulated activation of a gene which produces a functional protein). Phosphorylation repre-
sents the addition of a phosphate group to a protein or other organic molecule, thus turning
many protein enzymes on and off changing at the same time their function and activity.
Inhibition of a protein is, contrary to its activation, the process of transforming its active
form into an inactive one and thus blocking its function. In negative regulation, a repressor
protein binds to an operator to prevent a gene from being expressed. Dephosphorylation is
removing the phosphate group from a protein or other organic molecule which modifies its
performance. In ubiquitination, a protein is inactivated by attaching ubiquitin to it, which
acts as a tag that signals the cell machinery to carry the protein to the proteasome for the
final degradation. Binding is joining of two proteins, protein and a gene or protein and
a small compound. Dissociation is a process in which the molecules separate or split into
smaller particles. Transport represents the moving of a biological component from one part
of the cell to another.

A biological pathway or a network represents a sequence of reactions by which one
biological material is converted to another. In systems biology there are three main types
of biological networks (Estrada, 2011):

• Gene regulatory networks (or transcriptional regulatory networks). The main com-
ponents in these networks are genes. Depending on the level of abstraction these
networks can describe very detailed gene expression processes, but also give a more
general overview when representing only the fact that a particular biological molecule
activates or inhibits some gene.

• Signalling networks (or signal transduction networks). The main components in these
networks are proteins. In signalling networks, the product of a reaction (a protein)
becomes an enzyme for the next reaction in the network. Signalling pathways consist
of combinations of catalytic reactions, complex formations and transportations (Takai-
Igarashi, 2005). Additionally, the reaction rate depends on the concentration of the
reactants.

• Metabolic networks. The main components are small compounds. In metabolic net-
works, the product of one reaction (a small compound) becomes a reactant for the
next one. The proteins in these reactions have a role of an enzyme only. Metabolic
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pathways consist mostly of catalytic reactions which are speeded up by the enzymes
(proteins). In metabolic networks, the speed of reaction depends on the concentration
of the reacting molecules, but not to the same degree as in signalling networks.

All biological mechanisms involve one or more types of biological networks, depending on
their own complexity. The particular mechanism that we investigate in this dissertation is
plant defence response to pathogen attacks. Gene expressions in plants are highly responsive
and easily triggered by many factors in the physical environment, including biotic factors.
One of these factors are pathogens, which generally represent a serious threat to plants
and can lead to fitness costs, physiological damage or even death. However, plants have
developed sophisticated mechanisms that can effectively fight off infections with various
pathogens. In a reverse manner, effective pathogens cause disease because they are able to
avoid recognition or suppress plant defence mechanisms or both. Upon pathogen recognition,
plants trigger a complex signalling network, referred to as plant defence response or plant
defence signalling (PDS).

Regardless of whether the final result of the response is resistance or susceptibility, PDS
is critically determined by small compounds with hormonal functions, such as salicylic acid
(SA), jasmonic acid (JA) and ethylene (ET). It was shown that these three molecules play
a fundamental role in mediating the defence signalling response in plants (Reymond and
Farmer, 1998). Depending on their nature, pathogens trigger either SA-mediated (Glaze-
brook, 2005) or JA/ET-mediated (Lai et al., 2011) defence pathways in plants. Antagonism
of JA towards SA and its synergism to ET was elucidated long ago (Robert-Seilaniantz et al.,
2011). ET-based synergism is not only limited to JA, it can be towards SA as well (Pieterse
et al., 2009). Recent studies conclude that SA/JA signalling pathways are interconnected
and if the molecules are inhibited in one, the response is shifted towards the counterparts
(Sato et al., 2010). For a successful defence, the activation of PDS must be rapid, efficient
and targeted (Moore et al., 2011).

Understanding the mechanistic basis why a specific pathogen triggers illness in one host
plant and not in another has long intrigued plant pathologists, but is still not fully resolved.
There are several reasons for this. First, PDS is a very complex mechanism (Kunkel, 2002).
It consists of at least three interconnected signalling pathways (the SA, JA and ET path-
way) resulting in a dense biological network with complex cell mechanisms, such as positive
and negative feedback loops. Second, due to the complexity, there are only subsets of the
whole mechanism investigated. As a consequence, there is still a lot of information missing
regarding how the mechanism functions as a whole. Third, there is a lack of kinetic biolog-
ical studies that would potentially reveal new knowledge regarding the dynamic behaviour
of the system.

The motivation of biology experts to develop a more comprehensive model to simulate
the entire defence response of plants to virus attacks is two-fold. Firstly, such model would
provide a better understanding of the complex defence response mechanism in plants which
means highlighting connections in the network and understanding how the components
operate. More specifically, the biology experts are interested in the investigation which
intermediate biological reactions may have a larger impact on the final defence response
against pathogens in plants. Secondly, the prediction of experimental results through sim-
ulation may save experimental time and indicate further research directions to the biology
experts. For example, experts are interested in investigating plant behaviour when some
of the important genes in the defence response are silenced. The assumption is that these
investigations will result in disease resistant plants. For all these reasons, there is a need to
find the appropriate means to develop the global PDS model for simulation purposes.

The first two questions that arise in the course of model construction in systems biology
(Kitano, 2001), which we focus on in this thesis, are:

• Network structure identification. The structure of the system has to be defined as
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a first step, which means that all the biological components of interest have to be
identified and types of links between them specified.

• Parameter identification. After obtaining a network structure, relationships between
biological components and their dynamics have to be defined as well.

To satisfy the need for discovering new knowledge in plant research, where collecting data
is difficult, slow and expensive, we propose in this dissertation a method to construct the PDS
model by semi-automatic elicitation of experts knowledge. By combining different methods
of natural language processing (Cohen, 2004) and mathematical optimisation (Storn and
Price, 1995), we show how to semi-automatically acquire the structure of biological models
from the available domain resources (data and literature), determine their parameters and
explore their dynamic behaviour by simulation. Additionally, we suggest a new model
evaluation method, i.e. to compare the simulation curves and the experimental curves of
time series data with few data points. The methodology developed in this thesis can be
further extended to any biological model development.

Given that this work is relevant for both computer science and biology, Table 1 introduces
the mapping of terms used in these two fields.

Table 1: Mapping between biology and computer science terminology used in this thesis.

Biology Computer science

Biological system Computer model, Network

Pathway Sub-model, sub-network

Molecule, Component Node, vertex

Reaction, Interaction Relation, Edge, Arc, Link, Connection

1.2 Overview of related work

This section provides a brief overview of publicly available sources of biological data appli-
cable in this work. The related work on modelling in plant research is also summarised.
The section concludes with an overview of different text processing approaches as well as
optimisation methods used in systems biology.

1.2.1 Biological data sources

Rapid collection of biological data is a direct consequence of enormous technological advances
that resulted in extraordinary quantities of biological information. The key to handling this
burgeoning information was the recruitment of computers to help systematically analyse
and store the accumulating sequence and structure data into the first biological databases.
Nowadays, biological databases represent archives of life sciences information from research
areas including genomics, proteomics, metabolomics, microarray gene expression, etc. These
databases are also an essential tool in helping scientists to understand and explain biological
phenomena. The collected knowledge can assist the fight against diseases, the development
of medications and discovering basic relationships amongst species.

Biological knowledge is scattered among different general and specialised databases. The
stored information is generally acquired from scientific experiments, published literature and
computational analyses. In the plant research field there are several databases with publicly
available experimental data. Most of the experimental data are obtained for the model plant
species Arabidopsis thaliana, but data for some other plants, such as rice, grape, potato, corn,
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etc. are also available. UniProtKB (Boutet et al., 2007) is a general protein knowledgebase,
containing information on many plants, like Arabidopsis thaliana, potato (Solanum tubero-
sum), tobacco (Nicotiana tabaccum), tomato (Solanum lycopersicum), etc. AtPID (Ara-
bidopsis thaliana Protein Interactome Database) (Cui et al., 2008) archives protein-protein
interaction networks, domain architecture, orthologous information and gene ontology anno-
tation. Arabidopsis Reactome (Tsesmetzis et al., 2008) represents a foundational knowledge
base for systems biology containing data for Arabidopsis, rice, corn, etc. PlantCyc (Zhang
et al., 2010) is plant metabolic pathway database containing curated information on primary
and secondary metabolism in plants. KEGG (Kyoto Encyclopedia of Genes and Genomes)
(Kanehisa and Goto, 2000) is a source of metabolic pathway knowledge. BioCyc (Krum-
menacker et al., 2005) is a set of 2,038 Pathway/Genome Databases where each of them
describes the genome and metabolic pathways of a single organism. One of the Genome
Databases that BioCyc incorporates is AraCyc (Mueller et al., 2003), pathway base of Ara-
bidopsis thaliana. The Arabidopsis Information Resource (TAIR) (Swarbreck et al., 2008)
maintains literature, protein information, genetic and molecular biology data for the model
plant Arabidopsis thaliana.

Currently, the biggest databases of publicly available texts in biology and systems biology
are PubMed and its subset PubMed Central (PMC), which contains publicly available full
texts. PMC is a freely accessible online database (archive) of biomedical and life sciences
literature which has been developed and managed by National Library of Medicine’s National
Center for Biotechnology Information (NCBI). It currently hosts more than 2.7 million
articles for which full text is available, either as HTML/XML or pdf or both.

There are also many computer analysis tools that integrate the current knowledge and
allow efficient exploration of experimental data. VirtualPlant (Katari et al., 2010) and On-
dex (Köhler et al., 2006) provide graph-based integrations of knowledge and gene functional
inferences that may be queried and filtered. Biomine (Eronen and Toivonnen, 2012) is a
system that puts together cross-references from several biological databases into a graph
model with multiple types of edges, such as protein interactions, gene-disease associations
and gene ontology annotations. Integration of data from databases into a single repository
can aid the discovery of previously unknown connections spanning multiple types of rela-
tionships and databases, which can be used for model construction purposes. Furthermore,
text mining tools, such as iHOP (Hoffmann and Valencia, 2004), Suiseki (Blaschke and Va-
lencia, 2002), BioRAT (Corney et al., 2004), PLAN2L (Krallinger et al., 2009), etc. can
help in the organisation of the current knowledge and discovery of new relations between
biological molecules. In our work we have explored mostly KEGG, AraCyc, TAIR, PubMed
and PubMed Central databases to obtain relevant information. To construct the model
structure manually, KEGG and Aracyc databases along with the biological literature and
iHOP text mining tool were considered while for the automated relation extraction from
literature full-texts from PubMed Central were used.

1.2.2 Modelling of biological mechanisms in plants

The database repositories of biological data have accelerated the development of the first
mathematical models of biological mechanisms and their simulations. These simulation
models have enabled an initial insight into the cell dynamics and into the understanding of
the organism behaviour as a unique system. However, considering numerous living species
and their complexity, there are still many gaps in the experimental data obtained so far.

Mathematical models require a minimum of numerical information acquired from various
transcriptomic, genomic and regulomic tools. In plant research, there are numerous studies
related to plant metabolic pathways (Giersch et al., 1991; Hahn, 1987; Laisk and Walker,
1989; Poolman et al., 2001). Most studies, however, were related to photosynthesis and the
pathways of central carbon metabolism, for which the majority of complex kinetic models
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were developed (Rios-Estepa and Lange, 2007). The model of the Calvin cycle was one of
the first models of plant metabolism constructed, possibly the most important metabolic
pathway in plants (Pettersson and Ryde-Pettersson, 1988). For a summary of kinetic models
applied to various aspects of plant metabolism, the reader is referred to the review study of
(Morgan and Rhodes, 2002).

Signalling networks, contrary to the metabolic ones, have another dimension of the
complexity. There is experimental evidence of the cross talk phenomenon where several
signalling pathways communicate and influence each other’s performance, which opens a
new aspect in the research of signalling networks (Genoud and Métraux, 1999; Noselli and
Perrimon, 2000). In a recent study, a signalling network of auxin-transport was developed
using three different approaches: analytical methods, deterministic numerical simulations
and stochastic numerical simulations (Twycross et al., 2010). This auxin-transport model
was rather simple, including in total 6 biological components of interest.

In plant-pathogen interaction research, it is particularly hard to obtain data due to a
long duration of experiments. Most of the plant-pathogen interaction studies are focused
on individual interactions or subsets of the whole PDS mechanism. The models that are
commonly used are static structural models with no information on their dynamics (Olmedo
et al., 2006; Staswick, 2008).

The first attempt to model the PDS by constructing a Boolean network and carrying out
numerical simulations of the PDS model was proposed by (Genoud et al., 2001). However,
this model is simple, containing 18 biological entities and 12 Boolean operators, whereas
large-scale experiments have shown that many more components are involved in defence
signalling (Kestler et al., 2008).

A similar work of using Boolean formalism to model only the JA signalling network as a
response to different pathogens was done by (Devoto and Turner, 2005). This study intro-
duced more biological components into the JA network than the previous one by (Genoud
et al., 2001). In total there were 28 biological nodes included. However, not all nodes were
representing biological components, as some were more abstract terms, for example ”de-
fence”, ”growth inhibition”, ”hook formation”, etc. Reactions were represented with Boolean
NOT and AND relations (18 in total). Nevertheless, this study was focused only on the JA
pathway.

A recent study that merged all known data concerning protein-protein interactions in
Arabidopsis thaliana was the Arabidopsis interactome study (Consortium, 2011). In this
work, the nature of protein-protein interactions is not clearly stated, but is defined as a
general interaction. When two proteins physically interact, they most probably influence
each other in terms of activation or inhibition. We consulted Arabidopsis interactome to
inspect the existence of the interactions between the molecules, but we could not obtain
information on the reaction type, which is needed for the PDS model.

In the work of (Naseem et al., 2012), different pathways involved in the PDS mechanism
(such as SA, JA, ET, auxin, gibberellic acid (GA), abscisic acid (ABA), etc.) are taken into
account to establish the plant immune defence network. The resulting network contains
105 nodes and 163 relations and simulates various aspects of plant immunity. However,
this network does not contain sufficiently detailed information on the particular pathways
of interest in this dissertation: the SA, JA and ET pathways.

1.2.3 Text processing in systems biology

Scientific literature can be inspected manually or analysed by text processing and infor-
mation extraction tools. There are numerous biological models which were manually con-
structed based on an in-depth literature survey, such as the macrophage activation model
developed by (Raza et al., 2008, 2010). To construct the model structure, different in-
formation sources can be used (Subsection 1.2.1). Given that most of human biological
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knowledge is still stored only in the silos of biological literature, retrieving information from
the literature is necessary when building and curating the biological models.

State-of-the-art technologies enable information extraction from scientific texts in an
automated way by means of text processing techniques, based on the advances in the area
of natural language processing (NLP) of biology texts (see e.g., the research advances of
the emerging bioNLP community1). The most common NLP approaches can be classified
into three categories (Cohen and Hunter, 2008): rule-based approaches, machine-learning
approaches and co-occurrence-based approaches. Examples of rule-based systems include
GeneWays (Rzhetsky et al., 2004), Chilibot (Chen and Sharp, 2004), PLAN2L (Krallinger
et al., 2009) and the approach proposed by (Ono et al., 2001). Combined methods, including
co-occurrence-based approaches, such as Suiseki developed by (Blaschke and Valencia, 2002)
and upgraded in the BioRAT system by (Corney et al., 2004), are also used in systems
biology. In most systems, the information is retrieved only from abstracts of the PubMed
database; an exception is the BioRAT system which can process full texts (Corney et al.,
2004). A wide range of machine learning techniques is used for relations extraction in
systems biology, like the Naive Bayes classifier (Craven and Kumlien, 1999), Support Vector
Machines (Donaldson et al., 2003), clustering (Hasegawa et al., 2004), etc.

NLP methods are used in systems biology to generate the model structures or to enhance
the existing ones. However, these text processing algorithms aim to be research assistant
tools to human experts, but they can never replace human expertise. We have also used a
rule-based NLP approach in our work and developed a Bio3graph tool, which was used to
enhance the manually constructed PDS model structure.

1.2.4 Optimisation methods in systems biology

Optimisation, in general, aims to find an optimal solution for a given problem with re-
spect to some criteria. Formally, an optimisation problem can be defined as a task that
requires optimising the objective function (also named criteria, cost, utility or fitness func-
tion). Many different problems from bioinformatics and systems biology can be defined as
optimisation problems (e.g., reverse engineering of gene networks, prediction of 3D protein
structure, multi parameter estimation, multi-alignment problem, etc.). The selection of the
optimisation method influences remarkably the problem solution.

Optimisation methods applied in bioinformatics can be classified, according to the way
solutions are found, as deterministic or stochastic. A deterministic method converges to
the same solution for a given set of input parameters. A stochastic method, on the other
hand, uses a random component that may result in different solutions when the same in-
put parameters are provided. In the optimisation of parameters of biological pathways,
due to small amounts of existing quantitative data, different deterministic and stochas-
tic optimisation methods were recently employed. Various local deterministic optimisation
techniques, like Levenberg-Marquardt algorithm (Marquardt, 1963; Levenberg, 1944) or Se-
quential Quadratic Programming (Boggs and Tolle, 1995), are applied in systems biology.
For the parameter optimisation of biological models Simulated Annealing (Kirkpatrick et
al., 1983), Evolutionary Algorithms (EAs) (Eiben and Smith, 2003) and Genetic Algorithms,
as one type of EAs, (Mitchell, 1996) are commonly used from stochastic approaches.

EAs are among the most popular optimisation methods. These algorithms start iteration
from a random population of points and perform optimisation search until some pre-defined
criterion is satisfied. A subset of points is selected in every iteration, which is usually called
generation. By applying some variation operators to the selected set, a new population of
points is created. Several types of EAs are exploited in systems biology, such as genetic
algorithms, evolutionary programming, differential evolution, etc. We have used in our

1http://www.bionlp.org/

http://www.bionlp.org/
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work differential evolution (DE) algorithm (Storn and Price, 1995) to optimise the model
parameters.

1.3 Hypothesis and goals

The mechanisms triggering illnesses in host plants by specific pathogens are not fully un-
derstood for several reasons. First, the plant defence system is a highly complex network,
consisting of several interconnected pathways and only small subsets of the involved mecha-
nisms have been studied. Second, there is currently a lack of kinetic biological studies that
would potentially reveal new knowledge regarding the dynamic behaviour of the system. As
a result, the availability of relevant experimental data is currently very limited. However,
despite the lack of sufficient data there is a strong motivation to establish a detailed PDS
model that would facilitate a better understanding of the mechanisms underlying plant de-
fence. To address this problem, we have developed a novel methodology and tools that allow
the construction of PDS model using a semi-automatic knowledge elicitation approach.
The overall aim of this thesis is as follows.

1. to develop a novel methodology and tools that enable the construction of models with
limited experimental data, and

2. to develop a concrete PDS model with the newly developed methodologies and tools.

To achieve the main aims of this thesis, we have defined a set of specific objectives:

1. to construct the PDS biochemical network structure in two ways:

• from scratch, without a starting network structure, and

• from structural models published in the literature using a semi-automated infor-
mation extraction approach based on natural language processing.

2. to construct a dynamic model of PDS system where we estimate concrete model param-
eter values using a constraint-based combinatorial parameter optimisation approach,

3. to develop a flexible methodology that facilitates the construction of biological models
in various settings; this methodology consists of methods for:

• semi-automated model structure extraction from biological literature,

• incremental model structure revision from scientific literature, and

• constraint-driven model parameter optimisation together with the model evalua-
tion based on limited amount of experimental data.

4. to develop a flexible software tool that implements the methods of the new methodol-
ogy.

1.4 Scientific contributions

This thesis contributes to the fields of systems biology and computer science. The main
contributions are as follows.

1. Manually constructed model structure of PDS presented in Section 4.2 and its semi-
automatically constructed extension, presented in Section 6.6.

2. Dynamic model of the SA pathway, presented in Subsection 5.2.4.
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3. A novel methodology for semi-automated construction of biological models (presented
in Chapter 3) consisting of:

• a method for semi-automated model structure revision from biological literature,
presented in Section 6.1,

• an incremental method for updating the model structure from new biological
literature, presented in Section 7.1, and

• a method for constraint-driven model parameter optimisation together with the
model evaluation based on few experimental data, presented in Chapter 5.

4. An executable workflow implementing the proposed PDS modelling methodology, pre-
sented in Section 6.2 and upgraded in Section 7.2.

5. Publicly available tools, models and results:

• The Bio3graph tool, developed to extract biological relations from the litera-
ture to enrich the model structure, is publicly available at http://kt.ijs.

si/dragana_miljkovic/, together with the Supplementary material for man-
ual model development and for automated model structure enhancement with
Bio3graph.

• The dynamic model of the SA pathway, including the results of model parameter
optimisation, the code of the DE algorithm (developed by Depolli M.) and the
user manual are available publicly at http://kt.ijs.si/dragana_miljkovic/.

• Model validation materials, including the validation results and the code in MAT-
LAB are accessible at http://kt.ijs.si/dragana_miljkovic/.

The main publications presenting the results of this thesis are listed below.
Miljkovic, D.; Stare, T.; Mozetič, I.; Podpečan, V.; Petek, M.; Witek, K.; Dermastia,

M.; Lavrač, N.; Gruden, K. Signalling network construction for modelling plant defence
response. PLOS ONE 7, e51822-1e51822-18 (2012).

Miljkovic, D.; Podpečan, V.; Stare, T.; Mozetič, I.; Gruden, K.; Lavrač, N. Incremental
construction of biological networks by relation extraction from literature. Current Bioinfor-
matics. (In press).

Miljkovic, D.; Depolli, M.; Stare, T.; Mozetič, I.; Petek, M.; Gruden, K.;Lavrač, N. Plant
defence model revisions through iterative minimization of constraint violations. Interna-
tional Journal of Computational Biology and Drug Design. (In press).

Miljkovic, D.; Podpečan, V.; Grčar, M.; Gruden, K.; Stare, T.; Petek, M.; Mozetič, I.;
Lavrač, N. Modelling a biological system: network creation by triplet extraction from biolog-
ical literature. In: Berthold, M. R. (ed.) Bisociative Knowledge Discovery: An Introduction
to Concept, Algorithms, Tools, and Applications. 427-437 (Springer, Berlin, 2012).

Miljkovic, D.; Podpečan, V.; Stare, T.; Mozetič, I.; Gruden, K.; Lavrač, N. Incremental
revision of biological networks from texts. In: Ortuno, F.; Rojas, I. (eds.) Proceedings of the
International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO).
1-9 (Granada, Spain, 2013).

Podpečan, V.; Miljkovic, D.; Petek M.; Stare, T.; Gruden, K.; Mozetič, I.; Lavrač, N.
Integrating semantic transcriptomic data analysis and knowledge extraction from biological
literature. Proceedings of the International Conference on Bioinformatics and Biomedicine
(BIBM). (Shangai, China, 2013). (In press).

Miljkovic, D.; Depolli, M.; Mozetič, I.; Lavrač, N.; Stare, T.; Petek, M.; Gruden, K.
Constraint-driven optimization of plant defense model parameters. In: Gao, J. (ed.) Pro-
ceedings of the Third Workshop on Integrative Data Analysis in Systems Biology (IDASB).
570-574 (Danvers: Institute of Electrical and Electronics Engineers, 2012).

 http://kt.ijs.si/dragana_miljkovic/
 http://kt.ijs.si/dragana_miljkovic/
http://kt.ijs.si/dragana_miljkovic/
http://kt.ijs.si/dragana_miljkovic/


10 Introduction

Miljkovic, D.; Mihâilâ, C.; Podpečan, V.; Grčar, M.; Gruden, K.; Stare, T.; Lavrač, N.
Workflow-based information retrieval to model plant defence response to pathogen attacks.
In: Hilario, M.; Lavrač, N.; Podpečan, V.; Kok, J. N. (eds.) Proceedings of the workshop on
Third generation data mining: Towards service-oriented knowledge discovery (SoKD). 51-60
(Barcelona, Spain, 2010).

The rest of the published material related to the topic of this dissertation is listed at the
end of the dissertation.

1.5 Organisation of the thesis

The rest of the thesis is organised as follows.
Chapter 2 is an introduction to the general concepts of modelling and describes the most

common modelling formalisms applied in systems biology.
Chapter 3 provides a top-level overview and explanation of the methodology that we

have developed to construct the PDS model. It also contains brief descriptions of each
step taken during the PDS model construction process with an emphasis on the steps that
are introduced as the scientific contributions of this thesis with the goal to improve and
accelerate PDS model construction.

Chapter 4 presents the manually developed PDS model structure. It includes the defini-
tion of the requirements for PDS model construction and the manually developed structures
of the three separate sub-models of the SA, JA and ET pathways.

Chapter 5 describes the model dynamics. It includes the definition of constraints and
the iterative process of using combinatorial optimisation for model construction, its evalu-
ation and refinement. Moreover, it presents the model validation process and the proposed
evaluation method by comparing simulation results with a publicly available experimental
dataset. It also discusses and interprets the results of the proposed methodology.

In Chapter 6 we present the relation extraction approach and point out its perspectives
for detecting scientific expertise in a specific domain. The chapter focuses on the techniques
for refining the model structure by triplet extraction from the literature and presents a
revised PDS model structure.

Chapter 7 describes the incremented version of the method presented in Chapter 6. In
this chapter, we present the method for incremental structure revision from the biological
texts. The method is demonstrated on two use cases: a simple network and a complex PDS
network.

Finally, Chapter 8 concludes the dissertation, summarises the presented work and out-
lines possible directions for further research.
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2 Modelling of Dynamic Systems: Background and

Related Work

All models are approximations. Essentially,
all models are wrong, but some are useful.

George Edward Pelham Box

Computer modelling and simulation is a research area concerned with the design and analysis
of complex systems. The overall goal of computer simulation is to represent the dynamics
of a real world system in a computer model. The main topic addressed in this chapter are
different modelling formalisms and the effects of the formalism selection on the simulation
results. In addition, text mining approaches dealing with automated extraction of model
structure are discussed.

This chapter is organised as follows. We start with the definitions of the main concepts
in dynamic modelling and explain briefly the main model categories. Next, we focus on
the model construction process and explain each phase. We give the main emphasis on
the phase of modelling formalism selection and we detail the topic by discussing different
representations of an illustrative example: a thermostat model. We provide an overview
of different modelling formalisms that were applied in systems biology. We conclude this
chapter by discussing the text mining approaches which enable model structure extraction
and visualisation.

2.1 Modelling approaches

Modelling is the process of constructing a model, which is basically a representation of some
system of interest. Modelling is a way of simplifying the real world that enables us to solve
problems. Essentially, we do this every day without noticing. One example of such a simple
model is a street map. It represents a part of the earth surface, consists of different materials,
contains only streets with their names and represents earth as a flat surface. Thus, a street
map is a simplified abstract representation of the earth surface used to solve problems, i.e.,
to answer questions, such as: ”What is the shortest route?”. There are also many other
models that we use in daily life. For example, a diagram is a model of how something is
made, a calendar is a model of a month, computer games are models of reality, etc.

2.1.1 Concepts and classification

Prior to the study of modelling and simulation it is necessary to define the basic terms:
system, model, experiment and simulation (Fritzson, 2004). A system is a real-world en-
tity, a phenomenon or process whose properties we want to study. A model is a simplified,
structured representation of the real-world system built to enhance our understanding of it.
Models are developed to solve specific problems and to answer questions about a system
without doing experiments on the real system. An experiment is the process of extracting
information from a real-world system by changing its inputs. A simulation is the manipula-
tion of the model that produces specific outcome. We can also say that it is an experiment
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performed on a model that provides answers to the questions about the real-world system.
Moreover, if we consider a model representing our hypothesis about the system, then the
simulation could be defined as hypothesis testing. Simulations are often used when exper-
iments with the real systems are time-consuming, dangerous or expensive. Both modelling
and simulation can provide a better understanding of the dynamic behaviour of real systems.
Basically, model development can be motivated from two different perspectives:

• solving a practical problem, which is mostly the goal of engineering, and

• better understanding of the system’s nature, which is mostly the viewpoint of natural
sciences (Fritzson, 2004).

To enrich the knowledge about different real-world systems, various modelling approaches
were developed. Depending on the model representation form, there are many modelling
types, such as: physical, logic and mathematical. Physical modelling is a way of making a
smaller or larger copy of the actual object. It is often used in civil engineering. For example,
a breadboard construction of a building represents a small copy of it. Logic modelling,
used in economy and management, is a way of making a flow form as a linear sequence:
inputs, activities, outputs, and outcomes (Alter and Murty, 1997). A mathematical model
is a description of the system by using different mathematical formalisms (Dym, 2004).
In mathematical formalism, statements of mathematics and logic can be thought of as
statements about the consequences of certain string manipulation rules. According to the
formalism, the truths expressed in logic and mathematics are syntactic forms that have
no meaning unless they are given an interpretation. Mathematical modelling is becoming
increasingly important since the computers enable us to give real world interpretation to
the results of mathematical calculations. Mathematical models are usually composed of
variables, which are abstractions of quantities of interest in the described systems, and
operators that act on these variables. The operators can be algebraic, functions, differential
operators, etc. Mathematical models can be classified according to different criteria, such
as (Kapur, 2008):

• The scientific field for which models are built. For example, mathematical models in
physics, biology, chemistry, economics, etc.

• The mathematical techniques that were used. We have mathematical models devel-
oped by means of algebra and linear matrices, differential equations, partial differential
equations, etc.

• The purpose of the model. Mathematical models exist for simulation, prediction,
optimisation, diagnosis, control, etc.

• The nature of the model. The models can be:

– linear, where a dependent variable Y can be described as a linear function of an
independent variable X in a form Y = α ∗X +β (α and β are model parameters),
and nonlinear that are opposite to linear,

– static, where the time is not taken into account, and dynamic, in which the time-
varying interactions among variables are included,

– deterministic, where the input and output variables are uniquely determined by
the model parameters, and stochastic, where at least one of the input or output
variables is probabilistic,

– discrete, where the variable values are discrete (integer number) or continuous,
where variable values are real numbers,
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– mechanistic, where the structure of the model is determined by prior knowledge
and parameters from data sets, and empirical (or data-based), where both the
model structure and parameters are estimated from a large experimental data set
(Thakur, 1991), and

– qualitative, where the system is described in a more abstract, descriptive way,
without precise numerical information that is often not needed, and quantitative,
which are developed when the numerical information about the system is available
and they represent the system in more detail.

These categories do not exclude each other, since many models include elements of several
types. Regardless of the type of the model we want to develop, there are several major
phases in the model construction that are common. The next section discusses these phases
in particular for mathematical model construction.

2.1.2 Construction of mathematical models

The phases in mathematical model construction can be defined as follows (see Figure 1).

Figure 1: Phases in model construction.

1. Problem identification. The situation has to be studied thoroughly in order to
identify the problem precisely and understand its fundamental questions. Furthermore,
the requirements that the model has to satisfy need to be defined and the hypothesis
that will be tested has to be formulated. At this stage, the problem’s classification
should be decided, for example, whether it is deterministic or stochastic. Only with a
clear, precise identification can the problem be translated into mathematical symbols
and solved. Usually, this phase in model construction is accomplished in collaboration
with domain experts.

2. Selection of modelling formalism. The selection of the type of the modelling
formalism depends on two main factors (Cantone, 2009):

• the information that we already know about the system, and

• the information that we want to know about the system.

The answers to the questions stated above enable us to define the abstraction level of
the model prior to the selection of the particular modelling formalism. Depending on
the abstraction level of the model representing the system, there are two main cate-
gories of modelling approaches, i.e., qualitative and quantitative modelling approaches,
discussed in more detail in Subsection 2.1.3.
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3. Model formulation. Assuming that all the relevant data have already been collected
to gain the information on system’s behaviour, at this stage the variables and their
relationships have to be established. Depending on the available data sources and
tools, model construction can be manual or automatic. Manual model development
is time-consuming and requires a domain expert. However, the absence of numerical
data requires manual model construction and curation. This way of modelling is error-
prone when building complex models and is therefore more effective when combined
with automatised approaches. On the other hand, most of the automatically con-
structed models are data-based, assuming sufficient experimental datasets available to
create and validate the model. Specially for the ODE formalism, there are many tools
that can automatically discover equations from the experimental data (Džeroski and
Todorovski, 2008).

4. Model analysis through simulation. One of the most powerful analysis approaches
of complex systems is model simulation. Simulation of a model is the process of ac-
quiring information on how several model variables behave without testing the system
in the real life. There are different types of simulation. In physical simulation, the
actual objects are replaced with the smaller physical ones. Interactive simulation rep-
resents a special subset of physical simulation where human operators are included
in the simulation loop. Simulations with humans in the loop also include computer
simulations which are the most common simulation type (McHaney, 2009). Computer
simulation is a conventional part of modelling in many scientific fields, such as biology,
medicine, physics, chemistry, etc.

5. Model revision. The process of revising a model can be grouped into two major
stages:

• revision of the model structure, and

• revision of the model dynamics.

Model structure can be revised either manually by investigating a broader literature or
automatically by using different text processing methods for information extraction.
Similarly, model dynamics is usually revised either through the iterative process of
hand-tuning of model parameters or model parameters are calculated automatically
from the experimental datasets until they satisfy certain accuracy criteria. These
two stages of model revision are not totally independent since changes in the model
structure influence directly the dynamic behaviour of the model.

6. Model validation. After the development of a suitable model for the defined problem
and its simulation, it is necessary to validate the model. The model validation is
performed ideally by comparing the simulation output with the real system data.
There are many statistical approaches developed, such as t-tests, etc. (Kleijnen, 1995).
The problem is, however, the comparison with the experimental data when they are
sparse and few.

7. Results interpretation. The simulation results are interpreted by the domain ex-
perts.

8. Model deployment. The deployment of the model usually denotes the application
of the model for prediction when using new data. Even when the purpose of the
model is to gain the knowledge on certain phenomena, the knowledge gained has to be
organised and presented in such a way that the end-users can easily use it. When the
model is developed with the prediction purposes, it is also important for the end-user
to become familiar with the basic steps undertaken during the model development in
order to use it with understanding.
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2.1.3 Selected modelling approaches

Below we list the most commonly used modelling approaches.

Qualitative modelling approaches

These approaches are usually applied in the case of missing accurate numerical information,
when the dynamics of the system still needs to be modelled. Such models give a more
abstract view of the studied system. Brief descriptions of some typical qualitative modelling
approaches are listed below.

• Boolean networks are a graphical and mathematical formalism. They consist of
Boolean variables connected to each other via logical operators (Ibe, 2011).

• Process algebra (or process calculi) was developed to support the modelling of con-
current systems. The emphasis in this approach is on modelling of communication
between processes. For a more detailed introduction into process algebra, the reader
is referred to (Fokkink, 2007).

• Hybrid automata are used to model systems that have both discrete and analog
components. Systems with ’discrete jumps’ and ’continuous flow’ can be modelled
using hybrid automata. The drawback of this formalism is that it is not suitable for
complex systems (Henzinger, 1996).

• A statechart is a visual language for describing the behaviour of the system. This
behaviour is usually composed of a series of events that might happen in different
possible states (Harel, 1987). This formalism is also not suitable for modelling of
complex systems.

• Petri nets (PNs) is a graphical and mathematical formalism (Murata, 1989). Sim-
ilarly to the process algebra, it was initially developed to model concurrent systems.
There are several levels of the PN formalisms. While the standard PNs are discrete
and qualitative, their various extensions allow the definition of both qualitative and
quantitative models.

Quantitative modelling approaches

In contrast to qualitative modelling, these approaches require precise numerical data and
represent the system at a very detailed level. Some of the commonly used quantitative
modelling approaches are described below.

• Ordinary differential equations (ODEs) present the relations between one inde-
pendent and one or more dependent variables and their derivatives. They are com-
monly used to model dynamic behaviour of the system (Coddington and Levinson,
1955).

• Stochastic differential equations are used if there is a need to model the stochastic
effects of the system (Arnold, 2013).

• Partial differential equations present the relations between two or more indepen-
dent and one or more dependent variables and their partial derivatives. They are
applied when the solution depends on more than one independent variable (Renardy
and Rogers, 2004).
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All the listed modelling approaches have specific advantages and drawbacks. We focus
our discussion on PNs, which is the formalism selected in our work, and their comparison
with ODEs, which is the underlying modelling approach that is also implemented in one
of the PN extensions. For example, PN models are simple and yield a broad overview of
complex systems and offer an intuitive graphical representation. They do not require kinetic
data, they have well-founded mathematical theory and many software tools are available. On
the other hand, ODEs have higher-level modelling tools available and they take a population
view of the system, rather than modelling the stochastic behaviour of system’s individual
components (Pettinen et al., 2005). The drawbacks of PNs are that many tools are no longer
supported and the file formats cannot be automatically converted from one type of PN into
another. In contrast to PN, ODEs require the exact knowledge of system dynamics and they
are not visually intuitive. For a better understanding of the terminology used to explain PN
and ODE, the mapping of concepts is provided in Table 2.

Table 2: The mapping between the PN and ODE terminology.

PN terminology ODE terminology

Place Variable

Transition Equation

Initial marking Initial values

2.1.4 Illustrative example

In this section, the main representative formalisms, ODEs from the quantitative category,
and PNs from the qualitative, are elaborated on a simple example from everyday life: a
thermostat (Koutsoukos et al., 2000). A thermostat is a control unit that regulates the
temperature in the room and keeps it within a certain temperature range. A thermostat is
basically a simple control system with the negative feedback loop. The negative feedback
loop is active when the system’s output influences the input changes in such a way that it
diminishes these changes. This basic control mechanism is also present in many other fields,
such as economy, biology, industrial systems, etc.

There are two basic behaviours that the thermostat exhibits:

• When the room temperature drops below the lower limit, the thermostat switches on
the furnace and the room temperature rises.

• When the room temperature exceeds the upper limit, the furnace is turned off and the
room temperature drops.

Let us consider a simpler version of the thermostat model in which the upper and the
lower temperature threshold have the same value Tthr(see Figure 2).

Let us first illustrate how to represent the room temperature without introducing the
negative feedback loop, which denotes the on and off switching actions of the thermostat.
This means that we consider only the case when the thermostat is already on or off, but
we do not take into account the transitions between the on and off states. If there is a
need to deal with the precise numerical information regarding the thermostat control, then
we should choose the quantitative modelling approach, for example, ODE. One version of
such a model is expressed by the following equations which represent the change in room
temperature based on the rate at which heat is dissipating through the room walls to the
outside, and the rate at which the room is heated by a heater (Koutsoukos et al., 2000).

dx
dt

= a∗ (T0− x)+ b∗ v (1)
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Figure 2: Dynamics of a simplified thermostat behaviour.

where
x denotes room temperature,
dx/dt denotes the rate of change of the room temperature,
T0 denotes outdoor temperature,
v denotes the voltage on the furnace control unit, and
a and b denote positive constants.
In Equation 1 the term a∗ (T0−x) describes the effect of the heat exchange between the

room and the outside environment. If the room temperature is higher than the outdoor
temperature, i.e. T0−x < 0, heat from the room will dissipate through the room wall to the
outside. If the outside temperature is higher than the room temperature, T0− x > 0, heat
from the outside is transferred into the room. The efficiency of the heat transfer through the
wall is governed by constant a. High values of a mean that the insulation is very poor and
heat is transferred through the wall at a high rate. Low values of a indicate good insulation.
Because we normally want to heat a room when the outside is colder than the inside, we
refer to the term a∗ (T0− x) as cooling rate. Term b∗ v in Equation 1 represents the heating
rate. The higher the heating rate, the more heat is generated by the furnace and flows into
the room. Constant b controls the sensitivity of the heating rate to the signal, v, from the
control unit.

We now assume that the insulation of the room walls is extremely good. This means
that the value of constant a is very small and hence the entire cooling rate is very small in
relation to the heating rate. In this case we can approximate Equation 1 by the equation
below:

dx/dt = b∗ v (2)

So with Equation 1, we can express the on and off scenarios as follows:
dx/dt = b∗ v, if the thermostat or heater is on,
dx/dt = 0, if the thermostat or heater is off.

In case we do not have or we do not need the precise numerical data regarding the tem-
perature and the furnace voltage, we should consider a qualitative approach. For example,
instead of representing the temperature in terms of precise numbers, such as 22.1 Â◦C, we
could have statements: too cold, normal and too warm. For the most of daily needs such
statements are sufficient. These statements are one way of making abstractions from the
numerical data.
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Humans tend to think in qualitative ways since dealing with qualitative descriptions is
more natural than dealing with numbers. Initially, the PN formalism was developed for the
needs of qualitative modelling. Afterwards, various extensions were developed to bridge the
gap between the qualitative and quantitative models, and some extensions can be used for
the development of quantitative models. Further discussion addresses the different levels
of PN formalisms, elaborated on the thermostat example (Equation 2). The differences
between different modelling approaches are shown by simulating the dynamic behaviour of
the simplified thermostat model.

A PN is a bipartite graph with two types of nodes: places and transitions (Figure 3).
Places represent the resources of the system and transitions represent the events that trans-
form the system from one state to another. Weighted arcs connect places with transitions,
thus defining the relations between the resources and the events. At any time of the simu-
lation of a PN, the places have zero or more tokens. The state of the system is represented
by the distribution of tokens over the places and is called a marking. The definition of a
PN includes the specification of the initial marking, which assigns a number of tokens to
each place. In Figure 3, the initial marking is {1,0}, which corresponds to the number of
tokens at places {place 1, place 2}. A transition is enabled if its input places contain at
least the required number of tokens (defined by the weight assigned to the arc). Obviously,
the transition in Figure 3 is not enabled, because the arc weight requires two tokens from
the input place 1, while the place 1 has only one token. The firing of an enabled transition
results in the consumption of the tokens from the input places and the production of the
tokens in its output places (this number is determined by the weights of the outgoing arcs
from the transition). This ’token game’ represents the dynamic changes of the system.

Figure 3: The graphical representation of the basic PN.

The thermostat can be modelled with the basic PN formalism in the following way.
We will consider two places that we are interested in: the temperature of the room and the
voltage. The furnace is described by one transition named ”heating”. In Figure 4.A, we see
a graphical representation of the system with the initial marking, where the place ”voltage”
contains three and the place ”temperature” zero tokens. The transition ”heating” is enabled,
which means that the heating is on, and it fires. After the firing of the transition ”heating”,
the place ”temperature” will have the increased number of tokens, which we interpret as
an increase of the room temperature since the voltage of the furnace is on. The dynamic
behaviour of the two places, ”temperature” and ”voltage”, is shown in Figure 4.B.

Stochastic Petri nets (SPN) have the same graphical representation as the basic
PNs (see Figure 4.C). The only difference between the basic PN and SPN is in the dynamics
of transition firing: in SPNs the transitions fire with exponentially distributed time delay.
This difference in firing delays is visible on the simulation curves in Figure 4.D whereas
the firing time between the transitions of the basic PNs is always the same (Figure 4.B).
SPNs are generally used to introduce the external noise (generated by fluctuations of the
environment) or intrinsic noise (due to low molecular concentrations) in the model (Marsan,
1989). By using SPN, in our thermostat model we could take into account the influence of
different external and internal sources to the fluctuations in temperature.

Hybrid Petri nets (HPN) contain both discrete and continuous places. The graphical
representation of a HPN differs from the basic PN since HPN introduces two types of places:
discrete and continuous. The discrete places can only have an integer number of tokens.
Additionally, the HPN introduces continuous variables, where the number of tokens is a real



Modelling of Dynamic Systems: Background and Related Work 19

Figure 4: The simplified thermostat model represented with four different PN formalism types and
the corresponding simulation curves of the temperature and voltage variables.
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number. This formalism is convenient for modelling of continuous processes with the switch
control (Silva and Recalde, 2004). For example, in the case of a thermostat, the voltage is
represented as a discrete place with three tokens and the temperature as a continuous place
(Figure 4.E). The simulation curve of the dynamic behaviour is shown in Figure 4.F.

Functional Petri nets (FPN) have a different graphical presentation from the basic
PNs, since they contain continuous places and transitions (Figure 4.G). The firing of transi-
tions has an additional parameter: speed. The speed of firing can depend on the values of the
input places (Hofestädt and Thelen, 1998). An additional characteristic of this formalism is
that the quantity of consumed places can be different from the quantity of produced places.
In the thermostat example, this means that the speed of transition ”heating” depends on
the input place ”voltage”. The higher the voltage, the faster the room gets warmed up (this
corresponds to the real world system). This effect is represented with the simulation results
in Figure 4.H. In Figure 4.G, it can be noticed that the initial marking of the place ”voltage”
is now a real number (3.0).

Hybrid Functional Petri Nets (HFPN) represent the combination of HPN and FPN
(Matsuno et al., 2003). HFPN support the modelling of continuous transitions controlled
by the switch mechanisms. The transition rates, on the other hand, depend on the input
values, which is often the case in real systems.

However, the simplified thermostat model (Equation 2) along with the four thermostat
models represented with different PN extensions (Figures 4.A, 4.C, 4.E and 4.G) does not
include the effect of the negative feedback loop. Let us now consider it. The ODE formula
in Equation 1 needs to be adjusted with an additional function g(x) that represents the
feedback loop as follows:

dx/dt = b∗ v∗g(x) (3)

The new term g(x) may take on different forms, depending on what kind of mechanism or
behavior we want to represent. To represent a sudden on/off change in the room tempera-
ture rate, g(x) could be defined as step function dependent on the desired room temperature
Tthr as follows:

g(x) =

{
1, i f x≤ Tthr
0, otherwise

}
(4)

To represent a continuous change of the room temperature rate, we could define g(x) as
a smooth sigmoidal function:

g(x) =
1

1 + eγ∗(x−Tthr)
(5)

where γ is a positive constant that amplifies the difference between the room temperature
x and the desired target temperature Tthr. Among the formalisms discussed before, two
PN classes support the modelling of negative feedback loops by introducing an inhibitory
arc, namely HPN and FPN. HFPN supports modelling of negative loops as well, since it
integrates HPN and FPN formalisms.

The basic graphical representation of a simple system with the negative feedback loop is
shown in Figures 5.A and 5.C. The inhibitory arc in both cases is directed from the place
”temperature” to the heating transition. The threshold for the inhibitory arc is 1.0, which
means that whenever the temperature is above 1.0, the transition ”heating” will be blocked.
The simulation curves for both HPN and the FPN with the negative feedback loops are
shown in Figures 5.B and 5.D respectively. In these simulation curves, the impact of the
negative feedback loop is clearly visible. When the temperature reaches the threshold 1.0,
it stops increasing, which was not the case in the previously mentioned four examples of
simulation curves in Figures 4.B, 4.D, 4.F and 4.H. Note that the FPN (and also HFPN)
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Figure 5: A graphical representation of the thermostat model with the negative feedback loop realised
with the HPN and FPN modelling approach. The simulation curves are also shown.

model in Figure 5.C has exactly the same simulation output as the ODE model (Equation
2).

The thermostat model served as an example how the selection of the formalism influences
the information that we can obtain from the model analysis.

2.2 Modelling approaches in systems biology

Many modelling approaches have been applied in systems biology. Frequently, the experi-
ments performed in systems biology do not have the precise numerical data of the reactions
kinetics. More specifically, the experimental datasets in systems biology are, on one hand,
large and contain genes expression values of the whole genomes, but, on the other hand,
there are only a few time points per gene.

Most commonly, when the quantitative experimental data exist, differential equations are
used to build the models of biological mechanisms. In this case the calculation of equation
parameters is a straightforward process. Such models are quantitative and data-based. They
are used to model all three basic types of biological networks: genetic (de Hoon et al., 2003),
signalling (Gong et al., 2010) and metabolic (Chassagnole et al., 2002). On the other hand,
when there are few experimental data available, the qualitative modelling approach might
be more appropriate.

Qualitative models of biological systems are based on graph-theoretical descriptions of
the network structure. Several well-known approaches have been applied in modelling of
biological systems, such as: Boolean networks, process algebra, statecharts, hybrid automata
and PNs.

Boolean networks are often used to model gene regulatory networks (Albert, 2004).
Other types of biological networks are also modelled with this formalism where the available
experimental data, consisting of two time points, can be represented with the Boolean
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values: 0 and 1 (Pinzón et al., 2009). In other cases, when there are more time points in the
experimental data, the values of 0 and 1 have to be derived from the data. A widely used
extension of Boolean networks combines the traditional boolean approach and a continuous
system and is implemented in the SQUAD (Standardized Qualitative Dynamical Systems)
software (Cara et al., 2007). Process algebras have been used to model signalling networks
(Regev et al., 2001).

Statecharts have been used for modelling of gene regulatory networks (Shin and Nourani,
2010). They are used for simple network properties, but this modelling approach is not
considered appropriate for complex systems.

Hybrid automata are used to model the switch control of continuous biological processes.
For example, they can be used to model the system’s behaviour when the regulatory gene is
silenced. This means that the variable that represents the silenced gene will have a discrete
value and it will be either 0 or 1. Hybrid automata are also not an appropriate formalism
for the modelling of complex systems.

One of the first studies of PNs to model biological systems was by (Reddy et al., 1996). In
this study the possibility of using the basic PN formalism for modelling metabolic pathways
was investigated. The places in PN represent biological molecules, the transitions represent
biological reactions and the tokens correspond to the presence of biological molecule in some
proportion. The weights on the arcs are mapped to the number of molecules necessary to
trigger the biological reaction. The same mapping is also used by all extensions of the PN
formalism.

The PN formalism has numerous extensions. A detailed overview of the PN extensions
and their application in systems biology is given by (Chaouiya, 2007). PN extensions enable
the modelling of different characteristics of biological systems. For example, for studying
the probability whether one biological reaction will occur or not, which means introducing
an external or internal noise in the model, one should build the model with SPNs. A firing
delay of the SPN is associated with every transition. This firing delay has an exponen-
tial distribution which may also depend on the previous marking of the system (Goss and
Peccoud, 1998).

In real systems, there are many situations when a continuous flow of biological reactions
is stopped and/or triggered by some inhibiting/activating molecule. To deal with continuous
and discrete switch variables simultaneously, the HPNs can be used (Matsuno et al., 2000).
They were used in the work of (Matsuno et al., 2000) to model the control mechanisms that
are present in the gene regulatory networks. Contrary to hybrid automata, hybrid PNs are
suitable for modelling of complex systems. To illustrate model complexity, Figure 6 shows
one of the HPN models of early stage gene expression of bacterial virus λ phage from the
work of (Matsuno et al., 2000). In the polygon of Figure 6 marked by a dotted line, the
feedback mechanism of CI protein and Cro, shown in Figure 7, should be inserted. It is well
known that the two regulatory proteins CI and Cro play significant roles in deciding the
lysis (breaking down the cell) and lysogeny growth pathway (one of the methods of viral
reproduction). The genes that encode CI and Cro proteins are adjacent on the λ phage
chromosome, and each of these genes has its own promoter, PRM of the gene cI, which codes
for a protein CI, and PR of the gene cro (Figure 7).

FPNs support the simulation of kinetic effects in biological networks (Hofestädt and
Thelen, 1998). Furthermore, in FPNs the reaction rate depends on input concentrations,
which closely matches the reality. The values of continuous variables are real numbers and
represent the concentrations of the biological molecules. In practice, FPNs are equivalent to
a system of differential equations. However, the main advantage of FPNs is their intuitive
graphical representation.

At any level of detail, biological interactions can be modelled as networks (Alm and
Arkin, 2003). For example, nodes can represent very different biological units ranging from
atoms to individual organisms and the relations may describe atomic interactions in protein
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Figure 6: An example of a gene regulatory network modelled with the HPN formalism. The model
represents early stage gene expression of λ phage (Matsuno et al., 2000). The rectangular nodes
represent Petri net transitions where the black coloured are discrete and the non-coloured continuous
transitions. The rounded nodes are Petri net places, where the single circle represents discrete place
and the double circle continuous place.

Figure 7: Feedback mechanism of CI and Cro proteins, which represents part of the early stage gene
expression of λ phage (Matsuno et al., 2000). An explanation of types of graph nodes is the same
as in Figure 6.
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structure, molecular interactions or even species interactions. Network structures enable
formal analysis of the modelled systems, mechanisms, and relations by using algorithms and
methods from graph theory and other branches of discrete mathematics. The information
obtained from such networks can be used in different ways to increase the understanding of
biological systems. Several approaches have been recognised by (Alm and Arkin, 2003). For
example, network structure can be used to propose hypotheses how the modelled systems
are organised. Existing hypotheses can be tested and confirmed or rejected on the basis
of the network data. Finally, existing open questions can be reformulated from a network
perspective, for example, the role of the network structure in the evolutionary process and
the role of evolution in shaping the network structure (Alm and Arkin, 2003). Studies in
systems biology and graph theory have revealed that widely studied complex networks such
as social networks, scientific co-authorships and the internet in fact share many features with
certain biological networks, for example, the power-law node degree distribution, hierarchi-
cal modularity and small-world properties (Alm and Arkin, 2003). The architecture and
physical properties of biological networks and networks in general are discussed in length
by (Wuchty et al., 2006), (Alm and Arkin, 2003) and (Zhu et al., 2007).

Systems biology was proven to be successful in modelling complex biological processes
(Kestler et al., 2008). Before the analysis of the network dynamics, one needs to understand
the network structure (Kitano, 2002). There are various representation formalisms that
can be used to represent a network structure, including the directed graphs formalism as
used in the Systems Biology Graphical Notation by (Le Novère et al., 2009) or the modified
EPN (mEPN) scheme proposed by (Raza et al., 2008). To construct the signalling network
structure, different information sources can be used, including pathway databases such as
the KEGG Pathway (Kanehisa and Goto, 2000), Reactome (Tsesmetzis et al., 2008) and
BioCyc (Krummenacker et al., 2005), integrated knowledge sources such as ONDEX (Köhler
et al., 2006) and Biomine (Sevon et al., 2006; Eronen and Toivonnen, 2012), and the scientific
literature itself.

2.3 Text processing in systems biology

Given that most of human biological knowledge is still stored only in the silos of biological
literature, retrieving information from the literature is required when building the signalling
network structure. Scientific literature can be inspected manually or analysed by natural
language processing and information extraction tools. There are numerous biological mod-
els which were manually constructed based on an in-depth literature survey, such as the
macrophage activation model developed by (Raza et al., 2008, 2010), or terpenoid biosyn-
thesis pathway (Hawari and Mohamed-Hussein, 2010). On the other hand, state-of-the-art
technologies enable information extraction from scientific texts in an automated way by
means of text processing techniques, based on the advances in the area of natural language
processing (NLP) of biology texts (see e.g., the research advances of the emerging bioNLP
community at http://www.bionlp.org/).

Similar to our work which involves the extraction of a set of (component1, reaction,
component2) triplets from biology texts, several existing NLP tools enable the extraction of
interactions between the components (e.g., see the review by (Ananiadou et al., 2010)). The
most common NLP approaches can be classified into three categories (Cohen and Hunter,
2008): rule-based approaches, machine-learning approaches and co-occurrence-based ap-
proaches. Examples of rule-based systems include GeneWays (Rzhetsky et al., 2004), Chili-
bot (Chen and Sharp, 2004), PLAN2L (Krallinger et al., 2009) and the approach proposed
by (Ono et al., 2001). Combined methods, including co-occurrence-based approaches, such
as the one developed by (Blaschke and Valencia, 2002) and upgraded in the BioRAT sys-
tem by (Corney et al., 2004), are less appropriate for systems biology as the information
retrieved is partial and can therefore not be directly transformed into a graph format used
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for signalling network modelling. In most systems, the information is retrieved only from
abstracts; an exception is BioRAT which can process full texts, albeit using a quite general
vocabulary (Corney et al., 2004).

Most of the aforementioned approaches enable the users to query the extracted informa-
tion, but do not result in an explicit network structure which can be visualised for simple
inspection by the biology experts. Exceptions are the Chilibot system by (Chen and Sharp,
2004), the approach by (Blaschke et al., 1999) and the GeneWays system by (Rzhetsky et
al., 2004). These systems are however not directly applicable in our context for the fol-
lowing reasons. The Chillibot system enables the search for relations by querying only a
limited number of entities without supporting the complete network structure construction.
(Blaschke et al., 1999) extract information only from abstracts. The closest to our work is
the GeneWays system (Rzhetsky et al., 2004) which enables the extraction, analysis, visual-
isation and integration of molecular pathway data, but the system is not publicly available.
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3 Methodology for PDS Model Construction: An

Overview

A journey of a thousand miles must begin with a single step.
Lao-Tzu

A conventional way of manually constructing the model of a dynamic system can be accom-
panied by additional steps which can speed up and enhance model construction. In our work,
the construction of a PDS model based exclusively on manual knowledge engineering was not
feasible due to the PDS model complexity. For this reason, the laborious work of manual
PDS model creation was complemented by additional automatised and semi-automatised
steps. These steps address the model structure as well as model dynamics.

The purpose of this chapter is to provide a global overview of the methodology which
we have developed and applied to build the PDS model (Figure 8). After the problem
was defined, the most appropriate modelling formalism was selected. Next, the PDS model
structure was manually constructed by eliciting knowledge from the domain experts and
the literature. Since the manual estimation of the parameters was not feasible due to the
PDS model complexity, an automatic method based on the DE algorithm (Storn and Price,
1995) was developed. We illustrate the whole process loop of converging to the dynamic
parameters that best satisfy the expert evaluation criteria. This process includes elicitation
of the knowledge from the biologists, formalisation in the form of constraints, optimisation
of parameters that violate the minimal number of these constraints and the revision of
the model structure and constraints. Eventually, the system yields simulation results as
well as optimised model parameters, which provide an insight into the biological system.
The obtained structure of the PDS model was extended by applying a semi-automated
approach to extract the information on relations between the biological components from
the literature and various plant databases. The most relevant details of every step of the
construction process are presented in the following paragraphs.

1. Problem identification

In this step we have defined the requirements for the PDS model in collaboration with the
experts from the National Institute of Biology, Ljubljana, Slovenia. The PDS model is
intended to represent only the part of the plant cell involved in the defence response, which
resulted in omitting the cell-to-cell communication within the whole plant. The model is
supposed to verify whether the plant will have a resistant reaction to survive the virus attack
if some genes are silenced. In practice, this greatly helps the domain experts in the design
and performance of wet-lab experiments with plants. To be able to confirm or reject the
hypothesis, the PDS model has to contain the genes that are candidates for silencing.

The goals of model development are the following:

1. Better understanding of the biological mechanism on the system level, which includes
the relationships between entities.

2. Prediction of experimental results with the aim to:
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Figure 8: A schema of the developed methodology for the PDS model construction.

(a) detect crucial reactions in the plant defence process,

(b) predict the final defence response when some genes are silenced, and

(c) conjecture of new connections/interactions.

The PDS model is constructed for the purpose of assisting the experiment design. For
example, if the biology experts hypothesise that silencing some of the genes might be a
key to improve the immune response in plants, they will perform model simulation. When
different genes are knocked out in the model, the simulation will give different responses
and the biology experts will decide which results appear interesting from the biological
point of view. Experiments where silencing of a gene on living plants is performed are time-
consuming and the duration of one experiment is two years on average. Thus, simulation
of the defence response mechanism will save time and also provide directions for further
research.

In particular, the PDS model should represent the resistant interaction between Ara-
bidopsis thaliana and Turnip Crinkle Virus (TCV). The PDS model should have a graph-
ical representation with two different types of nodes: component nodes and interaction
nodes, which represent interactions between the biological components. Each biological
molecule can be represented only with one graph node (an exception are the input and out-
put molecules of the transport). Additionally, the effects of positive and negative feedback
loops should be evident from the dynamic behaviour of the key components in the loop.

Plants do not have dedicated immune response cells. Instead, in the case of a virus
attack, every cell in the plant performs the defence independently and alarms the other cells
to perform a similar response. PDS is a complex mechanism which includes gene regulation,
metabolic and signalling pathways (Somssich and Hahlbrock, 1998), where the reaction rates
do not depend on the concentration of the reactants in the same way. In a plant cell, there
are three major pathways responsible for the defence response: SA, JA and ET pathway
(Reymond and Farmer, 1998). The network structure of the metabolic parts of the three
pathways (SA, JA and ET) is available in KEGG. Thus, the biological molecules of the
metabolic part and the relations between them are known.

The final result of the induced defence response is a group of proteins. If there are enough
proteins produced, the plant will survive the virus attack. Otherwise, the virus will spread
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and the plant will die. All three pathways are non-trivial to model and include complex reg-
ulatory mechanisms, such as positive and negative feedback loops. Moreover, the pathways
include different molecule types, such as metabolites, genes, and proteins. Additionally, the
defence response occurs in several parts of the plant cell, such as chloroplast, nucleus and
cytoplasm. To simplify the PDS model, the spatial distribution is not considered for the
separate compartments, but we included transport in critical points of the network.

There are many unknown issues related to the PDS mechanism. The signalling part
of the SA, JA and ET pathways is not available in the databases, which implies that it
is not known exactly which biological molecules are participating in the networks. This
information and the information regarding the relations between the biological molecules
in the signalling pathways can be retrieved from the literature. Furthermore, the kinetic
parameters for neither the metabolic nor signalling parts of the pathways are available. Most
of the experiments in plant research are performed with Arabidopsis thaliana, however,
few kinetic studies of the PDS mechanism were completed. Currently, there is only one
experimental dataset with five time points publicly available for Arabidopsis thaliana (Yang
et al., 2007).

2. Selection of modelling formalism

The decision which modelling formalism to select depends on the requirements defined by
the domain experts, currently available knowledge and open issues related to the PDS mech-
anism. First of all, the main limiting factor are few experimental data available. Only one
dataset with five time points, available at the starting time of this work, was not enough
to be used as a basis for model construction and validation. On the other hand, there is a
lot of domain knowledge related to the modelling of the PDS mechanism that has not yet
been formalised and systematised. For this reason, we present the model structure first in
the form of a directed edge-labelled graph1, which is a common way to present biological
networks in systems biology and which is, at the same time, intuitive for the domain ex-
perts. The directed graphs formalism is often used in systems biology, for example in the
form of the Systems Biology Graphical Notation developed by (Le Novère et al., 2009) or
the modified EPN (mEPN) scheme proposed by (Raza et al., 2008). The selected graph
presentation allows also for an easy integration of the new relations which can be extracted
in a semi-automated way from the literature.

A graph presentation of the model structure can be used to reveal potentially inter-
esting new links. However, it does not contain any information on the PDS model dy-
namics and does not meet the requirements of domain experts that a graph should have
two types of nodes (component and reaction nodes). Therefore, for simulation purposes
of the PDS model, we have investigated the existing modelling formalisms. First, we have
considered the qualitative modelling approaches for building the initial PDS model. While
statecharts and hybrid automata were evaluated as inappropriate, the modelling formalisms
that we have considered were the following: Boolean networks, process algebra and Petri
nets (PNs). Intuitive graphical representation of the network structure was considered an
important characteristic of the modelling formalism by domain experts. From the modelling
approaches that were reviewed in Chapter 2, intuitive graphical presentation is a character-
istic of PNs, statecharts and Boolean networks. The modelling formalisms that have also
the mathematical apparatus developed for the model analysis are PNs and ODE. In case
kinetic parameters should be included in the model, we can consider ODE, FPN or HFPN
formalisms. Finally, the switch of biological reactions is an attribute of HPN, HFPN and
hybrid automata formalisms. When summarising all the characteristics and the intersec-
tions of all the formalisms (see Figure 9 for an overview), the HFPN formalism proved to

1Directed edge-labelled graph of the PDS model structure represents biological components as nodes and
biological reactions as vertices between them.
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Figure 9: An overview of the modelling formalisms and the defined requirements for the PDS model.

be the most appropriate. Therefore, we have selected it for the construction of the initial
PDS model.

Directed edge-labelled graph, HFPN and ODE approaches are interconnected, each of
them having certain advantages in our work. More specifically, the directed edge-labelled
graph approach presents the relations between components in the manner that are written in
the articles, thus making easier manual construction of the PDS model structure. It is also
easy to upgrade automatically so constructed model structure with triplets from texts in the
form of (subject, predicate, object). ODEs are used for dynamics analysis but are not user
friendly for the manual construction of the complex models. However, HFPN bridges these
two approaches. It has a graph presentation, which is different than directed edge-labelled
approach described in our work, but has intuitive presentation of biological reactions. By
introducing the reaction type of graph node in HFPN it can be clearly seen which reactants
trigger production of the particular product. In addition, HFPN implements ODEs which
allows model simulations. The transition between HFPN and ODE is presented in Section
5.1.

3. Manual construction of model structure

In this step we describe several details of the manual model construction which is the most
time-consuming phase in the whole model construction process. The initial PDS model
structure was constructed manually by considering knowledge from the literature, different
biological databases and domain experts. This initial model structure was first created in
the form of a directed edge-labelled graph.

The literature, which was analysed for manual construction of the model structure,
was selected by the domain experts. We have focused on scientific papers related to PDS
research. Ideally, a citation in one review paper or in two scientific papers was required
for the inclusion of the information into the pathway diagram. If the information was
available in one publication only, we have critically assessed the publication quality (e.g.,
high impact factor and author’s relevance in the field) before incorporating the information
into the model. The information about the biosynthetic pathways and other available data
was acquired from different databases such as KEGG and TAIR (Swarbreck et al., 2008).
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KEGG was used as a backbone for building the metabolic pathways, the biosynthesis of
the hormones and the main reactions involved in this process. The additional reactions and
the genes involved were implemented according to the Aracyc database. TAIR provided
gene information, while the synonyms were acquired from iHOP (Hoffmann and Valencia,
2004) and TAIR. A list of all structure interactions was compiled, including the details of
the information sources, and is available in Section A.1 in Appendix A.

Members of component families were selected according to their function. The family
members were joined under a common family name if more than one component (family
member) could be involved in the listed reactions. The genes involved in hormone biosynthe-
sis are usually well described and implemented in the reaction scheme of different databases
such as plant metabolic network. Therefore, the component family members of biosynthetic
pathways were defined as in these databases. The other relations were manually acquired
either from the studied literature (such as the ET receptors) or from the TAIR database.

After the PDS model stucture was obtained, the part of the PDS model structure, which
is of most interest, was selected and converted into the HFPN formalism. Once the PDS
model is transformed to the HFPN environment, it is set up for the simulation studies.

4. Model analysis through simulation

Analysis of the dynamic model behaviour was performed through iterative simulations of
the manually constructed PDS model. Based on the experts’ evaluation, the iterations were
repeated until the simulation curves matched their expectations. Basically, the simulation
is carried out by the software tool which is also used to construct the model.

The selected formalism to construct the PDS model for the simulation purpose is the
HFPN formalism. The simulation was performed initially by Cell Illustrator (CI) (Nagasaki
et al., 2004), which implements the HFPN formalism. The later simulations (when the
parameters were automatically estimated) were executed in the simulator based on the C++
code exported from CI. The simulator outputs time series curves of the dynamic behaviour
of molecules of interest.

While simulating the manually developed PDS model it turned out that it is practi-
cally impossible to manually determine all the parameters due to the complexity of the
PDS model. The feedback loops from three sub-models merged into the global PDS model
were not synchronised. To help exploring the dynamics of the model more efficiently, we
introduced three steps in the process of model dynamics revision: constraints formulation,
combinatorial optimisation parameter search and human refinement of the model and con-
straints. These steps were used for dynamics exploration of the most studied pathway related
to the PDS mechanism: the SA pathway. For the other two, the JA and ET pathways, the
same methodology can be applied, which is the topic of further work.

5. Model revision

5a. Model structure revision

The process of fusing expert knowledge and manually obtained information from the litera-
ture to build the PDS model structure turns out to be time-consuming, non-systematic and
error-prone. Therefore, we have introduced one additional step that enhances the manu-
ally built model structure: extraction of relations between biological components from the
literature, using the natural language processing approach.

We have developed the Bio3graph tool (described in detail in Chapter 6) that searches
literature for the relations between the biological components and outputs a graph of triplets
in the form (component1, relation, component2). These triplets were compared with the
manually developed PDS model and as a result we discovered new relations with respect
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to the manually constructed PDS model. The new relations were investigated further and
some of them turned out to be interesting hypotheses for further biological experiments.
Moreover, we have also developed an incremental version of the Bio3graph tool, which
updates the network structure with new sets of triplets having an initial model as a baseline.
Whenever necessary, the structures of biological networks can be quickly updated by using
the incremental version of Bio3graph.

5b. Model dynamics revision

Constraints formulation

The constraints in this phase are mathematical expressions defined by the domain experts.
They represent the rules how the simulation output curves of certain biological components
should look like. The formalisation of the expert’s knowledge into constraints is an iterative
process. The domain knowledge accumulated in biology literature is recognised as valuable
in this phase of knowledge elicitation. The purpose of constraints is to guide and speed up
the parameter optimisation search by limiting the parameter search space.

In this work we have explicitly focused on the knowledge related to biological molecules
and the relations between them. Several types of relations (constraints) were defined, such
as ”inequality in component concentrations”, ”growth rate of the curve”, ”shape of the curve”,
etc. The knowledge related to the reaction rates was not directly applicable and therefore
not translated into constraints. However, the definitions of some constraint types have also
changed throughout several iterative steps until the domain experts approved them.

Combinatorial parameter optimisation

We decided to use an evolutionary algorithm for parameter optimisation. Evolutionary al-
gorithms are stochastic optimisation methods utilising the ideas of biological evolution in
problem solving. One of the popular algorithms within this class is the differential evolution
algorithm. The DE algorithm performs a population-based search that optimises the prob-
lem by iteratively trying to improve a candidate solution with regard to a given measure of
quality. The DE algorithm developed by (Filipič and Depolli, 2009) was used in our work.

The optimal parameter setting of the PDS model is defined as a combinatorial optimi-
sation problem. The objective function for the optimisation is the normalised sum of the
normalised violations of constraints specified by the biologists. If the objective function has
value 0, it means that all the constraints are satisfied. Values in the range between 0 and 1
denote that a certain percentage of time-series curves that are involved in the definition of
specific constraint do not satisfy the objective function.

Human refinement of model and constraints

In this step, the domain experts perform manual validation. If dynamic behaviour of the
curves does not fit the experts’ expectations, the model structure and the constraint setting
are modified. That is the case, for example, when the curve has oscillations throughout
the whole simulation or some unexpected peaks and sudden drops. Also, peaks of several
biological components should occur during the simulation in a certain order defined by the
experts.

When model simulation with automatically determined parameters did not match the
expectations of the biologists, the model structure and the constraints were refined. The
model structure was again thoroughly revised and the components were either added or the
ones with the similar functions were merged into the same node. Also, the constraints were
reviewed and additional ones were defined or the current definitions were modified if they
were considered to be too strict.

6. Model validation
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So far, the validation of the simulation results is based solely on the judgement of the domain
experts to ensure that the model is close to the real-life system. However, the simulation
outputs should also be compared to the experimental data. This step represents the model
validation method, which was developed for the specific case of the PDS model. The com-
parison with the experimental data was a challenging task in our work. The comparison
was performed with only one experimental dataset where each curve had only 5 time points
while the simulation output curves consist of at least 1000 simulation points.

The commonly used comparison methods, such as Dynamic Time Warping, are not ap-
plicable, due to a low number of time points of the experimental curve. Therefore, we pro-
posed a new method, based on the constraint generation and evaluation. More specifically,
since the simulation output curves are a result of constraint-guided optimisation process, we
proposed to evaluate these curves in a similar way, with the set of evaluation constraints.

We name the constraints formulated by the domain experts as training constraints. From
the experimental dataset that contains several components of interest we generate a set of
evaluation constraints. These constraints are of the same type as the training constraints.
The parameter optimisation, guided by the set of training constraints, outputs the simulation
curves that violate the least these constraints. Then, after the experts’ evaluation, we
calculate in which degree the simulation curves violate the set of the evaluation constraints.

7. Results interpretation

The simulation results are interpreted by the biology experts. Since the PDS model was built
based exclusively on the expert knowledge and the literature, the results of the simulation
have to be interpreted cautiously. The output curves of the simulation allow for qualitative
conclusions regarding the dynamic behaviour of the model.

It is possible to compare different curves to conclude which are the major components
influencing the PDS mechanism. For example, by comparing the growth of certain curves,
we can determine the components that contribute the most to the PDS response. This
knowledge is of crucial importance for the plant scientists, since the key of the PDS response
lies in the speed of the PR protein production.

8. Model deployment

The deployment of the PDS model will be accomplished in future work through the con-
tinuation of collaboration with the experts from the National Institute of Biology (NIB),
Ljubljana. The finalised version of the PDS model will be used at NIB to assist the exper-
imental design by generating hypotheses how the PDS system will behave when particular
genes are silenced. It is planned also to publish the global PDS model in the .sbml file
format which is a common format for systems biology. Thus, the PDS model will be made
available to the scientific community for use and further improvement.
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4 Manual Development of PDS Model Structure

Without labour nothing prospers.
Sophocles

Biological models are often constructed manually by biologists and manipulated to study the
dynamics of different pathways. First the model structure is acquired followed by analysis
of the model dynamics. During this process the domain experts generally rely on different
biological databases and literature. In our work, the knowledge stored in biological databases
was not sufficient to build the PDS model structure for more complex cell mechanisms
(positive and negative feedback loops). The first task in the construction of the model
structure is the definition of the types of biological components and reactions to be modelled.

In this chapter we first define the PDS taxonomy of reactions and components. The
manually developed structure of the PDS model was constructed in accordance with this
taxonomy. The PDS model structure was first developed in a form of a directed edge-labelled
graph. To set up the PDS model for the simulation, we transform its structure to the HFPN
formalism. This chapter explains the transformation process and introduces the software
tool used to construct the model. It also presents the construction process of each of the
three PDS pathways (SA, JA and ET pathway).

4.1 Definition of PDS reactions and components

When constructing the PDS model structure, we focused on metabolic, signalling and gene
regulation networks of SA, JA and ET, as they play a crucial role in mediating the induced
defence responses in plants (Reymond and Farmer, 1998). To identify the relevant biological
reaction and component types, we have followed the modified Edinburgh Pathway Notation
(mEPN) (Raza et al., 2008), slightly adapted to our requirements (Figure 10).

The following PDS component and reaction types were identified. In total, four groups
of biological components were recognised (level 1 in Figure 11.A): small compounds or
metabolites (Chorismate, Jasmonic acid, Linoleic acid, etc.), proteins (Chorismate synthase,
EDS5, etc.), genes (EDS5, etc.) and protein complexes (NPR1 oligomer, JA-Ile/COI1/SCF
complex, etc.). The following reaction types were defined (level 2 in Figure 11.B): gene
expression activation, protein activation, protein phosphorylation, catalysis, translocation,
gene-protein binding, protein-protein binding, protein dephosphorylation, protein inhibition,
gene repression and degradation.

Let us explain the details of the PDS components and reactions taxonomy as summarised
in Figure 11. To simplify manual model construction, the components with similar functions
were grouped into families (level 2 in Figure 11.A). For example, the node named LOX
represents the entire family of LOX proteins (LOX1 - LOX6). The individual components
(for example, LOX1-LOX6) represent the lowest level (level 3) in Figure 11.A.

The reaction types were also grouped at a higher level of abstraction into three groups
(see level 1 in Figure 11.B): activation, binding and inhibition.

• Activation (A) denotes all reactions that follow the principle that, when two com-
ponents X and Y are directly involved in the production of Z, the concentration of
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Figure 10: The presentation nodes and edges of the mEPN (Raza et al., 2008). The notation, which
we have adapted for the PDS model, is grouped into four categories: components, transition nodes,
Boolean operators and annotated edges.

Z depends on the concentration of both substrates (Figure 12.A). Reactions such as
gene expression, protein activation, phosphorylation of proteins, catalysis and translo-
cation are grouped under activation. Activation defines the processes that activate the
next component (or raise its abundance). When a concentration of a (phosphorylated
protein) increases, then the concentration of a product (which is inactive but phos-
phorylated protein in this case) also increases. The same holds for the translocation
of components for their degradation.

• Binding (B) is defined as a close interaction between at least two components resulting
in a complex (Figure 12.B). Binding is both the formation of a protein-protein complex
or the binding of a protein to a DNA promoter region to regulate its gene expression.
Binding results in the activation or inhibition of a particular target, gene or protein.

• Inhibition (I) is defined as a process in which one component blocks the performance
of another component (Figure 12.C). Inhibition groups all biological reactions such as
protein inhibition, gene repression and dephosphorylation of proteins.

Degradation was not abstracted to a higher level, but if this regulatory function was
found explicitly in the literature (such as, for example, COI1 binding to SCF complex
resulting in a degradation of JAZ repressors (Chini et al., 2007; Fonseca et al., 2009; Browse,
2009)), degradation was modelled as a binding reaction. In this way only few degradation
reactions are modelled, while the rest is modelled in HFPN formalism as a separate reaction
type.

4.2 PDS model structure

The PDS model structure is first presented as directed edge-labelled graph and then trans-
formed to the HFPN formalism.
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Figure 11: Taxonomy of PDS components and reactions. A) In the taxonomy of PDS components,
there are four representation levels. The highest level (level 0) is the most abstract level, while the
lowest one (level 3) represents single molecules. B) In the taxonomy of PDS reactions, individual
reactions are represented at the lowest level (level 2) and are grouped according to their functionality
into three groups at level 1: Activation (A), Binding (B) and Inhibition (I).
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Figure 12: The PDS reaction types at level 1. There are three groups of reactions. A) Activation (A)
denotes all the reactions directly involving two components X and Y in the production of Z, where
the concentration of Z depends on the concentration of both substrates. B) Binding (B) results in
the formation of a protein-protein complex or in the binding of a protein to a DNA promoter region
to regulate its gene expression. C) Inhibition (I) is a process in which one component blocks the
performance of another component.

4.2.1 Directed edge-labelled graph presentation

As a first step, the PDS model structure is compiled manually in the form of a directed edge-
labelled graph and visualised with the Biomine visualisation engine (Eronen and Toivonnen,
2012). Reactions are presented as graph arcs labelled with the reaction type at the level 1
of Figure 11.B and components as graph nodes connected with arcs to each other. While
building the PDS model structure, we first collected information at the level of component
families (level 2 of Figure 11.A) where the members of family were joined according to their
similar functions. Detailed descriptions of all the components, reactions and corresponding
data sources are available in Section A.1 of Appendix A. After compiling all the necessary
information, we decomposed the nodes which represent a component family into individual
nodes to allow for in-depth inspection of PDS structure. Reaction decoupling into separate
relations is illustrated in Figure 13. The members of the family were selected from the plant
databases, Aracyc and TAIR and additional topic-related papers in the way that most of
the functional analogues were listed. The list of the PDS model structure components for
which decoupling was performed is available in Section A.2 of Appendix A.

We present the PDS model structure (which is decomposed to the individual nodes) in
the form of directed edge-labelled graph in Figure 14. In this edge-labelled graph nodes
represent the components and the edges represent the reactions. This is a very complex
graph consisting of 175 nodes and 387 reactions. The components are presented at level 3
of Figure 11.A, while the reactions are abstracted to level 1 of Figure 11.B.

The edge-labelled graph shown in Figure 14 includes 175 components (31 small com-
pounds, 135 genes/proteins and 9 complexes) and 387 reactions (231 activations, 49 bind-
ings, 62 inhibitions and 45 produces reactions from binding reactants to their products).
This graph is interactive and is visualised with the Biomine graph visualisation engine and
is available in Section A.3 of Appendix A. Provided that the Java plug-in for the web browser
has been installed and enabled, the reader can open and explore an interactive version of
the Figure 14 at: http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=

media/supplement/models/Supplement_file_2.bmg.
Representing a model structure in the form of a graph based on the expert knowledge has

several advantages. First, a graph representation is an intuitive way of presenting biological
reactions. When model construction is based solely on the expert knowledge, it is easier

http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/Supplement_file_2.bmg
http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/Supplement_file_2.bmg
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Figure 13: Principle of decomposing families of components by decoupling of reactions. The example
shown in this figure illustrates the expansion of the PDS model structure from the family to the
individual component level. Here, the decomposing of LOX node is done from the protein family
level (level 2) to the single protein level (level 3). The final result of the expansion is a graph with 8
nodes and 7 edges.

Figure 14: Manually constructed PDS model structure visualised as an edge-labelled graph. This
graph, consisting of 175 nodes and 387 edges, is interactive and is visualised with the Biomine graph
visualisation engine, enabling its closer inspection by zooming into its subparts and rearranging the
node and the arc positions in the 2D space. The graph is organised into SA, JA and ET pathways
with their crosstalk connections. The node borders of the main pathway components SA, JA and
ET are coloured with red.
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Figure 15: The principles of conversion from the edge-labelled graph format. A) Activation reaction
(labelled A) with arcs between the reactant and the product node is transformed to a reaction
between two components. B) Activation (labelled A) on a transcription level is a special type of
activation, when Y induces the activation of gene X to produce protein X. In this case we omit
the gene transcription level when transforming the level 2 structure from the edge-labelled graph.
C) Binding (labelled B) relation is transformed from a B relation between the reactants and an
additional relation produces (labelled as P) between the reactant and the product into a relation
between two reactant nodes X and Y. D) Inhibition (labelled I) is the blocking of the activation or
binding reaction between components by a third component X, resulting in reduced production of
product Z.

to start by building the model structure in the form of a graph contrary to, for example,
mathematical equations. Second, in biological literature, there are many structural models
that are easy to present in the form of a directed edge-labelled graph. Thanks to that fact,
many model structures in systems biology do not have to be built from scratch. Finally,
graph representation is compatible with the outputs of several relation extraction algorithms
from texts based on natural language processing techniques. This allows easy complementing
the model structure, presented in the form of a graph, with the information automatically
extracted from the literature which speeds up the process of model structure construction.

4.2.2 HFPN presentation

We have selected HFPN as the formalism to model the PDS mechanism and built the
model using the Cell Illustrator (CI) software. This software was developed from the initial
version named Genomic Object Net (Nagasaki et al., 2004). Apart from the basic PN
formalism, it allows modelling with ordinary differential equations (ODE) (Coddington and
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Levinson, 1955) hidden to the end user through a user-friendly HFPN graphical interface.
The software facilitates easy building of the network structure. CI has a graphical editor
that has drawing capabilities and allows biologists to model different biological networks
and simulate the dynamic interactions between the biological components. On the other
hand, CI does not have the capability of automatic optimisation of dynamic parameters.
However, CI has an option to export the model code into several programming languages,
such as Python, C++, Visual Basic, etc. This option made the introduction of combinatorial
parameter optimisation possible.

The principle of conversion from directed edge-labelled graph presentation to HFPN
formalism is shown in Figure 151. Two relations, one for each component, are merged into
one reaction of two components resulting in a joint product. The selected CI graphical
symbols for the different component and reaction types are presented in Figure 16.

Biological reactions are represented in CI at the modelling level 2 (Figure 11.B). Nine
types of reactions are represented with six graphical symbols. Gene-protein and protein-
protein binding are represented with one graphical binding symbol. Also, protein activation,
protein phosphorylation and catalysis are represented with one symbol. Protein dephospho-
rylation, protein inhibition and gene repression are represented with an inhibition arc2.

Figure 16: Graphical representation of biological components and reactions modelled with the CI
software.

Four types of biological components (level 2 in Figure 11.A) are presented with four
different graphical symbols for small compounds or metabolites (e.g. Chorismate, etc.),
proteins (e.g. Chorismate synthase, etc.), genes (e.g. EDS5 gene, etc.) and protein com-
plexes (e.g. NPR1 oligomer, etc.). While building the PDS model using the CI software, we
have grouped components with similar functions into a single node that represents an entire
family of these components (level 2 in Figure 11.A). We show below each sub-model sepa-
rately transformed from directed edge-labelled graph to the HFPN formalism presentation
and prepared for the analysis of dynamic behaviour.

SA sub-model structure

SA belongs to a wide variety of phenolic molecules with a hydroxyl group. Phenolic compo-
nents are the plant’s secondary metabolites with a broad spectrum of functions. SA directly

1Graphical presentation of HFPN formalism has the form of biological reaction presentation with two
types of nodes (component and reaction nodes).

2Note that among six types of graphical symbols representing reactions, only inhibition is graph arc while
the rest of the reactions are the graph nodes.
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or indirectly influences the seed germination, seedling establishment, cell growth, respira-
tion, stomatal closure, senescence-associated gene expression, responses to abiotic stresses,
basal thermo tolerance, nodulation in legumes fruit yield and thermogenesis (Clarke et al.,
2004; Klessig and Malamy, 1994; Vlot et al., 2009) and the disease resistance. The SA
pathway is the most studied and is considered to have an important role in both local and
systemic resistance (Vlot et al., 2009).

SA in plants is synthesised via two pathways both requiring chorismate as a substrate
(Vlot et al., 2009). One pathway goes through a subset of enzymatic reactions initially
catalysed by phenylalanine ammonia lyase (PAL). The other pathway, shown in Figure 17,
involves a two-step reaction catalysed with isochorismate sinthase (ICS) and isochorismate
pyruvate lyase (IPL) (Vlot et al., 2009). Most of the SA synthesised in response to a pathogen
attack comes from the ICS/IPL pathway. Arabidopsis thaliana encodes two ICS enzymes,
ICS1 and ICS2. When a plant cell is attacked by pathogens, 90 % of SA is synthesised
through ICS1 (Vlot et al., 2009).

Figure 17: A simplified part of the model of the biosynthesis and signalling pathway of SA, manually
constructed in the CI software. The whole SA-submodel is shown in Figure 24.

It has been experimentally shown that the SA concentration rises fast when a virus
attacks the plant cell (Baebler et al., 2011; Carr et al., 2010; Uknes et al., 1993; Jeong et al.,
2012). It is also known that, when the concentration of SA is too high, the plant cell will not
survive. These experimental results indicate the existence of regulatory mechanisms, more
precisely, negative and positive feedback loops, which fine-tune the SA concentration in the
cell and allow the plant to survive the virus attack. The negative feedback loop slows down
a signalling process, while the positive feedback loop accelerates it. In biological systems,
positive feedback has an important role since it ensures a very fast response to a signal.
In a system with positive feedback, the increase in some variable leads to a situation in
which that quantity is further increased through its dynamics. In the SA sub-model, such
increase happens to the SA component (Figure 17). However, this kind of behaviour caused
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by positive feedback has a destabilizing effect and is usually accompanied by a negative
feedback, i.e., saturation that limits the growth of the quantity. In the SA sub-model, the
cascade product regulates its own concentration by activating or inhibiting the genes involved
in its biosynthesis. For example, NPR1 inhibits the expression of the EDS1 and PAD4 genes
(see Figure 17) (Shah, 2003) that activate the production of SA and consequently diminishes
its own production, thus forming a negative feedback loop.

In Arabidopsis, the resistance to TCV is mediated by the R protein HRT (Ibdah et al.,
2009) which subsequently induces the signalling cascade leading to PDS which limits the viral
spread and multiplication. The activation of the HRT protein stimulates the accumulation
of SA (Chandra-Shekara et al., 2004). SA accumulation results in the monomerisation and
activation of NPR1, which consequently triggers the activation of the SA dependent PR
proteins (in SA model all PR proteins are represented with a single node PR1) (Maier et
al., 2011; Fu et al., 2012; Moore et al., 2011).

The first version of the SA sub-model, named v1.0, contains in total 52 biological compo-
nents and 38 reactions. This model was a subject to the iterative process of model dynamics
analysis and combinatorial optimisation (see Section 5.2) resulting in the final version SA
v3.0. As one component included in the final version of the SA sub-model is still not fully
identified, it was labelled as X1 (Figure 24).

JA sub-model structure

One of the major functions of JA is the regulation of PDS, especially in the cases of wounding
of plant leaves and insect attacks. The main biosynthetic pathway for JA is the oxylipin
pathway, linolenic acid being a substrate for the JA biosynthesis (Staswick, 2008). JA
can be derivatised into different amino acid conjugates. Jasmonyl-isoleucine (JA-Ile) is
the conjugate whose biological activity has been proven (Staswick and Tiryaki, 2004). In
the presence of JA-Ile, the SCF complex, composed of SKP1 (S-phase kinase-associated
protein 1), cullin, and a RING finger protein (RBX1/HRT1/ROC1), binds to the F-box
protein Coronatine insensitive1 (COI1). The SCFCOI1 ubiquitine ligase binds to JAZ and
presumably ubiquitinases it (Staswick, 2008; Gfeller et al., 2010; Devoto and Turner, 2005;
Chini et al., 2007). When ubiquitinated JAZ repressors are targeted for degradation in
26S proteasome, they result in the de-repression of the transcription factors such as MYC2
and other beta helix-loop-helix transcription factors (Fernández-Calvo et al., 2011) which
activate JA-dependant PR gene expression (Moore et al., 2011).

The JA sub-model contains 36 biological components and 65 biological reactions (Fig-
ure 18). As some components included in the JA sub-model are still not fully identified, they
were labelled as X2 and X5. The main components serving the experts’ evaluation how well
the JA sub-model simulates the JA pathway were the complex JA-Ille/COI1/SCF, labelled
as ”NO DEFENCE RESPONSE” in Figure 18, and the component node THI2.1/JR1/-
VSP1/ATCLH1, labelled as ”DEFENCE RESPONSE”.

ET sub-model structure

The ET production is influenced by environmental factors. It is usually induced by mechan-
ical wounding or some other kind of environmental stress. L-methionine is transformed by
S-adenosyl-L-methionine (SAM), 1-amino-cyclopropane-1-carboxylate synthase (ACS) and
ACC oxidase (ACO), to form a gaseous hormone ET (Wang et al., 2002). When synthe-
sised, ET binds to its receptors. There are five membrane-located receptors identified in
Arabidopsis (ETR1, ETR2, EIN4, ERS1 and ERS2) (Kendrick and Chang, 2008; Zhao and
Guo, 2011). The binding of ET to its receptor leads to CTR1 deactivation, which finally
results in downstream activation of EIN3/EIL1/EIL2 transcription factors (Kendrick and
Chang, 2008; Stepanova and Alonso, 2005). CTR1 levels are also regulated by ubiquitina-
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Figure 18: The biosynthesis and signalling pathway of the JA sub-model manually constructed in
the CI software.
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tion and 26S proteasome degradation via EBF1/EBF2 - Skp- Cullin-F-box (SCF) E3 ligase
complex (Zhao and Guo, 2011). The concentration has to be well regulated, since they are
the crucial positive regulators of ET signalling.

The ET sub-model includes 28 biological components and 45 biological reactions (Fig-
ure 19). Similar to the JA sub-model, the ET sub-model has two main components to test the
model dynamics. These are the complex Et receptor/CTR1 labelled as ”NO DEFENCE RE-
SPONSE” and defence proteins GST1/b-CHI/PR4, labelled as ”DEFENCE RESPONSE”.
When the behaviour of these two variables is opposite in approximately the same time frame,
the dynamic behaviour of ET sub-model is considered correct.

4.2.3 Comparison with the state-of-the-art model structures of the PDS
mechanism

The developed PDS model structure, shown in the form of graph in Figure 14, contains
more detailed information compared to the structural models of the subsets of PDS mech-
anism (Olmedo et al., 2006), (Staswick, 2008) having in total 175 components and 387
reactions. Figure 6 of the study of (Olmedo et al., 2006) shows the structural model of
ET pathway containing 17 components and 11 reactions. In the work of (Staswick, 2008),
Figure 1 contains 13 components and 7 reactions. The work of (Naseem et al., 2012), con-
trary to the abovementioned studies, makes a broader overview and systematizes knowledge
regarding the PDS mechanism. Their complex network, containing 105 components and 163
reactions, is of similar size as our manually built PDS model structure. However, our work
focuses on the most important pathways of plant defence against pathogen attacks (SA, JA
and ET) while the study of (Naseem et al., 2012) includes several other components like
GA, ABA, auxin, etc. resulting in less detailed information on the particular SA, JA and
ET pathways.

The PDS model structure transformed to the HFPN presentation is prepared for the
analysis of model dynamics. A slightly reduced structure, compared to the directed edge-
labelled graph of Figure 14, contains in total 99 components and 68 reactions. The structure
of one of the first simulation models of the PDS mechanism (Genoud et al., 2001), containing
18 biological entities and 12 Boolean operators, is less complex than the PDS model structure
comprising three sub-models which we have developed according to the HFPN formalism (see
Subsection 4.2.2). The more complete PDS model is the one of study of (Naseem et al., 2012)
with 105 components and 163 reactions. This model was built for the simulation purpose,
however, as mentioned above, it has a broader overview including several other components
with the price of having less detailed information of the SA, JA and ET pathways, which
are the focus of our work.
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Figure 19: The biosynthesis and signalling pathway of the ET sub-model manually constructed in
the CI software.
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5 Constraint-Driven PDS Parameter Optimisation

and Model Validation

With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.

John Von Neumann

In the manual construction of the PDS model we were faced with a problem when merging
the three sub-models. As parameter hand-tuning of the merged PDS model was not feasible
due to the model’s complexity, it was necessary to support this process by means of param-
eter optimisation. When the simulation model was refined through iterative optimisation
steps, the next challenge was to determine the validity of the model. The task of model
validation is to determine whether the model is ”good enough” to represent the real-life
system. A perfect simulation model does not exist. By definition a model is a simplification
of the reality and thus, only a real-system would be a ”perfect” model. Therefore, we can
only argue whether a model is ”good enough” considering its intended use.

This chapter represents contributions of this thesis regarding model dynamics and model
validation. We describe the proposed iterative methodology of model dynamics revision for
acquiring knowledge from the domain experts resulting in a new dynamic model of the SA
pathway, the most studied pathway of the PDS mechanism. Next, we formalised biological
knowledge in the form of constraints which have never been formally defined before. We
describe the basics of mathematical optimisation and present the results of several iterative
steps applied to the SA sub-model. Moreover, we present model validation concepts and the
most common validation strategies. We focus the discussion on the validation techniques
of the models without or with few experimental data available. The investigation of the
related work resulted in applying the common validation strategy to the developed SA
sub-model. In addition, we have developed another, better suited validation strategy and
applied it in SA sub-model validation. In future work, it is planned to apply the same
strategy of constraint-driven parameter optimisation and model validation of the JA and
ET sub-models.

5.1 PDS model represented in the HFPN formalism

In the PDS model, all components are presented with continuous node types (i.e., the
concentration value of the biological components is the real number). The reaction nodes,
which are continuous transitions, were assigned functions that represent the reaction rates.
These functions are based on the law of mass action (Keener and Sneyd, 2009). The law of
mass action states that the reaction rate is proportional to the concentrations of molecules
participating in the reaction. It has the following form:

r f = k f [A][B] (6)

where r f is the reaction rate, k f is the rate constant and [A] and [B] are concentrations of the
reactants. The mass action kinetics is a simpler way to model biological reactions than the
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Figure 20: A simple reaction presented in the HFPN formalism.

Michaelis-Menten kinetics (Michaelis and Menten, 1913), making analysis of larger systems
easier.

In the PDS model, the reaction rates have the following form: m1 ∗m2 ∗k, where m1 and
m2 are the concentrations of the reactants and k is the reaction rate constant. We have
assigned value 0.1 to most of rate constants of the activation and gene expression reaction
types and value 0.01 to the degradation type. Furthermore, hand-tuned values of several
inhibition thresholds are assigned to the inhibition arcs (functions of the reaction nodes and
the inhibition thresholds of the JA, ET and SA pathways are presented in Figures 18, 19
and 24).

The CI software enables modelling with the ODE formalism which is hidden to the end
user. If we consider a simple example of one reaction (Figure 20), we can formulate ODEs
of all three biological components in the following way:

dm1

dt
=−k ∗m1 ∗m2 ∗g(m3) (7)

dm2

dt
=−k ∗m1 ∗m2 ∗g(m3) (8)

dm3

dt
= k ∗m1 ∗m2 ∗g(m3) (9)

where g(m3) is the step function defined in the following way:

g(m3) =

{
1, i f m3 ≤ tthr
0, otherwise

}
(10)

where tthr is the inhibition threshold.
In the CI software, ODEs are simulated with the Euler integration method (Butcher,

2008). This method is the simplest and serves as the basis for more complicated methods.
It belongs to the single-step integration methods and uses only the last step to estimate
the value of the next one. The global error of the Euler method is proportional to its step
size. Instability is a disadvantage of this method, which is resolved in more complicated
ODE solvers, like Runge-Kutta, Adams-Moulton, etc. Improvement of the ODE integration
method used by CI is one of the tasks for further work.

Moreover, the inhibition threshold function in the CI software is defined as a step func-
tion. This function models sudden change in system’s behaviour which does not reflect
properly the behaviour of a real-life system. Modification of the step function to the less
abrupt function, like sigmoid for example, is also considered to be addressed in future work.

To simplify the procedure of hand-tuning the PDS model to the experts judgement,
we have considered the Euler integration method and the step function in the inhibition
threshold, implemented in the CI software, to be an acceptable approach.
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5.2 Iterative process of constraints formulation, combinato-
rial optimisation and refinement of the model and con-
straints

This section introduces the mathematical optimisation approach and the definition of con-
straints formalised from the expert knowledge, which is one the contributions of this dis-
sertation. Moreover, this section illustrates the iteration procedure of constraint-driven
parameter optimisation of the SA sub-model.

5.2.1 Mathematical optimisation

In systems biology, many biological pathways are mostly qualitatively understood since the
numerical data on kinetic parameters are often few. Due to the lack of existing quantitative
data, employment of mathematical optimisation methods in systems biology is considered
an important challenge.

Mathematical optimisation is defined as a selection of the best element from a set of
alternatives with respect to some criteria. Basically, optimisation is a way to find either
the minimum or the maximum of a selected property of a studied system. In this process,
one first has to identify an objective, that is, a measure of the property in question, which
can be quantified by a single number. The value of the objective depends on the system
parameters. The task of optimisation is to find the values of the parameters that either
minimise or maximise the objective. The parameters are usually constrained, most often
by having at least a lower and an upper bound. Formally, an optimisation problem can be
defined as a task that requires optimising the objective function (also named criteria, cost,
utility or fitness function) f :

y = f (x) (11)

where x is a vector of n decision variables defined over ℜ

x = [x1,x2, ...,xn]T . (12)

Decision variable vectors x that satisfy the constraints of inequality type

gi(x)≥ 0, i = 1,2, ...,I (13)

and constraints of equality type

h j(x) = 0, j = 1,2, ...,J (14)

are called the feasible solutions.
Optimisation problems are classified according to various criteria. Some classes of opti-

misation problems are briefly described below.
Discrete vs. continuous optimisation problems. This category is based on the type

of decision variables. When the solutions of the discrete optimisation problem are permu-
tations of finite numbers, the problem is called a combinatorial optimisation problem. In
contrast, the infinite solution space characterises continuous optimisation problems. Solu-
tions consisting of both integer- and real-valued decision variables also exist and are called
mixed integer optimisation problems.

Linear vs. nonlinear optimisation problems. This difference is based on the type of
the objective function and constraints. We refer to the problem as a linear optimisation
problem if both the objective function and constraints are linear. Unlike linear problems, if
the objective function or at least one constraint (if defined) is nonlinear, we deal with the
class of nonlinear optimisation problems.
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Figure 21: A scheme of an evolutionary algorithm (EA).

Deterministic vs. stochastic optimisation problems. When the solutions of the
problem cannot be specified exactly, but only within some confidence interval, we refer to
the problem as a stochastic optimisation problem.

Single vs. multi-objective optimisation problems. This group of problems is distin-
guished according to the number of objective functions.

Optimisation methods can be, according to the complexity of the optimisation problem,
classified as exact or approximate. Exact (or complete) methods are guaranteed to result in
an optimal solution for the finite size problems within a limited time interval. Approximate
methods use different strategies to obtain a solution in a reasonable time. Various meta-
heuristics belong to this class and one of the most popular among them are evolutionary
algorithms (EAs).

5.2.2 Evolutionary algorithms and DE algorithm selection

Evolutionary algorithms (EAs) are stochastic optimisation methods utilizing the ideas of
biological evolution in computer problem solving. The main advantage of EAs is their effec-
tiveness and robustness while solving combinatorial optimisation problems which are often
intractable by using traditional numerical methods. They are nowadays extensively used in
science, engineering, management and other domains. Nevertheless, a shortcoming of EAs
is their computational complexity which derives from the iterative population-based search
of the solution space. On the other hand, processing a population of candidate solutions
makes EAs amenable to a parallel implementation that may result in a significant compu-
tational speedup. This class includes Genetic Algorithms (GA), Evolutionary Strategies,
Evolutionary Programming and differential evolution (DE) algorithms. For the whole class
of EA algorithms, the basic procedure is common and is shown in Figure 21.

One of the popular algorithms within the EA class is the differential evolution (DE)
algorithm. The DE algorithm performs a population-based search that optimises the prob-
lem defined on a continuous space by iteratively improving a set of candidate solutions with
regard to a given measure of quality. A version of a DE algorithm developed by (Filipič and
Depolli, 2009) was used in our work. A brief explanation of how the DE algorithm works is
provided below.

In DE, the population of random solutions is initialised first and the solutions are evalu-
ated with respect to the objective function f. Then, new candidates are created by means of
vector addition or scalar multiplication. Next, every candidate is evaluated by comparison
with its parent and the best are added to the new population.

The DE algorithm considers the candidate solutions as real vectors and not as binary
strings (chromosome), which distinguishes it from GAs. It can be used for solving many
practical problems where objective functions are nondifferentiable, non-continuous, non-
linear, noisy, flat, multi-dimensional or have many local minima, constraints or stochasticity.
The main advantage of DE algorithm is its implementation simplicity which allows it to
easily solve optimisation problems requiring minimization process with real valued objective
functions. For these and for additional practical reasons we have selected to use a DE
algorithm in our work.
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5.2.3 Constraint formulation and objective function definition

In systems biology, values of kinetic parameters in biological models are usually determined
by the time-series data. A standard cost function represents a sum of the differences in values
between experimental time-series data and simulation data, for each time point. However,
this is not possible when experimental data are sparse and few. In the study of (Locke et al.,
2005), a cost function was a sum of terms which quantify the agreement between a model and
the qualitative experimental feature. Some of these terms represent the difference between
the target phase and the average phase of the peaks of two biological components (LHY
and TOC1 mRNA expression), or how broad the peak of certain components should be.
Defining objective functions in the described way represents our contribution to biological
science since the biological knowledge has been formalised in this process and has been made
available for further exploration within the scientific community.

The formalisation of these expert terms represents an iterative process of eliciting knowl-
edge from the experts. This knowledge is accumulated in biology literature and can guide
the parameter optimisation search. Similarly to the study of (Locke et al., 2005), we have
explicitly focused on the knowledge related to the biological molecules and the relationships
between them. However, the main difference in our approach is that the objective function
does not take into account experimental data, but is based solely on the knowledge of do-
main experts. The following five types of relationships, formed as constraints between the
components, were defined:

• Inequality relationship between quantities of molecules.

• Growth rate of the molecules’ quantities (for example, the quantity of molecule 1 grows
faster than that of molecule 2).

• Curve shape (e.g., it starts at some initial level, reaches a maximum and then drops
back to an approximately similar level).

• Minimal amplitude and minimal growth of a curve.

• Temporal sequence in curve maxima:

– same time (molecule 1 has the peak at the same time as molecule 2), and

– maximum before (molecule 1 has the peak before molecule 2).

The optimal parameter setting of the PDS model is defined as a combinatorial optimisa-
tion problem. In this approach, our contribution is the definition of the objective function
as the normalised sum of the normalised violations of constraints specified by the biologists.
If the objective function has value 0, it means that all constraints are satisfied, while value
1 results from all violated constraints. Values in the range between 0 and 1 denote that
a certain percentage of time-series curves that are involved in the definition of the specific
constraint do not satisfy it. The optimisation parameters include the reaction rate constants
and the inhibition thresholds. The defined value range of the rate constants is between 0.01
and 10, while the value of the inhibition thresholds ranges between 0.1 and 1000.

We illustrate the development of the SA model through several iterative steps. In the
following, we demonstrate how the parameter optimisation methodology was applied, by
showing the results of the three iterative steps. This methodology includes manual revision of
the SA sub-model structure and the revision of the defined constraints after every iteration.

5.2.4 Iterative revisions of SA sub-model

Step 1 - SA sub-model v1.0
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The starting point of our work is the manually developed SA sub-model v1.0 that contains
in total 52 biological molecules and 38 reactions including inhibitions. This was the initial
model built in the CI software. Out of 38 parameters, 33 were optimised, while the other ones
are left out from optimisation since they were representing initial values for the reactions.
The simulator outputs 4 curves (as time series with 1,000 points with the sampling interval
of 0.1) for each biological molecule, which were the most interesting for the biology experts.
At the beginning of the sub-model construction process, in total 8 constraints were defined
by the biologists for this sub-model. After the DE algorithm search was performed with
a population number set to 10,000, the optimal parameters with respect to the objective
function were estimated. With this set of parameters, for each violated constraint there is
a value that represents the percentage of time points in which the constraint was violated.
The overall objective function represents the average of constraint violations.

The following data represent the results of the first optimisation experiment performed
on the SA sub-model v1.0. Below are the values for the individual constraints and the overall
value of the optimisation criterion function:

lowerThan(SA chl, SA cyto) = 0.088
slowerRate(Chorismate, Prephenate) = 0.012
slowerRate(Chorismate, Phenyl pyruvate) = 0.052
slowerRate(Chorismate, Phenylalanine) = 0.055
zeroPeakZero(SA cyto) = 0.096
zeroPeakZero(PR1) = 0.037
equalRate(Prephenate, Phenyl pyruvate) = 0.028
equalRate(Phenylalanine, Phenyl pyruvate) = 0.007
finalCriterion = 0.376/8 = 0.047

Detailed values of kinetic parameters and the SA sub-model v1.0 are available publicly
at http://kt.ijs.si/dragana_miljkovic/. Based on the parameter set, the simulator
outputs the curves of four biological molecules: SA, NPR1, PR1 and EDS1. Apart from
the SA molecule, which is a small compound, the other three molecules are proteins. Their
dynamic behaviour is shown in Figure 22. According to the biology experts, some parts
of these curves are not considered correct even though the total criterion function showed
that on average 0.047 of each constraint is violated. For example, in the first upper curve of
the SA component (Figure 22), there is an unexpected change after the global peak drops
down. Furthermore, the behaviour of the EDS1 curve (Figure 22) is not considered correct
since the peak of the curve is too narrow and drops immediately down. Moreover, the
raise of the NPR1 curve after the first peak does not fit the experts’ expectations. For
these reasons, the domain experts have revised the sub-model structure and have provided
additional knowledge in the form of constraints.

Step 2 - SA sub-model v2.0

After the inspection of the curves shown in Figure 22, the sub-model structure was revised
by biology experts. This correction resulted in a second model version: SA sub-model
v2.0 containing 61 biological molecules and 56 reactions. Out of 56 parameters, 51 were
optimised, while the other ones are left out from optimisation since they were representing
initial values for the reactions. Also, more constraints were specified, leading to a set of 33
constraints.

Parameter search was once more performed with the same set up as in step 1. The
following data represent the results of the second optimisation experiment performed on the
SA sub-model v2.0. Below are the detailed values for the individual constraints and the
overall value of the criterion function:

equalRate(Prephenate,Phenyl pyruvate) = 0.004
equalRate(Prephenate,Phenylalanine) = 0.004

http://kt.ijs.si/dragana_miljkovic/
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Figure 22: Dynamic behaviour of the SA, EDS1, PR1 and NPR1 variables based on the optimal
parameter set estimated with respect to the objective function calculated from eight constraints
during step 1.

equalRate(Prephenate,Trans cinnamic acid) = 0.003
equalRate(Prephenate,Orto coumaric acid) = 0.004
equalRate(Prephenate,BA) = 0.950
equalRate(Isochorismate,SA chl) = 0.002
slowerRate(Prephenate,Isochorismate) = 0.093
slowerRate(EDS1,EDS5) = 0.028
slowerRate(PAD4,EDS5) = 0.081
slowerRate(ICS2,ICS1) = 0.004
slowerRate(NPR1 oligomer,NPR1) = 0.197
maxSameTime(ROS,HRT) = 0.930
maxAfter(HRT,MPK3) = 0.730
maxSameTime(MPK6,MPK3) = 0.094
maxAfter(MPK6,EDS1) = 0.000
maxSameTime(PAD4,EDS1) = 0.000
maxAfter(PAD4,EDS5) = 0.000
maxAfter(EDS5,ICS1) = 0.000
maxAfter(ICS2,SA) = 0.000
maxAfter(SA,H2O2) = 0.005
maxAfter(H2O2,BAH) = 0.000
maxSameTime(ROS,BAH) = 0.000
maxAfter(ROS,NPR1) = 0.000
maxAfter(NPR1,NPR TGA complex) = 0.000
maxSameTime(Isochorismate,Prephenate) = 0.067
lowerThan(SA chl,SA) = 0.001
zeroPeakZero(Chorismate) = 0.333
zeroPeakZero(Prephenate) = 0.333
zeroPeakZero(Phenyl pyruvate) = 0.333
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Figure 23: Dynamic behaviour of the SA, EDS1, PR1 and NPR1 variables based on the optimal set
estimated with respect to the objective function calculated from 33 constraints during step 2.

zeroPeakZero(Phenylalanine) = 0.333
zeroPeakZero(SA) = 0.195
zeroPeakZero(PR1) = 0.028
stopFast(virus) = 0.000
finalCriterion = 4.7529/33 = 0.144

Detailed values of kinetic parameters and the SA sub-model v2.0 are available publicly
at http://kt.ijs.si/dragana_miljkovic/. The total criterion function shows that on
average 0.144 of each constraint is not satisfied. The dynamic curves of the same 4 molecules
(SA, EDS1, PR1 and NPR1) are shown in Figure 23. Even though the criterion function
shows more violated constraints compared to step 1, the biology experts were more satisfied
with the presented curves in Figure 23 compared to the curves in Figure 22. The curve of
the SA component in Figure 23 does not have sudden drops in the last part but looks more
smooth, even though it is still not optimal. The EDS1 curve in Figure 23 does not have
the sudden narrow peak like in Figure 22, but the way the curve raises is not correct. The
behaviour of the PR1 curve was satisfying while the NPR1 curve showed unexpected rise
after the first peak, which was still considerably smaller compared to the previous iteration
(Figure 22). Nevertheless, since the criterion function was overall worse, the model structure
and the constraints were revised again. We have inspected the constraint definitions and
the domain experts concluded that the constraint type related to the shape of the curve was
defined too strictly (this means that the curve had to start from zero and go back to the
zero value which was later not found as necessary). Therefore, this constraint is without
strict limitations to start and drop back exactly to zero. It is only important that it rises
and drops after a certain point, where the curve oscillations are penalised.

Step 3 - SA sub-model v3.0

Finally, the last iteration resulted in the SA sub-model v3.0, containing in total 50 biological
molecules and 89 reactions (the final version of the SA sub-model is shown in Figure 24).

http://kt.ijs.si/dragana_miljkovic/
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During the revision of the SA sub-model v2.0, the number of biological components decreased
from 61 to 50. The biologists have decided to present some of the biological molecules,
belonging to the same component families and thus having the same functionality, with a
single node. Also, since the number of biological molecules was reduced from the SA sub-
model v2.0 to the SA sub-model v3.0, the number of constraints consequently decreased from
33 in step 2 to 29 in step 3. The following data represent the results of the third optimisation
experiment performed on the SA sub-model v3.0. Out of 89 parameters, 71 were optimised,
while the other ones are left out from optimisation since they were representing initial
values for the reactions. The final values for individual constraints and the overall value of
the criterion function are shown:

equalRate(Prephenate,Phenyl pyruvate) = 0.002
equalRate(Prephenate,Phenylalanine) = 0.002
equalRate(Prephenate,Trans cinnamic acid) = 0.002
equalRate(Prephenate,Orto coumaric acid) = 0.002
equalRate(Prephenate,BA) = 0.002
equalRate(Isochorismate,SA chl) = 0.000
slowerRate(Prephenate,Isochorismate) = 0.000
slowerRate(PAD3 4,EDS5) = 0.000
slowerRate(NPR1 oligomer,NPR1) = 0.000
maxSameTime(ROS,HRT) = 0.089
maxAfter(HRT,MPK3) = 0.114
maxSameTime(MPK6,MPK3) = 0.000
maxAfter(MPK6,EDS1) = 0.000
maxSameTime(PAD3 4,EDS1) = 0.000
maxAfter(PAD3 4,EDS5) = 0.011
maxAfter(EDS5,ICS1 2) = 0.000
maxAfter(ICS1 2,SA) = 0.000
maxAfter(ROS,BA2H) = 0.000
maxAfter(ROS,NPR1) = 0.000
maxAfter(NPR1,NPR1 TGA 2 4 5) = 0.011
lowerThan(SA chl,SA) = 0.002
zeroPeakZero(Chorismate) = 1.000
zeroPeakZero(Prephenate) = 0.000
zeroPeakZero(Phenyl pyruvate) = 0.000
zeroPeakZero(Phenylalanine) = 0.000
zeroPeakZero(SA) = 0.000
zeroPeakZero(PR1 2 5) = 0.000
stopFast(virus) = 0.007
finalCriteria = 1.243/29 = 0.043

The above set of 29 constraints that we defined in the last iterative set is referred to as
the training constraint set. Table 3 lists values of kinetic parameters optimised with our
approach. Note that the list of these reactions is partially comparable with the reactions
of the SA sub-models v1.0 (see material available online at http://kt.ijs.si/dragana_

miljkovic/) and therefore we represent here only the final results. The total criterion
function in this step showed that on average 0.043 of each constraint is not satisfied. In
comparison with the first and the second step, the satisfaction of constraints was improved
in the final step. Additionally, according to the experts’ judgement, the curves output of
step 3 were better compared to v1.0 and v2.0. The final curves of the same four molecules
(SA, EDS1, PR1 and NPR1) are shown in Figure 25. Detailed data for all three iterative
optimisation steps are compared in Table 4.

We joined expert knowledge with the mathematical approach to understand better the
kinetic behaviour of the SA pathway, which is one the most important pathways in plant

http://kt.ijs.si/dragana_miljkovic/
http://kt.ijs.si/dragana_miljkovic/
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defence. Our approach of defining an objective function consisting of domain knowledge
(constraints) represents a step forward and is less time-consuming compared to the hand-
tuning of model parameters. The methodology for defining constraints is similar to the one
of (Locke et al., 2005). However, our approach differs from it since it is totally based on
the domain knowledge, whereas the study mentioned above relies on the combination of the
experimental data and expert knowledge. The only available dataset was used to give an
additional comparison value to obtain a certain criterion of a model reality.

The selected parameter set is large, thus, making the search space enormous. This auto-
matically directed us to use some stochastic optimisation methods (i.e., the DE algorithm)
since the deterministic methods are overly time-consuming in the case of a large parameter
set. Interesting results were obtained using our evaluation method, albeit some limitations
remain. Our method is based on the subjective knowledge of domain experts, and not on the
explicit and objective numerical experimental data. Nevertheless, this knowledge is valu-
able and very useful for guiding the sub-model construction. However, we believe that the
comparison of simulation results even with the experimental dataset will provide additional
confidence to the expert’s validation of the SA sub-model.

Figure 25: Dynamic behaviour of the SA, EDS1, PR1 and NPR1 variables based on the optimal
parameter set estimated with respect to the objective function calculated from 29 constraints during
step 3.
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Figure 24: The biosynthesis and signalling pathway of the final SA sub-model v3.0 manually con-
structed in the CI. The molecules in the green squares were used for the model validation in Sec-
tion 5.3, while the coefficients in the black squares were used for the local sensitivity analysis of the
SA sub-model v3.0 in Subsection 5.3.2.
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Table 3: A list of parameters of the SA sub-model v3.0 optimised with our approach.

Optimisation
parameters

Parameter values
Optimisation
parameters

Parameter values

thrm44p15 0.000535908
thrm46p4 6,35E−05 thrm44p2 0.000395285

k83 3.433 k11 678.528
k82 860.233 k12 0.107657
k81 893.532 k13 0.1
k80 0.1 k19 165.033
k84 14.614 k14 0.1
k77 530.164 k15 212.282
k78 0.338785 k16 233.389
k79 369.743 k17 335.043
k70 826.133 k18 0.248453
k72 339.172 k10 0.261568
k71 619.137 k24 0.1
k74 0.1 k25 0.178708
k73 954.421 k22 720.195
k76 167.399 k23 832.662
k75 57.601 k28 0.1
k68 0.1 k29 0.1
k69 192.478 k26 0.1
k66 241.386 k27 360.421
k67 0.380435 k21 168.271
k65 153.045 k20 280.847
k64 159.237 k37 110.793
k63 0.900479 k38 0.1
k62 0.211873 k39 0.1
k61 0.773124 k33 0.557766
k60 0.41851 k34 0.1
k59 0.300204 k35 100
k55 193.299 k36 0.463225
k56 11.727 k30 0.1
k57 981.612 k32 0.1
k58 133.915 k31 288.793
k52 52.932 k48 0.1
k51 0.624458 k49 502.036
k54 0.1 k46 199.152
k53 0.1 k47 0.1
k50 0.1 k44 0.649051
k7 228.442 k45 0.1
k6 0.1 k43 0.1
k5 238.858 k8 0.503158
k4 0.1 k42 475.817
k3 100 k9 0.154922
k2 0.833467 k41 106.128
k1 260.244 k40 426.341
k85 0.104416 k86 0.420679
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Table 4: A comparison of the three iterative optimization steps.

Version of the
SA sub-model

Components Reactions Constraints
Averaged
objective
function

v1.0 52 38 8 0.047
v2.0 61 56 33 0.144
v3.0 50 89 29 0.043

5.3 Model validation

This section describes the most common validation techniques of simulation models. We
specifically focus on the model validation approaches where no or few experimental data are
available. The section provides the results of the SA sub-model validation by applying two
validation approaches: sensitivity analysis, which is a common approach, and the developed
approach that we propose in this thesis.

5.3.1 Concepts and strategies

Model validation is a crucial step in the development of a simulation model. We distin-
guish between model verification, validation and accreditation phases. Model verification is
concerned with determining whether the model is implemented correctly. Model validation
estimates to which extent model simulation outputs represent a real-life system from the
perspective of the expected model use. Model accreditation is related to the model credibil-
ity which deals with the confidence that the users have in the results of model simulation.
The topic of this section is model validation.

A model is always developed with a specific purpose. Therefore, its validity should be
determined concerning that purpose. For example, if a model has to be used in several
conditions, the model validity has to be determined for every predefined condition. A model
is valid if its accuracy is within a certain range that is required from the perspective of the
intended use of the model. This accuracy range is usually defined during the early model
construction phase.

The problem with the model validation is the lack of standard validity tests. There are
no rules how to determine whether a model is ”good enough”. There is no ”standard” theory
or software tools available to support the validation process. However, the literature agrees
that the decision whether a model is ”good enough” should be a compromise accomplished
between the modeller, the user and the code developer.

There are several validation techniques which can be applied in different situations. A
study of (Sargent, 1998) describes different existing validation techniques. We briefly present
the ones which are mostly used.

• Animation. The model’s behaviour through time can be presented graphically.

• Comparison to other models. The outputs of the model, which needs to be vali-
dated, can be compared to the already existing validated models. These models can
be simple cases of the developed model.

• Extreme condition tests. The model structure and its dynamic outputs should
correspond to any extreme combination of the model parameters.

• Face validity. No matter whether there is an existing model for comparison (or
experimental data), a domain expert should review simulation results to ensure they
are reasonable. This kind of validation is used to ascertain that the simulation results
are consistent with the expected system behaviour.
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Figure 26: The classification of validation approaches for the observable and non-observable system
according to (Sargent, 1998).

• Validation by using experimental data. If the experimental data exist, then one
part is usually used to construct the model while the other smaller set is left for the
model validation. This is the most common way to validate the model for which most
of the statistical tests are developed.

• Parameter variability-sensitivity analysis. In this approach, the input values and
values of internal parameters are changed to observe their influence on the simulation
outputs. The corresponding changes should occur also in the real-life system.

• Predictive validation. The simulation model is used to predict the system behaviour
under certain conditions and the predicted values are compared with the existing data.

• Turing tests. The domain experts are tested to distinguish between the simulation
and the real-life system results.

For most of the validation techniques described above, apart from the animation and
face validity, there are statistical methods available. The most influential criterion when
selecting the validation approach is the system’s observability (Sargent, 1998). Under ob-
servability of a system we denote the possibility to collect data on the dynamic behaviour of
certain variables. Figure 26 presents the classification of subjective and objective validation
approaches depending on the system’s observability. ”Comparison” as stated in Figure 26
means comparing/testing the simulation and the system’s outputs. Comparison by using
graphical displays can be performed in various ways. For example, the experts can use the
graphs of simulation outputs for the subjective evaluation of the model’s accuracy during
the model’s development or after the model construction. Also, the graphical display ap-
proach can be used in Turing tests, where the experts are asked to distinguish between the
simulation and real-life system outputs. Exploring model’s behaviour represents the inves-
tigation of simulation outputs using some validation techniques mentioned previously, like,
for example, sensitivity analysis.

When the system is not observable (no experimental data are available), strict validation
of the model is not feasible. However, if there is still domain knowledge available, a model
can be validated with respect to that knowledge. If the dynamic behaviour of the model
violates this knowledge, the model has to be questioned and errors should be investigated.
Also, in this case, sensitivity analysis can be performed. Sensitivity analysis is defined as
the investigation of the model simulation outputs when the input model parameters are
changed. These changes can be either extreme or marginal. Sensitivity analysis can support
the validation process in the sense whether the change of parameter values will have the
effect that corresponds to the experts’ expectations. Furthermore, the sensitivity analysis
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might show which parameters are crucial for certain model behaviour. For example, the
study of (Chu et al., 2007) explores the importance of various reaction rate coefficients in
IL-6 signalling pathway by using sensitivity analysis.

When the system is observable, we can distinguish between two cases:

(i) only output data are available, and

(ii) input and output data are available.

For case (i), simple two-sample Student t-tests can be used if the data are normally
distributed. If the data are not normally distributed, then the distribution-free tests can
be applied, like rank tests. In case (ii), when both input and output experimental data are
available, regression analysis can be applied. Regression analysis estimates the influence of
one or more input variables to the output variable of interest.

For cases (i) and (ii), when the datasets available are big enough for model building and
model testing, usually the proportion of training versus testing data is 80 %/20 % or 90 %/10
%. On the other hand, if the data amount is limited, i.e. there are not enough samples for
training and testing separately, a k-fold cross-validation can be performed (Kohavi, 1995).
In k-fold cross-validation, the dataset is divided into k equally-sized segments. Validation
iterations are performed in such a way that during each of k iterations, a different segment
is kept for the validation, where the other k-1 segments are used for building (training) the
model. In order to avoid biases, during every iteration all steps of model building (training)
should be performed independently (like model selection, feature selection, etc.). As an
example, Figure 27 illustrates the three-fold cross-validation process. In machine learning
and data mining, the most common is 10-fold cross-validation.

Having in mind that one experimental dataset with five time-points is available for vali-
dating the PDS model1, we cannot claim that the system, which we model, is non-observable.
On the other hand, one dataset is not enough for reliable model validation by applying statis-
tical approaches which are well established for validating the models of observable systems.
For these reasons, we had to balance between the validation techniques for observable and
non-observable systems. We have applied two subjective validation approaches for the non-
observable systems and we have developed a new validation method, which requires few
experimental data and is based on constraint generation approach. We briefly list below the
validation approaches used in this work to validate the SA sub-model.

(a) Face validity. We used this validation approach mostly during the model develop-
ment phase. The details of iterative steps for the determination of the most optimal
parameters of the SA sub-model are presented in the previous section.

(b) Sensitivity analysis. This method is used in combination with the face validity ap-
proach where the domain experts provided feedback on the general results of the
sensitivity analysis. The analysis is performed on the SA sub-model v3.0. In addition
to the face validity of the sensitivity analysis results, we have explored the importance
of the predefined model input parameters and their influence to the outputs of interest.

(c) New validation method based on the k-fold cross-validation approach. This method is
one of the contributions of this thesis. It can be applied only for the observable systems
when at least one experimental dataset is available. To validate the SA sub-model v3.0
we have used one dataset with five time points, which is publicly available.

In the next two subsections we represent and discuss the results of validation methods
(b) and (c), respectively.

1Apart from this dataset, there are other publicly available datasets, which are acquired during the
interaction of Arabidopsis thaliana and viruses. However, these datasets do not have sufficient information
on the PDS mechanism dynamics, i.e, they contain two time-points measured before and after the virus
attack.
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Figure 27: The iterative process of three-fold cross-validation.

5.3.2 Sensitivity analysis: exploring the robustness of the SA sub-model

The role of sensitivity analysis in dynamic analysis of biological models is manifold. First,
based on the sensitivity analysis, the robustness of the system can be explored. If the
changes of the model inputs do not affect the model outputs significantly, we can claim that
the system is robust. In addition, the input perturbations can determine the key inputs
that influence the model output. Then, sensitivity analysis can be used in model reduction,
guiding experimental analysis and parameter estimation. For the non-observable systems,
the parametric sensitivity analysis presents model validation. In that case, the produced
outputs that are the result of the changes in the model inputs should correspond to the
expectation of the domain experts. Thus, the parametric sensitivity analysis combined with
the face validity technique represents a way to validate the models of non-observable systems.

There are numerous ways to perform sensitivity analysis. The main two approaches are:

(a) local sensitivity analysis, and

(b) global sensitivity analysis.

Local sensitivity analysis investigates how the small perturbations in input values influ-
ence the model outputs. When the size of perturbations is slowly increased and still the
sensitivity does not change significantly, then the local analysis results are considered ro-
bust. Global sensitivity analysis, on the other hand, deals with the larger parameter changes
and investigates the whole parameter space. For a non-observable system, if the domain
knowledge on the system’s behaviour for the extreme parameter changes is not available,
local sensitivity analysis can be used. This is the case with the PDS mechanism for which
we have performed local sensitivity analysis.

If we consider our PDS model represented with the HFPN formalism (which is practically
a system of ODEs with graphical representation), we can write the equations with a given
parameter set p and initial conditions yi(0) in the following form:

dyi

dt
= fi(yi, p, t), i = 1,2, ...,n (15)

Mathematical presentation of the local sensitivity coefficients has the form of first-order
derivatives of the model output variables with respect to the model parameters:

Si =
∂yi

∂ p
= lim

∆p→0

yi(t; p + ∆p)− yi(t; p)

∆p
(16)

Numerous methods are used to calculate the first-order derivatives. The most simple
method, which we have also used in our work, is the method of finite difference approxima-
tion. The sensitivity, calculated according to this method, has the following form:
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Si =
∂yi

∂ p
' yi(p + ∆p)− yi(p)

∆p
(17)

Sensitivity is usually a function of time and is merged into a vector of sensitivities at
different time points. A sensitivity coefficient is the Euclidean norm (or 2-norm) of Si(t) (Chu
et al., 2007). Thus, the sensitivity coefficient represents the impact of the input perturbation
on the output value in given period of time.

Setting the stage for sensitivity analysis

To perform the model validation, one has to determine the observable model variables. To
explore the robustness of the SA sub-model v3.0, we have used the local sensitivity analysis.
The input parameters, perturbed for the sensitivity analysis, are the rate coefficients of 18
biological reactions, marked in Figure 24, which are responsible for the stimulation of the
SA pathway. The outputs of interest, defined by the biology experts, are the concentrations
of four biological components (proteins): EDS1, PAD4, NPR1 and PR1 (also marked in
Figure 24). We apply three different perturbation step sizes (∆p = 0.001 ∗ p; ∆p = 0.01 ∗ p
and ∆p = 0.1 ∗ p, where p denotes an input parameter) and observe their effects on the
concentration values of four output components. The perturbation of one rate coefficient is
performed at a time, while the other input coefficients are kept constant on their nominal
values. The duration of the model simulation for each input perturbation is set to 1,000
simulation points.

Dynamic effects of the input parameters

At this stage we illustrate and discuss different individual effects of the particular input
rate coefficients on the output values. We compare the effects on the output variables
when different perturbation step sizes of inputs are applied (∆p = 0.001 ∗ p; ∆p = 0.01 ∗ p
and ∆p = 0.1 ∗ p). These results are presented in the form of the sensitivity vector norms
(normalised by the largest one), which are sorted in Tables 5, 6, 7 and 8 from the most
to the least important. The sensitivity coefficients (Tables 5, 6, 7 and 8) show the total
effect of input perturbation on the outputs. The tables show that changes of only few
out of 18 predefined input rate coefficients influence the sensitivity profiles of the output
components. The input rate coefficients have different impacts on the output profiles when
the perturbation size is changed. The concentration of the EDS1 protein (Table 5) is the
most sensitive to the changes of rate coefficients k f 37, k f 33, k f 57 and k f 60 as denoted in
Figure 24. The EDS1 time-dependent behaviour, shown in Figure 28, is a result of changes
in the most important rate coefficients: k f 37, k f 33, k f 57. The coefficient k f 60 was omitted
since it is important only when the perturbation size is ∆p = 0.1 ∗ p, while for the other
two perturbation sizes, it does not have any impact on the dynamics of the EDS1 protein.
An interesting result of the sensitivity analysis is the influence of the rate coefficient k f 57
on the EDS1 dynamic behaviour. Even though the reaction with this coefficient is further
from EDS1 (from the perspective of the graph structure), there is an evident influence
on its dynamic output. This influence is indirect over the negative loop where the NPR1
component blocks the production of the EDS1 after a certain threshold is achieved. The
EDS1 curve changes also the shape when perturbations of k f 57 are performed, while the
trend in EDS1 dynamic behaviour stays similar when the other two coefficients, k f 37 and
k f 33, are perturbed. The influence of this reaction on the final performance of the PDS
mechanism might be interesting for further investigations by the biology experts.

In a similar way we have inspected and plotted the impacts of the most influential
parameters on the output variables PAD3/4, NPR1 and PR1 proteins. The largest impact
on the PAD3/4 dynamics have the rate coefficients k f 37, k f 33 and k f 63 (Figure 29). The



64 Constraint-Driven PDS Parameter Optimisation and Model Validation

components NPR1 and PR1 are sensitive to the changes in k f 16, k f 48 and k f 51 coefficients
(Figures 30 and 31).

The domain experts have confirmed that the curves of the EDS1, PAD3/4, NPR1 and
PR1 components have the expected behaviour. The shapes of the curves do not change
considerably (apart from the interesting behaviour of EDS1 as a function of changes in
the k f 57 coefficient), but only the order of magnitude of the output concentration profiles.
However, this change in the output concentration for the order of magnitude does not have to
necessarily influence the final outcome of the PDS model, since the results of the PDS model
are interpreted by the domain experts in a qualitative way (by comparing the dynamics of
the curves with each other and their shapes). Moreover, having in mind that the Cell
Illustrator software implements low order integration method (Euler method) the numerical
results of dynamic simulation contain big error. Therefore, when interpreting the results
sorted in Tables 5, 6, 7 and 8, we are interested in the relative importance of particular
coefficients compared to the other ones that appear non-relevant in this analysis.

Preliminary results of local sensitivity analysis show the potential of detecting the most
influential reactions of the PDS model. This kind of analysis can be used in the design of
wet-lab experiments with the goal to enlarge the knowledge on the dynamics of the PDS
mechanism. There is also space for different kinds of model sensitivity analyses, which we
plan to perform further on the whole PDS model. For example, it might be interesting
to investigate the behaviour of the model outputs when two or more input parameters are
changed simultaneously. During further collaboration with the domain experts we hope
to define the pairs of interesting input parameters and perform more research on model
sensitivity in this direction.

Table 5: The summary of local sensitivity values calculated for the EDS1 component.

No.
EDS1

∆p = 0.001∗ p ∆p = 0.01∗ p ∆p = 0.1∗ p
1 k f 37 1 k f 37 1 k f 60 1

2 k f 57 0.896 k f 33 0.503 k f 33 0.259

3 k f 33 0.506 k f 57 0.369 k f 37 0.183

4 k f 68 0.086 k f 68 0.099 k f 57 0.176

5 k f 34 0.055 k f 34 0.064 k f 68 0.044

6 k f 16 0 k f 16 0 k f 34 0.028

7 k f 39 0 k f 39 0 k f 63 0

8 k f 48 0 k f 48 0 k f 16 0

9 k f 51 0 k f 51 0 k f 39 0

10 k f 54 0 k f 54 0 k f 48 0

11 k f 60 0 k f 60 0 k f 51 0

12 k f 62 0 k f 62 0 k f 54 0

13 k f 63 0 k f 63 0 k f 62 0

14 k f 69 0 k f 69 0 k f 69 0

15 k f 70 0 k f 70 0 k f 70 0

16 k f 74 0 k f 74 0 k f 74 0

17 k f 80 0 k f 80 0 k f 80 0

18 k f 81 0 k f 81 0 k f 81 0
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Figure 28: The influence of perturbations of rate coefficients k f 33, k f 37 and k f 57 on the dynamic
profile of the EDS1 protein.

Table 6: The summary of local sensitivity values calculated for the PAD3/4 component.

No.
PAD3/4

∆p = 0.001∗ p ∆p = 0.01∗ p ∆p = 0.1∗ p
1 k f 37 1 k f 37 1 k f 60 1

2 k f 63 0.510 k f 63 0.507 k f 63 0.257

3 k f 33 0.506 k f 33 0.503 k f 33 0.255

4 k f 68 0.084 k f 68 0.084 k f 37 0.181

5 k f 34 0.054 k f 34 0.054 k f 68 0.042

6 k f 16 0 k f 16 0 k f 34 0.027

7 k f 39 0 k f 39 0 k f 16 0

8 k f 48 0 k f 48 0 k f 39 0

9 k f 51 0 k f 51 0 k f 48 0

10 k f 54 0 k f 54 0 k f 51 0

11 k f 57 0 k f 57 0 k f 54 0

12 k f 60 0 k f 60 0 k f 57 0

13 k f 62 0 k f 62 0 k f 62 0

14 k f 69 0 k f 69 0 k f 69 0

15 k f 70 0 k f 70 0 k f 70 0

16 k f 74 0 k f 74 0 k f 74 0

17 k f 80 0 k f 80 0 k f 80 0

18 k f 81 0 k f 81 0 k f 81 0
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Figure 29: The influence of perturbations of rate coefficients k f 33, k f 37 and k f 63 on the dynamic
profile of the PAD3/4 protein.

Table 7: The summary of local sensitivity values calculated for the NPR1 component.

No.
NPR1

∆p = 0.001∗ p ∆p = 0.01∗ p ∆p = 0.1∗ p
1 k f 51 1 k f 51 1 k f 51 1

2 k f 16 0.775 k f 16 0.769 k f 16 0.728

3 k f 48 0.748 k f 48 0.743 k f 48 0.699

4 k f 39 0.003 k f 39 0.002 k f 57 0.002

5 k f 33 0.002 k f 34 0.001 k f 37 0.001

6 k f 37 0.002 k f 33 0.001 k f 33 0.001

7 k f 60 0.002 k f 37 0.001 k f 60 0.001

8 k f 34 0.002 k f 60 0.001 k f 34 0.001

9 k f 68 0.001 k f 68 0.001 k f 68 0

10 k f 54 0 k f 54 0 k f 54 0

11 k f 57 0 k f 57 0 k f 57 0

12 k f 62 0 k f 62 0 k f 62 0

13 k f 63 0 k f 63 0 k f 63 0

14 k f 69 0 k f 69 0 k f 69 0

15 k f 70 0 k f 70 0 k f 70 0

16 k f 74 0 k f 74 0 k f 74 0

17 k f 80 0 k f 80 0 k f 80 0

18 k f 81 0 k f 81 0 k f 81 0
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Figure 30: The influence of perturbations of rate coefficients k f 16, k f 48 and k f 51 on the dynamic
profile of the NPR1 protein.

Table 8: The summary of local sensitivity values calculated for the PR1 component.

No.
PR1

∆p = 0.001∗ p ∆p = 0.01∗ p ∆p = 0.1∗ p
1 k f 51 1 k f 51 1 k f 51 1

2 k f 16 0.717 k f 16 0.713 k f 16 0.679

3 k f 48 0.664 k f 48 0.659 k f 48 0.626

4 k f 39 0.017 k f 39 0.017 k f 39 0.017

5 k f 60 0 k f 37 0 k f 33 0

6 k f 33 0 k f 33 0 k f 60 0

7 k f 34 0 k f 34 0 k f 34 0

8 k f 37 0 k f 60 0 k f 37 0

9 k f 54 0 k f 68 0 k f 68 0

10 k f 57 0 k f 54 0 k f 54 0

11 k f 62 0 k f 57 0 k f 57 0

12 k f 63 0 k f 62 0 k f 62 0

13 k f 68 0 k f 63 0 k f 63 0

14 k f 69 0 k f 69 0 k f 69 0

15 k f 70 0 k f 70 0 k f 70 0

16 k f 74 0 k f 74 0 k f 74 0

17 k f 80 0 k f 80 0 k f 80 0

18 k f 81 0 k f 81 0 k f 81 0
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Figure 31: The influence of perturbations of rate coefficients k f 16, k f 48 and k f 51 on the dynamic
profile of the PR1 protein.

5.3.3 Comparison with experimental data

In this section, we present the novel validation approach, which is one of the contributions
of this thesis. The main idea of this approach is based on the generation of new constraints
from the experimental data for which it is necessary to have at least one experimental
dataset. This approach is used to validate the SA sub-model v3.0 by using one publicly
available experimental dataset. We start this section by describing the dataset, then we
propose the new method and we conclude with the evaluation results.

Dataset

A dataset used for the validation of the SA sub-model v3.0 is published as Supplementary
Table S2 in the study of (Yang et al., 2007). This study reveals the spatial and tempo-
ral behaviour of the Arabidopsis thaliana in response to three different inoculation types:
Turnip mosaic virus (TuMV), Oilseed rape mosaic vorus (ORMV) and mechanical inocula-
tion (mock) over a 10-day time course. One of their goals was the induction of defence-related
genes, where the set of 388 preselected genes was used due to the large number of samples.
To examine the reaction to stress in systemic tissues, 25 Arabidopsis thaliana plants were
used for each inoculation type (TuMV, ORMV and mock) and each of these plants had
four fully developed rosette leaves inoculated. Samples were collected from five plants at
each of 2, 3, 5, 7 and 10th day after inoculation of each inoculation type. The data col-
lection process was reproduced three more times with different sets of plants. There were
144 samples analysed in total (three replications x three inoculation types x 16 time-tissue
combinations). All 16 time-tissue combinations that were sampled are shown in Table 9.
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Table 9: Sample types used in the study of (Yang et al., 2007) to investigate Arabidopsis thaliana
responses to TuMV and ORMV. The ”...” in the table denotes no data collected on the particular
day, while ”x” denotes successfully collected sample on the particular day.

Tissue
Days after inoculation
2 3 5 7 10

Inoculated leaf x x x x x

Systemic rosette leaf ... x x x x

Cauline leaf ... x x x

Flowers ... x x x x

We have used the time-series data only for inoculated leaves. For inoculated leaves,
there were samples for 5 days for three replications (see Table 9), which were averaged per
replication. The averaged data were then normalised according to the standard procedure
for the microarray data.

The goal of normalisation of expression microarrays is a compensation for systematic
technical differences between chips which allows for a clearer view of systematic biological
differences between samples. The reason for applying normalisation is to avoid the technical
variations between experimental conditions which are entirely unrelated to the differences
that biologists search for. The basic assumption which allows normalisation of microarray
data is that only a few hundred genes (out of tens of thousands) are expressed at different
levels between several samples. A more specific assumption is that microarray measures
should not be correlated with technical characteristics of probes. This implies that, according
to our assumption, biological changes would be independent of technical characteristics of
expression probes.

The starting assumption of most statistical approaches to normalizing expression levels
is that the overall distribution of RNA levels does not change significantly between samples
or across the conditions which seems reasonable for most laboratory treatments. The crucial
decision researchers must make, with consequences for normalization, is on what scale to
analyse their data. It is common to transform to a logarithmic (usually base 2) scale in
order to make variation comparable among measures which extend over several orders of
magnitude. Usually this kind of normalisation is enough, however, such conversion can
increase also low intensity probes compared to the rest. Especially when a measure can be
reported as zero, the logarithm is not defined. A simple solution is to add a small constant
to the measures before taking the logarithm. In our work we have normalised data by
transforming them to a logarithmic scale with base 2 without adding a small constant, since
the measures were not reported as zero. Moreover, we have divided the expression values for
the TuMV and ORMV virus with the expression values for mock innoculation to preserve
only effects of these two viruses. Out of expressions of 388 genes, we have selected the ones
that are in the SA v3.0 sub-model, which is 7 genes in total. The curves of time-series of
the selected components processed in the way described above are shown in Figure 32 for
TuMV and in Figure 33 for ORMV inoculation type.
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Figure 32: Processed and normalised microarray expression dataset for TuMV inoculation type for
7 components of the SA v3.0 sub-model.

Figure 33: Processed and normalised microarray expression dataset for ORMV inoculation type for
7 components of the SA v3.0 sub-model.
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The validation method and validation results

The curves of Figures 32 and 33 were used as a base for our validation method. From
Figure 32 addressing the problem of inoculation with TuMV, the following constraints were
generated based on the experts’ opinion. The consultance with the domain experts resulted
in several additional variants of constraint types, such as obtained minimum at the same
time between component1 and component2 (minSameTime(component1, component2)) or
at the same time obtained maximum of component1 while the component2 is in its minimum
value (maxminSameTime(component1, component2)). To the following constraint set we
refer as the evaluation set for TuMV:

minSameTime(PAD3/4,EDS5),
minSameTime(EDS5,PR1/2/5) and
maxminSameTime(EDS1,NPR1).

The constraints related to the inoculation with the ORMV and based on the curve shapes
of Figure 33, are as follows:

minSameTime(PAD3/4,EDS5),
minAfter(EDS5,PR1/2/5),
maxAfter(NPR1,EDS1),
zeroPeakZero(NPR1),
maxminSameTime(NPR1,e.DS5) and
maxminSameTime(EDS1,PR1/2/5).
To this constraint set we refer to as the evaluation set for ORMV. Based on these two

evaluation constraint sets (for TuMV and ORMV), we have evaluated the SA v3.0 sub-model
whose parameters were obtained through a combinatorial optimisation process guided by
the set of validation constraints (experts’ knowledge).

Table 10 represents the results of the validation method for the SA sub-model v3.0 where
the best 10 optimisation results guided with the evaluation constraint set were evaluated
(compared) with the experimental data for TuMV and ORMV inoculation.

Table 10: The results of the validation method based on the generation of constraints from the
experimental datasets. The best 10 optimisation results guided with the evaluation constraint set
are sorted in the second column starting from the best solution. The results of the second column are
evaluated (compared) with the experimental data for TuMV (third column) and ORMV inoculation
(forth column).

Final criterion for Final criterion for Final criterion for

Nm. training evaluation evaluation

constraint set constraint set for TuMV constraint set for ORMV

1 0.043 0 0.095

2 0.044 0 0.05

3 0.045 0 0.002

4 0.046 0.316 0.158

5 0.053 0 0.071

6 0.065 0.316 0.158

7 0.0679 0 0.012

8 0.0681 0 0.012

9 0.0682 0.316 0.158

10 0.071 0 0.005

Generally, the PDS model structure is built for any kind of virus attack, which allows
model validation with different experimental datasets. However, we observe in Table 10 that
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the validation results of our SA v3.0 sub-model are different (different final criterion) when
compared to TuMV and ORMV inoculation data. The main reason for this is the number
of constraints in two evaluation constraint sets. When the number of constraints grows, the
parameter search space becomes more and more narrow making the probability higher that
some of these constraints will be violated to some extent. Also, there might be some small
difference between plant defence reaction when TuMV and ORMV inoculation occurs. This
would mean that some of the constraints in the constraint sets are contradictory. Further
exploration of the constraint sets might reveal some interesting differences between the plant
reactions to different viruses. The process of detecting contradictory links could be manual
and automatic. The automatic system for detecting incompatible constraints will make the
exploration of the validation results more efficient.



73

6 Model Structure Revision

But what... is it good for?
IBM executive Robert Lloyd, remarking on the

microchip in 1968, the heart of today’s computers.

The process of fusing expert knowledge and manually acquired information from the lit-
erature to build the PDS model structure turns out to be time-consuming. However, this
manual process can be enhanced by automated methods of relation extraction from litera-
ture, which are recently popular in systems biology. The most common relation extraction
methods from texts are based on natural language processing techniques. Ideally, the out-
put of such relation extraction methods is a graph of biological components and relations
between them.

This chapter is organised as follows. We present the developed Bio3graph tool that
searches the biological literature for the relations between the biological components and
outputs a graph of triplets in the form (component1, relation, component2). The power
of the extracted triplets in modelling expert knowledge is demonstrated on the example of
modelling knowledge of two domain experts. Moreover, the triplets, extracted by Bio3graph
from a broader set of biological articles, are compared with the manually developed PDS
model structure presented in Chapter 4 resulting in new, additional relations.

6.1 Bio3graph methodology

Manual construction of the PDS model structure is a time-consuming process, since only
a limited amount of data is gathered in the available biological databases. The study of a
large body of literature is therefore necessary in order to build a PDS network structure
according to the most recent findings. The proposed Bio3graph methodology was developed
with the purpose of automated information extraction from biological literature, aimed at
complementing the manually developed PDS model structure.

An integral part of this methodology is a domain specific vocabulary that is composed of
two parts: a list of components and a list of reactions together with their synonyms. The ba-
sis for the vocabulary was the list of 175 components and three reaction types defined when
building the manual PDS model structure (see Figure 14). The components vocabulary con-
sists of their short names, gene identifiers and synonyms, as annotated in TAIR (Swarbreck
et al., 2008) and iHOP (Hoffmann and Valencia, 2004). As several components included in
the manual PDS model structure are still not fully identified, they were labelled as X in the
PDS model structure and were not included in the vocabulary. Moreover, in some cases, one
biological component is represented with two nodes due to its compartmentalisation within
the cell. For example, as SA accumulates in both the chloroplast and the cytosol, the node
SA of the manually developed model, which stands for SA in cytosol and node SA-chl which
stands for SA in chloroplast, are represented by the same component SA. In addition, most
of the complexes were not included in the vocabulary except for the SCF complex. Conse-
quently, the list of 153 biological components in the vocabulary (Section B.1 of Appendix B)
contains fewer components than the vocabulary of 175 components at level 3 of Figure 11.A
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used for manual PDS model structure construction. Furthermore, the vocabulary for the
reaction types was developed, containing synonyms for the three reaction types: activation,
inhibition and binding. Separate lists for each reaction in both the passive and the active
verb form are available in Section B.2 of Appendix B.

The Bio3graph methodology consists of a series of text mining, information extrac-
tion, graph construction and graph visualisation steps, offering reusability, repeatability,
and extension with additional components (Figure 34A). The name of the methodology,
Bio3graph, reflects its main functionality: ’Bio3’ stands for biological triplet extraction and
’graph’ stands for graph construction from the extracted triplets.

• The first (NLP) part of this methodology (referred to as the triplet extraction algo-
rithm below) concerns the extraction of relations in the triplet form (subject, predicate,
object) thus searching for reactions between components as triplets (component1, re-
action, component2) from publicly available biological texts by employing the above
described manually developed vocabulary. Given the list of components, the algo-
rithm detects subject and object, while the predicate represents the relation between
the components as defined in the vocabulary of reaction types. For activation reaction
type, an example triplet is (PAD4, activates, EDS5).

• The second part of this methodology concerns graph construction from the extracted
triplets, and graph visualisation.

The methodology is implemented as a workflow in the Orange4WS (Podpečan et al., 2012)
workflow construction and execution environment (Figure 34B). The input to the Bio3graph
workflow is the collection of biological full text articles, obtained through a user-defined
keyword-based search of the PMC database, accessible at: www.ncbi.nlm.nih.gov/pmc/.
The output of the workflow is a graph of triplets, automatically extracted from the articles.
As an illustration, the graph consisting of all triplets extracted from the literature (consist-
ing of 129 components and 1,132 reactions) is shown in Figure 35. The triplet extraction
algorithm found relations between 129 out of 153 components listed in the vocabulary. If the
Java plug-in for the web browser is installed and enabled, the reader can open and explore
an interactive version of the Figure 351.

For natural language processing we employed functions from the Natural Language
Toolkit (NLTK) library (Bird et al., 2009). Additionally, the GENIA tagger (Tsuruoka
et al., 2005) for biological domains was used to perform part-of-speech tagging and shallow
parsing. The data were extracted from PMC using web service enabled access. Parts of the
Bio3graph methodology, presented in Figure 34, are described in more detail below.

Text pre-processing. Full texts of scientific articles for biology domain are accessible
in the publicly-available databases, such as PMC. Journal articles in the form of raw text
need to be pre-processed. For example, in order to avoid a false detection of ET component
by the algorithm, the phrase ”et al.” was transformed into ”ETAL.”.

Sentence splitting. When the raw text is obtained with the previous module, the
sentences are separated into lines. This step is necessary because the input into the Genia
tagger module requires one sentence per line in the text file.

Tokenization. This is the process of splitting a sentence into words, phrases or other
meaningful elements referred to as tokens. Tokenization is performed with the Genia tok-
enizer (Tsuruoka and Tsujii, 2005). The outputs of the tokenization process are tokens that
are used for POS tagging, i.e., shallow parsing of the sentence.

POS tagging and chunking. Part of speech (POS) tagging is the process of labelling
each word in a sentence as a noun, verb, adjective, adverb, etc. Chunking is the labelling
of the sentences into the syntactically correlated groups of words such as noun phrase (NP)

1http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/

Supplement_file_5.bmg

http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/Supplement_file_5.bmg
http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/Supplement_file_5.bmg
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Figure 34: Overview of the Bio3graph methodology, its implementation and a sample output. A)
Schematic representation of the Bio3graph methodology. Text processing is performed in a workflow
according to the boxes in the schematic diagram resulting in a graph of (component1, reaction,
component2) triplets. B) Bio3graph as a workflow implemented in Orange4WS.
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Figure 35: The triplet graph extracted and composed by Bio3graph. The output graph (consisting
of 129 components and 1,132 reactions) is visualised with the Biomine graph visualisation engine.

and verb phrase (VP). For the purpose of POS tagging and chunking of biological texts we
used the GENIA tagger. The output from the GENIA tagger are the chunks of words, such
as Noun Phrase (NP), Verb Phrase (VP), etc. These output chunk labels are the phrase
levels according to the Bracketing Guidelines for Treebank II Style Penn Treebank Project2.
The sentence labelled with the chunk labels is the input to the triplet extraction module.

Triplet extraction. The aim of the triplet extraction algorithm is to find the triplets
in the form of (subject, predicate, object). If the predicate is in active form, the subject
is the part of the noun phrase (NP) before, and the object is the part of the noun phrase
(NP) after the predicate. The opposite holds for the passive form of the predicate. The
predicate is either one word that belongs to the verb phrase (VP), or it is a multi-word
phrase, partially belonging to the VP. The output from the triplet extractor is the triplet
list together with the sentence from which the triplet was extracted and the article PMC
ID number. Triplet extraction is performed by employing rules with the help of a manually
developed vocabulary of components and reactions.

• Components vocabulary. There is a list of all components of the manually developed
PDS model structure.

• Reactions vocabulary. There are lists of three different types of reactions (activation,
inhibition and binding) together with their synonyms and synonym phrases. For ex-
ample, the activation in Figure 11.B has induces as a synonym, but also the whole
phrase shows increased levels in the presence of.

We have categorised triplet extraction rules into three categories: a rule for one-word pred-
icates, a rule for multi-word predicates and a rule for swap. We briefly describe each of
them.

• One-word predicate rule. This rule deals with the predicate that is only one word, such
as: activates, stimulates, reduces, etc. The algorithm for triplet extraction of this rule
is shown in Figure 36. After the sentence is chunked into chunk tags with the Genia

2See publicly accessible phrase level types at http://bulba.sdsu.edu/jeanette/thesis/PennTags.html.
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tagger, we first compare all VPs with the reactions vocabulary (step 2 in Figure 36).
If at least one match is positive, we define it as a predicate. Next, we search for
the subject and the object in the Noun Phrases before and after the predicate. The
comparison between the NP before the detected VP and the components vocabulary
(step 3 in Figure 36) is performed first. This match provides the subject. Next, the
match is done between the NP, after detected VP, and the components vocabulary
(step 4 in Figure 36). If the match is negative, the matching continues between the
next NPs and the components vocabulary until the next VP in the sentence (step 5
in Figure 36). If the match is positive, the object is detected and the triplet is finally
extracted (step 6 in Figure 36).

• Multi-word predicate rule. This rule addresses the search for triplets when the predi-
cate is a phrase with more words, such as is a positive regulator, is suppressor of, shows
increased accumulation, etc. The subject, the predicate and the object are searched
in a similar way as in the Rule for One-Word Predicate.

• Rule for swap. The places of subject and object are swapped if the predicate is in
the passive form, or if the predicate matches the activation rotate vocabulary file (see
Section B.2 of Appendix B).

Filtering. Filtering of extracted triplets is performed in order to reduce the false neg-
atives. The filtering box removes the triplets from the extracted ones if they belong to any
of the following categories:

• Triplets with the same subject and object, for example: (EDS1, activates, EDS1).

• Triplets that are extracted from ’hypothetical’ sentences, such as: ”It was studied
whether EDS1 protein possibly activates EDS5 gene”. The following set of ’hypothet-
ical’ words was defined: possibly, whether, to determine, to investigate, to study, it
was postulated, it was hypothesized. If these ’hypothetical’ words were detected in
the sentence, the triplet was filtered out. Also, if the words like: may, might, can,
could, would were detected in the VP of the predicate, the sentence is considered
’hypothetical’ and the triplet is filtered out.

• Triplets extracted from the sentences related to mutant plants. A set of ’mutant plants’
words was predefined, such as: plant, mutant, line. If these were detected in the NP
of the subject or object, the triplet was filtered out.

• Too ’general’ triplets. An example is the following sentence: ”The activation of Sal-
icylic acid pathway increases the activity of Jasmonic acid pathway”. Triplet (SA,
activates, JA) would be extracted from this example sentence. However, this triplet
is considered to be too ’general’ since it addresses not only one specific component,
but the whole pathway. For this reason, the set of ’general’ words was also defined
for filtering: pathway, signalling, synthesis, biosynthesis, response, activator, inhibitor
and producer. If some of these ’general’ words were in the same NP of the subject or
the object, the triplet was filtered out.

• Negation triplet. If the VP contains the words not or n’t, the triplet is filtered out.
Note that processing of ’contradictory triplets’ is done by filtering out these negation
words.

Graph construction and visualisation. Triplets T = {(subject, predicate, object),
where sub ject, ob ject ∈Components, predicate∈ Reactions} obtained from the manual model
or through Bio3graph are used to construct an edge-labelled directed graph G = (V, A),
where the set of vertices V is the set of all Components, and the set of arcs A is a set of all
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Figure 36: Illustration of the triplet extraction process. We show a part of the flow from input of
POS tagging box from Figure 34 until output of triplet extraction box of the same figure. The input
to the Genia POS tagger is a previously pre-processed sentence. After the shallow parsing with
Genia POS tagger, the algorithm performs the step 2. The final output from the triplet extraction
part of Bio3graph approach is a triplet in the form (subject, predicate, object) which will be then
transformed and visualised as an edge-labelled graph with the Biomine visualiser.
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Reactions. The weights are not assigned to arcs but in general weights can be used to reflect
the reliability of the extracted triplet. Note that the graph is not necessarily connected and
it does not contain any isolated vertices.

Since the extracted structure can contain a very large number of vertices and many
unconnected components, it is important to use scalable graph visualisation methods, e.g.,
Barnes Hut n-body simulation (Barnes and Hut, 1986). We have employed a freely available
platform independent graph visualisation component provided by the Biomine system (Ero-
nen and Toivonnen, 2012) which implements a variant of the force-directed layouting al-
gorithm, and allows for the visualisation and interactive exploration of reasonably large
graphs. For example, a picture of a triplet graph consisting of 175 vertices and 524 edges as
drawn by the Biomine visualisation engine is shown in Figure 39.A.

6.2 Bio3graph implementation and workflow availability

This section discusses the implementation of the Bio3graph methodology and the availability
of the Bio3graph tool. We have implemented the Bio3graph methodology in a general frame-
work which is modular and extensible, and provides functionalities at three different levels
of generality. The first level provides classes for core data structures such as Corpus, Docu-
ment, and Triplet, and the related low-level language processing functions such as sentence
splitting, tokenization, tagging, and parsing. The second level contains the triplet extraction
algorithm, its custom vocabulary data structure, and various utility functions some of which
are algorithm-specific. The third level provides post-processing such as normalization and
filtering, and exporting of the results as text, XML, graph and other formats.

Our framework is implemented using the Python programming language, and relies on
the publicly available Natural Language Toolkit (NLTK) (Bird et al., 2009) software for
natural language processing, and the GENIA tagger (Tsuruoka et al., 2005). NLTK is a
native Python suite of libraries and programs for natural language processing while the GE-
NIA tagger provides part-of-speech tagging, shallow parsing, and named entity recognition
for biomedical texts. In order to enable access to the GENIA tagger from the Python lan-
guage environment we implemented a wrapper which turns the standalone tagger program
into a Python library, thus allowing an easy integration with the rest of the framework. In
addition, our framework also integrates the Biomine tool (Eronen and Toivonnen, 2012) for
graph construction and visualisation, which enables interactive graph visualization including
zoom-in and zoom-out, as well as the relocation of the graph vertices and arcs.

In the triplet extraction workflow, the NLTK library provides sentence splitting (Kiss
and Strunk, 2006) while the GENIA tagger is used for tokenization, POS tagging and shal-
low parsing (chunking) thus forming the backbone of our implementation. Because of the
modular structure, the existing software libraries performing various language processing
steps can be easily integrated.

In order to provide an easy, system and software independent access to our triplet extrac-
tion tool, we have developed a collection of web services that expose the relevant functions
of the framework. These services were implemented using the Orange4WS (Podpečan et al.,
2012) server tools as stateless SOAP web services. Currently, the web service description
document (WSDL) and its related XML schema define three data structures (document, dic-
tionary and triplet) and nine functions: create document, create dictionary, split sentences,
parse sentences, extract triplets, normalize triplets, construct triplet graph, triplets to XML
and triplets to text.

The Bio3graph workflow, shown in Figure 34.B, works as follows. First, a dictionary
is created by calling the create dictionary function which builds the dictionary structure
according to the XML schema from the provided text files specifying the reactions and the
components. Then, each loaded document is sent to the triplet extraction workflow. It con-
sists of the following parts: creation of the document structure from raw text data, sentence
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Table 11: Recall and precision analysis for 50 full-length papers. Recall = TP/ (TP + TN) and
Precision = TP/ (TP + FP), where TP are the true positives, TN the true negatives, and FP the
false positives. Recall is the percentage of the retrieved true positive relations from the whole set of
true relations. Precision is the percentage of retrieved true positive relations from the whole set of
retrieved relations.

Reaction types TP TP+TN TP+FN Precision (%) Recall (%)

Activation 142 223 311 45.7 63.7

Binding 47 80 134 35.1 58.8

Inhibition 6 9 13 46.2 66.7

All reactions 195 312 458 42.6 62.3

splitting, shallow sentence parsing, triplet extraction algorithm and triplet normalization
(removal of duplicates, change of order in the case of passive predicate, and base word for-
matting). The resulting list of triplets is then saved into a text and XML file, transformed
into a graph by Biomine and finally visualised in the Biomine interactive graph visualiser.
Note, however, that the triplet extraction workflow is enclosed between the emitor and col-
lector components, provided by Orange4WS, which enable simple, unconditional iterations.
The emitor component emits elements of the input iterable object, one at a time, while the
collector collects the incoming elements into a list. This allows for extracting triplets not
only from a single document but from the whole corpus. The Bio3graph tool is publicly
available at http://ropot.ijs.si/bio3graph/.

6.3 Evaluation of the Bio3graph results

The performance of Bio3graph was evaluated on a corpus of 50 full length articles with
manually annotated correct triplets. The performance of information extraction is evaluated
by calculating the precision and recall as follows: Recall = TP/(TP+TN) and Precision =
TP/(TP+FP), where TP are the true positives (the number of triplets correctly extracted
by Bio3graph), TN are true negatives, FP are false positives, TP+TN is the number of
manually identified correct triplets, and TP+FP is the number of triplets extracted by
Bio3graph regardless if they are correct or not. The results achieved by Bio3graph on the
annotated corpus are presented in Table 11 showing average precision of 42.6 % and recall of
62.3 %. The annotated texts, the simplified vocabulary, together with the Bio3graph results
and a detailed summary for each of the 50 papers are available at: http://ropot.ijs.si/
bio3graph/.

Several systems for automated information extraction have already been developed re-
porting remarkable precision and recall results. Most of them extract the protein-protein
interactions from text abstracts or from a filtered text corpus, where only sentences with
keywords were considered. For example, the Chilibot system reports a precision from 74.4
% for inhibitory relations to 79.1 % for the general protein-protein interaction, with a recall
of 91.2 %. Suiseki has a recall of 70 % with the accuracy around 80 % for the best defined
reactions. The methodology developed by (Ono et al., 2001) extracted protein-protein inter-
actions for yeast organism with the precision range from 90.2 % for the ’associate’ relation
up to 96.1 % for the relation ’interact’ and the recall for the same organism in the range
from 80.9 % for the ’associate’ relation up to 89.1 % for the ’interact’ relation. In the same
study, the recall for extracting a protein-protein interaction in E. coli organism ranges from
77.3 % for the ’associate’ relation to 85.2 % for the ’complex’ relation.

The full-length papers have generally a more complex sentence structures than the ab-
stracts. Therefore, when processing full texts, both the precision and the recall are lower
than in abstract-based relation extraction systems. The only system to which we were able

http://ropot.ijs.si/bio3graph/
http://ropot.ijs.si/bio3graph/
http://ropot.ijs.si/bio3graph/


Model Structure Revision 81

to compare Bio3graph was BioRAT. The BioRAT system achieved a precision of 51.25 %
and a recall of 43.6 %. The average precision of our system is 42.6 % which is lower than
the precision of BioRAT. On the other hand, recall of Bio3graph is 62.3 % which is almost
20 % higher than the recall of the BioRAT system. Since Bio3graph was validated on the
whole articles and not only the abstracts, we were satisfied with a recall of 62.3 %.

In Bio3graph we chose to achieve higher recall at the cost of lower precision, given that
the aim of developing Bio3graph was to add to the manually constructed structure the
interactions that were missed when manually gathering the information. This means that
when used in a real setting, this requires manual reviewing of more false positive triplets,
instead of losing some information. As a remark, 62.3 % recall does not necessarily mean
that we have not detected 37.7 % of the interactions, given that the interactions between
components are often mentioned more than once in a single paper (in the abstract, results
and discussion). It is very likely that if we did not extract some triplet from one part of the
article, we may still find it in the other parts of the article.

The analysis of non-detected triplets shows that Bio3graph does not cover some sen-
tence constructions. One of these constructions is: ”EDS1 protein activates not only EDS5,
but also activates SA”. In this sentence, there are two triplets (EDS1, activates, EDS5)
and (EDS1, activates, SA). However, if, for example, EDS1 is not in the vocabulary of
components, and the other two components EDS5 and SA are in the vocabulary, then the
algorithm would find the following triplet (EDS5, activates, SA), which is a false positive.

We have noticed that some triplets were not detected due to incorrect sentence parsing
by the GENIA tagger. For example, in the sentence ”Expression of NPR1 and defence genes
was induced by harpin to higher levels, while only MeJA activated COI1.” the triplet (MeJA,
activates, COI1) cannot be extracted, because the word ”activated” was labelled as a noun
phrase instead as a verb phrase.

6.4 Modelling knowledge of domain experts

The subsection explores the automated relation extraction by Bio3graph in a bisociative
setting. Bisociation can be defined as concepts that bridge two, not very connected, domains
where an association bridges concepts within a given domain. In other words, bisociation
enables discovery of new connections between domains. In this subsection, the emphasis is
not on creative knowledge discovery, but rather on specifying and crossing the boundaries
of knowledge of individual scientists. This could be used to model the expertise of virtual
scientific consortia.

The goal of this experiment is to elicit differences in knowledge and interests between
different scientists. We take a simplifying assumption that each scientists’ knowledge cor-
responds to a set of papers she read. The extracted triplets and subgraph thus model her
subjective, habitual knowledge (Dubitzky et al., 2012). By combining subjective knowledge
bases we obtain a joint bisociative graph (BisoNet) where the intersecting subgraph repre-
sents a bridging graph pattern of bisociation. In particular, Bio3graph was used to extract
triplets from a set of 122 documents, read by two biology experts:

Reader A: Reader A (coloured dark grey) has read 91 papers, of which 13 unique triplets
were extracted automatically.

Reader B: Reader B (coloured medium grey) has read 31 papers, of which 21 unique
triplets were extracted automatically.

Intersections: Eight common triplets, extracted from 91 publications read by reader A
and from 31 publications read by reader B, were coloured in light grey colour.

Figure 37 shows the model extracted from 122 articles read by the two readers (two bio-
logical scientists). Besides supporting the automatic model construction, there are other
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benefits from visualising knowledge of different domain experts as illustrated in Figure 5.
For instance, one can clearly see which nodes are in the intersection of interest of the two
experts (coloured light grey in Figure 5).

This could indicate the areas of joint interest which the two experts might want to inves-
tigate jointly in more detail, e.g., to get answers to some yet unexplored research question
in the intersection of their domains of expertise. On the other hand, this visualisation en-
ables to see also who has some unique expertise in the field, with no intersection with other
experts (coloured dark and medium grey in Figure 5). If applied to modelling the knowl-
edge of larger consortia of readers, this type of information could be used to determine the
complementaries of research groups.

The proposed approach to modelling and visualisation of knowledge extracted from the
literature could be used also for modelling the know-how of large project consortia where it is
hard to track the expertise of all project participants. Consequently, the proposed approach
to cross-context modelling may be viewed as a step towards creating virtual laboratory
knowledge models.

6.5 PDS model structure extracted by Bio3graph from bio-
logical literature

Using the following set of keywords: ”Arabidopsis thaliana” AND ”defence” OR ”defense”
OR ”ethylene” OR ”jasmonate” OR ”jasmonic acid” OR ”salicylate” OR ”salicylic acid” OR
”pathogen” OR ”virus”, 9,586 relevant PMC articles were retrieved on April 4, 2011. PMC
database was used as it enabled us to gather freely available full text articles and not only
their abstracts. These articles were taken as a ground information corpus from which the
triplets were extracted. Keywords were selected to obtain the most of the PDS related
literature with the emphasis on the JA, ET and SA signalling pathways. Since PMC is a
medically oriented database and does not cover some of plant sciences related journals, it is
possible that some PDS related articles were not retrieved. Nevertheless, PMC represents
the largest source of full text scientific papers and is therefore a relevant basis for our work.

The result of using the Bio3graph triplet extraction algorithm is a set of 1,132 unique
triplets, identified from the total of 4,204 extracted triplets. To evaluate the correctness
of the extracted triplets, we have manually inspected the sentences from which the triplets
were extracted. Since some of the 1,132 triplets appear in several sentences, we have defined
the term correct triplet in the following way: If the triplet is a true positive in at least one
sentence of the whole text corpus, it is considered to be a correct triplet. The reader can
open and explore an interactive graph, consisting of 377 correct triplets, if the Java plug-in
for the web browser has been installed and enabled3.

Most of the relations found by the triplet extraction algorithm are the ones related to
activation (out of 1,132 unique triplets in total, 736 are the activation reactions between
the components). There are fewer inhibition relations and very few relations of binding
type. We have already identified most of these relations when manually constructing the
PDS model structure, while some of them are new. Some of the extracted triplets represent
direct interactions between the components (i.e., relations between direct neighbours in the
graph), while others are indirect (i.e., paths composed of a set of direct relations). A direct
interaction is defined as the transduction of the signal between two components without an
additional in-between component. For example, the binding of ET to its receptor ETR1 is a
direct interaction while the activation of ERF proteins by ET through a signalling cascade
is defined as an indirect interaction.

3http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/

Supplement_file_7.bmg

http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/Supplement_file_7.bmg
http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/Supplement_file_7.bmg
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Figure 37: A model of experts’ knowledge constructed from a set of triplets extracted from 122
documents, read by two different readers and displayed using the Biomine graph visualisation engine.
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Figure 38: New direct PDS relations extracted from the biological literature. The new direct links
result from the Bio3graph processing of 9,586 articles. Bio3graph extracted 14 new direct rela-
tions between the components which were not identified in the manually built PDS model struc-
ture. Note that two of these triplets are trivial (SAG metabolite, activates, SA metabolite) and
(NIMIN1 protein, inhibits, NPR1 protein).

Table 12 gives a summary of the automatically extracted relations between the biolog-
ical components, emphasizing the numbers of newly discovered direct links (last column of
Table 12) discovered by the Bio3graph triplet extraction algorithm. Details of the eval-
uation for each extracted triplet are provided at http://ropot.ijs.si/bio3graph. The
obtained new direct links are visualised in Figure 38, while all the correct new (direct and
indirect) links discovered by the triplet extraction algorithm are available in Section B.3 of
Appendix B. The reader can open and explore an interactive graph, consisting of all the
correct new links, (direct and indirect), if Java plug-in for the web browser has been installed
and enabled4.

Each of the subclasses of correct triplets has its own significance with respect to the
PDS model structure. With correct manual direct links we confirmed the applicability of
the Bio3graph approach. More importantly, reactions which have not been identified when
building the manual PDS model structure (i.e., new direct and indirect links), extend our
knowledge on the topic and are therefore of high importance. Indirect relations serve as a
database of signal transduction knowledge. Depending on the experimental setup in which
these interactions were observed, some of the relations can be redundant. In a biological
experiment, a hormone can be applied to the plant in order to investigate its effect on the
genes of interest. For example, JA can be applied (in the form of MeJA) to the plant and
the expression of lipoxygenase (LOX) or oxide synthase (AOS) genes can be monitored in

4http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/

Supplement_file_9.bmg

http://ropot.ijs.si/bio3graph
http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/Supplement_file_9.bmg
http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/Supplement_file_9.bmg
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Table 12: Summary of PDS related triplets extracted by the Bio3graph triplet extraction algorithm
from 9,586 PMC articles. In total, 1,132 triplets were extracted, out of which 377 are correct. Out of
these, 14 are newly discovered direct relations and 123 are indirect, while 44 direct and 196 indirect
connections were already included in the manual PDS model structure of Figure 14.

Reaction
types

Total
triplets

Incorrect
triplets

Correct
triplets

Manual
indirect

links

Manual
direct
links

New
indirect

links

New
direct
links

Activation 736 446 290 158 41 86 5

Inhibition 352 289 63 18 1 37 7

Binding 44 20 24 20 2 0 2

All
reactions

1,132 755 377 196 44 123 14

comparison with the plants that have not been pretreated. If both genes show equal increase
in the gene expression level, two triplets (JA, activates, LOX) and (JA, activates, AOS)
are somewhat redundant. If AOS is also activated by LOX, increased level of AOS can be
due to the JA-induced activation of LOX and not necessarily due to its activation by JA.
In this case, more detailed manual inspection and biological validation has to be performed
prior to the incorporation of the links into the PDS model and its simulation.

Using Bio3graph we discovered 14 new direct links, out of which two were known to
the biological experts but not included in the manual model as we limited ourselves to the
most important elements of PDS when building the manual model ((SAG metabolite, acti-
vates, SA metabolite) and (NIMIN1 protein, inhibits, NPR1 protein)). In the former, only
the inverse reaction was included, i.e., (SA metabolite, activates, SAG metabolite), while in
the latter, the interaction in the manual model was specified as binding instead of inhibi-
tion, which has the same biological function (diminishing the concentration of active NPR1
through binding to NIMIN1). An interesting result is also the identification of components
connected with two relations, from which one is a subset of the other. This is the case
of ETHYLENE INSENSITIVE 3 (EIN3) and ISOCHORISMATE SYNTHASE 1 (ICS1),
where the components are connected with two relations: binding (B) and inhibition (I)
(Figure 38). Biologically, this is interpreted as binding of EIN3 to ICS1 causes its inacti-
vation. Biological relevance of the most interesting new direct links is investigated in more
detail below.

EIN3 and ETHYLENE INSENSITIVE 3-LIKE1 (EIL1) have been mostly studied as
regulators of the ET signalling pathway. In addition to the involvement in the signal trans-
duction of ET-mediated response, Bio3Graph search identified that EIN3 and EIL1 are
negative regulators of ICS1. In the paper from which these triplets were extracted it was
indeed shown that these two transcription factors inhibit gene expression of ICS1, which is
one of the crucial enzymes involved in the SA biosynthesis. The reduction of SA biosyn-
thesis results in a repression SA-mediated signal transduction which is highly-induced upon
a pathogen attack (Chen et al., 2009). This study was performed on Arabidopsis plants
infected with P. syringae bacteria. We did not consider this relation when manually build-
ing the signalling model structure, as such links between hormone signalling modules are
especially difficult for researchers to explicate. Due to automated knowledge extraction,
such new ’out of the box’ thinking results in the discovery of additional knowledge.

Another set of new relations identified by Bio3Graph was related to the WRKY family
of transcription factors and Mitogen-activated protein kinases (MAPKs or MPKs). Both
are relatively large gene families with very specific functions of individual family members.
Therefore, they represent a substantial challenge in manual PDS model structure construc-
tion and the information related to PDS was overlooked by the biology experts. Indeed,
Bio3Graph identified several missing relations. WRKY70 is known to repress the ISO-



86 Model Structure Revision

CHORISMATE SYNTHASE 1, SID2 (also known as ICS1) transcription, although detailed
inspection of the manuscript showed that it is still not clear whether it directly binds to
the SID2 promoter or not (Chen et al., 2009). The WRKY70 transcription factor also sup-
presses the MeJA-induced expression of PDF1.2 (Li et al., 2004) showing its importance in a
cross-pathway communication. MAPKs are signal transduction components which play an
important role in plant responses to biotic stress. Their performance is cascade-mediated via
a complex phosphorelay mechanism. MPK3, MPK4 and MPK6 are the best characterized
MAPKs in Arabidopsis (Pitzschke et al., 2009; Olmedo et al., 2006) and, were thus incor-
porated in the PDS model structure. With Bio3graph a new relation was identified in the
literature. A modelling approach has suggested an activation reaction between EIN3 and
MPK6 (Sato et al., 2010). In addition, wet-lab experiments have shown that both MPK3
and MPK6 stabilize EIN3 through phosphorylation of threonine 174 (Kendrick and Chang,
2008). MPK3 and MPK6 are therefore both positive regulators of EIN3.

Another interesting new relation identified by Bio3Graph is the inhibition of AAO4 by
Cu2+. Ibdah et al. (Ibdah et al., 2009) have shown that the high concentration of Cu2+
reduces the enzymatic activity of AAO4 for 95”%”. This fine-tuned activation of AAO4
activity is also an additional reaction revealed by our PDS model structure that could be
essential in further kinetic studies.

6.6 The merged PDS model structure

The manual PDS model structure and the new triplets extracted from the literature were
merged into a single graph consisting of 175 components and 524 reactions. This graph,
visualised with the Biomine visualisation engine, is shown in Figure 39A. The merged PDS
model structure is available for interactive inspection in Section B.4 of Appendix B. The
reader can open and explore an interactive version of the Figure 39A, provided that the Java
plug-in for the web browser has been installed and enabled5. Bio3graph found 44 direct re-
lations from a total of 387 from the manually built PDS model structure (Figure 39B). A
reason for this relatively low overlap is that Bio3graph does not process tables or figure
images, out of which the information for the manual PDS model structure was also con-
structed. Moreover, as Bio3graph processes only one sentence at a time, it does not deal
with co-reference. Considering co-reference, which could have further improved the results
of triplet extraction, is a possible direction of our further research.

The merged PDS model structure thus represents a faithful representation of current
knowledge on a structure of PDS with the emphasis on plant-virus interaction. More specif-
ically, we have chosen to base our model on resistant interaction between Arabidopsis and
virus TCV. In Arabidopsis, the resistance to TCV is mediated by the R protein HRT (Ib-
dah et al., 2009), which subsequently induces the signalling cascade leading to plant defence
which limits viral spread and multiplication. Activation of HRT protein stimulates accumu-
lation of SA (Chandra-Shekara et al., 2004). SA in Arabidopsis thaliana is synthesized via
two pathways both requiring chorismate as a substrate. One pathway goes through a subset
of enzymatic reactions initially catalysed by phenylalanine ammonia lyase (PAL) and its
homologues (PAL 1,2,3,4). Most of the SA is however synthesized via reaction, catalysed
by isochorismate synthase (ICS) and isochorismate pyruvate lyase (IPL) (Vlot et al., 2009;
Wildermuth et al., 2001). Arabidopsis encodes two ICS enzymes, ICS1 and ICS2 (Vlot et
al., 2009; Dempsey et al., 2011). SA accumulation results in the monomerization and the
activation of NPR1, which consequently triggers the activation of the SA dependant PR
proteins (Maier et al., 2011; Fu et al., 2012; Moore et al., 2011).

SA signalling is fine-tuned with negative and positive feedback loops. A negative feed-
back loop slows down a signalling process, while the positive feedback loop has a tendency

5http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/

Supplement_file_10.bmg

http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/Supplement_file_10.bmg
http://ropot.ijs.si/bio3graph/prepareVisualization.php?file=media/supplement/models/Supplement_file_10.bmg
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Figure 39: The final PDS model structure constructed by merging the manual and the Bio3graph
graph. A) Edge-labelled graph representing the merged model. B) The Venn diagram. The relations
in the manual model are all direct and are coloured in red. The intersection between the model
relations and the correct triplets extracted from the literature is presented with black colour. From
the correct new triplets, the indirect relations are represented with green and the direct ones with
blue colour. C) Zoom-in into a part of the merged PDS structure. The links from the manual model
are shown in red, while the green coloured relations represent the extracted new indirect links, blue
arcs show new direct links and the black arcs show the intersection between the manual model and
the correct triplets extracted with Bio3graph.
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to accelerate it. The final cascade product regulates its own concentration by activating
or inhibiting the genes involved in its biosynthesis. NPR1 inhibits the expression of PAD4
and EDS1 (Shah, 2003), two genes involved in the production of SA and consequently,
diminishing its own production, thus forming a negative feedback loop.

The main biosynthetic pathway for JA is oxylipin pathway, linolenic acid being a sub-
strate for JA biosynthesis (Staswick, 2008). JA can be derivatised to different amino acid
conjugates. Jasmonyl-isoleucine (JA-Ile) is the conjugate whose biological activity has been
proven (Staswick and Tiryaki, 2004). In the presence of JA-Ile, the SCF complex, com-
posed of a SKP1 (S-phase kinase-associated protein 1), cullin, and a RING finger protein
(RBX1/HRT1/ROC1), binds to F-box protein Coronatine insensitive1 (COI1). SCFCOI1
ubiquitine ligase binds to JAZ and presumably ubiquitinases it (Staswick, 2008; Gfeller et
al., 2010; Devoto and Turner, 2005; Chini et al., 2007). When ubiquitinated JAZ repres-
sors are targeted for degradation in 26S proteasome, they result in the de-repression of the
transcription factors such as the MYC2 and other beta helix-loop-helix transcription fac-
tors (Fernández-Calvo et al., 2011) which activate JA-dependant PR gene expression (Moore
et al., 2011).

L-methionine is transformed by S-adenosyl-L-methionine (SAM), 1-amino-cyclopropane-
1-carboxylate synthase (ACS) and ACC oxidase (ACO), to form a gaseous hormone ET
(Wang et al., 2002). When synthesized, ET binds to its receptors. There are five membrane-
located receptors identified in Arabidopsis (ETR1, ETR2, EIN4, ERS1 and ERS2) (Kendrick
and Chang, 2008; Zhao and Guo, 2011). Binding of ET to its receptor leads to CTR1
deactivation, which finally results in downstream activation of EIN3/EIL1/EIL2 transcrip-
tion factors (Kendrick and Chang, 2008; Stepanova and Alonso, 2005). CTR1 levels are
also regulated by ubiquitination and 26S proteasome degradation via EBF1/ EBF2 - Skp-
Cullin-F-box (SCF) E3 ligase complex (Zhao and Guo, 2011). The concentration has to be
well regulated, since they are the crucial positive regulators of ET signalling.

SA, JA and ET pathways do not function independently, but are rather interconnected
by agonistic and antagonistic interactions to fine-tune the plant defence. These regula-
tions are very complex and often more than one component is involved in the signal trans-
duction (Wang et al., 2002; Koornneef and Pieterse, 2008; Pieterse et al., 2001). When
Bio3graph was applied to enhance the manually built PDS model structure, most of the
newly-found relations were characterized as ’indirect’. Most of them indicate a cross-talk
between the sub-pathways or a feed-back regulation of the crucial components in the model.
However, some new Bio3graph links are direct. A cross-talk link connects ET and SA
sub-pathways: MPK3 and MPK6 activate ET signalling pathway transcription factor EIN3
which negatively regulates SA biosynthesis through binding to ICS1 (Figure 38). Using
dynamic modelling approaches, the SA concentration changes can be simulated in different
model topologies. If we consider only the manually built model, only NPR1 and MPK4
negatively affect the SA concentration. Removing these two proteins from the model by
in silico knock-out results in an infinite rise of SA. We assume that in a real biological ex-
periment with NPR1/MPK4 double mutant, the SA levels would drop thus implying the
other negative regulators of SA biosynthesis are involved. Adding the cross-talk link with
ET sub-pathway found by Bio3graph could improve the model to more accurately predict
SA concentration changes in such knock-out plants.

Bio3graph is used also for extracting detailed information about certain protein family.
Several enzymes that are members of the same family can be involved in one biological
reaction. For example, according to AraCyc there are five ACC oxidases (ACO1, ACO2,
ACO4, ACO and ACO-like) catalysing the last step of biosynthesis of ET (Mueller et al.,
2003). Evidence for their 1-amino-cyclopropane-1-carboxylic acid oxidase activity can be
obtained either from the experimental data or from a computational prediction, which is
usually sequence-based. With Bio3graph we were able to extract the data for each of the
family members, compare the experiments and evaluate their importance for the model. In



Model Structure Revision 89

Figure 39.C, one can see that Bio3graph identified all ACO family members, apart from the
ACO-like, activating ET production. When manually checking the papers we established
which relations represent biochemical knowledge and which interactions rely only on se-
quence homology data. Such detailed information can be used in further dynamic modelling
experiments.

As shown in Figure 39.C, five proteins belonging to ACO protein family have manually
assigned activation links in our model. Triplet extraction tool Bio3graph has confirmed four
out of five activation links. The activation link between the ACO-like and ET originates
from the manual construction process of the structure (after expanding from level 2 to
level 3 - see Figure 11.A) and has not been confirmed by Bio3graph. ACO-like therefore
either has a different function than other members of this protein family or it was not
explicitly determined as ET biosynthetic enzyme in the literature surveyed by Bio3graph.
To determine the real function of ACO-like biological experiments should be conducted using
methods that reduce or increase the expression of genes encoding ACO-like. For example,
reducing ET concentration in Arabidopsis knock-out plants would confirm the involvement
of ACO-like in ET biosynthesis.

Indirect links found by Bio3graph can also guide researchers to form new hypotheses
and perform experiments guided by model predictions. For example, indirect link (SA,
activates, EDS1) (see Section B.4 of Appendix B for a detailed view) means that it is not
precisely known whether SA directly activates EDS1 or it activates some of the biosynthesis
components upstream from EDS1 which results also in activation of EDS1. The exact nature
of such activation can be checked and tested in the laboratory experiments. Nevertheless,
this link provides a first clue about the existence of a positive feedback loop in the SA
pathway.
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7 Incremental Revision of Structures of Biological

Models

To improve is to change; to be perfect is to change often.
Winston Churchill

After biological models are published, they do not tend to be re-examined fast. However,
there is constant flow of new knowledge related to the biological mechanism. The fast
updates of the biological model structures are possible with the incremental approach based
on the relation extraction from literature.

This chapter is organised as follows. We describe the methodology and implementation
of the incremented version of the Bio3graph tool that searches the biological literature for
the relations between the biological components and outputs a graph of triplets in the form
(component1, relation, component2). The incremental approach is demonstrated on two use
cases. In the first use case, a simple plant defence network, created manually by merging
three existing structural models, is extended in two incremental steps. In the second use
case, a complex, published model structure of defence response in Arabidopsis thaliana is
incrementally updated with information extracted from recently published articles. When-
ever necessary, the structures of biological models can be quickly updated by using the
incremental version of Bio3graph.

7.1 Methodology for incremental biological network revision

The work on incremental revision of biological models is based on the Bio3graph approach
(described in Section 6.1) which allows for automated extraction of biological relations in
the form of triplets from the literature. The Bio3graph approach to information extraction
from biological literature is extended with new features which allow for periodical updates
of model structures using newly published scientific literature.

The incremental approach is demonstrated on two use cases.

• A simple plant defence model structure with 37 components and 49 relations created
manually by merging three existing structural models is extended in two incremental
steps.

• A complex published model structure of defence response in Arabidopsis thaliana,
containing 175 nodes and 524 relations, is incrementally updated with information
extracted from recently published articles.

In the following we describe the additional steps of the incremented version of Bio3graph
(see Figure 40 for schematic overview of the methodology).

The Bio3graph approach is essentially a workflow of processing components which extract
triplets of the form (component1, reaction, component2) using natural language processing
tools. Apart from the steps of Bio3graph tool, its incremental extension implements addi-
tional steps: (1) literature retrieval, (7) graph merging, (8) redundant relation removal and
(9) colour reset. We define the inputs to the incremental extension as follows (see Figure 40).
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Figure 40: Scheme of the methodology for incremental construction of biological networks using
information extraction from literature.

The existing model structure which is the subject of incremental enhancement is called the
“Initial graph” and the result of Bio3graph is called the “Triplet graph”. The incremental
extension of Bio3graph produces two outputs: “Incremented graph”, a result of merging
the Initial and the Triplet graph, and “Filtered incremented graph”, a result of redundant
transitive relation removal from the “Incremented graph”.

7.1.1 Literature retrieval

The collection of relevant scientific publications about various aspects of the selected case
study topic (Arabidopsis thaliana defence response) was obtained from PubMed Central
(PMC), a freely accessible online archive of biomedical and life sciences literature, which is
developed and managed by National Library of Medicine’s National Center for Biotechnology
Information (NCBI). As of May 2013, PMC database hosts more than 2.7 million articles for
which full text is available, either as HTML/XML or PDF or both. NCBI also provides the
Entrez Programming Utilities (E-utilities), which enable programmatic access to the Entrez
query and database system covering a variety of biomedical data, including nucleotide and
protein sequences, gene records, three-dimensional molecular structures, and the biomedical
literature (Sayers, 2011). The E-utilities are accessible via the HTTP protocol using GET
and POST commands, and return the response in a structured XML document.

PMC also provides the PMC Open Access Subset (OA), a growing collection of publi-
cations which are made available under a Creative Commons or similar license. The OA
subset is a valuable source of reviewed scientific publications which are readily available for
data mining, text mining, and information extraction using automated processing pipelines.
To facilitate computer processing, the Open Archives Initiative service and the FTP service
allow to download full-text XML as well as images, PDF, and supplementary data files for
all articles in the OA subset.

To obtain sets of documents to increment model structures in both use cases we have
used the PMC Advanced Search Builder to construct the query which should cover as much
literature as possible regarding the defence response signalling pathways in Arabidopsis
thaliana. The query is as follows:

"arabidopsis thaliana"[All Fields] AND (

"defence"[All Fields] OR

"defense"[All Fields] OR

"ethylene"[All Fields] OR
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"jasmonate"[All Fields] OR

"jasmonic acid"[All Fields] OR

"salicylate"[All Fields] OR

"salicylic acid"[All Fields] OR

"pathogen"[All Fields] OR

"virus"[All Fields]

)

The query was used for both use cases only with the following differences.

• For the first use case with the simple model all publications regardless of the publica-
tion date were collected (the query was performed in May 2012). Also, the keyword
“virus” was excluded from the query and the source document set was not limited
to the PMC OA subset in order to collect as much knowledge as possible (the most
important non-OA publications were considered and extracted manually as PMC does
not allow automated downloading of any publications outside of the OA subset). For
this simple model structure the query yielded 10,299 documents out of which some
were available only as PDF and were left out. In order to time-stamp them we have
collected pub-date tags and extracted the earliest available date (which in most cases
corresponds to the classic publication date or the electronic publication). The final
corpus, containing 10,207 documents, was divided in two datasets which were used in
two incremental steps of the triplet extraction by Bio3graph.

• In the second use case of the complex model structure the earliest publication date was
set to the latest date of any publication used by the authors of the model (Miljkovic
et al., 2012) (April 5th, 2011). The query resulted in 2,988 full-text publications
which were also subject to automated triplet extraction leading to an incremental
enhancement of a complex, recently published model structure.

7.1.2 Graph merging

In order to allow for incremental updates of an existing model structures using Bio3graph
(or any other biological graoh construction method) the existing graph and newly extracted
graph have to be merged. The merging process produces a union of the graphs and ap-
plies colour coding to relations in order to distinguish between known, new, and duplicate
relations.

All biological model structures discussed in this work (and biological network structures
in general) are directed edge-labelled graphs with several types of relations. Therefore, the
data structure used for merging must support the most general type of graphs which is
called a multigraph. A multigraph supports duplicate relations, relations of different types
and cycles.

The merging procedure merges the input graphs into a single graph using the following
colour coding: existing relations originating from the existing graph are coloured in black,
newly discovered relations originating from the extracted graph are coloured in red while the
re-discovered existing relations originating from the extracted graph are coloured in green.
Other existing information about nodes and relations is also preserved during merging.

7.1.3 Redundant relation removal

Automated extraction of biological relations with Bio3graph can yield relations which may
not appear in the existing model (the subject of incremental revision) but do not con-
tain new biological knowledge. Such relations, which are known as transitive relations in
graph theory, represent only a shortcut of a chain of biological relations. For example,
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Figure 41: An example of a redundant transitive relation in a simple graph. The relation v Activates x,
shown in grey, is transitive. It does not contain new biological knowledge and is thus redundant.

the new relation v Activates x does not represent new biological knowledge given the chain
v Activates w Activates x.

In general, transitive relations can be removed by computing the transitive reduction of
the directed graph. Transitive reduction yields a new graph on the same set of nodes with as
few edges as possible to maintain the same reachability relation. For a finite, directed acyclic
graph the transitive reduction is a unique subgraph which is also the minimum equivalent
graph. However, the transitive reduction of directed graphs with cycles is not unique and is
not necessarily a subgraph. This means that the transitive reduction of general biological
model structures – which typically contain cycles – is not applicable as it may produce
several equivalent model structures and also introduce new relations.

For this reason, we have developed a procedure which does not exhibit the mentioned
limitations. Given an existing graph and a new graph, the procedure evaluates all relations
in the new graph. For each relation in the new graph the procedure tries to find a path in
the existing graph. If such a path exists, the new relation is transitive and thus redundant.
If no such path exists, the new relation is not redundant as it represents a new piece of
knowledge. It should be noted that we do not make any assumptions about the existing
graph and that each type of relation is considered separately, i.e., the path must contain
only relations of the same type.

Figure 41 shows an example of a transitive relation in a simple graph. The redundant
transitive relation v Activates x is shown in grey. On the other hand, the relation v Activates z
is not transitive as no alternative path consisting only of relations of the same type exists
between v and z.

7.1.4 Colour reset

The incremental revision of the Initial graph with a Triplet graph extracted from the liter-
ature can be used again in the next iteration (see Figure 40). The only requirement is that
the colours of relations are reset to the default colour (black) so that merging and colour
coding can be performed correctly using a next Triplet graph obtained by Bio3graph from
a new set of documents.

7.2 Implementation and the workflow availability

Our implementation of incremental development of biological network structures is built as
an extension of Bio3graph. Therefore, we only discuss the implementation of new compo-
nents and the complete integrated solution as a scientific workflow as the implementation
of Bio3graph is presented in length in (Miljkovic et al., 2012).

7.2.1 Literature retrieval

We have implemented literature retrieval in the Python programming language using the
ESearch and EFetch functions provided by PMC E-utilities. The implementation accepts the
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query constructed manually or by using the Advanced Search Builder and invokes ESearch to
obtain the identifiers of the corresponding articles. The identifiers are then matched against
the downloaded archives of the PMC OA subset and full-text XML files are extracted. Our
XML parser, which is used to transform the XML files into plain text data, is set to ignore the
following XML tags which do not contain relevant textual data and may contain unwanted
special characters or words with excessive length (they can cause problems in some language
processing components): xref, table, graphic, ext-link, media, and inline-formula.

7.2.2 Graph merging

The graph merging component was implemented using the NetworkX1 Python library which
can be natively integrated into the Bio3graph workflow in Orange4WS (Podpečan et al.,
2012). To maintain the compatibility with the Bio3graph graph representation in Biomine’s
graph format we have also implemented a bidirectional transformation between the Biomine’s
graph format (Eronen and Toivonnen, 2012) and NetworkX data structures which preserves
all existing information concerning nodes and relations. For example, if the positions of the
nodes in the visualisation canvas are available they will be preserved during merge which is
essential for the efficient visual comparison of the graphs.

7.2.3 Redundant relation removal

The discovery of transitive relations also relies on the NetworkX library. It is implemented
as a separate component which accepts the existing and the new graph and returns a list of
redundant relations. In this way, the relations can be reported to the user, removed from
the merged graph or even marked with a different colour in a merged graph to aid the visual
evaluation of the graph.

The procedure is implemented using the path discovery procedures available in the Net-
workX library. The search for an existing path in the existing graph is performed by generic
function has path(G, source, target) which is essentially instantiated to the bidirectional
shortest path search which executes a breadth-first search from both the source and the
target and returns a list of nodes in the path or an empty list if such path does not exist.

7.2.4 Colour reset

Reset of the colours of relations works by modifying the attributes of the relations which
are stored in the NetworkX MultiDiGraph data structure. The implemented bidirectional
transformation from this data structure to the Biomine’s format can be used to export the
structure and properties of the reset graph into a portable text file.

7.2.5 The workflow

The proposed extension of Bio3graph was implemented as a scientific workflow in the
same service-oriented data mining environment Orange4WS (Podpečan et al., 2012) where
Bio3graph was developed and implemented. By utilising Orange4WS the following bene-
fits were achieved. First, incremental revision and development is natively integrated with
Bio3graph. Second, workflow-based implementation ensures repeatability of experiments
and makes the modifications and extensions of the developed workflow easy. Finally, the
workflow-based solution is shareable and can be used anywhere where Orange4WS is avail-
able.

The implementation of the incremental model structure development approach in the
Orange4WS environment is shown in Figure 42. The first part of the workflow imple-
ments Bio3graph (loading of documents, preprocessing and parsing, loading of vocabularies,

1http://networkx.github.io

http://networkx.github.io
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Figure 42: A screenshot of the workflow implementing the proposed incremental revision of biological
network structures. The first part of the workflow implements the Bio3graph approach for automated
triplet graph extraction from biological literature while the second part implements incremental
extension of biological model structures.

triplet extraction, and graph construction) while the second part implements incremental
development (graph merging, colour coding, removal of redundant transitive relations, and
visualisation of incrementally constructed model structures). It should be noted, however,
that only one incremental step is composed in the workflow.

The workflow works as follows. First, the dictionary has to be constructed as it is
needed for the triplet extraction algorithm. This is accomplished by loading the dictionary
files which are passed to the web service which constructs the dictionary structure. The
parallel branch of the workflow is used to prepare the data. A collection of text files is
sent to the Emitor component which simulates the for-loop by outputting the elements
of the input list one by one. Each emitted document is passed to the web service which
creates the document data structure. Each instance of this data structure is then forwarded
to the sentence splitting component which is followed by POS tagging with the GENIA
tagger. The document, tokenised and parsed, is sent to the triplet extraction web service
which requires also the dictionary. The extracted triplets (if any) are subjected to the
normalisation process where the names of the involved components and the reaction are
replaced by the corresponding base names (for example, “influence accumulation” is replaced
by “activate” and “SA” is substituted for “o-Hydroxybenzoic acid”). The extracted triplets
from all documents are collected by the Collector component which closes the emulated
for-loop. The Bio3graph part of the workflow concludes with the construction of a graph
from triplets, to which we refer as a Triplet graph, and its visualisation.

The second part of the workflow, which performs incremental revision of network struc-
ture starts by loading an Initial graph from a file which will be the subject of incremental
enhancement. This model and the Triplet graph are sent to the component which discovers
and reports redundant transitive relations. In parallel, the graphs are merged into an In-
cremented graph which is colour coded marking differently the relations that belong solely
to the Initial graph, the ones in the graphs’ intersection and the new ones. The discovered
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redundant relations are then removed from the Incremented graph and finally the Filtered
Incremented graph is visualised and saved. Alternatively, the redundant relations are not
removed but coloured differently in the Incremented graph, which is useful for a visual
comparison. In the very last step of the workflow the colours of relations in the Filtered
Incremented graph are reset to black which makes the graph ready for the next incremental
revision which can be performed by providing a new set of documents and repeating the
execution of the entire workflow.

7.3 Use case 1: a simple plant defence model structure

This subsection presents the results of the experiment performed on a simple model which
is a subset of the plant defence mechanism where the structure of the models is available in
the literature.

The Initial graph in this experiment was constructed manually from the published figures
(structural models) in scientific publications (Gonzalez-Garcia and Diaz, 2011; Turner et
al., 2002; Shah, 2003). It was expanded in two incremental steps using Bio3graph and its
incremental extension on a time-labelled collection of documents.

7.3.1 The Initial graph

We have manually constructed the Initial graph from structural models published in the
scientific literature. Three schemata describing the salicylic acid (SA), jasmonic acid (JA)
and ethylene (ET) pathways (Gonzalez-Garcia and Diaz, 2011; Turner et al., 2002; Shah,
2003) were selected and transformed into a directed graphs with multiple relations (see
Figures 43, 44 and 45). To obtain the Initial graph all three were merged into a single graph
which contains 37 nodes (biological components) and 49 links. The merged graph is shown
in Figure 46.A.

Among all the represented components, SA, JA and ET are the most crucial for plant
defence. The types of relations between the nodes are activation (abbreviated as A) and
inhibition (abbreviated as I). The nature of interactions from the schemata was easily recog-
nisable, and the transformation was accomplished with respect to these types. Too general
components such as lipid, lesion, pathogen, etc. were not implemented in the Initial graph.
On the other hand, to prevent the loss of connections between components we have added
several reaction products as nodes.

7.3.2 The Triplet graph

Triplet extraction with Bio3graph requires a predefined vocabulary of components and reac-
tions. We have developed the component vocabulary from the list of the Initial graph nodes
that represent biological components. Small compounds and proteins were considered. In
addition, we have acquired the list of component synonyms from TAIR (Swarbreck et al.,
2008) and iHOP (Hoffmann and Valencia, 2004) sources. The vocabulary of reactions with
reaction synonyms was used from Supporting Information S4 in (Miljkovic et al., 2012)).
Besides the activation and inhibition reaction types that exist in the Initial graph, we have
also taken into account the additional binding (abbreviated as B) reaction type.

The collection of full-text documents for triplet extraction with Bio3graph was divided
into two sets according to the defined time point. We used the time point of November 2001,
which is the earliest publication date of the three observed publications (Gonzalez-Garcia
and Diaz, 2011; Turner et al., 2002; Shah, 2003). The first set of documents (published
before November 2001) contains 1,714 publications while the second one contains 8,493
publications (published after November 2001). Using the two sets of documents two sets
of triplets were obtained with the Bio3graph method. We refer to the first set as triplets
before the time point and to the second set as the triplets after the time point.
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Figure 43: Transformation of the SA model structure available in literature into a directed graph
with labelled edges. The model structure originates from the study of (Shah, 2003).

Figure 44: Transformation of the crosstalk between SA, JA and ET pathways available in literature
into a directed graph with labelled edges. The model structure originates from the study of (Turner
et al., 2002).

Figure 45: Transformation of the ET model structure from literature into a directed graph with
labelled edges. The model structure originates from the work of (Gonzalez-Garcia and Diaz, 2011).

Some of the extracted triplets appear in several sentences but we count only the number
of unique triplets. We introduce the term correct triplet in the following way: if the triplet
is a true positive (TP) in at least one sentence of the whole text corpus, it is considered to
be a correct triplet. The extracted triplets were inspected manually and classified as correct
or false positives (FP).

The summary of triplet extraction from documents before and after the time point is
presented in Table 13. The Triplet graph for the first incremental step is configured from
the set of correct triplets before time point (Figure 46.B) while the Triplet graph for the
second incremental improvement consists of the correct triplets after the time point.
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Table 14: The summary of relations of the Incremented graph shown in Figure 46.C after the first
incremental step for the use case 1. The initial links originate only from the Initial graph, while
the intersection, new redundant and new links originate from the Triplet graph. The intersection
links are the common relations of the Initial and the Triplet graph. The new redundant links are
the transitive relations while the most interesting are the new links, which represent exclusively new
relations discovered by the Bio3graph tool.

Reaction types Initial Intersection New redundant New links

links links links

Activation 32 6 10 10

Inhibition 11 0 0 7

Binding 0 0 0 2

All reactions 43 6 10 19

Table 13: The summary of triplet extraction from documents before and after the time point for the
use case 1 (simple plant defence model structure).

Reaction types Triplets before time point Triplets after time point

Total Correct FP Total Correct FP

Activation 52 26 26 231 92 139

Inhibition 19 7 12 157 43 114

Binding 3 2 1 30 17 13

All reactions 74 35 39 418 152 266

7.3.3 First incremental step

The first incremental improvement of the Initial graph is performed with the Triplet graph
consisting of correct triplets before time point of November 2001. The result of this en-
hancement is the Incremented graph with 37 nodes and 78 relations shown in Figure 46.C.
Green, red and pink arcs represent the correct triplets discovered by Bio3graph from the
biomedical texts already available at the time point, while the black arcs are the relations
present in the Initial graph. The summary of relation types in the graph is show in Table 14.

In the Incremented graph in Figure 46.C the green arcs represent the intersection between
the Initial graph the Triplet graph. The red and pink arcs represent the newly discovered
relations not present in the Initial graph. However, the arcs coloured in pink are transitive
and thus redundant as they do not introduce new knowledge into the underlying biological
model. The Initial graph, however, can contain transitive relations but they do not interfere
with our transitive relation discovery procedure as described in Section 7.1 as such relations
are only searched for in the new Triplet graph. The incremental extension of Bio3graph
supports the removal of such relations. The result of this operation is shown in Figure 46.D
and represents the final Filtered Incremented graph. The knowledge in this graph which is
most interesting for a domain expert is represented by red arcs (newly discovered biological
relations from the literature).

7.3.4 Second incremental step

The second step incremental step is performed in an analogue way as the first. The input
graphs for the incremental extension of Bio3graph are as follows. The Initial graph is the
Filtered Incremented graph shown in Figure 46.D, but all of its relations are now marked as
known (all arc are reset to the initial black colour). The Triplet graph is constructed from
the set of correct triplets after the time point of November 2001.
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Figure 46: The enhancement of the Initial graph (A) with the correct triplets after first incremental
step for the use case 1. The left side represents the input graphs for the incremental extension of
Bio3graph while the right side represent the output graphs. A) The Initial graph created by merging
the manually constructed three graphs from the literature shown in Figures. 43, 44 and 45. B) The
Triplet graph constructed from the correct triplets extracted with Bio3graph. C) The Incremented
graph obtained by merging the Initial and the Triplet graph. The relations present only in the Initial
graph are coloured in black while the relations present also in the the Triplet are coloured in green,
red or pink. Relations present in both Initial graph and triplet nework are coloured in green, newly
discovered relations are coloured in red while the newly discovered, redundant transitive relations
are coloured in pink. D) The Filtered Incremented graph obtained from the Incremented graph by
removing the redundant transitive relations.
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Figure 47: The final Incremented graph after two incremental steps for the use case 1. The new
relations from the second set of correct triplets are shown in red. Pink arcs represent redundant
transitive relations from the second set of correct triplets which are newly discovered.

The result of merging of the two input graphs is the Incremented graph with 37 nodes
and 183 relations shown in Figure 47. The relations are summarised in Table 15. The
removal of the redundant transitive relations which are shown in Figure 47 in pink yields
the final Filtered Incremented graph which is also the final result of the first experiment.

The starting graph, constructed from the three schemata describing the SA, JA and ET
pathways initially contained 49 relations. Using Bio3graph in the course of two incremental
steps we have confirmed 37 relations (shown as green in Figure 47) which represent almost
75% of all relations present in the starting manually configured model structure. This shows
that using Bio3graph as a starting point followed by incremental updates as new publica-
tions appear it is possible to confirm existing information but also propose new candidates
(relations) for expert analysis. New candidates (shown as red arcs in Figure 47) have the
potential to generate new hypothesis in biological experiments where the functionality of
the link is tested.

Table 15: The summary of relations of the Incremented graph shown in Figure 47 after the second
incremental step for the use case 1. The initial links originate only from the Initial graph, while
the intersection, new redundant and new links originate from the Triplet graph. The intersection
links are the common relations of the Initial and the Triplet graph. The new redundant links are
the transitive relations while the most interesting are the new links, which represent exclusively new
relations discovered by the Bio3graph tool.

Reaction types Initial Intersection New redundant New links

links links links

Activation 22 26 32 34

Inhibition 9 9 1 33

Binding 0 2 0 15

All reactions 31 37 33 82

7.4 Use case 2: a complex plant defence model structure

To explore the potential of incrementally extending an existing, validated model using au-
tomated triplet extraction from literature we have selected a complex network structure to
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complement the small-scale experiment.
In the second experiment the Initial graph was a complex plant defence model structure

published in the study by (Miljkovic et al., 2012). It contains in total 175 nodes and 524
relations. Since we did not introduce new components into the graph, the vocabulary of com-
ponents for the Bio3graph tool remained the same (Supporting Information S3 in (Miljkovic
et al., 2012)). Also, the vocabulary of reactions was the same as in the first experiment (also
available as Supporting Information S4 in (Miljkovic et al., 2012)).

The model structure, published as Supporting Information S10 in (Miljkovic et al., 2012),
was used as the Initial graph and all arcs were reset to black colour. The Triplet graph
was constructed from the correct triplets extracted with Bio3graph from the set of 2,988
publications which were published after the latest publication used by (Miljkovic et al.,
2012) in the construction of the complex plant defence model structure. Manual validation
of 399 unique triplets resulted in a set of 156 correct triplets. The Initial and the Triplet
graph were merged into the Incremented graph (the summary of the relations is shown
in Table 16). The evaluation of the newly discovered relations reveals that they mostly
represent cross-talk connection between the SA, JA and ET pathways.

Table 16: The summary of triplets extracted from biological texts in the use case 2 (complex plant
defence model structure). The initial links originate only from the Initial graph, while the inter-
section, new redundant and new links originate from the Triplet graph. The intersection links are
the common relations of the Initial and the Triplet graph. The new redundant links are the transi-
tive relations while the most interesting are the new links, which represent exclusively new relations
discovered by the Bio3graph tool.

Reaction types Initial Intersection New redundant New links

links links links

Activation 279 43 47 26

Inhibition 100 6 2 16

Binding 48 3 0 13

Produces 45 0 0 0

All reactions 472 52 49 55

While exploring the new links (red arcs) in the Incremented graph, we have observed an
interesting pattern related to the discovery of binding relations. Most of the 13 new binding
relations connect the components that are already connected either through activation or
inhibition reaction type. The new links provide an additional explanation that first these
components physically bind and then the activation or inhibition occurs.

Among the newly discovered links, biologically very interesting is (ros, inhibits, npr1).
Earlier studies reveal that ROS, more specifically H2O2, and SA together work as a self-
amplifying system (Leon et al., 1995; Rao et al., 1997). However, after consulting the
publication from where the triplet was extracted (Petrov and Van Breusegem, 2012) we
have found out that the new results in the study of (Peleg-Grossman et al., 2010) indicate
the presence of the negative regulation of NPR1 transport by H2O2.

In addition, newly discovered triplets that are biologically interesting are (myc2, inhibits,
b-chi) and (myc2, inhibits, pdf1.2) which were extracted from (Lu et al., 2013). Both links
are extracted from the same sentence: “MYC2 is a negative regulator of the JA-responsive
pathogen defense genes PDF1.2 and B-CHI.” In the Initial graph the relation between MYC2
and b-CHI components already exists: (myc2, activates, b-chi). It was acquired manually
by the authors of the graph (Miljkovic et al., 2012). The discovery of the new link of a
contradictory relation type indicates necessity of further exploration of the relation between
MYC2 and b-CHI components. The second link (myc2, inhibits, pdf1.2) is also biologically
interesting as it represents a cross-talk connection between JA and ET pathway where the
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component of the JA pathway has diminishing influence of the product of the ET pathway.
For the final evaluation of the model structure, one should keep in mind that most of

the automatically extracted relations can be considered as “indirect” and that intermedi-
ate molecules participating in the graph can be discovered by thorough inspection of the
corresponding sentences or by performing additional wet-lab experiments.
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8 Conclusions and Further Work

Your task is not to foresee the future, but to enable it.
Antoine de Saint-Exupéry

The main results of this thesis are: a new methodology for constructing biological models
using the expert knowledge and literature and a model of the defence response in plants,
which was built by applying this methodology. Most notably, the standard approach to con-
structing dynamic models was upgraded with the following methods: a method for model
structure revision by means of natural language processing techniques, a method for incre-
mental development of biological model structures and a method for automatic optimisation
of model parameters guided by the expert knowledge in the form of constraints.

In this chapter we summarise the most important results of the thesis. We conclude by
giving directions for further work and potential improvements of the presented methodology
for constructing biological models.

8.1 Summary

The field of systems biology, which models biological mechanisms at the system level, is
faced with the rapid growth of biological data and the challenge to store, analyse and build
models based on this data. However, the growth of data is not uniform for different types
of biological mechanisms, hence some biological mechanisms still have a few data available.
The work presented in this thesis addresses the challenge of model construction of the
defence response in plants based on the expert knowledge and literature, given the lack of
experimental data in this domain.

The first specific objective of this work was the manually acquired PDS model structure
(described in Section 4.2) and its semi-automatically constructed extension (presented in
Section 6.6). The PDS model structure was first developed in a form of a directed edge-
labelled graph. The developed PDS model structure, consisting in total of 175 components
and 387 reactions, contains more detailed information compared to the existing structural
models of the subsets of the PDS mechanism ((Olmedo et al., 2006), (Staswick, 2008)). The
complex network developed by (Naseem et al., 2012), containing 105 components and 163
reactions, is of similar size as our manually built PDS model structure. However, while our
work focuses on the most important pathways of plant defence against pathogen attacks
(SA, JA and ET), the study of (Naseem et al., 2012) includes several other components like
GA, ABA, auxin, etc., but containing less detailed information on the particular SA, JA
and ET pathways.

To set up the PDS model for the purpose of simulation, we transformed its structure to
the Hybrid Functional Petri net (HFPN) formalism which resulted in the model structure
containing in total 99 components and 68 reactions. The structure of one of the first simu-
lation models of the PDS mechanism (Genoud et al., 2001), containing 18 biological entities
and 12 Boolean operators, is less complex than the PDS model structure comprising three
sub-models which we have developed using the HFPN formalism (see Subsection 4.2.2). A
more complete PDS model is the one of (Naseem et al., 2012) with 105 components and 163
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reactions. This model was built for simulation purposes, however, as mentioned above, it
has a broader scope including several other components, but contains less detailed informa-
tion of the SA, JA and ET pathways, which are the focus of our work. The extended PDS
structure (presented in Section 6.6) contains in total 175 components and 524 reactions.
This model structure is, to our knowledge, the first of this scale, comprising most of the
information available on interactions between the components of SA, JA and ET pathways.
Having in mind that one of the motivations to develop a PDS model was to systematize the
knowledge and reveal potentially interesting links, this extended PDS structure provides a
basis for such a research. We have discovered several interesting links which can be used
and tested in further wet-lab experiments (Section 6.6).

A part of the PDS model, more specifically the SA sub-model, presented in the HFPN
formalism, was used for the analysis of the model dynamics. The SA sub-model was de-
veloped in three iterative steps of model structure revision and constraints revision until
reaching the simulation results that best satisfy the experts’ expectations. The simulation
curves together with the results on kinetic parameters enable deeper understanding of the
plant defence mechanism. This was the second specific objective of this thesis (see Section
1.3).

The PDS model structure and the dynamic SA sub-model, were constructed in accor-
dance with the methodology developed in this thesis (described in Chapter 3). The devel-
oped methodology was set as the third specific objective of this thesis (Section 1.3). The
developed methodology aims to build the biological models without or with few experimen-
tal data. The methodology used for the PDS model construction consists of several steps.
To construct the PDS model we have first defined the problem and then selected the most
appropriate modelling formalism. Next, the PDS model structure was manually constructed
by eliciting knowledge from the domain experts and the literature. Since manual estimation
of the parameters was not feasible due to the PDS model complexity, an automatic method
using a DE algorithm (Storn and Price, 1995) was developed. By iteratively applying the
process, we achieved dynamic parameters’ estimates that best satisfy the experts’ evalu-
ation criteria. This process included the elicitation of the knowledge from the biologists,
formalisation in the form of constraints, optimisation of parameters that violate the minimal
number of these constraints and the revision of the model structure and constraints. The
system yielded simulation results as well as optimised model parameters, which provided an
insight into the biological system. The obtained structure of the PDS model was extended
by applying a semi-automated approach to extract the information on relations between
the biological components from the literature. Except for the standard model construction
steps, the methods that are included in this methodology are discussed below.

The main advantage of our method is its effectiveness and reusability. We have imple-
mented the basic vocabulary and accomplished valuable results in terms of precision and
recall. Its overall design allows the output of Bio3graph to be easily transferred to standard
systems biology modelling formalisms. The developed Bio3graph information extraction
tool can be used from scratch, without first manually building the network structure. Such
an approach would be less labour-intensive, as automatic information extraction algorithms
examine papers on behalf of the researchers and save experts’ time from examining the
full-length documents. These algorithms aim to act as research assistant tools for human
experts, but they can never replace human expertise. Nevertheless, these tools always re-
quire a certain amount of effort for the manual setup of the tool (vocabulary definition like
in our work, or template definition like in BioRAT (Corney et al., 2004)). Also, when the
expert wants to apply the information extraction algorithm to a new domain of interest,
after automatic generation of results, the expert still has to check all the results manually
to assure their correctness since there is no algorithm with absolute accuracy.

The extended version of the Bio3graph tool provides efficient tracking and incremental
update of existing model structures. By applying the triplet extraction incrementally on
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time-labelled data, one can follow the development of knowledge about certain biological
phenomena and discover new relations which can potentially enhance already developed
model structures. Furthermore, the incremental extension offers the removal of transitive
relations which are redundant with respect to the existing network. We have applied the
extended Bio3graph method to a time-labelled collection of biomedical documents obtained
from the PMC database in order to incrementally enrich two different networks. In the first
use case, a simple network structure was configured from three published structural mod-
els. This network was enhanced throughout two phases which demonstrate the incremental
approach. The second use case resulted in the revised PDS model structure (presented in
Section 6.6). By extending this complex structure, the experts have detected several interest-
ing links among the newly discovered relations that might be subject to further experimental
validation. The results show that publicly available sources of biomedical literature, such
as the PMC database, offer a good starting point for computer-assisted development of
plant defence models, and that approaches such as the presented incremental method can
contribute to the discovery of potentially interesting relations.

To overcome the problem of hand-tuning of model parameters, we have developed an
automated method for constraint-driven model parameter optimisation. We joined expert
knowledge with a mathematical optimisation approach to better understand the kinetic be-
haviour of the SA pathway, which is the most important pathway in plant defence. The
problem of determining parameters of the SA sub-model was set up as a combinatorial op-
timisation problem. Our approach of defining an objective function consisting of formalised
domain knowledge in the form of constraints is less time-consuming compared to the hand-
tuning of model parameters. The methodology for defining constraints is similar to the one
of (Locke et al., 2005). However, our approach differs from it since it is exclusively based
on the domain knowledge, whereas the study mentioned above relies on the combination of
the experimental data and expert knowledge. The constraint-driven optimization approach
used in this work allows for an efficient exploration of the dynamic behaviour of biological
models and, at the same time, increases their reliability. Moreover, we have defined the
method to validate the dynamic SA sub-model based on few experimental data. In addition
to that, the local sensitivity analysis of the SA sub-model has revealed its several reaction
rates that biological experts found important and interesting for conducting further kinetic
studies. These results correspond to the initial motives for building the PDS model which
was to detect crucial reactions in the plant defence response.

This thesis also resulted in a new publicly available Bio3graph tool for relation extraction
from biological texts having accomplished the forth specific objective of this thesis (Section
1.3). The advantage of our system is its public availability and simple reuse, as Bio3graph is
available as a repeatable workflow in the Orange4WS publicly available data mining environ-
ment. Most importantly, by employing a different vocabulary, Bio3graph can be reused to
extract the network structure of other biological mechanisms. Moreover, we have developed
an incremental extension of this tool which allows easy updates of existing model structures.
We expect that the extended version of the Bio3graph tool will assist the construction and
enhancement of network structures that model other biological mechanisms. The obtained
results show the potential of the developed method but also indicate the need for further
development to improve the accuracy and utility of information extraction.

The study has offered a methodology and a semi-automatically compiled model of plant
defence. However, the study encountered a number of limitations, which need to be consid-
ered. The main issue is the huge amount of manual effort that was evolved in this work. We
have started by manually building the initial network structure, which required substantial
human expert involvement through time-consuming acquisition and analysis of available
information in the databases and literature. However, we have developed a Bio3graph ap-
proach and its incremental extension to extend the manually obtained PDS model structure
based on the information extraction from literature. The Bio3graph approach to enrich the
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model structure may seem error-prone, achieving 62.3 % recall and 42.6 % precision when
applied on full-length articles. However, especially in the natural language processing field,
the precision and recall of a specific algorithm can vary a lot depending on the text corpus
that is processed (Corney et al., 2004). For example, as (Corney et al., 2004) report, the
BioRAT system has a recall of 20.31 % with 55.07 % precision when applied to scientific
abstracts, while the same algorithm achieves 43.6 % recall and 51.25 % precision on full-
length papers. We have achieved comparable results, but have traded-off lower precision
for a higher recall, as high recall is needed to extract as many new relations between bio-
logical components as possible. When estimating the parameters of the SA sub-model, we
have invested manual effort and time in formulating constraints which will guide the model
optimisation process. One additional limitation in our approach is that we do not have a
system that will suggest new set of constraints and new model structure in order to achieve
better results in the next step. On the other hand, system has means of evaluating how the
current model performs dynamically which is an advantage compared to the hand-tuning of
model parameters.

The methodology developed in this dissertation, despite the limitations above mentioned,
when applied to the other case of biological model will be less time-consuming. It will also
require less manual effort having in mind developed tools for model structure enrichment
from the texts and the constraint-driven optimisation method. Moreover, we have developed
a starting model structure of the plant defence and also dynamical SA sub-model, which are
offered to the scientific community as a basis for further studies and refinement.

8.2 Further work

In this thesis, we have developed a PDS model structure, a dynamic SA sub-model and a
methodology for constructing biological models based on the expert knowledge and litera-
ture. In the rest of this section, we first discuss the directions for further work related to
the PDS model structure followed by a discussion of dynamic model of plant defence and
the potential improvements of the developed methodology.

PDS model structure

We plan to revise the extended PDS model structure presented in Section 6.6 in the form of
a directed edge-labelled graph. This revision will also include, apart from further literature
exploration, the analysis of new indirect links found by Bio3graph and detection of direct
connections between biological components. This revision will also influence the PDS model
structure transformed into the HFPN formalism enabling dynamic modelling. Through
simulations and predictions, the identification of critical components in PDS can be achieved
more efficiently. The PDS model structure in the form of the HFPN formalism will serve as
a baseline for further research in the area of plant-pathogen interactions.

Dynamic PDS model

We have developed the dynamic model of one of the three pathways of plant defence: the SA
pathway. Some of the future steps in the development of the PDS model are the formalisation
of constraints related to the ET and JA sub-models and parameter optimisation of the global
dynamic PDS model. So defined PDS model will present a basis for further revision and
fine-tuning when more experimental data become available. Moreover, it is necessary to
validate the validation method to compare experimental and simulation curves that we have
presented in Subsection 5.3.3. Ideally, the validation method will be deployed and evaluated
in another biological domain where enough experimental data and expert knowledge exist.
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Methodology for constructing biological models

Concerning the developed methodology for constructing biological models, there are several
aspects that can be addressed in the future.

To improve semi-automated model structure revision we plan to include in Bio3graph the
GENIA sentence splitter (Saetre et al., 2007) which is trained on the GENIA corpus1 (Kim
et al., 2003) and employs a classification model based on maximum entropy modelling.
Moreover, we plan to improve the triplet extraction by using fast deep parsing instead of
chunking, and fine tune the rules for triplet extraction and filtering. The current implemen-
tation of Bio3graph discovers new relations, but does not enable automated discovery of new
components as it employs a manually constructed vocabulary. In this version of Bio3graph
it is possible to further evolve the network structure by adding new components to the vo-
cabulary. However, we plan to implement named entity recognition and automatic discovery
of synonyms which will enable automated construction of the components vocabulary.

Some graphical interfaces allow manual removal of the incorrect connections from the
graph (Blaschke and Valencia, 2001). Similarly, in future work we plan to add this feature
to upgrade the BioMine engine (Eronen and Toivonnen, 2012). We also plan to use the
developed Bio3Graph approach to upgrade the BioMine engine with an automated step of
triplet extraction from literature and automated construction of the initial BioMine network,
when building the BioMine database for a new domain such as plant biology, for which this
resource has not yet been developed.

Regarding a method for constraint-driven parameter optimisation, we plan to investi-
gate the possibility to implement this method in the form of a workflow. Moreover, we
believe that developing a graphical user interface, which would integrate the methods for
semi-automated model structure revision and incremental updates and the constraint-driven
parameter optimisation, would be of a great help for the biology experts in their further
work.

1GENIA corpus is a semantically annotated corpus for bio-textmining.
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fence model revisions through iterative minimization of constraint violations. International
Journal of Computational Biology and Drug Design. (In press).

Published scientific conference contribution (1.08)
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Appendix

A Manually constructed PDS model structure

A.1 The summary of all relations in the manual model

This summary includes the reactions acquired for the manual PDS model structure. Ta-
ble A.1 presents list of interactions of the SA sub-model, Table A.2 lists reactions of the JA
sub-model, Table A.3 includes reactions of the ET sub-model and Table A.4 presents the
list of crosstalk connections.

The structure of all four tables is the same. In the first column the interaction between
two biological components is given in the form of biological reaction representation, with the
following structure: (reactant1 + reactant2 reaction product). For example: protein MYC2
+ gene THI2.1JR1VSP1CLH1 activates protein THI2.1JR1VSP1CLH1. In this column the
biological components are represented on the level of the family nodes. In the second
column the relations after decomposition of the family nodes are shown in the edge-labelled
graph format. In the last third column the source of information, related to the particular
interaction, is specified.

Table A.1: The list of the interactions in the manually constructed structure of the SA sub-model.

SA biological reactions
Directed edge-labelled

graph
Data source

protein MPK3 +
protein MPK6 +

gene PAD34 activates
protein PAD34

protein MPK3
protein PAD4 A,
protein MPK3

protein PAD3 A,
protein MPK6

protein PAD4 A,
protein MPK6

protein PAD3 A

PMID: 18378893

protein NPR1 inhibits
protein PAD34

protein NPR1
protein PAD4 I,
protein NPR1

protein PAD3 I

PMID: 12873532

complex NPR1 oligomer
+ metabolite SA activates

protein NPR1

metabolite SA
protein NPR1 A,

complex NPR1 oligomer
protein NPR1 A

PMID: 18635760, PMID:
12837250

protein Inactive HRT
activates protein HRT

protein Inactive HRT
protein HRT A

PMID: 15546349
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SA biological reactions
Directed edge-labelled

graph
Data source

metabolite Orto-
coumaric acid +

protein X1 activates
metabolite SA

metabolite Orto-
coumaric acid

metabolite SA A,
protein X1 metabolite SA

A

KEGG

protein AAO4 +
metabolite Trans-

cinnamic acid activates
metabolite BA +
metabolite Orto-

coumaric acid

protein AAO4
metabolite BA A,

protein AAO4
metabolite Orto-
coumaric acid A,
metabolite Trans-

cinnamic acid
metabolite BA A,
metabolite Trans-

cinnamic acid
metabolite Orto-

coumaric acid
A

KEGG

protein UGP glikosyl-
transferaze +

metabolite SA activates
metabolite SGE

protein UGP glikosyl-
transferaze

metabolite SGE A,
metabolite SA

metabolite SGE A

PMID: 18267075

protein BA2H +
metabolite BA activates

metabolite SA

metabolite BA
metabolite SA A,

protein BA2H
metabolite SA A

PMID: 12231938

protein UGP glikosyl-
transferaze +

metabolite SA activates
metabolite SAG

metabolite SA
metabolite SAG A,

protein UGP glikosyl-
transferaze

metabolite SAG A

PMID: 18267075

protein EDS5 + gene ICS
activates protein ICS

protein EDS5
protein ICS1 A,
protein EDS5

protein ICS2 A

PMID: 12873532

complex NPR1 TGA245
+ gene PR125 activates

protein PR125

complex NPR1 TGA245
protein PR1 A,

complex NPR1 TGA245
protein PR2 A,

complex NPR1 TGA245
protein PR5 A

PMID: 12873532
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SA biological reactions
Directed edge-labelled

graph
Data source

protein NPR1 +
gene WRKY70 activates

protein WRKY70

protein NPR1
protein WRKY70 A

PMID: 14742872

protein NPR1 +
protein NIMIN +

protein TGA TF245 binds
complex NPR1 TGA245

protein NPR1
complex NPR1 TGA245

P, protein NIMIN1
complex NPR1 TGA245

P, protein NIMIN2
complex NPR1 TGA245

P, protein NIMIN3
complex NPR1 TGA245

P, protein TGA TF2
complex NPR1 TGA245

P, protein TGA TF4
complex NPR1 TGA245

P, protein TGA TF5
complex NPR1 TGA245

P, protein NPR1
protein NIMIN1 B,

protein NPR1
protein TGA TF2 B,

protein NIMIN1
protein TGA TF2 B,

protein NPR1
protein TGA TF4 B,

protein NIMIN1
protein TGA TF4 B,

protein NPR1
protein TGA TF5 B,

protein NIMIN1
protein TGA TF5 B,

protein NPR1
protein NIMIN2 B,

protein NIMIN2
protein TGA TF2 B,

protein NIMIN2
protein TGA TF4 B,

protein NIMIN2
protein TGA TF5 B,

protein NPR1
protein NIMIN3 B,

protein NIMIN3
protein TGA TF2 B,

protein NIMIN3
protein TGA TF4 B,

protein NIMIN3
protein TGA TF5 B

PMID: 15749762, PMID:
12873532
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SA biological reactions
Directed edge-labelled

graph
Data source

protein X3 +
metabolite SA chl

activates metabolite SA

protein X3 metabolite SA
A, metabolite SA chl

metabolite SA A
PMID: 18267075

metabolite Phenylalanine
+ protein PAL activates

metabolite Trans-
cinnamic acid

metabolite Phenylalanine
metabolite Trans-
cinnamic acid A,

protein PAL1
metabolite Trans-
cinnamic acid A,

protein PAL2
metabolite Trans-
cinnamic acid A,

protein PAL3
metabolite Trans-
cinnamic acid A,

protein PAL4
metabolite Trans-

cinnamic acid
A

KEGG

protein ICS +
metabolite Chorismate

activates
metabolite Isochorismate

protein ICS1
metabolite Isochorismate

A,protein ICS2
metabolite Isochorismate
A, metabolite Chorismate
metabolite Isochorismate

A

PMID: 12873532

protein Prephenate-
aminotransferase +

metabolite Prephenate
activates metabo-

lite Phenylpyruvate

metabolite Prephenate
metabo-

lite Phenylpyruvate A,
protein Prephenate-

aminotransferase
metabo-

lite Phenylpyruvate
A

KEGG

metabolite Isochorismate
+ protein IPL activates

metabolite SA chl

metabolite Isochorismate
metabolite SA chl A,

protein IPL
metabolite SA chl A

PMID: 12873532

protein ROS pro-
ductive enzymes activa-tes

metabolite ROS

protein NADPH oxi-dase
metabolite ROS A,

protein Catalase
metabolite ROS A,

protein Glutathione pero-
xidase metabolite ROS A,

pro-
tein Superoxide dismutase

metabolite ROS A

PMID: 8612756
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SA biological reactions
Directed edge-labelled

graph
Data source

protein Inactive BA2H +
metabolite ROS activates

protein BA2H

metabolite ROS
protein BA2H A,

protein Inactive BA2H
protein BA2H A

PMID:12060237

protein CM +
metabolite Chorismate

activates
metabolite Prephenate

protein CM1
metabolite Prephenate A,

protein CM2
metabolite Prephenate A,

protein CM3
metabolite Prephenate A,

metabolite Chorismate
metabolite Prephenate A

KEGG

protein Arogenate dehy-
dratase +
metabo-

lite Phenylpyruvate
activates

metabolite Phenylalanine

protein Arogenate dehy-
dratase

metabolite Phenylalanine
A, metabo-

lite Phenylpyruvate
metabolite Phenylalanine

A

KEGG

protein PAD34 +
protein EDS1 +

gene EDS5 activates
protein EDS5

protein PAD4
protein EDS5 A,

protein PAD3
protein EDS5 A,

protein EDS1
protein EDS5 A

PMID: 12873532, PMID:
15546349

protein Inactive MPK3 +
protein HRT +

metabolite ROS activates
protein MPK3

protein HRT
protein MPK3

A,metabolite ROS
protein MPK3 A,

protein Inactive MPK3
protein MPK3 A

PMID: 11875555, PMID:
21046144

protein Inactive MPK6 +
protein HRT +

metabolite ROS activates
protein MPK6

protein Inactive MPK6
protein MPK6 A,

protein HRT
protein MPK6 A,
metabolite ROS
protein MPK6 A

PMID: 15020743, PMID:
21046144

protein MPK3 +
protein MPK6 +

gene EDS1 activates
protein EDS1

protein MPK3
protein EDS1 A,
protein MPK6

protein EDS1 A

PMID: 18705666

protein NPR1 inhibits
protein EDS1

protein NPR1
protein EDS1 I

PMID: 12873532
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Table A.2: The list of the interactions in the manually constructed structure of the JA sub-model.

JA biological reactions
Directed edge-labelled

graph
Data source

protein MPK4 activates
protein LOX3

protein MPK4
protein LOX5 A,

protein MPK4
protein LOX4 A,

protein MPK4
protein LOX6 A,

protein MPK4
protein LOX1 A,

protein MPK4
protein LOX2 A,

protein MPK4
protein LOX3 A

PMID:20037473

protein MYC2 +
gene THI2.1JR1VSP1-

CLH1 activates
protein THI2.1JR1VSP1-

CLH1

protein MYC2
protein JR1 A,
protein MYC2

protein VSP1 A,
protein MYC2

protein CLH1 A,
protein MYC2

protein THI2.1 A

PMID: 17616737, Devoto
A, Turner JG (2005)
Jasmonate-regulated

Arabidopsis stress
signalling network.

Physiologia Plantarum
123(2): 161-172

metabolite OPDA chl
activates

metabolite OPDA

metabolite OPDA chl
metabolite OPDA A

Zhang H, Memelink J
(2009) Regulation of

Secondary Metabolism by
Jasmonate Hormones.
Plant-derived Natural
Products, pp.181-194

protein LOX +
metabolite Linolenic acid

activates
metabolite 13-HPT

protein LOX5
metabolite 13-HPT A,

protein LOX4
metabolite 13-HPT A,

protein LOX6
metabolite 13-HPT A,

protein LOX1
metabolite 13-HPT A,

protein LOX2
metabolite 13-HPT A,

protein LOX3
metabolite 13-HPT A,

metabolite Linolenic acid
metabolite 13-HPT A

KEGG, PMID:18583180,
AraCyc database
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JA biological reactions
Directed edge-labelled

graph
Data source

protein JAZ inhibits
protein THI2.1JR1-

VSP1CLH1

protein JAZ5 protein JR1
I, protein JAZ5
protein VSP1 I,
protein JAZ5

protein CLH1 I,
protein JAZ5

protein THI2.1 I,
protein JAZ1 protein JR1

I, protein JAZ1
protein VSP1 I,
protein JAZ1

protein CLH1 I,
protein JAZ1

protein THI2.1 I,
protein JAZ8 protein JR1

I, protein JAZ8
protein VSP1 I,
protein JAZ8

protein CLH1 I,
protein JAZ8

protein THI2.1 I,
protein JAZ4 protein JR1

I, protein JAZ4
protein VSP1 I,
protein JAZ4

protein CLH1 I,
protein JAZ4

protein THI2.1 I,
protein JAZ9 protein JR1

I, protein JAZ9
protein VSP1 I,
protein JAZ9

protein CLH1 I,
protein JAZ9

protein THI2.1 I,
protein JAZ6 protein JR1

I, protein JAZ6
protein VSP1 I,
protein JAZ6

protein CLH1 I,

Devoto A, Turner JG
(2005)

Jasmonate-regulated
Arabidopsis stress
signalling network.

Physiologia Plantarum
123(2): 161-172
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JA biological reactions
Directed edge-labelled

graph
Data source

protein JAZ inhibits
protein THI2.1JR1-

VSP1CLH1

protein JAZ6
protein THI2.1 I,

protein JAZ2 protein JR1
I, protein JAZ2
protein VSP1 I,
protein JAZ2

protein CLH1 I,
protein JAZ2

protein THI2.1 I,
protein JAZ7 protein JR1

I, protein JAZ7
protein VSP1 I,
protein JAZ7

protein CLH1 I,
protein JAZ7

protein THI2.1 I,
protein JAZ11
protein JR1 I,
protein JAZ11

protein VSP1 I,
protein JAZ11

protein CLH1 I,
protein JAZ11

protein THI2.1 I,
protein JAZ10
protein JR1 I,
protein JAZ10

protein VSP1 I,
protein JAZ10

protein CLH1 I,
protein JAZ10

protein THI2.1 I,
protein JAZ12
protein JR1 I,
protein JAZ12

protein VSP1 I,
protein JAZ12

protein CLH1 I,
protein JAZ12

protein THI2.1 I,
protein JAZ3 protein JR1

I, protein JAZ3
protein VSP1 I

Devoto A, Turner JG
(2005)

Jasmonate-regulated
Arabidopsis stress
signalling network.

Physiologia Plantarum
123(2): 161-172
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JA biological reactions
Directed edge-labelled

graph
Data source

protein JAZ inhibits
protein THI2.1JR1-

VSP1CLH1

protein JAZ3
protein CLH1 I,

protein JAZ3
protein THI2.1 I,

protein JAZ3
protein CLH1 I,

protein JAZ3
protein THI2.1 I

Devoto A, Turner JG
(2005)

Jasmonate-regulated
Arabidopsis stress
signalling network.

Physiologia Plantarum
123(2): 161-172

protein X4 + gene MYC2
activates protein MYC2

protein X4 protein MYC2
A

Added to the model to
make the transcription of
Myc gene constant (the
exact activator is to our

knowledge still unknown)

protein OPR3 +
metabolite OPDA

activates metabolite OPC8

protein OPR3
metabolite OPC8 A,
metabolite OPDA

metabolite OPC8 A

KEGG, AraCyc database,
Zhang H, Memelink J
(2009) Regulation of

Secondary Metabolism by
Jasmonate Hormones.
Plant-derived Natural
Products, pp.181-194

protein AOC +
metabolite 12/13 EDT

activates
metabolite OPDA chl

protein AOC1
metabolite OPDA chl A,

protein AOC2
metabolite OPDA chl A,

protein AOC3
metabolite OPDA chl A,

protein AOC4
metabolite OPDA chl A,
metabolite 12/13 EDT

metabolite OPDA chl A

KEGG, AraCyc database,
PMID19025383

protein JAR1 +
metabolite JA activates

metabolite JA-Ile

protein JAR1
metabolite JA-Ile A,

metabolite JA
metabolite JA-Ile A

KEGG

protein JMT +
metabolite JA activates

metabolite Me-JA

protein JMT
metabolite Me-JA A,

metabolite JA
metabolite Me-JA A

KEGG, PMID: 19025383,
PMID: 18583180

protein AOS +
metabolite 13-HPT

activates
metabolite 12/13 EDT

protein AOS
metabolite 12/13 EDT A,

metabolite 13-HPT
metabolite 12/13 EDT A

KEGG
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JA biological reactions
Directed edge-labelled

graph
Data source

protein X2 + gene JAZ
activates protein JAZ

protein X2 protein JAZ5
A, protein X2

protein JAZ1 A,
protein X2 protein JAZ8

A, protein X2
protein JAZ4 A,

protein X2 protein JAZ9
A, protein X2

protein JAZ6 A,
protein X2 protein JAZ2

A, protein X2
protein JAZ7 A,

protein X2 protein JAZ11
A, protein X2

protein JAZ10 A,
protein X2 protein JAZ12

A, protein X2
protein JAZ3 A

PMID:21963667

complex SCF +
metabolite JA-Ile +
protein COI1 binds

complex JA-Ile COI1 SCF

complex SCF
complex JA-Ile COI1 SCF

P, protein COI1
complex JA-Ile COI1 SCF

P, metabolite JA-Ile
complex JA-Ile COI1 SCF

P, complex SCF
protein COI1 B,

complex SCF
metabolite JA-Ile B,

protein COI1
metabolite JA-Ile B

PMID: 18261950, PMID:
18583180, Zhang H,
Memelink J (2009)

Regulation of Secondary
Metabolism by Jasmonate
Hormones. Plant-derived

Natural Products,
pp.181-194

metabolite OPC8 +
protein X5 activates

metabolite OPC-8:0-CoA

metabolite OPC8
metabolite OPC-8:0-CoA

A, protein X5
metabolite OPC-8:0-CoA

A

KEGG
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JA biological reactions
Directed edge-labelled

graph
Data source

protein JAZ +
complex JA-Ile COI1 SCF

binds complex JA-
Ile COI1 SCF JAZ

protein JAZ5 complex JA-
Ile COI1 SCF JAZ P,

protein JAZ1 complex JA-
Ile COI1 SCF JAZ P,

protein JAZ8 complex JA-
Ile COI1 SCF JAZ P,

protein JAZ4 complex JA-
Ile COI1 SCF JAZ P,

protein JAZ9 complex JA-
Ile COI1 SCF JAZ P,

protein JAZ6 complex JA-
Ile COI1 SCF JAZ P,

protein JAZ2 complex JA-
Ile COI1 SCF JAZ P,

protein JAZ7 complex JA-
Ile COI1 SCF JAZ P,

protein JAZ11
complex JA-

Ile COI1 SCF JAZ P,
protein JAZ10
complex JA-

Ile COI1 SCF JAZ P,
protein JAZ12
complex JA-

Ile COI1 SCF JAZ P,
protein JAZ3 complex JA-

Ile COI1 SCF JAZ P,
complex JA-Ile COI1 SCF

complex JA-
Ile COI1 SCF JAZ P,

protein JAZ5
complex JA-Ile COI1 SCF

B, protein JAZ1
complex JA-Ile COI1 SCF

B,

PMID:18583180,
PMID:18261950, PMID:

18583180, Zhang H,
Memelink J (2009)

Regulation of Secondary
Metabolism by Jasmonate
Hormones. Plant-derived

Natural Products,
pp.181-194
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JA biological reactions
Directed edge-labelled

graph
Data source

protein JAZ +
complex JA-Ile COI1 SCF

binds complex JA-
Ile COI1 SCF JAZ

protein JAZ8
complex JA-Ile COI1 SCF

B, protein JAZ4
complex JA-Ile COI1 SCF

B, protein JAZ9
complex JA-Ile COI1 SCF

B, protein JAZ6
complex JA-Ile COI1 SCF

B, protein JAZ2
complex JA-Ile COI1 SCF

B, protein JAZ7
complex JA-Ile COI1 SCF

B, protein JAZ11
complex JA-Ile COI1 SCF

B, protein JAZ10
complex JA-Ile COI1 SCF

B, protein JAZ12
complex JA-Ile COI1 SCF

B, protein JAZ3
complex JA-Ile COI1 SCF

B

PMID:18583180,
PMID:18261950, PMID:

18583180, Zhang H,
Memelink J (2009)

Regulation of Secondary
Metabolism by Jasmonate
Hormones. Plant-derived

Natural Products,
pp.181-194

metabolite OPC4 +
protein ACXAIM1KAT
activates metabolite JA

metabolite OPC4
metabolite JA A,

protein ACX1
metabolite JA A,

protein ACX3
metabolite JA A,

protein ACX6
metabolite JA A,

protein ACX5
metabolite JA A,

protein ACX4
metabolite JA A,

protein ACX2
metabolite JA A,

protein AIM1
metabolite JA A

KEGG
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JA biological reactions
Directed edge-labelled

graph
Data source

protein JAZ +
complex JA-Ile COI1 SCF

binds complex JA-
Ile COI1 SCF JAZ

protein KAT2
metabolite JA A,

protein KAT5
metabolite JA A,

protein KAT1
metabolite JA A

KEGG

protein MYC2 +
gene JAZ activates

protein JAZ

protein MYC2
protein JAZ5 A,
protein MYC2

protein JAZ1 A,
protein MYC2

protein JAZ8 A,
protein MYC2

protein JAZ4 A,
protein MYC2

protein JAZ9 A,
protein MYC2

protein JAZ6 A,
protein MYC2

protein JAZ2 A,
protein MYC2

protein JAZ7 A,
protein MYC2

protein JAZ11 A,
protein MYC2

protein JAZ10 A,
protein MYC2

protein JAZ12 A,
protein MYC2

protein JAZ3 A

Zhang H, Memelink J
(2009) Regulation of

Secondary Metabolism by
Jasmonate Hormones.
Plant-derived Natural
Products, pp.181-194,

PMID: 21194534

protein OPCL1ACX-
AIM1KAT +

metabolite OPC-8:0-CoA
activates metabolite OPC6

protein OPCL1
metabolite OPC6 A,

protein ACX1
metabolite OPC6 A,

protein ACX3
metabolite OPC6 A,

protein ACX6
metabolite OPC6 A,

protein ACX5
metabolite OPC6 A,

protein ACX4
metabolite OPC6 A,

protein ACX2
metabolite OPC6 A,

protein AIM1
metabolite OPC6 A

KEGG, AraCyc database,
Zhang H, Memelink J
(2009) Regulation of

Secondary Metabolism by
Jasmonate Hormones.
Plant-derived Natural
Products, pp.181-194
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JA biological reactions
Directed edge-labelled

graph
Data source

protein OPCL1ACX-
AIM1KAT +

metabolite OPC-8:0-CoA
activates metabolite OPC6

protein KAT2
metabolite OPC6 A,

protein KAT5
metabolite OPC6 A,

protein KAT1
metabolite OPC6 A,

metabolite OPC-8:0-CoA
metabolite OPC6 A

KEGG, AraCyc database,
Zhang H, Memelink J
(2009) Regulation of

Secondary Metabolism by
Jasmonate Hormones.
Plant-derived Natural
Products, pp.181-194

protein ACXAIM1KAT +
metabolite OPC6 activates

metabolite OPC4

protein ACX1
metabolite OPC4 A,

protein ACX3
metabolite OPC4 A,

protein ACX6
metabolite OPC4 A,

protein ACX5
metabolite OPC4 A,

protein ACX4
metabolite OPC4 A,

protein ACX2
metabolite OPC4 A,

protein AIM1
metabolite OPC4 A,

protein KAT2
metabolite OPC4 A,

protein KAT5
metabolite OPC4 A,

protein KAT1
metabolite OPC4 A,

metabolite OPC6
metabolite OPC4 A

KEGG

protein MYC2 +
protein JAZ binds

complex JAZ MYC2 TF

protein MYC2
complex JAZ MYC2 TF

P, protein JAZ5
complex JAZ MYC2 TF

P, protein JAZ1
complex JAZ MYC2 TF

P, protein JAZ8
complex JAZ MYC2 TF

P, protein JAZ4
complex JAZ MYC2 TF

P, protein JAZ9
complex JAZ MYC2 TF

P, protein JAZ6
complex JAZ MYC2 TF

P

PMID: 20159850,PMID:
21194534, PMID:
21335373, PMID:

19025383, Zhang H,
Memelink J (2009)

Regulation of Secondary
Metabolism by Jasmonate
Hormones. Plant-derived

Natural Products,
pp.181-194, Note:

Negative feed back loop to
JAZ is represented as
binding for simulation

reasons.
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JA biological reactions
Directed edge-labelled

graph
Data source

protein MYC2 +
protein JAZ binds

complex JAZ MYC2 TF

protein JAZ2
complex JAZ MYC2 TF

P, protein JAZ7
complex JAZ MYC2 TF

P, protein JAZ11
complex JAZ MYC2 TF

P, protein JAZ10
complex JAZ MYC2 TF

P, protein JAZ12
complex JAZ MYC2 TF

P, protein JAZ3
complex JAZ MYC2 TF

P, protein MYC2
protein JAZ5 B,
protein MYC2

protein JAZ1 B,
protein MYC2

protein JAZ8 B,
protein MYC2

protein JAZ4 B,
protein MYC2

protein JAZ9 B,
protein MYC2

protein JAZ6 B,
protein MYC2

protein JAZ2 B,
protein MYC2

protein JAZ7 B,
protein MYC2

protein JAZ11 B,
protein MYC2

protein JAZ10 B,
protein MYC2

protein JAZ12 B,
protein MYC2
protein JAZ3 B

PMID: 20159850,PMID:
21194534, PMID:
21335373, PMID:

19025383, Zhang H,
Memelink J (2009)

Regulation of Secondary
Metabolism by Jasmonate
Hormones. Plant-derived

Natural Products,
pp.181-194, Note:

Negative feed back loop to
JAZ is represented as
binding for simulation

reasons.
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Table A.3: The list of the interactions in the manually constructed structure of the ET sub-model.

ET biological reactions
Directed edge-labelled

graph
Data source

protein ACS +
metabolite SAM activates

metabolite ACC

protein ACS1
metabolite ACC A,

protein ACS2
metabolite ACC A,

protein ACS3
metabolite ACC A,

protein ACS4
metabolite ACC A,

protein ACS5
metabolite ACC A,

protein ACS6
metabolite ACC A,

protein ACS7
metabolite ACC A,

protein ACS8
metabolite ACC A,

protein ACS9
metabolite ACC A,

protein ACS10
metabolite ACC A,

protein ACS11
metabolite ACC A,

metabolite SAM
metabolite ACC A

KEGG

protein ACO +
metabolite ACC activates

metabolite Ethylene

protein ACO1
metabolite Ethylene A,

protein ACO2
metabolite Ethylene A,

protein ACO4
metabolite Ethylene A,

protein ACO
metabolite Ethylene A,

protein ACO-like
metabolite Ethylene A,

metabolite ACC
metabolite Ethylene A

KEGG

complex ASK1 CULLIN1-
RBXE2 EBF12 inhibits
protein EIN3EIL1EIL2

complex ASK1 CULLIN1-
RBXE2 EBF12
protein EIN3 I,

complex ASK1 CULLIN1-
RBXE2 EBF12
protein EIL1 I,

complex ASK1 CULLIN1-
RBXE2 EBF12
protein EIL2 I

PMID: 18692429
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ET biological reactions
Directed edge-labelled

graph
Data source

metabolite Copper +
protein RAN1 activates
metabolite Copper cyto

metabolite Copper
metabolite Copper cyto

A, protein RAN1
metabolite Copper cyto A

PMID: 12045274

metabolite Copper cyto +
pro-

tein Inactive et receptor
activates

protein Et receptor

metabolite Copper cyto
protein ETR1 A,

metabolite Copper cyto
protein ERS1 A,

metabolite Copper cyto
protein ETR2 A,

metabolite Copper cyto
protein ERS2 A,

metabolite Copper cyto
protein EIN4 A, pro-

tein Inactive et receptor
protein ETR1 A, pro-

tein Inactive et receptor
protein ERS1 A, pro-

tein Inactive et receptor
protein ETR2 A, pro-

tein Inactive et receptor
protein ERS2 A, pro-

tein Inactive et receptor
protein EIN4 A

PMID: 12045274, PMID:
16920797

complex Et receptor-
CTR1 inhibits
protein EIN2

complex Et receptor-
CTR1 protein EIN2

I

PMID: 20591837, PMID:
18692429, PMID:
21690206, PMID:

19769567

protein EIN2 activates
protein EIN3EIL1EIL2

protein EIN2
protein EIN3 A,

protein EIN2 protein EIL1
A, protein EIN2
protein EIL2 A

PMID: 12045274, PMID:
1103122, PMID:16920797

protein EIN3EIL1EIL2 +
gene EBF1EBF2 activates

protein EBF1EBF2

protein EIN3
protein EBF1 A,

protein EIN3
protein EBF2 A,

protein EIL1
protein EBF1 A,

protein EIL1
protein EBF2 A,

protein EIL2
protein EBF1 A,

protein EIL2
protein EBF2 A

PMID:16920797
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ET biological reactions
Directed edge-labelled

graph
Data source

protein Inactive EIN2
activates protein EIN2

protein Inactive EIN2
protein EIN2 A

PMID: 16920797

protein EIN3EIL1EIL2 +
gene ERFEDF activates

protein ERFEDF

protein EIN3
protein ERF1 A,

protein EIN3
protein EDF1 A,

protein EIN3
protein EDF2 A,

protein EIN3
protein EDF3 A,

protein EIN3
protein EDF4 A,

protein EIL1
protein ERF1 A,

protein EIL1
protein EDF1 A,

protein EIL1
protein EDF2 A,

protein EIL1
protein EDF3 A,

protein EIL1
protein EDF4 A,

protein EIL2
protein ERF1 A,

protein EIL2
protein EDF1 A,

protein EIL2
protein EDF2 A,

protein EIL2
protein EDF3 A,

protein EIL2
protein EDF4 A

PMID: 18273012,
PMID:11031228

protein EIN5 inhibits
protein EBF1EBF2

protein EIN5
protein EBF1 I,

protein EIN5
protein EBF2 I

PMID: 18692429, PMID:
16920797, PMID:

17085683

protein ERFEDF +
gene PDF1.2 activates

protein PDF1.2

protein ERF1
protein PDF1.2 A,

protein EDF1
protein PDF1.2 A,

protein EDF2
protein PDF1.2 A,

protein EDF3
protein PDF1.2 A,

protein EDF4
protein PDF1.2 A

Rojo E, Solano R,
Sanchez-Serrano JJ (2003)

Interactions between
signaling compounds

involved in plant defense.
Journal of Plant Growth
Regulation 22(1): 82-98.
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ET biological reactions
Directed edge-labelled

graph
Data source

protein SAM +
metabolite L-methionine

activates metabolite SAM

protein SAM1
metabolite SAM A,

protein MAT3
metabolite SAM A,

protein MAT4
metabolite SAM A,

protein SAM2
metabolite SAM A,

metabolite L-methionine
metabolite SAM A

AraCyc database

protein EIN3EIL1EIL2 +
gene GST1b-CHIPR4

activates
protein GST1b-CHIPR4

protein EIN3
protein GST1 A,

protein EIN3
protein b-CHIA,

protein EIN3 protein PR4
A, protein EIL1
protein GST1 A,

protein EIL1
protein b-CHIA,

protein EIL1 protein PR4
A, protein EIL2
protein GST1 A,

protein EIL2
protein b-CHIA,

protein EIL2 protein PR4
A

PMID: 8090746

metabolite Ethylene
inhibits com-

plex Et receptor CTR1

metabolite Ethylene com-
plex Et receptor CTR1

I
PMID: 1204527

complex ASK1 CULLIN1-
RBXE2 +

protein EBF1EBF2 binds
complex ASK1 CULLIN1-

RBXE2 EBF12

complex ASK1 CULLIN1-
RBXE2

complex ASK1 CULLIN1-
RBXE2 EBF12 P,

protein EBF1
complex ASK1 CULLIN1-

RBXE2 EBF12 P,
protein EBF2

complex ASK1 CULLIN1-
RBXE2 EBF12 P,

complex ASK1 CULLIN1-
RBXE2 protein EBF1 B,
complex ASK1 CULLIN1-

RBXE2 protein EBF2
B

PMID: 16920797
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ET biological reactions
Directed edge-labelled

graph
Data source

protein CTR1 +
protein Et receptor binds

com-
plex Et receptor CTR1

protein CTR1 com-
plex Et receptor CTR1 P,

protein ETR1 com-
plex Et receptor CTR1 P,

protein ERS1 com-
plex Et receptor CTR1 P,

protein ETR2 com-
plex Et receptor CTR1 P,

protein ERS2 com-
plex Et receptor CTR1 P,

protein EIN4 com-
plex Et receptor CTR1 P,

protein CTR1
protein ETR1 B,

protein CTR1
protein ERS1 B,
protein CTR1

protein ETR2 B,
protein CTR1

protein ERS2 B,
protein CTR1

protein EIN4 B

PMID: 1204527, PMID:
16920797

Table A.4: The list of manually acquired crosstalk interactions between SA, JA and ET sub-model.

Crosstalk biological
reactions

Directed edge-labelled
graph

Data source

protein MYC2 +
gene GST1b-CHIPR4

activates
protein GST1b-CHIPR4

protein MYC2
protein GST1 A,
protein MYC2

protein b-CHI A,
protein MYC2
protein PR4 A

PMID: 20864543, PMID:
20864543, PMID:

17616737

protein MPK4 inhibits
protein EDS1

protein MPK4
protein EDS1 I

PMID: 16813576

protein MPK4 inhibits
protein PAD34

protein MPK4
protein PAD4 I,
protein MPK4
protein PAD3 I

PMID: 22408091, PMID:
16813576

metabolite SA inhibits
metabolite OPDA

metabolite SA
metabolite OPDA I

Rojo E, Solano R,
Sanchez-Serrano JJ (2003)

Interactions between
signaling compounds

involved in plant defense.
Journal of Plant Growth
Regulation 22(1): 82-98.
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A.2 The levels of the biological component abstraction

The Table A.5 presents the levels of the abstraction of biological components that are in-
cluded in the manually constructed PDS model structure.

The first column in the table represents the family name of the biological component. The
second column contains all the single members of the family that are considered important
for the plant defence. The third column contains their unique ID numbers from the TAIR
database.
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Table A.5: The list of manually acquired crosstalk interactions between SA, JA and ET sub-model.

Family name (level 2)
Individual short name

(level 3)
TAIR gene ID

SA SA /

HRT HRT AT5G43470

NPR1 NPR1 AT1G64280

NIMIN NIMIN1 AT1G02450

NIMIN NIMIN2 AT3G25882

NIMIN NIMIN3 AT1G09415

PAD34 PAD4 AT3G52430

PAD34 PAD3 AT3G26830

EDS1 EDS1 AT3G48090

EDS5 EDS5 AT4G39030

PR125 PR1 AT2G14610

PR125 PR2 AT3G57260

PR125 PR5 AT1G75040

ICS ICS1 At1g74710

ICS ICS2 AT1G18870

WRKY70 WRKY70 At3g56400

MPK4 MPK4 At4g01370

Chorismate Chorismate /

Isochorismate Isochorismate /

BA BA /

BA2H BA2H /

ROS productive enzymes NADPH oxidase /

ROS productive enzymes Catalase /

ROS productive enzymes Glutathione peroxidase /

ROS productive enzymes Superoxide dismutase /

SAG SAG /

SGE SGE /

Trans-cinnamic acid Trans-cinnamic acid /

Phenylalanine Phenylalanine /

Phenylpyruvate Phenylpyruvate /

ROS ROS /

PAL PAL1 AT2G37040

PAL PAL2 AT3G53260

PAL PAL3 AT5G04230

PAL PAL4 AT3G10340

IPL IPL /

CM CM1 AT3G29200

CM CM2 At5g10870

CM CM3 At1g69370

Prephenate amino-
transferase

Prephenate amino-
transferase

At2G22250
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Family name (level 2)
Individual short name

(level 3)
TAIR gene ID

Prephenate Prephenate /

Arogenate dehydratase Arogenate dehydratase At5g22630

Orto-coumaric acid Orto-coumaric acid /

UGP glikosyltransferaze UGP glikosyltransferaze AT1G01420

Ethylene Ethylene /

Copper Copper /

SAM SAM /

ACC ACC /

ACS ACS1 AT3G61510

ACS ACS2 AT1G01480

ACS ACS3 AT5G28360

ACS ACS4 AT2G22810

ACS ACS5 AT5G65800

ACS ACS6 AT4G11280

ACS ACS7 AT4G26200

ACS ACS8 AT4G37770

ACS ACS9 AT3G49700

ACS ACS10 AT1G62960

ACS ACS11 AT4G08040

ACO ACO1 AT2G19590

ACO ACO2 AT1G62380

ACO ACO4 AT1G05010

ACO ACO AT1G12010

ACO ACO-like AT1G77330

RAN1 RAN1 AT5G44790

Et receptor ETR1 AT1G66340

Et receptor ERS1 AT2G40940

Et receptor ETR2 AT3G23150

Et receptor ERS2 AT1G04310

Et receptor EIN4 AT3G04580

CTR1 CTR1 AT5G03730

EIN2 EIN2 AT5G03280

EIN3EIL1EIL2 EIN3 AT3G20770

EIN3EIL1EIL2 EIL1 AT2G27050

EIN3EIL1EIL2 EIL2 AT5G21120

ERFEDF ERF1 AT3G23240

ERFEDF EDF1 AT1G25560

ERFEDF EDF2 AT1G68840

ERFEDF EDF3 AT3G25730

ERFEDF EDF4 AT1G13260

EBF1EBF2 EBF1 AT2G25490

EBF1EBF2 EBF2 AT5G25350

EIN5 EIN5 AT1G54490
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Family name (level 2)
Individual short name

(level 3)
TAIR gene ID

JA JA /

Linolenic acid Linolenic acid /

LOX LOX1 AT1G55020

LOX LOX2 AT3G45140

LOX LOX3 AT1G17420

LOX LOX4 AT1G72520

LOX LOX5 AT3G22400

LOX LOX6 AT1G67560

AOS AOS AT5G42650

AOC AOC1 AT3G25760

AOC AOC2 AT3G25770

AOC AOC3 AT3G25780

AOC AOC4 AT1G13280

13-HPT 13-HPT /

12/13 EDT 12/13 EDT /

OPDA OPDA /

JMT JMT AT1G19640

JA-Ile JA-Ile /

COI1 COI1 AT2G39940

JAR1 JAR1 AT2G46370

JAZ JAZ1 AT1G19180

JAZ JAZ2 AT1G74950

JAZ JAZ3 At3g17860

JAZ JAZ4 AT1G48500

JAZ JAZ5 AT1G17380

JAZ JAZ6 AT1G72450

JAZ JAZ7 AT2G34600

JAZ JAZ8 AT1G30135

JAZ JAZ9 AT1G70700

JAZ JAZ10 AT5G13220

JAZ JAZ11 AT3G43440

JAZ JAZ12 AT5G20900

MYC2 MYC2 AT1G32640

GST1b-CHIPR4 GST1 AT1G02930

GST1b-CHIPR4 PR4 AT3G04720

GST1b-CHIPR4 b-CHI AT3G12500

PDF1.2 PDF1.2 AT5G44420

MPK6 MPK6 At2g43790

MPK3 MPK3 AT3G45640

THI2.1JR1VSP1CLH1 THI2.1 AT1G72260

THI2.1JR1VSP1CLH1 JR1 AT3G16470

THI2.1JR1VSP1CLH1 VSP1 AT5G24780

THI2.1JR1VSP1CLH1 CLH1 AT1G19670
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Family name (level 2)
Individual short name

(level 3)
TAIR gene ID

TGA TF245 TGA TF2 At5g06950

TGA TF245 TGA TF4 At5g10030

TGA TF245 TGA TF5 At5g06960

OPCL1ACXAIM1KAT OPCL1 AT1G20510

OPCL1ACXAIM1KAT ACX1 AT4G16760

OPCL1ACXAIM1KAT ACX2 AT5G65110

OPCL1ACXAIM1KAT ACX3 AT1G06290

OPCL1ACXAIM1KAT ACX4 AT3G51840

OPCL1ACXAIM1KAT ACX5 AT2G35690

OPCL1ACXAIM1KAT ACX6 AT1G06310

OPCL1ACXAIM1KAT AIM1 AT4G29010

OPCL1ACXAIM1KAT KAT1 AT1G04710

OPCL1ACXAIM1KAT KAT2 AT2G33150

OPCL1ACXAIM1KAT KAT5 AT5G48880

ACXAIM1KAT ACX1 AT4G16760

ACXAIM1KAT ACX2 AT5G65110

ACXAIM1KAT ACX3 AT1G06290

ACXAIM1KAT ACX4 AT3G51840

ACXAIM1KAT ACX5 AT2G35690

ACXAIM1KAT ACX6 AT1G06310

ACXAIM1KAT AIM1 AT4G29010

ACXAIM1KAT KAT1 AT1G04710

ACXAIM1KAT KAT2 AT2G33150

ACXAIM1KAT KAT5 AT5G48880

OPR3 OPR3 AT2G06050

OPC8 OPC8 /

Me-JA Me-JA /

OPC6 OPC6 /

OPC4 OPC4 /

OPC-8:0-CoA OPC-8:0-CoA /

SAM SAM1 AT1G02500

SAM SAM2 AT4G01850

SAM MAT3 AT2G36880

SAM MAT4 AT3G17390

SCF SCF

AAO4 AAO4 AT1g04580

L-methionine L-methionine /
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A.3 A manual expanded graph file at the single component level

The network consists of 175 components and 387 reactions and represents the initial man-
ually constructed PDS model structure. The graph, which should be saved as .bmg file
named, for example, ”graph.bmg”, contains the following reactions and components:

# canvas -303.0,-78.7,10401.8,2703.5
# symmetric B
complex ASK1 CULLIN1 RBXE2 complex ASK1 CULLIN1 RBXE2 EBF12 P
linecolor=255/0/0 pos=4088.7,1212.2
complex ASK1 CULLIN1 RBXE2 protein EBF1 B
linecolor=255/0/0 pos=4001.0,1192.7
complex ASK1 CULLIN1 RBXE2 protein EBF2 B linecolor=255/0/0 pos=3930.3,1271.9
complex ASK1 CULLIN1 RBXE2 EBF12 protein EIL1 I
linecolor=255/0/0 pos=3944.6,1404.8
complex ASK1 CULLIN1 RBXE2 EBF12 protein EIL2 I
linecolor=255/0/0 pos=3984.7,1460.5
complex ASK1 CULLIN1 RBXE2 EBF12 protein EIN3 I
linecolor=255/0/0 pos=3967.2,1531.8
complex Et receptor CTR1 protein EIN2 I linecolor=255/0/0 pos=3523.9,1676.4
complex JA-Ile COI1 SCF complex JA-Ile COI1 SCF JAZ P
linecolor=255/0/0 pos=6609.2,2482.1
complex JA-Ile COI1 SCF protein JAZ1 B linecolor=255/0/0 pos=6107.5,2338.6
complex JA-Ile COI1 SCF protein JAZ10 B linecolor=255/0/0 pos=6826.6,2329.1
complex JA-Ile COI1 SCF protein JAZ11 B linecolor=255/0/0 pos=6902.4,2330.5
complex JA-Ile COI1 SCF protein JAZ12 B linecolor=255/0/0 pos=6983.9,2326.4
complex JA-Ile COI1 SCF protein JAZ2 B linecolor=255/0/0 pos=6208.1,2347.9
complex JA-Ile COI1 SCF protein JAZ3 B linecolor=255/0/0 pos=6295.8,2359.1
complex JA-Ile COI1 SCF protein JAZ4 B linecolor=255/0/0 pos=6373.8,2343.4
complex JA-Ile COI1 SCF protein JAZ5 B linecolor=255/0/0 pos=6447.1,2361.0
complex JA-Ile COI1 SCF protein JAZ6 B linecolor=255/0/0 pos=6520.7,2343.6
complex JA-Ile COI1 SCF protein JAZ7 B linecolor=255/0/0 pos=6595.8,2345.9
complex JA-Ile COI1 SCF protein JAZ8 B linecolor=255/0/0 pos=6673.4,2348.8
complex JA-Ile COI1 SCF protein JAZ9 B linecolor=255/0/0 pos=6749.4,2323.3
complex NPR1 TGA245 protein PR1 A linecolor=255/0/0 pos=10011.3,1373.3
complex NPR1 TGA245 protein PR2 A linecolor=255/0/0 pos=10019.3,1473.3
complex NPR1 TGA245 protein PR5 A linecolor=255/0/0 pos=10076.7,1556.0
complex NPR1 oligomer protein NPR1 A linecolor=255/0/0 pos=9788.3,1207.4
complex SCF complex JA-Ile COI1 SCF P linecolor=255/0/0 pos=6035.3,2531.3
complex SCF metabolite JA-Ile B linecolor=255/0/0 pos=5747.4,2525.8
complex SCF protein COI1 B linecolor=255/0/0 pos=5821.7,2623.8
metabolite 12/13 EDT metabolite OPDA chl A linecolor=255/0/0 pos=5114.8,1265.4
metabolite 13-HPT metabolite 12/13 EDT A linecolor=255/0/0 pos=5113.1,1116.4
metabolite ACC metabolite Ethylene A linecolor=255/0/0 pos=2923.9,1392.9
metabolite BA metabolite SA A linecolor=255/0/0 pos=8786.5,1685.6
metabolite Chorismate metabolite Isochorismate A linecolor=255/0/0 pos=8725.7,982.8
metabolite Chorismate metabolite Prephenate A
linecolor=255/0/0 pinned=1 pos=8456.1045,811.2770
metabolite Copper metabolite Copper cyto A linecolor=255/0/0 pos=3349.4,923.0
metabolite Copper cyto protein EIN4 A linecolor=255/0/0 pos=3523.3,1081.2
metabolite Copper cyto protein ERS1 A linecolor=255/0/0 pos=3353.2,1190.4
metabolite Copper cyto protein ERS2 A linecolor=255/0/0 pos=3449.8,1164.6
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metabolite Copper cyto protein ETR1 A linecolor=255/0/0 pos=3210.9,1124.3
metabolite Copper cyto protein ETR2 A linecolor=255/0/0 pos=3278.3,1134.0
metabolite Ethylene complex Et receptor CTR1 I linecolor=255/0/0 pos=3297.5,1599.1
metabolite Isochorismate metabolite SA chl A linecolor=255/0/0 pos=9007.9,1386.5
metabolite JA metabolite JA-Ile A linecolor=255/0/0 pos=5359.5,2477.9
metabolite JA metabolite Me-JA A linecolor=255/0/0 pos=5240.8,2556.7
metabolite JA-Ile complex JA-Ile COI1 SCF P linecolor=255/0/0 pos=5759.8,2429.3
metabolite JA-Ile protein COI1 B linecolor=255/0/0 pos=5569.3,2555.0
metabolite L-methionine metabolite SAM A linecolor=255/0/0 pos=2796.4,745.4
metabolite Linolenic acid metabolite 13-HPT A linecolor=255/0/0 pos=5104.3,962.9
metabolite OPC-8:0-CoA metabolite OPC6 A linecolor=255/0/0 pos=5259.2,1758.7
metabolite OPC4 metabolite JA A linecolor=255/0/0 pos=5138.0,2375.3
metabolite OPC6 metabolite OPC4 A
linecolor=255/0/0 pinned=1 pos=5245.0036,2026.1763
metabolite OPC8 metabolite OPC-8:0-CoA A linecolor=255/0/0 pos=5267.0,1640.9
metabolite OPDA metabolite OPC8 A linecolor=255/0/0 pos=5252.0,1525.8
metabolite OPDA chl metabolite OPDA A linecolor=255/0/0 pos=5120.5,1394.9
metabolite Orto-coumaric acid metabolite SA A linecolor=255/0/0 pos=8612.9,1742.1
metabolite Phenylalanine metabolite Trans-cinnamic acid A
linecolor=255/0/0 pos=8501.2,1308.2
metabolite Phenylpyruvate metabolite Phenylalanine A
linecolor=255/0/0 pos=8516.1,1142.6
metabolite Prephenate metabolite Phenylpyruvate A linecolor=255/0/0 pos=8511.6,977.1
metabolite ROS protein BA2H A linecolor=255/0/0 pos=9566.8,1181.2
metabolite ROS protein MPK3 A linecolor=255/0/0 pos=9435.7,752.2
metabolite ROS protein MPK6 A linecolor=255/0/0 pinned=1 pos=9694.2650,804.1757
metabolite SA metabolite OPDA I linecolor=255/0/0 pos=6990.0,1741.2
metabolite SA metabolite SAG A linecolor=255/0/0 pos=8903.7,1997.8
metabolite SA metabolite SGE A linecolor=255/0/0 pos=8664.4,2014.6
metabolite SA protein NPR1 A linecolor=255/0/0 pinned=1 pos=9584.0072,1631.6197
metabolite SAM metabolite ACC A linecolor=255/0/0 pos=2806.8,972.5
metabolite SA chl metabolite SA A linecolor=255/0/0 pinned=1 pos=8999.1799,1585.9679
metabolite Trans-cinnamic acid metabolite BA A linecolor=255/0/0 pos=8612.4,1387.0
metabolite Trans-cinnamic acid metabolite Orto-coumaric acid A
linecolor=255/0/0 pinned=1 pos=8450.7992,1455.7455
protein AAO4 metabolite BA A linecolor=255/0/0 pinned=1 pos=8748.5817,1512.1865
protein AAO4 metabolite Orto-coumaric acid A
linecolor=255/0/0 pinned=1 pos=8556.8009,1510.1879
protein ACO metabolite Ethylene A linecolor=255/0/0 pos=2895.4,1641.4
protein ACO-like metabolite Ethylene A linecolor=255/0/0 pos=2942.1,1698.6
protein ACO1 metabolite Ethylene A linecolor=255/0/0 pos=2897.0,1475.1
protein ACO2 metabolite Ethylene A linecolor=255/0/0 pos=2907.1,1545.1
protein ACO4 metabolite Ethylene A linecolor=255/0/0 pos=2850.9,1586.1
protein ACS1 metabolite ACC A linecolor=255/0/0 pos=2879.2,1023.3
protein ACS10 metabolite ACC A linecolor=255/0/0 pos=2724.5,1091.1
protein ACS11 metabolite ACC A linecolor=255/0/0 pos=2735.8,1026.2
protein ACS2 metabolite ACC A linecolor=255/0/0 pos=2867.3,1085.3
protein ACS3 metabolite ACC A linecolor=255/0/0 pos=2919.3,1130.7
protein ACS4 metabolite ACC A linecolor=255/0/0 pos=2920.1,1204.5
protein ACS5 metabolite ACC A linecolor=255/0/0 pos=2860.7,1249.2
protein ACS6 metabolite ACC A linecolor=255/0/0 pos=2894.5,1303.0
protein ACS7 metabolite ACC A linecolor=255/0/0 pos=2712.6,1280.9
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protein ACS8 metabolite ACC A linecolor=255/0/0 pos=2709.3,1214.2
protein ACS9 metabolite ACC A linecolor=255/0/0 pos=2707.1,1151.5
protein ACX1 metabolite JA A linecolor=255/0/0 pos=4844.9,2327.1
protein ACX1 metabolite OPC4 A linecolor=255/0/0 pos=4843.6,2228.7
protein ACX1 metabolite OPC6 A linecolor=255/0/0 pos=4859.5,1966.6
protein ACX2 metabolite JA A linecolor=255/0/0 pos=4921.5,2345.8
protein ACX2 metabolite OPC4 A linecolor=255/0/0 pos=4929.4,2224.0
protein ACX2 metabolite OPC6 A linecolor=255/0/0 pos=4934.5,1983.9
protein ACX3 metabolite JA A linecolor=255/0/0 pos=4991.3,2364.5
protein ACX3 metabolite OPC4 A linecolor=255/0/0 pos=4999.5,2247.4
protein ACX3 metabolite OPC6 A linecolor=255/0/0 pos=5005.0,1992.9
protein ACX4 metabolite JA A linecolor=255/0/0 pos=5055.0,2332.0
protein ACX4 metabolite OPC4 A linecolor=255/0/0 pos=5052.6,2199.7
protein ACX4 metabolite OPC6 A linecolor=255/0/0 pos=5071.5,1979.0
protein ACX5 metabolite JA A linecolor=255/0/0 pos=5129.7,2300.1
protein ACX5 metabolite OPC4 A linecolor=255/0/0 pos=5116.1,2208.0
protein ACX5 metabolite OPC6 A linecolor=255/0/0 pos=5142.6,1964.7
protein ACX6 metabolite JA A linecolor=255/0/0 pos=5229.6,2317.0
protein ACX6 metabolite OPC4 A linecolor=255/0/0 pos=5187.0,2149.6
protein ACX6 metabolite OPC6 A linecolor=255/0/0 pos=5226.9,1958.1
protein AIM1 metabolite JA A linecolor=255/0/0 pos=5305.4,2310.3
protein AIM1 metabolite OPC4 A linecolor=255/0/0 pos=5298.2,2205.0
protein AIM1 metabolite OPC6 A linecolor=255/0/0 pos=5314.0,1951.1
protein AOC1 metabolite OPDA chl A linecolor=255/0/0 pos=5352.7,1274.1
protein AOC2 metabolite OPDA chl A linecolor=255/0/0 pos=5317.9,1327.5
protein AOC3 metabolite OPDA chl A linecolor=255/0/0 pos=5374.8,1363.8
protein AOC4 metabolite OPDA chl A linecolor=255/0/0 pos=5349.3,1426.0
protein AOS metabolite 12/13 EDT A linecolor=255/0/0 pos=5277.4,1203.9
protein Arogenate dehydratase metabolite Phenylalanine A
linecolor=255/0/0 pos=8337.4,1201.2
protein BA2H metabolite SA A linecolor=255/0/0 pos=9049.0,1747.6
protein CM1 metabolite Prephenate A linecolor=255/0/0 pos=8358.5,781.6
protein CM2 metabolite Prephenate A linecolor=255/0/0 pos=8359.4,938.1
protein CM3 metabolite Prephenate A linecolor=255/0/0 pos=8357.3,856.3
protein COI1 complex JA-Ile COI1 SCF P linecolor=255/0/0 pos=5839.6,2520.8
protein CTR1 complex Et receptor CTR1 P
linecolor=255/0/0 pinned=1 pos=3531.1004,1464.2793
protein CTR1 protein EIN4 B linecolor=255/0/0 pos=3651.8,1317.6
protein CTR1 protein ERS1 B linecolor=255/0/0 pos=3483.3,1344.2
protein CTR1 protein ERS2 B linecolor=255/0/0 pos=3567.3,1332.9
protein CTR1 protein ETR1 B linecolor=255/0/0 pos=3325.0,1355.0
protein CTR1 protein ETR2 B linecolor=255/0/0 pos=3402.8,1349.8
protein Catalase metabolite ROS A linecolor=255/0/0 pos=9962.6,804.8
protein EBF1 complex ASK1 CULLIN1 RBXE2 EBF12 P
linecolor=255/0/0 pos=4078.8,986.3
protein EBF2 complex ASK1 CULLIN1 RBXE2 EBF12 P
linecolor=255/0/0 pos=3970.5,1127.6
protein EDF1 protein PDF1.2 A linecolor=255/0/0 pos=4437.3,1753.5
protein EDF2 protein PDF1.2 A linecolor=255/0/0 pos=4420.8,1862.8
protein EDF3 protein PDF1.2 A linecolor=255/0/0 pos=4477.8,1909.9
protein EDF4 protein PDF1.2 A linecolor=255/0/0 pos=4430.5,1967.0
protein EDS1 protein EDS5 A linecolor=255/0/0 pos=9452.5,1025.4
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protein EDS5 protein ICS1 A linecolor=255/0/0 pinned=1 pos=9277.5793,1190.3358
protein EDS5 protein ICS2 A linecolor=255/0/0 pinned=1 pos=9411.1688,1188.8498
protein EIL1 protein EBF1 A linecolor=255/0/0 pos=3866.9,1358.0
protein EIL1 protein EBF2 A linecolor=255/0/0 pos=3784.7,1489.4
protein EIL1 protein EDF1 A linecolor=255/0/0 pos=4098.3,1718.4
protein EIL1 protein EDF2 A linecolor=255/0/0 pos=4118.5,1776.5
protein EIL1 protein EDF3 A linecolor=255/0/0 pos=4133.4,1838.0
protein EIL1 protein EDF4 A linecolor=255/0/0 pos=4109.5,1899.9
protein EIL1 protein ERF1 A linecolor=255/0/0 pos=4050.1,1672.6
protein EIL1 protein GST1 A linecolor=255/0/0 pos=4197.6,1524.8
protein EIL1 protein PR4 A linecolor=255/0/0 pos=4207.7,1395.9
protein EIL1 protein b-CHI A linecolor=255/0/0 pos=4192.9,1302.6
protein EIL2 protein EBF1 A linecolor=255/0/0 pos=3860.8,1425.1
protein EIL2 protein EBF2 A linecolor=255/0/0 pos=3786.2,1555.8
protein EIL2 protein EDF1 A linecolor=255/0/0 pos=4054.8,1781.8
protein EIL2 protein EDF2 A linecolor=255/0/0 pos=4071.5,1843.8
protein EIL2 protein EDF3 A linecolor=255/0/0 pos=3989.3,1917.7
protein EIL2 protein EDF4 A linecolor=255/0/0 pos=4101.9,1971.8
protein EIL2 protein ERF1 A linecolor=255/0/0 pos=4012.6,1731.3
protein EIL2 protein GST1 A linecolor=255/0/0 pos=4124.1,1558.8
protein EIL2 protein PR4 A linecolor=255/0/0 pos=4210.1,1461.0
protein EIL2 protein b-CHI A linecolor=255/0/0 pos=4145.5,1350.3
protein EIN2 protein EIL1 A linecolor=255/0/0 pos=3643.5,1760.9
protein EIN2 protein EIL2 A linecolor=255/0/0 pos=3633.9,1836.3
protein EIN2 protein EIN3 A linecolor=255/0/0 pos=3628.1,1911.8
protein EIN3 protein EBF1 A linecolor=255/0/0 pos=3883.3,1498.9
protein EIN3 protein EBF2 A linecolor=255/0/0 pos=3811.7,1619.7
protein EIN3 protein EDF1 A linecolor=255/0/0 pos=4022.9,1868.6
protein EIN3 protein EDF2 A linecolor=255/0/0 pos=4056.2,1931.5
protein EIN3 protein EDF3 A linecolor=255/0/0 pos=4023.6,1990.1
protein EIN3 protein EDF4 A linecolor=255/0/0 pos=4065.0,2042.1
protein EIN3 protein ERF1 A linecolor=255/0/0 pos=3995.4,1807.7
protein EIN3 protein GST1 A linecolor=255/0/0 pos=4177.2,1612.2
protein EIN3 protein PR4 A linecolor=255/0/0 pos=4136.9,1498.8
protein EIN3 protein b-CHI A linecolor=255/0/0 pos=4142.8,1422.3
protein EIN4 complex Et receptor CTR1 P linecolor=255/0/0 pos=3668.2,1403.9
protein EIN5 protein EBF1 I linecolor=255/0/0 pos=3889.0,957.1
protein EIN5 protein EBF2 I linecolor=255/0/0 pos=3824.2,1119.2
protein ERF1 protein PDF1.2 A linecolor=255/0/0 pos=4459.0,1688.9
protein ERS1 complex Et receptor CTR1 P linecolor=255/0/0 pos=3474.1,1440.1
protein ERS2 complex Et receptor CTR1 P linecolor=255/0/0 pos=3611.4,1454.6
protein ETR1 complex Et receptor CTR1 P linecolor=255/0/0 pos=3331.4,1450.1
protein ETR2 complex Et receptor CTR1 P linecolor=255/0/0 pos=3405.8,1458.6
protein Glutathione peroxidase metabolite ROS A linecolor=255/0/0 pos=9894.9,687.7
protein HRT protein MPK3 A linecolor=255/0/0 pos=9365.8,626.8
protein HRT protein MPK6 A linecolor=255/0/0 pos=9594.7,640.4
protein ICS1 metabolite Isochorismate A linecolor=255/0/0 pos=9117.6,1263.8
protein ICS2 metabolite Isochorismate A linecolor=255/0/0 pos=9191.6,1288.0
protein IPL metabolite SA chl A linecolor=255/0/0 pos=8911.3,1391.1
protein Inactive BA2H protein BA2H A linecolor=255/0/0 pos=9362.9,1532.6
protein Inactive EIN2 protein EIN2 A
linecolor=255/0/0 pinned=1 pos=3402.2653,1772.3357
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protein Inactive HRT protein HRT A linecolor=255/0/0 pinned=1 pos=9791.7682,615.9390
protein Inactive MPK3 protein MPK3 A
linecolor=255/0/0 pinned=1 pos=9064.9240,708.8540
protein Inactive MPK6 protein MPK6 A
linecolor=255/0/0 pinned=1 pos=9507.8179,725.7973
protein Inactive et receptor protein EIN4 A linecolor=255/0/0 pos=3685.9,1095.7
protein Inactive et receptor protein ERS1 A linecolor=255/0/0 pos=3526.1,1154.8
protein Inactive et receptor protein ERS2 A linecolor=255/0/0 pos=3609.7,1146.5
protein Inactive et receptor protein ETR1 A linecolor=255/0/0 pos=3366.9,1130.1
protein Inactive et receptor protein ETR2 A linecolor=255/0/0 pos=3437.4,1093.3
protein JAR1 metabolite JA-Ile A linecolor=255/0/0 pos=5599.0,2407.6
protein JAZ1 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=6749.7,2395.7
protein JAZ1 complex JAZ MYC2 TF P linecolor=255/0/0 pos=6881.5,1642.8
protein JAZ1 protein CLH1 I linecolor=255/0/0 pos=6335.1,1479.6
protein JAZ1 protein JR1 I linecolor=255/0/0 pos=6253.1,1426.9
protein JAZ1 protein MYC2 B linecolor=255/0/0 pos=6714.2,1401.8
protein JAZ1 protein THI2.1 I linecolor=255/0/0 pos=6459.9,1568.9
protein JAZ1 protein VSP1 I linecolor=255/0/0 pos=6404.7,1518.5
protein JAZ10 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7485.7,2346.2
protein JAZ10 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7638.7,1576.4
protein JAZ10 protein CLH1 I linecolor=255/0/0 pos=7110.8,1458.0
protein JAZ10 protein JR1 I linecolor=255/0/0 pos=7008.9,1318.8
protein JAZ10 protein MYC2 B linecolor=255/0/0 pos=7467.3,1375.9
protein JAZ10 protein THI2.1 I linecolor=255/0/0 pos=7229.3,1558.8
protein JAZ10 protein VSP1 I linecolor=255/0/0 pos=7182.1,1508.9
protein JAZ11 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7559.9,2366.4
protein JAZ11 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7706.7,1549.9
protein JAZ11 protein CLH1 I linecolor=255/0/0 pos=7194.3,1452.3
protein JAZ11 protein JR1 I linecolor=255/0/0 pos=7088.8,1316.7
protein JAZ11 protein MYC2 B linecolor=255/0/0 pos=7540.1,1381.7
protein JAZ11 protein THI2.1 I linecolor=255/0/0 pos=7311.4,1548.7
protein JAZ11 protein VSP1 I linecolor=255/0/0 pos=7262.7,1501.0
protein JAZ12 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7642.2,2357.8
protein JAZ12 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7795.1,1534.1
protein JAZ12 protein CLH1 I linecolor=255/0/0 pos=7271.2,1441.7
protein JAZ12 protein JR1 I linecolor=255/0/0 pos=7174.4,1323.6
protein JAZ12 protein MYC2 B linecolor=255/0/0 pos=7623.6,1385.2
protein JAZ12 protein THI2.1 I linecolor=255/0/0 pos=7398.6,1528.3
protein JAZ12 protein VSP1 I linecolor=255/0/0 pos=7345.1,1485.6
protein JAZ2 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=6852.0,2398.0
protein JAZ2 complex JAZ MYC2 TF P linecolor=255/0/0 pos=6992.2,1633.8
protein JAZ2 protein CLH1 I linecolor=255/0/0 pos=6445.9,1457.2
protein JAZ2 protein JR1 I linecolor=255/0/0 pos=6355.0,1399.3
protein JAZ2 protein MYC2 B linecolor=255/0/0 pos=6801.4,1420.6
protein JAZ2 protein THI2.1 I linecolor=255/0/0 pos=6560.2,1575.7
protein JAZ2 protein VSP1 I linecolor=255/0/0 pos=6515.0,1512.6
protein JAZ3 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=6944.8,2398.5
protein JAZ3 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7088.2,1637.9
protein JAZ3 protein CLH1 I linecolor=255/0/0 pos=6534.8,1449.3
protein JAZ3 protein JR1 I linecolor=255/0/0 pos=6442.8,1384.5
protein JAZ3 protein MYC2 B linecolor=255/0/0 pos=6898.2,1426.4
protein JAZ3 protein THI2.1 I linecolor=255/0/0 pos=6649.3,1586.6
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protein JAZ3 protein VSP1 I linecolor=255/0/0 pos=6606.4,1518.7
protein JAZ4 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7031.7,2387.9
protein JAZ4 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7175.2,1635.4
protein JAZ4 protein CLH1 I linecolor=255/0/0 pos=6610.4,1453.3
protein JAZ4 protein JR1 I linecolor=255/0/0 pos=6522.9,1375.8
protein JAZ4 protein MYC2 B linecolor=255/0/0 pos=6967.4,1372.6
protein JAZ4 protein THI2.1 I linecolor=255/0/0 pos=6733.7,1590.8
protein JAZ4 protein VSP1 I linecolor=255/0/0 pos=6688.8,1527.7
protein JAZ5 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7098.3,2347.2
protein JAZ5 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7256.9,1628.9
protein JAZ5 protein CLH1 I linecolor=255/0/0 pos=6692.2,1467.4
protein JAZ5 protein JR1 I linecolor=255/0/0 pos=6595.4,1368.2
protein JAZ5 protein MYC2 B linecolor=255/0/0 pos=7049.0,1368.2
protein JAZ5 protein THI2.1 I linecolor=255/0/0 pos=6810.2,1584.6
protein JAZ5 protein VSP1 I linecolor=255/0/0 pos=6767.1,1525.4
protein JAZ6 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7172.7,2356.2
protein JAZ6 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7339.1,1618.8
protein JAZ6 protein CLH1 I linecolor=255/0/0 pos=6766.9,1465.2
protein JAZ6 protein JR1 I linecolor=255/0/0 pos=6674.0,1339.4
protein JAZ6 protein MYC2 B linecolor=255/0/0 pos=7131.2,1365.3
protein JAZ6 protein THI2.1 I linecolor=255/0/0 pos=6891.6,1571.4
protein JAZ6 protein VSP1 I linecolor=255/0/0 pos=6844.4,1519.7
protein JAZ7 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7257.0,2338.5
protein JAZ7 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7418.7,1604.0
protein JAZ7 protein CLH1 I linecolor=255/0/0 pos=6852.4,1460.6
protein JAZ7 protein JR1 I linecolor=255/0/0 pos=6753.2,1332.6
protein JAZ7 protein MYC2 B linecolor=255/0/0 pos=7240.0,1340.7
protein JAZ7 protein THI2.1 I linecolor=255/0/0 pos=6972.0,1565.9
protein JAZ7 protein VSP1 I linecolor=255/0/0 pos=6924.6,1515.9
protein JAZ8 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7341.9,2352.8
protein JAZ8 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7494.6,1582.2
protein JAZ8 protein CLH1 I linecolor=255/0/0 pos=6948.2,1465.7
protein JAZ8 protein JR1 I linecolor=255/0/0 pos=6849.2,1324.0
protein JAZ8 protein MYC2 B linecolor=255/0/0 pos=7324.0,1407.2
protein JAZ8 protein THI2.1 I linecolor=255/0/0 pos=7063.1,1568.4
protein JAZ8 protein VSP1 I linecolor=255/0/0 pos=7017.3,1519.9
protein JAZ9 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7417.2,2376.6
protein JAZ9 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7567.2,1577.9
protein JAZ9 protein CLH1 I linecolor=255/0/0 pos=7030.9,1465.4
protein JAZ9 protein JR1 I linecolor=255/0/0 pos=6929.6,1323.1
protein JAZ9 protein MYC2 B linecolor=255/0/0 pos=7394.7,1361.7
protein JAZ9 protein THI2.1 I linecolor=255/0/0 pos=7147.8,1565.7
protein JAZ9 protein VSP1 I linecolor=255/0/0 pos=7102.6,1515.0
protein JMT metabolite Me-JA A linecolor=255/0/0 pos=5097.6,2624.7
protein KAT1 metabolite JA A linecolor=255/0/0 pos=5376.1,2326.7
protein KAT1 metabolite OPC4 A linecolor=255/0/0 pos=5368.4,2196.1
protein KAT1 metabolite OPC6 A linecolor=255/0/0 pos=5384.9,1970.7
protein KAT2 metabolite JA A linecolor=255/0/0 pos=5438.6,2291.0
protein KAT2 metabolite OPC4 A linecolor=255/0/0 pos=5446.5,2183.4
protein KAT2 metabolite OPC6 A linecolor=255/0/0 pos=5453.0,1936.9
protein KAT5 metabolite JA A linecolor=255/0/0 pos=5530.6,2274.3
protein KAT5 metabolite OPC4 A linecolor=255/0/0 pos=5526.7,2193.4



166 Appendix A

protein KAT5 metabolite OPC6 A linecolor=255/0/0 pos=5531.9,1961.7
protein LOX1 metabolite 13-HPT A linecolor=255/0/0 pos=5286.8,863.6
protein LOX2 metabolite 13-HPT A linecolor=255/0/0 pos=5268.3,927.5
protein LOX3 metabolite 13-HPT A linecolor=255/0/0 pos=5323.1,964.0
protein LOX4 metabolite 13-HPT A linecolor=255/0/0 pos=5274.5,1013.8
protein LOX5 metabolite 13-HPT A linecolor=255/0/0 pos=5325.5,1057.6
protein LOX6 metabolite 13-HPT A linecolor=255/0/0 pos=5291.9,1115.9
protein MAT3 metabolite SAM A linecolor=255/0/0 pos=2971.0,814.3
protein MAT4 metabolite SAM A linecolor=255/0/0 pos=2958.8,889.6
protein MPK3 protein EDS1 A linecolor=255/0/0 pos=9303.0,853.7
protein MPK3 protein PAD3 A linecolor=255/0/0 pos=9073.4,849.0
protein MPK3 protein PAD4 A linecolor=255/0/0 pos=9213.0,824.3
protein MPK4 protein EDS1 I linecolor=255/0/0 pos=7753.6,962.5
protein MPK4 protein LOX1 A linecolor=255/0/0 pos=5693.6,868.2
protein MPK4 protein LOX2 A linecolor=255/0/0 pos=5664.2,931.8
protein MPK4 protein LOX3 A linecolor=255/0/0 pos=5719.5,971.8
protein MPK4 protein LOX4 A linecolor=255/0/0 pos=5664.4,1022.7
protein MPK4 protein LOX5 A linecolor=255/0/0 pos=5725.9,1060.0
protein MPK4 protein LOX6 A linecolor=255/0/0 pos=5695.6,1119.3
protein MPK4 protein PAD3 I linecolor=255/0/0 pos=7550.8,966.4
protein MPK4 protein PAD4 I linecolor=255/0/0 pos=7654.2,964.2
protein MPK6 protein EDS1 A linecolor=255/0/0 pos=9571.4,846.3
protein MPK6 protein PAD3 A linecolor=255/0/0 pos=9317.3,784.4
protein MPK6 protein PAD4 A linecolor=255/0/0 pos=9425.4,855.0
protein MYC2 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7342.1,794.5
protein MYC2 protein CLH1 A linecolor=255/0/0 pos=6834.6,654.4
protein MYC2 protein GST1 A linecolor=255/0/0 pos=5846.3,951.0
protein MYC2 protein JAZ1 A linecolor=255/0/0 pos=6662.0,1406.9
protein MYC2 protein JAZ10 A linecolor=255/0/0 pos=7466.0,1446.7
protein MYC2 protein JAZ11 A linecolor=255/0/0 pos=7538.0,1449.8
protein MYC2 protein JAZ12 A linecolor=255/0/0 pos=7619.8,1446.4
protein MYC2 protein JAZ2 A linecolor=255/0/0 pos=6798.0,1369.6
protein MYC2 protein JAZ3 A linecolor=255/0/0 pos=6882.9,1377.0
protein MYC2 protein JAZ4 A linecolor=255/0/0 pos=6983.5,1420.9
protein MYC2 protein JAZ5 A linecolor=255/0/0 pos=7063.5,1416.9
protein MYC2 protein JAZ6 A linecolor=255/0/0 pos=7149.7,1412.2
protein MYC2 protein JAZ7 A linecolor=255/0/0 pos=7226.2,1394.8
protein MYC2 protein JAZ8 A linecolor=255/0/0 pos=7316.3,1347.8
protein MYC2 protein JAZ9 A linecolor=255/0/0 pos=7397.0,1427.5
protein MYC2 protein JR1 A linecolor=255/0/0 pos=6741.2,618.0
protein MYC2 protein PR4 A linecolor=255/0/0 pos=5850.5,855.8
protein MYC2 protein THI2.1 A linecolor=255/0/0 pos=6966.1,728.8
protein MYC2 protein VSP1 A linecolor=255/0/0 pos=6914.4,672.3
protein MYC2 protein b-CHI A linecolor=255/0/0 pinned=1 pos=5952.1385,736.0863
protein X4 protein MYC2 A linecolor=255/0/0 pos=7366.8,631.4
protein NADPH oxidase metabolite ROS A linecolor=255/0/0 pos=9916.5,873.1
protein NIMIN1 complex NPR1 TGA245 P linecolor=255/0/0 pos=9824.8,1499.6
protein NIMIN1 protein NPR1 B linecolor=255/0/0 pos=9708.8,1368.8
protein NIMIN1 protein TGA TF2 B linecolor=255/0/0 pos=9622.8,1739.8
protein NIMIN1 protein TGA TF4 B linecolor=255/0/0 pos=9772.2,1739.7
protein NIMIN1 protein TGA TF5 B linecolor=255/0/0 pos=9886.6,1725.1
protein NIMIN2 complex NPR1 TGA245 P linecolor=255/0/0 pos=9833.9,1582.8
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protein NIMIN2 protein NPR1 B linecolor=255/0/0 pos=9753.1,1459.5
protein NIMIN2 protein TGA TF2 B linecolor=255/0/0 pos=9668.6,1825.0
protein NIMIN2 protein TGA TF4 B linecolor=255/0/0 pos=9780.6,1850.1
protein NIMIN2 protein TGA TF5 B linecolor=255/0/0 pos=9891.0,1840.2
protein NIMIN3 complex NPR1 TGA245 P linecolor=255/0/0 pos=9694.6,1719.7
protein NIMIN3 protein NPR1 B linecolor=255/0/0 pos=9612.3,1561.9
protein NIMIN3 protein TGA TF2 B linecolor=255/0/0 pos=9535.6,1958.0
protein NIMIN3 protein TGA TF4 B linecolor=255/0/0 pos=9650.2,1916.2
protein NIMIN3 protein TGA TF5 B linecolor=255/0/0 pos=9758.2,1948.9
protein NPR1 complex NPR1 TGA245 P linecolor=255/0/0 pos=9887.9,1416.2
protein NPR1 protein EDS1 I linecolor=255/0/0 pos=9685.5,1103.0
protein NPR1 protein PAD3 I linecolor=255/0/0 pos=9482.6,1106.4
protein NPR1 protein PAD4 I linecolor=255/0/0 pos=9587.2,1100.0
protein NPR1 protein TGA TF2 B linecolor=255/0/0 pos=9755.5,1628.2
protein NPR1 protein TGA TF4 B linecolor=255/0/0 pos=9848.7,1652.9
protein NPR1 protein TGA TF5 B linecolor=255/0/0 pos=9955.4,1639.5
protein NPR1 protein WRKY70 A linecolor=255/0/0 pos=9873.5,1269.4
protein OPCL1 metabolite OPC6 A linecolor=255/0/0 pos=5100.1,1815.0
protein OPR3 metabolite OPC8 A linecolor=255/0/0 pos=5092.2,1538.7
protein PAD3 protein EDS5 A linecolor=255/0/0 pos=9239.0,1026.0
protein PAD4 protein EDS5 A linecolor=255/0/0 pos=9345.7,1035.0
protein PAL1 metabolite Trans-cinnamic acid A linecolor=255/0/0 pos=8329.2,1308.4
protein PAL2 metabolite Trans-cinnamic acid A linecolor=255/0/0 pos=8305.4,1368.5
protein PAL3 metabolite Trans-cinnamic acid A linecolor=255/0/0 pos=8315.9,1430.6
protein PAL4 metabolite Trans-cinnamic acid A linecolor=255/0/0 pos=8311.8,1499.3
protein Prephenate aminotransferase metabolite Phenylpyruvate A
linecolor=255/0/0 pos=8341.1,1062.6
protein RAN1 metabolite Copper cyto A linecolor=255/0/0 pos=3454.9,945.3
protein SAM1 metabolite SAM A linecolor=255/0/0 pos=2955.3,705.2
protein SAM2 metabolite SAM A linecolor=255/0/0 pos=2922.1,770.2
protein Superoxide dismutase metabolite ROS A linecolor=255/0/0 pos=9951.3,734.1
protein TGA TF2 complex NPR1 TGA245 P linecolor=255/0/0 pos=9823.4,1790.9
protein TGA TF4 complex NPR1 TGA245 P linecolor=255/0/0 pos=9954.7,1793.2
protein TGA TF5 complex NPR1 TGA245 P linecolor=255/0/0 pos=10041.4,1765.2
protein UGP glikosyltransferaze metabolite SAG A linecolor=255/0/0 pos=8968.4,2172.3
protein UGP glikosyltransferaze metabolite SGE A linecolor=255/0/0 pos=8702.7,2188.5
protein X3 metabolite SA A linecolor=255/0/0 pos=8959.0,1726.5
protein X5 metabolite OPC-8:0-CoA A linecolor=255/0/0 pos=5101.0,1674.6
protein X1 metabolite SA A linecolor=255/0/0 pinned=1 pos=8722.2947,1632.7280
protein X2 protein JAZ1 A linecolor=255/0/0 pos=7003.1,1936.1
protein X2 protein JAZ10 A linecolor=255/0/0 pos=7748.7,1917.9
protein X2 protein JAZ11 A linecolor=255/0/0 pos=7823.8,1919.2
protein X2 protein JAZ12 A linecolor=255/0/0 pos=7906.4,1916.7
protein X2 protein JAZ2 A linecolor=255/0/0 pos=7109.8,1932.9
protein X2 protein JAZ3 A linecolor=255/0/0 pos=7200.8,1934.3
protein X2 protein JAZ4 A linecolor=255/0/0 pos=7283.4,1931.2
protein X2 protein JAZ5 A linecolor=255/0/0 pos=7360.4,1928.2
protein X2 protein JAZ6 A linecolor=255/0/0 pos=7438.0,1926.3
protein X2 protein JAZ7 A linecolor=255/0/0 pos=7515.9,1922.2
protein X2 protein JAZ8 A linecolor=255/0/0 pos=7596.7,1922.5
protein X2 protein JAZ9 A linecolor=255/0/0 pos=7674.0,1922.6
# attributes complex ASK1 CULLIN1 RBXE2 pos=3989.1318,1376.2149
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# attributes complex ASK1 CULLIN1 RBXE2 EBF12 pos=4128.6972,1076.2695
# attributes complex Et receptor CTR1 pos=3600.8855,1574.1671
# attributes complex JA-Ile COI1 SCF pos=5964.2300,2444.9060
# attributes complex JA-Ile COI1 SCF JAZ pos=7264.2563,2445.0452
# attributes complex JAZ MYC2 TF pos=7534.7484,882.6253
# attributes complex NPR1 TGA245 pos=9935.2417,1554.3359
# attributes complex NPR1 oligomer pos=9849.4582,1167.8969
# attributes complex SCF pos=5970.6247,2569.1960
# attributes metabolite 12/13 EDT pos=5191.3571,1206.2083
# attributes metabolite 13-HPT pos=5191.7756,1063.7818
# attributes metabolite ACC pos=2828.7497,1166.0440
# attributes metabolite BA pos=8747.7404,1405.9435
# attributes metabolite Chorismate pos=8450.8641,719.0878
# attributes metabolite Copper pos=3430.0817,863.4805
# attributes metabolite Copper cyto pos=3355.4583,1069.2395
# attributes metabolite Ethylene pos=3047.2717,1576.6065 queryset=end
# attributes metabolite Isochorismate pos=8982.9784,1272.4562
# attributes metabolite JA pos=5179.4823,2428.0947 queryset=end
# attributes metabolite JA-Ile pos=5521.2873,2428.6930
# attributes metabolite L-methionine pos=2873.7460,686.8430
# attributes metabolite Linolenic acid pos=5182.3691,925.4869
# attributes metabolite Me-JA pos=5179.6149,2534.9874
# attributes metabolite OPC-8:0-CoA pos=5189.1866,1694.5881
# attributes metabolite OPC4 pos=5179.4073,2237.7986
# attributes metabolite OPC6 pos=5189.4848,1808.9652
# attributes metabolite OPC8 pos=5191.8678,1588.6824
# attributes metabolite OPDA pos=5191.7220,1456.9093
# attributes metabolite OPDA chl pos=5191.6693,1343.8905
# attributes metabolite Orto-coumaric acid pos=8446.6786,1517.2597
# attributes metabolite Phenylalanine pos=8460.3831,1229.7144
# attributes metabolite Phenylpyruvate pos=8457.3669,1073.7248
# attributes metabolite Prephenate pos=8454.0794,906.3837
# attributes metabolite ROS pos=9845.8537,785.7078
# attributes metabolite SA pos=8795.1344,1926.8119 queryset=end
# attributes metabolite SAG pos=9017.0205,2044.4030
# attributes metabolite SAM pos=2872.9329,868.0667
# attributes metabolite SA chl pos=8990.9766,1499.2868
# attributes metabolite SGE pos=8530.6824,2079.4437
# attributes metabolite Trans-cinnamic acid pos=8453.1899,1397.6368
# attributes protein AAO4 pos=8617.8622,1514.4798
# attributes protein ACO pos=2747.2642,1599.6108
# attributes protein ACO-like pos=2806.0253,1677.6604
# attributes protein ACO1 pos=2780.9366,1356.7406
# attributes protein ACO2 pos=2752.0127,1471.7158
# attributes protein ACO4 pos=2725.5358,1543.9806
# attributes protein ACS1 pos=2986.9718,1001.6235
# attributes protein ACS10 pos=2642.4807,1063.7428
# attributes protein ACS11 pos=2657.7706,1004.1143
# attributes protein ACS2 pos=2996.3478,1066.0923
# attributes protein ACS3 pos=3016.0225,1129.2945
# attributes protein ACS4 pos=3020.1319,1214.3799
# attributes protein ACS5 pos=3004.1981,1272.1508
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# attributes protein ACS6 pos=3009.5820,1344.7938
# attributes protein ACS7 pos=2630.5141,1267.7632
# attributes protein ACS8 pos=2623.3126,1195.8871
# attributes protein ACS9 pos=2629.0142,1142.0691
# attributes protein ACX1 pos=4601.8755,2141.2370
# attributes protein ACX2 pos=4733.6969,2167.3010
# attributes protein ACX3 pos=4862.1138,2172.3164
# attributes protein ACX4 pos=4974.7792,2156.7464
# attributes protein ACX5 pos=5103.0422,2129.6433
# attributes protein ACX6 pos=5253.9508,2145.3852
# attributes protein AIM1 pos=5408.4666,2131.2717
# attributes protein AOC1 pos=5501.6783,1230.2696
# attributes protein AOC2 pos=5499.0343,1287.1030
# attributes protein AOC3 pos=5500.2334,1344.1796
# attributes protein AOC4 pos=5500.3281,1399.3646
# attributes protein AOS pos=5391.6082,1207.2061
# attributes protein Arogenate dehydratase pos=8214.7251,1225.5675
# attributes protein BA2H pos=9263.1309,1531.9092
# attributes protein CLH1 pos=6507.8310,693.5341
# attributes protein CM1 pos=8257.8162,824.4890
# attributes protein CM2 pos=8257.3195,956.5955
# attributes protein CM3 pos=8255.0435,884.4115
# attributes protein COI1 pos=5663.2485,2561.6248
# attributes protein CTR1 pos=3571.5217,1422.0962
# attributes protein Catalase pos=10058.7687,804.5395
# attributes protein EBF1 pos=3980.0435,1025.9545
# attributes protein EBF2 pos=3831.2808,1247.5160
# attributes protein EDF1 pos=4350.2870,1766.8882
# attributes protein EDF2 pos=4343.7037,1835.2933
# attributes protein EDF3 pos=4348.7575,1895.4870
# attributes protein EDF4 pos=4336.1263,1964.6902
# attributes protein EDS1 pos=9536.7463,935.5799
# attributes protein EDS5 pos=9358.7139,1144.0689
# attributes protein EIL1 pos=3785.2377,1748.6973
# attributes protein EIL2 pos=3785.3721,1823.0804
# attributes protein EIN2 pos=3509.9641,1767.6432
# attributes protein EIN3 pos=3793.1832,1925.2074
# attributes protein EIN4 pos=3676.0680,1226.9932
# attributes protein EIN5 pos=3787.6727,1024.8725
# attributes protein ERF1 pos=4346.0997,1697.6237
# attributes protein ERS1 pos=3434.6794,1258.3170
# attributes protein ERS2 pos=3555.0632,1255.1498
# attributes protein ETR1 pos=3167.1975,1253.2617
# attributes protein ETR2 pos=3289.3931,1253.1866
# attributes protein GST1 pos=4480.9400,1257.0682
# attributes protein Glutathione peroxidase pos=9992.3760,657.0318
# attributes protein HRT pos=9671.5404,561.1346
# attributes protein ICS1 pos=9280.3357,1268.4603
# attributes protein ICS2 pos=9399.1534,1264.7741
# attributes protein IPL pos=8861.0291,1268.6910
# attributes protein Inactive BA2H pos=9444.7441,1467.1812
# attributes protein Inactive EIN2 pos=3278.0744,1765.9903
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# attributes protein Inactive HRT pos=9896.2585,610.1956
# attributes protein Inactive MPK3 pos=9067.9004,654.0412
# attributes protein Inactive MPK6 pos=9506.2357,674.2092
# attributes protein Inactive et receptor pos=3602.3440,1057.5273
# attributes protein JAR1 pos=5521.3226,2329.8808
# attributes protein JAZ1 pos=6256.4561,2238.8808
# attributes protein JAZ10 pos=7694.3421,2225.4202
# attributes protein JAZ11 pos=7829.9184,2226.5545
# attributes protein JAZ12 pos=7973.5191,2226.5061
# attributes protein JAZ2 pos=6455.6875,2234.2826
# attributes protein JAZ3 pos=6629.2943,2237.1244
# attributes protein JAZ4 pos=6788.3186,2234.2685
# attributes protein JAZ5 pos=6931.8061,2230.9638
# attributes protein JAZ6 pos=7082.9100,2228.2605
# attributes protein JAZ7 pos=7234.7819,2225.3384
# attributes protein JAZ8 pos=7401.4746,2226.7295
# attributes protein JAZ9 pos=7552.8138,2226.9592
# attributes protein JMT pos=5046.6098,2534.8157
# attributes protein JR1 pos=6326.4442,632.3070
# attributes protein KAT1 pos=5543.5522,2129.6971
# attributes protein KAT2 pos=5669.8378,2113.6469
# attributes protein KAT5 pos=5810.6893,2129.1855
# attributes protein LOX1 pos=5421.2494,851.4789
# attributes protein LOX2 pos=5425.5459,919.3723
# attributes protein LOX3 pos=5427.3340,976.7037
# attributes protein LOX4 pos=5426.9799,1038.7540
# attributes protein LOX5 pos=5431.0935,1094.9328
# attributes protein LOX6 pos=5430.0830,1146.9491
# attributes protein MAT3 pos=3067.1080,856.9350
# attributes protein MAT4 pos=3066.6798,920.6361
# attributes protein MPK3 pos=9080.4522,780.4750
# attributes protein MPK4 pos=5932.5236,1014.1104
# attributes protein MPK6 pos=9496.6856,777.7182
# attributes protein MYC2 pos=7175.7350,646.0556
# attributes protein X4 pos=7526.2104,734.2049
# attributes protein NADPH oxidase pos=10013.4012,872.5681
# attributes protein NIMIN1 pos=9672.4716,1469.0292
# attributes protein NIMIN2 pos=9704.5033,1632.6185
# attributes protein NIMIN3 pos=9462.4531,1847.3481
# attributes protein NPR1 pos=9791.2031,1292.7221
# attributes protein OPCL1 pos=5022.8252,1807.1028
# attributes protein OPR3 pos=5028.1407,1585.3193
# attributes protein PAD3 pos=9163.0874,906.3816
# attributes protein PAD4 pos=9353.2502,935.6032
# attributes protein PAL1 pos=8178.0466,1294.5935
# attributes protein PAL2 pos=8177.6689,1344.4421
# attributes protein PAL3 pos=8178.9558,1398.3397
# attributes protein PAL4 pos=8180.8528,1463.9937
# attributes protein PDF1.2 pos=4477.4178,1813.3307
# attributes protein PR1 pos=10059.8979,1212.1585
# attributes protein PR2 pos=10098.8321,1359.1027
# attributes protein PR4 pos=4499.3367,1111.4144
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# attributes protein PR5 pos=10084.7737,1461.5024
# attributes protein Prephenate aminotransferase pos=8227.7854,1068.1744
# attributes protein RAN1 pos=3560.7868,892.5952
# attributes protein SAM1 pos=3061.0114,710.8046
# attributes protein SAM2 pos=3067.3321,793.6800
# attributes protein Superoxide dismutase pos=10040.8037,727.9978
# attributes protein TGA TF2 pos=9656.9518,1977.4157
# attributes protein TGA TF4 pos=9863.7647,1988.3104
# attributes protein TGA TF5 pos=10029.3701,1960.1179
# attributes protein THI2.1 pos=6729.2071,790.8070
# attributes protein UGP glikosyltransferaze pos=8878.5630,2250.5117
# attributes protein VSP1 pos=6645.9146,742.4696
# attributes protein WRKY70 pos=9940.9593,1273.4311
# attributes protein b-CHI pos=4508.7987,954.8370
# attributes protein X3 pos=9134.1762,1500.0254
# attributes protein X5 pos=5028.8895,1695.4792
# attributes protein X1 pos=8456.2843,1589.7962
# attributes protein X2 pos=7778.0160,1592.933

The visualisation of this file into a graph in an interactive way is possible with the Biomine
visualizer file bmvis.jar. A user should have installed Java software package. It is avail-
able for download at: http://java.com/en/download/index.jsp. The bmvis.jar file can
be downloaded at http://www.cs.helsinki.fi/u/phinstan/bmvis.jar and it should be
located in the same folder as the graph file. To perform visualization of the file one should
do the following:

1. Open Command Prompt window

2. Change your path into the folder where the Supporting Information S2 is located.

3. Type into the Command Prompt following: ”<absolute path of java.jar file >\java”
-jar bmvis.jar ”graph.bmg”. An example is a following line:

C:\Users\Public\Desktop>”C:\Program Files (x86)\Java\jre1.6.0 22\bin\java”

-jar bmvis.jar ”graph.bmg”

A user should pay attention to the spaces between words in the example line above and
apply them in the same way when visualising the graph. In case a warning message
is displayed the user should click OK and the graph will be visualized. Note that this
visualisation procedure applies only for the Windows platform.

http://java.com/en/download/index.jsp
http://www.cs.helsinki.fi/u/phinstan/bmvis.jar
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B PDS model structure revision

B.1 Component vocabulary

Vocabulary of the biological components was used by Bio3graph tool to determine the
triplets (component1, reaction, component2). In this vocabulary every row represents one
component with its synonyms separated by comma. The first name in the row represents
the biological component name that is also visualized in the graph nodes. The vocabulary
components were as follows:
SA, Salicylic acid, Salicylate, o-Hydroxybenzoic acid
HRT, HRT protein, Hypersensitive response to TCV, HYPERSENSITIVE RESPONSE TO
TCV, MWF20.19, MWF20 19, RCY1, RECOGNITION OF PERONOSPORA PARASIT-
ICA 8, RESISTANT TO CMV(Y) 1, RPP8, DISEASE RESISTANCE PROTEIN RPP8,
AT5G43470
NPR1, NPR1 gene, NPR1 protein, ARABIDOPSIS NONEXPRESSER OF PR GENES
1, ATNPR1, F15H21.6, F15H21 6, NIM1, NON-INDUCIBLE IMMUNITY 1, NONEX-
PRESSER OF PR GENES 1, SAI1, SALICYLIC ACID INSENSITIVE 1, AT1G64280
NIMIN1, NIMIN1 gene, NIMIN1 protein, T6A9.23, NIM1-INTERACTING 1, NIMIN-1,
At1g02450
NIMIN2, NIM1-INTERACTING 2,NIMIN-2, AT3G25882
NIMIN3, NIM1-INTERACTING 3, NIMIN-3, AT1G09415
PAD4, PAD4 gene, PAD4 protein, ARABIDOPSIS PHYTOALEXIN DEFICIENT 4, AT-
PAD4, F22O6.190, PHYTOALEXIN DEFICIENT 4, At3g52430
PAD3, CYP71B15, MDJ14.12, PAD3, PHYTOALEXIN DEFICIENT 3, AT3G26830
EDS1, EDS1 gene, EDS1 protein, ATEDS1, T17F15.40, ENHANCED DISEASE SUSCEP-
TIBILITY 1, At3g48090
EDS5, EDS5 gene, SID1 gene, EDS5 protein, SID1 protein, SALICYLIC ACID INDUC-
TION DEFICIENT 1, F19H22.130, F19H22 130, ENHANCED DISEASE SUSCEPTIBIL-
ITY 5, SID1, At4g39030
PR1, PR1 gene, PR1 protein,ATPR1, PR 1, T6B13 15, PATHOGENESIS-RELATED PRO-
TEIN 1, PATHOGENESIS-RELATED GENE 1, T6B13.15, At2g14610, PR-1, PR-1a
PR2, PR2 gene,PATHOGENESIS-RELATED PROTEIN 2, BGL2, BG2, BETA-1, 3-GLU-
CANASE 2, 3-GLUCANASE,PR-2,PR 2,F28O9.110, At3g57260
PR5, PR5 protein,PR-5, PATHOGENESIS-RELATED PROTEIN 5, PATHOGENESIS-
RELATED GENE 5,PR 5,At1g75040
ICS1, ICS1 gene,SID2 gene,EDS16 gene, ICS1 protein,SID2 protein,EDS16 protein, EN-
HANCED DISEASE SUSCEPTIBILITY TO ERYSIPHE ORONTII 16, AT1G74710.1,
SALICYLIC ACID INDUCTION DEFICIENT 2, ISOCHORISMATE SYNTHASE, ISO-
CHORISMATE SYNTHASE 1, SID2, EDS16, F25A4.31,ICS 1, ATICS1, ICS-1, ARA-
BIDOPSIS ISOCHORISMATE SYNTHASE 1, ENHANCED DISEASE SUSCEPTIBILITY
TO ERY-SIPHE ORONTII 16, At1g74710
ICS2, ICS2 gene, ICS2 protein,F6A14 3, ISOCHORISMATE SYNTHASE 2, ATICS2, F6A-
14.3, ICS 2, ICS-2, At1g18870
WRKY70, WRKY70 gene, WRKY70 protein, WRKY DNA-binding protein 70, ARA-
BIDOPSIS THALIANA WRKY DNA-BINDING PROTEIN 70, ATWRKY70, At3g56400
MPK4, MPK4 gene, MPK4 protein, ATMPK4, ARABIDOPSIS THALIANA MAP KI-
NASE 4, MAP KINASE 4, F2N1.1, F2N1 1, At4g01370
Chorismate
Isochorismate, Iso-chorismic acid, Isochorismic acid
BA,Benzoic acid, benzene carboxylic acid, benzoate, Benzeneformic acid, phenylformic acid
BA2H, benzoic acid 2-hydroxylase
NADPH oxidase
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Catalase, CAT
Glutathione peroxidase,GSH peroxidase
Superoxide dismutase, SOD
SAG, salicylic acid glucoside, Salicylic acid beta-glucoside, salicylate glucoside, 2-O-b-D
glucoside
SGE, Salicylic acid glucose ester, salicyloyl glucose ester
Trans-cinnamic acid, Cinnamic acid, trans-Cinnamate, trans-Cinnamic acid, (E)-Cinnamate
Phenylalanine, L-phenylalanine, 3-Phenylalanine, Phe
Phenylpyruvate, Phenylpyruvate, Phenylpyruvic acid, alpha-Ketohydrocinnamic acid, keto-
Phenylpyruvate, 3-Phenyl-2-oxopropanoate
ROS,reactive oxigen species,oxigen radicals, oxidative burst, h2o2, hydogen peroxide, H 2
O 2, O3, O2,O2-*
PAL1, PAL1 gene, PAL1 protein, CI0004, T1J8.22, PHENYLALANINE AMMONIA LY-
ASE 1, PHE AMMONIA LYASE 1, T1J8 22, PAL 1, PAL-1,ATPAL1, At2g37040
PAL2, PAL2 gene, PAL2 protein, phenylalanine ammonia-lyase 2, T4D2.190, PAL 2, PAL-2,
ATPAL2, At3g53260
PAL3, PAL3 gene, PAL3 protein,F21E1.150, ATPAL3, PHENYL ALANINE AMMONIA-
LYASE 3, F21E1 150, PAL 3, PAL-3, At5g04230
PAL4, PAL4 gene, PAL4 protein, Phenylalanine ammonia-lyase 4, PAL 4, PAL-4,F14P13.6,
At3g10340
IPL, IPL protein, isochorismate pyruvate lyase
CM1, ARABIDOPSIS THALIANA CHORISMATE MUTASE 1, ATCM1, CHORISMATE
MUTASE 1, MXO21.4, AT3G29200
CM2, ATCM2, chorismate mutase 2,At5g10870
CM3, ATCM3, chorismate mutase 3, At1g69370
Prephenate aminotransferase,At2G22250
Prephenate, Prephenic acid
Arogenate dehydratase, ADT5, arogenate dehydratase 5, prephenate dehydratase, At5g22-
630
Orto-coumaric acid, trans-2-Hydroxycinnamate, trans-2-Hydroxycinnamic acid, 2-Hydro-
xycinnamate, 2-Coumaric acid, o-Coumaric acid, 2-Coumarate
UGP glikosyltransferaze, UGT72B3, UDP-GLUCOSYL TRANSFERASE 72B3, UDP-gly-
cosyltransferase, quercetin 3-O-glucosyltransferase, AT1G01420
Ethylene, Ethene, Et
Copper, Cu, Cu2+
SAM, Sadenosyl methionine, S-Adenosyl methionine, S-adenosyl-L-methionine
ACC, 1-aminocyclopropane-1-carboxylic-acid
ACS1, ACS1 protein, ARABIDOPSIS THALIANA 1-AMINOCYCLOPROPANE-1-CAR-
BO-XYLATE SYNTHASE 1, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHA-
SE 1, AT-ACS1, F2A19.110, ACC SYNTHASE 1, At3g61510
ACS2, ACS2 protein, 1-Amino-cyclopropane-1-carboxylate synthase 2, 1-AMINOCYCLO-
PROPANE-1-CARBOXYLATE SYNTHASE, F22L4.4, AT-ACC2, EC 4.4.1.14, F22L4 4,
S-ADENOSYL-L-METHIONINE METHYLTHIOADENOSINE-LYASE, At1g01480
ACS3, ACS3 protein, F21B23.5, F21B23 5,1-F21B23.5, 1-AMINOCYCLOPROPANE-1-
CARBOXYLATE SYNTHASE LIKE PSEUDOGENE, At5g28360
ACS4, ACS4 protein, ATACS4, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYN-
THASE, T30L20.7, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 4, 1-
AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE POLYPEPTIDE, ACC4,
At2g22810
ACS5, ACS5 protein, ETO2, CYTOKININ-INSENSITIVE 5, MPA24 15, ACC SYNTHASE
5, MPA24.15, ATACS5, CIN5, 1-AMINO-1-CYCLOPROPANECARBOXYLATE SYNTHA-
SE, ETHYLENE OVERPRODUCER 2, At5g65800
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ACS6, ACS6 protein, F8L21.70, F8L21 70, 1-AMINOCYCLOPROPANE-1-CARBOXYLIC
ACID (ACC) SYNTHASE 6, ATACS6, At4g11280
ACS7, ACS7 protein, 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 7,
T25K17.10, T25K17 10, ATACS7, At4g26200
ACS8, ACS8 protein,1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 8, T2-
8I19.50, T28I19 50, At4g37770
ACS9, ACS9 protein, ETO3, ETHYLENE OVERPRODUCING 3, 1-AMINOCYCLOPRO-
PANE-1-CARBOXYLATE SYNTHASE 9, T16K5.50, At3g49700
ACS10, ACS10 protein, F16P17 11, F16P17.11, ACC SYNTHASE 10, At1g62960
ACS11, ACS11 protein, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 11,
T17A2 2, T17A2.2, At4g08040
ACO1, ACO1 protein, F3P11 19, F3P11.19, ACC OXIDASE 1,ATACO1, At2g19590
ACO2, ACO2 protein, ACC OXIDASE 2, F24O1.40, F24O1 40, ATACO2, ACC OXIDASE,
At1g62380
ACO4, ACO4 protein, ETHYLENE-FORMING ENZYME, T7A14.12, ethylene forming
enzyme, EFE, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE, 1-AMINOCY-
CLOPROPANE-1-CARBOXYLIC ACID OXIDASE, EAT1, T7A14 12, At1g05010
ACO, F12F1.12, F12F1.12 protein,F12F1 12, AT1G12010
ACO-like, F2P24.4 protein,F2P24 4, AT1G77330
RAN1, RAN1 protein,RESPONSIVE-TO-ANTAGONIST 1, K23L20 14, HMA7, K23L-
20.14, At5g44790
ETR1, ETR1 protein,EIN1, T27F4.9, ETHYLENE INSENSITIVE 1, HISTIDINE KINASE
ETR1, ETHYLENE RESPONSE 1, T27F4 9, ETR, At1g66340
ERS1, ERS, ETHYLENE RESPONSE SENSOR, ETHYLENE RESPONSE SENSOR 1,
T20B5.14, T20B5 14, AT2G40940
ETR2, ETHYLENE RESPONSE 2, K14B15.9, AT3G23150
ERS2, ETHYLENE RESPONSE SENSOR 2, F19P19.25, F19P19 25, AT1G04310
EIN4, ETHYLENE INSENSITIVE 4, F7O18.5, F7O18 5, AT3G04580
CTR1, CTR1 protein,SUGAR-INSENSITIVE 1, SERINE/THREONINE-PROTEIN KI-
NASE CTR1, SIS1, F17C15 150, F17C15.150,AT5G03730.1, CONSTITUTIVE TRIPLE
RESPONSE 1, At5g03730
EIN2, EIN2 protein,PIR2, F12E4 10, ERA3, ORESARA 2, ATEIN2, CYTOKININ RE-
SISTANT 1, F12E4.10, ETHYLENE INSENSITIVE 2, ORE3, CKR1, ENHANCED RE-
SPONSE TO ABA3, ORESARA 3, ORE2, At5g03280
EIN3, EIN3 protein,ETHYLENE-INSENSITIVE3, MOE17.4, At3g20770
EIL1, ATEIL1, ETHYLENE-INSENSITIVE3-LIKE 1, T20P8.10, T20P8 10, AT2G27050
EIL2, ETHYLENE-INSENSITIVE3-LIKE 2, T10F18.150, T10F18 150, AT5G21120
ERF1, ERF1 gene, ERF1 protein,ETHYLENE RESPONSE FACTOR 1, ATERF1, K14-
B15.4, At3g23240
EDF1, EDF1 gene, EDF1 protein,TEM1, F2J7.3, F2J7 3, TEMPRANILLO 1, TEM1,
ETHYLENE RESPONSE DNA BINDING FACTOR 1, AT1G25560
EDF2,EDF2 gene,EDF2 protein,RAV2, TEM2, ATRAV2, RAP2.8, T6L1.3, T6L1 3, TEM-
PRANILLO 2, RELATED TO AP2 8, ETHYLENE RESPONSE DNA BINDING FACTOR
2, REGULATOR OF THE ATPASE OF THE VACUOLAR MEMBRANE, AT1G68840
EDF3, EDF3 gene, EDF3 protein,K13N2.14, ETHYLENE RESPONSE DNA BINDING
FACTOR 3, AT3G25730
EDF4, EDF4 gene, EDF4 protein,RAV1, T6J4.2, T6J4 2, RELATED TO ABI3/VP1 1,
ETHYLENE RESPONSE DNA BINDING FACTOR 4, AT1G13260
EBF1, EBF1 gene, EBF1 protein,F13B15.15, FBL6, F13B15 15, EIN3-BINDING F BOX
PROTEIN 1, At2g25490
EBF2, EBF2 gene, EBF2 protein, EIN3-BINDING F BOX PROTEIN 2, F18-G18.90,
F18G18 90, EBF1/2, At5g25350
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EIN5, EIN5 protein, EXORIBONUCLEASE 4, ACC INSENSITIVE 1, F20D21.30, ETHY-
LENE INSENSITIVE 5, ATXRN4, AIN1, F20D21 30, XRN4, At1g54490
JA, Jasmonic acid, (-)-Jasmonic acid, Jasmonate, 2-(3-oxo-2-((Z)-pent-2-enyl)cyclopenta-
ne)acetic acid
Linolenic acid
LOX1, LOX1 protein, Lipoxygenase 1, LIPOXYGENASE, ATLOX1, LOX 1, LOX-1, ARA-
BIDOPSIS LIPOXYGENASE 1, At1g55020
LOX2, LOX2 protein, ARABIODOPSIS THALIANA LIPOXYGENASE 2, ATLOX2, LI-
POXYGENASE 2, LOX 2, LOX-2, T14D3.80, At3g45140
LOX3, LOX3 protein, F28G4.10, LOX 3, LOX-3, LIPOXYGENASE 3, At1g17420
LOX4, ARABIDOPSIS THALIANA LIPOXYGENASE 4, ATLOX4, LIPOXYGENASE 4,
LOX4, T10D10.1, T10D10 1, AT1G72520
LOX5, ARABIDOPSIS THALIANA LIPOXYGENASE 5, ATLOX5, MCB17.13, AT3G22-
400
LOX6, ARABIDOPSIS THALIANA LIPOXYGENASE 6, ATLOX6, F12B7.11, F12B7 11,
LIPOXYGENASE 6, AT1G67560 AOS, AOS protein,CYP74A, DELAYED DEHISCENCE
2, DDE2, ALLENE OXIDE SYNTHASE, CYTOCHROME P450 74A, At5g42650
AOC1, AOC1 protein,EARLY-RESPONSIVE TO DEHYDRATION 12, ALLENE OXIDE
CYCLASE 1, ERD12, AOC 1, AOC-1, At3g25760
AOC2, AOC2 protein,ALLENE OXIDE CYCLASE 2, AOC 2, AOC-2,K13N2.11, At3g25770
AOC3, AOC3 protein,ALLENE OXIDE CYCLASE 3, K13N2.12, AOC 3, AOC-3, At3g25-
780
AOC4, AOC4 protein,ALLENE OXIDE CYCLASE 4, T6J4 4, T6J4.4,AOC 4, AOC-4,
At1g13280
13-HPT, 13-HPOT, 13(S)-hydroperoxy linolenic acid
12/13 EDT, allene oxide
OPDA, 12-OPDA, phytodienoic acid,12-oxophytodienoic acid
JMT, JMT protein,F14P1 3, JASMONIC ACID CARBOXYL METHYLTRANSFERASE,
F14P1.3, At1g19640
JA-Ile, JA-isoleucine, Jasmonate-isoleucine, N-[(1R,2R)-3-oxo-2-(2-(Z)-pentenyl)cyclopen-
tane-1-acetyl]-(2S,3S))-isoleucine
COI1, COI1 protein,T28M21 10, T28M21.10, CORONATINE INSENSITIVE 1, At2g39940
JAR1, JAR1 protein,JASMONATE RESISTANT 1, FIN219, F11C10.6, FAR-RED INSEN-
SITIVE 219, At2g46370
JAZ1, JAZ1 gene, JAZ1 protein, T29M8 5, T29M8.5, TIFY10A, JASMONATE-ZIM-DO-
MAIN PROTEIN 1, At1g19180
JAZ2, F25A4.8, F25A4 8, JASMONATE-ZIM-DOMAIN PROTEIN 2, TIFY10B, AT1-
G74950
JAZ3, JAZ3 protein, JASMONATE-ZIM-DOMAIN PROTEIN 3, JAI3, JASMONATE-
INSENSITIVE 3, TIFY6B, At3g17860
JAZ4, JASMONATE-ZIM-DOMAIN PROTEIN 4, T1N15.11, T1N15 11, TIFY DOMAIN
PROTEIN 6A, TIFY6A, AT1G48500
JAZ5, F28G4.16, JASMONATE-ZIM-DOMAIN PROTEIN 5, TIFY11A,AT1G17380
JAZ6, JASMONATE-ZIM-DOMAIN PROTEIN 6, T10D10.8, T10D10 8, TIFY DOMAIN
PROTEIN 11B, TIFY11B,AT1G72450
JAZ7, JASMONATE-ZIM-DOMAIN PROTEIN 7, T31E10.6, T31E10 6, TIFY5B, AT2-
G34600
JAZ8, JASMONATE-ZIM-DOMAIN PROTEIN 8, TIFY5A, AT1G30135
JAZ9, F5A18.12, F5A18 12, JASMONATE-ZIM-DOMAIN PROTEIN 9, TIFY7, AT1-
G70700
JAZ10, JAS1, JASMONATE-ASSOCIATED 1, JASMONATE-ZIM-DOMAIN PROTEIN
10, T31B5.40, T31B5 40, TIFY DOMAIN PROTEIN 9, TIFY9, AT5G13220
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JAZ11, JASMONATE-ZIM-DOMAIN PROTEIN 11, T18D12.10, TIFY3A, AT3G43440
JAZ12, F22D1.70, F22D1 70, JASMONATE-ZIM-DOMAIN PROTEIN 12, TIFY3B, AT5-
G20900
MYC2, MYC2 gene, MYC2 protein,F6N18 4, JIN1, ZBF1, JASMONATE INSENSITIVE
1, F6N18.4, ATMYC2, JAI1, RD22BP1, MYC2 TF, At1g32640
GST1, ARABIDOPSIS GLUTATHIONE S-TRANSFERASE 1, ARABIDOPSIS THALIA-
NA GLUATIONE S-TRANSFERASE F3, ATGST1, ATGSTF3, ATGSTF6, EARLY RE-
SPONSIVE TO DEHYDRATION 11, ERD11, F22D16.7, F22D16 7, GLUTATHIONE S-
TRANSFERASE, GLUTATHIONE S-TRANS-FERASE 1, GLUTATHIONE S-TRANS-
FERASE 6, GSTF6, AT1G02930
PR4, HEL, HEL protein, PR-4, HEVEIN-LIKE, F7O18 21, F7O18.21, PATHOGENESIS-
RELATED 4,PR 4, At3g04720
b-CHI, b-CHI protein, basic chitinase, PATHOGENESIS-RELATED 3, PR3, PR-3, CHI-B,
T2E22.18, ARABIDOPSIS THALIANA BASIC CHITINASE, PR 3, ATHCHIB, At3g12500
PDF1.2, PDF1.2 protein,LCR77, PDF1.2a, PLANT DEFENSIN 1.2, MFC16.8, MFC16 8,
PLANT DEFENSIN 1.2A, Low-molecular-weight cysteine-rich 77, At5g44420
MPK6, MPK6 protein,F18O19.10, MAP KINASE 6, ATMPK6, ARABIDOPSIS THALIA-
NA MAP KINASE 6, MAPK6, At2g43790
MPK3, MPK3 protein, ATMPK3, T6D9.4, ATMAPK3, MITOGEN-ACTIVATED PRO-
TEIN KINASE 3, AT3G45640
THI2.1, THI2.1 protein,THIONIN 2.1, THI2.1.1, At1g72260
JR1, JASMONATE RESPONSIVE 1, T2O4.6, AT3G16470
VSP1, ATVSP1, T4C12.50, VEGETATIVE STORAGE PROTEIN 1, AT5G24780
CLH1, ATCLH1, ARABIDOPSIS THALIANA CORONATINE-INDUCED PROTEIN 1,
ATHCOR1, CORI1, CORONATINE-INDUCED PROTEIN 1, F6F9.28, F6F9 28, AT1-
G19670
TGA TF2, TGA TF2 protein, AHBP-1B, MOJ9.12, MOJ9 12, At5g06950, TGA2
TGA TF4, TGA TF4 protein,OBF4, OCS BINDING ELEMENT 4, T31P16.20, T31P16 20,
OCS ELEMENT BINDING FACTOR 4, OCTOPINE SYNTHASE ELEMENT-BINDING
PROTEIN, TGACG MOTIF-BINDING FACTOR 4, At5g10030, TGA4
TGA TF5, TGA TF5 protein,OCS-ELEMENT BINDING FACTOR 5, TGA5, MOJ9.13,
MOJ9 13, TGACG MOTIF-BINDING FACTOR 5, OBF5, At5g06960
OPCL1, F5M15.17, F5M15 17, OPC-8:0 COA LIGASE1, AT1G20510
ACX1, ATACX1, DL4405C, FCAALL.119, ACYL-COA OXIDASE 1, ACYL-COA OXI-
DASE, acyl-CoA synthetase, AT4G16760
ACX2, ACYL-COA OXIDASE 2, ATACX2, AT5G65110
ACX3, ACYL-COA OXIDASE 3, ATACX3, T2D23.1, AT1G06290
ACX4, ACYL-COA OXIDASE 4, ATEM1.9, ATG6, ATSCX, AT3G51840
ACX5, ACYL-COA OXIDASE 5, T20F21.12, T20F21 12, AT2G35690
ACX6, ACYL-COA OXIDASE 6, T2D23.2, T2D23 2, AT1G06310
AIM1, F19B15.40, F19B15 40, ABNORMAL INFLORESCENCE MERISTEM, AT4G29-
010
KAT2, PED1, PKT3, PEROXISOME DEFECTIVE 1, 3-KETOACYL-COA THIOLASE
2, PEROXISOMAL 3-KETOACYL-COA THIOLASE 3, AT2G33150
KAT1, 3-KETO-ACYL-COA THIOLASE 1, KAT1, PEROXISOMAL 3-KETOACYL-COA
THIOLASE 4, PKT4, T1G11.4, T1G11 4, AT1G04710
KAT5, 3-KETO-ACYL-COENZYME A THIOLASE 5, K24G6.22, K24G6 22, PEROXISO-
MAL 3-KETO-ACYL-COA THIOLASE 2, PEROXISOMAL-3-KETO-ACYL-COA THIO-
LASE 1, PKT1, PKT2, AT5G48880
OPR3, DDE1, ATOPR3, F5K7.19, F5K7 19, DELAYED DEHISCENCE 1, OXOPHYTO-
DIE-NOATE-REDUCTASE 3, AT2G06050
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OPC8, 3-oxo-2-(cis-2’-pentenyl)-cyclopentane-1-octanoate, 3-oxo-2-(cis-2’-pentenyl)-cyclo-
pentane-1-octanoic acid, oxopentenyl-cyclopentane-octanoic acid, 8-[(1R,2R)-3-oxo-2-{(Z)-
pent-2-enyl}-cyclopentyl]octanoate
Me-JA, MeJa, methyl jasmonate, MJ
OPC6, 3-oxo-2-(2-(Z)-pentenyl)cyclopentane-1-hexanoic acid, 3-oxo-2-(2-(Z)-pentenyl)cyc-
lopentane-1-hexanoat
OPC4, 3-oxo-2-(2’-[Z]-pentenyl)cyclopentane-1-butanoat, 3-oxo-2-(2’-[Z]-pentenyl)cyclopen-
tane-1-butanoic acid, 3-oxo-2-(2-(Z)-pentenyl)cyclopentane-1-butyric acid
OPC-8:0-CoA, oxopentenyl-cyclopentane-octanoyl-CoA, 8-[(1R,2R)-3-oxo-2-{(Z)-pent-2enyl}-
cyclopentyl]octanoyl-CoA, OPC-8:0-CoA, 3-oxo-2-(cis-2’-pentenyl)-cyclopentane-1-octanoyl-
CoA
SAM1, ATSAM1, MAT1, METK1, S-ADENOSYLMETHIONINE SYNTHETASE 1, S-
ADENOSYLMETHIONINE SYNTHETASE-1, SAM-1, SAM1, T14P4.17, T14P4 17, AT1-
G02500
SAM2,ATSAM2, MAT2, S-ADENOSYLMETHIONINE SYNTHETASE 2, SAM-2, SAM2,
T7B11.11, T7B11 11, AT4G01850
MAT3, METHIONINE ADENOSYLTRANSFERASE 3, T1J8.6, T1J8 6, AT2G36880
MAT4, METHIONINE ADENOSYLTRANSFERASE 4, METHIONINE OVER-ACCU-
MULATOR 3, MGD8.26, MTO3, S-ADENOSYLMETHIONINE SYNTHETASE 3, SAMS3,
AT3G17390
SCF, Skp1-Cullin-F-box
AAO4, arabidopsis aldehide oxidase 4, AT1g04580
L-methionine

B.2 Reactions vocabulary

Vocabulary of the biological reactions was used by Bio3graph tool together with the com-
ponent vocabulary to extract triples (component1, reaction, component2). The reaction
vocabulary contains in total 6 files with synonyms for three types of reactions: activation,
binding and inhibition in both active and passive form.
The synonyms used for the activation type of reaction in the active form were as follows:
activate, activates, capable of activating, able to activate, elevate, elevates, increase, in-
creases, influence accumulation, influences accumulation, influence the accumulation, influ-
ences the accumulation, induct, inducts enhance, enhances, increase, increases, accumulate,
accumulates, induce, induces, catalyze, catalyzes, generate, generates, is a positive regula-
tor, is positive regulator, encode, encodes, code for, codes for, derepress activity, derepresses
activity, derepress the activity, derepresses the activity, positively signal, positively sig-
nals, signal positively, signals positively, positively regulate, positively regulates, regulate
positively, regulates positively, stimulate, stimulates, trigger, triggers, facilitate, facilitates,
elevate, elevates, initiate activation, initiates activation, initiate the activation, initiates the
activation, produce, produces, lead to the formation, leads to the formation, lead to forma-
tion, leads to formation, leading to the formation, leading to formation, lead to the creation,
leads to the creation, lead to creation, leads to creation, leading to the creation, leading to
creation, lead to accumulation, lead to the accumulation, lead to an accumulation, leads
to accumulation, leads to the accumulation, leads to an accumulation, lead to increase,
leads to increase,lead to an increase, leads to an increase, lead to the increase, leads to the
increase, result in activation, results in activation, result in the activation, results in the
activation, resulting in activation, resulting in the activation result in accumulation, results
in accumulation, result in the accumulation, results in the accumulation, resulting in accu-
mulation, resulting in the accumulation, involved in activation, involved in the activation,
involved in accumulation, involved in the accumulation, involved in induction, involved in
the induction, involved in production, involved in the production, involved in elevation, in-
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volved in the elevation, involved in synthesis, involved in the synthesis, is a precursor, is
precursor, is the precursor, transduce, transduces, synthesize, synthesizes, phosphorylate,
phosphorylates, oxidize, oxidizes, oxidise, oxidises, upregulate, upregulates, convert, con-
verts, converted to, converted into, stabilize, stabilizes, stabilise, stabilises, is an enzyme
involved in the biosynthetic pathway of, turn on the transcription factor, turns on the tran-
scription factor, undergo conversion, undergoes conversion, is one of the coactivators of, is
involved in the amplification loop of, is considered to be positive regulator, are considered
to be positive regulators, has been identified as source of, has been identified as a source
of, has been implicated as generator, has been implicated as a generator, doubled the con-
centration of result in synergistic activation, results in synergistic activation, resulted in
synergistic activation.

The synonyms used for the activation type of reaction in the passive form were as follows:
activated, elevated, inducted, enhanced, increased, accumulated, induced, catalyzed, gen-
erated, encoded, positively signalled, positively signaled, signaled positively, signalled posi-
tively, positively regulated, regulated positively, positively controlled, controlled positively,
stimulated, triggered, facilitated, elevated, produced, resulted in activation, resulted in the
activation, resulted in synergistic activation, resulted in the synergistic activation, resulted
in accumulation, resulted in the accumulation, made by hydrolysis, transduced, synthe-
sized by, synthesized from, phosphorilated, phosphorylated, oxidised, oxidized, oxygenated,
upregulated, stabilized, stabilised, led to increase, led to an increase, led to the increase,
initiated accumulation, initiated an accumulation, initiated the accumulation, translocated
to the nucleus upon activation by, inducible by.

The synonyms used for the inhibition type of reaction in the active form were as follows:
inhibit, inhibits, repress, represses, suppress, suppresses, is suppressor of, is a suppressor of,
is the suppressor of, block, blocks, is blocker of, is a blocker of, is the blocker of, reduce, re-
duces, negatively signal, negatively signals, prevent, prevents, regulate negatively, regulates
negatively, negatively regulate, negatively regulates, negatively control, negatively controls,
control negatively, controls negatively, is a negative regulator, is negative regulator, is the
negative regulator, act as a negative regulator, act as negative regulator, act as the neg-
ative regulator, inactivate, inactivates, abolish, abolishes, attenuate, attenuates, decrease,
decreases, eliminate, eliminates, antagonize, antagonizes, attenuate, attenuates, alleviate,
alleviates, diminish, diminishes, exert an antagonistic effect, exerts an antagonistic effect,
exert antagonistic effect, exerts antagonistic effect, exert the antagonistic effect, exerts the
antagonistic effect, involved in inhibition, involved in the inhibition, involved in suppression,
involved in the suppression, involved in repression, involved in the repression, involved in
reduction, involved in the reduction, involved in inactivation, involved in the inactivation,
involved in attenuation, involved in the attenuation, prevent accumulation, prevents accu-
mulation, prevent the accumulation, prevents the accumulation, preventing accumulation,
preventing the accumulation, abrogate, abrogates, deplete, depletes, downregulate, down-
regulates, has an inhibitory effect, have an inhibitory effect, play an important role in the
suppression, plays an important role in the suppression.

The synonyms used for the inhibition type of reaction in the passive form were as follows:
inhibited, repressed, suppressed, blocked, reduced, negatively signalled, negatively signalled,
negatively regulated, regulated negatively, negatively controlled, controlled negatively, pre-
vented, inactivated, abolished, attenuated, decreased, eliminated, antagonized, attenuated,
alleviated, diminished, abrogated, depleted, downregulated.

The synonyms used for the binding type of reaction in the active form were as follows:
bind, binds, form complex, forms complex, form the complex, forms the complex, promote
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the formation of complex, promotes the formation of complex, promote the formation of
the complex, promotes the formation of the complex, promote formation of the complex,
promotes formation of the complex, promote formation of complex, promotes formation of
complex, make complex, makes complex, make the complex, makes the complex, compose
complex, composes complex, compose the complex, composes the complex, create complex,
creates complex, create the complex, creates the complex, perceive, perceives.

The synonyms used for the binding type of reaction in the passive form were as follows:
binded, made complex, made the complex, composed complex, composed the complex, cre-
ated complex, created the complex, formed complex, formed the complex, perceived by.

B.3 Graph of new triplets extracted by Bio3graph

The network consists of 63 components and 137 reactions and represents the new triplets
compared to the initial manually constructed PDS model structure. These new direct links
are blue coloured and new indirect green coloured. The instructions for visualising the
graph with the Biomine visualisation engine are provided at A.3. The graph, which should
be saved as a .bmg file, contains the following reactions and components:

metabolite Me-JA metabolite JA A linecolor=0/255/0
metabolite Ethylene protein ACS6 A linecolor=0/255/0
metabolite Ethylene metabolite SA A linecolor=0/255/0
metabolite SA protein PAD4 A linecolor=0/255/0
protein JAR1 protein PR1 I linecolor=0/255/0
protein EIN2 protein PR1 I linecolor=0/255/0
metabolite SA protein EDS5 A linecolor=0/255/0
metabolite Me-JA protein AOS A linecolor=0/255/0
metabolite SA protein ACO2 I linecolor=0/255/0
metabolite ROS metabolite Ethylene A linecolor=0/255/0
metabolite ROS metabolite JA A linecolor=0/255/0
metabolite SA protein Catalase I linecolor=0/255/0
metabolite JA protein EBF1 I linecolor=0/255/0
metabolite ACC metabolite ROS I linecolor=0/255/0
metabolite JA protein ACX1 A linecolor=0/255/0
metabolite JA protein PR4 A linecolor=0/255/0
metabolite Me-JA metabolite SA A linecolor=0/255/0
metabolite JA metabolite SA I linecolor=0/255/0
metabolite JA protein AOS A linecolor=0/255/0
metabolite SA protein AOS I linecolor=0/255/0
metabolite Ethylene protein AOS A linecolor=0/255/0
metabolite SA metabolite ACC I linecolor=0/255/0
protein Catalase metabolite ROS I linecolor=0/255/0
metabolite Ethylene protein ERS1 A linecolor=0/255/0
metabolite Ethylene protein ETR2 A linecolor=0/255/0
metabolite Ethylene protein ERS2 A linecolor=0/255/0
protein EIL1 metabolite SA I linecolor=0/255/0
protein EIN3 metabolite SA I linecolor=0/255/0
metabolite JA protein LOX2 A linecolor=0/255/0
protein Superoxide dismutase metabolite ROS I linecolor=0/255/0
metabolite JA protein LOX1 A linecolor=0/255/0
metabolite ROS protein PR2 A linecolor=0/255/0
metabolite ROS protein PR1 A linecolor=0/255/0
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metabolite SA protein EDS1 A linecolor=0/255/0
metabolite Me-JA protein LOX2 A linecolor=0/255/0
metabolite Me-JA protein OPR3 A linecolor=0/255/0
protein Glutathione peroxidase metabolite ROS I linecolor=0/255/0
metabolite JA protein MPK6 A linecolor=0/255/0
metabolite Ethylene protein JR1 I linecolor=0/255/0
metabolite SA metabolite JA A linecolor=0/255/0
metabolite SA protein PDF1.2 A linecolor=0/255/0
metabolite SA protein PR1 I linecolor=0/255/0
protein EDS1 metabolite Ethylene A linecolor=0/255/0
protein PAD4 metabolite Ethylene A linecolor=0/255/0
protein EDS1 metabolite ACC A linecolor=0/255/0
protein PAD4 metabolite ACC A linecolor=0/255/0
metabolite Ethylene protein PR2 A linecolor=0/255/0
metabolite ROS protein Superoxide dismutase I linecolor=0/255/0
metabolite Me-JA protein LOX1 A linecolor=0/255/0
metabolite SA protein LOX1 A linecolor=0/255/0
metabolite Me-JA protein VSP1 A linecolor=0/255/0
metabolite JA protein CLH1 A linecolor=0/255/0
metabolite Ethylene metabolite SA I linecolor=0/255/0
metabolite Ethylene protein NADPH oxidase A linecolor=0/255/0
metabolite Ethylene protein ACO2 A linecolor=0/255/0
metabolite Me-JA metabolite ROS A linecolor=0/255/0
metabolite Me-JA protein NADPH oxidase A linecolor=0/255/0
metabolite Me-JA protein ETR1 A linecolor=0/255/0
metabolite ACC protein NPR1 A linecolor=0/255/0
metabolite ACC protein PR1 A linecolor=0/255/0
metabolite SA protein PDF1.2 I linecolor=0/255/0
metabolite Me-JA protein PR1 A linecolor=0/255/0
metabolite Me-JA protein PDF1.2 I linecolor=0/255/0
metabolite Ethylene protein PR1 A linecolor=0/255/0
metabolite Ethylene protein NPR1 A linecolor=0/255/0
metabolite SA protein LOX2 I linecolor=0/255/0
metabolite SA protein AOC2 I linecolor=0/255/0
metabolite SA protein OPR3 I linecolor=0/255/0
metabolite JA protein ERF1 A linecolor=0/255/0
metabolite SAG protein PR1 A linecolor=0/255/0
metabolite JA protein b-CHI A linecolor=0/255/0
metabolite Ethylene protein JMT I linecolor=0/255/0
metabolite JA protein PR5 A linecolor=0/255/0
metabolite Ethylene protein PR5 A linecolor=0/255/0
metabolite SA protein JAZ3 I linecolor=0/255/0
metabolite ROS protein GST1 A linecolor=0/255/0
metabolite JA protein PR1 A linecolor=0/255/0
metabolite SA protein THI2.1 A linecolor=0/255/0
metabolite JA metabolite ROS A linecolor=0/255/0
metabolite JA protein PR1 I linecolor=0/255/0
metabolite ROS metabolite SAG A linecolor=0/255/0
metabolite OPDA protein AOS A linecolor=0/255/0
metabolite SA protein AOS A linecolor=0/255/0
metabolite JA protein OPR3 A linecolor=0/255/0
metabolite Me-JA metabolite SAG A linecolor=0/255/0
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metabolite Me-JA protein WRKY70 I linecolor=0/255/0
protein EDS1 protein HRT A linecolor=0/255/0
protein PAD4 protein HRT A linecolor=0/255/0
protein ETR1 metabolite ROS A linecolor=0/255/0
metabolite Ethylene protein ETR1 A linecolor=0/255/0
protein ETR1 protein ERS1 I linecolor=0/255/0
metabolite Me-JA metabolite ACC I linecolor=0/255/0
metabolite Me-JA protein AOS I linecolor=0/255/0
protein EIN2 metabolite SA A linecolor=0/255/0
metabolite JA protein PR2 A linecolor=0/255/0
metabolite Ethylene metabolite ROS I linecolor=0/255/0
metabolite Ethylene protein ACO1 A linecolor=0/255/0
metabolite ROS protein ERF1 A linecolor=0/255/0
metabolite Ethylene protein ACO A linecolor=0/255/0
metabolite BA metabolite Ethylene A linecolor=0/255/0
metabolite ROS protein MPK4 A linecolor=0/255/0
metabolite SA protein HRT A linecolor=0/255/0
metabolite Me-JA protein PR5 A linecolor=0/255/0
protein NPR1 protein PAD4 A linecolor=0/255/0
metabolite Copper protein PR1 A linecolor=0/255/0
metabolite OPDA protein GST1 A linecolor=0/255/0
metabolite Me-JA metabolite ROS I linecolor=0/255/0
metabolite Me-JA protein PR1 I linecolor=0/255/0
metabolite Me-JA protein PR4 A linecolor=0/255/0
metabolite Ethylene protein MYC2 I linecolor=0/255/0
protein EDS5 protein PR1 I linecolor=0/255/0
metabolite SA protein b-CHI A linecolor=0/255/0
metabolite SA protein OPR3 A linecolor=0/255/0
metabolite SA metabolite OPDA A linecolor=0/255/0
metabolite JA protein WRKY70 I linecolor=0/255/0
metabolite ACC protein MPK6 A linecolor=0/255/0
metabolite ACC protein ERS2 A linecolor=0/255/0
metabolite ACC protein ETR2 A linecolor=0/255/0
metabolite JA protein KAT5 A linecolor=0/255/0
protein COI1 protein KAT5 A linecolor=0/255/0
protein WRKY70 metabolite SA I linecolor=0/255/0
metabolite Me-JA protein ERF1 A linecolor=0/255/0
metabolite SA protein ERF1 A linecolor=0/255/0
protein EIL1 protein ICS1 I linecolor=0/0/255
protein EIN3 protein ICS1 I linecolor=0/0/255
protein WRKY70 protein ICS1 I linecolor=0/0/255
protein MPK6 protein EIN3 A linecolor=0/0/255
protein MPK3 protein EIN3 A linecolor=0/0/255
protein WRKY70 protein PDF1.2 I linecolor=0/0/255
metabolite SAG metabolite SA A linecolor=0/0/255
protein TGA TF2 protein PDF1.2 B linecolor=0/0/255
metabolite ROS protein ACO1 A linecolor=0/0/255
metabolite Copper protein AAO4 I linecolor=0/0/255
metabolite Copper metabolite ROS A linecolor=0/0/255
protein EIN3 protein ICS1 B linecolor=0/0/255
protein NIMIN1 protein NPR1 I linecolor=0/0/255
protein TGA TF2 protein PR1 I linecolor=0/0/255
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# attributes metabolite Ethylene queryset=end
# attributes protein ACS6
# attributes metabolite SA queryset=end
# attributes protein PAD4
# attributes protein JAR1
# attributes protein PR1
# attributes protein EIN2
# attributes protein EDS5
# attributes metabolite Me-JA
# attributes protein AOS
# attributes protein ACO2
# attributes metabolite ROS
# attributes metabolite JA queryset=end
# attributes protein Catalase
# attributes protein EBF1
# attributes metabolite ACC
# attributes protein ACX1
# attributes protein PR4
# attributes protein ERS1
# attributes protein ETR2
# attributes protein ERS2
# attributes protein EIL1
# attributes protein EIN3
# attributes protein LOX2
# attributes protein Superoxide dismutase
# attributes protein LOX1
# attributes protein PR2
# attributes protein EDS1
# attributes protein OPR3
# attributes protein Glutathione peroxidase
# attributes protein MPK6
# attributes protein JR1
# attributes protein PDF1.2
# attributes protein VSP1
# attributes protein CLH1
# attributes protein NADPH oxidase
# attributes protein ETR1
# attributes protein NPR1
# attributes protein AOC2
# attributes protein ERF1
# attributes metabolite SAG
# attributes protein b-CHI
# attributes protein JMT
# attributes protein PR5
# attributes protein JAZ3
# attributes protein GST1
# attributes protein THI2.1
# attributes metabolite OPDA
# attributes protein WRKY70
# attributes protein HRT
# attributes protein ACO1
# attributes protein ACO
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# attributes metabolite BA
# attributes protein MPK4
# attributes metabolite Copper
# attributes protein MYC2
# attributes protein KAT5
# attributes protein COI1
# attributes protein ICS1
# attributes protein MPK3
# attributes protein TGA TF2
# attributes metabolite SA
# attributes protein AAO4

B.4 Merged PDS model structure

The merged PDS model structure contains both manual and new triplets from the literature.
The arcs from the manual model structure are all direct and are coloured in red. The
intersection between the manual model arcs and the correct triplets extracted from the
literature is represented with black coloured arcs. Further, from the correct new triplets,
the indirect connections are represented with green and the direct ones with blue colour.
The instructions for visualising the graph with the Biomine visualisation engine are provided
at A.3. The graph, which should be saved as a .bmg file, contains the following reactions
and components:

# canvas -303.0,-79.0,10401.8,2711.2
# symmetric B
complex ASK1 CULLIN1 RBXE2 complex ASK1 CULLIN1 RBXE2 EBF12 P
linecolor=255/0/0 pos=4085.3,1209.1
complex ASK1 CULLIN1 RBXE2 protein EBF1 B linecolor=255/0/0 pos=3999.9,1190.1
complex ASK1 CULLIN1 RBXE2 protein EBF2 B linecolor=255/0/0 pos=3928.8,1269.4
complex ASK1 CULLIN1 RBXE2 EBF12 protein EIL1 I
linecolor=255/0/0 pos=3943.5,1403.5
complex ASK1 CULLIN1 RBXE2 EBF12 protein EIL2 I
linecolor=255/0/0 pos=3980.6,1459.9
complex ASK1 CULLIN1 RBXE2 EBF12 protein EIN3 I
linecolor=255/0/0 pos=3966.3,1533.1
complex Et receptor CTR1 protein EIN2 I linecolor=255/0/0 pos=3528.2,1677.7
complex JA-Ile COI1 SCF complex JA-Ile COI1 SCF JAZ P
linecolor=255/0/0 pos=6607.6,2489.8
complex JA-Ile COI1 SCF protein JAZ1 B linecolor=255/0/0 pos=6109.2,2346.7
complex JA-Ile COI1 SCF protein JAZ10 B linecolor=255/0/0 pos=6822.9,2338.1
complex JA-Ile COI1 SCF protein JAZ11 B linecolor=255/0/0 pos=6898.0,2344.4
complex JA-Ile COI1 SCF protein JAZ12 B linecolor=255/0/0 pos=6979.3,2349.6
complex JA-Ile COI1 SCF protein JAZ2 B linecolor=255/0/0 pos=6209.0,2355.0
complex JA-Ile COI1 SCF protein JAZ3 B linecolor=255/0/0 pos=6296.5,2366.7
complex JA-Ile COI1 SCF protein JAZ4 B linecolor=255/0/0 pos=6373.6,2350.6
complex JA-Ile COI1 SCF protein JAZ5 B linecolor=255/0/0 pos=6446.5,2367.9
complex JA-Ile COI1 SCF protein JAZ6 B linecolor=255/0/0 pos=6519.8,2351.1
complex JA-Ile COI1 SCF protein JAZ7 B linecolor=255/0/0 pos=6594.4,2352.7
complex JA-Ile COI1 SCF protein JAZ8 B linecolor=255/0/0 pos=6671.3,2356.1
complex JA-Ile COI1 SCF protein JAZ9 B linecolor=255/0/0 pos=6746.9,2331.0
complex NPR1 TGA245 protein PR1 A linecolor=255/0/0 pos=10017.9,1381.9
complex NPR1 TGA245 protein PR2 A linecolor=255/0/0 pos=10040.5,1501.8
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complex NPR1 TGA245 protein PR5 A linecolor=255/0/0 pos=10090.5,1564.9
complex NPR1 oligomer protein NPR1 A linecolor=255/0/0 pos=9862.0,1229.8
complex SCF complex JA-Ile COI1 SCF P linecolor=255/0/0 pos=6037.1,2541.3
complex SCF metabolite JA-Ile B linecolor=255/0/0 pos=5748.3,2540.5
complex SCF protein COI1 B linecolor=255/0/0 pos=5822.4,2632.3
metabolite 12/13 EDT metabolite OPDA chl A linecolor=255/0/0 pos=5110.8,1260.5
metabolite 13-HPT metabolite 12/13 EDT A linecolor=0/0/0 pos=5131.0,1118.5
metabolite ACC metabolite Ethylene A linecolor=0/0/0 pos=2922.8,1381.6
metabolite ACC metabolite ROS I linecolor=0/255/0 pos=6348.5,943.0
metabolite ACC protein ERS2 A linecolor=0/255/0 pos=3182.1,1183.4
metabolite ACC protein ETR2 A linecolor=0/255/0 pos=3081.6,1190.4
metabolite ACC protein MPK6 A linecolor=0/255/0 pos=6145.3,937.0
metabolite ACC protein NPR1 A linecolor=0/255/0 pos=6293.7,1197.3
metabolite ACC protein PR1 A linecolor=0/255/0 pos=6429.5,1191.1
metabolite BA metabolite Ethylene A linecolor=0/255/0 pos=5902.0,1475.3
metabolite BA metabolite SA A linecolor=0/0/0 pos=8776.4,1691.6
metabolite Chorismate metabolite Isochorismate A linecolor=0/0/0 pos=8725.6,980.3
metabolite Chorismate metabolite Prephenate A
linecolor=255/0/0 pinned=1 pos=8456.1045,811.2770
metabolite Copper metabolite Copper cyto A linecolor=255/0/0 pos=3354.4,915.5
metabolite Copper metabolite ROS A linecolor=0/0/255 pos=6623.9,820.4
metabolite Copper protein AAO4 I linecolor=0/0/255 pos=6010.6,1185.5
metabolite Copper protein PR1 A linecolor=0/255/0 pos=6748.4,1008.4
metabolite Copper cyto protein EIN4 A linecolor=255/0/0 pos=3525.4,1077.4
metabolite Copper cyto protein ERS1 A linecolor=255/0/0 pos=3359.2,1183.4
metabolite Copper cyto protein ERS2 A linecolor=255/0/0 pos=3453.0,1158.2
metabolite Copper cyto protein ETR1 A linecolor=255/0/0 pos=3221.3,1094.4
metabolite Copper cyto protein ETR2 A linecolor=255/0/0 pos=3283.3,1129.1
metabolite Ethylene complex Et receptor CTR1 I linecolor=255/0/0 pos=3310.2,1609.9
metabolite Ethylene metabolite ROS I linecolor=0/255/0 pos=6408.0,1131.3
metabolite Ethylene metabolite SA A linecolor=0/255/0 pos=5949.5,1754.2
metabolite Ethylene metabolite SA I linecolor=0/255/0 pos=5895.6,1775.6
metabolite Ethylene protein ACO A linecolor=0/255/0 pos=2922.7,1635.4
metabolite Ethylene protein ACO1 A linecolor=0/255/0 pos=2933.3,1472.9
metabolite Ethylene protein ACO2 A linecolor=0/255/0 pos=2862.8,1543.5
metabolite Ethylene protein ACS6 A linecolor=0/255/0 pos=3027.2,1483.7
metabolite Ethylene protein AOS A linecolor=0/255/0 pos=4273.3,1372.2
metabolite Ethylene protein ERS1 A linecolor=0/255/0 pos=3229.3,1468.0
metabolite Ethylene protein ERS2 A linecolor=0/255/0 pos=3286.6,1430.6
metabolite Ethylene protein ETR1 A linecolor=0/255/0 pos=3096.5,1424.7
metabolite Ethylene protein ETR2 A linecolor=0/255/0 pos=3165.8,1425.2
metabolite Ethylene protein JMT I linecolor=0/255/0 pos=4027.3,2114.4
metabolite Ethylene protein JR1 I linecolor=0/255/0 pos=4693.1,1092.9
metabolite Ethylene protein MYC2 I linecolor=0/255/0 pos=5064.3,1092.1
metabolite Ethylene protein NADPH oxidase A linecolor=0/255/0 pos=6539.8,1185.7
metabolite Ethylene protein NPR1 A linecolor=0/255/0 pos=6379.6,1415.3
metabolite Ethylene protein PR1 A linecolor=0/255/0 pos=6526.0,1322.6
metabolite Ethylene protein PR2 A linecolor=0/255/0 pos=6558.1,1494.9
metabolite Ethylene protein PR5 A linecolor=0/255/0 pos=6533.8,1578.9
metabolite Isochorismate metabolite SA chl A linecolor=255/0/0 pos=8981.9,1379.0
metabolite JA metabolite JA-Ile A linecolor=0/0/0 pos=5363.0,2488.8
metabolite JA metabolite Me-JA A linecolor=0/0/0 pos=5240.2,2576.6
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metabolite JA metabolite ROS A linecolor=0/255/0 pos=7512.1,1619.8
metabolite JA metabolite SA I linecolor=0/255/0 pos=6958.6,2148.7
metabolite JA protein ACX1 A linecolor=0/255/0 pos=4864.2,2314.6
metabolite JA protein AOS A linecolor=0/255/0 pos=5302.5,1805.4
metabolite JA protein CLH1 A linecolor=0/255/0 pos=5855.8,1568.0
metabolite JA protein EBF1 I linecolor=0/255/0 pos=4596.8,1719.3
metabolite JA protein ERF1 A linecolor=0/255/0 pos=4748.8,2039.8
metabolite JA protein KAT5 A linecolor=0/255/0 pos=5495.1,2285.6
metabolite JA protein LOX1 A linecolor=0/255/0 pos=5330.7,1606.7
metabolite JA protein LOX2 A linecolor=0/255/0 pos=5369.4,1663.6
metabolite JA protein MPK6 A linecolor=0/255/0 pos=7361.9,1665.8
metabolite JA protein OPR3 A linecolor=0/255/0 pos=5108.5,2007.5
metabolite JA protein PR1 A linecolor=0/255/0 pos=7681.0,1795.7
metabolite JA protein PR1 I linecolor=0/255/0 pos=7618.6,1804.2
metabolite JA protein PR2 A linecolor=0/255/0 pos=7669.9,1923.6
metabolite JA protein PR4 A linecolor=0/255/0 pos=4830.0,1756.7
metabolite JA protein PR5 A linecolor=0/255/0 pos=7657.5,1994.3
metabolite JA protein WRKY70 I linecolor=0/255/0 pos=7540.5,1844.0
metabolite JA protein b-CHI A linecolor=0/255/0 pos=4836.8,1666.4
metabolite JA-Ile complex JA-Ile COI1 SCF P linecolor=255/0/0 pos=5760.8,2448.5
metabolite JA-Ile protein COI1 B linecolor=0/0/0 pos=5568.3,2565.8
metabolite L-methionine metabolite SAM A linecolor=255/0/0 pos=2793.3,742.0
metabolite Linolenic acid metabolite 13-HPT A linecolor=0/0/0 pos=5101.9,946.9
metabolite Me-JA metabolite ACC I linecolor=0/255/0 pos=3946.8,1865.2
metabolite Me-JA metabolite JA A linecolor=0/255/0 pos=5137.9,2568.6
metabolite Me-JA metabolite ROS A linecolor=0/255/0 pos=7551.7,1689.1
metabolite Me-JA metabolite ROS I linecolor=0/255/0 pos=7494.1,1701.4
metabolite Me-JA metabolite SA A linecolor=0/255/0 pos=6995.1,2254.5
metabolite Me-JA metabolite SAG A linecolor=0/255/0 pos=7112.8,2300.7
metabolite Me-JA protein AOS A linecolor=0/255/0 pos=5345.0,1872.0
metabolite Me-JA protein AOS I linecolor=0/255/0 pos=5281.3,1878.3
metabolite Me-JA protein ERF1 A linecolor=0/255/0 pos=4742.1,2109.0
metabolite Me-JA protein ETR1 A linecolor=0/255/0 pos=4202.9,1925.5
metabolite Me-JA protein LOX1 A linecolor=0/255/0 pos=5304.4,1693.9
metabolite Me-JA protein LOX2 A linecolor=0/255/0 pos=5357.7,1740.5
metabolite Me-JA protein NADPH oxidase A linecolor=0/255/0 pos=7640.3,1702.2
metabolite Me-JA protein OPR3 A linecolor=0/255/0 pos=5094.0,2067.6
metabolite Me-JA protein PDF1.2 I linecolor=0/255/0 pos=4791.7,2210.5
metabolite Me-JA protein PR1 A linecolor=0/255/0 pos=7677.4,1864.6
metabolite Me-JA protein PR1 I linecolor=0/255/0 pos=7615.7,1882.9
metabolite Me-JA protein PR4 A linecolor=0/255/0 pos=4825.9,1832.6
metabolite Me-JA protein PR5 A linecolor=0/255/0 pos=7637.0,2059.1
metabolite Me-JA protein VSP1 A linecolor=0/255/0 pos=5927.2,1641.9
metabolite Me-JA protein WRKY70 I linecolor=0/255/0 pos=7545.3,1919.8
metabolite OPC-8:0-CoA metabolite OPC6 A linecolor=255/0/0 pos=5135.7,1752.6
metabolite OPC4 metabolite JA A linecolor=255/0/0 pos=5137.8,2385.8
metabolite OPC6 metabolite OPC4 A
linecolor=255/0/0 pinned=1 pos=5245.0036,2026.1763
metabolite OPC8 metabolite OPC-8:0-CoA A linecolor=255/0/0 pos=5237.6,1631.1
metabolite OPDA metabolite OPC8 A linecolor=255/0/0 pos=5235.4,1516.9
metabolite OPDA protein AOS A linecolor=0/255/0 pos=5272.0,1325.3
metabolite OPDA protein GST1 A linecolor=0/255/0 pos=4834.6,1344.1
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metabolite OPDA chl metabolite OPDA A linecolor=255/0/0 pos=5116.0,1387.3
metabolite Orto-coumaric acid metabolite SA A linecolor=255/0/0 pos=8610.6,1746.2
metabolite Phenylalanine metabolite Trans-cinnamic acid A
linecolor=0/0/0 pos=8503.0,1306.5
metabolite Phenylpyruvate metabolite Phenylalanine A
linecolor=255/0/0 pos=8518.0,1140.5
metabolite Prephenate metabolite Phenylpyruvate A linecolor=0/0/0 pos=8513.4,974.6
metabolite ROS metabolite Ethylene A linecolor=0/255/0 pos=6469.2,1127.8
metabolite ROS metabolite JA A linecolor=0/255/0 pos=7570.3,1612.2
metabolite ROS metabolite SAG A linecolor=0/255/0 pos=9403.1,1416.5
metabolite ROS protein ACO1 A linecolor=0/0/255 pos=6305.5,1053.3
metabolite ROS protein BA2H A linecolor=255/0/0 pos=9559.3,1181.9
metabolite ROS protein ERF1 A linecolor=0/255/0 pos=7101.2,1172.3
metabolite ROS protein GST1 A linecolor=0/255/0 pos=7169.3,990.5
metabolite ROS protein MPK3 A linecolor=0/0/0 pos=9421.8,742.4
metabolite ROS protein MPK4 A linecolor=0/255/0 pos=7896.2,882.8
metabolite ROS protein MPK6 A linecolor=0/0/0 pinned=1 pos=9694.2650,804.1757
metabolite ROS protein PR1 A linecolor=0/255/0 pos=9967.4,995.8
metabolite ROS protein PR2 A linecolor=0/255/0 pos=10000.7,1074.6
metabolite ROS protein Superoxide dismutase I linecolor=0/255/0 pos=9951.8,696.8
metabolite SA metabolite ACC I linecolor=0/255/0 pos=5789.7,1534.0
metabolite SA metabolite JA A linecolor=0/255/0 pos=7012.9,2169.7
metabolite SA metabolite OPDA A linecolor=0/255/0 pos=6966.4,1730.5
metabolite SA metabolite OPDA I linecolor=255/0/0 pos=7018.7,1755.2
metabolite SA metabolite SAG A linecolor=0/0/0 pos=8879.5,2034.1
metabolite SA metabolite SGE A linecolor=255/0/0 pos=8661.9,2021.9
metabolite SA protein ACO2 I linecolor=0/255/0 pos=5765.9,1705.7
metabolite SA protein AOC2 I linecolor=0/255/0 pos=7170.1,1692.9
metabolite SA protein AOS A linecolor=0/255/0 pos=7057.2,1625.9
metabolite SA protein AOS I linecolor=0/255/0 pos=7112.1,1605.1
metabolite SA protein Catalase I linecolor=0/255/0 pos=9436.9,1358.3
metabolite SA protein EDS1 A linecolor=0/255/0 pos=9168.2,1429.1
metabolite SA protein EDS5 A linecolor=0/255/0 pos=9082.3,1570.0
metabolite SA protein ERF1 A linecolor=0/255/0 pos=6547.4,1834.3
metabolite SA protein HRT A linecolor=0/255/0 pos=9203.1,1221.8
metabolite SA protein JAZ3 I linecolor=0/255/0 pos=7740.4,2108.0
metabolite SA protein LOX1 A linecolor=0/255/0 pos=7124.7,1276.2
metabolite SA protein LOX2 I linecolor=0/255/0 pos=7118.5,1354.3
metabolite SA protein NPR1 A linecolor=0/0/0 pinned=1 pos=9584.0072,1631.6197
metabolite SA protein OPR3 A linecolor=0/255/0 pos=6867.6,1785.9
metabolite SA protein OPR3 I linecolor=0/255/0 pos=6914.0,1820.4
metabolite SA protein PAD4 A linecolor=0/255/0 pos=9063.1,1429.4
metabolite SA protein PDF1.2 A linecolor=0/255/0 pos=6651.9,1879.5
metabolite SA protein PDF1.2 I linecolor=0/255/0 pos=6610.2,1920.5
metabolite SA protein PR1 I linecolor=0/255/0 pos=9422.6,1589.4
metabolite SA protein THI2.1 A linecolor=0/255/0 pos=7787.0,1340.4
metabolite SA protein b-CHI A linecolor=0/255/0 pos=6625.1,1406.4
metabolite SAG metabolite SA A linecolor=0/0/255 pos=8912.4,1970.6
metabolite SAG protein PR1 A linecolor=0/255/0 pos=9507.9,1655.4
metabolite SAM metabolite ACC A linecolor=0/0/0 pos=2807.6,968.7
metabolite SA chl metabolite SA A linecolor=255/0/0 pinned=1 pos=8999.1799,1585.9679
metabolite Trans-cinnamic acid metabolite BA A linecolor=255/0/0 pos=8607.7,1384.6
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metabolite Trans-cinnamic acid metabolite Orto-coumaric acid A
linecolor=255/0/0 pinned=1 pos=8450.7992,1455.7455
protein AAO4 metabolite BA A linecolor=255/0/0 pinned=1 pos=8748.5817,1512.1865
protein AAO4 metabolite Orto-coumaric acid A
linecolor=255/0/0 pinned=1 pos=8556.8009,1510.1879
protein ACO metabolite Ethylene A linecolor=0/0/0 pos=2880.8,1685.1
protein ACO-like metabolite Ethylene A linecolor=255/0/0 pos=2955.8,1712.5
protein ACO1 metabolite Ethylene A linecolor=0/0/0 pos=2871.0,1468.6
protein ACO2 metabolite Ethylene A linecolor=0/0/0 pos=2925.6,1556.9
protein ACO4 metabolite Ethylene A linecolor=0/0/0 pos=2848.6,1608.3
protein ACS1 metabolite ACC A linecolor=0/0/0 pos=2882.5,1017.5
protein ACS10 metabolite ACC A linecolor=255/0/0 pos=2727.1,1087.7
protein ACS11 metabolite ACC A linecolor=255/0/0 pos=2736.1,1022.2
protein ACS2 metabolite ACC A linecolor=255/0/0 pos=2855.0,1077.0
protein ACS3 metabolite ACC A linecolor=255/0/0 pos=2916.1,1113.6
protein ACS4 metabolite ACC A linecolor=0/0/0 pos=2919.8,1195.5
protein ACS5 metabolite ACC A linecolor=255/0/0 pos=2851.5,1246.7
protein ACS6 metabolite ACC A linecolor=255/0/0 pos=2895.6,1291.7
protein ACS7 metabolite ACC A linecolor=0/0/0 pos=2712.6,1276.0
protein ACS8 metabolite ACC A linecolor=255/0/0 pos=2710.5,1208.8
protein ACS9 metabolite ACC A linecolor=255/0/0 pos=2708.4,1146.7
protein ACX1 metabolite JA A linecolor=0/0/0 pos=4840.0,2368.0
protein ACX1 metabolite OPC4 A linecolor=255/0/0 pos=4862.1,2235.2
protein ACX1 metabolite OPC6 A linecolor=255/0/0 pos=4860.4,1971.5
protein ACX2 metabolite JA A linecolor=255/0/0 pos=4930.4,2359.9
protein ACX2 metabolite OPC4 A linecolor=255/0/0 pos=4937.0,2225.8
protein ACX2 metabolite OPC6 A linecolor=255/0/0 pos=4932.4,1985.5
protein ACX3 metabolite JA A linecolor=255/0/0 pos=4998.9,2372.6
protein ACX3 metabolite OPC4 A linecolor=255/0/0 pos=5000.7,2259.1
protein ACX3 metabolite OPC6 A linecolor=255/0/0 pos=4999.5,2006.8
protein ACX4 metabolite JA A linecolor=255/0/0 pos=5060.2,2337.5
protein ACX4 metabolite OPC4 A linecolor=255/0/0 pos=5051.4,2210.1
protein ACX4 metabolite OPC6 A linecolor=255/0/0 pos=5049.0,1955.9
protein ACX5 metabolite JA A linecolor=255/0/0 pos=5137.6,2309.1
protein ACX5 metabolite OPC4 A linecolor=255/0/0 pos=5112.2,2224.1
protein ACX5 metabolite OPC6 A linecolor=255/0/0 pos=5142.0,1951.5
protein ACX6 metabolite JA A linecolor=255/0/0 pos=5232.5,2322.2
protein ACX6 metabolite OPC4 A linecolor=255/0/0 pos=5192.2,2167.9
protein ACX6 metabolite OPC6 A linecolor=255/0/0 pos=5221.6,1968.3
protein AIM1 metabolite JA A linecolor=255/0/0 pos=5308.4,2316.3
protein AIM1 metabolite OPC4 A linecolor=255/0/0 pos=5297.9,2214.4
protein AIM1 metabolite OPC6 A linecolor=255/0/0 pos=5315.0,1980.3
protein AOC1 metabolite OPDA chl A linecolor=255/0/0 pos=5331.2,1259.7
protein AOC2 metabolite OPDA chl A linecolor=255/0/0 pos=5380.7,1313.5
protein AOC3 metabolite OPDA chl A linecolor=255/0/0 pos=5340.2,1362.7
protein AOC4 metabolite OPDA chl A linecolor=255/0/0 pos=5362.0,1422.4
protein AOS metabolite 12/13 EDT A linecolor=0/0/0 pos=5278.8,1187.5
protein Arogenate dehydratase metabolite Phenylalanine A
linecolor=0/0/0 pos=8339.5,1198.0
protein BA2H metabolite SA A linecolor=255/0/0 pos=9044.2,1756.7
protein CM1 metabolite Prephenate A linecolor=255/0/0 pos=8359.4,777.5
protein CM2 metabolite Prephenate A linecolor=255/0/0 pos=8360.1,933.5
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protein CM3 metabolite Prephenate A linecolor=255/0/0 pos=8358.6,851.7
protein COI1 complex JA-Ile COI1 SCF P linecolor=255/0/0 pos=5842.6,2530.1
protein COI1 protein KAT5 A linecolor=0/255/0 pos=5752.4,2348.4
protein CTR1 complex Et receptor CTR1 P
linecolor=255/0/0 pinned=1 pos=3531.1004,1464.2793
protein CTR1 protein EIN4 B linecolor=255/0/0 pos=3658.7,1316.5
protein CTR1 protein ERS1 B linecolor=255/0/0 pos=3495.9,1336.6
protein CTR1 protein ERS2 B linecolor=255/0/0 pos=3580.2,1328.9
protein CTR1 protein ETR1 B linecolor=255/0/0 pos=3348.6,1348.4
protein CTR1 protein ETR2 B linecolor=255/0/0 pos=3417.7,1347.1
protein Catalase metabolite ROS A linecolor=255/0/0 pos=9990.3,789.3
protein Catalase metabolite ROS I linecolor=0/255/0 pos=9940.9,831.6
protein EBF1 complex ASK1 CULLIN1 RBXE2 EBF12 P
linecolor=255/0/0 pos=4079.4,983.7
protein EBF2 complex ASK1 CULLIN1 RBXE2 EBF12 P
linecolor=255/0/0 pos=3966.3,1126.0
protein EDF1 protein PDF1.2 A linecolor=255/0/0 pos=4432.8,1758.5
protein EDF2 protein PDF1.2 A linecolor=255/0/0 pos=4420.8,1857.3
protein EDF3 protein PDF1.2 A linecolor=255/0/0 pos=4469.2,1911.6
protein EDF4 protein PDF1.2 A linecolor=255/0/0 pos=4429.3,1970.3
protein EDS1 metabolite ACC A linecolor=0/255/0 pos=6172.7,1043.1
protein EDS1 metabolite Ethylene A linecolor=0/255/0 pos=6263.0,1259.2
protein EDS1 protein EDS5 A linecolor=255/0/0 pos=9443.8,1019.2
protein EDS1 protein HRT A linecolor=0/255/0 pos=9631.5,726.2
protein EDS5 protein ICS1 A linecolor=0/0/0 pinned=1 pos=9277.5793,1190.3358
protein EDS5 protein ICS2 A linecolor=255/0/0 pinned=1 pos=9411.1688,1188.8498
protein EDS5 protein PR1 I linecolor=0/255/0 pos=9720.0,1174.7
protein EIL1 metabolite SA I linecolor=0/255/0 pos=6280.7,1842.3
protein EIL1 protein EBF1 A linecolor=255/0/0 pos=3868.2,1358.3
protein EIL1 protein EBF2 A linecolor=0/0/0 pos=3786.0,1490.7
protein EIL1 protein EDF1 A linecolor=255/0/0 pos=4103.5,1719.6
protein EIL1 protein EDF2 A linecolor=255/0/0 pos=4119.7,1778.6
protein EIL1 protein EDF3 A linecolor=255/0/0 pos=4128.9,1840.2
protein EIL1 protein EDF4 A linecolor=255/0/0 pos=4097.3,1896.6
protein EIL1 protein ERF1 A linecolor=0/0/0 pos=4064.2,1669.6
protein EIL1 protein GST1 A linecolor=255/0/0 pos=4199.3,1526.4
protein EIL1 protein ICS1 I linecolor=0/0/255 pos=6486.0,1543.1
protein EIL1 protein PR4 A linecolor=255/0/0 pos=4190.1,1398.7
protein EIL1 protein b-CHI A linecolor=255/0/0 pos=4186.4,1299.2
protein EIL2 protein EBF1 A linecolor=255/0/0 pos=3860.6,1425.1
protein EIL2 protein EBF2 A linecolor=255/0/0 pos=3783.8,1556.6
protein EIL2 protein EDF1 A linecolor=255/0/0 pos=4054.7,1771.3
protein EIL2 protein EDF2 A linecolor=255/0/0 pos=4066.2,1833.5
protein EIL2 protein EDF3 A linecolor=255/0/0 pos=3992.0,1924.0
protein EIL2 protein EDF4 A linecolor=255/0/0 pos=4102.6,1968.6
protein EIL2 protein ERF1 A linecolor=255/0/0 pos=4017.2,1721.1
protein EIL2 protein GST1 A linecolor=255/0/0 pos=4120.0,1558.5
protein EIL2 protein PR4 A linecolor=255/0/0 pos=4204.8,1461.8
protein EIL2 protein b-CHI A linecolor=255/0/0 pos=4139.5,1347.7
protein EIN2 metabolite SA A linecolor=0/255/0 pos=6140.8,1857.4
protein EIN2 protein EIL1 A linecolor=255/0/0 pos=3648.6,1763.9
protein EIN2 protein EIL2 A linecolor=255/0/0 pos=3634.7,1838.9
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protein EIN2 protein EIN3 A linecolor=0/0/0 pos=3631.4,1915.1
protein EIN2 protein PR1 I linecolor=0/255/0 pos=6780.3,1498.2
protein EIN3 metabolite SA I linecolor=0/255/0 pos=6287.0,1947.2
protein EIN3 protein EBF1 A linecolor=0/0/0 pos=3884.0,1500.6
protein EIN3 protein EBF2 A linecolor=0/0/0 pos=3811.0,1621.3
protein EIN3 protein EDF1 A linecolor=255/0/0 pos=4030.5,1874.0
protein EIN3 protein EDF2 A linecolor=255/0/0 pos=4053.2,1940.3
protein EIN3 protein EDF3 A linecolor=255/0/0 pos=4020.3,1998.0
protein EIN3 protein EDF4 A linecolor=255/0/0 pos=4076.1,2038.5
protein EIN3 protein ERF1 A linecolor=0/0/0 pos=4005.6,1803.2
protein EIN3 protein GST1 A linecolor=255/0/0 pos=4177.9,1611.8
protein EIN3 protein ICS1 B linecolor=0/0/255 pos=6538.5,1667.2
protein EIN3 protein ICS1 I linecolor=0/0/255 pos=6479.7,1654.5
protein EIN3 protein PR4 A linecolor=255/0/0 pos=4138.8,1503.3
protein EIN3 protein b-CHI A linecolor=255/0/0 pos=4132.7,1426.1
protein EIN4 complex Et receptor CTR1 P linecolor=255/0/0 pos=3668.9,1404.0
protein EIN5 protein EBF1 I linecolor=255/0/0 pos=3890.5,955.6
protein EIN5 protein EBF2 I linecolor=0/0/0 pos=3823.4,1117.9
protein ERF1 protein PDF1.2 A linecolor=0/0/0 pos=4466.9,1692.0
protein ERS1 complex Et receptor CTR1 P linecolor=255/0/0 pos=3481.4,1430.8
protein ERS2 complex Et receptor CTR1 P linecolor=255/0/0 pos=3611.1,1454.5
protein ETR1 complex Et receptor CTR1 P linecolor=255/0/0 pos=3356.9,1455.2
protein ETR1 metabolite ROS A linecolor=0/255/0 pos=6509.5,986.3
protein ETR1 protein ERS1 I linecolor=0/255/0 pos=3271.4,1306.4
protein ETR2 complex Et receptor CTR1 P linecolor=255/0/0 pos=3420.9,1466.0
protein Glutathione peroxidase metabolite ROS A linecolor=255/0/0 pos=9870.2,655.9
protein Glutathione peroxidase metabolite ROS I linecolor=0/255/0 pos=9882.0,710.1
protein HRT protein MPK3 A linecolor=255/0/0 pos=9353.1,626.0
protein HRT protein MPK6 A linecolor=255/0/0 pos=9567.1,609.7
protein ICS1 metabolite Isochorismate A linecolor=0/0/0 pos=9105.7,1253.2
protein ICS2 metabolite Isochorismate A linecolor=0/0/0 pos=9181.9,1296.1
protein IPL metabolite SA chl A linecolor=255/0/0 pos=8897.3,1393.5
protein Inactive BA2H protein BA2H A linecolor=255/0/0 pos=9353.7,1520.3
protein Inactive EIN2 protein EIN2 A
linecolor=255/0/0 pinned=1 pos=3402.2653,1772.3357
protein Inactive HRT protein HRT A linecolor=255/0/0 pinned=1 pos=9791.7682,615.9390
protein Inactive MPK3 protein MPK3 A
linecolor=255/0/0 pinned=1 pos=9064.9240,708.8540
protein Inactive MPK6 protein MPK6 A
linecolor=255/0/0 pinned=1 pos=9507.8179,725.7973
protein Inactive et receptor protein EIN4 A linecolor=255/0/0 pos=3686.3,1092.4
protein Inactive et receptor protein ERS1 A linecolor=255/0/0 pos=3527.4,1153.3
protein Inactive et receptor protein ERS2 A linecolor=255/0/0 pos=3609.3,1146.0
protein Inactive et receptor protein ETR1 A linecolor=255/0/0 pos=3375.4,1124.9
protein Inactive et receptor protein ETR2 A linecolor=255/0/0 pos=3439.8,1085.3
protein JAR1 metabolite JA-Ile A linecolor=0/0/0 pos=5598.5,2426.6
protein JAR1 protein PR1 I linecolor=0/255/0 pos=7830.9,1769.4
protein JAZ1 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=6745.9,2404.2
protein JAZ1 complex JAZ MYC2 TF P linecolor=255/0/0 pos=6881.4,1639.6
protein JAZ1 protein CLH1 I linecolor=255/0/0 pos=6319.4,1494.0
protein JAZ1 protein JR1 I linecolor=255/0/0 pos=6237.5,1438.1
protein JAZ1 protein MYC2 B linecolor=255/0/0 pos=6723.7,1383.8
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protein JAZ1 protein THI2.1 I linecolor=255/0/0 pos=6432.0,1574.4
protein JAZ1 protein VSP1 I linecolor=255/0/0 pos=6389.0,1521.3
protein JAZ10 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7488.3,2355.6
protein JAZ10 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7654.7,1555.1
protein JAZ10 protein CLH1 I linecolor=255/0/0 pos=7106.0,1457.6
protein JAZ10 protein JR1 I linecolor=255/0/0 pos=7005.6,1311.4
protein JAZ10 protein MYC2 B linecolor=255/0/0 pos=7472.1,1362.4
protein JAZ10 protein THI2.1 I linecolor=255/0/0 pos=7237.7,1530.9
protein JAZ10 protein VSP1 I linecolor=255/0/0 pos=7185.2,1493.2
protein JAZ11 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7562.3,2376.2
protein JAZ11 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7723.3,1533.6
protein JAZ11 protein CLH1 I linecolor=255/0/0 pos=7201.5,1440.1
protein JAZ11 protein JR1 I linecolor=255/0/0 pos=7074.4,1320.7
protein JAZ11 protein MYC2 B linecolor=255/0/0 pos=7544.4,1366.7
protein JAZ11 protein THI2.1 I linecolor=255/0/0 pos=7317.8,1532.2
protein JAZ11 protein VSP1 I linecolor=255/0/0 pos=7271.9,1484.0
protein JAZ12 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7644.7,2368.0
protein JAZ12 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7809.9,1534.6
protein JAZ12 protein CLH1 I linecolor=255/0/0 pos=7279.4,1428.4
protein JAZ12 protein JR1 I linecolor=255/0/0 pos=7185.0,1317.5
protein JAZ12 protein MYC2 B linecolor=255/0/0 pos=7626.4,1373.1
protein JAZ12 protein THI2.1 I linecolor=255/0/0 pos=7402.6,1511.8
protein JAZ12 protein VSP1 I linecolor=255/0/0 pos=7351.1,1471.0
protein JAZ2 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=6846.4,2408.7
protein JAZ2 complex JAZ MYC2 TF P linecolor=255/0/0 pos=6981.9,1626.7
protein JAZ2 protein CLH1 I linecolor=255/0/0 pos=6435.0,1465.2
protein JAZ2 protein JR1 I linecolor=255/0/0 pos=6322.5,1411.1
protein JAZ2 protein MYC2 B linecolor=255/0/0 pos=6818.2,1413.2
protein JAZ2 protein THI2.1 I linecolor=255/0/0 pos=6589.9,1578.0
protein JAZ2 protein VSP1 I linecolor=255/0/0 pos=6500.6,1484.6
protein JAZ3 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=6939.0,2415.9
protein JAZ3 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7097.2,1662.4
protein JAZ3 protein CLH1 I linecolor=255/0/0 pos=6548.5,1438.6
protein JAZ3 protein JR1 I linecolor=255/0/0 pos=6446.9,1394.5
protein JAZ3 protein MYC2 B linecolor=255/0/0 pos=6900.1,1419.6
protein JAZ3 protein THI2.1 I linecolor=255/0/0 pos=6665.0,1595.0
protein JAZ3 protein VSP1 I linecolor=255/0/0 pos=6625.3,1525.4
protein JAZ4 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7027.0,2404.3
protein JAZ4 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7182.3,1620.3
protein JAZ4 protein CLH1 I linecolor=255/0/0 pos=6627.9,1465.5
protein JAZ4 protein JR1 I linecolor=255/0/0 pos=6520.8,1388.1
protein JAZ4 protein MYC2 B linecolor=255/0/0 pos=6965.6,1366.8
protein JAZ4 protein THI2.1 I linecolor=255/0/0 pos=6741.0,1603.4
protein JAZ4 protein VSP1 I linecolor=255/0/0 pos=6697.8,1531.5
protein JAZ5 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7100.0,2391.8
protein JAZ5 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7268.6,1638.1
protein JAZ5 protein CLH1 I linecolor=255/0/0 pos=6706.3,1472.0
protein JAZ5 protein JR1 I linecolor=255/0/0 pos=6601.9,1356.2
protein JAZ5 protein MYC2 B linecolor=255/0/0 pos=7037.7,1370.0
protein JAZ5 protein THI2.1 I linecolor=255/0/0 pos=6819.9,1586.1
protein JAZ5 protein VSP1 I linecolor=255/0/0 pos=6768.6,1545.8
protein JAZ6 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7178.5,2366.1
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protein JAZ6 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7340.0,1596.1
protein JAZ6 protein CLH1 I linecolor=255/0/0 pos=6771.9,1442.7
protein JAZ6 protein JR1 I linecolor=255/0/0 pos=6685.6,1339.6
protein JAZ6 protein MYC2 B linecolor=255/0/0 pos=7169.6,1375.8
protein JAZ6 protein THI2.1 I linecolor=255/0/0 pos=6897.1,1568.6
protein JAZ6 protein VSP1 I linecolor=255/0/0 pos=6851.3,1518.7
protein JAZ7 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7265.0,2344.6
protein JAZ7 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7418.7,1585.0
protein JAZ7 protein CLH1 I linecolor=255/0/0 pos=6859.9,1460.9
protein JAZ7 protein JR1 I linecolor=255/0/0 pos=6766.4,1318.5
protein JAZ7 protein MYC2 B linecolor=255/0/0 pos=7249.9,1330.3
protein JAZ7 protein THI2.1 I linecolor=255/0/0 pos=6974.6,1558.8
protein JAZ7 protein VSP1 I linecolor=255/0/0 pos=6927.3,1511.9
protein JAZ8 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7347.8,2364.5
protein JAZ8 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7495.3,1543.8
protein JAZ8 protein CLH1 I linecolor=255/0/0 pos=6948.5,1461.1
protein JAZ8 protein JR1 I linecolor=255/0/0 pos=6853.9,1317.6
protein JAZ8 protein MYC2 B linecolor=255/0/0 pos=7331.3,1394.5
protein JAZ8 protein THI2.1 I linecolor=255/0/0 pos=7060.4,1550.6
protein JAZ8 protein VSP1 I linecolor=255/0/0 pos=7014.1,1509.9
protein JAZ9 complex JA-Ile COI1 SCF JAZ P linecolor=255/0/0 pos=7421.3,2388.2
protein JAZ9 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7580.6,1535.9
protein JAZ9 protein CLH1 I linecolor=255/0/0 pos=7030.2,1457.5
protein JAZ9 protein JR1 I linecolor=255/0/0 pos=6931.2,1313.5
protein JAZ9 protein MYC2 B linecolor=255/0/0 pos=7400.8,1349.8
protein JAZ9 protein THI2.1 I linecolor=255/0/0 pos=7156.9,1547.5
protein JAZ9 protein VSP1 I linecolor=255/0/0 pos=7105.7,1510.2
protein JMT metabolite Me-JA A linecolor=0/0/0 pos=5084.1,2631.6
protein KAT1 metabolite JA A linecolor=255/0/0 pos=5376.7,2342.6
protein KAT1 metabolite OPC4 A linecolor=255/0/0 pos=5367.4,2201.9
protein KAT1 metabolite OPC6 A linecolor=255/0/0 pos=5390.0,1983.2
protein KAT2 metabolite JA A linecolor=255/0/0 pos=5429.3,2299.0
protein KAT2 metabolite OPC4 A linecolor=255/0/0 pos=5443.3,2187.3
protein KAT2 metabolite OPC6 A linecolor=255/0/0 pos=5457.4,1947.0
protein KAT5 metabolite JA A linecolor=255/0/0 pos=5559.5,2276.7
protein KAT5 metabolite OPC4 A linecolor=255/0/0 pos=5523.0,2194.1
protein KAT5 metabolite OPC6 A linecolor=255/0/0 pos=5533.9,1970.4
protein LOX1 metabolite 13-HPT A linecolor=255/0/0 pos=5290.0,858.0
protein LOX2 metabolite 13-HPT A linecolor=255/0/0 pos=5267.2,920.1
protein LOX3 metabolite 13-HPT A linecolor=255/0/0 pos=5322.8,953.1
protein LOX4 metabolite 13-HPT A linecolor=255/0/0 pos=5271.8,1003.3
protein LOX5 metabolite 13-HPT A linecolor=255/0/0 pos=5325.6,1044.1
protein LOX6 metabolite 13-HPT A linecolor=255/0/0 pos=5296.2,1104.0
protein MAT3 metabolite SAM A linecolor=255/0/0 pos=2970.6,806.2
protein MAT4 metabolite SAM A linecolor=255/0/0 pos=2958.4,881.5
protein MPK3 protein EDS1 A linecolor=255/0/0 pos=9290.0,852.5
protein MPK3 protein EIN3 A linecolor=0/0/255 pos=6403.9,1313.1
protein MPK3 protein PAD3 A linecolor=255/0/0 pos=9073.0,850.3
protein MPK3 protein PAD4 A linecolor=255/0/0 pos=9201.2,820.0
protein MPK4 protein EDS1 I linecolor=255/0/0 pos=7754.2,959.7
protein MPK4 protein LOX1 A linecolor=255/0/0 pos=5693.0,864.7
protein MPK4 protein LOX2 A linecolor=255/0/0 pos=5662.3,927.1
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protein MPK4 protein LOX3 A linecolor=255/0/0 pos=5716.4,965.7
protein MPK4 protein LOX4 A linecolor=255/0/0 pos=5659.3,1015.1
protein MPK4 protein LOX5 A linecolor=255/0/0 pos=5720.1,1052.8
protein MPK4 protein LOX6 A linecolor=255/0/0 pos=5690.1,1111.8
protein MPK4 protein PAD3 I linecolor=255/0/0 pos=7555.8,961.8
protein MPK4 protein PAD4 I linecolor=255/0/0 pos=7656.6,958.9
protein MPK6 protein EDS1 A linecolor=255/0/0 pos=9556.6,852.3
protein MPK6 protein EIN3 A linecolor=0/0/255 pos=6636.3,1271.3
protein MPK6 protein PAD3 A linecolor=255/0/0 pos=9306.6,781.7
protein MPK6 protein PAD4 A linecolor=255/0/0 pos=9409.8,848.8
protein MYC2 complex JAZ MYC2 TF P linecolor=255/0/0 pos=7346.3,787.3
protein MYC2 protein CLH1 A linecolor=255/0/0 pos=6836.2,645.1
protein MYC2 protein GST1 A linecolor=255/0/0 pos=5839.5,943.7
protein MYC2 protein JAZ1 A linecolor=0/0/0 pos=6687.2,1418.7
protein MYC2 protein JAZ10 A linecolor=255/0/0 pos=7470.9,1431.2
protein MYC2 protein JAZ11 A linecolor=255/0/0 pos=7543.4,1431.9
protein MYC2 protein JAZ12 A linecolor=255/0/0 pos=7627.8,1432.8
protein MYC2 protein JAZ2 A linecolor=0/0/0 pos=6801.4,1364.8
protein MYC2 protein JAZ3 A linecolor=255/0/0 pos=6888.5,1369.3
protein MYC2 protein JAZ4 A linecolor=255/0/0 pos=6981.1,1416.1
protein MYC2 protein JAZ5 A linecolor=255/0/0 pos=7065.9,1411.0
protein MYC2 protein JAZ6 A linecolor=255/0/0 pos=7140.8,1417.7
protein MYC2 protein JAZ7 A linecolor=255/0/0 pos=7237.3,1385.4
protein MYC2 protein JAZ8 A linecolor=255/0/0 pos=7323.9,1335.9
protein MYC2 protein JAZ9 A linecolor=255/0/0 pos=7402.6,1415.1
protein MYC2 protein JR1 A linecolor=255/0/0 pos=6742.2,609.4
protein MYC2 protein PR4 A linecolor=255/0/0 pos=5843.8,849.5
protein MYC2 protein THI2.1 A linecolor=255/0/0 pos=6968.3,719.1
protein MYC2 protein VSP1 A linecolor=255/0/0 pos=6915.5,663.9
protein MYC2 protein b-CHI A linecolor=255/0/0 pinned=1 pos=5952.1385,736.0863
protein X4 protein MYC2 A linecolor=255/0/0 pos=7368.6,624.7
protein NADPH oxidase metabolite ROS A linecolor=0/0/0 pos=9894.9,883.7
protein NIMIN1 complex NPR1 TGA245 P linecolor=255/0/0 pos=9833.8,1501.3
protein NIMIN1 protein NPR1 B linecolor=255/0/0 pos=9696.7,1367.4
protein NIMIN1 protein NPR1 I linecolor=0/0/255 pos=9765.9,1388.1
protein NIMIN1 protein TGA TF2 B linecolor=255/0/0 pos=9626.9,1747.9
protein NIMIN1 protein TGA TF4 B linecolor=255/0/0 pos=9777.0,1746.7
protein NIMIN1 protein TGA TF5 B linecolor=255/0/0 pos=9892.1,1731.5
protein NIMIN2 complex NPR1 TGA245 P linecolor=255/0/0 pos=9818.9,1584.3
protein NIMIN2 protein NPR1 B linecolor=255/0/0 pos=9755.5,1471.3
protein NIMIN2 protein TGA TF2 B linecolor=255/0/0 pos=9664.9,1833.8
protein NIMIN2 protein TGA TF4 B linecolor=255/0/0 pos=9781.8,1856.0
protein NIMIN2 protein TGA TF5 B linecolor=255/0/0 pos=9894.6,1843.5
protein NIMIN3 complex NPR1 TGA245 P linecolor=255/0/0 pos=9700.1,1728.8
protein NIMIN3 protein NPR1 B linecolor=255/0/0 pos=9620.8,1563.9
protein NIMIN3 protein TGA TF2 B linecolor=255/0/0 pos=9531.7,1965.7
protein NIMIN3 protein TGA TF4 B linecolor=255/0/0 pos=9673.5,1928.5
protein NIMIN3 protein TGA TF5 B linecolor=255/0/0 pos=9762.1,1956.0
protein NPR1 complex NPR1 TGA245 P linecolor=255/0/0 pos=9898.5,1420.1
protein NPR1 protein EDS1 I linecolor=255/0/0 pos=9689.6,1087.8
protein NPR1 protein PAD3 I linecolor=255/0/0 pos=9472.6,1097.0
protein NPR1 protein PAD4 A linecolor=0/255/0 pos=9569.0,1115.6
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protein NPR1 protein PAD4 I linecolor=255/0/0 pos=9596.2,1065.3
protein NPR1 protein TGA TF2 B linecolor=0/0/0 pos=9753.8,1644.7
protein NPR1 protein TGA TF4 B linecolor=255/0/0 pos=9842.4,1662.3
protein NPR1 protein TGA TF5 B linecolor=255/0/0 pos=9965.2,1642.5
protein NPR1 protein WRKY70 A linecolor=0/0/0 pos=9878.0,1321.0
protein OPCL1 metabolite OPC6 A linecolor=255/0/0 pos=5091.2,1832.2
protein OPR3 metabolite OPC8 A linecolor=255/0/0 pos=5081.6,1522.6
protein PAD3 protein EDS5 A linecolor=255/0/0 pos=9237.3,1022.8
protein PAD4 metabolite ACC A linecolor=0/255/0 pos=6073.6,1038.2
protein PAD4 metabolite Ethylene A linecolor=0/255/0 pos=6167.6,1249.5
protein PAD4 protein EDS5 A linecolor=0/0/0 pos=9340.0,1035.0
protein PAD4 protein HRT A linecolor=0/255/0 pos=9555.4,752.4
protein PAL1 metabolite Trans-cinnamic acid A linecolor=255/0/0 pos=8331.7,1305.1
protein PAL2 metabolite Trans-cinnamic acid A linecolor=255/0/0 pos=8308.9,1365.4
protein PAL3 metabolite Trans-cinnamic acid A linecolor=255/0/0 pos=8317.3,1428.1
protein PAL4 metabolite Trans-cinnamic acid A linecolor=255/0/0 pos=8315.2,1497.2
protein PDF1.2 protein TGA TF2 B linecolor=0/0/255 pos=7065.4,1907.1
protein Prephenate aminotransferase metabolite Phenylpyruvate A
linecolor=255/0/0 pos=8343.2,1058.7
protein RAN1 metabolite Copper cyto A linecolor=255/0/0 pos=3453.8,942.7
protein SAM1 metabolite SAM A linecolor=255/0/0 pos=2954.2,701.2
protein SAM2 metabolite SAM A linecolor=255/0/0 pos=2917.9,767.0
protein Superoxide dismutase metabolite ROS A linecolor=255/0/0 pos=10045.1,663.1
protein Superoxide dismutase metabolite ROS I linecolor=0/255/0 pos=9938.1,756.0
protein TGA TF2 complex NPR1 TGA245 P linecolor=255/0/0 pos=9824.0,1799.9
protein TGA TF2 protein PR1 I linecolor=0/0/255 pos=9885.5,1604.2
protein TGA TF4 complex NPR1 TGA245 P linecolor=255/0/0 pos=9960.5,1798.5
protein TGA TF5 complex NPR1 TGA245 P linecolor=255/0/0 pos=10047.1,1768.6
protein UGP glikosyltransferaze metabolite SAG A linecolor=255/0/0 pos=8969.9,2175.1
protein UGP glikosyltransferaze metabolite SGE A linecolor=255/0/0 pos=8702.9,2192.9
protein WRKY70 metabolite SA I linecolor=0/255/0 pos=9345.3,1638.2
protein WRKY70 protein ICS1 I linecolor=0/0/255 pos=9605.1,1279.8
protein WRKY70 protein PDF1.2 I linecolor=0/0/255 pos=7237.4,1588.3
protein X3 metabolite SA A linecolor=255/0/0 pos=8953.8,1733.0
protein X5 metabolite OPC-8:0-CoA A linecolor=255/0/0 pos=5092.7,1656.6
protein X1 metabolite SA A linecolor=255/0/0 pinned=1 pos=8722.2947,1632.7280
protein X2 protein JAZ1 A linecolor=255/0/0 pos=6997.8,1952.2
protein X2 protein JAZ10 A linecolor=255/0/0 pos=7782.9,1912.0
protein X2 protein JAZ11 A linecolor=255/0/0 pos=7851.1,1933.1
protein X2 protein JAZ12 A linecolor=255/0/0 pos=7928.0,1918.2
protein X2 protein JAZ2 A linecolor=255/0/0 pos=7123.3,1953.5
protein X2 protein JAZ3 A linecolor=255/0/0 pos=7206.5,1942.1
protein X2 protein JAZ4 A linecolor=255/0/0 pos=7283.0,1933.9
protein X2 protein JAZ5 A linecolor=255/0/0 pos=7354.9,1946.9
protein X2 protein JAZ6 A linecolor=255/0/0 pos=7424.0,1921.6
protein X2 protein JAZ7 A linecolor=255/0/0 pos=7490.2,1961.7
protein X2 protein JAZ8 A linecolor=255/0/0 pos=7587.7,1967.5
protein X2 protein JAZ9 A linecolor=255/0/0 pos=7726.6,1957.8
# attributes complex ASK1 CULLIN1 RBXE2 pos=3989.1318,1376.2149
# attributes complex ASK1 CULLIN1 RBXE2 EBF12 pos=4128.6972,1076.2695
# attributes complex Et receptor CTR1 pos=3600.8855,1574.1671
# attributes complex JA-Ile COI1 SCF pos=5964.2300,2444.9060
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# attributes complex JA-Ile COI1 SCF JAZ pos=7264.2563,2445.0452
# attributes complex JAZ MYC2 TF pos=7534.7484,882.6253
# attributes complex NPR1 TGA245 pos=9935.2417,1554.3359
# attributes complex NPR1 oligomer pos=9849.4582,1167.8969
# attributes complex SCF pos=5970.6247,2569.1960
# attributes metabolite 12/13 EDT pos=5191.3571,1206.2083
# attributes metabolite 13-HPT pos=5191.7756,1063.7818
# attributes metabolite ACC pos=2828.7497,1166.0440
# attributes metabolite BA pos=8747.7404,1405.9435
# attributes metabolite Chorismate pos=8450.8641,719.0878
# attributes metabolite Copper pos=3430.0817,863.4805
# attributes metabolite Copper cyto pos=3355.4583,1069.2395
# attributes metabolite Ethylene pos=3047.2717,1576.6065 queryset=end
# attributes metabolite Isochorismate pos=8982.9784,1272.4562
# attributes metabolite JA pos=5179.4823,2428.0947 queryset=end
# attributes metabolite JA-Ile pos=5521.2873,2428.6930
# attributes metabolite L-methionine pos=2873.7460,686.8430
# attributes metabolite Linolenic acid pos=5182.3691,925.4869
# attributes metabolite Me-JA pos=5179.6149,2534.9874
# attributes metabolite OPC-8:0-CoA pos=5189.1866,1694.5881
# attributes metabolite OPC4 pos=5179.4073,2237.7986
# attributes metabolite OPC6 pos=5189.4848,1808.9652
# attributes metabolite OPC8 pos=5191.8678,1588.6824
# attributes metabolite OPDA pos=5191.7220,1456.9093
# attributes metabolite OPDA chl pos=5191.6693,1343.8905
# attributes metabolite Orto-coumaric acid pos=8446.6786,1517.2597
# attributes metabolite Phenylalanine pos=8460.3831,1229.7144
# attributes metabolite Phenylpyruvate pos=8457.3669,1073.7248
# attributes metabolite Prephenate pos=8454.0794,906.3837
# attributes metabolite ROS pos=9845.8537,785.7078
# attributes metabolite SA pos=8795.1344,1926.8119 queryset=end
# attributes metabolite SAG pos=9017.0205,2044.4030
# attributes metabolite SAM pos=2872.9329,868.0667
# attributes metabolite SA chl pos=8990.9766,1499.2868
# attributes metabolite SGE pos=8530.6824,2079.4437
# attributes metabolite Trans-cinnamic acid pos=8453.1899,1397.6368
# attributes protein AAO4 pos=8617.8622,1514.4798
# attributes protein ACO pos=2747.2642,1599.6108
# attributes protein ACO-like pos=2806.0253,1677.6604
# attributes protein ACO1 pos=2780.9366,1356.7406
# attributes protein ACO2 pos=2752.0127,1471.7158
# attributes protein ACO4 pos=2725.5358,1543.9806
# attributes protein ACS1 pos=2986.9718,1001.6235
# attributes protein ACS10 pos=2642.4807,1063.7428
# attributes protein ACS11 pos=2657.7706,1004.1143
# attributes protein ACS2 pos=2996.3478,1066.0923
# attributes protein ACS3 pos=3016.0225,1129.2945
# attributes protein ACS4 pos=3020.1319,1214.3799
# attributes protein ACS5 pos=3004.1981,1272.1508
# attributes protein ACS6 pos=3009.5820,1344.7938
# attributes protein ACS7 pos=2630.5141,1267.7632
# attributes protein ACS8 pos=2623.3126,1195.8871
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# attributes protein ACS9 pos=2629.0142,1142.0691
# attributes protein ACX1 pos=4601.8755,2141.2370
# attributes protein ACX2 pos=4733.6969,2167.3010
# attributes protein ACX3 pos=4862.1138,2172.3164
# attributes protein ACX4 pos=4974.7792,2156.7464
# attributes protein ACX5 pos=5103.0422,2129.6433
# attributes protein ACX6 pos=5253.9508,2145.3852
# attributes protein AIM1 pos=5408.4666,2131.2717
# attributes protein AOC1 pos=5501.6783,1230.2696
# attributes protein AOC2 pos=5499.0343,1287.1030
# attributes protein AOC3 pos=5500.2334,1344.1796
# attributes protein AOC4 pos=5500.3281,1399.3646
# attributes protein AOS pos=5391.6082,1207.2061
# attributes protein Arogenate dehydratase pos=8214.7251,1225.5675
# attributes protein BA2H pos=9263.1309,1531.9092
# attributes protein CLH1 pos=6507.8310,693.5341
# attributes protein CM1 pos=8257.8162,824.4890
# attributes protein CM2 pos=8257.3195,956.5955
# attributes protein CM3 pos=8255.0435,884.4115
# attributes protein COI1 pos=5663.2485,2561.6248
# attributes protein CTR1 pos=3571.5217,1422.0962
# attributes protein Catalase pos=10058.7687,804.5395
# attributes protein EBF1 pos=3980.0435,1025.9545
# attributes protein EBF2 pos=3831.2808,1247.5160
# attributes protein EDF1 pos=4350.2870,1766.8882
# attributes protein EDF2 pos=4343.7037,1835.2933
# attributes protein EDF3 pos=4348.7575,1895.4870
# attributes protein EDF4 pos=4336.1263,1964.6902
# attributes protein EDS1 pos=9536.7463,935.5799
# attributes protein EDS5 pos=9358.7139,1144.0689
# attributes protein EIL1 pos=3785.2377,1748.6973
# attributes protein EIL2 pos=3785.3721,1823.0804
# attributes protein EIN2 pos=3509.9641,1767.6432
# attributes protein EIN3 pos=3793.1832,1925.2074
# attributes protein EIN4 pos=3676.0680,1226.9932
# attributes protein EIN5 pos=3787.6727,1024.8725
# attributes protein ERF1 pos=4346.0997,1697.6237
# attributes protein ERS1 pos=3434.6794,1258.3170
# attributes protein ERS2 pos=3555.0632,1255.1498
# attributes protein ETR1 pos=3167.1975,1253.2617
# attributes protein ETR2 pos=3289.3931,1253.1866
# attributes protein GST1 pos=4480.9400,1257.0682
# attributes protein Glutathione peroxidase pos=9992.3760,657.0318
# attributes protein HRT pos=9671.5404,561.1346
# attributes protein ICS1 pos=9280.3357,1268.4603
# attributes protein ICS2 pos=9399.1534,1264.7741
# attributes protein IPL pos=8861.0291,1268.6910
# attributes protein Inactive BA2H pos=9444.7441,1467.1812
# attributes protein Inactive EIN2 pos=3278.0744,1765.9903
# attributes protein Inactive HRT pos=9896.2585,610.1956
# attributes protein Inactive MPK3 pos=9067.9004,654.0412
# attributes protein Inactive MPK6 pos=9506.2357,674.2092
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# attributes protein Inactive et receptor pos=3602.3440,1057.5273
# attributes protein JAR1 pos=5521.3226,2329.8808
# attributes protein JAZ1 pos=6256.4561,2238.8808
# attributes protein JAZ10 pos=7694.3421,2225.4202
# attributes protein JAZ11 pos=7829.9184,2226.5545
# attributes protein JAZ12 pos=7973.5191,2226.5061
# attributes protein JAZ2 pos=6455.6875,2234.2826
# attributes protein JAZ3 pos=6629.2943,2237.1244
# attributes protein JAZ4 pos=6788.3186,2234.2685
# attributes protein JAZ5 pos=6931.8061,2230.9638
# attributes protein JAZ6 pos=7082.9100,2228.2605
# attributes protein JAZ7 pos=7234.7819,2225.3384
# attributes protein JAZ8 pos=7401.4746,2226.7295
# attributes protein JAZ9 pos=7552.8138,2226.9592
# attributes protein JMT pos=5046.6098,2534.8157
# attributes protein JR1 pos=6326.4442,632.3070
# attributes protein KAT1 pos=5543.5522,2129.6971
# attributes protein KAT2 pos=5669.8378,2113.6469
# attributes protein KAT5 pos=5810.6893,2129.1855
# attributes protein LOX1 pos=5421.2494,851.4789
# attributes protein LOX2 pos=5425.5459,919.3723
# attributes protein LOX3 pos=5427.3340,976.7037
# attributes protein LOX4 pos=5426.9799,1038.7540
# attributes protein LOX5 pos=5431.0935,1094.9328
# attributes protein LOX6 pos=5430.0830,1146.9491
# attributes protein MAT3 pos=3067.1080,856.9350
# attributes protein MAT4 pos=3066.6798,920.6361
# attributes protein MPK3 pos=9080.4522,780.4750
# attributes protein MPK4 pos=5932.5236,1014.1104
# attributes protein MPK6 pos=9496.6856,777.7182
# attributes protein MYC2 pos=7175.7350,646.0556
# attributes protein X4 pos=7526.2104,734.2049
# attributes protein NADPH oxidase pos=10013.4012,872.5681
# attributes protein NIMIN1 pos=9672.4716,1469.0292
# attributes protein NIMIN2 pos=9704.5033,1632.6185
# attributes protein NIMIN3 pos=9462.4531,1847.3481
# attributes protein NPR1 pos=9791.2031,1292.7221
# attributes protein OPCL1 pos=5022.8252,1807.1028
# attributes protein OPR3 pos=5028.1407,1585.3193
# attributes protein PAD3 pos=9163.0874,906.3816
# attributes protein PAD4 pos=9353.2502,935.6032
# attributes protein PAL1 pos=8178.0466,1294.5935
# attributes protein PAL2 pos=8177.6689,1344.4421
# attributes protein PAL3 pos=8178.9558,1398.3397
# attributes protein PAL4 pos=8180.8528,1463.9937
# attributes protein PDF1.2 pos=4477.4178,1813.3307
# attributes protein PR1 pos=10059.8979,1212.1585
# attributes protein PR2 pos=10098.8321,1359.1027
# attributes protein PR4 pos=4499.3367,1111.4144
# attributes protein PR5 pos=10084.7737,1461.5024
# attributes protein Prephenate aminotransferase pos=8227.7854,1068.1744
# attributes protein RAN1 pos=3560.7868,892.5952
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# attributes protein SAM1 pos=3061.0114,710.8046
# attributes protein SAM2 pos=3067.3321,793.6800
# attributes protein Superoxide dismutase pos=10040.8037,727.9978
# attributes protein TGA TF2 pos=9656.9518,1977.4157
# attributes protein TGA TF4 pos=9863.7647,1988.3104
# attributes protein TGA TF5 pos=10029.3701,1960.1179
# attributes protein THI2.1 pos=6729.2071,790.8070
# attributes protein UGP glikosyltransferaze pos=8878.5630,2250.5117
# attributes protein VSP1 pos=6645.9146,742.4696
# attributes protein WRKY70 pos=9940.9593,1273.4311
# attributes protein b-CHI pos=4508.7987,954.8370
# attributes protein X3 pos=9134.1762,1500.0254
# attributes protein X5 pos=5028.8895,1695.4792
# attributes protein X1 pos=8456.2843,1589.7962
# attributes protein X2 pos=7778.0160,1592.9339
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Jožef Stefan Postgraduate School, Ljubljana, Slovenia under the supervision of Prof. Dr.
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