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Abstract

This thesis examines the role of hubness in many important data mining contexts.

Hubness is a recently described aspect of the well known curse of dimensionality. It is
an intrinsic property of high-dimensional data, where hubs emerge as centers of influence
in k-nearest neighbor (kNN) topologies. They often exhibit a detrimental influence on the
learning process. As most data of practical concern is high-dimensional, this is an important
issue.

This thesis presents a set of novel, hubness-aware nearest neighbor data analysis tech-
niques. They are shown to be more robust and reliable when working with high-dimensional
data under the assumption of hubness. This is confirmed by an extensive experimental eval-
uation on a wide range of datasets from various domains, including images, text and time
series.

The role of hubs as potential prototypes in high-dimensional data clustering was exam-
ined and it was shown that node degree in such k-nearest neighbor graphs is an appropriate
measure of local cluster centrality. Several proof-of-concept clustering methods have been
proposed: global K-hubs (GKH), global hubness-proportional clustering (GHPC) and global
hubness-proportional K-means (GHPKM). They have been shown to perform well on high-
dimensional data, even under large quantities of noise and in presence of outliers.

The impact of hubs on k-nearest neighbor classification was evaluated and several hubness-
aware classification methods have been proposed and shown to be quite robust and accu-
rate in classifying high-dimensional data. The hubness-fuzzy k-nearest neighbor (h-FNN),
hubness information k-nearest neighbor (HIKNN) and naive hubness-Bayesian k-nearest
neighbor (NHBNN) are novel classification approaches based on building the neighbor k-
occurrence model on the training data and learning from past occurrences.

The impact of the choice of the underlying feature representation was examined in object
recognition. Different feature types were shown to induce different degrees of hubness.

A novel secondary hubness-aware shared-neighbor similarity, simhub; has been proposed
and shown to significantly improve the structure of the kNN graph reduce the overall hubness
of the data, as well as the percentage of label mismatches.

The role of hubness and hub points has also been examined in other contexts, including
class imbalance, instance selection, cross-lingual document retrieval, anomaly detection and
bug duplicate detection.
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Povzetek

V predlozeni doktorski disertaciji smo preucili vlogo zvezdis¢ v Stevilnih kontekstih stroj-
nega ucenja. Zvezdis¢nost je lastnost visokodimenzionalnih podatkov, ki je povezana s t.i.
prekletstvom dimenzionalnosti. ZvezdiSca se v visokodimenzionalnih podatkih pojavljajo
kot centri vpliva v topologijah kNN (k najblizjih sosedov). Zvezdis¢a imajo pogosto skodljiv
vpliv na proces ucenja, kar je v praksi pomembno zaradi pogostosti visokodimenzionalnih
ucnih problemov.

V pricujoci disertaciji smo predstavili niz novih, zvezdiséno-prilagojenih kNN metod za
analizo podatkov. Predlagane metode omogocajo robustnejSo in zanesljivejSo analizo viso-
kodimenzionalnih podatkov, kar je podprto z obsezno eksperimentalno raziskavo na slikah,
tekstu in senzorskih podatkih.

Pri nalogi visokodimenzionalnega grucenja podatkov smo raziskali vlogo zvezdis¢ kot
prototipov. Izkazalo se je, da je stopnja vozlis¢a v ustreznih kNN grafih primerna za merje-
nje lokalne centralnosti. Predlagali smo tri nove zvezdis¢no-prilagojene metode za grucenje
podatkov: globalno K-zvezdiséno grucenje (GKH), globalno zvezdiséno-sorazmerno grucenje
(GHPC) in globalno zvezdis¢no-sorazmerno razlicico K-means algoritma (GHPKM). Eks-
perimentalno smo ugotovili, da predlagane metode vodijo do izboljsav, kar pa je najbolj
izrazito v prisotnosti visokih nivojev Suma.

Preucili smo vpliv zvezdis¢ na kNN klasifikacijo in predlagali ve¢ novih zvezdiséno-
prilagojenih kNN klasifikacijskih metod. Pri nalogi klasifikacije visokodimenzionalnih po-
datkov so se predlagane metode izkazale za zelo robustne in tocne. Metode temeljijo na
analizi pojavitev tock v kNN okolicah. Na tem principu so osnovane metode: Hubness-
fuzzy k-nearest neighbor (h-FNN), Hubness Information k-nearest neighbor (HIKNN) ter
Nad've Hubness-Bayesian k-nearest neighbor (NHBNN).

Vpliv izbire atributov na zvezdis¢nost smo preucili na problemu zaznavanja objektov.
Razli¢ni atributi inducirajo razli¢ne stopnje zvezdisénosti. Ta opazanja so vodila do zasnove
nove sekundarne zvezdi§¢no-prilagojene metrike, simhubs. Pokazali smo, da nova zasnova
bistveno izboljsa strukturo kNN grafa, kar omogoca lazje strojno ucenje in boljso klasifika-
cijo.

Vlogo zvezdis¢ smo preucili tudi v stevilnih drugih kontekstih, vkljuéno z neravnovesjem
razgredov, izborom primerov, medjezi¢nim iskanjem informacij, zaznavanjem anomalij in
iskanjem podvojenih poroéil hroscev.
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1 Introduction

1.1 General Introduction

We live in the age of information. Never before has the information been so easily available
and abundant. This only became possible in the recent decades, thanks to the great ad-
vances in digital computing technology. Indeed, computers that were once big and expensive
machines now permeate every aspect of our daily lives. We use them both for work and
pleasure, business and entertainment alike.

Yet, computers are more than just simple machines. They require programming to
run and the design of adequate software is just as important as the underlying hardware
architecture. Information must be properly handled.

Intelligent data analysis requires flexible, adaptive methods, capable of processing large
quantities of complex, noisy data in an effective and efficient way. Ever since the first
general purpose computers were unveiled, people have been investigating the possibilities
for creating some sort of intelligent machines. As the only sort of intelligence we are closely
familiar with is our own, it seemed as if the long-term aim should be set at creating systems
which would reason just as people do. This is usually referred to as the strong Al (artificial
intelligence) hypothesis [Russell and Norvig, 2003].

Alan Turing (1912-1954), who is often rightfully so referred to as the father of computer
science, was the first to propose such a concept by saying “A computer would deserve
to be called intelligent if it could deceive a human into believing that it was human.”.
This test was later challenged by some philosophers, most notable Searle in his famous
Chinese room argument. Regardless, the Turing test remains the most natural approach
to testing general-purpose intelligence in artificial systems. Even though it seems as quite
an ambitious goal, it has already been achieved in some limited context. Computer games
are often used as testing environments for Al methods, as it is easy to vary and control the
simulation parameters [Champandard, 2003]. In one such game, the Unreal Tournament
2004, a well-known FPS, a competition was organized with the goal of creating bots (Al
players) which would appear to be human to other human players in the game. The results of
the Botprize 2K competition (http://www.botprize.org) were presented in September 2012
at the IEEE Conference on Computational Intelligence and Games and have drawn quite a
bit of attention. The winning bots achieved a humanness rating of 52 percent, whereas the
actual human players received an average humanness rating of only 40 percent. In other
words, the artificial computer programs seemed to behave more human than humans. This is
quite astonishing, even though it is only a limited set of actions in a rather small, simulated
environment. We have no reason to be skeptical about the limits of artificially intelligent
systems and no one can say with certainty what the future holds.

The approaches to intelligent system design have evolved over time and the focus is
set on learning and adaptability to changing conditions in dynamic, complex environments.
Yet, this was not always the case.

Back in 1997, all eyes were set on what will later be regarded as “the most spectacular
chess event in history”, the clash between the reigning world champion and one of the
greatest chess players of all time Garry Kasparov and the IBM chess playing supercomputer
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Deep Blue. Deep Blue won the event by a slight margin (3.5:2.5) and landed a major blow
to the mental supremacy of man over machine, especially as chess was always thought of as
one of the ultimate mental battlegrounds. Yet, what was celebrated back then as a victory
of artificial over natural intelligence was no more than an illusion. If Deep Blue was good
at anything, it was “number crunching”. Its triumph was a consequence of unparalleled
computational power, not intelligence as we define it today. Its design was no different from
that of the modern chess engines (Rybka, Hydra, Shredder, Fritz, etc.). A chess engine has at
its disposal an extensive base of opening knowledge, encoded by the world’s top authorities,
as well as an endgame tablebase where the exact step-by-step procedures of finishing a game
are provided for a vast set of endgame positions. During middlegame, the engine plays by
searching through a variation three and choosing the most promising continuation based on
the heuristic evaluation function which was, again, directly encoded by chess experts. As
such engines are capable of checking and evaluating millions of variations, they are certainly
powerful opponents and able to outplay even the world champions. However, such computer
programs exhibit no actual understanding of either the position itself or how the various
higher-order chess concepts define it. The algorithm is only implicitly aware of it through
the predefined heuristic. Even more importantly, such computer programs are incapable
of learning and incapable of adapting their strategy to specific opponents and their style
of play. This was later sharply criticized by Garry Kasparov himself: “This is our last
chess metaphor then, a metaphor for how we have discarded innovation and creativity in
exchange for a steady supply of marketable products. The dreams of creating an artificial
intelligence that would engage in an ancient game symbolic of human thought have been
abandoned.” “Like so much else in our technology-rich and innovation-poor modern world,
chess computing has fallen prey to incrementalism and the demands of the market.”,“Such
thinking should horrify anyone worthy of the name of scientist, but it seems, tragically, to be
the norm.”[Rasskin-Gutman, 2009]. Nevertheless, there is still ongoing research in this area
and it was shown that it is indeed possible to automatically infer chess-related concepts from
past observations [Mozina et al., 2012][Guid et al., 2010], as well as utilize reinforcement
learning for improving search and heuristics [Veness et al., 2009][Block et al., 2008].

As the chess arena was conquered, it was time to tackle more difficult problems. It was
February 2011 when Watson, a machine programmed by the IBM team, won against strong
human competitors in a live TV-broadcast quiz “Jeopardy!”. The system was built on top of a
knowledge base containing more than 200 million pages of dictionary, encyclopedia and news
content - including the entire off-line copy of Wikipedia. It implemented the state-of-the-art
techniques for natural language processing, information retrieval, knowledge representation
and reasoning. The announced commercial applications include clinical decision support in
treatment recommendation and disease diagnosis.

Even though both Watson and Deep Blue were incredible engineering achievements, the
purpose of most Al software is neither to compete with people nor to try to replace them.
Most Al research is actually directed at creating special-purpose intelligent programs which
would automate data processing and help people in solving complex real-world problems.

So, what is intelligence and which properties do we expect to see in an artificially intel-
ligent system? Obviously, an intelligent system needs knowledge representation in order to
facilitate understanding and it needs to embed some problem-solving procedures. However,
a genuinely intelligent system must first and foremost have learning capabilities. Without
learning, a system would not be able to adapt to a sudden change in environment and its
predefined reactions would fall short of their marks [Russell and Norvig, 2003].

1.2 Background

Machine learning is among the central fields of modern Al research. It is the study of algo-
rithms which generate models, patterns and predictions based on observations. Data mining
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and knowledge discovery from databases are closely related and the disciplines frequently
overlap in methods and ideas. They are roughly distinguished by the fact that machine
learning is mostly concerned with future predictions while data mining usually refers to
the discovery of new patterns, previously unknown and potentially useful properties of the
data [Witten and Frank, 2005b].

Data science is more than just research. The advances in data processing techniques are
unlocking new effective ways of extracting business value from the available customer and
market information. Large companies are struggling with information that comes in volumes
and varieties never seen before. Analyzing such big data without automated intelligent
assistance is impossible. Adaptive tools and systems have become a necessity. Even a small
increase in the system performance might translate to millions in profit.

These advanced learning techniques are already in ubiquitous use in many domains,
such as: market analysis, recommendation systems, bioinformatics, genetics, medicine, ed-
ucation, search, question answering [Marinéi¢ et al.], social network analysis, power distri-
bution, sensor networks. Data mining has also been successfully applied for analyzing the
macroeconomic indicators of a development of state economy [Vidulin and Gams, 2011].

We can distinguish between several major machine learning approaches and methodolo-
gies, each tailored for a specific sort of data. Combinatorial techniques are often employed
for frequent subset mining in market basket analysis. In general, discrete data can easily
be modeled by rule-based systems or decision trees. Alternatively, probabilistic graphical
models, like Bayesian networks, can be used to model the conditional dependencies between
different representational features and infer the unobserved feature values [Han, 2005]. Lin-
ear models are also frequently used, especially when extended by the ‘kernel trick’, an implicit
non-linear mapping to a (usually) higher dimensional feature space where the data clusters
are more eagsily separable by hyper-planes. This involves using kernel functions which act as
an implicit replacement for the scalar product in the target space. The most famous large-
margin algorithm is the Support Vector Machines (SVM) classifier, which is considered to be
a state-of-the-art in many domains [Scholkopf and Smola, 2001]. Gaussian mixture models
are also frequently used in non-linear systems, as well as density-based methods. Artificial
Neural Networks (ANN) offer great flexibility, though it is usually a-priori unclear which
network topology to choose or how to infer it from the data. Additionally, the downside is
the black-box nature of the neural network approaches, as such decision systems have low in-
terpretability. Lastly, instance-based learning is often used in practice, i.e. nearest-neighbor
methods.

In instance-based learning, we infer the desired information about a new observation
by comparing it to the previously observed and categorized examples. The approach is
based on an intuitive notion that similar instances usually belong to same data categories
or clusters. This similarity needs to be captured by an appropriate metric function in the
representational feature space. The problem of generating and choosing the optimal feature
set and the similarity function is non-trivial and problem-specific. Different representations
and different metrics are used in different contexts, depending on the task at hand. Nearest-
neighbor methods are widely used in many machine learning applications.

The curse of dimensionality has been one of the main topics in machine learning and
data mining research ever since its discovery [Bellman, 1961]. It is a term commonly used to
refer to inherent difficulties involving high-dimensional data analysis. All high-dimensional
data is sparse and an exponential number of examples is required to reach reliable density
estimates. This has subtle and profound consequences, which often counter our intuition
and pose a serious challenge for many traditional data mining approaches. This is why
we are usually forced to design special, modified algorithms, capable of properly handling
complex, high-dimensional data.

The emergence of hubs in k-nearest neighbor graphs is an important consequence of the
dimensionality curse, affecting all nearest-neighbor methods in high-dimensional data. The
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overall data hubness can be seen as the increasing skewness (third standard moment) of
the neighbor occurrence distribution. Hubs are frequent nearest neighbors, points which are
frequently retrieved by the system. If the relevance of such points were proportional to their
occurrence frequency, this would not necessarily have negative consequences. However, care-
ful practical examination has determined that this is frequently not the case [Radovanovié
et al., 2009][Radovanovié¢ et al., 2010a|[Radovanovi¢ et al., 2010b]. Data hubness is highly
dependent on the particular choice of feature representation, normalization and similarity.
Intrinsically high-dimensional data is known to exhibit hubness, but its degree and distri-
bution over the examples may vary. Therefore, hubs might even sometimes be interpreted
as 'noise’ when they are retrieved. Hubness is closely related to the distance concentration
phenomenon [Aggarwal et al., 2001][Frangois et al., 2007], another counter-intuitive property
of high-dimensional data.

1.3 Nearest Neighbor Approaches in Machine Learning and
Data Mining

The basic k-nearest neighbor (kNN) rule [Cover and Hart, 1967] is a well known statistical
method used for class density estimation and, consequently, classification. As such, it is a
prototypical example of what is usually referred to as a lazy classifier. This is because no
model is learned from the data during the training phase of the basic kNN approach and all
inference is done run-time while considering individual examples. This means that all the
training examples need to be stored as they are accessed during subsequent system queries.
Many k-nearest neighbor methods have been developed over the years and applied to solving
different types of data mining and machine learning tasks.

The underlying idea of all k-nearest neighbor methods is that the inference in the point
of interest is made based on its k nearest neighbors, i.e. k examples from the training data
that are most similar to the point that is currently being inspected. Intuitively, this means
that the similarity calculated in the chosen feature space might imply the similarity among
the ‘hidden’ variables of the compared points.

Figure 1: The 3 nearest neighbors to point X in this 2D data are points X,, X, and X,.

The k-nearest neighbor problem is closely related to the concept of Voronoi diagrams.
Each fixed set of points for a fixed neighborhood size k defines a unique Vornoi tesselation
in the feature space. In case of k =1, all points from the same cell have the same nearest
neighbor. An example is shown in Figure 2. It is also possible to define higher-order
Voronoi diagrams when k > 1, where all points in the same region have the same set of
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k-nearest neighbors. As calculating the exact split can sometimes be time consuming, some
approximate algorithms have also been used in practice [Arya, 2002]. The Voronoi split for a
given dataset can sometimes be used for speeding up the search [Kolahdouzan and Shahabi,
2004][Liotta et al., 1996].

Figure 2: The Voronoi tessellation in the plane for k =1 for a given set of points.

The KNN method is probably most widely known in the machine learning community
for its use in classification. It is one of the simplest available classifiers, easy to implement
and test. The label of a new instance is determined by a majority vote of its k-nearest
neighbors (kNN) from the training set, as shown in Figure 3. This simple rule has some
surprising properties which go in its favor. For instance, when there is no overlap between
the classes, 1-nearest neighbor is asymptotically optimal [Cover and Hart, 1967][Devroye,
1981]. As for the kNN rule, it has been shown to be universally consistent under some strong
assumptions, namely k — e and k/n — 0 [Stone, 1977][L. Devroye and Lugosi, 1994]. Let
D= (x1,y1),(x2,y2),..(xn,y) be the data set, where each x; € R?. In this case, the x; are feature
vectors which reside in d-dimensional Euclidean space, and y; € c1,c¢3,..cc are the labels. It
can be shown that in the hypothetical case of an infinite data sample, the probability of a
nearest neighbor of x; having label ¢ is asymptotically equal to the posterior class probability
in point x;, namely p(c|x;) = lim, . p(c|NN(x;)). These conditions are never exactly met in
real data, which is often sparse if the feature space is high-dimensional. Additionally, k-
nearest neighbor methods do not explicitly require the vector space model (VSM) of the
data [Raghavan and Wong, 1986], they allow for more general types of inference. As long
as it is possible to define a similarity measure between all pairs of instances or produce a
ranking for each query, most basic types of k-nearest neighbor classification methods would
be able to output a prediction.

- = @
A \/“‘ ‘ -

Figure 3: An example of k-nearest neighbor classification rule for k=5 in a binary classification case.
The 5 nearest neighbors of x are shown and 3 of them share the label 0, while 2 share the label
1. According to the nearest neighbor rule, p(y = 0|NNs(x)) = 0.6 and p(y = 1|NNs(x)) = 0.4, so the
point x would be assigned label 0. The ratio between the two label probabilities can also be viewed
as an estimate of the ration between class probability density functions in point x.

Various extensions and variations of the original kNN classifier have been proposed over
the years. The fuzzy k-nearest neighbor classifier is frequently used in the biomedical do-
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main and represents a ‘soft’ alternative, as it is able to handle fuzzy class labels [Keller et
al., 1985][Jensen and Cornelis, 2008]|[Shang et al., 2006]. One of the state-of-the-art con-
temporary classifiers is the large margin kNN classifier, based on learning the Mahalanobis
distance matrix from the data via semidefinite programming [Weinberger et al., 2005][Min et
al., 2009]. Feature weighting is also common [Han et al., 2001], as well as approaches based on
adaptive distance measures and neighborhoods [Wang et al., 2007][Song et al., 2007|[Hastie
and Tibshirani, 1996][Ougiaroglou et al., 2007][Short and Fukunaga, 1981]. These some-
times include kernel-based approaches [Peng et al., 2004][Zhang et al., 2006]. Multi-label
k-nearest neighbor classifiers have also recently been given some attention [Zhang and Zhou,
2007][Zhang and Zhou, 2005][Younes et al., 2008][Chiang et al., 2012]. The practical applica-
tion of k-nearest neighbor classification methods are numerous [Shen and Chou, 2005][Chou
and Shen, 2006][Liao and Vemuri, 2002][Rajagopalan and Lall, 1999].

Extensions of kNN are considered to be well suited for classification under the assumption
of class imbalance, which is an important learning context. The basic k-nearest neighbor
classifier does not build a model and thus performs essentially no generalization. This
results in kNN having a high specificity bias, which stops it from over-generalizing. Over-
generalization under class imbalance usually entails that the minority class examples end
up being assigned to the majority class, especially in the borderline regions where classes
overlap and the minority class has a comparably lower density and representation. This
usually causes a significant misclassification rate [Holte et al., 1989][van den Bosch et al.,
1997]. Several kNN classifiers that are appropriate for use in the imbalance class domain have
been proposed [Garcia et al., 2008][Hand and Vinciotti, 2003|[Liu and Chawla, 2011][Tan,
2005a][Wang et al., 2010b][Li and Zhang, 2011].

Clustering is one of the most important unsupervised tasks in data mining, as it helps
in discovering the underlying structure of the data and is often one of the first steps in data
analysis. The k-nearest neighbor approaches are frequently encountered in various clustering
applications. The standard way to reach a clustering via kNN is to infer linkage proper-
ties from the k-nearest neighbor graph and perform some form of graph clustering [Maier
et al., 2009][Franti et al., 2006][Maier et al., 2007][Lucinska and Wierzchon, 2012][Arefin
et al., 2012]. Another way would be to use density-based clustering methods based on
the kNN density estimate [Bigici and Yuret, 2007; Tran et al., 2003; Zhang et al., 2007].
Of course, there is always the issue of choosing the proper neighborhood size, since both
small and large values of k can cause problems for such density-based approaches [Hader
and Hamprecht, 2003]. Shared neighbor clustering methods have become especially popu-
lar for high-dimensional data clustering [Jarvis and Patrick, 1973][Ertz et al., 2001][Yin et
al., 2005][Moéllic et al., 2008][Patidar et al., 2012][Zheng and Huang, 2012]., including the
clustering of large image databases. Yet, other less typical kNN clustering approaches have
been proposed as well [Hsieh et al., 2010][Hu and Bhatnagar, 2012]|[Sun and Wang, 2010].

The k-nearest neighbor methods turn up naturally in information retrieval, as well as col-
laborative filtering [T6scher et al., 2008] and recommendation systems [Liu et al., 2012][Pan
et al., 2013|[Gemmell et al., 2009]. It is easy to see why these types of approaches are
well suited for collaborative filtering [Toscher et al., 2008][Gjoka and Soldo, 2008][Grcar et
al., 2006][Xiaoyuan Su, 2008]. Namely, the behavior and the preferences of a user can be
modeled by observing the most similar previously analyzed users. The same can be said for
product-oriented analysis, where one would be, for instance, interested in finding the pref-
erentially most similar movies or books to any given movie/book. Therefore, the k-nearest
neighbors are often used to make inferences about future preferences, ratings or purchases.

Apart from the mentioned machine learning applications, k-nearest neighbor estimators
have been used in various traditional statistical applications as well. Apart from density
estimation [Mack and Rosenblatt, 1979][Fukunaga and Hostetler, 1975], it is also frequently
used in entropy estimation [Beirlant et al., 1997][Sricharan et al., 2011][Singh et al., 2003],
which is of high importance in many fields and domains [Hnizdo et al., 2008]. More specifi-
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cally, if we have the entropy estimate derived from a set of n points by H, and the distance
from point x; to its nearest neighbor as p,; = d(x;, NN(x;)), the nearest neighbor entropy
estimate is given as: H, = %):?:1 In(n- pni) +In2+Cg, where Cg is the Euler’s constant which
yields Cg = — [;,"e ' Intdt. The differential entropy estimates can be used to find independent
subspaces [Péczos and Lorincz, 2005]. This is a common task in independent component
analysis [Faivishevsky and Goldberger, 2008], where independent sources need to be detected
and separated in a mixed signal.

The k-nearest neighbor regression is another widely used predictive method. Unlike in
classification, the target variable is continuous. The basic idea is similar to classification, as
the predicted value is taken either as a simple or a weighted average of the target variable
values among the k-nearest neighbors. However, more sophisticated techniques are also
possible [Hamed et al., 2012][Kramer, 2011]|[Kramer, 2012].

In all kNN-related machine learning and data mining methods, the required functional-
ity is the ability to efficiently and effectively calculate the k-nearest neighbors for a query
point. When the total number of queries is low, the brute force method of calculating all
the distances and partially sorting in order to find the k& smallest ones is usually sufficient.
However, as the queries become more frequent and the size of the data increases, this can
become computationally expensive and reduce the overall responsiveness of the system by
significantly increasing the time required to process each individual query. This is why many
efficient approaches for speeding-up the k-nearest neighbor search have been proposed over
the years [Jagadish et al., 2005][Katayama and Satoh, 1997][Tao et al., 2010][Tao et al.,
2009][Seidl and Kriegel, 1998][Iwerks et al., 2003][Yu et al., 2005][Song and Roussopoulos,
2001]. There is a difference between speeding up external searches over a fixed database
and wanting to calculate the complete k-nearest neighbor graph for a given dataset. The
latter is often required for estimating the kNN topology of the data. In our experiments, we
have mostly relied on the approximate method based on recursive Lanczos bisections [Chen
et al., 2009]. However, locality sensitive hashing (LSH) techniques are probably the most
widely used in practice, as they have been shown to be quite reliable [Kulis and Grau-
man, 2011][Pauleve et al., 2010][Haghani et al., 2009][Rasheed et al., 2012][Chen et al.,
2011][Gorisse et al., 2011]. By using the locality sensitive hashing, it is possible to apply
the k-nearest neighbor algorithms for analyzing very large datasets. Different approaches
to parallelization of approximate kNN graph construction are also available [Wang et al.,
2012]. Most approximate approaches are closely tied to a predefined metric, which allows
them to achieve the speed-up, though some generic methods exist as an alternative [Dong
et al., 2011]. Apart from the up-scaling approaches, there has also been recent interest in
privacy-preserving applications and privacy-preserving kNN search [Shaneck et al., 2009].

Data reduction is another common approach for speeding-up the k-nearest neighbor
methods, as well as removing noisy points or outliers that might negatively affect the in-
ference [Garcia et al., 2012][Liu, 2010][Liu and Motoda, 2002]. Many prototype selection
methods are based on analyzing the k-nearest neighbor sets on the training data and this
includes ENN [Wilson, 1972], CNN [PE, 1968], GCNN [Chou et al., 2006], RT3 [Wilson and
Martinez, 1997], AL1 [Dai and Hsu, 2011] and INSIGHT [Buza et al., 2011].

Despite their widespread use, the k-nearest neighbor approaches run into some difficulties
when applied to intrinsically high-dimensional data, one of which is the emergence of hubs
that skew the underlying distribution of influence [Radovanovi¢ et al., 2009][Radovanovi¢ et
al., 2010a]. The phenomenon of hubness will be discussed in more detail in the following
Section.

1.4 The Hubness Phenomenon

Hubs emerge naturally as centers of influence in many different contexts. This thesis deals
primarily with the consequences of the existence of hub points in k-nearest neighbor topolo-
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gies of intrinsically high-dimensional data [Radovanovi¢ et al., 2009][Radovanovié¢ et al.,
2010a], but there are many other situations in which similar uneven distributions of influ-
ence arise.

1.4.1 Hubs and Authorities in Directed Graphs

The k-nearest neighbor graph is a special case of a more general class of directed graphs and
networks, where hubs have been known to emerge in certain contexts. One such network is
the internet.

The distribution of popularity and relevance on the world wide web is known to be
skewed [Adamic and Huberman, 2002]. The internet hosts a relatively small percentage
of large, highly connected and highly relevant web pages, followed by a wide spectrum of
relatively small non-influential sources. This is a common pattern in many well-known
large-scale networks and will be discussed in more detail in Section 1.4.2.

The concepts of hubs and authorities are frequently encountered in network link anal-
ysis [David and Jon, 2010] and their meaning in that context will be outlined here, for
purposes of comparison and disambiguation. Hubs are informally defined as the centers of
influence, nodes with a high outgoing degree in the network graph. Authorities, on the other
hand, are nodes that are linked to by many hubs. A page can be both a hub and an author-
ity at the same time, though most pages are neither. Given a directed graph G = (V,E), a
hub-score h(v) and an authority score a(v) are usually assigned to each node in the graph,
in order to measure the degree to which it is a hub or an authority. It is, of course, possible
to define a threshold 6 for a cut-off point and denote hubs as all v € G : h(v) > 6 or the
authorities as all ve G:a(v) > 6.

The motivation for observing these particular types of points stems from the structure of
the internet and the need for browsing and searching for relevant pages on different topics.
Hubs correspond to pages holding carefully picked catalogues of links to relevant pages in
a given domain. An example of a hub would be a hotel booking website that links to all
hotels in a given area. Detecting the relevant hubs for a given query can help to improve
the result sets in internet search [Chirita et al., 2003], as it helps in finding the authorities
that are the ultimate goal. Authority pages are important because them being linked to
by many hubs suggests that their content might be potentially highly relevant for the user.
Simply counting the incoming and/or outgoing links is unfortunately not enough to satisfy
the requirements for reliable search, as demonstrated by the example in Figure 4.

h, h
h, h,
a
h; hs
h, h,

(a) Reliable authority pages linked to by (b) An unreliable authority page
several reliable hubs. that is linked to by pages of low hub-
ness score.

Figure 4: An example showing how the nature of the linking hub-points influences the reliability of
target authority pages.

The Hubs and Authorities (HITS) algorithm [Kleinberg, 1999b][Kleinberg, 1999a] is an
iterative procedure that determines the hub and authority scores for web pages and was a
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precursor to the well-known PageRank score [Brin and Page, 1998] that Google search is
largely based upon. The HITS algorithm is a fairly simple one: the hub-score of a node is
updated by assigning to it the sum of authority scores of the pages it links to. The authority
update is analogous. Normalization of the scores is performed at each iteration. Each node
is assigned a score of 1 initially. This is shown in Equation 1.

WweV:ihv)+— Y a(y)

h(v)

ZVGV h? (V)
WweVia(v)«— Y h(y)
a(v)

ZVEV a? (V)

Modifications to the original algorithm have also been considered [Benzi et al., 2012]
[Miller et al., 2001]. It has also been used in querying multi-relation databases [Li et al.,
2012], extracting features for detection of gene orthology [Towfic et al., 2010] and social
network analysis [Ovalle-Perandones et al., 2009]. The semantics of the hub and authority
scores may vary depending on the type of network and the domain it represents.

The definition of hubs and hubness that is used throughout this thesis is not a converging
limit of an iterative process, but is derived directly from the node degree distribution. These
concepts are defined precisely in Section 1.4.3.2 within the context of the thesis.

YweV:h(v)<+—

YweV:ia(v)+—

1.4.2 Hubs and Power Laws

Hubs often arise as centers of influence in scale-free networks. High-dimensional kNN topolo-
gies that are the focus of this thesis are not necessarily scale-free, but sometimes they tend
to be [Radovanovi¢, 2011]. Examining the role of hubs in such networks can help shed some
light on the wider context of the problem.

Many complex systems share the same underlying structure, as a result of common
organizing principles. Power laws are surprisingly common in large networks. Networks
where the degree distribution follows a power law are known as scale-free networks. Let P(k)
be the fraction of nodes adjacent to exactly k edges in the graph. In scale-free networks, this
is proportional to a decreasing power of k, like this: P(k) o< k~7. In other words, we would
expect to see a large number of low-degree nodes and a small number of highly connected
centers of influence, hubs, in the long tail of the distribution [Barabdsi and Bonabeau,
2003][Wang and Chen, 2003].

The reason why the power law distributions are called scale-free is that scaling the
function argument by a constant factor results in the proportional scaling of the original
function. For instance, let P(k) = A -k~7 be a power law. Then, P(a-k)=A-a V- k¥ =
o YP(k) o< P(k). It follows that all the power laws with the same scaling constant y are
equivalent up to constant factors, as they are in fact scaled versions of each other.

Studying the properties of such network structures is important, as the world that we
live in is itself a hierarchy of interaction networks operating at different scales and levels of
granularity. Societies are networks of people, connected by their friendships, professional
ties and interests. People use their brains to govern their decisions and brains are networks
of neurons connected via synapses by axons and dendrites. Cells themselves are networks
of complex molecules that interact in many biochemical reactions [Albert, 2005]. Similar
analogies can be seen while modeling ecosystems, markets [Kim et al., 2002], internet, and
so on. Many of these networks exhibit scale-free properties [Barabési and Bonabeau, 2003].
Even the language that we use follows many power laws. The most famous is certainly
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Figure 5: A randomly generated scale-free network of 200 nodes. The graph contains many discon-
nected nodes and leaves, that are dominated by a certain number of highly connected hub nodes.

Zipf’s law, which describes the power law distribution of word frequencies that are inversely
proportional to the word frequency ranks. Furthermore, it has been shown that some se-
mantic word networks, like networks of synonyms, follow a power law degree distribution
and that this distribution seems to be language independent [Makaruk and Owczarek, 2008],
which is an interesting property that might shed some light on the universal laws behind
the forming of languages in human societies. Zipf’s law is captured by the zeta distribution,

ps(x=k)= #(S) The exchange of parameters can transform this into a Pareto distribution,

that is a power law distribution of a fitness (survival) function that was first used to model
the overall distribution of wealth [Levy et al., 2005].

The emergence of scale-free networks can sometimes be interpreted based on the mecha-
nisms of preferential attachment, or as it is less formally called, the ‘rich get richer’ process.
This sort of a process was first studied by Yule in 1925 [Yule, 1925], in his paper on the genus
size among the flowering plants. When a new species appears, it is placed in a new genus if it
is sufficiently different from all the known species within the genus of its parent species, from
which it diverged. The more species the genus already has, the higher the probability that
the new species will stay within the existing genus. This is an obvious positive reinforce-
ment loop that results in a power law distribution of genus sizes. Similar mechanisms can
be observed in, for instance, collaboration graphs of co-authorship in scientific publishing.
The more co-authors someone has, the higher the likelihood of their next paper also being
co-authored [Farkas et al., 2002]. The preferential attachment model for growing random
scale-free networks was developed in 1999 by Barabdsi and Albert [Barabési and Albert,
1999] and was applied to explaining the structure of the world wide web.

Scale free networks often exhibit the small-world property [Milgram, 1967][Wang and
Chen, 2003], i.e. high connectivity. A famous example is the conjecture of siz degrees of
separation [Barabasi, 2003], where every living person on the planet would be connected to
any other person by no more than six friendship links. The accuracy of this notion has been
questioned on several occasions and it isn’t entirely clear whether there are exceptions to
the rule, but the fact remains that we are living in a highly connected world. The reason
for this lies in hubs of the network, in this case people that know many other people, social
hubs. Hubs increase the connectivity of networks and this can usually be seen as a good
thing, though it can also be a problem, for instance when it comes to disease spread [Dezso
and Barabdsi, 2001]. However, specifically targeting hubs while taking measures towards
epidemic containment has proven to be an effective strategy [Dezso and Barabasi, 2001].
In general, hubs make the scale-free networks more resistant to random failures, though
much more susceptible to coordinated attacks against their hubs [Barabdasi and Bonabeau,
2003][Zhao and Xu, 2009].
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Same power law degree distributions can exhibit slightly different topological properties
and there is an ongoing debate on how to best define what is meant by the term of scale-free
networks. The degree distribution landscapes can be characterized in different ways and
studied in more depth [Axelsen et al., 2006]. It all depends on how hubs are connected,
whether there is a strong or weak correlation between degrees of neighboring nodes. The
structure can take on either a strictly hierarchical shape with a dominating hub in the center
or act as a collection of several strongly or weakly connected local hierarchies. This can be
quantified by a scale-free metric [Li et al., 2005], shown in Equation 2 for a graph G = (V,E),
where s,y is a normalization coefficient that denotes the maximum s(H) taken over the set
of all graphs H that follow the same degree distribution as G. A low value of S(G) would
characterize a scale-rich network and a high value a scale-free network.

s(G)= Y deg(u)-deg(v)
(u,v)€E

") (2)

Smax

S(G) =

The emergence of hubs has a profound effect on many network properties and it is often
important to focus the analysis on hub points and analyze them more thoroughly. For
instance, the heterogeneity of the degree distribution makes the hub points follow a slightly
different spectral dimension [Hwang et al., 2013]. The need for visualization in the process of
analyzing scale-free networks has given rise to some novel graph visualization techniques [Jia
et al., 2008].

The reason why scale-free networks are relevant as related work to the study of hubs
in k-nearest neighbor graphs of high-dimensional data is that one of the main results of
Radovanovié¢ [Radovanovié, 2011] was to show that the neighbor degree distribution in ran-
domly generated data of increasing dimensionality asymptotically approaches a power law,
i.e. the kNN graph becomes scale-free. This has been demonstrated for a class of different
probability distributions of data points.

1.4.3 Hubs as Very Frequent Nearest Neighbors
1.4.3.1 Curse of Dimensionality

The term “Curse of Dimensionality” was first coined by Bellman [Bellman, 1961] to denote
difficulties that come up when working with high-dimensional data. It is an umbrella term
for various problems that may arise, not only in machine learning and data mining, but also
in numerical analysis, sampling, Bayesian statistics and combinatorics.

When the dimensionality of the data increases, so does the containing volume. This leads
to sparsity of the data and sparse data is difficult to handle. It is difficult to obtain reliable
density estimates. The amount of data required to derive statistically sound estimates
rises exponentially with the number of dimensions. This means that in cases of high data
dimensionality, there is virtually never enough data to overcome these difficulties and even
if there were, processing all of it would not be feasible.

The curse of dimensionality poses new challenges for similarity search [Chévez and
Navarro, 2001][Chavez and Navarro, 2003][Yianilos, 2000]. Classification tends to become
more difficult and new approaches are required [Serpen and Pathical, 2009]. Kernel methods
are also subject to the dimensionality curse, as their performance tends to be impaired [Ben-
gio et al., 2005][Evangelista et al., 2006]. High dimensionality is known to cause problems for
privacy-preserving data randomization [Aggarwal, 2007|[Aggarwal, 2005]. Even the neural
networks suffer from problems stemming from high data dimensionality [Verleysen et al.,
2003].
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While considering the negative effects of high dimensionality, it is important to make a
clear distinction between the embedding dimensionality and intrinsic dimensionality, as the
two are not always equal. The embedding dimensionality represents the number of features
in the data representation, while the intrinsic dimensionality is defined as the minimal
number of features needed to fully represent the data.

In many applications, data representations contain at least some attributes that are not
mutually independent and some correlation and redundancy can be observed. The intrinsic
dimensionality of such data is then lower than the number of features currently used. Many
different approaches to estimating the intrinsic dimensionality of the data have been pro-
posed [Pettis et al., 1979][Gupta and Huang, 2012][Farahmand and Szepesvari, 2007][Carter
et al., 2010][Rozza et al., 2012|[Camastra and Vinciarelli, 2002]. Some machine learning
methods work under the assumption that data can be projected onto a lower-dimensional
manifold and that learning might be easier after such dimensionality reduction [Talwalkar
et al., 2008][Zhang et al., 2012b].

Apart from sparsity, one of the main problems in analyzing high-dimensional data stems
from what is known as the concentration of distances. The distance concentration is also
responsible for difficulties in nearest-neighbor search and partly related to the hubness phe-
nomenon.

Distance concentration is a counterintuitive property of many intrinsically
high-dimensional datasets [Pestov, 2000][Francois et al., 2007]. In high-dimensional data,
the relative contrast between distances calculated on pairs of examples sampled from the
same distribution decreases. This tendency makes it hard to distinguish between close and
distant pairs of points, which is essential in many practical applications. The fact that the
difference between nearest and farthest neighbors sometimes vanishes in high-dimensional
spaces has lead some researchers to question the very notion of nearest neighbors in high-
dimensional data [Beyer et al., 1999][Durrant and Kaban, 2009][Hinneburg et al., 2000].
However, it is usually still possible to distinguish between points originating from different,
non-overlapping distributions.

If we are given a finite sample S C RY denote by dj; the maximal observed distance from
a fixed query point to points in the sample and by d, the minimal observed distance, i.e.
dy = maxy, y,esd(x;,x;) and dy, = miny, yesd(x;,x;). Let pj = %. This quantity is referred
to as the relative contrast (RC). Alternatively, we can also observe the relative contrast on
distances between all pairs of points. The distance concentration phenomenon means that
as the dimensionality increases, the contrast goes to zero. In other words, lim, .. p; = 0.
Of course, this is an asymptotic result and real world data is not expected to exhibit such
severe concentration.

The problem arises when the expected value for the distance increases with increasing
dimensionality, while the variance remains constant.

There is an ongoing research on determining the exact conditions for stability of distance
functions in high dimensional data [Hsu and Chen, 2009][Kaban, 2012]. The problem is that
many standard metrics suffer from severe distance concentration, as for example the widely
used Euclidean distance. Same can be said for other members of the Minkowski distance
family and it also holds for fractional distances, though to a somewhat lower extent [Frangois
et al., 2007]. Redesigning metrics for high-dimensional data analysis has become an impor-
tant topic [Aggarwal, 2001]. It has been argued that unbounded distance measures for which
the expectation does not exist are more stable and should be preferred in such cases [Ja-
yaram and Klawonn, 2012]. Another approach is to start with a common primary distance
measure and proceed by defining a secondary distance measure that takes the primary mea-
sure as its functional parameter. Shared neighbor distances represent a class of secondary
distance measures that is often used in high-dimensional clustering applications [Houle et
al., 2010][Jarvis and Patrick, 1973][Yin et al., 2005][Moéllic et al., 2008]. Some other sec-
ondary measures have recently been proposed, like mutual proximity [Schnitzer et al., 2011].
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Distance concentration has been shown to impede certain sorts of distance-preserving di-
mensionality reduction methods, which has lead to the design of some new techniques [Lee
and Verleysen, 2011]. In general, some sorts of data mining techniques are more and some
are less susceptible to the distance concentration phenomenon [Kaban, 2011].

1.4.3.2 Emergence of Hubs in kNN Graphs

Before proceeding with an overview of the related work on k-nearest neighbor hubs, it is
imperative that all the relevant terms and concepts are properly defined in the context that
is being discussed. Some formal notation must also be introduced.

Let D = (x1,y1),(x2,y2),..(xs,y,) be the data set, where each x; € R?. The x; are feature
vectors residing in some high-dimensional Fuclidean space, and y; € c1,c2,..cc are instance
labels. Denote by Dy (x;) the k-neighborhood defined by the nearest neighbors of x;. Also, let
Ni(x;) be the number of k-occurrences (occurrences in k-neighbor sets) of x; and by Ni.(x;)
the number of such occurrences in neighborhoods of elements from class ¢. The phenomenon
of hubness is induced by the skewed distribution of the neighbor occurrence frequency N.

Def. Absolute total hubness of a data point x; equals its total observed neighbor oc-
currence frequency Ni(x;). Normalizing either by the data size or the maximum observed

Ny (x:) or Ni(x:)

absolute hubness yields the relative total hubness of the data point x;, i.e. = e NeC)
We will refer to the absolute total hubness of particular points simply as their hubness, for
short, as the relative hubness scores are rarely used in practice.

Def. Absolute good hubness of a data point x; equals the number of its neighbor oc-
currences where there is no label mismatch between x; and its reverse nearest neighbor. In
other words, GNi(x;) = |x; 1 x; € Di(x;) Ayi = yjl.

Def. Absolute bad hubness of a data point x; equals the number of its neighbor occur-
rences where there is a label mismatch between x; and its reverse nearest neighbor. In other
words, BNi(x;) = |x;j : x; € Di(x;) Ayi # yjl.

Therefore, the absolute total hubness of a neighbor point x; is a sum of its good and bad
hubness and it can also be further decomposed into the class-specific hubness scores.

Ne(x;) = GNi(x;) + BNe(x;) = Y Nie(xi) (3)

ceC

The motivation behind the basic definitions is clear, as the point hubness corresponds
to how much of a hub a point is. The more it occurs, the higher its degree in the k-
nearest neighbor graph is going to be. Label mismatches in k-neighbor sets and bad hubness
in general constitute semantic similarity breaches that usually reflect negatively on data
modeling and analysis by using the k-nearest neighbor methods. Trivially, when performing
k-nearest neighbor classification, we would like to have each point surrounded mostly by
the neighbors of its own class, at least for smaller values of k. This is not the same as
pure density estimation, as the primary goal is to achieve the highest possible classification
accuracy by avoiding all possible misclassifications.

Apart from the point-wise hubness scores, the total hubness of the entire dataset will
also be of interest as a quantity that allows for characterization of different types of datasets
and comparisons between them.

Def. Hubness of a dataset D is defined as the third standard moment (skewness) of the

Ly (Ne(xi)—k)3
(5 X (Ne () —k)2)32

Therefore, high hubness is equivalent to high neighbor k-occurrence skewness. An exam-
ple of the rising hubness in Gaussian high-dimensional data can be seen in Figure 6. The
low-dimensional data forms a familiar bell-shaped neighbor occurrence distribution curve,
while the high-dimensional data form a fat-tailed distribution that slowly takes the form of
a power law.

neighbor occurrence degree distribution and will be denoted by SN, =
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Figure 6: The change in the distribution shape of 10-occurrences (Njp) in i.i.d. Gaussian data with
increasing dimensionality when using the Euclidean distance. The graph was obtained by averaging
over 50 randomly generated data sets. Hub-points exist also with Njg > 60, so the graph displays
only a restriction of the actual data occurrence distribution.

The term hubness is used in both of its meanings throughout the text. If it is a quantity
tied to a specific point, it denotes the neighbor occurrence frequency. If it is a quan-
tity describing a dataset, it denotes the skewness of the k-occurrence distribution. This
is consistent with the notation in earlier work on the topic of k-nearest neighbor hub-
ness [Radovanovié¢, 2011][Radovanovi¢ et al., 2009][Radovanovié¢ et al., 2010a][Radovanovié
et al., 2010b][Radovanovié et al., 2010][Nanopoulos et al., 2009]. For the sake of consistency,
the same definitions will be used when it comes to defining hubs, as well.

Def. A Hub in a k-nearest neighbor graph is a point that occurs much more frequently
than other points in that its observed occurrence frequency exceeds the mean by more than
two standard deviations. More specifically, hubs(D) = {x; : Ni(x;) > k+2-stdev(Ny)}, where

stdev(Ny) = Ziz) (Vi) =)
- .
Points that occur very infrequently will be informally denoted as anti-hubs, though the
exact definition of what constitutes an anti-hub might differ based on the context and task

at hand. Similarly, let orphans be the points that never occur as neighbors.

The hubness phenomenon is closely related to other aspects of the dimensionality curse,
including sparsity and distance concentration. One of the main results of Radovanovié
[Radovanovié, 2011] was to show that the neighbor degree distribution in randomly generated
data of increasing dimensionality asymptotically approaches a power law. Furthermore,
it was suggested [Radovanovié¢ et al., 2009][Radovanovi¢ et al., 2010a][Radovanovié¢ et al.,
2010b][Berenzweig, 2007] that hubs are expected to emerge in inherently high-dimensional
data. In other words, they are not to be considered an artefact of a particular feature
representation or a probability distribution.

The distribution of nearest neighbor occurrences has been a topic of study for a while
among the mathematical probability community and several theoretical asymptotic ten-
dencies have been proven for certain types of distributions [Tversky et al., 1983][Yao and
G.Simons, 1996][Tversky and Hutchinson, 1986][Maloney, 1983][Newman and Rinott, 1985]
[C. M. Newman and Tversky, 1983]. In the majority of studied settings (the Poisson process,
d-dimensional torus), the distribution of N; was shown to converge to a Poisson distribution
with A =1 when the Euclidean distance is used for measuring dissimilarity and when the
number of points and the number of dimensions go to infinity. The Poisson distribution is
a limit case of the binomial distribution with infinite granularity. In the more general case
of the Poisson process, the distribution of Ny would also converge under the same condi-
tions to the Poisson distribution with A = k. The shape of the Poisson distribution would
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thus suggest that the emergence of hubs is not to be expected under such conditions, which
is opposite to what has actually been observed in practical analysis of high-dimensional
datasets [Radovanovi¢ et al., 2010a]. However, a careful interpretation of the results is
required. It was suggested [Tversky et al., 1983][Newman and Rinott, 1985] that an emer-
gence of a small number of hub-points is to be expected when the intrinsic dimensionality
of the feature space is high relative to the number of points. This is precisely the setup that
is frequently encountered when analyzing real-world high-dimensional sparse datasets with
limited sample sizes.

Nearest neighbor hubs have first been observed while examining music recommendation
systems [Aucouturier and Pachet, 2004][Aucouturier, 2006]. Music recommendation is based
on suggesting potentially interesting songs to users, according to what they had already been
listening to. Similarity search for a particular query song is among the basic required system
functions. During the analysis, it was determined that some songs end up being very fre-
quently retrieved by the system, more than what could be explained by the semantics of the
data. The calculated similarity measure between the songs did not capture the perceptual
similarity well, which suggested that the problem might stem from an improper feature rep-
resentation or an inappropriate similarity measure. Indeed, the symmetric Kullback-Leibler
divergence [Kullback and Leibler, 1951] that was used in some earlier recommendation sys-
tems does suffer from high hubness. However, the phenomenon remains present to some
degree even if the data representation or the metric are changed. Several recent papers have
proposed and evaluated different techniques for reducing hubness in music recommendation
systems and improving system performance [M. and A., 2012][Flexer A., 2012][Schnitzer et
al., 2011][Gasser M., 2010].

Audio data in general has also been shown to fall prey to the hubness phenomenon. Like
in music recommendation, speaker verification is also prone to experiencing problems due
to the curse of dimensionality. Speaker verification systems compute the distance between
the audio generated by the speakers and the generated statistical speaker models. The
'Doddington zoo’ effect [Doddington et al., 1998] describes the pitfalls of automated speaker
recognition by defining four types of speakers, based on the system performance. The average
users for which the system exhibits normal, acceptable behavior are known as sheep. Users
that are especially difficult to recognize are known as goats. Speakers that are able to easily
impersonate other users are known as wolves. Speakers that are particularly easy to imitate
are called lambs. It soon becomes apparent that the terms of wolves and goats correspond
well to the concepts of hubs and anti-hubs (orphans). This has been discussed and evaluated
in a recent paper [Dominik Schnitzer, 2012].

Another form of data that exhibits substantial hubness in the kNN topology is the PPI
(protein-protein interaction) data [Patil et al., 2010]. The significance of hub proteins has
been emphasized on many occasions, as it was shown that the hub proteins from the PPI
networks of different biological entities are essential proteins that play significant roles in
the complex biochemical processes that happen in the body or the cells [He and Zhang,
2006][Ekman et al., 2006][Batada et al., 2006]. This means that any advances in under-
standing the mechanisms behind the hubness phenomenon might eventually be beneficial to
the bioinformatical research as well.

In the k-nearest neighbor topology, different k-neighborhoods have different diameters,
depending on the local data density. If the local density is higher in x, the radius of the
minimal hyper-sphere containing Dy (x) centered at x would be smaller. A slightly different
topological examination might involve considering fixed diameter neighborhoods instead of
the k-nearest neighbor sets. Geometric graphs obtained in such a way are usually referred
to as the e-neighborhood graphs [Penrose, 2003]. Unlike the k-nearest neighbor graphs, the
neighbor occurrence frequency in €-neighborhood graphs does not exhibit high skewness and
the phenomenon of hubness is not present [Radovanovié¢, 2011]. However, these graphs are
not easy to use in data analysis, as it often proves to be difficult to set a global € threshold.
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If there are great differences in densities over the data space, it might even prove impossible
to assure that each neighborhood is non-empty while not breaching the locality assumption
around data points in higher density regions. This is why the k-nearest neighbor methods
are much more frequently used in practice, even though the phenomenon of hubness remains
a constant concern in high-dimensional data.

1.5 Aims and Hypotheses

Several studies have previously shown hubness to be highly detrimental in various practical
applications. Nevertheless, that research was mostly theoretical, focusing mainly on the
mathematical mechanisms behind the emergence of hubs. Useful as that may be, little was
actually done on improving the system performance under the assumption of hubness in
high-dimensional data.

The primary goal of the research presented in this thesis was to design a set of hubness-
aware algorithms, in order to show that the knowledge and understanding of the underlying
data hubness can be exploited for increasing the effectiveness of ML /DM methods.

During the course of our research, we have made several hypotheses about the role that
hub-points play in high-dimensional data analysis. The main hypotheses are listed below.
In order to clarify the context, a comment on the prior state of the art is given in each case,
outlining the information that was already known prior to the research described in this
thesis.

Hypothesis 1: Hubs can be effectively used as cluster prototypes when clustering intrin-
stcally high-dimensional data.

Prior state of the art: It was already known that there exists a strong positive
correlation between anti-hubs and outliers, points that are isolated and located
far away from cluster means and regions of high density in the feature space
[Radovanovié et al., 2010a]. Additionally, it was known that hub points cluster
badly on average. This had been attributed to their low average inter-cluster
distances, that cause them to act as ’'links’ between different high-dimensional
data clusters. It was conjectured that the existence of hubs hampers clustering,
as they reduce the average cluster separation.

Aim: We have taken a novel perspective on the role of hubs in high-dimensional
data clustering. Our aim was to show that the hubness information can be
exploited for improving the effectiveness of clustering algorithms in intrinsically
high-dimensional data by using hubs as prototypes that represent local data clus-
ters. In order to test our hypothesis, we have proposed several novel clustering
methods based on the stated assumptions.

Hypothesis 2: Class-conditional neighbor occurrence models learned on the training data
can improve the effectiveness of k-nearest neighbor classification in intrinsically high-
dimensional data.

Prior state of the art: Reducing the voting weights of bad hubs has been shown
to be beneficial for kNN classification in hw-kNN [Radovanovi¢ et al., 2009]. How-
ever, the existing algorithm did not utilize the class-specific neighbor occurrence
information and was based only on bad occurrence counts (label mismatches).

Aim: We conjectured that almost all neighbor occurrences carry some
class-discriminative information, whether they are considered good or bad in
terms of label math/mismatch. In order to evaluate whether this is true, we
have proposed to use the class-conditional neighbor occurrence models in order
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to decompose bad hubness into class-conditional neighbor occurrence frequen-
cies. Our goal was to use the neighbor occurrence models as a basis for designing
hubness-aware kNN classification methods.

Hypothesis 3: In class imbalanced intrinsically high-dimensional data, minority hubs of-
ten induce label mismatches and can cause a severe misclassification of points from
the magority class.

Prior state of the art: Learning under class imbalance is a well known and im-
portant topic, as many real-world problems are known to be highly imbalanced.
The standard working hypothesis is as follows: Due to an average relative differ-
ence in densities in class overlap regions, the magjority class often causes a severe
misclassification of points from the minority class [He and Garcia, 2009]. This is
a reasonable assumption that takes into account the generalization bias of many
classification models and it certainly holds in low or medium-dimensional data.
However, this is exactly the opposite of the hypothesis that we have made for the
intrinsically high-dimensional case.

Aim: Our goal was to examine and better understand the role of the minority hubs
in learning under class imbalance. We have selected a series of real-world and
synthetic datasets that have been shown to exhibit significant hubness and have
performed a thorough experimental evaluation. Furthermore, our goal was also to
compare how different types of k-nearest neighbor classifiers handle the negative
effects of minority hubs and to see if the proposed class-conditional neighbor
occurrence models can be used to improve the classification performance.

Hypothesis 4: Class-conditional neighbor occurrence models can be used to capture the
instance selection bias during data reduction and exploit this information for improving
classification performance.

Prior state of the art: Most data mining and machine learning applications are
working with large quantities of data, which needs to be processed efficiently
and effectively. However, many state-of-the-art algorithms in terms of the overall
performance do not scale well with data size, as they perform computationally
intensive analysis. This is why data reduction / instance selection is common
in practice, so that the model is inferred from a sub-sample of the original data
set [Liu, 2010]. In complex data, the information loss usually incurs a downgrade
in accuracy. This is why the sampling is usually not done randomly, there exist
many complex instance selection methods. Each of these methods encapsulates
a certain bias, a selection criterion.

Aim: An implicit assumption contained in our hypothesis is that the hubness prop-
erties of the selected prototypes on the test data can be different when the whole
training set is used and when only the prototypes are used as potential neighbor
points. We have tested several different instance selection strategies over a wide
range of intrinsically high-dimensional datasets from different domains, in order
to test whether this is indeed true. After the initial tests, we have proposed to use
the hubness-aware kNN classification algorithms based on the class-conditional
neighbor occurrence models in order to model the changes in hubness induced by
the instance selection bias and increase the overall classification performance.

Hypothesis 5: The information contained in the class-conditional neighbor occurrence
models can be used for metric learning in order to improve the semantic consistency
in kNN sets, as well as the overall kNN classification performance.
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Prior state of the art: Secondary metrics have often been used in the past in or-
der to circumvent the distance concentration phenomenon. Shared-neighbor dis-
tances are a widely used family of secondary distances that is often used in high-
dimensional data analysis [Houle et al., 2010]. In the standard shared-neighbor
approach, a similarity between two points is determined by the cardinality of the
intersection of their kNN sets in the original (primary) metric space. Usually, a
large value of k is used.

Aim: Our aim was to demonstrate the potential usefulness of the information con-
tained in the class-conditional neighbor occurrence models by extending and im-
proving the basic shared-neighbor distance framework. Our main idea was to
assign different weights to different points while counting the size of the kNN set
intersections and to base these weights on the properties of the neighbor occur-
rence profiles of the shared neighbor points. Hubs are shared by more pairs of
points, so their discriminative potential is somewhat lower and we have assigned
them a lower weight. Additionally, bad hubs contribute to increasing the average
inter-class similarity, so they were assigned a low weight, in order to improve the
separation between different classes in the data.

1.6 Scientific Contributions

The major scientific contributions of this thesis can be grouped based on their relation to the
5 major hypotheses that we have examined, as previously outlined in Section 1.5. Topic-
wise, these correspond to the problems of data clustering, classification, class imbalance,
instance selection and metric learning, respectively.

SC 1. Clustering: Our work on exploring the role of hubs in clustering high-dimensional
data [Tomasev et al., 2011d][Tomasev et al., 2013c| was the first to try and explicitly
exploit hubs for high-dimensional data clustering.

SC 1.1: We have shown that the neighbor occurrence frequency is a good measure
of local cluster centrality in high-dimensional Gaussian distributions.

SC 1.2: We have proposed three new clustering algorithms that use hubs as clus-
ter prototypes and hubness as a measure of centrality: K-hubs, global hubness-
proportional clustering (GHPC) and global hubness-proportional K-means (GH-
PKM).

SC 1.3: It was determined that the proposed methods achieve their improvements
primarily by improving the clustering quality of hub points. This is an
important novelty, as previous work had suggested that hubs often cluster badly,
almost as bad as outliers [Radovanovié¢, 2011].

SC 2. Classification: We have proposed several novel kNN classification algorithms
designed specifically for high-dimensional data analysis.

SC 2.1: A set of hubness-based fuzzy measures was proposed, which were used to in-
fer a novel hubness-based fuzzy k-nearest neighbor classification method (h-FNN)
[Tomasev et al., 2011b][Tomasev et al., 2013b]. This method was the first one to
use the class-conditional hubness estimates derived from the neighbor occurrence
model.

SC 2.2: We have also proposed the hubness information k-nearest neighbor algo-
rithm (HIKNN) as an extension of the h-FNN framework [Tomasev and Mladenic¢,
2012]. The novelty in HIKNN was its ability to increase the influence of locally
relevant points on the classification outcome.
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SC 2.3: A Bayesian approach to interpreting neighbor occurrences was examined
and a novel hubness-aware classifier was proposed, the naive hubness-Bayesian
k-nearest neighbor (NHBNN) [Tomasev et al., 2011c].

SC 3. Class imbalance: This thesis also presents the first results aimed at exploring the
link between class imbalance in high-dimensional data and underlying data hubness.

SC 3.1: The performed experiments suggest that hubs of the minority classes
often induce severe misclassification of the points that belong to the majority
class. This phenomenon will be referred to as the curse of minority hubs.

SC 3.2: The proposed hubness-aware k-nearest neighbor classification approaches
have been shown to decrease the negative influence of the bad minority hubs
and improve the classification performance in class imbalanced high-dimensional
data.

SC 4. Instance selection: The role of hubs in instance selection has been given com-
paratively little attention in the past and this thesis presents one of the first in-depth
discussions on the topic.

SC 4.1: A comparison between a series of standard instance selection strategies has
revealed that some of them are more and some are less biased towards selecting
hubs as prototypes.

SC 4.2: Some selection strategies have been shown to consistently overestimate and
some underestimate the bad hubness of the selected prototypes, which results in
biased and less reliable kNN classification models.

SC 4.3: We have proposed a novel hubness-aware instance selection classification
framework based on using an unbiased hubness estimator in conjunction with
the proposed hubness-aware kNN classification algorithms based on the class-
conditional neighbor occurrence models.

SC 5. Metric learning: We have extended the shared-neighbor similarity framework in
order to include the relevant hubness information.

SC 5.1: We have proposed a novel secondary shared-neighbor similarity mea-
sure, simcosg [N. and D., 2012][Tomasev and Mladeni¢, 2013], by incorporating
a hubness-aware instance weighting scheme into the standard shared-neighbor
similarity measure, simcoss [Houle et al., 2010].

SC R. Other/Remaining: The remaining scientific contributions are related to some
specific practical applications of the developed hubness-aware methodology.

SC R.1: A correlation between different feature representations and the aris-
ing data hubness was examined for image data in context of object recogni-
tion [Tomasev et al., 2011a].

SC R.2: It was demonstrated that the bad hubness information could be potentially
useful for detecting anomalous behaviour in oceanographic sensor measurements.

SC R.3: The role of hubs in cross-lingual document retrieval was also exam-
ined [Tomasev et al., 2013d] and it was shown that there exists a high correlation
between hubness of different language representations of aligned document cor-
pora. This information was exploited for designing a new instance weighting
scheme for Canonical Correlation Analysis, which improved the quality of docu-
ment retrieval.



20 Introduction

SC R.4: Learning from past occurrences was employed in order to design a novel
hubness-aware self-adaptive re-ranking procedure that was successfully used in
improving the system performance in bug duplicate detection. The notion of
temporal hubness was introduced, as hubness of bug reports changes over time
with changing user interest and report distribution.

The majority of listed contributions represent first steps towards successfully exploiting
the hubness information in high-dimensional data analysis. The experimentally observed
improvements suggest that taking data hubness into account might be beneficial for many
different types of machine learning applications.

1.7 Thesis Structure

The thesis starts with a brief outlining of the general background and motivation, proceeding
quickly to describing the context of the problems related to hubness in high-dimensional
data. The emergence of hubs is high-dimensional k-nearest neighbor topologies is discussed
and an overview of previous work done in this field is provided.

Chapter 2 deals with our newly proposed hubness-aware data analysis algorithms. It is
composed of three separate thematic sections. Section 2.1 starts by examining an interplay
between hubness and clustering and covers the scientific contributions listed in (SC 1.1-1.3).
The results presented in the paper The Role of Hubness in Clustering High-dimensional
Data [Tomasev et al., 2011d][Tomasev et al., 2013c] are shown. The original paper is inserted
in its entirety and the section follows its structure. Section 2.2 deals with hubness-aware
classification and the scientific contributions (SC 2.1-2.3). The proposed hubness-aware
classifiers, hubness-based fuzzy k-nearest neighbor (h-FNN) [Tomasev et al., 2011b][Tomasev
et al., 2013b], hubness-information k-nearest neighbor (HIKNN) [TomaSev and Mladenié,
2012] and naive hubness-Bayesian k-nearest neighbor (NHBNN) [Tomasev et al., 2011c] are
discussed in great detail. Two journal papers are presented here, Hubness-Based Fuzzy
Measures for High-Dimensional k-Nearest Neighbor Classification[Tomasev et al., 2013b]
that analyzes the h-FNN classifier and Nearest Neighbor Voting in High-dimensional Data:
Learning from Past Occurrences [Tomasev and Mladenié, 2012] that analyzes HIKNN. This
is followed by subsections 2.2.3 and 2.2.4 dealing with instance selection (SC 4.1-4.3) and
class imbalance (SC 3.1-3.2), respectively. Subsection 2.3 discussed the role of hubs in
metric learning (SC 5.1) and presents the results of the journal paper titled Hubness-aware
Shared-neighbor Distances for High-dimensional k-nearest Neighbor Classification [Tomasev
and Mladenié, 2013].

Chapter 3 deals with the applications of hubness-aware methodologies in practical data
analysis systems. Section 3.1 shows the potential uses of hubness-aware approaches in object
recognition systems from image data (SC R.1). Image Hub Explorer visualization applica-
tion is presented and its use cases are discussed. Oceanographic survey sensor data are
analyzed in Section 3.2 where hub points are used to mark potentially anomalous sensor
signals (SC R.2). The beneficial use of hubness-aware instance weighting is demonstrated
in cross-lingual document retrieval in Section 3.3, where a new way of forming the com-
mon semantic representation is proposed (SC R.3). Finally, Section 3.4 demonstrates how
temporal hubness information can be successfully exploited for re-raking in a bug duplicate
detection system (SC R.4).

Chapter 4 concludes the thesis by looking back at the main scientific contributions and
clearly stating objectives and directions for future work and research on the topic of hubness
in high-dimensional data.
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2 Hwubness-aware Algorithms

The almost ubiquitous presence of hubs and hubness in inherently high-dimensional data
[Radovanovié¢, 2011] impedes the performance of many classical similarity-based data mining
and machine learning methods and therefore outlines a need for novel algorithms, capable
of achieving good results under the burden of the dimensionality curse. These kNN-based
methods will be referred to as being hubness-aware, since their design directly embodies
the robustness with respect to handling difficult hub neighbor points. In this chapter, we
will show several such methods that we have recently developed and applied to different
domains, including clustering, classification and metric learning.

The methods described in this chapter represent the core of this thesis. The experimental
evaluation has shown them to be quite robust and reliable when analyzing high-dimensional
data under the assumption of hubness. They are not domain-specific and can be utilized by
experts in various fields in order to avoid the negative aspects of the dimensionality curse
in k-nearest neighbor methods.

2.1 Hubness-aware Clustering

This Section presents the paper titled The Role of Hubness in Clustering
High-dimensional Data by Nenad Tomasev, Milos Radovanovi¢, Dunja Mladenié¢ and Mir-
jana Ivanovi¢. The paper was first presented at the PAKDD (Pacific Asian Knowledge
Discovery and Data Mining) conference in Shenzhen, China, in April 2011 [Tomasev et al.,
2011e] and was awarded the best research paper runner-up award for its scientific
contributions to the field of clustering and innovative algorithm design. The paper was
later extended by including new experiments and analysis of the observed improvements
and was published in the IEEE Transactions on Knowledge and Data Engineering journal
in 2013 [Tomasev et al., 2013c].

The paper was based on an interpretation of the theoretical results behind the emergence
of hubness [Radovanovi¢ et al., 2010a][Radovanovié¢, 2011] where it was hypothesized that
the points closer to the centers of hyper-spheres that high-dimensional data approximately
lies upon have a greater tendency towards becoming hubs in the k-nearest neighbor topology
of the data. The idea behind the approaches taken in the paper is that hubs can be used to
model the local cluster centers and exploited within a center-based clustering framework.

In order to show the potential of such an approach, hubs were compared to cluster
centroids and medoids and the comparisons were performed mostly from within the widely
used K-means++ clustering framework [Arthur and Vassilvitskii, 2007].

One of the main experimental results of the paper is that hubness was evaluated as a
much better measure of local centrality than density, when it comes to evaluating centrality
in high-dimensional datasets. The correlation between hubness and density decreases with
increasing dimensionality, as the k-nearest neighbor density estimates become more and
more affected by the curse of dimensionality.

The paper proposes several hubness-based clustering approaches and evaluates their
performance over a wide spectrum of high-dimensional clustering tasks. The proposed al-
gorithms are: K-hubs, global hubness-proportional clustering (GHPC) and global hubness-
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proportional K-means (GHPKM). Local and global cluster hubness estimates were compared
and the global estimates were shown to be better in the experimental evaluation.

The evaluation shows that the proposed stochastic hubness-based algorithms clearly
outperform the K-Means++ baseline in almost all testing setups. The improvements in
the clustering quality index were thoroughly analyzed and it was determined that they
stem either from avoiding to prematurely converge to local optima or from increasing the
clustering quality index of hub-points. This is very important, as earlier work has shown
that hubs cluster badly on average, almost as bad as outliers and anti-hubs [Radovanovié,
2011].

The algorithms proposed in the paper have an interesting property that their effective-
ness increases with the inherent dimensionality of the data. They are not appropriate for
clustering in the low-dimensional feature spaces. For them, high dimensionality is not a
curse, but a blessing.

The current versions of the algorithms are not able to properly handle clusters of irregular
shape and will probably need to be extended by including the kernel trick or some other
form of non-linearity. Shared-neighbor clustering approaches are an alternative [Yin et al.,
2005].
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High-Dimensional Data
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Abstract —High-dimensional data arise naturally in many domains, and have regularly presented a great challenge for traditional
data-mining techniques, both in terms of effectiveness and efficiency. Clustering becomes difficult due to the increasing sparsity
of such data, as well as the increasing difficulty in distinguishing distances between data points. In this paper we take a novel
perspective on the problem of clustering high-dimensional data. Instead of attempting to avoid the curse of dimensionality by
observing a lower-dimensional feature subspace, we embrace dimensionality by taking advantage of inherently high-dimensional
phenomena. More specifically, we show that hubness, i.e., the tendency of high-dimensional data to contain points (hubs)
that frequently occur in k-nearest neighbor lists of other points, can be successfully exploited in clustering. We validate our
hypothesis by demonstrating that hubness is a good measure of point centrality within a high-dimensional data cluster, and by
proposing several hubness-based clustering algorithms, showing that major hubs can be used effectively as cluster prototypes
or as guides during the search for centroid-based cluster configurations. Experimental results demonstrate good performance of
our algorithms in multiple settings, particularly in the presence of large quantities of noise. The proposed methods are tailored
mostly for detecting approximately hyperspherical clusters and need to be extended in order to properly handle clusters of

arbitrary shapes.

Index Terms —Clustering, curse of dimensionality, nearest neighbors, hubs.
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1 INTRODUCTION

LUSTERING in general is an unsupervised process
C of grouping elements together, so that elements
assigned to the same cluster are more similar to each
other than to the remaining data points [1]. This
goal is often difficult to achieve in practice. Over the
years, various clustering algorithms have been pro-
posed, which can be roughly divided into four groups:
partitional, hierarchical, density-based, and subspace al-
gorithms. Algorithms from the fourth group search
for clusters in some lower-dimensional projection of
the original data, and have been generally preferred
when dealing with data that is high-dimensional [2],
[3], [4], [5]. The motivation for this preference lies in
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the observation that having more dimensions usually
leads to the so-called curse of dimensionality, where
the performance of many standard machine-learning
algorithms becomes impaired. This is mostly due to
two pervasive effects: the empty space phenomenon
and concentration of distances. The former refers to
the fact that all high-dimensional data sets tend to
be sparse, because the number of points required to
represent any distribution grows exponentially with
the number of dimensions. This leads to bad density
estimates for high-dimensional data, causing difficul-
ties for density-based approaches. The latter is a some-
what counterintuitive property of high-dimensional
data representations, where all distances between data
points tend to become harder to distinguish as dimen-
sionality increases, which can cause problems with
distance-based algorithms [6], [7], [8], [9].

The difficulties in dealing with high-dimensional
data are omnipresent and abundant. However, not all
phenomena which arise are necessarily detrimental to
clustering techniques. We will show in this paper that
hubness, which is the tendency of some data points
in high-dimensional data sets to occur much more
frequently in k-nearest neighbor lists of other points
than the rest of the points from the set, can in fact
be used for clustering. To our knowledge, this has
not been previously attempted. In a limited sense,
hubs in graphs have been used to represent typical
word meanings in [10], which was not used for data
clustering. A similar line of research has identified
essential proteins as hubs in the reverse nearest neigh-
bor topology of protein interaction networks [11]. We
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have focused on exploring the potential value of using
hub points in clustering by designing hubness-aware
clustering algorithms and testing them in a high-
dimensional context. The hubness phenomenon and
its relation to clustering will be further addressed in
Section 3.

There are two main contributions of this paper.
First, in experiments on synthetic data we show
that hubness is a good measure of point centrality
within a high-dimensional data cluster and that major
hubs can be used effectively as cluster prototypes.
In addition, we propose three new clustering algo-
rithms and evaluate their performance in various
high-dimensional clustering tasks. We compared the
algorithms with a baseline state-of-the-art prototype-
based method (K-means++ [12]), as well as kernel-
based and density-based approaches. The evaluation
shows that our algorithms frequently offer improve-
ments in cluster quality and homogeneity. The com-
parison with kernel K-means [13] reveals that kernel-
based extensions of the initial approaches should also
be considered in the future. Our current focus was
mostly on properly selecting cluster prototypes, with
the proposed methods tailored for detecting approxi-
mately hyperspherical clusters.

The rest of the paper is structured as follows. In the
next section we present the related work, Section 3
discusses in general the phenomenon of hubness,
while Section 4 describes the proposed algorithms that
are exploiting hubness for data clustering. Section 5
presents the experiments we performed on both syn-
thetic and real-world data. We expect our observa-
tions and approach to open numerous directions for
further research, many of which are outlined by our
final remarks in Section 6.

2 RELATED WORK

Even though hubness has not been given much atten-
tion in data clustering, hubness information is drawn
from k-nearest-neighbor lists, which have been used
in the past to perform clustering in various ways.
These lists may be used for computing density esti-
mates, by observing the volume of space determined
by the k nearest neighbors. Density-based clustering
methods often rely on this kind of density estima-
tion [14], [15], [16]. The implicit assumption made by
density-based algorithms is that clusters exist as high-
density regions separated from each other by low-
density regions. In high-dimensional spaces this is of-
ten difficult to estimate, due to data being very sparse.
There is also the issue of choosing the proper neigh-
borhood size, since both small and large values of k
can cause problems for density-based approaches [17].

Enforcing k-nearest-neighbor consistency in algo-
rithms such as K-means was also explored [18]. The
most typical usage of k-nearest-neighbor lists, how-
ever, is to construct a k-NN graph [19] and reduce
the problem to that of graph clustering.

Consequences and applications of hubness have
been more thoroughly investigated in other related
fields: classification [20], [21], [22], [23], [24], image
feature representation [25], data reduction [23], [26],
collaborative filtering [27], text retrieval [28], and mu-
sic retrieval [29], [30], [31]. In many of these studies it
was shown that hubs can offer valuable information
that can be used to improve existing methods and
devise new algorithms for the given task.

Finally, the interplay between clustering and hub-
ness was briefly examined in [23], where it was
observed that hubs may not cluster well using con-
ventional prototype-based clustering algorithms, since
they not only tend to be close to points belonging
to the same cluster (i.e., have low intra-cluster dis-
tance) but also tend to be close to points assigned
to other clusters (low inter-cluster distance). Hubs
can therefore be viewed as (opposing) analogues of
outliers, which have high inter- and intra-cluster dis-
tance, suggesting that hubs should also receive special
attention [23]. In this paper we have adopted the
approach of using hubs as cluster prototypes and/or
guiding points during prototype search.

3 THE HUBNESS PHENOMENON

Hubness is an aspect of the curse of dimensionality
pertaining to nearest neighbors which has only re-
cently come to attention, unlike the much discussed
distance concentration phenomenon. Let D C R? be a
set of data points and let Ny (z) denote the number of
k-occurrences of point x € D, i.e., the number of times
x occurs in k-nearest-neighbor lists of other points
from D. As the dimensionality of data increases, the
distribution of k-occurrences becomes considerably
skewed [23]. As a consequence, some data points,
which we will refer to as hubs, are included in many
more k-nearest-neighbor lists than other points. In
the rest of the text we will refer to the number of
k-occurrences of point x € D as its hubness score.
It has been shown that hubness, as a phenomenon,
appears in high-dimensional data as an inherent prop-
erty of high dimensionality, and is not an artefact
of finite samples nor a peculiarity of some specific
data sets [23]. Naturally, the exact degree of hubness
may still vary and is not uniquely determined by
dimensionality.

3.1 The Emergence of Hubs

The concentration of distances enables one to view
unimodal high-dimensional data as lying approxi-
mately on a hypersphere centered at the data distri-
bution mean [23]. However, the variance of distances
to the mean remains non-negligible for any finite
number of dimensions [7], [32], which implies that
some of the points still end up being closer to the data
mean than other points. It is well known that points
closer to the mean tend to be closer (on average) to
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all other points, for any observed dimensionality. In
high-dimensional data, this tendency is amplified [23].
Such points will have a higher probability of being
included in k-nearest neighbor lists of other points in
the data set, which increases their influence, and they
emerge as neighbor-hubs.

It was established that hubs also exist in clus-
tered (multimodal) data, tending to be situated in
the proximity of cluster centers [23]. In addition, the
degree of hubness does not depend on the embedding
dimensionality, but rather on the intrinsic data dimen-
sionality, which is viewed as the minimal number of
variables needed to account for all pairwise distances
in the data [23].

Generally, the hubness phenomenon is relevant to
(intrinsically) high-dimensional data regardless of the
distance or similarity measure employed. Its existence
was verified for Euclidean (l3) and Manhattan (l;)
distances, I, distances with p > 2, fractional distances
(I, with rational p € (0,1)), Bray-Curtis, normalized
Euclidean, and Canberra distances, cosine similarity,
and the dynamic time warping distance for time
series [22], [23], [28]. In this paper, unless otherwise
stated, we will assume the Euclidean distance. The
methods we propose in Section 4, however, depend
mostly on neighborhood relations that are derived
from the distance matrix, and are therefore indepen-
dent of the particular choice of distance measure.

Before continuing, we should clearly define what
constitutes a hub. Similarly to [23], we will say that
hubs are points x having Ny (z) more than two stan-
dard deviations higher than the expected value k (in
other words, significantly above average). However,
in most experiments that follow, we will only concern
ourselves with one major hub in each cluster, i.e. the
point with the highest hubness score.

3.2 Relation of Hubs to Data Clusters

There has been previous work on how well high-
hubness elements cluster, as well as the general im-
pact of hubness on clustering algorithms [23]. A cor-
relation between low-hubness elements (i.e., antihubs
or orphans) and outliers was also observed. A low
hubness score indicates that a point is on average
far from the rest of the points and hence proba-
bly an outlier. In high-dimensional spaces, however,
low-hubness elements are expected to occur by the
very nature of these spaces and data distributions.
These data points will lead to an average increase in
intra-cluster distance. It was also shown for several
clustering algorithms that hubs do not cluster well
compared to the rest of the points. This is due to
the fact that some hubs are actually close to points
in different clusters. Hence, they lead to a decrease in
inter-cluster distance. This has been observed on real
data sets clustered using state-of-the art prototype-
based methods, and was identified as a possible area

for performance improvement [23]. We will revisit this
point in Section 5.4.

It was already mentioned that points closer to
cluster means tend to have higher hubness scores
than other points. A natural question which arises
is: Are hubs medoids? When observing the problem
from the perspective of partitioning clustering ap-
proaches, of which K-means is the most commonly
used representative, a similar question might also be
posed: Are hubs the closest points to data centroids in
clustering iterations? To answer this question, we ran
K-means++ [12] multiple times on several randomly
generated 10000-point Gaussian mixtures for various
fixed numbers of dimensions (2, 5, 10, 20, 30, 50, 100),
observing the high-dimensional case. We measured
in each iteration the distance from current cluster
centroid to the medoid and to the strongest hub, and
scaled by the average intra-cluster distance. This was
measured for every cluster in all the iterations, and
for each iteration the minimal and maximal distance
from any of the centroids to the corresponding hub
and medoid were computed.

Figure 1 gives example plots of how these ratios
evolve through iterations for the case of 10-cluster
data, using neighborhood size 10, with 30 dimen-
sions for the high-dimensional case, and 2 dimensions
to illustrate low-dimensional behavior. The Gaussian
mixtures were generated randomly by drawing the
centers from a [lpound, Upound)® uniform distribution (as
well as covariance matrices, with somewhat tighter
bounds). In the low-dimensional case, hubs in the
clusters are far away from the centroids, even farther
than average points. There is no correlation between
cluster means and frequent neighbors in the low-
dimensional context. This changes with the increase
in dimensionality, as we observe that the minimal
distance from centroid to hub converges to minimal
distance from centroid to medoid. This implies that
some medoids are in fact cluster hubs. Maximal dis-
tances to hubs and medoids, however, do not match.
There exist hubs which are not medoids, and vice
versa. Also, we observe that maximal distance to hubs
drops with iterations, suggesting that as the iterations
progress, centroids are becoming closer and closer
to data hubs. This already hints at a possibility of
developing an iterative approximation procedure.

To complement the above observations and explore
the interaction between hubs, medoids and the classic
notion of density, and illustrate the different rela-
tionships they exhibit in low- and high-dimensional
settings, we performed additional simulations. For a
given number of dimensions (5 or 100), we generated
a random Gaussian distribution centered around zero
and started drawing random points from the distri-
bution one by one, adding them sequentially to a
synthetic data set. As the points were being added,
hubness, densities, distance contrast and all the other
examined quantities and correlations between them
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Fig. 1. Evolution of minimal and maximal distances from cluster centroids to hubs and medoids on synthetic

data for neighborhood size 10, and 10 clusters.

(most of which are shown in Fig. 2 and Fig. 3)
were calculated on the fly for all the neighborhood
sizes within the specified range {1,2,...,20}. The
data sets started with 25 points initially and were
grown to a size of 5000. The entire process was
repeated 20 times, thus in the end we considered 20
synthetic 5-dimensional Gaussian distributions and 20
synthetic 100-dimensional Gaussian distributions. Fig-
ures 2 and 3 display averages taken over all the runs.?
We report results with Euclidean distance, observing
similar trends with Manhattan and [ 5 distances.

Figure 2 illustrates the interaction between norm,
hubness and density (as the measurement, not the
absolute term) in the simulated setting. From the defi-
nition of the setting, the norm of a point can be viewed
as an “oracle” that expresses exactly the position of
the point with respect to the cluster center.> As can be
seen in Fig. 2(a), strong Pearson correlation between
the density measurement and norm indicates that in
low dimensions density pinpoints the location of the
cluster center with great accuracy. In high dimensions,
however, density loses it connection with centrality
(Fig. 2(b)), and is no longer a good indicator of the
main part of the cluster.

Hubness, on the other hand, has some correlation
with the norm in low dimensions (Fig. 2(c)), albeit
weak. It is in the high-dimensional setting of Fig. 2(d)
that hubness begins to show its true potential, as
the correlation becomes much stronger, meaning that
the hubness score of a point represents a very good
indicator of its proximity to the cluster center. In
both charts, a trend of slight weakening of correlation
can be observed as the number of points increases.
Meanwhile, strengthening of correlation can be seen
for an increasing number of neighbors £k, indicating
that larger values of k can be used to adjust to larger
data-set sizes. Quite expectedly, density and hubness
are well correlated in low dimensions, but not in the
high-dimensional setting (Fig. 2(e, f)).

Figure 3 shows the interaction between hubs,
medoids and other points in the simulated setting, ex-
pressed through distances. Based on the ratio between

2. This is the reason why some of the graphs are not smooth.
3. In realistic scenarios, such indicators are not available.

the average distance to the strongest hub and average
distance to the medoid, from Fig. 3(a, b) it can be seen
that in high dimensions the hub is equally informative
about the location of the cluster center as the medoid,
while in low dimensions the hub and medoid are
unrelated. At the same time, generally the hub and the
medoid are in neither case the same point, as depicted
in Fig. 3(c,d) with the distances from hub to medoid
which are always far from 0. This is also indicated in
Fig. 3(e, f) that shows the ratio between hub to medoid
distance and average pairwise distance. In addition,
Fig. 3(f) suggests that in high dimensions the hub and
medoid become relatively closer to each other.

This brings us to the idea that will be explained
in detail in the following section: Why not use hubs
as cluster prototypes? After all, it is expected of points
with high hubness scores to be closer to centers of
clustered subregions of high-dimensional space than
other data points, making them viable candidates for
representative cluster elements. We are not limited to
observing only points with the highest hubness scores,
we can also take advantage of hubness information for
any given point. More generally, in case of irregularly
shaped clusters, hubs are expected to be found near
the centers of compact sub-clusters, which is also
beneficial. In addition, hubness of points is straight-
forward to compute exactly, while the computation
cluster centroids and medoids must involve some iter-
ative inexact procedure intrinsically tied to the process
of cluster construction. The remaining question of
how to assign individual hubs to particular clusters
will be addressed in the following section.

4 HuB-BASED CLUSTERING

If hubness is viewed as a kind of local centrality mea-
sure, it may be possible to use hubness for clustering
in various ways. In order to test this hypothesis, we
opted for an approach that allows observations about
the quality of resulting clustering configurations to be
related directly to the property of hubness, instead of
being a consequence of some other attribute of the
clustering algorithm. Since it is expected of hubs to
be located near the centers of compact sub-clusters
in high-dimensional data, a natural way to test the
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Fig. 4. lllustrative example: The red dashed circle
marks the centroid (C), yellow dotted circle the medoid
(M), and green circles denote two elements of highest
hubness (H1, Hs), for neighborhood size 3.

feasibility of using them to approximate these centers
is to compare the hub-based approach with some
centroid-based technique. For this reason, the con-
sidered algorithms are made to resemble K-means,
by being iterative approaches for defining clusters
around separated high-hubness data elements.

Centroids and medoids in K-means iterations tend
to converge to locations close to high-hubness points,
which implies that using hubs instead of either of
these could actually speed up the convergence of the
algorithms, leading straight to the promising regions
in the data space. To illustrate this point, consider
the simple example shown in Fig. 4, which mimics
in two dimensions what normally happens in multi-
dimensional data, and suggests that not only might
taking hubs as centers in following iterations provide
quicker convergence, but that it also might prove
helpful in finding the best end configuration. Cen-
troids depend on all current cluster elements, while
hubs depend mostly on their neighboring elements
and therefore carry localized centrality information.
We will consider two types of hubness below, namely
global hubness and local hubness. We define local
hubness as a restriction of global hubness on any
given cluster, considered in the context of the current
algorithm iteration. Hence, the local hubness score
represents the number of k-occurrences of a point in
k-NN lists of elements within the same cluster.?

The fact that hubs emerge close to centers of dense
subregions might suggest some sort of a relationship
between hubness and the density estimate at the
observed data point. There are, however, some impor-
tant differences. First of all, hubness does not depend
on scale. Let D; and D, be two separate sets of points.
If the local distance matrices defined on each of them
separately are proportional, we might think of D,
and D, as two copies of the same abstract data model
appearing at different scales. Even though the density
estimate might be significantly different, depending
on the defining volumes which are affected by scale,
there will be a perfect match in hubness scores of the
corresponding points. However, there is a more subtle
difference. Let Dy(x) be the set of points where x is

4. Henceforth, we will use uppercase K to represent the desired
number of clusters and lowercase k for neighborhood size.

among the %k nearest neighbors. Hence, the hubness
score of = is given by Ny(z) = |Di(z)|. For each
x; € Dy(x), whether point « is among the & nearest
neighbors of x; depends on two things: distance(x, x;),
and the density estimate at point x;, not the density
estimate at point . Consequently, a hub might be a
k-neighbor for points where density is high, as well
as for points where density is low. Therefore, there is
no direct correspondence between the magnitude of
hubness and point density. Naturally, since hubs tend
to be close to many points, it would be expected that
density estimates at hub points are not low, but they
may not correspond to the points of highest density in
the data. Also, in order to compute the exact volume
of the neighborhood around a given point, one needs
to have a suitable data representation. For hubness,
one only needs the distance matrix.

Computational complexity of hubness-based algo-
rithms is mostly determined by the cost of computing
hubness scores. Several fast approximate approaches
are available. It was demonstrated [33] that it is pos-
sible to construct an approximate k-NN graph (from
which hubness scores can be read) in ©(ndt) time,
where the user-defined value ¢ > 1 expresses the
desired quality of graph construction. It was reported
that good graph quality may be achieved with small
values of ¢, which we were able to confirm in our ini-
tial experiments. Alternatively, locality-sensitive hash-
ing could also be used [34], as such methods have
become quite popular recently. In other words, we
expect our algorithms to be applicable in big data
scenarios as well.

4.1 Deterministic Approach

A simple way to employ hubs for clustering is to
use them as one would normally use centroids. In
addition, this allows us to make a direct comparison
with the K-means method. The algorithm, referred to
as K-hubs, is given in Algorithm 1.

Algorithm 1 K-hubs

initializeClusterCenters();
Cluster][] clusters = formClusters();
repeat
for all Cluster ¢ € clusters do
DataPoint h = findClusterHub(c);
setClusterCenter(c, h);
end for
clusters = formClusters();
until noReassignments
return clusters

After initial evaluation on synthetic data, it became
clear that even though the algorithm manages to find
good and even best configurations often, it is quite
sensitive to initialization. To increase the probability
of finding the global optimum, we resorted to the
stochastic approach described in the following section.
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However, even though K-hubs exhibited low stability,
it converges to cluster configurations very quickly, in
no more than four iterations on all the data sets used
for testing, most of which contained around 10000
data instances.

4.2 Probabilistic Approach

Even though points with highest hubness scores are
without doubt the prime candidates for cluster cen-
ters, there is no need to disregard the information
about hubness scores of other points in the data.
In the algorithm described below, we implemented
a squared hubness-proportional stochastic scheme
based on the widely used simulated annealing ap-
proach to optimization [35]. The temperature factor
was introduced to the algorithm, so that it may start
as being entirely probabilistic and eventually end by
executing deterministic K-hubs iterations. We will
refer to this algorithm, specified by Algorithm 2, as
hubness-proportional clustering (HPC).

Algorithm 2 HPC

initializeClusterCenters();
Cluster[] clusters = formClusters();
float t = to; {initialize temperature}
repeat
float 6 = getProbFromSchedule(t);
for all Cluster ¢ € clusters do
if randomFloat(0,1) < 6 then
DataPoint h = findClusterHub(c);
setClusterCenter(c, h);
else
for all DataPoint x € ¢ do
setChoosingProbability(x, N7 (x));
end for
normalizeProbabilities();
DataPoint h = chooseHubProbabilistically(c);
setClusterCenter(c, h);
end if
end for
clusters = formClusters();
t = updateTemperature(t);
until noReassignments
return clusters

The reason why hubness-proportional clustering is
feasible in the context of high dimensionality lies
in the skewness of the distribution of k-occurrences.
Namely, there exist many data points having low hub-
ness scores, making them bad candidates for cluster
centers. Such points will have a low probability of
being selected. To further emphasize this, we use the
square of the actual hubness score instead of making
the probabilities directly proportional to Nj(x).

We have chosen to use a rather trivial temperature
schedule in the getProbFromSchedule(t) function. The
number of probabilistic iterations Np,,; is passed as
an argument to the algorithm and the probability
0 = min(1, t/Npyp). Different probabilistic schemes
are possible and might even lead to better results.
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Fig. 5. Estimated quality of clustering for various
durations of probabilistic search in HPC.

The HPC algorithm defines a search through the
data space based on hubness as a kind of a local
centrality estimate. To justify the use of the proposed
stochastic scheme, we executed a series of initial tests
on a synthetic mixture of Gaussians, for dimensional-
ity d = 50, n = 10000 instances, and K = 25 clusters
in the data. Neighborhood size was set to &k = 10
and for each preset number of probabilistic iterations
in the annealing schedule, the clustering was run 50
times, each time re-initializing the seeds. The results
are displayed in Fig. 5. The silhouette index [36] was
used to estimate the clustering quality. Due to the
significant skewness of the squared hubness scores,
adding more probabilistic iterations helps in achiev-
ing better clustering, up to a certain plateau that is
eventually reached. The same shape of the curve also
appears in the case of not taking the last, but the error-
minimizing configuration.

4.3 A Hybrid Approach

The algorithms outlined in Sections 4.1 and 4.2 share
a property that they do not require knowledge of
data/object representation (they work the with dis-
tance matrix only), so all that is required is a dis-
tance/similarity measure defined for each pair of data
objects. However, if the representation is also avail-
able such that it is possible to meaningfully calculate
centroids, there also exists a third alternative: use
point hubness scores to guide the search, but choose
a centroid-based cluster configuration in the end. We
will refer to this algorithm as hubness-proportional K-
means (HPKM). It is nearly identical to HPC, the
only difference being in the deterministic phase of the
iteration, as the configuration cools down during the
annealing procedure: instead of reverting to K-hubs,
the deterministic phase executes K-means updates.
There are, indeed, cases when HPKM might be
preferable to the pure hubness-based approach of K-
hubs and HPC. Even though our initial experiments
(Fig. 3) suggest that the major hubs lie close to local
cluster means in high-dimensional data, there is no
guarantee that this would hold for every cluster in
every possible data set. It is reasonable to expect
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Algorithm 3 HPKM

initializeClusterCenters();
Cluster[] clusters = formClusters();
float t = to; {initialize temperature}
repeat
float 8 = getProbFromSchedule(t);
for all Cluster ¢ € clusters do
if randomFloat(0,1) < 6 then
DataPoint h = findClusterCentroid(c);
setClusterCenter(c, h);
else
for all DataPoint x € ¢ do
setChoosingProbability(x, NZ(x));
end for
normalizeProbabilities();
DataPoint h = chooseHubProbabilistically(c);
setClusterCenter(c, h);
end if
end for
clusters = formClusters();
t = updateTemperature(t);
until noReassignments
return clusters

there to be distributions which lead to such local data
structure where the major hub is not among the most
central points. Also, an ideal cluster configuration
(with minimal error) on a given real-world data set
is sometimes impossible to achieve by using points
as centers, since centers may need to be located in
the empty space between the points.

In fact, we opted for the hybrid approach only after
observing that, despite the encouraging initial results
on synthetic data discussed in Section 5.1, hubness-
based algorithms were not consistently better on real-
world data sets. This is why we tried to take “the
best of both worlds,” by combining the centroid-
based cluster representation with the hubness-guided
search. This way, we are hoping to avoid premature
convergence to a local optimum. We must keep in
mind, however, that it is not as widely applicable as
K-hubs and HPC, since it only makes sense with data
where centroids can actually be defined.

5 EXPERIMENTS AND EVALUATION

We tested our approach on various high-dimensional
synthetic and real-world data sets. We will use
the following abbreviations in the forthcoming
discussion: KM (K-Means), ker-KM (kernel K-
means), GKH (Global K-Hubs), LKH (Local K-
Hubs), GHPC (Global Hubness-Proportional Cluster-
ing) and LHPC (Local Hubness-Proportional Cluster-
ing), HPKM (Hubness-Proportional K-Means), local
and global referring to the type of hubness score that
was used (see Section 4). For all centroid-based algo-
rithms, including KM, we used the D? (K-means++)
initialization procedure [12].°> The neighborhood size

5. Hubness could also be used for cluster initialization, an option
which we have not fully explored yet.

GHPC: Silhouette index

15 20
neighborhood size

Fig. 6. Sensitivity of the quality of GHPC clustering on
neighborhood size (k), measured by silhouette index.

of k = 10 was used by default in our experiments
involving synthetic data and we have experimented
with different neighborhood size in different real-
world tests.

There is no known way of selecting the best k
for finding neighbor sets, the problem being domain-
specific. To check how the choice of k reflects on
hubness-based clustering, we ran a series of tests
on a fixed 50-dimensional 10-distribution Gaussian
mixture for a range of k values, k € {1,2,...,20}.
The results are summarized in Fig. 6. It is clear that,
at least in such simple data, the hubness-based GHPC
algorithm is not overly sensitive on the choice of k.

In the following sections, K-means++ will be used
as the main baseline for comparisons, since it is suit-
able for determining the feasibility of using hubness
to estimate local centrality of points. Additionally,
we will also compare the proposed algorithms to
kernel K-means [13] and one standard density-based
method, GDBScan [37]. Kernel K-means was used
with the non-parametric histogram intersection ker-
nel, as it is believed to be good for image clustering
and most of our real-world data tests were done on
various sorts of image data.

Kernel methods are naturally much more powerful,
since they can handle non-hyperspherical clusters.
Yet, the hubness-based methods could just as easily be
"kernelized,” pretty much the same way it was done
for K-means. This idea requires further tests and is
beyond the scope of this paper.

For evaluation, we used repeated random sub-
sampling, training the models on 70% of the data
and testing them on the remaining 30%. This was
done to reduce the potential impact of overfitting,
even though it is not a major issue in clustering, as
clustering is mostly used for pattern detection and
not prediction. On the other hand, we would like
to be able to use the clustering methods not only
for detecting groups in a given sample, but rather
for detecting the underlying structure of the data
distribution in general.
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5.1 Synthetic Data: Gaussian Mixtures

In the first batch of experiments, we wanted to com-
pare the value of global vs. local hubness scores. These
initial tests were run on synthetic data and do not in-
clude HPKM, as the hybrid approach was introduced
later for tackling problems on real-world data.

For comparing the resulting clustering quality, we
used mainly the silhouette index as an unsupervised
measure of configuration validity, and average cluster
entropy as a supervised measure of clustering ho-
mogeneity. Since most of the generated data sets are
“solvable,” i.e., consist of non-overlapping Gaussian
distributions, we also report the normalized frequency
with which the algorithms were able to find these per-
fect configurations. We ran two lines of experiments,
one using 5 Gaussian generators, the other using 10.
For each of these, we generated data of ten different
high dimensionalities: 10, 20, ..., 100. In each case, 10
different Gaussian mixtures were generated, resulting
in 200 different generic sets, 100 of them containing
5 data clusters, the others containing 10. On each
of the data sets, KM++ and all of the hub-based
algorithms were executed 30 times and the averages
of performance measures were computed.

The generated Gaussian distributions were hyper-
spherical (diagonal covariance matrices, independent
attributes). Distribution means were drawn randomly
from [llT)unwugund}d/ lgund = 720’ubmound = 20 and
the standard deviations were also uniformly taken

o

from [llc)found? ulc)found]d' lbound =2, ugound =5.

Table 1 shows the final summary of all these runs.
(Henceforth, we use boldface to denote measurements
that are significantly better than others, in the sense
of having no overlap of surrounding one-standard
deviation intervals.) Global hubness is definitely to be
preferred, especially in the presence of more clusters,
which further restrict neighbor sets in the case of
local hubness scores. Probabilistic approaches signifi-
cantly outperform the deterministic ones, even though
GKH and LKH also sometimes converge to the best
configurations, but much less frequently. More im-
portantly, the best overall algorithm in these tests
was GHPC, which outperformed KM++ on all basis,
having lower average entropy, a higher silhouette
index, and a much higher frequency of finding the
perfect configuration. This suggests that GHPC is a
good option for clustering high-dimensional Gaussian
mixtures. Regarding the number of dimensions when
the actual improvements begin to show, in our lower-
dimensional test runs, GHPC was better already on 6-
dimensional mixtures. Since we concluded that using
global hubness leads to better results, we only con-
sider GKH and GHPC in the rest of the experiments.

5.2 Clustering and High Noise Levels

Real-world data often contains noisy or erroneous
values due to the nature of the data-collecting process.

It can be assumed that hub-based algorithms will
be more robust with respect to noise, since hubness-
proportional search is driven mostly by the highest-
hubness elements, not the outliers. In the case of
KM++, all instances from the current cluster directly
determine the location of the centroid in the next
iteration. When the noise level is low, some sort of
outlier removal technique may be applied. In setups
involving high levels of noise this may not be the case.

To test this hypothesis, we generated two data

sets of 10000 instances as a mixture of 20 clearly
separated Gaussians, farther away from each other
than in the previously described experiments. The
first data set was 10-dimensional and the sec-
ond 50-dimensional. In both cases, individual dis-
tribution centers were drawn independently from
the uniform [ - wm 14 distribution, I, . =
—150, upt,na = 150. The covariance matrix was also
random-generated, independently for each distribu-
tion. It was diagonal, the individual feature standard
deviations drawn uniformly from [ .. ug .19,
tound = 10,ug.. . = 60. Cluster sizes were imbal-
anced. Without noise, both of these data sets rep-
resented quite easy clustering problems, all of the
algorithms being able to solve them very effectively.
This is, regardless, a more challenging task than we
had previously addressed [38], by virtue of having a
larger number of clusters.

To this data we incrementally added noise, 250
instances at a time, drawn from a uniform distribution
on hypercube [ll?ound’ ugound}d/ ll?ound = —200, ul?ound =
200, containing all the data points. The hypercube
was much larger than the space containing the rest of
the points. In other words, clusters were immersed in
uniform noise. The highest level of noise for which we
tested was the case when there was an equal number
of actual data instances in original clusters and noisy
instances. At every noise level, KM++, GKH, GHPC
and GHPKM were run 50 times each. We used two
different k-values, namely 20 and 50. We have used
somewhat larger neighborhoods in order to try to
smooth out the influence of noisy data on hubness
scores. The silhouette index and average entropy were
computed only on the non-noisy restriction of the
data, i.e., the original Gaussian clusters. This is an
important point, as such measures quantify how well
each algorithm captures the underlying structure of the
data. Indeed, if there is noise in the data, we are not
overly interested in how well the noisy points cluster.
Including them into the cluster quality indices might
be misleading.

A brief summary of total averages is given in
Table 2, with the best Silhouette index value and the
best entropy score in each row given in boldface. The
probabilistic hub-based algorithms show substantial
improvements with higher noise levels, which is a
very useful property. GHPKM is consistently better
than KM++ for all noise levels, especially in terms of
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TABLE 1

Averaged results of algorithm runs on high-dimensional mixtures of Gaussians

LKH GKH LHPC GHPC KM++

Silhouette  0.464+0.03 0.514+0.02 0.61+£0.02 0.61+£0.02 0.56 £ 0.02

K=5  Entropy 0.32£0.04 0174001 0.09+002 0.06+0.01 0.1040.01

Perfect ~ 0.32+0.05 0.39+0.05 0.75+0.07 0.76+0.06 0.544+0.04

Silhouette  0.38+0.02 0.46+0.01 0.524+0.02 0.5740.01 0.52+0.01

K =10 Entropy 0.52+0.07 0224001 0224003 0.0840.01 0.13+0.01

Perfect ~ 0.0540.01 0.0640.02 0.30+£0.05 0.39+0.06 0.11 +0.02

TABLE 2
Estimated cluster quality at various noise levels for synthetic data composed of 20 different clusters
(a) d=10, k=20 (b) d=10, k=50
GKH GHPC KM++  GHPKM | GKH GHPC KM++  GHPKM
Sil. Ent. | Sil. Ent.| Sil. Ent. | Sil. Ent. Sil. Ent. | Sil. Ent. | Sil. Ent. | Sil. Ent.
Noise<10% 029 0.41]0.37 0.18 | 034 022038 0.10 Noise<10% | 0.29 044 | 0.35 0.18 | 0.33 0.23 | 0.39 0.10
Noise 10-20% 0.31 0.44 | 0.38 027 | 036 0.28 | 0.39 0.20 Noise 10-20% | 0.29 0.50 | 0.36 0.25 | 0.36 0.27 | 0.39 0.15
Noise 20-30% 0.31 0.50 | 0.35 0.33 | 0.36 0.38 | 0.39 0.27 Noise 20-30% | 0.30 0.53 | 0.35 0.32 | 0.36 0.35 | 0.38 0.24
Noise 30-40% 0.29 0.52 | 0.36 0.32 | 0.35 0.44 | 0.37 0.36 Noise 30-40% | 0.29 0.59 | 0.35 0.35 | 0.35 0.44 | 0.38 0.32
Noise 40-50% 0.29 0.55 | 0.35 0.38 | 0.33 0.53 | 0.36 0.45 Noise 40-50% | 0.29 0.60 | 0.33 0.39 | 0.33 0.50 | 0.36 0.43
AVG 0.30 0.50 | 0.36 031|034 041037 031 AVG [029 055|035 033]034 039|038 0.29
(c) d=50, k=20 (d) d=50, k=50

| GKH GHPC KM++  GHPKM | GKH GHPC KM++  GHPKM
Sil. Ent.| Sil. Ent. | Sil. Ent. | Sil. Ent. Sil. Ent. | Sil. Ent. | Sil. Ent. | Sil. Ent.
Noise<10% | 0.37 045 0.49 0.12 | 048 0.16 | 0.55 0.03 Noise<10% | 0.37 0.36 | 0.51 0.05 | 0.48 0.18 | 0.55 0.02
Noise 10-20% | 0.38 0.54 | 0.50 0.20 | 0.46 0.30 | 0.55 0.02 Noise 10-20% | 0.40 0.39 | 0.51 0.09 | 0.46 0.33 | 0.56 0.02
Noise 20-30% | 0.37 0.54 | 0.47 0.23 | 0.42 0.44 | 0.55 0.04 Noise 20-30% | 0.36 0.44 | 0.49 0.14 | 0.43 0.42 | 0.55 0.03
Noise 30-40% | 0.36 0.58 | 0.46 0.28 | 0.40 0.54 | 0.53 0.09 Noise 30-40% | 0.36 0.45 | 0.47 0.20 | 042 0.52 | 0.54 0.10
Noise 40-50% | 0.34 0.64 | 0.43 0.40 | 0.38 0.59 | 0.51 0.17 Noise 40-50% | 0.33 0.46 | 0.45 0.25 | 0.41 0.57 | 0.52 0.17
AVG | 036 057|046 027|042 046 |0.53 0.09 AVG | 036 043|048 0.17 | 043 044 | 0.54 0.09

cluster homogeneity. The difference in average cluster
entropy is quite obvious in all cases and is more
pronounced in the 50-dimensional case, where there
is more hubness in the data.

Figure 7 shows the rate of change in algorithm per-
formance under various noise levels. We see that the
achieved improvement is indeed stable and consis-
tent, especially in the high-dimensional case. The dif-
ference increases with increasing noise, which means
that HPC and HPKM are not only less affected by the
curse of dimensionality, but also more robust to the
presence of noise in the data.

5.3 Experiments on Real-World Data

Real-world data is usually much more complex and
difficult to cluster, therefore such tests are of a higher
practical significance. As not all data exhibits hub-
ness, we tested the algorithms both on intrinsically
high-dimensional, high-hubness data and intrinsically
low-to-medium dimensional, low-hubness data. There
were two different experimental setups. In the first
setup, a single data set was clustered for many dif-
ferent K-s (number of clusters), to see if there is

any difference when the number of clusters is varied.
In the second setup, 20 different data sets were all
clustered by the number of classes in the data (the
number of different labels).

The clustering quality in these experiments was
measured by two quality indices, the silhouette in-
dex and the isolation index [39], which measures a
percentage of k-neighbor points that are clustered
together.

In the first experimental setup, the two-part Miss-
America data set (cs.joensuu.fi/sipu/datasets/) was
used for evaluation. Each part consists of 6480 in-
stances having 16 dimensions. Results were compared
for various predefined numbers of clusters in algo-
rithm calls. Each algorithm was tested 50 times for
each number of clusters. Neighborhood size was 5.

The results for both parts of the data set are given
in Table 3. GHPC clearly outperformed KM and
other hubness-based methods. This shows that hubs
can serve as good cluster center prototypes. On the
other hand, hyperspherical methods have their limits
and kernel K-means achieved the best overall cluster
quality on this data set. Only one quality estimate is
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Fig. 7. Gradual change in cluster quality measures with rising noise levels. The difference between the algorithm
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performances is much more pronounced in the high-dimensional case.

given for GDBScan, as it automatically determines the
number of clusters on its own.

As mostly low-to-medium hubness data (with the
exception of spambase), we have taken several UCI
data sets (archive.ics.uci.edu/ml/datasets.html). Val-
ues of all the individual features in the data sets were
normalized prior to testing. The data sets were mostly
simple, composed only of a few clusters. The value
of k was set to 20. The results are shown in the first
parts of Tables 4(a) and 4(b).° In the absence of hub-
ness,” purely hubness-based methods do not perform
well. Note, however, that they score comparably to
KM++ on several data sets, and that GHPC did as
well as KM++ on the Iris data set, which is only 4-
dimensional. On the other hand, hubness-guiding the
K-means in HPKM neither helps nor hurts the K-
means base in such cases.

As intrinsically high-dimensional, high-hubness
data, we have taken several subsets of the ImageNet
public repository (www.image-net.org). These data
sets are described in detail in [20], [25]. We examine
two separate cases: Haar wavelet representation and

"

6. Some entries for GDBScan are marked as ”-” and in those cases
the standard parametrization of the algorithm produced a single
connected cluster as a result. Due to space considerations, we show
only averages for the isolation index in Table 4(b).

7. We quantify hubness using the skewness measure, i.e., the
standardized third moment of the distribution of Ny, signified as
SN, . If Sy, = 0 there is no skewness, positive (negative) values
signify skewness to the right (left).

Clustering quality on the Miss-America data set

TABLE 3

(a) Silhouette index

K

2

4

6

8 10

12

14

16

GKH
GHPC
KM++

Part1 GHPKM

0.28
0.38
0.14
0.28

0.14
0.29
0.12
0.18

0.12
0.25
0.09
0.17

0.08
0.21
0.08
0.14 0.13

0.07
0.15
0.07

0.05
0.10
0.07
0.11

0.06
0.10
0.07
0.10

0.05
0.09
0.07
0.08

ker-KM++
GDBScan

0.33

0.36

0.36

0.34 0.35
-0.27

0.22

0.28

0.14

GKH
GHPC
KM++

Part I GHPKM

0.33
0.33
0.18

0.21
0.27
0.12
0.22

0.13
0.22
0.10
0.18

0.08 0.08
0.26 0.18
0.08 0.07
0.14 0.12

0.07
0.19
0.08
0.11

0.06
0.12
0.07

0.06
0.11
0.07

ker-KM++
GDBScan

046

0.30

0.41

0.46 0.29
-0.25

0.28

024

023

(b)

Isolation index

K

4

6

8 10

12

14

16

GKH
GHPC
KM++

Part1 GHPKM

0.83
0.91

0.85

0.58
0.89
0.46
0.54

0.53
0.71
0.34
0.45

0.38 0.27
0.53 0.42
0.23 0.19
0.38 0.29

0.22
0.33

0.26

0.21
0.30
0.13
0.24

0.15
0.26
0.12
0.23

ker-KM++
GDBScan

0.77

0.92

0.93

0.92 0.95
0.12

0.91

0.91

0.80

GKH
GHPC
KM++

Part I GHPKM

0.82

0.62
0.77

0.56

0.35
0.50

0.35

0.28
0.36

0.26 0.21
0.48 0.37
0.20 0.16
0.29 0.26

0.17

0.14
0.24

0.15

0.11
0.22

0.14

0.09
0.19

ker-KM++
GDBScan

0.88

0.78

0.90

0.94 0.91
0.12

0.89

0.90

0.91

11
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TABLE 4
Clustering quality on low to medium-hubness data
sets from the UCI repository and subsets of
high-hubness ImageNet data

(a) Silhouette index

. ker-GDB-
data set size d K Sy, |(GKHGHPCKM++GHPKM KM Scan
wpbc 198 33 2 0.64|0.16 0.16 0.16 0.16 0.17 -
spamb. 4601 57 221.46/0.29 0.38 0.31 0.50 0.13 0.01
arcene 100 1000 2 1.08(0.21 0.22 0.20 023 021 -
ovarian 25315154 2 1.20(0.17 0.17 0.18 0.19 0.13 -
iris 158 4 3 046|048 047 0.49 0.49 0.38 0.62
parkins. 195 22 2 0.39(025 030 037 037 045 -
sonar 208 60 2 1.35(0.11 0.11 0.19 0.15 0.13 -
wine 178 13 3 0.76|0.27 0.33 0.34 0.35 0.12 -
abalone 4177 8 290.92|0.22 0.20 0.26 0.27 0.26 0.05
spectr. 531 100 10 1.20|0.16 0.16 0.23 0.25 0.15 0.12
AVG-UCI |0.23 0.25 0.27 030 0.21 0.20
ds3haar 2731 100 3 2.27|0.62 0.67 0.70 0.70 0.61 0.63
ds4haar 6054 100 4 2.44|0.53 0.59 0.62 0.64 0.52 0.56
dsShaar 6555 100 5 2.43|0.56 0.58 0.65 0.69 0.50 0.51
ds6haar 6010 100 6 2.13|0.49 0.55 0.56 0.58 0.48 0.50
ds7haar10544 100 7 4.60|0.33 0.65 0.63 0.68 0.50 0.58
AVG-Haar | 0.51 0.61 0.63 0.66 0.52 0.55
ds3sift 2731 416 3 15.85/0.08 0.12 0.05 0.05 0.05 0.12
ds4sift 6054 416 4 8.88|0.06 0.06 0.02 0.03 0.02 0.18
dsbsift 6555 416 5 26.08/0.05 0.06 0.01 0.02 0.09 0.11
dsésift 6010 416 6 13.19{0.01 0.02 0.01 0.02 0.11 0.09
ds7sift10544 416 7 9.15(0.04 0.05 0.01 0.03 0.19 0.16
AVG-Sift [0.05 0.06 002 003 0.09 0.13
AVG-Img |0.28 0.34 0.33 0.35 0.31 0.34
AVG-Total | 0.26 0.30 0.30 0.33 0.26 0.27
(b) Isolation index
data sets GKH GHPC KM+ GHPKM k&% DB-
KM Scan
AVG-UCI 048 047 0.44 0.47 0.64 0.55
AVG-Haar 0.64 0.69 0.71 0.73 0.70 0.72
AVG-Sift 0.35  0.38 0.37 0.41 0.79 0.32
AVG-Img 0.50 0.54 0.54 0.57 0.76 0.52
AVG-Total 0.49 0.51 0.49 0.52 0.70 0.54

SIFT codebook + color histogram representation [40],
[41]. This totals to 10 different clustering problems. We
set k to 5. The results are given in the second parts of
Tables 4(a) and 4(b).

We see that the Haar wavelet representation clusters
well, while the SIFT + color histogram one does
not. This is not a general conclusion, but rather a
particular feature of the observed data. GHPKM is
clearly the best amongst the evaluated algorithms in
clustering the Haar representation of the images. This
is encouraging, as it suggests that hubness-guided
clustering may indeed be useful in some real-world
high-dimensional scenarios.

The fact that kernel K-means achieves best isolation
in most data sets suggests that accurate center local-
ization is not in itself enough for ensuring good clus-
tering quality and the possibilities for extending the

basic HPKM and HPC framework to allow for non-
hyperspherical and arbitrarily shaped clusters need to
be considered. There are many ways to use hubs and
hubness in high-dimensional data clustering. We have
only considered the simplest approach here and many
more remain to be explored.

5.4

This section will discuss the reason why hubness-
based clustering can offer better performance when
compared to K-means in terms of intra- and inter-
cluster distance expressed by the silhouette index.
Let us view the a (intra) and b (inter) components
of the silhouette index separately, and compute a,
b and the silhouette index on a given data set for
hubs, outliers and “regular” points.8 Let ny, be the
number of hubs selected. Next, we select as outliers
the n;, points with the lowest k-occurrences. Finally,
we select all remaining points as “regular” points.
Figure 8 illustrates the described break-up of the
silhouette index on the Miss-America data set (we
have detected similar trends with all other data sets
where hubness-based methods offer improvement),
for k = 5 and K = 2. It can be seen that all
clustering methods perform approximately equally
with respect to the a (intra) part, but that the hubness-
based algorithms increase the b (inter) part, which is
the main reason for improving the silhouette index.
The increase of b is visible in all three groups of points,
but is most prominent for hubs. Earlier research [23]
had revealed that hubs often have low b-values, which
causes them to cluster badly and have a negative
impact on the clustering process. It was suggested that
they should be treated almost as outliers. This why
it is encouraging to see that the proposed clustering
methods lead to clustering configurations where hubs
have higher b-values than in the case of K-means.

Interpreting Improvements in Silhouette Index

5.5 Visualizing the Hubness-Guided Search

In order to gain further insight, we have visualized the
hubness-guided search on several low-to-medium-
dimensional data sets. We performed clustering by
the HPC algorithm and recorded the history of all
iteration states (visited hub-points). After the clus-
tering was completed, the data was projected onto a
plane by a standard multi-dimensional scaling (MDS)
procedure. Each point was drawn as a circle of radius
proportional to its relative hubness. Some of the re-
sulting images generated for the well-known Iris data
set are shown in Fig. 9.

8. For the ith point, a; is the average distance to all points in
its cluster (intra-cluster distance), and b; the minimum average
distance to points from other clusters (inter-cluster distance). The
silhouette index of the ith point is then (b; — a;)/ max(a;,b;),
ranging between —1 and 1 (higher values are better). The silhouette
index of a set of points is obtained by averaging the silhouette
indices of the individual points.
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Fig. 8. Break-up od the silhouette index into its con-
stituent parts, viewed separately for hubs, outliers and
regular points on the Miss-America data set.

It can be seen that HPC searches through many
different hub-configurations before settling on the
final one. Also, what seems to be the case, at least in
the majority of generated images, is that the search is
somewhat wider for lower k-values. This observation
is reasonable due to the fact that with an increase in
neighborhood size, more points have hubness greater
than a certain threshold and it is easier to distinguish
between genuine outliers and slightly less central
regular points. Currently, we do not have a universal
robust solution to the problem of choosing a k-value.
This is, on the other hand, an issue with nearly all
ENN-based methods, with no simple, efficient, and
general work-around.

6 CONCLUSIONS AND FUTURE WORK

Using hubness for data clustering has not previously
been attempted. We have shown that using hubs to
approximate local data centers is not only a feasible
option, but also frequently leads to improvement over
the centroid-based approach. The proposed GHPKM
method (Global Hubness-Proportional K-Means) had
proven to be more robust than the K-Means++ base-
line on both synthetic and real-world data, as well as
in the presence of high levels of artificially introduced
noise. This initial evaluation suggests that using hubs
both as cluster prototypes and points guiding the
centroid-based search is a promising new idea in clus-
tering high-dimensional and noisy data. Also, global
hubness estimates are generally to be preferred with
respect to the local ones.

Hub-based algorithms are designed specifically for
high-dimensional data. This is an unusual property,
since the performance of most standard clustering
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Fig. 9. Hubness-guided search for the best cluster
hub-configuration in HPC on Iris data.

algorithms deteriorates with an increase of dimen-
sionality. Hubness, on the other hand, is a property
of intrinsically high-dimensional data, and this is
precisely where GHPKM and GHPC excel, and are
expected to offer improvement by providing higher
inter-cluster distance, i.e., better cluster separation.
The proposed algorithms represent only one pos-
sible approach to using hubness for improving high-
dimensional data clustering. We also intend to explore
other closely related research directions, including
kernel mappings and shared-neighbor clustering. This
would allow us to overcome the major drawback of
the proposed methods — detecting only hyperspherical
clusters, just as K-Means. Additionally, we would like
to explore methods for using hubs to automatically
determine the number of clusters in the data.
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2.2 Hubness-aware Classification

Classification is among the main applications of k-nearest neighbor methods in practice.
As most real-world data of interest for automated analysis and modeling is complex and
high-dimensional, developing robust, hubness-aware classification techniques is of prime in-
terest. The only existing explicitly hubness-aware approach that was in use prior to the
developments proposed in the papers comprising this thesis was the instance weighting
method [Radovanovié et al., 2009] that reduced the voting weights of bad hubs. This simple
idea was shown to be helpful in classification under high hubness of the data. Nevertheless,
its simplicity suggested that more complex and more effective approaches might be possible.
This has lead to the development of several new hubness-aware classification algorithms that
we have proposed and will describe in more detail in this chapter.

We have proposed three novel approaches to hubness-aware k-nearest neighbor classifica-
tion: h-FNN [Tomasev et al., 2011b][Tomasev et al., 2013b], NHBNN [Tomasev et al., 2011¢],
HIKNN [TomaSev and Mladenié¢, 2011c|[Tomasev and Mladeni¢, 2012]. The two of these
approaches, h-FNN and HIKNN are based on fuzzy class hubness kNN occurrence models
and will be presented and analyzed in more detail in Section 2.2.1 and Section 2.2.2, respec-
tively. Here, we will outline the details of the third approach, the Naive Hubness-Bayesian
k-nearest neighbor.

All three proposed hubness-aware approaches share a common theme: learning from
past occurrences. Some form of an occurrence model is built from the occurrences on the
training set and is used in predicting the labels in future queries. The goal is to predict
p(y = c|Dg(x)) for every ¢ € C and to assign a label based on argmax.ccp(y = c|Di(x)). The
observed k-neighbor set Dy(x) can contain a mixture of different types of neighbor points.
As shown in Figure 7, we can observe three types of points with regards to their previous
occurrences.

Hubs are very frequent nearest neighbors, so lots of data is available to learn their
occurrence tendencies from. This allows for better probability estimates for hub points in
the occurrence models. Anti-hubs, on the other hand, pose a problem. If we wish to build
an occurrence model that would account for any possible neighbor point, special care must
be taken when dealing with anti-hubs, as they occur either very rarely as neighbors or, in
some cases, they never occur. Most reasoning in the hubness-aware classification algorithms,
including [Radovanovié et al., 2009] is based on the neighbor k-occurrence profiles, as shown
in Figure 8, where an occurrence profile of a neighbor point is shown. The occurrence
profile for a point x; € D represents an estimate of p(y = c|x; € Dy(x)) for all ¢ € C based
on all x € D. Some occurrence profiles are pure in a sense that x; occurs consistently as
a neighbor to members of one class only. Other profiles are heterogenous as x; acts as a
neighbor to various points from many different classes in the data.

The probability estimates derived from the neighbor occurrence profiles on the training
data are used to form the fuzzy voting schemes in the fuzzy hubness-aware kNN classifiers,
namely h-FNN [Tomasev et al., 2011b][Tomasev et al., 2013b] and HIKNN [Tomasev and
Mladeni¢, 2011c][Tomasev and Mladeni¢, 2012]. The Naive Hubness-Bayesian k-nearest
neighbor classifier (NHBNN) is based on a similar, but slightly different idea. Before we
proceed with the formal outline of the algorithm, we will intuitively explain the idea behind
the approach.

Let x be the query point and let Di(x) denote the set of its k-nearest neighbors. Given
the features of x, the training set D and the metric d(.,.) the k-neighbor set is uniquely
determined, as the process is entirely deterministic. Now imagine that the features and
the metric are unknown to the observer and hidden inside a black box system. All that a
user can observe in that case is the k-neighbor set for each query point and the labels of
the training points. In that case, the k-neighbors of x could be interpreted as k random
variables with a high dependency on the hidden label of the query point and the retrieval of
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Figure 8: An occurrence profile of one neighbor point. The depicted profile shows that the point
in question acts as a bad hub, as it is a neighbor to many points in different classes and therefore
induces label mismatches thereby causing misclassification in the traditional kNN approaches.

the k-neighbor set could be interpreted as a random event (Figure 9). If such an abstraction
is used to model the kNN process, the application of Bayesian techniques becomes possible
and we have decided to use the simplest Naive Bayes [Han, 2005] (NB) method in order to
build a proof-of-concept hubness-aware algorithm based on these assumptions.

o @: @
.x4 .xs

Figure 9: The idea behind the NHBNN approach - observe each neighbor occurrence as a random
event.

It is almost as if the k neighbors of the query point are interpreted as a new set of
its defining features and the kNN query process as feature extraction. This might be an
intuitively easier explanation, though not entirely correct, for the reasons that will become
apparent when examining the equations. Namely, a major problem would arise in case
of orphans from the training data if they were observed in some k-neighbor sets on the
test data. It would be as if observing a new feature value, one that has never appeared
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before. Such a scenario is not unlikely in high-dimensional data. The traditional Naive
Bayes method doesn’t have the mechanisms to deal with this, so it was necessary to design
an appropriate extension.

As mentioned above, the goal is to estimate the p(y = ¢|Di(x)) for each ¢ € C. We
view Di(x) as being the result of k random draws from D where each x; has probability
Pi(xi|Dy(x),x) of being drawn at time ¢, where ¢t € {1,2,...,k}. Since the concepts of ¢-
neighbor and (¢ + 1)-neighbor are quite similar, we disregard the exact position of x; in the
list, which endows us with more occurrence information to work with.

Let x; € X and x;, for r € {1,2,...,k}, be the k nearest neighbors of x;, We focus on a
naive Bayesian estimate which takes the form shown in Eq. 4:

k
p(yi = C|Dk(xl o< p yl =cC H Xir € Dk Xi b)I = C) (4)

The independence assumption that is the basis of the Naive Bayes rule obviously does
not hold in most cases. However, it was shown in the past that this is not necessary for
the naive Bayesian approach to work [Rish, 2001], especially if there is in contrast strong
functional correlation between the attributes. The dependencies tend to cancel each other
out.

The main problem lies in estimating the probabilities on the right-hand side of Eq. 4,
especially for anti-hubs, which will be treated as a special case. Also, each point was included
to its own neighbor set at the Oth position, ensuring that each Ny(x;) > 1.

For clarity, we shorten the notation by denoting p(xi € D (xi)|yi = c) as px, ci(xi), and by
n. the number of elements of class c. Also, let Ni ., (c2) be the total number of k-occurrences
of elements from class ¢; in neighborhoods of elements belonging to c;.

Let (x,y) be an element from the neighborhood of x;. Also, let (xg,vg) € Uy .y,—c Di(x;)-
The derivation of the probability estimate is given in Eq. 5:

px,-,c,k (-xil) (5)
= Pk =yilyi =€) prp(x = x|y = yir)
~ Pc,k<)’g = Yir) Pei(xg = xitb’g = Yir)

Nie(ir) — Nielxi) _ Ny o (xir)
ne- (k+1) ) ST Nie(xj)  ne-(k+1)
Nk,c (xit) + A

ne-(k+1)+A|D| = Prick(Xit)

where A is the Laplace estimator, ensuring non-zero probabilities. When dealing with anti-
hubs, however, the outlined approximation can not be expected to yield reliable probability
estimates. This is why for anti-hubs we partly infer the probability from what is known
about the typical points from the same class and their hubness, as shown in Eq. 6.

P k(-x ) ~ ﬁXi,C,k(xit)a lf Nk(xit) > 9’
i5Cs it) ~ ]
A eatr). M) <0

Uy, e k(Xi) = O+ Pk (Xir) + (1= 0) - Py e ke (Xir)- (6)

We proposed two approaches to defining py, . «(xi;). Both are based on the approximation
given in Eq. 7:

Nk,c(xit) ~ Nk,c (yit)/ny,-, . (7)
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This estimate will be referred to as the global approximative approach. Local information
could also be taken into account by inferring Ni.(yi) from some kesi-neighborhood of x;
instead, as given in Eq. 8. This will be referred to as the local approrimative approach. In
the experiments in [Tomasev et al., 2011¢|, the default value of kegy = 20 was used.

Ny, kost e (vir) _ ZJ"EDkCSt (Xir )y j=ir Nk,C(xj)
nkext \Yit |.X € Dkest (xif) Y= yit|

Nie(xir) = (8)
In the end, we obtain py, .x(xi) from Eq. 6 by plugging either the local or the global
class hubness estimate instead of the original Ny .(x;) into py, ¢ x(xir). In other words:

N, ,C (yit ) +l .
W ) if global,

pxi,c7k(xil> = Nkestvk-,c(yi’)—"_l

Pt (T TAC if local.

Class affiliation of x is determined as y = argmax.p(y = c|Di(x)). In case of an unlikely
tie, the assignment is made based on the prior class probabilities, i.e., by assigning to the
majority class. Several parameters are required for the algorithm to work, but they can also
be inferred from the training set by leave-one-out cross-validation.

The evaluation of NHBNN in [Tomagev et al., 2011c|[N. and D., 2012][TomaSev and
Mladeni¢, 2013] and Sections 2.2.3 and 2.2.4 demonstrates the effectiveness of the proposed
method in various setups for high-dimensional data classification.

The algorithms that we have proposed are by no means the only possibilities for hubness-
aware kNN classifier design and we hope that even better algorithms will be developed in the
future. Also, it should be taken into account that, among the existing kNN classifiers that
have not been designed with hubness in mind, some are more and some are less susceptible
to the dimensionality curse and the hubness phenomenon. A thorough investigation of the
impact of hubs on various kNN classifiers that are currently in use would be advisable. Such
an examination was out of the scope of this thesis.
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2.2.1 Fuzzy Class-Hubness Measures

This Section presents the paper titled Hubness-based fuzzy measures for high-dimensional k-
nearest neighbor classification by Nenad Tomasev, Milo§ Radovanovi¢, Dunja Mladeni¢ and
Mirjana Ivanovié. The paper was originally published at the MLDM (Machine Learning and
Data Mining) conference in New York in 2011 [Tomasev et al., 2011b], where it was awarded
the best paper award, and was further extended to its current form and accepted for
publishing in the International Journal of Machine Learning and Cybernetics in November
2012 [Tomasev et al., 2013b].

The paper proposes a novel set of hubness-aware fuzzy measures to be used within the
fuzzy k-nearest neighbor (FNN) classification framework [Keller et al., 1985], specifically
tailored for high-dimensional data under the assumption of hubness.

The proposed fuzzy measures are based on the neighbor k-occurrence profiles observed
on the training data. They are used as fuzzy votes during label assignment and reflect
the uncertainty inherent in heterogenous hub neighbor occurrences. In a sense, the fuzzy
measures obtained from the reverse nearest neighbors are conceptually similar to those
obtained from the direct k-neighbor sets that have been previously used in FNN. However,
the skewed neighbor occurrence distribution assures that the fuzzy probability estimates
obtained via the proposed hubness-aware approach are derived from a larger average number
of points, thereby reducing the expected misclassification rate on high-dimensional data.

The proposed hubness-fuzzy k-nearest neighbor algorithm (h-FNN) is the first hubness-
aware classification algorithm based on the class-specific neighbor occurrences from the oc-
currence models. The weighting scheme that was initially proposed in hw-kNN [Radovanovié
et al., 2009] had only taken into account the bad hubness of neighbor points, without de-
composing it into the class specific hubness tendencies.
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Abstract Most data of interest today in data-mining appli- the predicted labels, resulting in improvement over thecri
cations is complex and is usually represented by many difweighted method, as well as the stande¥iN classifier.
ferent features. Such high-dimensional data is by its vary n
ture often quite difficult to handle by conventional machine
learning algorithms. This is considered to be an aspect o_{ Introduction
the well knowncurse of dimensionalityConsequently, high-
dimensional data needs to be processed with care, whigligh_dimensional data is ubiquitous in modern application
is why the design of machine-learning algorithms needs t¢ 5rises naturally when dealing with text, images, audio,
take these factors into account. Furthermore, it was oBServ y5ia streams. medical records. etc. The impact of this high
that some of the arising high-dimensional properties couldjimensionality is manyfold. It is a well known fact that many
in fact be exploited in improving overall algorllthm des'gn-.machine-learning algorithms are plagued by what is usu-
One such.phenomenon, related to nearest-neighbor Iearmggy termed thecurse of dimensionalityThis comprises a
methods, is known dsubnessind refers to the emergence of gt of properties that tend to become more pronounced as
very influential nodes (hubs) ik-nearest neighbor graphs. e gimensionality of data increases. First and foremost is
A crisp weighted voting scheme for tkenearest neighbor  yhe ynavoidable sparsity of data. In high-dimensionalepac
c_Iassmer has recently been proposed which explons_this NQy| data is sparse, meaning that there is not enough data
tion. In this paper we go a step further by embracing thg, make reliable density estimates. Another detrimental in
soft approach, and propose several fuzzy measure&-for ,ence comes from the concentration of distances, as all
nearest neighbor classification, all based on hubnesshwhigyata points tend to become relatively more similar to each
express fuzziness of elements appearingieighborhoods  iher as dimensionality increases. Such a decrease of con-
of other points. Experimental evaluation on real data fromy st makes distinguishing between relevant and irretevan
the UCI repository and the image domain suggests that theoints in queries much more difficult. This phenomenon has
fuzzy approach provides a useful measure of confidence iggan thoroughly explored in the past [Aggarwal et al., 2001;
Francois et al., 2007]. Usually, it only holds for data dnaw

This is an extended version of the papirbness-based fuzzy measures from the same underlying probability distribution. Mixed
for high-dimensional k-nearest neighbor classificafishich was pre-  data is not so severely affected [Houle et al., 2010], but the

sented at the MLDM 2011 conference TomaSev et al. [2011b]. effects are still more pronounced than in the lower-dimen-
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of high dimensionality on distance measures even led som& unions of hyperspheres centered around some distribu-
researchers to question the very notion of a point’s nearetibn means. This positioning renders points closer to th& da
neighbor in high-dimensional  feature spacescenters more likely to be includedkanearest neighbor lists
[Durrant and Kaban, 2009]. of other data points. This tendency increases with dimen-
Regardless of the theoretical considerations above, methionality.
ods based on nearest neighbors remain in very frequent use Hubness was first observed in music retrieval, when some
throughout various data-mining tasks, such as classifitcati songs were observed as being fetched very frequently in the
clustering and information retrieval. This is hardly sispr queries and were determined not to be relevant on average,
ing, given the simplicity of the notion of nearest neighborsi.e. the calculated similarity in the feature spaces faited
the inferences about the current example are based on thapture the semantic similarity perceived by people
most similar previously observed points. It is somewhat dis[Aucouturier, 2006; Aucouturier and Pachet, 2004].
heartening to see that even such simple ideas can be, at c@ven though we mentioned bad hubs as sometimes being
tain times, severely compromised by the dimensionalitycaused by noise and errors in the data, it is not entirely
curse. s0. Many data contain overlapping probability distribngp
therefore bad hubness can arise even in error-free data sets
It is equally dangerous in both cases, so the underlying me-
chanics of hubness will not be given special attention is thi
_paper, as it is a separate topic. What we will do is provide
ﬁolutions to such cases when bad hubness does appear, as it

1.1 The hubness phenomenon

In this paper, we will focus only on one phenomenon of in
terest for nearest-neighbor methods operating in many d ;
mensions. This phenomenon is knowrhadnessThe term can not al-ways be aYO'dEd'

was coined aftehubs very influential points which arise One simple solution to the problem has already recently
in high-dimensional spaces. Their influence is measured K€M Proposed, in form of a weighting scheme for the voting
the frequency with which they occur as neighbors to othel thek-nearest neighbokliN) algorithm [Radovanovic et al.,

points in the data. In a sense, they are very frequently ‘cor?010& Radovanovic et al., 2010]. We will have a closer look
sulted’ during inference. If they are not compromised byat that weighting in Section 2.1, while we outline the moti-

noise and also contain accurate class-affiliation infoionat  Vation for our fuzzy approach.

they exhibit a highly beneficial influence and all is well. If, ~ Our idea is to extend the class-nonspecific ckBN

on the other hand, there were some errors in feature values Weighting scheme described in [Radovanovic et al., 2010a]
the attached labels, such points would exhibit a highlyidetr to class-specific soft voting in the spirit of the fuzepearest
mental influence and are known adad hubs Nneighbor (FNN) algorithm [Keller et al., 1985]. Introdugin
[Radovanovit et al., 2009, 2010a,b]. Of course, real-gorl fuzziness is not only expected to enrich the classification
data is often noisy and not entirely reliable, whether it had?y refining the confidence measures behind each decision
been gathered automatically by sensors or input by humabut also often improves the overall accuracy. This makes it
operators. Both ways of data acquisition are somewhat uWorth considering.

certain. Consequently, bad hubs are not an uncommon oc- Other  than in  classification —and retrieval

currence in practice. [TomaSev and Mladenic, 2012], hubness has also been ad-
There is more to hubness than just a few frequent neigmressed in other data-mining tasks, as for example clulster-
bors. Denote b, (x) the number ok-occurrences of,i.e.,, iNg [TomaSevetal, 201lc], anomaly detection

the number of timex appears irk-nearest neighbor lists [TomaSev and Mladeni¢, 2011], object recognition in
of other points in the data. The entire distributionNg{x) ~ images [Tomasev et al., 2011a] and instance selection (dat
becomes affected and an increasing skewness is usually otgduction) [Buza et al., 2011].

served. What this means is that most points very rarely occur  The fact that hubness is among the most important as-
as neighbors. Therefore, most of the time when we examingects of the dimensionality curse in nearest-neighbor meth
a queriedk-neighbor set, it will contain some of the hub- ods suggests that it certainly needs to be taken into account
points in the data. We will address these issues in morel detaihile designing new approaches. This is why we think that
in Section 3. We should point out that hubness is a consdhe hubness-aware design of the fuzziness measures for data
guence of highintrinsic dimensionality of data (regardless labels ink-nearest neighbor classification might be advan-
of the nominal number of features in the chosen represeriageous and that is precisely what we will explore in this
tation). It is a general property which stems from how thepaper.

geometry of high-dimensional spaces affects the proligbili The rest of the paper is structured as follows. In Sec-
of each point being &-neighbor (i.e., being among the tion 2 we present the related work, focused around two ma-
closest points to some other pointin the data). More specifior points — the hubness-weight&NN algorithm, and the
cally, most data sets (approximately) appear as hyperspher=-NN algorithm. While observing the former, we outline its
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weak points and aim our proposed improvements in thei

direction. The respective hubness-based fuzzy membersh A B
functions are presented in Section 3. We go on to evaluat

the proposed approach in Section 4. Finally, we give our fi-

nal remarks and future research directions in Section 5. % |j

2 Related work Fig. 1 An illustrative bin_ary classi_fication example. The _ins_te:ma:)f
the two classes are depicted as circles and squares. An imd@mates
. a nearest-neighbor relation, so that if it points freqrto x, this means
2.1 Hubness-weightedNN thatx; is a neighbor ofx,. We see that the two focal points, and
B, have the same overall hubnebg{A) = N;(B) = 5. The nature of
Weighted voting in nearest-neighbor classifiers has becontge influence of the two points is, on the other hand, entidéfgrent.
something of a common practice. Weights are usually eiP©IntA seems to be a neighbor only to the points that share its own
. . . . label, so we can be quite confident in its future votes. PBibehaves
ther based on element position in tkaeighbor list or its in quite the opposite way, and we can not be confident in itsréut
distance to the observed data point. Some more robust afutes. This is why the hubness-based weighting schemefisluse
proaches which take into account the correlation between
these factors have also been recently developed [Zuo et a\lli/hen a label mismatch occurs, it can occur in any of the

2008]. The hubness-weighting scheme which was first pro- . L
posed in [Radovanovic et al., 2009] is a bit more flexible, inCl"JISS neighborhoods. Instead of obsentiag) as a sum of

a way that the weight associatedsois w(x, k), meaning good and bad hubness, we could decompose it with respect

o - k . tqindividual classes intbl(x) = ¢ , N ¢(%i), where each
that each point in the training set has a unique associat k(%) o1 Nie (%)

. . L . . ;) is the number ok-occurrenc ki in neighbor-
weight, with which it votes whenever it appears in sckae ke(X) is the number ok-occu \CES OKi In neig

. . . L . hoods of elements of clags andn. is the total number of
neighbor list, regardless of its position in the list.

This weighting is based on the interpretation of how theclasses. Good hubness is just the special case whey,

yi being the label ok; in the data set. Therefore, instead of
hubness phenomenon affekt¢N performance. Aswas men- - . ) .
. . . using the hubness information only to reduce the votes of
tioned before, hubness of an elemgnis the number of its

. . . ., bad hubs, it is possible to take into account the structure of
k-occurrences in neighbor lists of other elements, and is d P

. : Had hubness, which can be used to decompose the crisp vote
noted byNk(x). This can be decomposed into two parts'given byx; into a fuzzy vote relying on alNc(x). There

N(%) = GNe(%) +BNc(xi), whereGN(x;) is the number already exists a framework that can assist in achieving this

of good koccurrences anBN(x;) is the number obad . .
al, referred to as the fuzzy nearest-neighbor classifier.
k-occurrences. Good occurrences are those when the Iab%?

of x; matches the label of the element in whéseeighbor

list x; is observed. Bad occurrences are characterized by 22 Fuzzy nearest neighbor algorithm

mismatch of labels. Elements with high bad hubness are of-

ten found in neighbor lists of elements belonging to othefuzzy sets are based on a notion of inherent ambiguity in the
categories in the data. This means that bad hubs exhibit@ata, meaning that a single element can be viewed as par-
detrimental influence olk-nearest neighbor classification, tially belonging to several different categories at the sam
because their vote often gives misleading information. Fig time [A., 1965]. This ambiguity is often problem-specific
illustrates this point in a simple binary classification sce and the set membership function is then provided by the
nario. The aforementioned weighting scheme reduces thesiomain experts. However, there are also ways of deducing
bad influences directly. Standardized bad hubness is define@me sort of fuzziness automatically from the data. Denote
ashp(xi, k) = (BN¢(Xi) — Usn, )/ OBN,, Wherely, iSthe mean by ug = uc(X) the degree of membership gf in classc.

bad hubness andgy, the standard deviation. The two pa- The following properties must hold in order fog to define
rameters of the bad occurrence distribution are simply estia fuzzy split on the data set:

mated from the training set a&n, = & 3x<p BN«(x) and

Nc

OBN, = \/ﬁ ¥ xen(BNe(Xi) — pen,)2. The weight associated w1
to x; is thenw(x;, k) = e ™K It was shown that this of- &1 o
ten leads to significant improvements in high-dimensional n
settings where hubs naturally appear as an artefact of di- < i;
mensionality. The amount of improvement depends on the
distribution of bad hubness within the data. Uei € [0,2].

What the described approach disregards completely is The second and the third condition might seem equiva-
the structure of bad hubness. In non-binary classificatiorlent, but in fact they are not, due to the strict inequality in

Ugi <N,
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the second condition, which essentially guarantees tltdit eameasure can be fit into the fuzzy nearest-neighbor frame-
class is non-empty. As for the first condition, that all classwork. Contrary to the more usual fuzzy measures, it does
memberships for a given data point should sum up to 1, ihot representinherent fuzziness of an element’s labeinbut

is merely a convenience of scaling anghas been defined stead measures the fuzziness ofagpearancef elements

in such a way in previous work on using fuzzy labelkin in k-neighbor sets, based on the training data. Regardless of
nearest neighbor classification [Keller et al., 1985]. Wi, wi the semantic difference between the two, their form remains
therefore, not argue with this definition, even though it isthe same.

certainly possible to work with fuzzy measures where the  There are, however, some difficulties with using hub-
first condition does not hold. ness as a fuzzy measure. For small valueg,dhere are

Let x be a newly observed data instance for which wemany elements in the data which have zero hubness. This be-
wish to perform classification. Léd(x) = x1,..Xc be itsk  comes even more pronounced in high dimensions due to the
nearest neighbors. The degree of membershipiofeach  mentioned skew of the distribution &foccurrences. Also,
classcis then defined as in non-binary classification problems, we need even more
hubness information in order to be able to properly estimate
zrﬂ U ([[X — ]|~ /(™)) the patrtial membt_ers_hips for all the existing categoriess Th
= , (1)  poses a serious limit on using class hubness for calculating

ZF:l(HX—XiH_(Z/(m_l))) fuzziness. We would be forced to use very highalues,
which could be detrimental in cases when béN classifi-
cation is achieved for smaller neighborhood sizes, asénoft

e case for non-noisy small or medium-sized data sets.

We propose to handle the problems outlined above by
only using hubness of the elements which exhibit hubness
used default value for this parametenis= 2, so that fuzzy greater than some p.redlelfined th.reshold. This iq fact sepa-

rates the data for which it is possible to make reliable fuzzy

votes are weighted by the reciprocal of the distance. - o
. . . .. estimates from those that exhibit hubness too low to be of
There exist many ways for automatically generating suit- .
ny use in such a manner. For the data below the threshold,

able fuzzy measures from the data. This is not only usefl

. . o we propose to use a different fuzzy estimate. We explore
for class membership fuzziness, but also for fuzzifying at-f h h ddi th d fthei
tributes. A range of techniques can be used, including ge-Our such approaches and discuss the pros and cons ot their

. . . use in the rest of this section, as well as analyze the fruit-
netic algorithms, clustering, neural networks, entromd a . T . :
fulness of their application in Section 4 when presentirgy th

others [Cintra et al., 2008]. In the original fuzzy nearest- . . -
[ ] g y results of the experimental evaluation. Rébe the training

ighb ticle [Keller et al., 1985], impl t . i
neighuor article [Kelleret a I, some SImple ways 0set andy the set of corresponding labels. The hybrid fuzzy
achieve this were also proposed, one of which was to ob-

servek nearest neighbors of and count the percentages of measure which we Wi" be c9nsidering in the rest of the pa-
them coming from any particular class. The final measurt;pertakes the following form:
was a linear combination of the element’s label and these
percentages, normalized so as to fall in the desjeed]

Ue(X :{

Uc(X)

where|| - | denotes the Euclidean norm. The paramster

Eq. 1 determines how heavily the distance is weighted whe
calculating contributions from each neighbor. For large va
ues ofm, neighbors are weighted more equally, while low
values ofm favor closer neighbors. The most commonly

N i)+A .
Py = cx) ~ et Ne(x) > 6,

fi(C. %), if Ne(xi) < 6.

range.
Apart from applying the fuzzy approach to specific do-

mains [Cabello et al., 1991; Huang et al., 2007; Shen et al.,
2006; Sim et al., 2005; Yu et al., 2002], most attention has  The termpy(y = c|x;) denotes the conditional probabil-
been given lately to the issues of scalability in terms ofeach ity of elementx being of clasg if elementx appears in its
ing speedup in fuzzy nearest neighbor searctk-neighbor set. For elements which exhibit hubness above a
[Babu and Viswanath, 2009; Zheng et al., 2010], as well asertain threshold, this can be estimated by dividing thescla
improving the weighting scheme [Pham, 2005]. hubness by total hubness. Thdactor is a Laplace estima-

tor, which is used for smoothing to prevent any probability

from being estimated as zero. By observing the formula for
3 Proposed hubness-based fuzzy measures the conditional probability, one can notice that the lagel

of x; is not used at all when casting the votexgf This is
The basis of our motivation was already mentioned in Secindeed a very peculiar property. Even though it is possible
tion 2.1 while discussing the properties of hubness-weigiht to work with fuzziness defined in such a way, we wanted to
kNN. Instead of usinggood andbad hubness, we propose make the fuzziness also dependent on the element’s label, so
to useclass hubnessN(x;) defined uniquely for each ele- we included eacl; in its own neighbor list at the Oth posi-
ment in the training set. It is immediately apparent thas thi tion. For high-hubness elements, this does not make a large
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difference, but by doing so we implicitly express a certain  is a possible alternative. Since we already havekthe

degree of confidence in labgl neighbor lists, it seems natural to take advantage of this
The value offy(c,x;) for low-hubness elements should, when trying to estimate an element’s fuzziness. Here

ideally, represent a kind of estimate of the actual condi- we depart from trying to estimate the actual conditional

tional probability. Since this is not easy to achieve, alter probability and experiment with a more usual approach.
tive nearest-neighbor based fuzzy estimates pose the@sselv  Let {x1...xk} be thek nearest neighbors of and for
as viable alternatives. convenience denoteg also asxjp, since we insert each

It should be noted that representing the neighbor oc- elementinto its neighbor list at the Oth position. Tae
currence fuzziness strictly in form of conditional prodabi cal estimate(LE;) is then given by Eq. 3, wher&y,

ities is not entirely necessary. Fuzzy measures are in gen- is Kronecker’s delta functiongy, = 1 if c=y;; and 0
eral not meant to be interpreted as probabilities. They are otherwise). This way, thé(c,x;) is defined as the pro-
used to model uncertainty and are simply more adequate for portion of examples from classin the vicinity of the
modeling certain types of uncertainty than the probability —observed point, somewhat smooth&d.(In a sense, it
theory [Singpurwalla and J.M., 2004][Wang et al., 2011]. In  is a class density estimate. It is not entirely clear which
the context of neighbor occurrence models, this would imply ~ value ofk would work best in practice, as this depends
that one can more easily extend the fuzzy framework, forin- on the local structure of the data. In our experiments we
stance by assigning different weights to different indiad used a default neighborhood sizekof 10 when calcu-
occurrences. The class specific weighted hubness then be- lating the local estimate.
comesNkc(Xi) = ¥ xx ey (x) Wk(X, Xi) and the total weighted A4 sk
hi Y j—0%y;

occurrence sumi(Xi) = ¥ cen. Nkc(Xi). The weighting can fi(c,x) = —=— =1 (3)
be performed based on the distance between the neighbor ncA +k+1
points, as was recently demonstrated [TomaSev and Mladeni- There is an alternative way to define local fuzziness based
2011], but is not limited to that. Such weighted occurrence  on nearest neighbors and this was in fact one of the meth-
models are genuinely 'fuzzy’, as they no longer try to esti-  ods from the original FNN paper [Keller et al., 1985]. It
mate thep(y = ¢|x). is based on LE but made so as to emphasize the label

We focused on four different ways of dealing with low  of an element, as in the CE method. In fact, it represents
hubness: a crisp estimate method, a global estimate method, a linear combination of the two approaches. We will de-

as well as two different local estimates. note it LE,, as defined in the following equation:
k
— What we refer to as therisp estimatgCE) is the sim- 0.5140.49. 2 21=1%% e i
. . fi(C, %) = NcA+k+1 ’
plest and least flexible way of handling low hubness, K\ A M35 &y,

which is not in itself necessarily bad — to use the ele- 049 5Tt if ¢ 7 Vi.
ment’s own label. In this scenario, low-hubness elements The factor of 0.51 was used for the label information

vote the Same way they WOUId VOtekNN, with no at- S|mp|y to guarantee thdt((yi’xi) > fk(y] 7Xi) fori # J
tached fuzziness. Smoothing is performed by using the  Any othera € (0,1) could have in principle been used
sameA value as before. instead, whereas any®< a < 1 would have ensured

— Global estimat¢GE) is more flexible, butintroducesthe  that the majority of information comes from the label.
risk of adding more fuzziness than necessary. We com-  This makes the LE anti-hub estimate somewhat less
pute the GE of the conditional probability as defined  fuzzy, but that is not necessarily a bad thing, as the pri-
in Eq. 2. The denominator represents the summation of mary goal is to ensure good classification accuracy.

Y (xy)e(xY)ly=y Too1 Nkc(X). This is a sensible approach, ,
but it remains questionable just how much is lost and APart from testing these fuzzy measures separately, we
how much is gained by employing it. Even though it have also mergeq them into a smgle_hybrld hubnes;-based
does give a global conditional probability of elementsfUZ2Y nearest-neighbor algorithm which we present in Al-
from a particular class being included in neighbor setdrithm 1. Given the training data set, we use the leave-one-
of another class, there is no guarantee that locally, in th8Ut Procedure to try classifying each poinirom the train-

observed part of the data set, this estimate holds. ing data by observing the remaining- 1 elements. Such a
classification is attempted for each element and for all the

A+ 3 xyjexy)ly=y Nke(X) ) k values in a given range, as well as different threshold val-
A + ¥ (xy)e (x.v) ly—y Ne(X) @) ues and differenfy(c,x). The configuration leading to the
' ' highest accuracy on the training data is then selected #or us
— If the global estimate fails to capture the proportionson the test set.
contained in the underlying conditional probability for ~ The time complexity of this approach is in fact com-
a specific data instance, using a local fuzziness estimagdetely comparable to the one of hubness-weightstil,

f(c,x) =
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Algorithm 1 Hubness-based Fuzzy Nearest Neighbor: Training 4.1 UCI data sets

int[][] NNs = computeNearestNeighborLisks(n, Kmax);
float[][][] classHubnessAIIK = computeElementToClassiHabs(NNs);

float[J[][] GEAIIK = computeGlobalEstimates(NNs); Hubness-based fuzzy measures that we proposed are of a
float[][] LE 1 = computeLE1(NNSs); H P H H ;

float{]] LE. = computeLE2(NNS). hyt_md nature, since in each case_they comb_lne two d|_fferent
float[][] CE = computeCE(NNs); estimates. In order to see how different estimates might be

float maxAcc = 0; : P
int bestK, bestTheta: applied, we calculated on each data set, for arange of neigh-
for all 6 = Buin; 6 < 6inax; 6++ do borhood sizes, the percentage of data points which have hub-
for all k =Kmin; k < Kmax; k++ do .
float GEAcc, LE1ACE, LE2ACC, CEAGE = 0: ness below/above a given threshold. For two of the used data
forall i = 0;i < trainingData.lengthi++ do sets, the plots of several lower thresholds for hubnessean b
if votebyGE¥;, GEAIIK, ClassHubnessAllK, NNs) =%;.labelthen . . L. .
GEACCH; seen in Fig. 2. Naturally, great variation of behavior can be
end if i i it i
i votebyLELK, LEy, ClassHubnessAllK, NNs) = Jabelther observed gcross different data sets, snjce. it |§ rel-atehb. to t.
LE1Acc+H+ aforementioned skew of the hubness distribution in high di-
end if . .
if votebyL 2K, LE,, ClassHubnessAllK, NNs) =x labelthen mensions. In other words, we expegt for highly skewed Qata
LE2AccH+ sets the ternfy(c,x) to play a more important role than in
end if . :
if votebyCEf;, CE, ClassHubnessAlIK, NNs) =s.labelthen the case.of low to medium-skewed data with respect to .hub-
dC-fEACCH; ness. It is precisely for these data sets that the mentioned
endal . .
end for estimates of actual hubness may become as important as
dufpdateMaxAccAndBestConfiguration(GEAcc, LE1Acc, LE2ACEAccC); hubness itself. From Flg 2, however, the difference become
ena tor . . ope
end for quite clear. For the less skewed data sets, if a good classific
return The best parameter configuration and all the hubness esgmat tion can be achieved for a neighborhood Sizd Qf[lo 20]
)

or above, then there is probably enough hubness information
) ) . ) to allow for its straightforward use as a fuzzy measure. If,
with the bottleneck being the computatiorkafieighbor sets.  op, the other hand, the nature of the data is such that the best
Fast approximate algorithms for calculating ldheighbor ¢ its are obtained for low values, ranging maybe from
sets do exist, one of the most recent being the one presentgq,, 5, the situation is reversed. When dealing with highly
by Chen et al. [Chen et al., 2009]. This approximate algogyewed data, such as in the case of the Dexter data set, in-

rithm _ runs N fluence offy(c, %) is non-negligible even when considering
O(dn*1) time, wherer € (0,1] is a parameter used to set a higherk values.

trade-off between speed and accuracy. This makes hubness-
based algorithms potentially feasible for use on largdesca
data sets. We will present our initial results on the scétgbi
of the proposed approach in Section 4.3.

We tested two versions of the algorithm shown in Al-

gorithm 1. The first version uses the distance-based fuzzé(erved skewness of the distributions Mf and Nyo (S
o . ) . 11

vote weighting descrlbed In Eq. 1, which we C!enotedmh- Sv,o)-! For each data set, the skew of the distributiorkof

FNN. As an alternative we also tested a version of the algo-

ith h dist based weighting i " q ﬁ]ccurrences was calculated for varidugalues, to indicate
rithm where no distance-based weighting 1S periormed, ang, degree of hubness of the data. Euclidean distance was
fuzzy voting is achieved simply by summing all the respec-

) T used in all the experiments.
tive ug for every class. This will be referred to asFNN ) )
in the rest of the text. The parameterfrom Eq. 1 was On the described UCI data sek8IN, hubness-weighted

set to 2 by default, this being the value which is most freXNN: N-FNN and dwh-FNN were tested. In all the algo-
rithm tests, 10 runs of 10-fold cross-validation were per-
quently used. . .
formed. All algorithm parameters were set automatically,
separately on each fold during the training phase, based on
the training set. Neighborhood sizes were tested in thesrang
4 Experimental evaluation k € [1,20 and threshold® € [0,10]. Classification accu-
racies achieved by the classifiers are given in Table 2. The
This section presents the results of experiments that ceenpacorrected resampledtest [Nadeau and Bengio, 2003] was
the standardk-nearest neighbor classifier and the hubnessused to test for statistical significance of differencesdn a
weightedkNN with the two proposed hubness-based fuzzycuracy for each data set. Differences which were found to
approaches h-FNN and dwh-FNN. Section 4.1 deals with
data sets of.vanous dllmen3|ona}llt|es from the established; Skewness, the standardized 3rd moment of a probabilitgigist
UCI  repository, while Section 4.2 focuses 0N o, is 0 if the distribution is symmetrical, while positinegative)
high-dimensional data from the image domain. values indicate skew to the right (left).

The first round of testing was performed on 15 data sets
taken from the UCI data repository. The used data sets are
of various sizes and dimensionalities, and are summanized i
Table 1, with the first six columns denoting data-set name,
size, dimensionalityd), number of classesy), and the ob-
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Fig. 2 Percentage of elements with hubness exceeding a certashthr

old, for neighborhood sizdse {1..20}

Table 1 Summary of UCI datasets

Data set size d ne S\ S\io
colonTumor 62 2000 2 1.04 1.06
dexter 300 20000 2 2.95 3.33
diabetes 768 8 2 0.73 0.15
ecoli 336 7 8 0.62 0.37
glass 214 9 6 0.58 0.23
ionosphere 351 34 2 2.17 1.71
iris 150 4 3 0.46 0.03
isolet-1 1560 617 26 1.30 1.20
mfeat-fourrier 2000 76 10 1.20 0.75
ozone-eighthr 2534 72 2 1.31 0.70
page-blocks 5473 10 5 0.79 0.11
parkinsons 195 22 2 0.39 -0.19
segment 2310 19 7 0.70 0.16
vehicle 846 18 4 0.92 0.44
yeast 1484 8 10 0.78 0.27

Table 2 Classification accuracy &d\NN, hubness-weightekNN (hw-
kNN), h-FNN and dwh-FNN on UCI data sets. The symbdisdenote
statistically significant better/worse performance tham-g=NN

Data set kNN hw-kNN h-FNN dwh-FNN
colonTumor 65.%19.6e 72.5+20.6 74.920.0 74.5-20.0
dexter 60.118.2e 725+ 7.90 68.6+ 8.3 68.5: 8.3
diabetes 765 410 72.0+ 4.6e 742+ 49 742+ 49
ecoli 85.4- 6.0 845 6.4 83.6: 6.4 84.3: 6.3
glass 70.5 9.30 67.6:10.00 65.4- 9.90 63.8:10.0
ionosphere  89F 5.2 87.5: 5.7e¢ 89.9+- 55 90.0t 5.6
iris 96.9+ 4.00 953+ 4.8 954 4.7 94.A4 438
isolet-1 90.0- 2.60 81.3+ 3.4e 81.2+ 3.8 82.3- 3.6
mfeat-fourier 77.5 2.9e 80.3+- 2.6e 81.0+ 2.6 81.9+ 2.6
ozone-eighthr 768 2.5e 93.4+ 1.8 934+ 1.3 93.6t 1.3
page-blocks 935 1.0e 96.0+ 0.8 96.1+ 0.8 96.2- 0.8
parkinsons 82F 7.7¢ 921+ 58 925t 5.2 92.A4 5.2
segment 89.9 1.7e¢ 91.2+ 1.7 90.8: 1.8e 91.2+ 1.8
vehicle 60. & 5.7e 66.6- 5.1 64.4 49 652t 5.6
yeast 59.8- 4.10 52.3+ 4.1 55.1+ 3.8 55.5 3.8
Average 78.29 80.34 80.41 80.57

Table 3 Pairwise comparison of classifiers on UCI data: number of
wins (with the statistically significant ones in parentkgsi

kNN hw-kNN h-FNN dwh-FNN

kNN - 8(8 9(8 9 (8)

hwkNN ~ 7(6)  — 9(4)  10(5)
h-FNN  6(6) 6(2) - 11 (3)
dwh-FNN 6(5) 5(2)  4(1) -

more detailed pairwise classifier comparison, Table 3 shows
the number of wins of classifiers signified by the column
label, over classifiers denoted by the row labels, with Stati
tically significant wins given in parenthesis.

Overallimprovement ovedNN is apparent already from
the shown average scores over all data sets in Table 2, as
well as Table 3. Particular improvements vary and there do
exist data sets for which none can be observed, as well as
some where performance degradation is present. Hubness-
weightedkNN, h-FNN and dwh-FNN exhibit similar im-
provement patterns, which makes sense given that they aim
at exploiting the same phenomenon. Improvement over the
standardkNN classifier signifies that there is a lot of us-
able bad-hubness information in the data. Fuzzy approaches
appear to offer additional improvement over kiNN, jus-
tifying our approach and the need to differentiate between
classes when employing bad hubness for nearest-neighbor
classification. The cases where standdll is significantly

be significant withp < 0.01 compared to dwh-FNN are de- petter than hubness-based approaches most probably stem

noted by symbols/e in the table.

from the difficulties of estimatingk(y = ¢|x), which re-

The dwh-FNN classifier was selected as the baseline fajquires more data in the case of non-binary classification, as
statistical comparison in Table 2 since we determined thawell as fi(c,X) occasionally being an inappropriate substi-
it generally outperformed all other classifiers. To provéde tute in cases of low hubness.
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It appears that the distance-based weighting from Eq. 1

does not bring drastic overall improvement to the hubness- 4 B h-FNN best k
based fuzzy membership functions that are used in the h- 12 ¥ dwh-ENN best k
FNN algorithm, at least not for the default value of thpa- 10 -

rameter. This is not all that surprising, though. As wasstat

in previous discussion, the semantics of hubness-based fuz

ness differs slightly from that of more usual fuzzy measures 6
This is due to the fact that class hubness marks the fuzziness 4 -
of the elementary event that poitappears in &-neighbor

set of an element of some specific category. This hubness
is estimated by previous appearances of that elemekat in
neighbor sets of various other elements in the training.data
Among these occurrenceg,may be located at either place
within each observekl—neighbor set. In other words, hub- Fig. 3 Average b_esk values for different hubness-based fuzzy ap-
ness is a measure which is for a fixetidependent of which proaches, according to the results from tests on UCI data
positions ink-neighbor sets an element takes. If these lists

were to undergo a random permutation, the hubness for that

fixed neighborhood size would have remained unchanged.

Let us assume that we wish to determine the label of a
new examplex by using h-FNN. The contribution of those Perform all the computations whéenis smaller. However,
x; closer tox stems not only from previous events when theythe average best accuracies for all the approaches were ba-
were also close to the observed element, but also from préically the same. This suggests that hubness itself ifstill
vious events when they were much farther away. The sam@0st important part of the hybrid fuzziness and that anti-
holds for farther elements in theneighbor set. This is why hubs can be handled in any of the proposed ways, without
a linear combination of class hubness contributions is-suffisignificantly affecting the overall performance, at least i
cient and any additional distance-based weighting seems sfedium hubness data (UCI). We will re-evaluate the differ-
perfluous. On the other hand, due to the fact that we can n§inces between the anti-hub estimates on high-hubness im-
calculate proper class-hubness probabilities for lowrass ~ age data in Section 4.2. As for the threshold parameter, the
elements, this is only partially true. In cases where fuzzidveraged value for which the best accuracy was achieved
ness is estimated for low-hubnessdistance-based weight- Was around B for all approaches. This means that more
ing might bring some improvement by emphasizing morePften than not, class hubness was to be preferred to any
important votes. In practice, mdstneighbor sets will prob-  Of the fi(c,x;) terms, even when based only on 3 ok4
ably contain a mixture of these cases. occurrences.

Initial comparisons between the different hubness-based
fuzzy membership functions proposed in Section 3were also The frequencies of the selected neighborhood size falling
performed. Experiments were rerun without automatic pain one of the four rangedi,5], [6,10], [11,15], [16,20],
rameter selection on the folds, so that the algorithms werare shown in Fig. 4. Two ranges are preferred more often,
trained once for every combination kfe [1,20) and@ €  namelyk € [1,5] andk € [11,15]. By examining all the re-
[0,4], for every proposed fuzzy scheme. We extracted the pasults, we found that in cases of the more tangible accuracy
rameter values from the range where the algorithms achieveéshprovements, largécvalues k > 10) were selected, while
highest accuracy scores, based again on the 10 times 10-fdtaver k values usually signified equal or only slightly bet-
cross-validation procedure, for every data set. Averafj&s o ter performance. This can be seen as natural, since larger
values for which the best results were obtained are shown faralues provide the algorithm with more hubness informa-
every used fuzzy scheme in Fig. 3. For each fuzzy approackipn and hence better probability estimates, on which the
lowerk values were selected on average if no distance-baseded fuzziness was based. However, not all data sets are such
vote weighting was performed. This suggests that if the disthat highk values make sense, since in some it may induce
tance weighting is performed, more neighbors are required larger breach of locality. This is why hubness-based ap-
to convey the same amount of information, due to someroaches are not expected to lead to an improvement over
votes being downgraded. Different measures attain thetr beall data sets. This is their inherent limitation. Of coursés
scores at differenk-values, as suggested by the observedilso depends heavily on the size of a particular data set. Wit
frequencies. In particular, the global hubness-based-fuzzmore data, highek values can be observed more safely. In
ness (GE) finds its maximum at lowk+values than other high-dimensional spaces this is also affected by the cudrse o
measures. It is a useful property, as less time is required wimensionality because the data is always sparse.

GE CE
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Frequency of selected k Table 4 Class structure of the used ImageNet data subsamples

45
40 - Data set Classes
35 - subs-3 sea moss, fire, industrial plant
30 - subs-4 cloud, butterfly orchid, herbaceous plant, bird
subs-5 bird, fire, tracked vehicle, people, compass flower
25 subs-6 fish, industrial plant, wind turbine, compass flower,
20 - butterfly orchid, evergreen plant
15 - subs-7 football, worm, sea star, night club, cloud,
10 orchidaceous plant, mountain range
5 1
0 Table 5 Summary of ImageNet data sets
1-5 6-10 11-15 16-20 Datasel  size  d " S o
. subs-3 2731 416 3 15.85 6.19
Fig. 4 Frequency of the selected bdsvalues, based on the results subs-4 6054 416 4 8.87 6.32
from tests on UCI data subs-5 6555 416 5 2608  11.88
subs-6 6010 416 6 13.19 6.23
subs-7 8524 416 7 5.62 4.60

4.2 ImageNet data

Table 6 Classification accuracy &d\N, hubness-weightekNN (hw-

. kNN), h-FNN and dwh-FNN on ImageNet data setsker [1,10]. The

The ImageNet (_:Iatabasht(tp_: //www . image-net . °org/)  symbole denotes statistically significant worse performance caetba

is a large repository containing over 12 million images or-to dwh-FNN

ganized in more than 17000 synsets (classes). Images are

intrinsically high-dimensional data, and are thereforgequ  Dataset kNN hw-kNN h-FNN  dwh-FNN

suitable for testing hubness-based approaches. Out tsyns subs-3 78.282.38e 81.51:3.34 82.16:2.26 82.34:2.23

from the ImageNet hierarchy we constructed five image datasubs-4  54.682.02e 65.91:1.82 64.8%1.62 64.821.61
; ; o i subs-5 50.882.08e 58.06-3.80e 61.54+1.93 61.8%1.95

sets for testing, with t_he used clas_ses _su_mma_mzed m_TabIe 4subs-6 63081810 70.10:168 6684158 66.04L64

Some of them combine more easily d|st|.ngwshable IMAgeS,shs-7  46.711.63¢ 51.99:4.68¢ 58.85:1.60 59.04-159

assubs-3 while some are made more difficult by contain-

ing several different plant types in different categorasin

subs-6 SIFT features and color histograms were extracted

for each image [Zhang and Zhang, 2009]. A codebook ofable 7 Pairwise comparison of classifiers on ImageNet data: number

. ’ i : f wi ith the statistically significant i
400 most representative SIFT features was obtained by clu§™'"® (with the statistically significant ones in parerdisi

tering from a large sample. Each image was thus represented

Average 54.71 65.51 67.24 67.42

by a 400-dimensional array of codebook frequencies, as well kNN  hw-kNN  h-FNN  dwh-FNN
as a 16-dimensional color histogram. We used the Manhat- kNN - 5(5) 5(5) 5(5)
tan distance on this group of data sets. No feature weighting hw-kNN 0 (0) - 3(2) 3(2)

h-FNN  0(0) 2(0) - 5 (0)

was performed, meaning that color and texture information dwh-ENN 0(0) 2 (0) 0(0) v

was given equal significance. This may not be optimal, but
we were not interested in performing optimal image classi-

fication, since our goal was only to compare the approaches  y,nness-hased algorithms show an obvious improvement
under consideration on high-dimensional data. As in the pre;, o1 subsets over the stand4adN classifier. As the num-
vious section, Table 5 gives an overview of the obtained datgy, ¢ classes increases improvement of h-FNN and dwh-

sets. Note that this data exhibits a much higher skew of the over hubness-weight&bIN becomes more prominent
distribution ofk-occurrences than most UCI data sets fromwhich is consistent with observations on UCI data. ’

Table 1. In Section 4.1 we reported a brief comparison of the pro-
On each of the subsamples we performed 10 times 1(Qposed fuzzy measures on medium-hubness UCI data, which
fold cross-validation. The value ¢fwas chosen automati- revealed that all of them attain similar best accuraciesgh
cally from the rangé € [1,10] on each fold. Average accu- for differentk-values, when averaged over all the datasets.
racies of the classifiers are given in Table 6. Statisticgly  In Fig. 5 we focus on the comparison when varying the val-
nificant differencesf < 0.05) compared to dwh-FNN are ues of the threshol@ parameter. Higheé values increase
denoted by symbols/e. Pairwise classifier comparison is the influence of thefk(c,x) terms, while the lower thresh-
shown in Table 7. old values emphasize the original point class-hubness fre-
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65.5 1 still advisable to look for the best parameter configuration
65 = e automatically during the training phase, as outlined in the
64.5 Yo B algorithm 1.
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One of the most important issues in modern data-mining
tasks is scalability, since we are mostly faced with prolslem
0 involving big data. Algorithms that perform well in terms
of accuracy, but scale poorly, are not really useful in most
practical applications. This is why we decided to test how
the proposed h-FNN and dwh-FNN perform under approx-
quencies, even when derived from very few occurrences. Anate kNN set calculation, which is used to speed up the
comparison is shown on subs-4, one of the high-hubness Infrocedures. We chose the approximaiél graph construc-
ageNet datasets that we have analyzed. tion algorithm described in [Chen et al., 2009], which is a
As in the previous case of medium-hubness data, the bedtvide and conquer method based on recursive Lanczos bi-
accuracies are observed for [@parameter values and the section. As mentioned before, the time complexity of the
best results for all measures are very similar. HowevergmorProcedure is9(dn'*7), wheret € (0,1] reflects the qual-
differences can be observed as éhis slowly increased and ity of the approximation. The main question which arises is:
the fk(c7 Xi) terms get more frequenﬂy used during Voting_for which values oft could we still retain the gOOd perfor-
First of all, one notices that there is a clear difference bemance observed on the actkaIN sets? Fig. 6 shows some
tween the performance of the two local estimates;(afd ~ encouraging results.
LE>) on this particular image dataset. In fact, L &ems to We see that the hubness-based approaches seem to be
be clearly inferior to L&, which is not surprising, given that quite robust to approximate calculation of tkieN sets on
it relies more on the crisp label than LEand the crisp han- the data, at least we could say that is the case for this par-
dling of the anti-hubs (CE) works best on this dataset. ~ ticular employed approximate algorithm [Chen et al., 2009]
The fact that all the measures achieve similar best scordgprovements over the baselikdN remain even for =0,
and that this always takes place for I@walues makes the which essentially means that the total overhead over the ba-
task of Choosing the appropriate measure and the appr§i.C kNN can be reduced to linear time Complexity, which
priate threshold much easier in practice. By setthg: 0 IS excellent. We also see that dwh-FNN remains better than
or 6 = 1 and by using either of the CE, GE or LBsti- hw-kNN in all approximate cases, which implies that the
mate methods, one could hope to achieve very good result€lative strengths and weaknesses of the approaches remain
This is important, as it essentially removes the need for petinchanged under such conditions.
forming cross-validation when doing the search for the best  The exact algorithm (with no approximations) is of the
parameter configuration. It is a very time consuming steggquared time complexity (and memory requirements) which
and removing it helps speed up the algorithm. This may nofakes it applicable to most medium-to-large real world
be very important for small datasets, but most real-world
datasets are quite large and scalability is certainly ingr

615

Fig. 5 A comparison between the fuzzy measures on subs-4.

65 —

Noisy and compromised data, on the other hand, need ¢, - e T
to be handled somewhat more carefully. Most measurement 53 =
errors, noisy points and outliers tend to be anti-hubs,ghou . 62 7 T S
the reverse implication does not necessarily hold. Thiseea § °* ﬁ/, """ S
that unreliable points would tend to have low hubness in g gg : T
most complex, real-world datasets. The negative influence ® 53 —=dwhN
of erroneous points could be reduced by setting a slightly 57 - -=--hw-kNN
higher threshold § > 1) and relying more on the global 56
55

class-to-class hubness estimate (GE) for handling suéh ant
hubs. It ought to be more reliable in noisy data scenarios

than CE olLE; andLE;, as the labels of such potentially in-
19 6 The accuracy of the hubness-based approaches on subs-4 when

correct data points are often wrong and the neighbors mlg}ﬁzhe occurrence model is inferred from the approxink&tdl graph gen-

be quite distant and less relevant for estimating the local 0 erated by [Chen et al., 2009]. We see that there are sigriifiamove-
currence fuzziness. If the data is not prohibitively laigs,  ments even for =0

0 01 02 03 04 05 06 0.7
T
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datasets, though it may have difficulties handlMegylarge 4.4 Probability landscapes

datasets. On the other hand, constructindN&l graph (in

order to calculate the hubness scores) is among those taskéhen estimating the potential benefits of using a particular

that can be easily solved by distributed computing. We arelassification algorithm, accuracy is not the only quantity

also using some initial multi-threaded implementations. A of interest. We would also like the algorithm to be able to

for the single-threaded implementation, the overall perfo provide us with decent confidence measures behind its label

mance of h-FNN and dwh-FNN is essentially the same aassignments, which would provide the experts using the sys-

in hw-kNN, since both algorithms spend most of the train-tem with valuable additional information. Fuzzy approache

ing time on calculating the distance matrix and all NN are, well, more ‘fuzzy’ and ‘soft’ to begin with, so they al-

sets. The additional time required to summarize the clasways do output some sort of a confidence measure alongside

hubness scores and/or make some local or global estimatti® final vote. The question remains: hgaodare these as-

for anti-hubs is negligible when compared to the two mainsociated numbers?

sub-tasks. A complete analysis of the associated probabilities in all
conceivable scenarios would be quite difficult and is cer-
tainly beyond the scope of this paper. We will, however, shed

265 some light on the quality of the employed fuzzy measures by
10000 / analyzing a couple of illustrative examples. We will coresid
// the two-dimensional synthetic data sets shown in Fig. 8. We
o 20 A opted for 2D data so that we can easily visualize the results.
5 20600 Vil — —h-ENN ov For the two data se®S, andD$;, shown in Fig. 8, we
£ 15000 = s h-ENN LE computed the probability landscapes in the following way:
E ;e - we performed a fifth-order Voronoi tessellation in the plane
7 h-FNN CE . - .
P s N (k =5) and then assigned a class probability to every pixel
5000 e T b in each of the obtained cells by each of the considered algo-
L o e e rithms NN, hw-kNN, h-FNN, dwh-FNN).
00 QQ QQ QQ QQ QQ QQ QQ QQ $ .
A ER S P The probability landscapes generatedd&; are shown
data size (num. examples) in Fig. 9. It is immediately apparent theNN produces a

Fig. 7 The execution times of the training phase of kWN, h-FNN fractured Iandscapg, which |nd|c§tes over-fitting. Whenah
employing CE/GE or LE/LE; and h-FNN performing cross-validation &r€¢ many more points and a highevalue can be safely
on the training set to decide on the best fuzzy measure amsneser ~ used, this is less of a problem. Real-world data, however,
set-upk =5 was used in the experimeihIN is omitted, as it requires  are not two-dimensional and are hence always sparse, much
no training. All experiments were performed on a computéhwn i7 more so than in the consider&$, data set. This suggests
Intel processor and 8Gb RAM. . .
that the basi&NN can not be expected to give reasonable
probability estimates in such scenarios. The hubnessdbase
weighting apparently helps, even though there is no hub-
In order to compare the approachesy we have generatedlgss in two dimensions. However, it still reduces the votes
series of synthetic 100-dimensional Gaussian mixtures arff some less reliable borderline points. The hubness-based
we have measured the training time of each of the methfuzzy approaches produce landscapes that are even more
ods separately. According to Fig. 7, h-FNN and kMN ~ smooth, which seems like a nice property for a model of
take almost the same amount of time for the training phaséhe data.
while the most time consuming approach is to use the cross- As for the second, ring-shaped data set, the associated
validation in h-FNN or dwh-FNN in order to try and find the probability landscapes are shown in Fig. 10. Once again we
best fuzzy measure and the best parameter configurdtjon (see that the baskNN classifier over-fits on certain points
M). Fortunately, as we have already discussed in Section 4.2nd fails to detect a common theme. The hubness-based fuzzy
it seems that this is not really necessary in practice artd th&-nearest neighbor classifier (h-FNN) gives the most
it is not so difficult to come up with goodefaultparame- reasonably-looking result and hkNN lies somewhere in
ters which ought to work well on most datasets. All curvesbetween the two.
in Fig. 7 do not intersect and the ordering remains the same The hubness-bas&iIN algorithms discussed in this pa-
as data size is increased: t(h-FNN cv)t(h-FNN LE) >  per are not designed to model the data directly, but are able
t(h-FNN CE)> t(hw-kNN), though the differences between to capture some of the underlying regularities in the data by
the last three are apparently minor. In other words, the imvirtue of building an occurrence model. We have observed
provement that h-FNN and dwh-FNN achieve overkMN  some encouraging results on two-dimensional syntheti dat
is essentiallyfree, from the perspective of time complexity. sets. However, investigating the overall performance @ th
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(a) DS, (b) DS,

Fig. 8 Two 2D synthetic binary datasets. The first one depicts aaftseo overlapping Gaussian-like distributions with densetral regions and
sparse border regions. The second example shows a ringiiléution immersed into a rather uniform backgroundribstion, which could
even be interpreted as noise

general case is not as easy, therefore we can only assumeknowledgements This work was supported by the bilateral project
for now that these observations may generalize to the higmetween Slovenia and Serbia “Correlating images and wénalsanc-

: : . . image analysis through machine learning and semardimtgo-
dimensional case as well. In a sense, it can be con&dered%s,” the Slovenian Research Agency, the Serbian Minitduca-

reasonable assumption, since both of these algorithms haygn and Science through project no. 01174023, “Intelligeshniques
been tailored specifically for high-dimensional data in theand their integration into wide-spectrum decision suppard the ICT
first place and the very fact that they perform very well inProgramme of the EC under PASCALZ (ICT-NoE-216886) and-Plan
the low-dimensional case is an unexpected beneficial proffiPa2 (CT-NOE-257641).

erty of the algorithms.
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(b) hwkNN

() h-FNN (d) dwh-FNN

Fig. 9 The probability landscapes of the analyzed algorithm®8nfor k = 5. The difference between different approaches is quitéooy as
both hwkNN and the fuzzy hubness-based approach produce much snéemidscapes than the bakiN

(b) hwkNN

(c) h-FNN (d) dwh-FNN

Fig. 10 The probability landscapes of the analyzed algorithmB8nfor k=5
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2.2.2 An Information-Theoretic Perspective

In the previously discussed hubness-based fuzzy k-nearest neighbor algorithm (h-FNN)
[Tomasev et al., 2013b], all fuzzy votes are given the same weight. This is not necessarily
the best approach and this observation was exploited for in the development of the hubness
information k-nearest neighbor classifier (HIKNN) [Tomasev and Mladenié, 2011c][Tomasev
and Mladenié, 2012] that is discussed below. This Section presents the results of the paper
titled Nearest Neighbor Voting in High Dimensional Data: Learning from Past Occurrences
that was published in Computer Science and Information Systems journal in 2012 [Tomasev
and Mladenié, 2012].

Some class affiliation information in the point of interest is contained in the labels of its
nearest neighbors and some can be derived from the class-conditional k-occurrence profiles,
as demonstrated in h-FNN [Tomasev et al., 2013b]. The idea behind the HIKNN classifier
is that rarely occurring points hold information that is somewhat more locally relevant for
estimating the class distribution in the point of interest. This is a geometric consequence
of hubs being somewhat closer to distribution centers that exhibit ‘average’ properties. On
the other hand, the k-occurrence profiles can not be reliably estimated for those rarely
occurring points, while good estimates are available for hubs occurrence profiles. This has
lead us to propose a hybrid approach where the trade-off between label information and
occurrence profile information is set based on the self-information surprise factors of the
observed neighbor occurrences. The experimental evaluation shows that this might indeed
be a promising approach.
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Abstract. Hubness is a recently described aspect of the curse of dimen-
sionality inherent to nearest-neighbor methods. This paper describes a
new approach for exploiting the hubness phenomenon in k-nearest neigh-
bor classification. We argue that some of the neighbor occurrences carry
more information than others, by the virtue of being less frequent events.
This observation is related to the hubness phenomenon and we explore
how it affects high-dimensional k-nearest neighbor classification. We pro-
pose a new algorithm, Hubness Information k-Nearest Neighbor (HIKNN),
which introduces the k-occurrence informativeness into the hubness-aware
k-nearest neighbor voting framework. The algorithm successfully over-
comes some of the issues with the previous hubness-aware approaches,
which is shown by performing an extensive evaluation on several types of
high-dimensional data.

1. Introduction

Supervised learning (classification) is one of the most fundamental machine
learning tasks, often encountered in various practical applications. It involves
assigning a label to a new piece of input data, where the label is one out of
several predefined categories. Many algorithmic approaches to performing au-
tomatic classification have been explored in the past. This includes, among oth-
ers, Bayesian learning methods, support vector machines (SVM), decision trees
and nearest neighbor methods [Witten and Frank, 2005].

The k-nearest neighbor algorithm is one of the simplest pattern classification
algorithms. It is based on a notion that instances which are judged to be similar
in the feature space often share common properties in other attributes, one
of them being the instance label itself. The basic algorithm was first proposed
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in [Fix and Hodges, 1951]. The label of a new instance is determined by a
majority vote of its k-nearest neighbors (kNN) from the training set. This simple
rule has some surprising properties which go in its favor. For instance, when
there is no overlap between the classes, 1-nearest neighbor is asymptotically
optimal [T.M.Cover and P.E.Hart, 1967][Devroye, 1981]. As for the kNN rule, it
has been shown to be universally consistent under some strong assumptions,
namely k — oo and k/n — 0 [C.J.Stone, 1977][L. Devroye and Lugosi, 1994].

Let D = (z1,y1), (72,¥2), ..(¥n, yn) be the data set, where each z; € R%. The
x; are feature vectors which reside in some high-dimensional Euclidean space,
and y; € c1, co, ..co are the labels. It can be shown that in the hypothetical case
of an infinite data sample, the probability of a nearest neighbor of z; having label
¢ is asymptotically equal to the posterior class probability in point z;, namely
p(c|z;) = limy, 00 p(¢|NN(z;)). Real-world data is usually very sparse, so the
point probability estimates achieved by kNN in practice are much less reliable.
However, this is merely one aspect of the well known curse of dimensionality.

Concentration of distances [Aggarwal et al., 2001; Francois et al., 2007] is
another phenomenon of interest, since all nearest-neighbor approaches require
a similarity measure. In high-dimensional spaces, it is very difficult to distinguish
between relevant and irrelevant points and the very concept of nearest neigh-
bors becomes much less meaningful.

Hubness is a recently described aspect of the dimensionality curse, related
specifically to nearest neighbor methods [Radovanovic et al., 2009][TomaSev
et al., 2011d]. The term is coined to reflect the emergence of hubs, very fre-
quent nearest neighbors. As such, these points exhibit a substantial influence
on the classification outcome. Two types of hubs can be distinguished: good
hubs and bad hubs, based on the proportion of label matches/mismatches in
their k-occurrences. The phenomenon of hubness will be explained in more de-
tail in Section 2.2, and the previous approaches for exploiting hubness in kNN
classification will be outlined in Section 2.3.

The issue of data dimensionality needs to be emphasized because most real
world data sets are in fact high-dimensional, for example: textual documents,
images, audio files, data streams, medical histories, etc.

1.1. Contributions

This paper aims at further clarifying the consequences of hubness in high di-
mensional kNN classification, by focusing on one specific aspect of the phe-
nomenon - the difference in the information content of the individual
k-occurrences. Here we summarize the main contributions of the paper:

— When there is hubness, some points occur much more frequently in k-
neighbor sets. We claim that some occurrences hence become much less
informative than others, and are consequently of much lower value for the
kNN classification process.

— We propose a new hubness-aware approach to k-nearest neighbor classi-
fication, Hubness Information k-Nearest Neighbor (HIKNN). The algorithm
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exploits the notion of occurrence informativeness, which leads to a more
robust voting scheme.

— We provide a thorough experimental evaluation for the approach, by testing
it both on low-to-medium hubness data and also high-hubness data from
two different domains: images and text. The experiments are discussed in
Section 5, while Section 7 takes a deeper look into the class probabilities
which the algorithm returns.

2. Related work

2.1. kNN classification

The k-nearest neighbor method is among the most influential approaches in
machine learning, due to its simplicity and effectiveness. Many extensions to
the basic method have been proposed, dealing with various different aspects
- including attribute weighting [Han et al., 2001], adaptive distances [Wang et
al., 2007][Song et al., 2007], fuzzy labels [Keller et al., 1985][Jensen and Cor-
nelis, 2008][Shang et al., 2006], evidence-theoretic approaches [Wang et al.,
2008], and many more. Some advanced algorithms have been proposed re-
cently, including the large margin kNN classifier which learns the Mahalanobis
distance matrices via semidefinite programming [Weinberger et al., 2006][Min
et al., 2009].

2.2. Hubs, frequent nearest neighbors

The emergence of hubs as prominent points in k-nearest neighbor methods
had first been noted in analyzing music collections [Aucouturier and Pachet,
2004][Aucouturier, 2006]. The researchers discovered some songs which were
similar to many other songs (i.e. frequent neighbors). The conceptual similarity,
however, did not reflect the expected perceptual similarity.

The phenomenon of hubness was further explored in [Radovanovic et al.,
2009][Radovanovit et al., 2010a], where it was shown that hubness is a natural
property of many inherently high-dimensional data sets. Not only do some very
frequent points emerge, but the entire distribution of k-occurrences exhibits very
high skewness. In other words, most points occur very rarely in k-neighbor sets,
less often than what would otherwise have been expected. We refer to these
rarely occurring points as anti-hubs.[Radovanovic et al., 2010b]

Denote by N (z;) the number of k-occurrences of z; and by Ny .(z;) the
number of such occurrences in neighborhoods of elements from class c. The lat-
ter will also be referred to as the class hubness of instance z;. A k-neighborhood
of x; is denoted by Dy (x;).

The skewness of the N (z) distribution in high dimensional data can some-
times be very severe [Radovanovic et al., 2010a]. Let us illustrate this point by
plotting the Ny (x) distribution for one of the datasets which we used for the ex-
periments, namely the Acquis data. This is shown in Figure 1, for k = 5. Such a
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Fig.1. The hubness distribution of the Acquis data is given for the 5-occurrence proba-
bilities of Ns(z) € {1..20}. We see that the distribution apparently forms a straight line
on the logarithmic scale, so it is in fact exponential.

drastic shift in the distribution shape must certainly be taken into account when
designing NN algorithms for high dimensional data.

Hubness-aware algorithms have recently been proposed for clustering
[Tomasev et al., 2011d], instance selection [Buza et al., 2011], outlier and anomaly
detection [Radovanovic et al., 2010a][TomaSev and Mladenic, 2011] and clas-
sification [Radovanovic et al., 2009][Tomasev et al., 2011b][Tomasev et al.,
2011c][TomasSev et al., 2011a], which we will discuss below.

2.3. Hubness-aware classification

Hubs, as frequent neighbors, can exhibit both good and bad influence on kNN
classification, based on the number of label matches and mismatches in the
respective k-occurrences.The number of good occurrences will be denoted by
G Ni(z;) and the number of bad ones by BN (z;), so that Ny(x;) = GNg(z;) +

All three previously proposed approaches deal with bad hubs in seemingly
similar, but radically different ways. We will refer to these algorithms as hubness-
weighted kNN (hw-kNN) [Radovanovic et al., 2009], hubness fuzzy kNN (h-
FNN) [TomaSev et al., 2011b] and naive hubness Bayesian kNN (NHBNN)
[TomasSev et al., 2011c]. We discuss these ideas below, outlining their respec-
tive strengths and weaknesses.

hw- ENN

— Idea: When a point exhibits bad hubness, give its vote lesser weight. This
has been achieved by calculating the standardized bad hubness as hg(x;) =

BNk(e) —move \where upn, and opy, denote the mean and standard devi-

OBN,
ation of bad hubness, respectively. Each z; is then assigned a voting weight
of w; = 67}13(%).
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— Strengths:
e Reduces the influence of bad hubs
e Very simple and easy to implement
— Weaknesses:
e Each element still votes by its own label, which means that bad hubs
still exhibit some detrimental influence
e Some information is left unexploited, since class hubness is ignored
e Itis equivalent to kNN for k =1

h-FNN

— Idea: Decompose bad hubness into fuzzy class-specific hubness-based
votes as uc(x;) « N.(z;)/Ni(z;). This is only possible for points with
Ni(x;) > 0 and only sensible for points with N (z;) > 6, where 6 is some
predefined threshold parameter. Anti-hubs are thus considered to be spe-
cial cases. Their fuzzy votes are approximated by average class-to-class
fuzzy votes. This algorithm is otherwise based on the fuzzy nearest neigh-
bor (FNN) framework [Keller et al., 1985], with distance weighting included.

— Strengths:

e Generalizes the hw-kNN approach by taking class hubness into account

e Combines fuzzy votes with distance weighting

— Weaknesses:

¢ No clear way of dealing with anti-hubs, approximations need to be used
instead

e Uses a threshold parameter 6 for determining anti-hubs, which is difficult
to set in practice. If learned automatically from the data, it can lead to
over-fitting.

NHBNN

— ldea: Observe each k-occurrence as a random event and use the Naive
Bayes rule to calculate the posterior class affiliation probabilities, as shown
in Equation 1. The z;;, t = {1, 2..k} represent the k nearest neighbors of z;.
As in h-FNN, anti-hubs are a special case and one needs to estimate their
class hubness scores via local or global approximative approaches.

p(yi = ¢|Di(z;)) =
p(yi = &) TTE, p(wis € Di(x)|yi = ) (1)
e Pi = o) [Ii_; p(zis € Di(@:)ly: = c)

— Strengths:
e Generalizes the hw-kNN approach by taking class hubness into account
e Rephrasing the problem in Bayesian terms allows for further improve-
ments and extensions based on the known ways for improving Bayesian
classifiers

ComSIS Vol. 9, June 2012. 5
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— Weaknesses:
e Strong dependencies between occurrences in the same k-neighbor set
greatly restrict the applicability of the approach in larger k-neighborhoods
e Due to these dependencies, class affiliation probabilities tend to be
close to 0 or 1 in many cases.
e Additionally, both weaknesses of h-FNN hold for NHBNN as well

3. The motivation

3.1. Casting a vote: label vs class hubness

Before we delve into the specific ideas behind our proposed approach, the rea-
sons for using the class hubness scores need to be further elucidated. For sim-
plicity, let us begin by focusing on the 1-NN rule. It was already mentioned in the
introduction that p(c|z;) = lim, . p(c|NN(z;)). If the data were not sparse and
if there was no overlap between the classes and no noise, 1-NN would work
really well. Of course, none of these conditions are met in real world data.

So, what happens is that nearest neighbors sometimes have different labels
and this can already be seen on the training set. Observe an illustrative low-
dimensional example displayed in Figure 2.

[ &
[
8 o
@ 0O
A X
@
H []
© ® B
]

Fig. 2. lllustrative example of a binary classification case. The first class is given by the
red circles, the second by the blue squares. A triangle represents an instance yet to be
classified. An arrow is drawn from an instance to its nearest neighbor.

The point z is about to be classified. Let's say that the circles represent
class 0 and squares represent class 1. According to the 1-NN rule, = would be
assigned to class 0, since this is the label of NN(z) = A. But, we also have
NN(B) = A and NN(C) = A, and points B and C are of class 1. If we were

to try approximating p(y = ¢|A € Dy(z)) = ]\]f\}l"(%) for ¢ = 0,1, we would get
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p(y = 0|4 € Dy(z)) = 0 and p(y = 1|4 € D1(z)) = 1. So, according to class
hubness, x should be assigned to class 1, which seems more plausible when
looking at the data.

Two-dimensional data does not exhibit hubness, so Figure 2 can only serve
as a simplified model. A more general case is presented in Figure 3. Two exam-
ples are given, with class hubness scores shown on the right. In both examples,
the label of x is 0 (the red circle).

Fig.3. A more general binary classification case. Class hubness is shown for point x
towards both classes. Two examples are depicted, example 'a’ where there is a big dif-
ference in previous k-occurrences, and example ‘b’ where there is nearly no observable
difference.

In the first example, N1 ¢(z) = 3 and Ny 1(z) = 21, which indicates high
bad hubness. Therefore, if z is a neighbor to the point of interest, it is certainly
beneficial to base the vote on the class hubness scores, instead of its label. It
would reduce the probability of error.

In the second example, N o(z) = 3 and Ny ;(xz) = 4, which makes for a
very small difference in class hubness scores. Even though Ny 1(z) > Ny o(2),
the label of z is 0, so it is not entirely clear how x should vote. What needs to be
evaluated is how much trust should be placed in the neighbor’s label and how
much in the occurrence information. If there had been no previous occurrences
of z on the training data (an anti-hub), there would be no choice but to use the
label. On the other hand, for high hubness points we should probably rely more
on their occurrence tendencies. It is precisely the points in between which need
to be handled more carefully.

Anti-hubs  While discussing the relevance of hubness for kNN classification,
we must keep in mind that most points are in fact anti-hubs, when the inher-
ent dimensionality of the data is high. This is illustrated in Figure 4, where the
percentage of points exceeding certain k-occurrence thresholds is given. The
Dexter data (from the UCI repository) exhibits some hubness, so that even for &
as large as 10, there is still around 15% of instances that never occur as neigh-
bors.

ComSIS Vol. 9, June 2012. 7



Nenad TomaSev and Dunja Mladeni¢

100%

n 9% —
£ 80% e

: 70% - / L - -
S . -~

B 6% / - —

“ 50% |/ . _ -~ Nk(x) >0
o 40% | L / - - - - Nk(x)>1
© o ¢ P

£ 30% Iz Nk(x) > 2
§ 20% 7 — — Nk(x)>3
Q 7

a 10%77 Nk(x) >4

0% o
123456 7 891011121314151617181920

k

Fig. 4. Percentage of elements with hubness over a certain threshold, for k = 1 to k = 20
on Dexter data. Each line corresponds to one threshold.

Both previously proposed class-hubness based approaches (h-FNN and
NHBNN) have failed to provide an easy and consistent way of handling anti-
hubs, which is probably their most pronounced weakness. In Section 4 we pro-
pose a new way of dealing with such low hubness points.

3.2. Informativeness

The basics What is the information content of an observed event? Intuitively,
the more surprised we are about the outcome, the more information the out-
come carries. We're all quite used to the sun coming up every morning and by
observing this over and over again we don’t gain any novel insights. If, however,
the sun fails to appear on the sky someday, such a peculiar event would be
much more informative, though unfortunate.

This is where information theory comes in. The event self-information is
equal to the negative of the logarithm of its probability (i.e. the logarithm of
the inverse of the probability) [MacKay, 2002]. It is often possible to estimate
the event probabilities directly by observing the frequencies in previous occur-
rences, which is what we will be doing with the neighbor points.

Hubs Suppose that there is a data point z; € D which appears in all k-neighbor
sets of other z; € D. Assume then that we are trying to determine a label of
a new data point z and that z; also appears in this neighborhood, Dy (). This
would not be surprising at all, since x; appears in all other previously observed
neighborhoods. Since such an occurrence carries no information, z; should not
be allowed to cast a vote. By going one step further, it is easy to see that less
frequent occurrences may in fact be more informative and that such neighbors
might be more local to the point of interest. This is exploited in our proposed
approach.
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Going back to the always-a-neighbor example, we can see that both the
traditional kNN voting scheme and the fuzzy scheme proposed in the h-FNN
algorithm fail to handle the extreme case properly. The fact is that whichever
point = we observe, z; € Dy (x), so there is no correlation between z; being in
Dy (x) and the class affiliation of z. In case of the original kNN procedure, z;
would vote by its label, y;. If, on the other hand, we were to vote by the class
hubness induced fuzziness as in h-FNN, we would in fact be voting by class
priors. This is, of course, the lesser evil, but it is still the wrong thing to do.
Since there is no information that can be derived from the occurrence of z;, its
vote should be equal to zero.

This scenario does seem quite far-fetched. When reviewing the experimen-
tal results, though, it will become clear that such pathological cases are not only
theoretically possible - they occasionally take place in real world data.

Anti-hubs Most high-dimensional points are anti-hubs and suppose that z; is
one such point that never occurs in k-neighborhoods on D, i.e. Ni(z;) = 0. Let
us say that we are trying to determine the label of a new point = and x; is found
among the neighbors, i.e. z; € Dy(x). Such an occurrence would be highly
informative. We could be fairly certain that the point x; carries some important
local information to the point of interest, since it is not a shared neighbor with
many other points.

Of course, not all points are hubs and anti-hubs, as many points will fall
somewhere between the two extremes. Any approach designed to handle the
informativeness hubs and anti-hubs needs to be applicable to the entire spec-
trum of possible occurrence frequencies, so that these medium-hubness points
are processed in an appropriate way.

It is quite surprising that these simple observations have before gone unno-
ticed. Previous kNN algorithms have not been taking occurrence informative-
ness explicitly into consideration.

This is very significant for high dimensional data, where hubs appear. The
skewness in the Ny (x) distribution induces the skewness in the distribution of
self-information among individual neighbor occurrences. In the following Sec-
tion we will propose an information-based voting procedure which exploits this
fact.

4. The algorithm

Let now z; be the point of interest, to which we wish to assign a label. Let x;;,
t = {1,2..k} be its k nearest neighbors. We calculate the informativeness of
the occurrences according to Equation 2. In all our calculations, we assume
each data point to be its own 0™ nearest neighbor, thereby making all Ny (z;) >
1. Not only does this give us some additional data, but since it makes all k-
occurrence frequencies non-zero, we thereby avoid any pathological cases in
our calculations.
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p(zit € Di(x;)) = W
! @)

We proceed by defining relative and absolute normalized informativeness.
We will also refer to them as surprise values.

I, =log

Iy, — Mg ;e D Iac]-

Il’it
logn

Blai) = 3

As we have been discussing, one of the things we wish to achieve is to com-
bine the class information from neighbor labels and their previous occurrences.
In order to do this, we need to make one more small observation. Namely,
as the number of previous occurrences (N (z;:)) increases, two things hap-
pen simultaneously. First of all, the informativeness of the current occurrence
of x;; drops. Secondly, class hubness gives us a more accurate estimate of
pr(y: = clxi € Di(x;)). Therefore, when the hubness of a point is high, more
information is contained in the class hubness scores. Also, when the hubness
of a point is low, more information is contained in its label.

a(rit) = . )
logn —ming,ep Iy,

Pr(yi = claie € Di(z;)) = %Z:t)) = D,e(Tit)
el A a(zi) + (1 — alwir)) - Proe(Tit),  yir = ¢
Pr(yi = clzit) {(1 ~ a(zw) - Prelai), it % (4)

The « factor controls how much information is contributed to the vote by the
instance label and how much by its previous occurrences. If z;; never appeared
in a k-neighbor set apart from its own, i.e. Ni(z;¢) = 1, then it votes by its label.
If, on the other hand, Ny(z;) = max,,ep Ni(z;), then the vote is cast entirely
according to the class hubness scores.

The fuzzy votes are based on the py(y; = c|zi:), which are approximated
according to Equation 4. These probabilities are then weighted by the absolute
normalized informativeness 3(x;:). This is shown in Equation 5.

k
ue(wi) o< Blaie) - du(wit) - prys = clair) (5)

t=1
Additional distance weighting has been introduced for purposes of later
comparison with the h-FNN algorithm [Tomasev et al., 2011b], since it also em-
ploys distance weighting. It is not an essential part of the algorithm. We opted
for the same distance weighting scheme used in h-FNN, which was in turn first

proposed in FNN [Keller et al., 1985]. It is given in Equation 6.

i — e ]| =2

k _
D= (s = wiel|=2)

duw (it) = (6)
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Equations 2, 3, 4 and 5 represent our proposed solution for exploiting the
information contained in the past k-occurrences on the training data and we
will refer to this new algorithm as Hubness Information k-Nearest Neighbor
(HIKNN). It embodies some major improvements over the previous approaches:

— Unlike h-FNN and NHBNN, it is essentially parameter-free, one only needs
to set the neighborhood size (k).

— Anti-hubs are no longer a special case. They are, however, handled appro-
priately via the information-based framework.

— Label information is combined with information from the previous
k-occurrences, so that both sources of information are exploited for the vot-
ing.

— Total occurrence informativeness is taken into account
The training phase of the algorithm is summarized in (1). The voting is simply

done according to (5) and requires no further explanations.

Algorithm 1 HIKNN: Training

Input: (X,Y k)
training set T = (X,Y) ¢ R%*!
number of neighbors k € {1,2...n — 1}

Train:
kNeighbors = findNeighborSets(T’, k)
forall (z;,y;) € (X,Y) do
forall ¢c=1...Cdo
count Ny, ¢ (x;)
Ni(zi)+ = Ni,c(x:)
end for
calculate a(z;) and 5(x;) by Eq. 3
forall ¢c=1...Cdo
calculate pi(y = c|x;) by Eq. 4
end for
end for

The time complexity of HIKNN, as with all other hubness-based approaches,
is asymptotically the same as constructing a kNN graph. Fast algorithms for
constructing approximate kNN graphs exist, like the algorithm by [Chen et al.,
2009]. This particular procedure runs in ©(dn!'*7) time, where 7 € (0, 1] is a pa-
rameter which is used to set a trade off between speed and graph construction
accuracy.

5. Experiments

We compared our proposed HIKNN algorithm to the existing related algorithms:
kNN, hw-kNN, h-FNN and NHBNN - on 32 classification problems. We had three
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test cases: low-to-medium hubness data of lower intrinsic dimensionality, high-
hubness textual data and high-hubness image data. In all cases, 10-times 10-
fold cross validation was performed. Corrected resampled ¢-test was used to
check for statistical significance. All experiments were performed for &k = 5,
which is a standard choice. Default values described in the respective papers
were used for the parameters in h-FNN and NHBNN. The detailed results are
given in Table 3 and the basic properties of the datasets are discussed in Ta-
ble 2.

5.1. The data

Low and medium hubness data  Datasets from the well known UCI data
repository (http://archive.ics.uci.edu/ml/datasets.html) are usually of low or
medium hubness. Since such datasets are less interesting from the perspec-
tive of hubness-aware algorithms, we present here the results on a sample of 10
UCI datasets. The datasets were picked so that they correctly reflect the results
on the entire repository. The Manhattan distance was used for this data, as well
as for the image data. All features were normalized prior to classification.

Text The Acquis aligned corpus data (http://langtech.jrc.it/JRC-Acquis.html)
represents a set of more than 20000 documents in several different languages.
In the experiments we only used the English documents. The data was prepro-
cessed and represented as a bag-of-words (term frequencies). On top of this
data, 14 different binary classification problems were examined. We used the
cosine similarity.

Images We used several datasets in the experiments which were subsets
taken from the ImageNet online repository (http://www.image-net.org/). These
datasets were selected to match some of the ones used in [TomaSev et al.,
2011a]. All datasets are quantized feature representations. Representations
iNet3-iNet7 are based on SIFT features and were also appended color infor-
mation.

On the other hand, in case of iNet3Err100, iNet3Errl150 and iNet3Err1000 -
Haar wavelet features were used. These three representations have one inter-
esting property. Due to an I/O error during feature extraction, 5 images were ac-
cidentally assigned empty representations (zero vectors). Normally, this would
have probably gone unnoticed. In this case, however, the hubness of zero vec-
tors increased drastically with the representation dimensionality. Since all 5 of
these points were of the minority class, the classification results were affected
greatly and this a prime example of how bad the bad hubness can get in high
dimensional data.

5.2. The results

The results in Table 3 show that the hubness-aware algorithms clearly outper-
form the basic kNN algorithm. Also, HIKNN seems to be the overall best ap-
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Table 1. Pairwise comparison of classifiers: number of wins (with statistically significant
ones in parenthesis)

kNN hw-ENN h-FNN NHBNN HIKNN| Total

kNN - 0() 1(0 108 0(0) | 11(8)
hw-kNN 32 (27) -  14(1) 18(13) 1(0) | 65 (41)
h-FNN 31(27) 17(9) - 25(16) 5(1) | 79 (53)
NHBNN 22 (19) 14(9) 4(1) -  3(1) | 43(30)
HIKNN 32 (31) 29 (14) 27 (9) 27 (20) - |115(74)

proach, with a clear edge on the textual and UCI data, while performing more or
less equal as h-FNN and NHBNN on image datasets. The detailed comparison
between the algorithms is shown in Table 1. By comparing both the total num-
ber of wins and also the number of wins between pairs of algorithms, we see
that HIKNN is to be preferred to the second-best algorithm in the experiments,
h-FNN - since it beats it quite convincingly 27(9) : 5(1) in direct comparison and
115(74) : 79(53) overall.

In further comparisons on the image data, we examined the entire range of
k-values to see how the algorithms are influenced by neighborhood size. The
results on iNet6 are shown in Figure 5. We see that an increase in k sepa-
rates the algorithms and makes distinctions easier. HIKNN achieves the best
results for £ > 5, where the highest accuracies are achieved. It is not surprising
that the accuracy gain over h-FNN increases with k, since the number of large
hubs also increases - and the payoff from taking their informativeness into ac-
count becomes more substantial. Also, we see that NHBNN simply fails to work
when the dependencies between neighbors become too strong, in this case for
k > 15. The accuracy graphs for the other datasets depict the same general
tendencies.

The results for the three iNet3Err representations require special attention.
As mentioned in the data description, 5 points in the dataset ended up being
zero vectors representing the minority class. We see how an increase in the rep-
resentation dimensionality causes an amazing increase in bad hubness, which
in turn completely disables the basic kNN classifier, as well as the hw-k£NN ap-
proach. On this 3-category dataset kNN ends up being worse than zero-rule!
Keep in mind that such a great drop in accuracy was caused by no more than
5 erroneous instances, out of 2731 total. In the end, 80% of the 5-occurrences
were label mismatches. On the other hand, the algorithms based on class hub-
ness: h-FNN, NHBNN and HIKNN - even though affected, retained a much
more decent accuracy: 60% compared to the mere 21% by £NN. These five
points occur in nearly all k-neighborhoods and this dataset shows how some
pathological cases of very bad hubness also occasionally emerge in practical
situations. Even if the erroneous points were not of the minority class, they
would still have caused significant misclassification. Also, note that the major
hub in the 1000-dimensional case appears in 86.5% of all k-neighbor sets. Its
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Table 2. Overview of the datasets. Each dataset is described by its size, dimensional-
ity, the number of categories, skewness of the N5 distribution (Sx;), proportion of bad
5-occurrences BNs, as well as the maximal achieved number of occurrences on the
dataset.

Data set size d C Sns BNs maxNs
dexter 300 20000 2 6.64 30.5% 219
diabetes 768 8 2 019 323% 14
glass 214 9 6 0.26 35.0% 13
ionosphere 351 34 2 206 12.5% 34
isoletl 1560 617 26 1.23 28.7% 30
page-blocks 5473 10 5 031 5.0% 16
segment 2310 19 7 033 53% 15
sonar 208 60 2 128 21.3% 22
vehicle 846 18 4  0.64 36.0% 14
vowel 990 10 11 0.60 9.7% 16
Acquisl 23412 254963 62.97 19.2% 4778
Acquis2 23412 254963 62.97 8.7% 4778
Acquis3 23412 254963 62.97 27.3% 4778
Acquis4 23412 254963 62.97 12.2% 4778
Acquisb 23412 254963 62.97 5.7% 4778
Acquis6 23412 254963 62.97 7.6% 4778
Acquis? 23412 254963 62.97 18.1% 4778
Acquis8 23412 254963 62.97 9.3% 4778
Acquis9 23412 254963 62.97 7.6% 4778
Acquis10 23412 254963 62.97 21.4% 4778
Acquisll 23412 254963 62.97 23.4% 4778
Acquis12 23412 254963 62.97 9.8% 4778
Acquisl13 23412 254963 62.97 16.4% 4778

Acquisl4 23412 254963

iNet3Err100 2731 100
iNet3Err150 2731 150
iNet3Err1000 2731 1000

62.97 6.9% 4778

20.56 10.2% 375
25.1 34.8% 1280
233 79.7% 2363

NO O DR WWWWINNNNNNNNNNNDNDNDN

iNet3 2731 416 8.38 21.0% 213
iNet4 6054 416 7.69 40.3% 204
iNet5 6555 416 14.72  44.6% 469
iNet6 6010 416 8.42 43.4% 275
iNet7 10544 416 7.65 46.2% 268
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Table 3. Overview of the experiments. Classification accuracy is given for kNN, hubness-
weighted kNN (hw-kNN), hubness-based fuzzy nearest neighbor (h-FNN) and hubness
information k-nearest neighbor (HIKNN). All experiments were performed for £ = 5.
The symbols e/o denote statistically significant worse/better performance (p < 0.05)
compared to HIKNN. The best result in each line is in bold.

Data set kNN hw-&ENN h-FNN NHBNN HIKNN

dexter 572 £7.0e 67.7 54 676 49 68.0 £49 680 £53
diabetes 67.8 +3.7¢ 75.6 37 754 +£32 739 £34 758 £36
glass 615 +7.3e 65.8 6.7 672 £7.0 591 +75e 67.9 £6.7
ionosphere 80.8 +4.5e¢ 87.9 36 90.3 +£360 922 £3.20 87.3 +3.8
isoletl 75.2 +25e 825 2.1e 838 +1.8e 83.0 +2.0e 868 £1.5

0.6e 96.0 +£0.6 92.6 +£0.6e 96.2 +0.6
1.3e¢ 88.8 +1.3e¢ 87.8 +1.3e 912 +1.1

page-blocks 95.1 +0.6e 95.8
segment 876 £15e 88.2

sonar 82.7 £55 834 53 820 +£58 811 +56e 853 £55
vehicle 625 +3.8e 65.9 32 649 +3.6e 63.7 35 67.2 £3.6
vowel 87.8 +2.2e 88.2 19e¢ 91.0 £1.8e 88.1 +2.2e 93.6 +1.6

Acquisl 78.7 +1.0e 87.5
Acquis2 92.4 +05e 93.6
Acquis3 72.7 £0.9e 78.7
Acquis4 89.8 +0.6¢ 90.6
Acquisb 97.3 +£0.3e¢ 97.6
Acquis6 93.6 +0.4e 944
Acquis? 829 4+0.8e 86.3
Acquis8 92.3 +0.5e 93.0
Acquis9 93.0 £0.5¢ 94.8
Acquis10 83.1 +t1.6e 88.8
Acquisll 777 +£0.9e 81.8
Acquis12 919 +£0.6e 92.8
Acquis13 85.6 +0.7e¢ 87.5
Acquisl4 942 +£0.4e¢ 94.9

iNet3Errl00 92.4 +0.9e 93.6
iNet3Err150 80.0 +2.0e 88.7
iNet3Err100021.2 +2.0e 27.1

0.8e 88.8 +0.7 884 +£0.7¢ 89.4 +0.6
05 933 +£05 925 £05e 93.7 £0.5
09 795 £09 789 £09 79.6 £0.9
06 905 +06 874 £0.7e¢ 91.0 £0.5
0.3 975 £03 951 +£04e 97.7 £0.3
05 940 £05e 925 £05e 946 +0.5
0.7e¢ 86.1 +0.6e 857 £0.7e¢ 87.0 £0.7
05 931 £05 910 £0.5e 935 +£0.5
0.4 942 +05e 934 +£05e 948 £0.4
0.7e¢ 88.7 £0.6e 87.4 £0.7e¢ 89.7 £0.5
08 824 +06 819 £0.7 825 £0.5
05 926 £05 90.7 £0.6e 928 +£0.5
06 87.1 +0.7e¢ 852 +£0.7e¢ 88.0 +£0.7
04 946 £05 925 £0.5e 950 £0.5

09e 975 +09 975 £09 976 +£0.9
20e 946 £09 946 09 948 +0.9
112 595 £32 596 +£09 59.6 +£3.2

M H H B H H H [ B H B H B B B H B B B || B H H H R R H H

iNet3 72.0 +£2.7e 80.8 23 824 +£22 818 +23 822 +20
iNet4 56.2 +2.0e 63.3 19e 652 +1.7 646 +£19 647 £1.9
iNet5 46.6 £2.0e 56.3 17 619 £1.7 618 +£19 608 +1.9
iNet6 60.1 +2.2¢ 68.1 16e 693 +1.7 694 +£1.7 699 £19
iNet7 43.4 £1.7e 55.1 15 59.2 £15 582 +£15 56.9 +1.6

AVG 76.72 81.13 83.09 81.86 83.60
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Fig.5. Classifier accuracies over a range of neighborhood sizes k£ € 1..20 on iNet6
dataset.

occurrence is, therefore, not very informative - and this further justifies the dis-
cussion presented in Section 3.2.

Bad hubness of the data is closely linked to the error of the kNN classifi-
cation. The Pearson correlation coefficient comparing the kNN error with bad
hubness percentages on the datasets in our experiments gives 0.94, which in-
dicates strong positive correlation between the two quantities. HIKNN bases
its votes on expectations derived from the previous k-occurrences, so it is en-
couraging that the correlation between the accuracy gain over kNN and bad
hubness of the data is also very strong: 0.87 according to the Pearson coeffi-
cient.

6. The approximate implementation

Computing all the k-neighbor sets on the training data in order to build an oc-
currence model could be overly time-consuming in large-scale data collections.
Hubness-aware approaches would be applicable in large-scale scenarios only
if it were possible to retain the previously observed improvements while working
with some sort of approximate kNN sets.

Many approximate kNN algorithms have been proposed in the literature,
either for speeding-up individual queries or constructing an entire kNN graph. It
is the latter that is of interest for building an occurrence model. Many of these
procedures had been proposed specifically for handling high-dimensional data,
which is where hubness-aware classification has been shown to be useful.

In our experiments we focused on one such approach [Chen et al., 2009]. It
is a divide and conquer method based on recursive Lanczos bisection. The time
complexity of the procedure is ©(dn!*7), where 7 € (0, 1] reflects the quality of
the approximation. There are two ways to implement the recursive division and
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Fig.6. The accuracy of the hubness-aware approaches when the occurrence model is
inferred from the approximate kNN graph generated by [Chen et al., 2009]. We see that
there are significant improvements even for 7 = 0.

we have chosen the GLUE method, as it has proven to be significantly faster
than the OVERLAP method, though the quality of the resulting graph is only
slightly inferior in comparison [Chen et al., 2009]. The question that we would
like to answer is: for which values of 7 are we able to retain the improvements
observed on actual kNN sets?

Re-running all the experiments for all 7 values would be beyond the scope of
this paper. We did, however, examine the full spectrum of r-values for the four
datasets previously used in the experiments. We report the results for the iNet4,
iNet5, iNet6 and Acquisl datasets in Figure 6. The original Acquis data had
too many features for our approximate kNN graph implementation to be able to
handle it properly in reasonable time, so we considered a projection onto a 400-
dimensional feature space. The data was projected via canonical correlation
analysis procedure onto a common semantic space obtained by correlating the
English and French aligned versions of documents from the dataset [Hardoon
et al., 2004][Hotelling, 1935]. It is one of the standard dimensionality reduction
techniques used in text mining and its details are beyond the scope of this

paper.
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The results shown in Figure 6 are indeed very encouraging. They suggest
that significant improvements over the kNN baseline are possible even when the
graph is constructed in linear time (w.r.t. number of instances). Moreover, the
quality level of 7 = 0.2 or 7 = 0.3 already seems good enough to capture most of
the original occurrence information, as the resulting accuracies are quite close
to the ones achieved in the original experiments.

The accuracy curves for different algorithms sometimes intersect. This can
be seen for iNet5, iNet6 and Acquisl in Figure 6. In general, the approximate re-
sults correspond rather well to the non-approximate results, but the correlation
between the two can vary depending on the particular choice of 7.

In these initial findings HIKNN appears to be quite robust to the employed
approximate kNN graph construction method for 7 = 0. This is a very nice
property, as it allows for obtaining usable results in reasonable time. If better
approximations are required, = = 0.3 should suffice.

A comparison between the results shown in Figure 6(d) and those previously
summarized in Table 3 reveals that dimensionality reduction may sometimes
significantly affect the classification process and improve the overall classifi-
cation accuracy. Even though hubness is practically unavoidable in most high-
dimensional data mining tasks, its severity does depend on the particular choice
of feature representation and/or similarity measure. It is, therefore, not surpris-
ing that the dimensionality reduction of the Acquis data helped the kNN classi-
fiers by reducing data hubness. The hubness was not entirely eliminated and
this is why all the hubness-aware classification methods still managed to out-
perform the kNN baseline for all the = values.

These initial experiments suggest that hubness-aware methods are applica-
ble even to large datasets, as the scalable, approximate NN graph construc-
tion methods are able to deliver good hubness estimates. More experiments are
needed to reach the final verdict, on different types of high-dimensional data.

7. Estimating class probabilities

Most frequently, in classification, we are simply interested in assigning a label
to a point of interest. What this label suggests is that we are entirely certain that
a point belongs to a given class. However, this is just a special case of a more
general problem. We would in fact like to be able to assign a 'fuzzy’ label to each
object, so that it belongs to several classes at the same time. This 'belonging’
marks our confidence in any particular atomic label choice.

There are cases, however, when the classes overlap. This happens very
frequently in real-world data. There exist points then, in these overlapping re-
gions, that could belong to either of the neighboring categories. In such cases it
is meaningless to assign a simple 'crisp’ label to each point - what we would like
to be able to do is to predict the actual class probability at each point, for every
given class. This probability reflects the relative density of each class probability
distribution at that point.

18 ComSIS Vol. 9, June 2012.
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The HIKNN algorithm was made to be fuzzy and in the following experiments
we wished to determine how well the predicted class probabilities reflect our
intuition about the data. The basic kNN algorithm can also be used for point
class probability estimates and it is a useful baseline for comparison.

In order to check if the predicted values make sense or not, we examined
the algorithm output on synthetic 2D data. The fact that data has only 2 dimen-
sions allows us to draw a probability map, where each pixel is 'classified’ by the
examined algorithms and assigned a probability of belonging to each class. We
have generated several such datasets and here we discuss one of them. The
dataset is simple, representing 2 categories with overlapping border regions.
We have used HIKNN without the distance weighting. The resulting probability
maps can be seen in Figure 7.

We see that the probability map generated by HIKNN looks much more natu-
ral in the overlapping region. The gradient between the classes should be more
or less smooth if the model is able to generalize well. kNN produces a fractured
landscape, essentially over-fitting on the training data. These maps suggest that
the votes based on previous occurrences may offer better estimates of the un-
derlying class probabilities, which we intend to explore more thoroughly in our
future work.

8. Conclusion

In this paper we presented a novel approach for handling high-dimensional data
in k-NN classification, Hubness Information k-Nearest Neighbor (HIKNN). It is a
hubness-aware approach which is based on evaluating the informativeness of
individual neighbor occurrences. Rare neighbors (anti-hubs) are shown to carry
valuable information which can be well exploited for classification.

The algorithm is parameter-free, unlike the previous class-hubness based
hubness-aware classification algorithms. The danger of over-fitting is thereby
greatly reduced.

The algorithm was compared to the three recently proposed hubness-aware
approaches (hw-kNN, h-FNN, NHBNN), as well as the kNN baseline on 32 clas-
sification problems. Our proposed approach had an overall best performance in
the experiments.

Since HIKNN modifies only the voting, it is easily extensible and could be
combined with various sorts of metric learning or dynamic k-neighbor sets. We
intend to explore these directions thoroughly in our future work.
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&

(b) NN probability map

(c) HIKNN probability map

Fig. 7. Probability maps inferred from kNN and HIKNN on synthetic data, for k = 5. Each
pixel was classified by the algorithms and assigned a probability value of belonging to
each of the two classes.
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2.2.3 Prototype Hubness in Instance Selection

In this section, we will discuss the interplay of hubness and instance selection in high-
dimensional data, within the context of k-nearest neighbor classification. A new selection
framework is proposed that allows for the hubness-aware classification methods to be used
in conjunction with instance selection.

Despite its popularity, the basic kNN implementation also suffers from some serious draw-
backs. Most importantly, there are issues with scalability, due to its high storage require-
ments and relatively slow classification response. Its high specificity bias, which is useful in
imbalanced data classification, also makes it more prone to noise and erroneous/mislabeled
data.

One of the most promising research directions in addressing these issues is data reduction.
Reducing the size of the training set speeds up subsequent classification and reduces the
storage requirements, while it may additionally eliminate outliers and noisy examples. There
are two types of data reduction algorithms, one where the prototypes are generated through
some internal models and the other where they are selected from among the existing data
points. We will have a closer look at several common data reduction strategies and examine
how they handle hub points.

Hubness is doubtlessly an important phenomenon in high-dimensional kNN classification,
but it was not the focus of study in the domain of instance selection. The most detailed
reviews of many existing instance selection methods have failed to take the data dimension-
ality into account and did not consider the implications of selecting or failing to select data
hubs [Olvera-Lépez et al., 2010][Garcia et al., 2012]. Up until now, only two simple instance
selection methods that take hubness into account have been proposed [Buza et al., 2011][Dai
and Hsu, 2011]. We have included them in our analysis.

Prototype selection for k-nearest neighbor classification is a frequently used data prepara-
tion technique and many methods have been proposed over the years [Garcia et al., 2012][Liu,
2010][Liu and Motoda, 2002]. Edition methods try to eliminate noise in the data by remov-
ing noisy instances and wrapper methods try to preserve the classifier accuracy by removing
superfluous examples. Many methods are hybrid, as they try to achieve both goals, to some
degree. This division reflects some fundamental differences in prototype selection strategies,
as the edition methods seek to remove the border points, while the wrappers usually perform
condensation by keeping precisely such points which are close to decision boundaries [Garcia
et al., 2012]. According to what is reported in the literature, good results can be obtained
either by keeping or rejecting the border points and either by keeping or rejecting the central
points. There is no unified approach and it is clear that the best strategy is data-dependent.

Regardless of the border point selection/rejection strategies, the methods which seek to
safely reduce the data size often in fact aim at maximizing the coverage of points by their
selected k-nearest prototypes [Buza et al., 2011]. Set coverage is an NP-complete problem.
The prototype selection problem was shown to be equivalent to the set coverage problem,
suggesting that one should apply approximate and heuristic methods.

We have considered several well-known selection strategies, as well as a few very recent
ones. Random sampling will be used as a baseline. Any complex, time-consuming method
ought to perform at least as well as random sampling if it were to justify its use. Additionally,
random sampling is unbiased, which fits the purpose of our comparisons quite well.

The other approaches that we have considered are ENN [Wilson, 1972], CNN [PE, 1968],
GCNN [Chou et al., 2006], RT3 [Wilson and Martinez, 1997], AL1 [Dai and Hsu, 2011] and
INSIGHT [Buza et al., 2011]. We briefly describe each of them.

ENN: One of the first proposed approaches was the edited nearest neighbor (ENN) [Wilson,
1972]. It keeps the examples which are correctly classified by the kNN rule on the
training data, k usually being set to 3 or 5. In high hubness data, there is a clear
distinction between the role that some points play as neighbors and reverse neighbors.
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There is no guarantee that good hubs will be correctly classified or that bad hubs
won’t. There is certainly some correlation between the two, but it becomes weaker
with increasing dimensionality. Therefore, this method may select points which cause
severe misclassification.

CNN: The condensed nearest neighbor (CNN) [PE, 1968] method is an incremental proce-
dure which retains at each step an instance if it is misclassified by the current prototype
set. As outliers are often misclassified, this procedure retains most of the noise in the
data and its reduction rate is not so high. Therefore, it is not well suited for big data
analysis.

GCNN: A generalized CNN approach was later proposed, applying a strong absorption
rule [Chou et al., 2006]. GCNN retains more examples than CNN, usually leading to
a better accuracy. As both ENN and CNN, there is no guarantee that the selected
points would exhibit good hubness.

RT3: Another classic instance pruning technique is the RT3 rule presented in [Wilson and
Martinez, 1997]. In the first pass, noisy instances are removed by a rule similar to
ENN. The remaining points are sorted by the distance to their nearest enemy and then
iteratively removed if their removal does not increase misclassification in the set of their
reverse nearest neighbors. RT3 achieves very good data reduction, as only a small set
of prototypes is retained. However, as it uses ENN-like noise filtering approach, it can
lead to suboptimal selection sets, as some good hubs might be filtered out in the first
pass. Additionally, the order in which the instances are pruned may pose problems in
high-dimensional data, due to a concentration of distances, which causes the sorting
by the distance to the nearest enemy point to be much less stable and less reliable.

AL1: Unlike the above outlined methods, AL1 [Dai and Hsu, 2011] is a selection rule based
on reverse-neighbor sets. A point x; is retained if it is a reverse neighbor to at least one
other point, assuming that x; had not previously been covered by an already selected
point. Even though this rule is obviously affected by the hubness phenomenon, the
implications of this have not been considered by the authors in the original paper.

INSIGHT: A hubness-aware selection strategy for time series classification was recently
proposed [Buza et al., 2011]. INSIGHT takes into account the good and bad k-
occurrences of each instance, and then chooses a previously specified number of in-
stances as prototypes. In some applications, it is an advantage if one can specify the
exact size of the selected set, but it is also a disadvantage that the method requires
this parameter to be set a priori, as it is sometimes unclear which values would work
good in practice.

Of course, many other selection strategies exist in the literature and what we have
analyzed is no more than a subset of techniques. Genetic algorithms are another common
approach [Kim, 2006][Cano et al., 2003][Derrac et al., 2009]. The influence of individual
selected instances on future query quality had been estimated in [Zhu and Wu, 2006], though
in a radically different way from what we propose here. Some special selection techniques
have been quite effective in learning under class imbalance [Pérez-Rodriguez et al., 2011].
Alternatively, instance selection methods can be used for boosting in classifier ensemble
construction. As there is no single best selection method, combining several techniques into
hybrid selection strategies has also recently been considered [Caises et al., 2011].

All the methods which we consider base their selection criteria on information obtained
by analyzing k-neighbor sets. This allows us to implement the hubness-aware components
with minimal / negligible overhead in terms of time-complexity. This is not an unreasonable
requirement, as these methods are mostly tailored precisely for kNN, so it certainly makes
sense that the k-neighbor information is used in the selection criterion.
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2.2.3.1 Hubness-aware Instance Selection Framework

During instance selection, the original training set D is decomposed into two disjoint subsets,
the set of selected and rejected examples, S and R respectively. We will use @ to denote
the selection rate o = %. Traditionally, only S is used in the subsequent classifier training,
while R is disregarded completely. What we essentially propose is to use D = SUR for
prototype occurrence modeling, i.e. hubness-aware classifier training, while only considering
the prototypes x € § as potential neighbors. There is a way to do this with minimal overhead,
in those selection methods which rely on k-nearest neighbor sets.

Hubness-aware classification has never before been used in conjunction with prior in-
stance selection. We believe that these methods can significantly improve the overall system
performance.

The proposed selection process is outlined in Figure 10, where the instance selection
phase is extended by including the unbiased prototype hubness estimation, followed by
hubness-aware k-nearest neighbor classification.

A S oy -
X WX E>~!/~ -

A l HUBNESS
Y |:> |:> Y AWARE
CLASSIFIER

INSTANCE

7 SELECTION Z R UNBIASED HUBNESS
ESTIMATOR

Figure 10: The modified instance selection pipeline. An unbiased prototype occurrence profile esti-
mator is included between the instance selector and a huness-aware classifier. It ought to provide
more reliable hubness estimates to the hubness-aware occurrence models. In the example we see that
point A is a neighbor to three other points (X,¥Y.Z), but only one of them gets selected. Hence, some
occurrence information is irretrievably lost.

Let prototype hubness for a given selected set S be the relative neighbor occurrence
frequency of its selected prototype points when only x € § are permitted as neighbor points.
For each instance x € SUR, its nearest neighbors from § are calculated.

Note that this is not the same as the hubness of those same prototype points within
the training set prior instance selection. The rejected points x; € R are put in a tabu-list
and are not considered as potential neighbors. Let x; € S be a prototype point. Denote by
NFP(x:), N,S .(xi), GN{'(x;) and BN{ (x;) the unbiased hubness quantities: prototype occurrence
frequency, prototype class hubness, prototype good hubness and prototype bad hubness,
respectively. They are inferred from the graph of k-nearest prototypes on D.

As the prototype hubness quantities are derived from prototype occurrences on all of
D, the classifiers themselves would be unable to calculate them if provided only with S, the
reduced dataset. This is why, in the proposed framework, the instance selection methods
need to output a separate prototype hubness estimate array.

Similarly, let the prototype pseudo-hubness be the biased estimate inferred only from
S. The N (x;), N,i (x;), GN}(x;) and BN} (x;) will denote the pseudo-hubness, class-specific
pseudo-hubness, pseudo-good hubness and pseudo-bad hubness of x; € S, respectively.

We are interested in estimating how the selected prototype points would occur on the
test data, whether they would be hubs or orphans, good neighbors or bad neighbors. This
is only possible if the estimate is performed on a sample which follows the same distribution
as the test data. The training set usually does, if the data has been sampled properly, so we
will refer to the prototype hubness estimates on D as unbiased prototype hubness estimates.
On the other hand, the distribution of points in § does not necessarily follow the original
data distribution.

The only case in which the pseudo-hubness quantities are themselves unbiased is when
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the instance selection is entirely random. Even though it is certainly possible to simply
use random sampling for instance selection, it is arguably not the best approach, as it
selects both relevant and irrelevant points. Additionally, even though random sampling is
unbiased, there is still the issue of the reliability of the restricted prototype estimates, as
they are inferred from a smaller sub-sample. The standard error of a probability estimate

pis 4/ @, where n is the number of observations it is derived from. When estimating
the class-specific occurrence profiles, p(y = c|x; € Di(x)) is required, and there the number

of observations is actually n = Ni(x;). In other words, the expected error is proportional
to the reciprocal of the square root of the point hubness. However, ¥ N2 (x;) = k|| and

Y .csNF(x;) = k|D|. Therefore, E(N?>(x;)) = k, while E(NF(x;)) = k2L Tn other words, even
x; €SV k k

Is| -
when the selection bias is not the major issue, we would expect the N,f (x;) prototype hubness
scores to deliver better estimates by reducing the expected error by a factor of %.

Note that it is impossible to avoid the bias by simply selecting all the hubs, as their
hubness also depends on the rejected points. That way it would only be possible to discern
the hubness of prototypes towards other hubs, while the test data contains both hubs and
anti-hubs.

It was already mentioned that many kNN instance selection methods build an entire
kNN graph on the training data during the instance selection phase. In order to calculate
all the NP (x;) and N _(x;), these neighbor lists need to be modified so that they only contain
members of S, the selected prototypes. This is easily achieved. First, all x € R are removed
from the neighbor sets, which are then shifted to the left. The remaining positions in each
Dy (x) are then filled by considering all {x:x € S\ Di(x)}. This is illustrated in Figure 11.
The worst case scenario would come if no prototypes were in the original kNN graph as
neighbors, but this is hardly the case, as the instance selection methods try to pick the most
relevant points for kNN classification. Even if, hypothetically, such a situation were to occur,
calculating the prototype-restricted kNN graph is still % times faster than calculating the
entire training kNN graph, so the additional computational requirements do not increase

the overall complexity.
Selected: @ Rejected: Xj

CEEEE [0
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|

Figure 11: The existing k-nearest neighbor lists on the training set D = S|UR are easily modified
to obtain the unbiased prototype hubness estimates. The rejected examples are removed from the
neighbor sets and the remaining neighbors are shifted to the left. It is possible to use different
neighborhood sizes for instance selection and classification, which would significantly reduce the
number of remaining calculations. In some cases, partial nearest neighbor queries might be needed
to fill in the last few remaining positions.
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An additional benefit is that the considered hubness-aware kNN classifiers [TomaSev et
al., 2011c|[Tomasev and Mladenié¢, 2012][Tomasev et al., 2011b] do not require any training
once provided with all the N,‘: .(xi) values by the unbiased hubness estimator.

In principle, it would not be possible to build the complete kNN graph on very big data,
where there are millions of examples. There exist, however, fast approximate methods which
can be used to construct fairly accurate approximations in reasonable time. It is possible
to use either a generic approach [Chen et al., 2009] or some metric-specific approxima-
tion method based on locality-sensitive hashing [Kulis and Grauman, 2011][Pauleve et al.,
2010][Haghani et al., 2009]. The data which we had available for our experiments was not
prohibitively big, so we only report the results on the accurate, complete, k-nearest neighbor
graphs. It is worth noting, however, that it was already shown that the hubness-aware clas-
sification methods are quite robust with regards to the approximate neighbor sets [Tomasev
and Mladeni¢, 2012] and that there is usually no significant decrease in accuracy even for
nearly linear graph construction time complexities.

2.2.3.2 Test Data

We have compared the selected instance pruning methods and evaluated our proposed ap-
proach on several types of data sets. In our benchmark, we have included difficult image
data, time series data and synthetic overlapping high-dimensional class imbalanced Gaussian
mixtures. The overview of some hubness-relevant properties of the data is given in Table 1.
Manhattan distance was used on the quantized image data, Euclidean on the Gaussian mix-
tures and dynamic time warping (DTW) on time series data. Image and Gaussian data
exhibited high hubness, while these particular time series datasets did not.

The image datasets in the experiments were subsets taken from the ImageNet online
repository (http://www.image-net.org/) [Tomasev et al., 2011a]. They are quantized and
normalized SIFT feature representations [Lowe, 2004][Zhang and Zhang, 2008], enriched by
the color histogram information. They exhibit high overall hubness, as well as high bad
hubness, which is not unusual for quantized image data. They have already been discussed
in more detail in previous sections.

The Gaussian mixture data was generated with a specific intent to pose great difficulties
for k-nearest neighbor methods. It was generated by a fairly complex stochastic process. Let
U, and o, be the d-dimensional mean and standard deviation vectors of a hyper-spherical
Gaussian class ¢ € 1..C on a synthetic Gaussian mixture data set. The covariance matrices of
the generated classes were diagonal for simplicity, i.e. the attributes were independent and
the i-th entry in o, signifies the independent dispersion of that synthetic feature. For the first
class, the mean vector was set to zeroes and the standard deviation vector was generated
randomly. Each subsequent class ¢ was randomly ’paired’ with one prior Gaussian class,
which we will denote by ¢, so that some overlap between the two was assured. For each
dimension i € 1..d independently, . was set to U. ~ Uz + B - 6z with equal probability, where
B =0.75. Additionally, dispersion was updated by the following rule: o, =7y-0:+ (y—B)-
Z -0z, where Y= 1.5 and Z is a uniform random variable defined on [0,1]. Each class was
set to be either a minority class or a majority class and the class sizes ranged from 20 to
1000, each being randomly determined either in the upper [700,1000] or the lower [20,170]
interval of the range. All 10 compared synthetic datasets were set to be 100-dimensional
and to contain 20 different classes.

Instance selection methods are potentially very useful in the time series domain, as it
takes a lot of time to calculate the dynamic time warping (DTW) distance (Figure 12)
between a pair of time series. Instance selection reduces the number of distance calculations
in future queries, which helps in speeding up the process. D'TW can be interpreted as an edit
distance [Levenshtein, 1966]. This means that we can conceptually consider the calculation
of the DTW distance of two time series x; and x; of length /; and I, respectively as the
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Table 1: Overview of the datasets. Each dataset is described by its size, dimensionality, the number
of categories, skewness of the Nj distribution (Sy, ), proportion of bad k-occurrences BNi, the number
of hubs (|HP|), as well as the degree of the major hub. The neighborhood size of k = 1 was used for
time series and k = 10 for images and synthetic Gaussian data.

Data set size d C Sy, BNy |H,?| max Njq
iNet3 2731 416 3  4.61 26.1% 76 750
iNet4 6054 416 4 10.77 481% 137 906
iNeth 6555 416 5 7.42 50.3% 170 1635
iNet6 6010 416 6 4.32 56.9% 245 1834
iNet7 10544 416 7 5.56 55.0% 343 1638
GM, 10785 100 20 4.40 41.4% 439 272
GM, 8849 100 20 5.12 45.6% 319 274
GM3 8102 100 20 5.35 40.0% 315 323
GMy 11189 100 20 5.97 45.0% 509 338
GMs 9859 100 20 5.32 49.2% 361 306
GMg 10276 100 20 9.19 42.9% 291 500
GM, 12572 100 20 6.80 45.3% 434 420
GMg 8636 100 20 8.33 48.5% 256 517
GMy 9989 100 20 5.26 53.0% 375 289
GM 9330 100 20 6.12 454% 320 357
Data set size d C Sy BN, |H,?| max N,
50words 905 270 50 1.26 19.6% 40 5
Adiac 781 176 37 1.15 335% 20 6
Cricket X 780 300 12 1.26 16.7% 20 6
Cricket Y 780 300 12 1.25 182% 30 6
Cricket Z 780 300 12 099 15.9% 19 5
ECGFiveDays 884 136 2 0.68 1% 50 4
Haptics 463 1092 5 1.36 53.6% 16 6
InlineSkate 650 1882 7 1.11 43.1% 12 6
ItalyPowerDemand 1096 24 2 1.30 4.5% 44 6
Medicallmages 1141 99 10 0.78 182% 73 4

process of transforming x; into x;. Two types of editing steps are allowed: elongation and
replacement, both of them being associated with a cost. The cost of transforming the time
series x1 into x; is the cost of sum of the costs of all the necessary editing steps. In general,
there are many possibilities to transform x; into x;, DTW calculates the one with minimal
cost. This minimal cost serves as the distance between the two time series. In practical
applications, the dynamic time warping distance is often used in conjunction with k-nearest
neighbor classification [Pogorelc and Gams, 2012][Zhang et al., 2012a)].

In order to evaluate our approach on time-series data, we used publicly available real-
world datasets from the UCR repository!, a collection that was used by many authors, see
e.g. [Csatari and Prekopcesdk, 2010], [Ratanamahatana and Keogh, 2004]. Here, we only re-
port the results on 10 representative datasets, namely: 50words, Adiac, Cricket X, Cricket Y,
Cricket Z, ECGFiveDays, Haptics, InlineSkate, ItalyPowerDemand, Medicallmages. Similar
trends can be observed on the other datasets, as well.

The 50words dataset is associated with a handwriting recognition task [Rath and Man-
matha, 2003]. Scanned images of handwritten documents were turned into time series in
order to allow to index the documents. The Adiac dataset is associated with a biological
shape recognition problem, namely the automatic identification of diatoms (single-celled
algae with silica shells) [Jalba et al., 2005]. The Cricket datasets were captured by ac-
celerometers worn by people "mimicking the 12 gestures of a cricket umpire” [Ko et al.,

Thttp://www.cs.ucr.edu/ eamonn/time_series_data/
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Figure 12: Euclidean Distance vs. Dynamic Time Warping: Euclidean Distance compares always
the k-th positions of the both time series with each other (left), while DTW allows for elongation,
and therefore when calculating the distance of two time series with DTW, the k-th position of the
first time series is not necessarily matched to the k-th position of the second time series (right). This
matching is shown by the roughly-vertical lines in both cases.

2008]. The classification problem is to identify which of the gestures was mimicked. The
ECGFiveDays dataset was obtained from physionet.org, and it contains 884 ECG signals
of length 136 taken from a 67 year old male. Two classes correspond to two different days,
12th and 17th November 1990. The Haptics dataset contains graphical passwords entered
on a touch screen [Malek et al., 2006]. In the InlineSkate dataset, muscular activities of
in-line speed skaters are recorded over time [Morchen et al., 2004]. In the classification task
associated with the ItalyPowerDemand dataset, days in the summer has to be distinguished
from the days in winter based on the power consumption over time during that day [Keogh
et al., 2006]. In the Medicallmages dataset, time-series correspond “histograms of pixel
intensity of medical images. The classes are different human body regions.”

These time series datasets do not exhibit very high hubness, which can be seen from the
fact that there are no major hubs in the data, the maximal degree of any single node in
the kNN graph is not excessive, as shown in Table 1, unlike in image and Gaussian data.
This might seem initially surprising, as this data is undeniably highly multivariate, but
this apparent high dimensionality is quite deceiving. In time series, neighboring measure-
ments are often highly correlated, so the intrinsic dimensionality of the data, disregarding
redundancies, is usually much lower [Radovanovié¢ et al., 2010].

Most of the datasets in Table 1 are quite difficult and challenging for kNN classification
even prior to instance selection, especially image and Gaussian data that have about 50%
bad k-occurrences, i.e. label mismatches in k-neighbor sets.

The degree of the major hub shows us how some individual points permeate surprisingly
many k-neighbor sets and exhibit high influence on k-nearest neighbor classification. This
is especially apparent in iNet5-iNet7 datasets. In iNet6, the major hub appears in 30.5% of
query results. It often occurs in k-neighbor sets of classes other than its own and makes the
subsequent classification task more difficult. This is a good example of why it is important
to always consider hub-points when dealing with high-dimensional data.

The inclusion of time series datasets ought to demonstrate the usefulness of the proposed
approach even in the context of only mild skewness of the occurrence distribution.

2users.eecs.northwestern.edu/ "hdil17/listfile/ VLDBO08_datasets.ppt
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2.2.3.3 Experimental Setup

As mentioned before, some instance pruning algorithms automatically determine the size of
the prototype set by some intrinsic criteria, but some require this to be specified in advance.
Additionally, some methods require parameters.

In the experiments,the selection rate for INSIGHT and baseline random sub-sampling
was set to a =0.1. The average data size in practical applications is constantly increasing, so
the interested lies mainly in such instance selection methods that can significantly reduce the
data size. Additionally, it will be possible to test if the proposed hubness-aware approach of
using neighbor occurrence models coupled with an unbiased hubness estimate can overcome
such an information loss.

The generalized condensed nearest neighbor rule requires a parameter for its strong
absorbtion rule. The proposed default value mentioned in the original paper did not meet
our needs in high-hubness data, as it ended up selecting almost the entire dataset. The
value of 0.1 was used instead, after some initial trials, which produced a more reasonable
reduction. As for INSIGHT, it allows for different heuristic relevance rankings. In our
experiments we report only the results based on the good hubness ranking, as the Xi index
turned out to be much less effective.

The evaluation of classification under instance selection was performed as 10-times 10-
fold cross-validation. Statistical significance was tested using the corrected re-sampled 7-test
to compensate for dependencies between the runs.

The first part of the instance selection experiments, presented in Section 2.2.3.4 deals
with the interplay between hubs and various instance selection methods, showing that dif-
ferent approaches yield different hub selection rates. Section 2.2.3.7 illustrates the difference
between the biased and unbiased hubness estimates. Finally, Section 2.2.3.8 demonstrates
the effectiveness of our proposed approach in practical use in k-nearest neighbor classifica-
tion.

2.2.3.4 Hubs and Instance Selection

Hubs are the centers of influence in k-nearest neighbor classification. Examining how dif-
ferent selection strategies handle hubs is, therefore, of high importance. Those methods
that select many hubs from the original data will tend to preserve the structure of influ-
ence. Those that fail to select the original hubs will drastically change the structure and
distribution of influence, consequences of which can be either good or bad, depending on
the data.

The average results for the image datasets and the synthetic Gaussian mixtures will be
presented, as time series data does not exhibit high hubness and the time series hub-points
have much less coverage/influence over the neighbor sets.

Before considering the selection rate of hubs, the overall selection rates for all points in
general should be briefly addressed. This is shown in Figure 13.

The most compact method seems to be RT3, as it doesn’t select many points as pro-
totypes. Random sub-sampling and INSIGHT have been pre-set to fixed selection rates of
o =0.1. The generalized condensed absorbtion rule, GCNN, achieves only a mild reduction
of the data, as it retains most of the original points. ENN and CNN achieve selection rates
of about 50% on this particular data.

Most compared instance pruning methods manage to select a non-negligible number of
hub-points, but many hubs also get rejected in the process, as shown in Figure 14. We will
not discuss the nature of the selected and rejected hubs here, as the impact of the selection
process on bad hubness will be closely examined in Section 2.2.3.7. The highest proportion
of hubs get selected in INSIGHT and GCNN, while Random and RT3 select the fewest
among the original hubs.
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Figure 13: Average selection rate o of the examined instance selection methods.
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Figure 14: Average hub selection rate a(H) of different instance selection methods. A higher rate
implies a preservation of the distribution of influence.

However, selecting many hubs is not the same as favoring them over other points. In
order to determine which methods favor or penalize hubs, the quantities must be normalized
by the general selection rates. This way, it is easy to see if the hub selection rate is higher
or lower to that of average points. It also allows a comparison to the bias-less random
sub-sampling approach. These normalized results are summarized in Figure 15.

Not surprisingly, INSIGHT and ALI1 select a much higher proportion of hubs than any
other tested selection method. They are based on examining reverse neighbor sets, while
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Figure 15: Averaged normalized hub selection rate o(H) of different instance selection methods.
A number close to 1 implies that the hub selection rate does not differ from that of random sub-
sampling.

all other approaches focus on k-neighbor lists directly. This reverse reasoning seems to
have payed off, at least with respect to hub point selection. ENN is the only remaining
method which achieves a hub selection rate significantly higher than random, on Gaussian
mixtures, about 1.4. On the examined Gaussian data, the hub selection rate of CNN is even
significantly lower than random.

Putting things in context, it was already mentioned that some selection strategies rely
on selecting and some on rejecting either the borderline points or the central points. In
terms of local data topology, hubs tend to arise near sub-cluster centers. Therefore, a high
hub selection rate might be interpreted as a bias towards central regions in the data space
and a low hub selection rate as a bias towards less central regions and outliers.

However, there is an important distinction between the selection of hubs and the se-
lection of instances in central regions. Borderline regions between different classes are not
necessarily regions of low density, so hubs also arise in borderline regions. Topological cen-
trality is not the same as class-centrality, which is what the supervised instance selection
methods focus on. A preference for hubs is a bias towards the centers of k-neighbor influence
throughout the data space, in both the interior and the borderline class regions.

2.2.3.5 Dependency on Neighborhood Size

Selecting the optimal neighborhood size has always been an issue in k-nearest neighbor
methods. Ideally, one should try and choose a k that is large enough to compensate for
noise and allow for good and reliable class density estimates, provided that such a k does
not breach the locality assumption somewhere in the feature space, most notably in the
minority class regions.

This issue is addressed in various ways in different k-nearest neighbor methods. Some-
times the optimal neighborhood size is determined via cross-validation on each separate
fold [Paik and Yang, 2004]. Other algorithms might use some internal heuristics to try and
guess the appropriate value of k. Some advanced approaches even define different neighbor-
hood sizes around different points [Ougiaroglou et al., 2007][Wang et al., 2006] or approach
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the problem via meta-models [Buza et al., 2010].

As most of the experiments in Section 2.2.3.7 and Section 2.2.3.8 are given for a fixed,
pre-determined value of k, it is interesting to take a brief look at how things may potentially
change for different neighborhood sizes, in general.

Figure 16 shows the change in hubness on a particular image dataset as the neighborhood
size increases. As a rule, the skewness of the occurrence distribution slowly decreases.
This rule is not without exceptions and reverse trends can sometimes be observed in low-
dimensional low-hubness data. On the other hand, a decrease in the overall occurrence
skewness does not necessarily imply a decrease in the number of prominent hubs. Their
number slowly increases with increasing k until it reaches a stable point. Naturally, if we
continue to increase k, their number also starts decreasing at some later point.
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Figure 16: The change in hubness over a set of different neighborhood sizes on iNet6 dataset. The
skewness decreases with increasing k, but the number of hubs increases until it reaches a plateau.

The robustness of the data reduction methods with respect to k is shown in Figure 17, in
particular we depicted the change in the hub point selection rates. The number of selected
hubs does not vary greatly and is rather stable in INSIGHT, CNN, GCNN and RT3. The
fluctuations in ENN most probably stem from tie resolution in kNN classification and could
vary depending on the tie resolution strategy. As for ALIL, its hub selection rate decreases
monotonously with k, as more and more hubs get covered by other hubs and are therefore
rejected by the algorithm. Regardless, similar k values tend to produce similar results. It is
also apparent that the relative ordering of the methods with respect to hub selection remains
invariant.

This brief example shows that varying neighborhood sizes does not change the bias
towards or against hubs substantially for the examined approaches.
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Figure 17: The stability of hub selection rates of different instance selection methods under changing
neighborhood sizes, calculated on the iNet6 dataset.

2.2.3.6 Prototype Occurrence Skewness

The skewness of the prototype k-occurrence distribution is not necessarily the same as
the overall hubness of the data and different selection methods induce different degrees
of prototype hubness. The average prototype skewness over different groups of datasets and
different selection methods is given in Figure 18.
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Figure 18: Average unbiased skewness in the prototype occurrence distributions, SN,‘(D , given for
different instance selection methods.

CNN and GCNN induce the highest prototype set hubness among the compared ap-
proaches in all three data groups. Only in the otherwise low-hubness, time series data does
random sub-sampling induce a higher skew in the k-occurrence distribution. The prototype
sets obtained by INSIGHT seem to be of lowest occurrence skewness, on average. This is a
consequence of its hub selection strategy, as it does not select orphan points, so the overall
skewness is reduced.

Not all approaches are consistent with respect to the induced occurrence skewness, as for
instance ENN and RT3. Sometimes they induce high skewness prototype sets and sometimes
low skewness prototype sets. This means that it would in principle be impossible to separate
the instance pruning techniques into low-hubness and high-hubness types. The resulting
hubness depends on the data and its distribution.

2.2.3.7 Biased and Unbiased Hubness Estimates

As instance selection methods incorporate a selection bias, calculating the hubness of the
selected prototypes within the selected subset alone (N?(x;), N2 (x;), GN{ (x;),BNS (x;)) yields
biased pseudo-hubness estimates. Up until recently, k-nearest neighbor methods did not
use these estimates for classification, so no attention was given to this fact, not even in
the two explicitly hubness-based instance selection methods that we are considering here,
INSIGHT [Buza et al., 2011] and AL1 [Dai and Hsu, 2011].

On the other hand, the recently proposed hubness-aware k-neighbor occurrence models
rely directly on neighbor occurrence estimates, so it becomes important to explore how the
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selection bias influences the estimates on the training set. Figure 19 shows high regularity
in estimating label mismatch percentages on image data, i.e. bad hubness. ENN, RT3 and
INSIGHT consistently underestimate the actual bad influence of their prototypes, while
CNN and GCNN consistently overestimate the bad influence of their prototype sets. The
best estimate of the nature of future prototype influence is achieved in case of AL1, where
the results are quite encouraging.
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Figure 19: The difference between the pseudo-bad hubness estimated on the set of selected instances
S and the actual prototype bad hubness estimated on the entire training set.

This is an important finding, as it allows us to interpret how these selection rules would
work when coupled with the hubness-aware k-occurrence models. In a sense, underestimating
bad hubness is potentially much more dangerous than overestimating it, as it would cause
the models to favor certain points that might actually turn out to be bad hubs. This could
cause significant misclassification. On the other hand, overestimating bad hubness would
cause the models to disregard certain otherwise reliable points, which could also cause
misclassification to occur.

Figure 20 demonstrates the severity of mis-estimating the probability of label mismatches
for individual neighbor points on ImageNet data. CNN and GCNN display the lowest error
average, though this can also be contributed to the fact that they select large prototype sets,
so orphan points reduce the average point-wise estimation error, even if they don’t actually
influence the classification outcomes. On the other hand, RT3 displays a very high bad
hubness estimation error rate. This is not altogether surprising, given that it retains very
few prototypes, which makes any estimate quite difficult. Yet, even INSIGHT and ENN
exhibit non-negligible estimation error rates on several datasets, up to 0.3 in probability.
These estimates were calculated for k = 10, which means that a substantial amount of error
can accumulate with 10 normalized fuzzy votes that are approximately 0.3 off from what
they ought to be. This example clearly shows why it would be dangerous to estimate
neighbor occurrence probabilities from the reduced part of the training set alone. It might
cause severe misclassification, which will become even more apparent in Section 2.2.3.8 in
presenting the results of actual classification tests.

Even though the absolute and relative BN} (x) differ notably from BN/ (x), prototype
neighbor points mostly retain their general class hubness tendencies. There is a high average
correlation between N} .(x) and N,‘: .(x) for ¢ € C. This can be seen in Figure 21. The
correlation is only low in case of RT3. Pearson correlation in class hubness is highest for
CNN and GCNN, while it remains in the range [0.6,0.9] for most other approaches. The
fact remains that there is some difference in class hubness structure between the actual and
the pseudo-scores. They are, however, highly correlated, which is not surprising.

Unlike bad hubness, no regularity can be seen in underestimating or overestimating
the skewness of the prototype occurrence distribution itself, as given in Figure 22. Same
algorithms both underestimate and overestimate the skewness, depending on the dataset.
This shows that a reliable prediction of the actual occurrence skewness can not be made



94 Hubness-aware Algorithms

0.7

06 T

mRandom

EENN

SMRT3
CNN

[ GCNN

EALL

7 INSIGHT

0.5 +—

04 +—

R

0.3 —

0.2 +—

0.1 +

Bad neighbor occurrence
probability estimate error

iNet3 iNetd iNet5 iNet6 iNet7

Figure 20: The average absolute difference in estimating the bad 10-occurrence probabilities of indi-
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Figure 21: Average Pearson correlation between class hubness tendencies of prototype neighbor
points for the compared selection methods on ImageNet data.

based on the retained prototype set alone. Therefore, SN,f is not a viable substitute for SN,f .
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Figure 22: The difference between the pseudo-hubness estimated on S and the prototype occurrence
skewness estimated on the entire training set. There is no apparent regularity, which means that very
little can be discerned from observing pseudo-hubness of prototypes on a single dataset, as one can
not even know with certainty whether the estimate exceeds the actual data hubness or underestimates
it instead.

2.2.3.8 Classification

Even though hubness selection bias plays an important role in the classification outcome, it
should be stressed that the absence of an apparent bias is no guarantee of good performance.
Data reduction entails an information loss. Instance selection methods try to compensate
for this loss by selecting more relevant points. A mild hubness estimation bias doesn’t tell
us anything about the actual relevance of the retained points x; € S. Therefore, instance



Hubness-aware Algorithms 95

selection can only be confidently evaluated within a certain context and the context which
we chose to explore is k-nearest neighbor classification.

The biased and unbiased hubness estimates have been tested within several different
hubness-aware classifiers and occurrence models: hw-kNN [Radovanovi¢ et al., 2009], h-
FNN [Tomasev et al., 2011b], NHBNN [Tomasev et al., 2011c|] and HIKNN [Tomasev and
Mladeni¢, 2012]. Most results are reported primarily for HIKNN, as similar improvement
trends can be observed in other hubness-aware classifiers, as well.

The results presented here are summarized in Tables 2—Table 4. The accuracy of kNN
classifier under different instance selection schemes is given in Table 2. All selection ap-
proaches perform rather poorly on this data, which is not surprising, since the data was
intentionally selected in such a way that kNN classification gets difficult, even without in-
formation loss due to instance selection. GCNN is the best instance selection approach
here, though it doesn’t perform well in time series classification. The two selection strate-
gies which favor hubs, AL1 and INSIGHT perform worse than random sub-sampling, which
suggests that they do not select hubs in a proper way.

Table 2: Cross-validated classification accuracy of k-nearest neighbor classifier under several different
selection strategies. o and e denote significantly better or worse result (p < 0.01) than kNN with no
instance selection, trained on the entire training set, based on the corrected re-sampled z-test.

classifier: kNN

Instance selection method

Data set None Random ENN RT3 CNN GCNN AL1 INSIGHT
iNet3 85.1+1.6| 80.44+1.8e 82.2+1.6e 52.5+5.8e 82.6+1.5e 84.24+1.3e¢ 82.1+1.8e¢ 80.8+1.5e
iNet4 68.8+1.4| 62.3+1.4e 64.6+1.5e 41.3+2.8¢ 68.2+1.4 68.9+1.5 65.1+1.4e 63.6+1.3e
iNet5 63.7+1.4] 56.0+1.6e 55.4+1.4e 25.5+3.1e 63.4+1.4 64.8+1.20 59.3+1.4e 58.0+1.6e
iNet6 66.3+1.5| 57.7+1.8e 56.5+1.7e¢ 33.0+2.9e¢ 63.8+1.5¢ 65.0+1.3e¢ 59.9+1.6e 56.2+1.8e
iNet7 61.2+1.1| 52.9+1.5e¢ 40.4+1.3e¢ 37.2+3.5e 58.3+1.3e¢ 60.1+1.2¢ 49.6+1.5e 48.8+2.2e
AV Gipg 69.0 61.9 59.8 37.9 67.3 68.6 63.2 61.5

GM, 68.1+0.8| 50.3+3.0e 28.0+1.8e¢ 12.1+1.3e 43.8+4.1e¢ 68.54+1.2 30.9+2.9e¢ 29.6+4.9e
GM, 64.4+1.1| 43.4+3.9¢ 32.5+2.0e 24.9+4.3¢ 53.0+2.1e¢ 61.0+1.5e¢ 29.3+2.5e¢ 37.6+4.3e
GM;3 70.6+1.1| 51.7+3.4e 49.2+2.7e 14.2+4.3e 65.6+1.9¢ 62.7+1.4¢ 35.2+3.2e¢ 52.7+5.0e
GMy 67.3+1.0] 46.7+3.7e 30.2+2.0e 16.2+2.30 44.8+2.2¢ 54.2+1.7e 38.4+3.5e¢ 31.3+3.2e
GMs 58.440.8) 38.4+3.3e 34.84+2.1e 85 +3.3e 43.5+3.9e¢ 58.6+1.3 24.6+1.8e 40.3+3.8e
GMg 66.5+1.2| 48.7+2.9e 21.5+1.5e 22.9+4.6e 43.9+2.8e¢ 60.8+1.3e¢ 40.8+3.5e¢ 27.4+3.1e
GM7 67.1+1.0| 48.4+4.5¢ 9.9 +0.8e¢ 15.0+t1.1e¢ 23.6+3.0e 66.1+1.0e 12.2+1.8e¢ 11.5+1.2e
GMg 59.84+1.1| 43.4+3.4e 40.0+1.7¢ 16.9+3.3e¢ 60.8+1.50 58.7+1.2e 35.94+2.8e 48.5+1.9e
GMy 55.8+1.0| 37.7+2.6e 14.1+1.0e 12.4+2.4e 26.2+2.6e 55.9+1.1 19.0+1.7¢ 16.2+2.1e
GM o 65.941.1| 44.1+:4.2e 37.31+2.3e 12.84+2.4e¢ 57.1+2.2e 65.3+1.2 25.94+3.2e¢ 40.0+3.4e
AVGen 64.4 ‘ 45.3 29.8 15.6 46.2 61.2 29.2 33.5

50words 79.7+3.2| 21.2+5.80 29.9+54e 11.0+4.6e 17.1+4.7e 16.9+4.9e¢ 32.5+8.4e 18.9+5.7e
Adiac 65.1+3.5| 8.5 +3.3e¢ 15.24+3.9e¢ 5.2 £2.5e¢ 12.9+4.0e 11.94+3.3e 11.0+4.8e¢ 8.0 +£3.6e
Cricket X 82.84+2.9| 28.0+7.5¢ 56.5+5.2¢ 16.0+5.4e¢ 29.1+6.9e¢ 30.0+7.1e¢ 56.5+7.3¢ 31.5+7.9e
Cricket Y 81.5+2.9] 30.6+6.3e¢ 50.9+6.1e¢ 20.2+5.3¢ 24.2+6.4e¢ 23.2+6.7e¢ 60.1+6.3e¢ 31.2+8.2e
Cricket Z 83.14+2.8| 28.2+7.1e 67.6+4.50 14.2+5.2¢ 46.9+8.2¢ 49.1+8.3¢ 56.4+7.8e¢ 35.8+7.0e
ECGFiveD 99.0+0.8| 88.7+3.6e 98.7+0.9 48.9+4.8e¢ 91.44+3.8¢ 91.0+4.2e¢ 96.5+1.8e¢ 89.9+3.5e
Haptics 45.9+4.5| 30.7+5.8e 38.7+5.2e¢ 28.9+5.7Te 40.0+4.8e 39.94+5.2e 31.5+4.4e 33.4+6.Te
InlineSkate 55.7+3.9| 26.5+5.0e 46.7+4.5e¢ 20.6+4.6e 49.9+4.5e 49.2+4.6e 36.3+5.4e 33.4+4.7e
TtalyPower 95.54+1.2| 89.94+3.6e 95.3+1.5 59.0+8.1e¢ 88.9+4.5¢ 90.4+3.6e 92.7+2.1e 92.3+2.5e
Medicallmg80.94+2.4| 51.44+4.9e 70.5+3.3e¢ 41.8+4.3e¢ 66.2+3.8e 66.1+4.2e¢ 63.41+5.3e¢ 50.1+5.1e

AVGis 76.9 ‘ 40.4 57.0 26.6 46.7 46.8 53.7 39.5
AVG 70.3 ‘ 46.7 46.7 24.5 50.6 56.9 45.8 41.5

In fact, there is no guarantee that the hubs that are being favored by AL1 and INSIGHT
are beneficial for the classification process. AL1 simply tries to select a very small number
of points that maximize coverage and the selected hubs might exhibit extremely detrimental
neighbor occurrence profiles, causing many label mismatches and inducing misclassification.
The same goes for INSIGHT, even though it tries to select good hubs primarily, it does so by
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focusing on the total number of beneficial occurrences and disregards the bad ones. Unfor-
tunately, on this data, most major hubs have both many good and many bad occurrences, so
that particular selection strategy fails to achieve its purpose. Alternative ranking measures
have been proposed for INSIGHT, but our initial tests did not show promising results.

Similar trends can be observed in HIKNN classification, when the biased hubness esti-
mate is used, as shown in Table 3. The relative ordering of selection methods based on their
performance remains the same, though there is already significant improvement over basic
kNN classification.

Table 3: Cross-validated classification accuracy of Hubness Information k-nearest neighbor classifier
(HIKNN) under several different selection strategies. The model is trained on the prototype set only,
which means that the biased hubness estimate is used. o and e denote significantly better or worse
result (p < 0.01) than HIKNN with no instance selection, trained on the entire training set, based
on the corrected re-sampled t-test.

classifier: HIKNN, hubness estimate: BIASED

Instance selection method

Data set None Random ENN RT3 CNN GCNN AL1 INSIGHT
iNet3 85.8+1.5| 80.4+2.0e 83.0+1.5e¢ 51.6+6.1e¢ 81.8+1.6e 83.2+1.4e¢ 82.9+1.9¢ 80.9+1.5e
iNet4 69.9+1.3| 63.5t1.4e 65.2+1.6e 41.94+3.2¢ 69.4+1.3 70.1£1.4 66.6E1.4e 64.2+1.4e
iNet5 67.6+1.3| 59.7+1.4e 57.8+1.3e 25.4+2.5e 65.7+1.4e 67.4+1.2 61.8+1.4e 60.1+1.5e
iNet6 68.6+1.5| 60.0+1.6e 58.9+1.6e 32.8+2.8e¢ 65.1+1.60 66.8+1.3¢ 62.9+1.9¢ 58.1+1.7e
iNet7 64.3+1.0| 55.4+1.5e 42.5+1.3e 37.7+3.60 59.84+1.3e¢ 62.5+1.0e 51.5+1.6e 50.9+2.1e
AV Gipg 71.2 ‘ 63.8 61.5 37.9 68.4 70.0 65.2 62.8

GM, 78.3+0.9] 65.6+3.50 31.2+2.5e 13.2+1.5e 52.6£4.8e¢ 79.0+:0.90 34.7+3.3e¢ 32.546.1e
GM, 77.3+1.2] 61.7+4.5e 39.1+2.2¢ 26.1+4.7e 65.3+2.00 74.4+1.3e 34.8+3.4e 45.7+5.2e
GM3 81.3+0.9] 65.8+4.3¢ 57.1+3.0e 15.6+4.7e 75.2+1.8e¢ 71.6+1.5e¢ 40.63.8e¢ 59.94+5.9e
GM, 78.2+0.9] 60.6+4.4e 32.3+2.3e¢ 19.3+3.0e¢ 55.7£1.9¢ 64 +1.9e 43.3+4.5e¢ 33.84+3.9e
GM; 75.2+0.9] 60.8+4.5e 45.1+2.4e¢ 9.0 +3.4e 57.4+4.3e 75.2+1.1 19.3+1.4e 50.5+4.1e
GMg 79.4+0.9] 65.0+3.6e 26.4+1.60 22.9+5.3e 50.2+3.5¢ 69.6+1.5e 49.2+4.8e 33.1+3.8e
GM7 81.1+0.8| 65.4+5.6e 11.2+0.8e 16.3+1.1e 28.44+3.7e¢ 80.5+0.9 10.2+1.5e 13.2+1.1e
GMg 77.0£1.0 63.84+3.7Te 52.2+1.7e 17.6+3.9e¢ 76.3+1.8 75.6+1.1e 41.24+4.5e¢ 60.9+2.2e
GMy 70.6+1.1] 56.1+3.4e 13.54+0.9¢ 14.7+2.8e¢ 34.3+3.2e¢ 71.4+0.90 17.4+1.4e 16.61+2.Te
GMy 80.3+£0.9| 64.7+6.0e 46.8+3.2e¢ 13.8+2.8e¢ 70.9+2.5¢ 80.0+1.0 32.1+4.3¢ 49.1+4.Te
AVGgn 77.9 ‘ 63.0 35.5 16.8 56.6 74.1 32.3 39.5

50words 79.7+3.1] 21.6££5.8e 30.7+5.4e 11.1+4.7e 17.1+4.7e 16.9+4.9e 32.9£8.3e¢ 19.54+5.9e
Adiac 65.1+3.6| 83 +3.3¢ 15.2+3.9e¢ 52 +2.6e 12.8+4.0e 11.7+3.3e¢ 11.0+t4.7e 7.9 +3.6e
Cricket X 82.942.9| 27.8+7.5¢ 57.2+5.2¢ 16.0+5.4¢ 28.6+6.7e¢ 29.5+7.0e 56.5+7.3e¢ 31.6+8.1e
Cricket Y 81.5+2.8 30.3+6.3e 51.44+6.3e¢ 20.2+5.3e¢ 24.3+6.3¢ 23.1+6.6e 60.3+6.4e 31.2+8.2e
Cricket Z 83.14+2.8] 28.4+7.1e¢ 68.3+4.3e¢ 14.3+5.2e¢ 46.5+8.0e 48.8+8.1e¢ 56.6+7.9¢ 35.9+7.2e
ECGFiveD 99.0+0.8| 838.9+3.4e 98.7+0.9 48.9+4.6e 83.6+4.8e¢ 88.7+4.9e¢ 96.7+1.7¢ 90.0+3.5e
Haptics 47.0£4.9] 30.7£6.2¢ 39.1+5.1e 29.2+58e 41.84+-4.8e¢ 41.3+5.3¢ 31.5+4.4e¢ 33.9+6.8e
InlineSkate 55.8+3.9| 27.0+4.8e¢ 46.8+4.6e 20.5+4.7¢ 50.5+4.5e 49.7+4.5e 36.4+5.6e 33.0+4.9e
ItalyPower 95.54+1.2| 90.44+3.4e 95.3+1.4 58.8+8.2e¢ 89.9+4.4e 91.24+3.7e 92.9+1.9e¢ 92.7+2.5e
Medicallmg81.3+2.4| 51.6+4.9¢ 70.6+3.2e¢ 42.2+4.5¢ 66.3+3.9¢ 66.3+4.1e¢ 63.6+5.4e¢ 50.6+4.9e

AVGyg 77.1 ‘ 40.5 57.3 26.6 46.6 46.7 53.8 42.6
AVG 76.2 ‘ 54.2 49.4 30.0 55.0 62.3 47.5 45.4

Using the proposed unbiased hubness estimation significantly improves the performance
of HIKNN regardless of the underlying instance selection strategy, as shown in Table 4
and Figure 23, while Figure 24 shows that the same trend holds for other hubness-aware
classifiers. This confirms our initial hypothesis that the instance selection bias reflects
negatively on neighbor occurrence models in hubness-aware k-nearest neighbor classifiers
and that using an unbiased estimate leads to better results. In most cases the improvement
is achieved with little to no computational overhead.

The benefits of using the unbiased hubness estimates with the HIKNN classifier are
most pronounced in INSIGHT and AL1, where there is an average absolute 20% accuracy
improvement over the use of biased estimate, which is itself still better than simply using
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kNN with instance selection. The absolute improvements in other instance selection methods
are about 10% and there is even an improvement of 3.5% in random sub-sampling which
has no selection bias. As we have argued before, the unbiased estimates calculated on the
entire training set are of higher quality by the very virtue of being based on more observed
occurrences, even when no bias is present.

Table 4: Cross-validated classification accuracy of Hubness Information k-nearest neighbor classifier
(HIKNN) under several different selection strategies. The neighbor occurrence profiles in the model
are derived by observing the unrestricted prototype occurrences on the entire training set, leading
to an unbiased hubness estimate. o and e denote significantly better or worse result (p < 0.01)
than HIKNN with no instance selection, trained on the entire training set, based on the corrected
re-sampled 7-test. Accuracies higher than in the biased case are given in bold.

classifier: HIKNN, hubness estimate: UNBIASED

Instance selection method

Data set None Random ENN RT3 CNN GCNN AL1 INSIGHT
iNet3 85.84+1.5| 79.7 & 1.6e 83.6+1.4e 50.3 = 2.1e¢ 83.0+1.5¢ 84.5+1.6e 83.7+1.4e¢ 81.6+1.4e
iNet4 69.94+1.3] 65.0+-1.3e¢ 65.9+1.2¢ 43.5+2.9¢ 69.6+1.2 698 £1.3 67.7+1.4e¢ 65.1+1.4¢
iNet5 67.6+1.3] 60.84+-1.3e¢ 60.1+1.3¢ 39.0+3.4¢ 66.7+1.2e¢ 67.7+1.2 64.21+1.3¢ 61.91+1.2¢
iNet6 68.6+1.5 62.0+-1.3e¢ 61.9+1.4e¢ 33.2+3.0e¢ 66.9+1.5¢ 67.6+1.30¢ 65.2+1.4¢ 61.6+1.3¢
iNet7 64.3+1.0| 58.4+1.0e 48.8+1.4¢ 38.5+3.6¢ 62.6+1.1¢ 63.8+1.1 59.3+1.3e¢ 57.5+1.1e
AV Ging 71.2 65.2 64.1 40.9 69.8 70.7 68.0 65.5

GM, 78.3+0.9] 73.5+1.1e¢ 63.6+1.3e¢ 46.7+3.2e¢ 73.7+1.5¢ 79.5+0.90 72.2+1.0e 74.9+1.0e
GM, 77.3+1.2| 70.2+2.0e 61.9+1.4¢ 60.6+3.1e¢ 74.5+1.4e 76.7+1.1 70.2+1.3e¢ 73.6+t1.1e
GM; 81.34+0.9| 76.4+1.5¢ 67.1+1.6e¢ 53.2+6.9¢ 80.3+1.5¢ 77.2+1.5¢ 73.01+1.2¢ 77.5+1.2e
GM, 78.2+0.9] 68.9+1.8¢ 58.9+1.7Te¢ 44.8+2.6e¢ 72.0+1.9¢ 74.3+1.0e¢ 68.3+1.3¢ 69.8+1.2¢
GM5 75.24+0.9] 70.9+1.5¢ 60.9+1.0e 18.1+1.4e 70.7+1.8e¢ 76.0+0.90 64.61+1.2¢ 72.5+1.1e
GMg 79.4+0.9] 73.0t1.7e 56.1+1.2¢ 46.8+2.5¢ 73.1+1.5¢ 76.0+1.2¢ 71.6+1.3¢ T4.7+1.1e
GM, 81.1+0.8 75.6+1.3e 46.7+1.4e 48.4+3.1e¢ 61.9+2.7e¢ 81.3+0.9 66.6+1.5¢ 75.8+1.1e
GMg 77.0£1.0] 71.5+2.2¢ 61.2+1.3¢ 51.5+3.4e¢ 79.3+1.20 76.9+1.1 64.9+2.1e 72.4+1.4¢
GMy 70.6+1.1| 66.0+1.Te 46.9+1.2¢ 30.1+2.9¢ 57.6+2.7Te¢ 71.5+0.90 62.2+1.3¢ 68.5+1.1e
GMo 80.3+0.9| 77.4+1.6e 66.1+1.9¢ 36.0+3.3¢ 79.7+1.0 81.1+0.90 71.1+1.1e 77.8+t1.1e
AVGgn 77.9 ‘ 72.3 58.9 43.6 72.3 77.1 68.5 73.8

50words 79.7+£3.1] 209 £5.7e 42.8+5.8e¢ 42.8+4.9¢ 39.01+4.2¢ 40.2+4.4e¢ 61.6+4.60 55.51+4.0¢
Adiac 65.1+3.6) 8.4 +4.1e 24.9+4.2e¢ 22.4+5.4e 29.5+4.0e0 29.2+4.4¢ 37.41+4.6e 35.8+4.8e¢
Cricket X 82.942.9] 27.3 £ 7.5e¢ 64.7+4.7e 36.1+7.1¢ 57.44+5.7e 58.11+4.6e 69.91+4.1e¢ 58.8+5.0¢
Cricket Y 81.54+2.8] 32.1+7.2¢ 59.1+5.00 39.2+6.8¢ 53.91+5.7Te¢ 52.6+5.00 71.84+4.2¢ 57.7+5.0e
Cricket Z 83.14+2.8] 28.0 £ 7.3¢ 71.5+4.2e¢ 35.0-6.8¢ 65.91+4.7¢ 66.91+-4.8¢ 71.0+-4.2¢ 59.91+4.8¢
ECGFiveD 99.0+0.8] 87.6 & 3.9¢ 98.84+0.8 52.6+4.9¢ 95.1+3.4¢ 96.0+1.9¢ 97.9+1.2¢ 93.4+1.8¢
Haptics 47.0+4.9| 31.5+6.1e 42.2+5.2¢ 26.6 + 5.5 42.7+5.2e¢ 42.0+5.1e¢ 38.7+4.4e 41.2+6.0e
InlineSkate 55.8+3.9| 26.8 + 5.2¢ 46.9+4.3¢ 22.6+4.0e 49.9 + 4.3¢ 51.6+4.5¢ 43.8+4.7Te 38.7+4.3¢
TtalyPower 95.5+1.2| 90.6+3.0e 95.4+1.3 56.5 & 8.2e¢ 91.2+3.8¢ 93.3+2.4¢ 94.8+1.5¢ 95.8+1.3
Medicallmg81.3+2.4| 50.9 + 5.1e 72.7+3.2e¢ 53.0+:3.4¢ 66.4+3.9¢ 66.6+3.6¢ 71.6+3.2e¢ 62.5+4.0e

AVGig 7.1 ‘ 39.4 63.7 38.7 59.1 59.7 65.9 59.9
AVG 76.2 ‘ 57.7 61.9 41.1 66.5 68.9 67.4 66.6

Similar performance improvements stemming from the better quality of hubness esti-
mates in the neighbor occurrence models can also be seen in other examined hubness-aware
classifiers, hw-kNN (Tables 7 and 8), h-FNN (Tables 9 and 10) and NHBNN (Tables 5 and
6). In some cases, the combination of instance selection and hubness-aware classification
can yield consistent and significant improvements over classification without prior selection.
On the tested Gaussian data, the improvement is visible in the unbiased case for NHBNN
when coupled with CNN, hw-kNN when coupled with GCNN and h-FNN when coupled with
either CNN, GCNN or AL1. The summaries are given in Figure 25.

Out of all the considered hubness-aware k-nearest neighbor classifiers (HIKNN, NHBNN,
hw-kNN, h-FNN), the smallest increase in performance was noted in hw-kNN, which is not
surprising, as it is based on the aggregate mislabeling estimates, unlike the other three
algorithms that consider the detailed occurrence profiles. Even though this makes hw-kNN
somewhat less sensitive to the effects of the selection bias, we can not recommend its use,
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Figure 23: The overall accuracy improvement achieved by using the unbiased hubness estimate in
HIKNN. Significant improvements are achieved for every instance selection method.
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Figure 24: The accuracy improvements obtained by using the unbiased prototype hubness estimation
in hw-kNN, h-FNN and NHBNN.

as its overall performance is still worse than in HIKNN, NHBNN or h-FNN. This confirms
what was previously documented in earlier studies where these classifiers were compared.
We can conclude that the existing results suggest that hubs play an important role in
kNN-based instance selection methods and that they should be taken into account when
designing future instance selection strategies for data reduction in high-dimensional data.



Hubness-aware Algorithms

99

Table 5: Cross-validated classification accuracy of Naive Hubness-Bayesian k-nearest neighbor clas-
sifier (NHBNN) under several different selection strategies. The model is trained on the prototype
set only, which means that the biased hubness estimate is used. o and e denote significantly better
or worse result (p < 0.01) than NHBNN with no instance selection, trained on the entire training
set, based on the corrected re-sampled z-test.

classifier: NHBNN, hubness estimate: BIASED

Instance selection method

Data set None Random ENN RT3 CNN GCNN AL1 INSIGHT
iNet3 84.2+1.6| 78.6L78.6e 81.84+1.6e 56.8+8.6e 81.5+ 1.7e¢ 83.4+ 1.4e 81.54+1.6e 79.6+1.8e
iNet4 68.4+1.2] 63.1+ 1.3e 65.2+1.3¢ 42.84+2.9e¢ 66.4+ 1.3e¢ 67.4+ 1.4e 66.2+1.2e¢ 64.0+1.5e
iNeth 64.3+1.3| 56.5+ 1.5 57.8+t1.4e 27.4+4.8e 60.9+ 1.4e¢ 62.5+ 1.2e¢ 60.6+1.3e¢ 56.71+1.3e
iNet6 66.8+1.4| 57.5+ 1.5 56.2+1.5e 33.2+2.8e 62.9+ 1.3e¢ 64.5+ 1.3¢ 60.7+1.5¢ 54.2+1.5e
iNet7 63.2+0.9| 53.3+ 1.3e¢ 39.0£1.3e¢ 37.4+3.3e 58.0+ 1.0 60.9+ 1.0e 50.6+2.1e¢ 48.81+2.8e
AV Gig 69.4 ‘ 61.9 60.0 39.5 66.0 67.8 64.0 60.7

GM, 87.0+0.7] 69.0+ 4.7e 26.4+2.1e 12.7+1.40 48.8+ 6.1le 86.2+ 0.7e 29.54+3.2¢ 26.9+5.9e
GM, 85.1+0.9] 65.3+ 5.7e 36.2+2.1e¢ 20.7+3.0e¢ 67.8+ 2.7e 81.5+ 1.2e¢ 32.5+3.1e 41.0£4.9e
GM;3 88.84+0.8] 68.0+ 5.9e¢ 55.2+3.7e 13.1+5.0e 77.6+ 2.7e 75.1+ 2.3e¢ 38.6+t3.5¢ 55.94+6.0e
GM, 85.0+0.7| 64.0+ 5.0 30.5+1.9e¢ 17.1+2.5e¢ 60.0+ 2.6 69.9+ 2.4e 42.3+4.9e¢ 30.7+3.4e
GMs 85.8+0.7] 65.5+ 5.4e 44.8+2.5e¢ 10.1+3.0e¢ 56.0+ 4.1e¢ 84.54+ 0.8e¢ 23.5+2.0e 46.3+4.Te
GMg 87.9+0.7| 67.94+ 4.7e 24.14+1.60 22.1+4.Te 47.3+ 4.1e T71.8+ 1.9e 48.04+4.9e 30.4+3.7e
GM; 88.0+0.6| 69.3+ 6.4e¢ 12.2+0.6e 14.9+1.1e¢ 23.0+ 3.2e¢ 87.7+ 0.6 13.3+1.7e¢ 13.3£1.0e
GMg 86.8+0.7] 66.8+ 4.8e¢ 56.8+2.0e 13.8+3.8e¢ 80.8+ 2.2e¢ 85.4+ 0.8e¢ 39.8+5.1e¢ 59.9+2.2e
GMy 82.5+0.8/ 62.4+ 4.1e¢ 16.0£0.8e 12.24+2.7e 34.4+ 3.6 81.94+ 0.8 20.0+1.6e 17.5+2.8e
GMo 87.4+0.7) 67.7+ 6.8e¢ 45.94+3.7Te 13.2+2.2e¢ 71.4+ 3.3e¢ 855+ 0.9¢ 32.5+4.1e 44.7+4.4e
AV G 86.4 66.6 34.8 15.0 56.7 80.9 32.0 36.7

50words 79.1+3.2| 22.54+ 5.8 36.0+5.3e 12.7+5.0e 15.7+ 3.8e¢ 152+ 4.0e 34.4+7.5e¢ 21.6+6.1e
Adiac 63.9+3.6] 6.7 + 3.00 15.2+3.7e¢ 4.9 +2.6e 9.6 £ 3.2¢ 9.2 4+ 3.3e¢ 9.6 +3.9e¢ 7.4 +3.4e
Cricket X 82.6+2.9 24.3+ 6.7e 57.2+t5.1e 15.4+5.4e 24.84+ 58e 253+ 6.6e 54.8+7.6e 28.4+7.1e
Cricket Y 81.442.7] 27.1+ 5.2¢ 51.14+6.5e¢ 19.4+5.4e 21.8+ 5.6 20.7+ 5.5 59.4+6.2e¢ 29.3+6.9e
Cricket Z 83.0+£2.9] 25.3+ 5.8e¢ 67.9+4.3e 13.4+4.7e 3594+ 7.00 38.1+ 6.8e¢ 56.2+7.9e¢ 33.0+6.5e
ECGFiveD 99.04+0.8| 88.5+ 3.6e 98.74+0.9 49.0+5.2e¢ 36.1+11.1e¢ 53.1+10.9¢ 96.5+1.7¢ 89.9+3.4e
Haptics 46.6+4.6| 28.5+ 5.9e 38.5+4.8e¢ 28.4+5.8e 35.1+ 4.8e 34.4+ 4.1e 31.0+4.4e 33.0+£6.5e
InlineSkate 55.84+3.7| 23.3+ 4.5 46.5+4.5¢ 20.2+4.4e 38.7+ 4.3e¢ 39.0+ 3.8¢ 36.7+5.5e¢ 30.0+4.6e
ItalyPower 95.6+1.2] 90.1+ 3.4e 95.3+1.4 56.84+7.9e¢ 62.8+12.7e 79.7+ 7.8 92.94+1.8e 92.5+2.5e
Medicallmg81.2+2.4| 53.24+ 4.0e 72.64+2.9e 43.9+4.5e¢ 57.9+ 4.1e 58.4+ 3.7e 64.5+4.1e 54.1+4.3e
AVGyg 76.8 ‘ 38.9 57.9 26.4 33.8 37.3 53.6 41.9

AVG 79.2 ‘ 54.6 49.1 24.5 49.2 60.8 47.0 43.6
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Table 6: Cross-validated classification accuracy of Naive Hubness-Bayesian k-nearest neighbor clas-
sifier (NHBNN) under several different selection strategies. The neighbor occurrence profiles in the
model are derived by observing the unrestricted prototype occurrences on the entire training set,
leading to an unbiased hubness estimate. o and e denote significantly better or worse result (p
< 0.01) than NHBNN with no instance selection, trained on the entire training set, based on the
corrected re-sampled ¢-test. Accuracies higher than in the biased case are given in bold.

classifier: NHBNN, hubness estimate: UNBIASED

Instance selection method

Data set None Random ENN RT3 CNN GCNN AL1 INSIGHT
iNet3 84.2+1.6| 80.3+t1.5¢ 83.4+1.3e¢ 79.9+ 1.9e¢ 82.1+1.5e¢ 83.1 & 1.3¢ 82.4+1.5¢ 81.1+1.4e
iNet4 68.4+1.2| 64.6+-1.3¢ 67.3+1.1e 62.6+ 1.5¢ 67.5+1.1e¢ 67.8+1.2 66.6+1.3¢ 65.41+1.2e
iNet5 64.3+1.3] 57.2+1.4¢ 60.6+t1.2¢ 51.6+ 1.5¢ 62.1+1.0e¢ 63.41+-1.3¢ 59.8 & 1.4e¢ 57.3+1.2e
iNet6 66.8+1.4] 59.3+1.2e¢ 63.91+1.3e 32.7 = 1.8¢ 64.4+t1.4e¢ 65.6+t1.1¢ 62.8+1.3e¢ 59.61+-1.3¢
iNet7 63.2+0.9] 57.1+0.9¢ 60.2+0.9¢ 38.0+ 4.4e¢ 61.4+-0.9¢ 62.3+0.9¢ 60.1+1.1¢ 58.0+1.0e
AV Gipg 69.4 ‘ 63.7 67.1 53.0 67.6 68.5 66.4 64.3

GM, 87.0+0.7 82.7+0.7Te 82.0+0.7e¢ 77.3+ 1.0e 87.8+0.60 87.0+0.6 85.1+0.7e¢ 84.01+0.7e
GM, 85.1+0.9] 81.3+0.9¢ 79.6+0.9¢ 82.6+ 1.0e¢ 87.1+0.70 85.24+0.8 83.7+0.7Te 82.24+0.9e
GM; 88.8+0.8] 85.24+-0.8¢ 84.24+0.8¢ 80.1+ 1.5¢ 90.0+£0.80 89.1+0.8 87.7+0.7Te 86.01+:0.7e
GMy 85.0+0.7] 80.5+0.8¢ 80.3+0.7e¢ 73.3+ 1.5¢ 85.5+0.7 84.9+0.7 83.1+0.Te 82.41+0.7e
GMs 85.8+0.7] 81.9+0.8¢ 78.8+0.7e¢ 70.7+ 1.9e¢ 88.11+0.70 86.5+0.70c 84.04+0.7e¢ 83.44+0.8e
GMq 87.9+0.7 83.8+0.9¢ 82.8+0.7¢ 81.7+ 1.3e¢ 89.11+0.60 87.9+0.8 86.71+0.6e 85.44+0.7e
GM; 88.0+0.6| 84.6+0.7e¢ 83.5+0.7¢ 79.0+ 0.9¢ 88.8+0.50 88.0+0.5 86.51+-0.6e 86.4+0.7e
GMg 86.84+0.7| 83.3+0.9¢ 79.6+0.7¢ 80.5+ 1.2e¢ 88.5+0.70 86.84+0.7 85.2+0.8e¢ 84.2+0.8¢
GMy 82.5+0.8 79.0+0.9¢ 75.8+0.8¢ 72.0+ 1.0e¢ 84.5+0.80 82.6+0.8 81.0+-0.8e¢ 79.7+0.8e¢
GMo 87.4+0.7 83.91+1.0e 81.74+0.9¢ 78.3+ 1.0e¢ 89.8+0.70 88.2+0.70 86.1+0.7e 85.51+0.7e
AVGgm 86.4 82.6 80.8 77.6 87.9 86.6 84.9 83.9
50words 79.1+3.2| 48.6+4.0e 47.6+3.5¢ 47.6+ 3.9¢ 63.61+-3.6e¢ 63.7+3.Te 69.2+3.8¢ 55.01£3.9¢
Adiac 63.9+£3.6| 34.5+4.Te 26.7+3.4¢ 27.1+ 4.5¢ 41.11+3.9¢ 40.7+3.7Te 47.31+4.0e 37.4+4.4e
Cricket X 82.6+2.9] 53.0+4.5¢ 52.1 + 5.2¢ 44.4+ 5.4¢ 69.8+4.5¢ 69.91+4.0¢ 69.0-3.8¢ 63.6+4.5¢
Cricket Y 81.4+2.7| 52.9+4.2¢ 46.8 = 5.1¢ 45.4+ 6.1le 67.2+4.2¢ 67.4+3.8¢ 70.9+3.9¢ 60.4+t4.5¢
Cricket Z 83.0+2.9] 53.83+4.4e 51.4 &+ 5.1¢ 43.8+ 5.1e¢ 69.2+3.9¢ 69.0+-:3.3¢ 70.7+:3.8¢ 64.0+-4.2¢
ECGFiveD 99.0+0.8] 91.9+2.5¢ 98.74+0.7 53.44+ 4.8e¢ 97.5+1.2¢ 97.44+1.3¢ 94.8 - 4.8¢ 93.61+1.7Te
Haptics 46.6+4.6| 37.7+:5.6e 42.3+-5.6e 37.0+ 5.5¢ 43.0L£5.0e¢ 42.4+5.0e 42.21+4.9e¢ 40.81+-5.4e
InlineSkate 55.84+-3.7| 34.6+4.6e 445 + 4.7¢ 27.9+ 4.1e 45.0+4.8e¢ 45.4+3.9¢ 49.3+4.1e¢ 40.3+3.9¢
ItalyPower 95.6+1.2] 94.0+1.9¢ 95.1 £ 1.3 65.5+10.6e 94.9+1.5 95.0+1.3 95.3+1.8 95.84+1.2
Medicallmg81.2+2.4] 63.3+3.3e 69.6 + 2.9¢ 56.8+ 3.2¢ 69.7+3.0e 69.9+2.9¢ 72.2+3.1e¢ 68.5+3.3¢

AV Gy 76.8 ‘ 56.4 57.5 44.9 66.1 66.1 68.1 62.0
AVG 79.2 ‘ 68.3 68.7 59.6 75.1 74.8 74.5 71.2
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Table 7: Cross-validated classification accuracy of hw-kINN under several different selection strategies.
The model is trained on the prototype set only, which means that the biased hubness estimate is
used. o and e denote significantly better or worse result (p < 0.01) than hw-kNN with no instance
selection, trained on the entire training set, based on the corrected re-sampled z-test.

classifier: hw-kNN, hubness estimate: BIASED

Instance selection method

Data set None Random ENN RT3 CNN GCNN AL1 INSIGHT
iNet3 85.6+1.6| 79.94+3.0e 81.94+2.5¢ 52.3+6.2e¢ 76.6+3.1e¢ 81.2+2.9e 81.6+2.4e 80.5+ 1.5e
iNet4 69.5+1.4) 61.5+1.8e 63.94+1.3e¢ 41.6+3.2e¢ 65.9+1.4e 67.9+1.5¢ 63.4+1.60 63.5+ 1.6e
iNet5 67.2+1.4] 56.6+2.3e¢ 57.1+1.4e 25.4+4.3e 61.3+1.7e 63.1+1.3e 56.8+1.7e 58.4+ 1.4e
iNet6 67.84+1.5| 57.54+1.9e 56.0+1.6e 31.5+4.2e¢ 61.1+1.6e 62.4+-1.40 58.4+1.6e 56.54+ 1.8e
iNet7 64.3+1.1) 52.2+1.8e 40.8+1.3e¢ 36.5+3.1e¢ 55.1+1.5e 58.3+1.4e 48.9+1.8e 48.5+ 3.2e
AV Gy 70.9 ‘ 61.5 59.9 37.5 64.0 66.6 61.8 61.5

GM, 68.74+4.6| 52.3+4.5e 28.54+1.8e 12.0+1.5e¢ 45.1+4.7Te 69.2+3.8 31.4+3.3e¢ 30.0+ 4.9e
GM,; 64.4+4.9| 46.8+6.5e 32.9+22e 25.7+4.2e¢ 55.5+2.8e 62.4+4.2e¢ 31.51+3.2e¢ 38.3+ 4.5e
GM; 71.0+4.4| 54.8+6.60 48.9+2.8e¢ 13.6+4.1e 68.3+2.6e 63.8+2.9¢ 37.2+3.6e 52.3+ 7.2e
GM, 67.1+4.1) 47.7+5.3e 29.44+1.9e 16.4+2.Te 47.0+2.8e¢ 54.1+2.9e¢ 40.2+4.2¢ 31.3+ 3.2e
GMs 59.6+6.1| 41.3+6.7e 36.9+2.6e 87 +3.3e¢ 45.1+3.6e 58.2+5.0 21.0+2.2¢ 41.84+ 4.Te
GMg 66.94+5.1) 51.0+5.7e 22.24+1.7e 22.8+4.6e 45.5+3.0e 60.4+2.9e 44.24+4.7e 28.2+ 3.3e
GM; 69.0+5.5| 49.3+5.7¢ 10.0+0.7e 15.4+1.1e 23.6+3.7e 68.9+4.9 12.0+2.2¢ 11.6+ 1.3e
GM;g 61.7+6.4 48.4+6.3e 41.7+2.6e 16.2+3.6e 62.0+3.6 61.3£5.9 37.44+3.9e 51.1+ 4.6e
GMy 57.3+5.5| 41.5+5.4e 13.54+0.9¢ 12.3+2.9¢ 26.2+3.0e 57.0£4.7 17.5+1.6e 16.5+ 2.1e
GM,o 67.1+5.3| 47.7+6.7e 38.71+2.8e¢ 12.7+2.6e 58.6+3.4e¢ 66.3+4.5 28.6+4.0e 41.7+ 3.7e
AVGgn 65.3 ‘ 48.1 30.3 15.6 47.7 62.2 30.1 34.3

50words 79.7+3.2| 21.1+5.8e 29.84+5.3e¢ 10.9+4.5¢ 16.8+4.8e¢ 16.6+4.7Te 32.4+8.3e¢ 18.84+ 5.6e
Adiac 65.1+3.5| 8.4 +3.3e¢ 15.24+3.9e 52 +2.5e 12.9+4.0e 11.9+3.3¢ 11.0+4.7e¢ 7.9 + 3.5
Cricket X 82.842.9| 28.0+7.5¢ 56.5+5.1e¢ 15.9+5.3¢ 29.1+6.9¢ 29.94+7.0e 56.5+7.2e¢ 31.5+ 7.9e
Cricket Y 81.5+2.9] 30.5+6.3¢ 50.8+6.1e¢ 20.1+5.2e¢ 24.2+6.3e¢ 23.2+6.6e¢ 60.1+6.3¢ 31.2+ 8.2e
Cricket Z 83.14+2.8| 28.4+7.0e 67.5+4.5e 14.2+5.1e¢ 46.8+8.2¢ 49.14+8.3e¢ 56.3+7.7e¢ 35.8+ 6.9e
ECGFiveD 99.0+0.8) 88.7+3.5e¢ 94.9+9.1e¢ 50.1+3.9¢ 91.44+3.7¢ 90.9+4.2e¢ 96.4+1.7e 89.9+ 3.4e
Haptics 45.9+4.5| 30.6+5.7e¢ 38.6+5.1e¢ 28.8+5.7e 39.7+5.0e 39.94+5.1e 31.5+4.4e 33.4+ 6.6
InlineSkate 55.74+3.9| 27.0+4.8e 46.6+4.5¢ 20.7+4.5¢ 49.8+4.4e 49.2+4.5¢ 36.3+5.4e 33.3+ 4.6e
ItalyPower 95.54+1.2| 89.0+5.6e 95.2+1.4e 58.1+7.6e 88.8+4.5¢ 90.4+3.5¢ 92.6+2.0e 63.0+13.8e
Medicallmg80.94+2.4| 51.3+4.8e 70.4+3.2e¢ 41.7+4.3¢ 66.1+3.8e 66.1+4.1e 63.41+5.2e¢ 50.0+ 5.1e

AV Gy 76.9 ‘ 40.3 56.6 26.6 46.6 46.7 53.6 39.5
AVG 71.1 ‘ 47.7 46.7 24.4 50.5 56.9 45.8 41.8
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Table 8: Cross-validated classification accuracy of hw-kNN under several different selection strategies.
The neighbor occurrence profiles in the model are derived by observing the unrestricted prototype
occurrences on the entire training set, leading to an unbiased hubness estimate. o and e denote
significantly better or worse result (p < 0.01) than hw-kNN with no instance selection, trained on
the entire training set, based on the corrected re-sampled ¢-test. Accuracies higher than in the biased
case are given in bold.

classifier: hw-kNN, hubness estimate: UNBIASED

Instance selection method

Data set None Random ENN RT3 CNN GCNN AL1 INSIGHT
iNet3 85.6t1.6) 80.7+1.6e 83.6+t1.2¢ 49.3 £ 6.7¢ 82.8+1.6e 84.1+1.6e 82.9+1.5¢ 80.7+1.6¢
iNet4 69.5+1.4) 63.4+1.6e 66.4+1.2e¢ 42.7+3.1e¢ 68.3+1.2¢ 68.8+1.2 66.6+1.4¢ 63.6+1.7Te
iNet5 67.2+1.4) 58.9+1.5¢ 58.6+1.2¢ 24.4 + 3.9¢ 63.8+1.3e¢ 65.7+1.2¢ 61.3+1.7¢ 60.61+-1.2¢
iNet6 67.8+1.5| 59.7+1.5e¢ 58.6+1.4e¢ 32.9+2.9¢ 64.4+1.5¢ 65.7+1.2¢ 61.9+1.5¢ 58.0+-1.6e¢
iNet7 64.3+1.1] 55.1+1.4e¢ 41.4+1.3e¢ 37.0+3.5¢ 57.9+1.2¢ 60.3+1.1¢ 50.2+1.8¢ 48.7+3.3¢
AV Gipg 70.9 ‘ 63.6 61.7 37.2 67.5 68.9 64.6 62.3

GM, 68.7+4.6| 63.1+-3.3¢ 33.44+-2.3e¢ 12.5+1.6e 48.9t4.4e¢ 78.6+0.80 32.2+3.3e¢ 28.1 -4.4e
GM, 64.4+4.9] 58.3+5.1e¢ 37.4+2.6e 253 + 4.2¢ 59.4+2.3e 73.9+1.30 33.7+3.4¢ 45.1+5.6e
GM; 71.0+4.4) 66.1+:3.8¢ 56.7+2.9¢ 16.6+6.2¢ 71.9+2.1 70.94+1.8 39.54+:3.8e¢ 59.7+4.6¢
GMy 67.1+4.1] 57.3+4.5¢ 33.0+2.4¢ 164 + 3.1e 54.7+1.8¢ 61.5+1.9¢ 43.9+3.8¢ 38.1+4.6e
GMs 59.6+6.1| 58.8+3.5 45.0+2.2e¢ 6.3 + 1.8¢ 54.44+3.6e 75.54+1.00 24.1+2.1e 49.21+3.6e
GMg 66.9+5.1| 61.9+-3.9¢ 24.9+1.8¢ 24.9+5.8¢ 47.3+3.1¢ 69.6+1.40 45.9+4.8e¢ 31.61+-3.4e
GM; 69.0+£5.5| 61.4+5.4e 11.5+0.6e 16.4+1.2¢ 27.3+3.0e 79.6+0.90 15.3+2.4¢ 13.6+1.6e
GMg 61.7+6.4) 60.4+4.6 49.2+2.0e 22.8+4.8¢ 73.3+2.00 76.1+1.20 39.9+3.9¢ 57.4+3.1e
GMy 57.3+5.5| 52.5+4.1e¢ 15.4+0.9e¢ 13.2+3.1¢ 31.94+3.2¢ 70.3+1.00 17.9+1.8e¢ 17.5+1.8e
GMo 67.1+£5.3| 63.9+-5.4e¢ 44.74+3.0e 13.3+1.9¢ 67.9+2.4 80.4+0.90 34.1+3.6e¢ 50.21+4.Te
AV G 65.3 60.4 35.1 16.8 53.7 73.7 32.6 39.0

50words 79.7+3.2] 21.6+5.7Te 29.2 + 4.9e 10.2 +4.4e 16.5 + 4.60 17.5+4.9¢ 32.54+8.2e¢ 17.7 +6.9e
Adiac 65.1+£3.5| 83 £4.0e 14.9 £ 4.5e¢ 4.8 + 2.5 13.0+3.9¢ 13.0+3.7e¢ 10.6 = 5.8¢ 9.6 +4.0e
Cricket X 82.84+2.9| 27.4 + 7.4e 58.1+5.4e 14.7 + 5.6 29.24+7.3¢ 29.7 6.1 55.4 + 7.8e¢ 31.7+8.Te
Cricket Y 81.54+2.9| 33.2+7.2e¢ 52.7+5.3¢ 20.6+:6.00e 24.94+6.7¢ 23.84+-5.9¢ 58.9 + 6.7¢ 32.41+8.4¢
Cricket Z 83.1+2.8) 28.4+7.3e¢ 67.2 + 4.8¢ 14.2 +4.2¢ 47.94+8.6¢ 49.3+9.4e 55.8 + 7.2¢ 35.2 + 7.9e
ECGFiveD 99.04+0.8| 87.9 = 3.9¢ 98.7+0.8 52.5+4.9¢ 91.0 = 3.9¢ 90.4 + 4.0 96.3 + 1.8e 89.5 + 3.0e
Haptics 45.9+4.5| 32.1+5.9¢ 39.94+4.9¢ 25.2 £ 53¢ 40.9+t4.9e¢ 39.8 £ 5.0 31.3 + 4.3¢ 34.91+-6.4e
InlineSkate 55.7+3.9| 27.0+5.2¢ 45.6 + 4.3 20.9+3.9¢ 48.8 + 4.4e¢ 50.3+4.5¢ 34.5 + 5.7e¢ 33.0 + 4.8e
ItalyPower 95.5+1.2| 90.8+3.0e 95.0 £ 1.3 59.0+8.1e¢ 90.1+3.7e¢ 91.6+2.Te 91.6 + 2.5¢ 91.4+2.9e
Medicallmg80.9+2.4| 50.9 + 5.0 70.2 + 3.1e 42.7+4.5e¢ 65.6 + 3.6 66.0 + 3.7e 61.5 + 4.8 51.24+4.7e

AV Gy 76.9 ‘ 40.7 57.2 26.5 46.8 47.1 52.9 42.7
AVG 71.1 ‘ 53.2 49.3 24.8 53.7 62.1 47.1 45.1
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Table 9: Cross-validated classification accuracy of h-FNN under several different selection strategies.
The model is trained on the prototype set only, which means that the biased hubness estimate is
used. o and e denote significantly better or worse result (p < 0.01) than h-FNN with no instance

selection, trained on the entire training set, based on the corrected re-sampled z-test.

classifier: h-FNN, hubness estimate: BIASED

Instance selection method

Data set None Random ENN RT3 CNN GCNN AL1 INSIGHT
iNet3 84.4+1.5| 79.3+1.8e¢ 81.6+1.6e 51.7+6.3e¢ 80.1+1.7e¢ 81.1+1.7e 81.7+1.6e 80.3+1.6e
iNet4 68.6+1.4] 62.2+1.3e 65.3+1.2¢ 42.8+3.0e 67.0+1.3e 67.84+1.4 65.9+1.3e 63.6+1.5e
iNet5 66.5+1.7| 57.9+1.6e 55.9+1.6e 25.4+4.5¢ 61.6+1.60 63.9+1.1e¢ 58.9+1.5e 58.5+1.4e
iNet6 66.9+1.5| 58.1+1.6e 60.8+1.5e¢ 31.7+4.4e 60.9+1.4e 62.7+1.3e 61.1+1.3e¢ 57.5+1.5e
iNet7 62.74+1.1] 53.3+1.3e 42.9+1.5e¢ 37.1+3.Te 56.2+1.2e¢ 59.2+1.2e¢ 50.6+1.6e 49.6+2.5e
AV Gipg 69.8 ‘ 62.2 61.3 37.4 65.2 66.9 63.6 61.9

GM, 78.84+3.0| 68.4+3.2e 34.94+3.2e¢ 14.3+1.5e¢ 54.0+5.1e¢ 79.0£1.7 36.6+3.9e 33.6:6.7e
GM, T7.7+£2.4| 62.1+5.6e 44.0+3.1e 24.9+4.5e¢ 68.1+1.9e¢ 77.24+1.5 36.91+3.9e¢ 47.4+5.8e
GM; 82.7+1.7| 66.6+-4.6e 64.1+3.7e¢ 16.0+5.30 74.3+1.7e 74.0+1.6e 43.9+4.3e¢ 61.8+5.9e
GMy 79.9+1.6| 62.54+3.9¢ 34.04+2.7¢ 20.2+3.1e¢ 60.7+2.6e 67.0+2.4¢ 46.9+5.3e 33.11+4.7Te
GM;s 76.2+3.4] 62.2+5.4e 53.6+2.8e¢ 8.8 +3.3e¢ 60.844.2¢ 76.04+3.2 28.0+1.7e 53.2+3.9e
GMg 80.8+2.4| 65.4+4.0e 31.3+1.6e 21.0+5.7e 49.9+3.7e 68.64+1.7e 53.9+5.1e 34.1+4.3e
GM; 80.7+4.5| 67.6+6.0e 11.7+1.0e 16.6+1.3e 23.4+3.5e¢ 81.24+3.5 12.7+2.3e¢ 13.3+1.2¢
GMg 76.6+4.3| 64.1+4.8¢ 58.0+2.1e 19.2+4.4e 74.3+2.0 783+2.6 42.5+5.3e 61.8+2.5e
GMy 75.0£3.3| 60.1+4.4e¢ 13.9+1.0e 15.3+3.1e¢ 35.0+3.6e 75.7+3.0 18.8+2.0e 17.1+2.8e
GM 80.1+3.5| 65.1+6.6e 56.2+4.6e 14.3+3.2e¢ 67.6+2.2e¢ 79.5+3.4 35.5+4.9¢ 51.8+5.8e
AV G 78.9 64.4 40.2 17.1 56.8 75.7 35.6 40.7

50words 78.3+3.1| 21.4+6.0e 35.7+5.6e 12.9+4.8e¢ 15.9+3.7e 15.6+4.1e¢ 35.0+7.8e 21.9+5.6e
Adiac 62.4+3.7| 7.3 +3.2¢ 15.1+3.7e¢ 5.0 +2.6e 10.9+3.7¢ 9.8 +2.9e 10.2+4.0e 7.9 +£3.5e
Cricket X 78.943.1| 24.94+6.9¢ 53.5+5.7¢ 16.0+5.4e¢ 23.8+6.0e 24.7+6.5¢ 56.0+-7.5e 27.7+8.0e
Cricket Y 80.14+2.7| 28.9+6.1e¢ 57.9+6.7e¢ 20.2+5.5¢ 20.6+6.1e¢ 18.9+54e 59.0+5.9e 32.0+7.2e
Cricket Z 81.942.8| 26.3+6.3e 66.4+4.7Te 14.4+4.6e 37.8+6.9¢ 40.64+6.9¢ 57.31+-7.2e¢ 33.4+6.9e
ECGFiveD 98.6+0.9] 87.9+3.7¢ 98.6+0.9 49.9+4.7e 66.4+5.3e 71.8+5.3e¢ 95.84+-1.9e¢ 89.1+3.7e
Haptics 45.44+4.5] 29.7+5.9¢ 40.9+5.1e¢ 30.9+6.0e 37.0+4.6e 36.9+4.7e¢ 32.1+5.0e 35.7+6.3e
InlineSkate 52.84+3.5| 24.1+5.00 46.7+4.7e¢ 21.1+4.3e¢ 43.9+4.5¢ 43.8+4.5¢ 37.7+5.7e 30.5+4.5e
ItalyPower 95.34+1.4| 90.7+3.7¢ 95.3+1.4 59.6+9.1e¢ 86.3+4.6e 88.3+4.4e 93.1+1.8e¢ 93.3+2.0e
Medicallmg80.44+2.4| 52.5+4.3e 71.9+3.1e 43.2+4.4e 62.0£4.00 62.5+3.68 64.7+4.5e¢ 52.9+4.5e
AV Gy 78.4 ‘ 39.4 58.2 27.3 40.5 41.3 54.1 42.4

AVG 76.9 ‘ 54.0 51.6 25.2 52.0 60.2 48.6 45.6
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Table 10: Cross-validated classification accuracy of h-FNN under several different selection strategies.
The neighbor occurrence profiles in the model are derived by observing the unrestricted prototype
occurrences on the entire training set, leading to an unbiased hubness estimate. o and e denote
significantly better or worse result (p < 0.01) than h-FNN with no instance selection, trained on the
entire training set, based on the corrected re-sampled z-test. Accuracies higher than in the biased
case are given in bold.

classifier: h-FNN, hubness estimate: UNBIASED

Instance selection method

Data set None Random ENN RT3 CNN GCNN AL1 INSIGHT
iNet3 84.4+1.5] 79.6t1.6e 83.6+1.3 T77.7+ 1.8¢ 81.1+1.6e 83.1+1.7e¢ 81.6 &= 1.4 80.3 &= 1.4e
iNet4 68.6+1.4) 63.5+1.3¢ 66.4+1.1e¢ 61.7+ 1.3e¢ 67.5+1.2¢ 68.0+1.2 66.3+1.3¢ 64.91+1.2e
iNet5 66.5+1.7 60.3t1.2¢ 63.8+1.3¢ 54.9+ 1.3e¢ 64.91+1.2¢ 65.9+1.2 62.9+1.4¢ 61.41+1.2¢
iNet6 66.9+1.5| 59.9+1.1e¢ 64.5+1.3e 33.2+ 3.3¢ 65.2+1.5¢ 66.1+1.2¢ 63.3+1.5¢ 61.31+1.1e
iNet7 62.7+t1.1] 56.9+1.0e 59.2+0.9¢ 38.8+ 3.6e¢ 61.3+1.0e¢ 62.3+1.0 59.8+1.1e¢ 57.3+1.0e
AV Gipg 69.8 ‘ 64.1 67.5 53.3 68.0 69.1 66.8 65.0

GM, 78.843.0] 76.5+0.8¢ 77.3+0.9¢ 68.7+ 1.0e¢ 84.240.70 83.5+0.70 79.7+0.80 78.0+0.9
GM, T7.7+2.4| 73.3+1.2¢ 74.9+1.1e¢ 73.2+ 1.4e¢ 82.7+0.90 82.2+0.80 78.1+0.9 76.0t1.1e
GM; 82.7+1.7 7T7.9+1.2¢ 79.6+1.0e 68.9+ 2.1e¢ 85.5+0.90 86.0+0.90 82.14+0.9 79.3+1.0e
GMy 79.9+1.6| 73.4+0.9¢ 75.7+0.8¢ 67.5+ 1.4e¢ 82.7+0.7T0o 82.8+0.80 78.0+0.8¢ 76.2+0.9¢
GMs 76.2+3.4] 73.0+1.0e 73.8+0.9¢ 59.1+ 2.1e¢ 83.2+0.80 82.2+0.80 76.7+0.9 76.1+0.9
GMg 80.8+2.4| 77.2+1.1e 78.3+0.9¢ 74.6+ 1.9¢ 84.8+0.70 85.4+0.80 81.6+0.8 79.7+0.9e
GM; 80.7+4.5| 80.2+0.8 80.8+0.7 69.5+ 1.2e¢ 86.8+0.60 86.8+0.60 83.6+0.70 83.2+0.60
GMg 76.6+4.3] 75.6+t1.0 74.2+1.0e¢ 68.0+ 1.9e¢ 84.0+0.90 84.0+0.80 78.4+1.10 76.5+1.1
GMy 75.0+3.3| 72.7+1.2¢ 70.7+0.9¢ 61.9+ 1.1e¢ 81.5+0.80 79.8+0.70 76.2+0.9 73.4+0.9e
GM; 80.1+3.5| 79.0+1.0e 79.3+0.9 65.7+ 1.2e¢ 86.0+0.70 85.5+0.80 81.3+0.80 79.6+0.9
AVGgm 78.9 75.9 76.5 67.7 84.1 83.8 79.6 77.8
50words 78.3+3.1| 20.9 + 5.6 65.5+3.4¢ 54.4+ 3.6e¢ 68.8+3.2¢ 69.01+3.Te 74.5+3.4¢ 62.5+3.3¢
Adiac 62.4+3.7 8.1 +4.0e 50.91+4.0e 32.2+ 4.3¢ 52.8+3.8¢ 53.1+3.4¢ 56.8+3.5¢ 44.81+-4.0e
Cricket X 78.9+3.1] 27.1+7.4e 71.3+3.5¢ 45.3+ 6.1e¢ 72.1+4.3e¢ 72.6+3.6e 75.2+3.1e 65.T+4.1e
Cricket Y 80.1+2.7| 32.1+7.2¢ 72.0+3.5¢ 47.5+ 5.8¢ 71.9+3.6e¢ 71.4+3.0e¢ 75.9+3.4¢ 62.4+4.0e
Cricket Z 81.94+2.8] 27.9+7.3e¢ 74.9+3.3e¢ 44.9+ 5.5¢ 73.6+3.2¢ 73.9+3.2¢ 75.9+3.2¢ 65.4+4.0e
ECGFiveD 98.6+0.9] 87.4 4+ 4.0e 98.4 0.8 52.0+ 4.7e¢ 97.7+1.1e¢ 97.7+1.1¢ 98.24+0.9 93.6+1.7e
Haptics 45.4+4.5| 31.7+6.0e 44.6+5.5 31.3+ 5.0 42.3+5.1e¢ 42.4+5.5¢ 43.41+4.Te 43.31+5.Te
InlineSkate 52.84+3.5| 26.7+5.1e¢ 48.9+t4.4e¢ 26.9+ 4.2e¢ 50.9+4.4e¢ 51.4+4.6e 51.9+4.3¢ 42.54+3.9¢
ItalyPower 95.3+1.4] 90.4 + 3.0e¢ 95.1 £ 1.3 60.6+10.3¢ 95.0+1.4 95.0+1.3 95.8+1.3 95.9+1.2
Medicallmg80.4+2.4| 50.9 + 5.0 76.6+2.5¢ 59.0+ 3.4e¢ 75.9+2.6e¢ 75.7+3.0e¢ 76.4+2.4¢ 69.7+3.2¢

AV Gy 78.4 ‘ 40.3 69.8 45.4 70.1 70.2 72.4 64.6
AVG 76.9 ‘ 59.3 72.0 55.9 75.3 75.4 74.2 70.0
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Figure 25: The accuracy improvement in hubness-aware k-nearest neighbor classification under in-
stance selection with unbiased hubness estimates when compared to the baseline case where no
selection was done (i.e. where the model was trained on the entire training set). The average bi-
ased accuracy over GM| — GMjq is much smaller in every case, merely 56.7% for NHBNN, 62.2%
for hw-kNN and 56.8% for h-FNN. This shows how the unbiased hubness estimate might in some
cases entirely prevent a decrease in model performance and even lead to better and more robust
classification models.
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2.2.4 Hubs in Class Imbalanced Data and the Robustness of Hubness-
aware Classification

Learning under class imbalance is an important problem in supervised and unsupervised
learning methods [Holte et al., 1989]. The relative difference in class densities in borderline
regions might induce severe misclassification. The minority classes are under-represented
and more difficult to model.

In this section the role of hubs under the assumption of class imbalance is investi-
gated [Tomasev and Mladenié¢, 2013]. It will be shown that high-dimensional data exhibit
some surprising properties that need to be taken into account. Even though hubness and
class imbalance seem to be unrelated phenomena, there is some interplay in the difficulties
they pose for the k-nearest neighbor classifiers. Apart from analyzing the connections be-
tween class imbalance and hubness, this Section also deals with the overall robustness of the
proposed hubness-aware approaches. The results are reported for the analysis under severe
mislabeling rates and significant class overlap.

Many standard classifiers are not very effective when dealing with class imbalanced
data. Algorithms which induce classification models usually adopt the maximum generality
bias [Holte et al., 1989]. Data sets with significant class imbalance often pose difficulties for
learning algorithms [Weiss, 2004], especially those with high generality bias. Such algorithms
tend to over-generalize on the majority class, which in turn leads to a lower performance on
the minority class. Designing good methods capable of coping with highly imbalanced data
still remains a daunting task. In contrast, the k-nearest neighbor classifier exhibits high
specificity bias, since it retains all the examples. The specificity bias is considered a desired
property of algorithms designed for handling highly imbalanced data. Not surprisingly, KINN
has been advocated as one way of handling such imbalanced data sets [van den Bosch et al.,
1997][Holte et al., 1989]. As the extensions of kNN are frequently used in class imbalanced
classification scenarios, examining the role of hubs in such classification seems to be quite
relevant.

Certain concerns have recently been raised about the applicability of the basic kNN ap-
proach in imbalanced scenarios [Garcia et al., 2008][Hand and Vinciotti, 2003]. The method
requires high densities to deliver good probability estimates. These densities are often closely
related to class size, which makes kNN somewhat sensitive to the imbalance level. The dif-
ference among the densities between the classes becomes critical in the overlap regions. Data
points from the denser class (usually the majority class) are often encountered as neighbors
of points from the less dense category (usually the minority class). In high-dimensional
data, the task is additionally complicated by the well-known curse of dimensionality.

The problem of learning from imbalanced data has recently attracted attention of both
industry and academia alike. Many classification algorithms used in real-world systems
and applications fail to meet the performance requirements when faced with severe class
distribution skews [He and Garcia, 2009][Fernandez et al., 2011] and overlapping data
distributions [Prati et al., 2004]. Various approaches have been developed in order to deal
with this issue, including some forms of class under-sampling or over-sampling [Chawla et
al., 2002][He et al., 2008][Liu et al., 2006][Zhang and Mani, 2003][Batista et al., 2004][Kubat
and Matwin, 1997], misclassification cost-sensitive techniques [McCarthy et al., 2005][Zhou
and Liu, 2006][Ting, 2002], decision trees [Liu et al., 2010], kernel methods [Wu and Chang,
2005][Hong et al., 2007] or active learning [Ertekin et al., 2007b][Ertekin et al., 2007a].

As mentioned before, high specificity bias makes kNN one of the prime candidates for
various extensions aimed at handling imbalanced data. Probably the simplest way of intro-
ducing some imbalanced class distribution awareness is to assign some appropriate instance
weights [Tan, 2005a][Wang et al., 2010b]. This hopes to compensate for the minority class
being under-represented in the data by assigning higher voting weights to its members. Such
tweaks are of limited scope, especially as it is known that classifier performance mostly de-
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pends on the class imbalance in the overlap regions, which does not directly correspond to
the overall imbalance used to generate the instance weights. Moreover, the degree of im-
balance can vary across different class borders, rendering such a unified correction severely
flawed. Some other approaches seem to be more promising, as for instance the examplar-
based kNN [Li and Zhang, 2011]. It introduces the concept of detecting pivot minority
points, which are then expanded to Gaussian balls. This makes pivot points closer to other
minority class examples, hence improving the classification. Another interesting research
direction has been outlined in [Liu and Chawla, 2011], where the authors argue that the
problem in handling imbalanced data with kNN arises from trying to estimate prior class
probabilities in points of interest. They suggest that a more complex probabilistic model
built on neighbor attributes might be able to circumvent some of the difficulties that are fre-
quently encountered with prior estimates. Nearest-neighbor methods have also occasionally
been used for oversampling/undersampling, as in [Zhang and Mani, 2003].

2.2.4.1 Bad Hubness Under Class Imbalance: the Hypothesis

The usual interpretation of the bad influence of imbalanced data on kNN classification is that
the majority class points would often become neighbors of the minority class examples, due
to the relative difference in densities between different categories. As neighbors, they would
often cause misclassification of the minority class. Consequently, the methods which are
being proposed for imbalanced data classification and are focused primarily on rectifying this
by improving the overall classifier performance on the minority class. Naturally, something
has to be sacrificed in return and usually it is the recall of the majority class.

This is certainly reasonable. In many real-world problems the misclassification cost is
much higher for the minority class. Some well-known examples include cancer detection, oil
spill recognition, earthquake prediction, terrorist detection, etc. However, things are not so
simple as they might seem. Often enough, the cost of misclassifying the majority class is
almost equally high. In fraud detection [Ezawa et al., 1996][Ezawa and Schuermann, 1995],
accusing innocent people of fraud might lose customers for the companies involved and incur
a significant financial loss. Even in breast cancer detection it has recently been shown that
the current diagnostic techniques lead to significant over-diagnosis of cancer cases [Kalager
et al., 2012]. This leads to many otherwise healthy women being admitted for treatment
and subjected to various drug courses and/or operating procedures.

The extreme pathological case of major bad image hubs arising from careless data pre-
processing that was described in [Tomasev et al., 2011a] already shows how things may go
awry if the minority instances turn into bad hubs. In that particular case, the culprit was
‘noise’, i.e. the feature extraction system which failed to output representations for the five
images in question, as well as the data preparation/preprocessing module which failed to
anticipate such a possibility. So, we might be inclined to think that if there is no noise in
the data, all is fine. Such thinking is, in fact, highly misleading.

What that example strongly suggests is that when we are dealing with high-dimensional
data, we should actually be more concerned about the minority class hubs causing misclas-
sification of the majority class points instead of the other way around. This is exactly the
opposite of what most imbalanced data classification algorithms are trying to solve. It is a
very important observation, especially because most of the data that is being automatically
processed and mined is in fact high-dimensional and exhibits hubness, whether it is text, im-
ages, video, time series, etc. [Radovanovi¢ et al., 2009][Radovanovi¢ et al., 2010a][Tomasev
et al., 2011a][Radovanovi¢ et al., 2010]

Such a phenomenon is easy to overlook, as it is highly counterintuitive. In lower dimen-
sional data, most misclassification in imbalanced data sets occurs in border regions where
classes overlap and have different densities. Naturally, the class with a lower local density
(which is usually the minority class) gets misclassified more often. This intuition breaks due



108 Hubness-aware Algorithms

to the influence of curse of dimensionality. All data is sparse, distances concentrate, and
most importantly - most misclassification is caused by bad hubs.

X, occurrence profile
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Xn .
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., @
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Figure 26: An illustrative example. x;, is a hub, neighbor to many other points. There is a certain
label distribution among its reverse nearest neighbors, defining the occurrence profile of x;. It is
obvious that most damage would be done to the classification process by x;, if it were to share the
label of the minority part of its reverse neighbor set. On average, we would expect this to equal the
overall minority class in the data. This suggests that minority hubs might have a higher average
tendency to become bad hubs and that this might prove to be, in general, quite detrimental to
classifier performance.

At first glance, it might not be clear how this changes the rules of the game, but the key
lies hidden in understanding the mechanisms behind the hubness phenomenon. [Radovanovié
et al., 2009][Radovanovi¢ et al., 2010a][Radovanovié et al., 2010b] As we have mentioned
earlier, general hubness of the data arises from its intrinsically high dimensionality and is ei-
ther enhanced or diminished by the particular choice of feature representation and similarity
measure. What this means is that the hubness of particular points has a geometric inter-
pretation rather than a strictly semantic one. In fact, bad hubs are by their very definition
points where the semantics of the nearest-neighbor relation is most severely compromised
and the similarity measure fails to capture the intended semantic similarity between neigh-
bor points. The more compromised the semantic relation is, the more the occurrence profile
of bad hubs tends to take shape of either the global prior class distribution or some local
prior distribution.

Of course, as misclassification in nearest-neighbor methods is caused exclusively by label
mismatch in neighbor-sets, 1-NN misclassification rate for a particular hub-point is trivially
maximized if its label matches the minority class in its occurrence profile. This is illustrated
in Figure 26. In the more general case of kNN, this claim does not necessarily hold in every
point (as a single bad occurrence does not always entail misclassification), but it should hold
on average. Due to the very nature of hubness, we would expect that the minority class in
the occurrence profile would quite often match the overall minority class in the data.

2.2.4.2 Data and the Experimental Setup

In order to test the above stated hypotheses, an extensive experimental evaluation was per-
formed. In our experiments we have used both low hubness data sets (mostly balanced) and
high-hubness image data sets (mostly imbalanced). The former were taken from the UCI
repository (http://archive.ics.uci.edu/ml/datasets.html), the latter from the ImageNet pub-
lic collection (http://www.image-net.org/). The image data was represented as a quantized
SIF'T representation extended by a color histogram. More details can be found in [Tomasev
et al., 2011b][Tomasev et al., 2011a].

From the first five image data sets a random subset of instances was removed from all
the minority classes in order to make the data even more imbalanced for the experiments.
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The relevant properties of the data sets are given in Table 11. The listed UCI data sets were
mostly not imbalanced and we included them in Table 12 for later tests involving induced
mislabeling in determining the robustness of the hubness-aware approaches.

Table 11: Summary of data sets. Each data set is described by the following set of properties:
size, number of features (d), number of classes (c), skewness of the 5-occurrence distribution (Sys),
the percentage of bad 5-occurrences (BNs), the degree of the largest hub-point (maxNs), relative
imbalance of the label distribution (RImb) and the size of the majority class (p(cum))

Data set size. d C Sy, BNs maxNs RImb p(cy)
diabetes 768 8 2 0.19 323% 14 0.30 65.1%
ecoli 336 7 8 0.15 20.7% 13 041 42.6%
glass 214 9 6 0.26 25.0% 13 0.34 35.5%

iris 150 4 3 032 55% 13 0 33.3%
mfeat-factors 2010 216 10 0.83 7.8% 25 0 10%
mfeat-fourrier 2000 76 10 0.93 19.6% 27 0 10%
ovarian 2534 72 2 0.50 15.3% 16 0.28 64%

segment 2310 19 7 0.33 53% 15 0 14.3%
sonar 208 60 2 1.28 21.2% 22 0.07 53.4%
vehicle 846 18 4 0.64 359% 14 0.02 25.8%
iNet3 2731 416 3 8.38 21.0% 213  0.40 50.2%
iNet4 6054 416 4 7.69 40.3% 204 0.14 351%
iNet5 6555 416 5 14.72 44.6% 469  0.20 32.4%
iNet6 6010 416 6 8.42 434% 275 0.26 30.9%
iNet7 10544 416 7 7.65 46.2% 268  0.09 19.2%
iNet3Imb 1681 416 3 348 17.2% 75 0.72 81.5%
iNet4Imb 3927 416 4 7.39 382% 191  0.39 54.1%
iNet5Imb 3619 416 5 9.35 41.4% 258 0.48 58.7%
iNet6Imb 3442 416 6 4.96 41.3% 122 0.46 54%
iNet7Imb 2671 416 7 6.44 42.8% 158 0.46 52.1%

Some experiments on synthetic Gaussian data were also performed and the details are
available in Section 2.2.4.4.

All classification tests were performed as 10-times 10-fold cross-validation. Corrected
re-sampled t-test was used to detect statistical significance. Manhattan metric was used in
all real-world experiments, while the Euclidean distance was used for dealing with Gaussian
mixtures. All feature values in UCI and ImageNet data were normalized to the [0,1] range.
All the hubness-aware algorithms were tested under their default parameter configurations.

2.2.4.3 The Curse of Minority Hubs

While analyzing the connection between hubness and class imbalance we will focus on the
image datasets shown in the lower half of Table 11. To measure the imbalance of a particular
dataset, we will observe two quantities: p(cp), which is the relative size of the majority class
- and relative imbalance (RImb) of the label distribution which we define as the normalized
standard deviation of the class probabilities from the absolutely homogenous mean value
of 1/c for each class. In other words, RImb = /(¥ .cc (p(c) —1/C)?)/((C—1)/C)). In our
experiments we will not be dealing with binary imbalanced data (one very frequent majority
class, one very rare minority class), so by this measure we are trying to quantify imbalance
in class distribution in a more general sense.

Class-to-class k-occurrence matrices are an excellent way to gain a quick insight into
the kNN structure of the data. We will discuss one such matrix for iNet7Imb data set in
Table 13. Each row contains average outgoing hubness from one category to another. Each
column contains expressed hubness towards a particular category by all other classes in the
data. On the diagonal we are able to see the percentage of occurrences of points from each
category in neighborhoods of points from the same category (i.e. good hubness). We see
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Table 12: Experiments on UCI and ImageNet data. Classification accuracy is given for kNN, hubness-
weighted kNN (hw-kNN), hubness-based fuzzy nearest neighbor (h-FNN), naive hubness-Bayesian k-
nearest neighbor (NHBNN) and hubness information k-nearest neighbor (HIKNN). All experiments
were performed for k =5. The symbols e/o denote statistically significant worse/better performance
(p < 0.05) compared to kNN. The best result in each line is in bold.

Data set kNN hw-kNN h-FNN NHBNN HIKNN
diabetes 67.8 £3.7 756 £ 370 754 4+ 320 739 £ 340 75.8 +£3.60
ecoli 82.7 +£42 8.9 £ 410 87.6 +4.10 8.5 £ 410 870 =+ 4.00
glass 61.5 +73 658 £ 6.7 672 4+ 700 59.1 £ 75 67.9 £ 6.7o0
iris 95.3 + 4.1 95.8 £3.7 953 4+ 3.8 956 + 3.7 954 £ 3.8
mfeat-factors 94.7 4+ 1.1 96.1 + 0.8 0 959 £ 0.8 0 957 + 080 96.2 + 0.8 o
mfeat-fourier 77.1 4+ 2.2 81.3 + 1.8 0 82.0 =+ 1.60 82.1 +1.7T0 82.1 + 1.70
ovarian 914 +36 925 £ 35 932 4+ 35 935 + 3.3 93.8 £+ 2.9
segment 876 + 15 882 £ 1.3 888 £+ 130 878 £ 1.3 91.2 +1.10
sonar 82.7 =55 834 £ 53 8.0 + 58 81.1 £+ 56 853 =+ 5.5
vehicle 62.5 + 3.8 6569 £ 320 649 4+ 36 63.7 £ 35 67.2 +3.60
iNet3 72.0 4+ 2.7 80.8 4+ 230 82.4 £ 2.20 81.8 4+ 230 822 £ 200
iNet4 56.2 +£20 633 £ 190 65.2 +£1.7T0 646 £ 190 647 £ 190
iNeth 46.6 + 2.0 563 £ 1.70 61.9 +=1.7T0 61.8 £ 1.90 60.8 =+ 190
iNet6 60.1 +£22 681 £ 160 69.3 4+ 1.70 694 £ 1.70 69.9 £+ 1.90
iNet7 434 + 1.7 551 £ 150 59.2 £1.50 582 £ 150 569 =+ 160
iNet3Imb 72.8 +24 877 £ 1.70 876 £ 160 84.9 + 190 88.3 £ 1.6o0
iNet4Imb 63.0 +£1.8 688 £ 150 699 4+ 140 694 £ 150 70.3 £ 140
iNet5Imb 59.7 £ 15 639 £ 1.80 647 + 1.80 63.9 £ 1.80 65.5 + 1.80
iNet6Imb 624 + 1.7 69.0 £ 1.70 70.9 +1.80 684 + 1.80 70.2 =+ 180
iNet7Imb 55.8 £ 22 634 £ 200 641 4+ 230 63.1 £ 210 64.3 £+ 2.10
AVG 69.77 75.40 76.38 75.23 76.75

that in iNet7Imb the majority class has highest relative good hubness. It also seems that
most of the bad hubness expressed by the minority classes is directed towards the majority
class. We can see this more clearly by observing the graph of incoming hubness (i.e. visualize
Table 13 column by column). This is displayed in Figure 27. So it seems that, at least in
this particular image data set, most bad hubness is generated by the minority classes and
most of this bad influence is directed towards the majority class (cb).

Table 13: Class-to-class hubness between different classes in iNet7Imb for k = 5. Each row contains
the outgoing occurrence rate towards other categories. For instance, in the first row we see that only
56% of all neighbor occurrences of points from the first class are in the neighborhoods of elements
from the same class. The diagonal elements (self-hubness) are given in bold, as well as the majority
class.

ple)l ¢l ¢2 3 ¢4 b 6 7
c1/0.05|0.56 0.05 0.04 0.12 0.11 0.05 0.07
c2(0.080.05 0.48 0.11 0.03 0.17 0.09 0.07
c3/0.05/0.06 0.14 0.32 0.06 0.25 0.12 0.05
c4/0.080.04 0.06 0.04 0.62 0.15 0.02 0.07
¢5(0.52|0.01 0.02 0.02 0.01 0.85 0.08 0.01
c6/0.17/0.05 0.07 0.05 0.01 0.39 0.42 0.01
c7(0.05/0.02 0.10 0.02 0.05 0.13 0.02 0.66

Even though misclassification is induced by the cumulative influence of various sorts of
bad hubness, the two are not the same and not even necessarily highly correlated when
k > 1, even though we would expect to see strong correlation in most real-world data sets.
Any single bad occurrence does not entail misclassification. For misclassification to occur
in kNN, a majority of neighbors must belong to a particular class which does not match the
label in the point of interest. So, for k =35, even if the point x had two neighbors with the
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correct label and three other neighbors with incorrect labels - but each having a different
one - the point x would be properly classified by kNN even though most of its neighbors
do not share its label. Therefore, it is not sufficient to check the incoming and expressed
hubness distributions, one must also take into account the kNN confusion matrix. The
confusion matrix for iNet7Imb data is given in Table 14, generated by averaging after 10
runs of 10-fold cross-validation.
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Figure 27: The incoming hubness towards each category expressed by other categories in the data
shown for iNet7Imb data set. The 7 bars in each group represent columns of the class-to-class k-
occurrence Table 13. Neighbor sets were computed for k =5. We see that most hubness expressed
by the minority classes is directed towards the majority class. This gives some justification to our
hypothesis that in high-dimensional data with hubness it is mostly the minority class instances that
cause misclassification of the majority class and not the other way around.

Table 14: The average 5-NN confusion matrix for iNet7Imb data after 10-times 10-fold cross-
validation. Fach row displays how elements of a particular class were assigned to other classes
by the 5-NN classifier. The overall number of false negatives (FN) and false positives (FP) for each
category is calculated. The results for the majority class are in bold.

p(c)| ¢l 2 3 4 ch c6 c7| FN
c1/0.05]429 135 3.8 11.8 6.2 60.7 1.1| 97.1
c2/0.08|22.8 48.0 153 89 54.9 77.1 0.0|179.0
c3/0.05| 89 21.0 13.0 3.3 25.6 552 0.0|114.0
c4/0.08/44.0 6.0 2.0 100.5 15.5 43.0 0.0]|110.5
¢5|0.52|78.5 36.7 25.9 21.9 1028.1 200.9 0.0{363.9
c6/0.17(16.9 19.1 10.2 4.3 142.9 254.6 0.0|193.4
c7(0.06]179 83 6.1 121 41.0 369 3.7|1223
FP |189.0 104.6 63.3 62.3 286.1 473.8 1.1

Several things in Table 14 are worth noting. First of all, the majority class FP rate is
lower than its FN rate, which means that more errors are made on average by misclassifying
the majority class points than by misclassifying the minority class points into the majority
class. Also, the highest FP rate is not achieved by the majority class, but rather by one of
the minority classes - ¢6. Both of these observations are very important, as we have already
mentioned that there are various scenarios where the cost of misclassifying the majority
class points is quite high. [Ezawa et al., 1996][Ezawa and Schuermann, 1995|[Kalager et al.,
2012]

The previously discussed correlation between relative class size and bad hubness can be
established also by inspecting a collection of imbalanced data sets (iNet3Imb-iNet7Imb) at
the same time. Pearson correlation between class size and class-specific bad hubness is —0.76
when taken for k = 5. This implies that there might be a very strong negative correlation
between the two quantities and that the minority classes indeed exhibit high bad hubness

relative to their size. A plot of all (p’giij) ,BNs(c)) is shown in Figure 28.
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Figure 28: Average bad hubness exhibited by each class from data sets iNet3Imb-iNet7Imb plotted
against relative class size (p(c)/p(cm)). We see that the minority classes exhibit on average much
higher bad hubness than the majority classes.

This poses an entirely new challenge for imbalanced data classification algorithm design.
We could formulate this new requirement in the following way:Imbalanced data classification
algorithms tailored for high-dimensional data ought to be able to simultaneously improve the
recall of both the minority AND the majority class. This is a much more difficult problem,
as most current imbalanced data classification algorithms aim at a certain trade-off: giving
away some majority class recall in order to increase the minority class recall as much as
possible. On the contrary, in data that exhibits hubness, we should seek algorithms capable
of tackling both problems at once. In order to achieve this, we need a better understanding
of the problem at hand.

In Section 2.2.4.1, it was conjectured that bad hubs among the minority points are
expected to have higher bad hubness on average. In order to check this hypothesis, class
distributions among different types of points were examined, namely: hubs, anti-hubs and
bad hubs. As before, hubs were defined as those points whose occurrence frequency was
more than two standard deviations greater than the mean (k), as suggested in [Radovanovi¢
et al., 2010a]. A similar criterion was used for determining bad hubs, namely: {x: BNy(x) >
HBN,(x) T2+ GBNk(x)}‘ We took as many anti-hubs as hub-points, by taking those with least
occurrences from the ordered list. Class distributions among these types of points can be
compared to the prior distribution over all data points. The comparison for iNet7Imb data
is shown in Figure 29. Similar trends are present in the rest of the image data sets, as well.
We see that the class distribution is entirely different for different types of points. This
needs to be taken into account when modeling the data. Most importantly, we see that in
this data set, all top bad hubs come from the minority classes, which further justifies our
initial hypothesis. In the rest of the examined image data sets the situation is very similar,
though the majority class is naturally not always at 0% among the top hubs, but it is always
less frequent than among all points combined.

Considering the anti-hub distribution in Figure 29 can reveal some characteristics of the
outlier structure of the data. Previous research [Radovanovié¢ et al., 2009][Radovanovié¢ et
al., 2010a][Radovanovié¢ et al., 2010b][Tomasev et al., 2011d] suggests that outliers tend to
be anti-hubs in the data, though anti-hubs are not always outliers. The two distributions
are, however, correlated. The fact that class ¢l contributes so much to anti-hubs suggests
that this particular minority class consists mostly of outliers.

This purely geometrical interpretation of what it means to be an outlier is not best suited
for working with labeled data, as it can easily be refined. We could consider as outliers only
those points which are atypical for their own class (i.e. locally) instead of within the entirety
of data (as measured by hubness). A simple and effective characterization of points within
class-imbalanced data has recently been proposed [Napierala and Stefanowski, 2012]. The
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Figure 29: Distribution of classes among different types of points in iNet7Imb data: hubs, anti-hubs
and bad hubs. We see that there are nearly no majority class points among the top bad hubs in the
data. Data points of class ¢6 exhibit highest bad hubness, which explains the high FP rate observed
in Table 14

authors have proposed a way to distinguish between 4 different point types: safe points,
borderline examples, rare points and outliers. The distinction is made according to the
number of matched labels within the point 5-NN sets. Their initial research investigates
only binary classification cases and only deals with the distribution of these point types
within a single minority class. The authors conclude that the distribution of minority point
types varies across different data sets and determines the difficulty that data poses for
classification algorithms.
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Figure 30: Average hubness of different point types in different categories. Safe points are not
consistently the points of highest hubness. Quite frequently borderline examples and even rare
points of the minority classes end up being neighbors to other points. This also means that less
typical points exhibit a substantial influence on the classification process.

In Figure 30 we can see the distribution of occurrence frequencies among different point
types given separately for each category of the iNet7Imb data set. The results indicate a
strong violation of the cluster assumption, as point hubness is closely linked to within-cluster
centrality [Tomasev et al., 2011e][Tomasev et al., 2013c]. High hubness of borderline points
(by the above definition) indicates that data clusters are not homogenous with respect
to the label space. Indeed, our initial tests have shown that this data does not cluster
well. Another thing worth noting is that points that we usually think of as reliable might
have a detrimental influence on the classification process, which is clear from examining the
hubness/bad hubness distribution across different point types for c6, which has a high overall
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Figure 31: Average 5-NN bad hubness of different point types shown both for iNet and high-
dimensional synthetic Gaussian mixtures. We give both bad hubness distributions here for easier
comparison. It is clear that they are quite different. In the analyzed image data, most bad influence
is exhibited by atypical class points (borderline examples, rare points, outliers), while most bad in-
fluence in the Gaussian mixture data is generated by safe points. The latter is quite counterintuitive,
as we usually expect for such typical points to be located in the inner regions of class distributions.

bad hubness and FP rate. It is precisely the safe points that exhibit both highest hubness
(AVG. 11.66) and highest bad hubness (AVG. 6.63). This is yet another good illustration of
the differences between low-dimensional and high-dimensional data. Intuitively, we would
expect the safe points to be located in the innermost part of the class distribution space.
Such points ought not to become neighbors to many other points from different categories.
This is precisely what happens here and is yet another counterintuitive result and the point
characterization framework [Napierala and Stefanowski, 2012] ought to be used while keeping
this in mind.

Bad occurrence distributions summarized in Figure 31 illustrate that different underlying
bad hub structures exist in different types of data. In the analyzed image data (iNet3-7,
iNetImb3-7), the previously described pathological case of safe/inner points arising as top
bad hubs in the data is still more an exception than a rule, while in high-dimensional
Gaussian mixtures it becomes a dominating feature.

Of course, we must be tentative when drawing conclusions, as all this still does not imply
that the stated correlations hold for all imbalanced high-dimensional data sets. What it
shows, though, is that at least some real-world (and synthetic) imbalanced high-dimensional
data are susceptible to high bad hubness of the minority classes. This peculiar property of
high-hubness data has before gone unnoticed and we believe that it should be taken into
account in future algorithm design. Bad hubness in the data is apparently closely linked
with class imbalance, so a hubness-aware approach to kNN classification should in principle
be able to mitigate the influence of bad hubs and improve overall classifier performance.

Classification accuracy is, admittedly, not the best performance measure in class imbal-
ance classification scenarios, so not much can be inferred from the general results in Table 12.
Accuracy is only applicable to such scenarios where all classes share very similar misclas-
sification costs. The overall accuracies in Table 12 are given mostly for comparison with
experiments in Section 2.2.4.4 and we will base our discussion on algorithm performance
under class imbalance on a detailed examination of precision and recall separately.

It is quite clear, however, that unbalancing the class distribution in iNet data did not
increase the difficulty of the data sets, as the algorithm performance remained pretty much
the same, regardless of the increase in relative imbalance. The same can be said for the
average bad hubness shown in Table 11, which has not increased. This is not altogether
surprising, as we have already explained that the total bad hubness in the data is caused by
an interplay of various contributing factors, so it is only partly caused by class imbalance
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Table 15: Precision and recall for each class and each method separately on iNet7Imb data set.
Values greater or equal to the score achieved by kNN are given as bold. The last column represents

the Spearman correlation between the improvement over kNN in precision or recall and the size of
p(c)

the class. In other words, corrlmp = corr( maxp() ,improvement).
method [measure [ ¢; ¢ 3 ¢4 s ¢ c7
priors: 0.05 0.08 0.05 0.08 0.52 0.17 0.05|AVG|corrImp
NN precision| 0.20 0.32 0.18 0.62 0.78 0.35 0.31|0.39
recall 0.31 0.21 0.10 0.47 0.74 0.57 0.03|0.35
Lw-kNN precision|0.46 0.39 0.28 0.72 0.79 0.41 0.58|0.52| -0.96
recall 0.30 0.30 0.19 0.73 0.81 0.59 0.17/0.44| -0.43
LFNN precision|0.65 0.46 0.37 0.72 0.69 0.44 0.76|0.58| -0.86
recall 0.18 0.19 0.09 0.73 0.92 0.43 0.12]0.38| -0.07
NHBNN precision|0.36 0.37 0.22 0.62 0.79 0.47 0.45|0.47| -0.39
recall 0.43 0.22 0.22 0.80 0.81 0.50 0.20|0.45| -0.68
HIKNN precision|0.55 0.45 0.30 0.74 0.78 0.40 0.67|0.55| -0.75
recall 0.24 0.23 0.14 0.74 0.84 0.61 0.17|0.42| 0.0

itself. Also, iNetImb data sets were selected via random undersampling and it is always
difficult to predict the effects of data reduction on hubness. Removing anti-hubs makes
nearly no difference, but removing hub-points certainly does. After a hub is removed and
all neighbor lists are recalculated, the occurrence profiles of many other hub-points change,
as they fill in the thereby released ’empty spaces’ in neighbor lists where the removed hub
participated.

To gain a better understanding of how hubness-aware algorithms handle minority classes
in the data, we examined the precision and recall for each class in all of the imbalanced data
sets. An example is shown in Table 15 where iNet7Imb data set is discussed. We see that all
hubness-aware algorithms improve on average both precision and recall for most individual
categories. To further analyze the structure of this improvement, we tested for correlation
between class size and the improvement in precision or recall which was achieved by each
individual algorithm. As it turns out, hubness-aware algorithms improve precision much
more consistently than recall - and this improvement has high negative correlation with
relative class size. In other words, hubness-aware classification improves the precision of
minority class categorization, and the improvement grows for smaller and smaller classes.
Actually, NHBNN is an exception, as it soon becomes clear that it behaves differently.
A closer examination reveals that the recall of the majority class is improved in all the
imbalanced data sets, except when NHBNN is used. This is shown in Figure 32. On
the contrary, NHBNN is best at improving the minority class recall, which is not always
improved by other hubness-aware algorithms, as shown in Figure 33.

HIKNN is essentially an extension of the basic h-FNN algorithm, so it is interesting
to observe such a clear difference between the two. h-FNN is always better at improving
the majority class recall, while HIKNN achieves better overall minority class recall. Both
algorithms rely on occurrence models, but HIKNN derives more information directly from a
neighbor’s label and in that sense it certainly has a higher specificity bias, which is reflected
in the results. The results of NHBNN, on the other hand, are not so easy to interpret. It
seems that the Bayesian modeling of the neighbor-relation differs from the fuzzy model in
some subtle way.

Observing precision and recall separately does not allow us to rank the algorithms ac-
cording to their relative performance, so we will rank them according to the Fj-measure
scores [Witten and Frank, 2005a]. We report the micro- and macro-averaged Fj-measure
(Flu and FlM , respectivelly) for each algorithm over the imbalanced data sets in Table 16.
Micro-averaging is affected by class imbalance, so the macro-averaged F; scores ought to
be preferred. In this case it makes no difference. The results show that all of the hubness-
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Figure 32: A comparison of majority class recall achieved by both kNN and the hubness-aware

classification algorithms on five imbalanced image data sets. Improvements are clear in hw-kNN,
h-FNN and HIKNN.

kNN
CINHBNN

N

hw-kNN
= h-FNN

minority class recall

BT HIKNN

N
A\
\
\
\
N
N

2 NN
iNetimb-3 iNetimb-4 iNetimb-5 iNetimb-6 iNetimb-

~

Figure 33: A comparison of the cumulative minority class recall (micro-averaged) achieved by both
kNN and the hubness-aware classification algorithms on five imbalanced image data sets. NHBNN
seems undoubtedly the best in raising the minority class recall. Other hubness-aware algorithms
offer some improvements on iNetImb4-7, but under-perform at iNet3Imb data. In this case, HIKNN
is better than h-FNN on all data sets, just as h-FNN was constantly slightly better than HIKNN
when raising the majority class recall.

aware approaches improve on the basic kNN in terms of both Flu and FlM . NHBNN achieves
the best Fj-score, followed by HIKNN and hw-kNN, while h-FNN is, in this case, the least
balanced of all the considered hubness-aware approaches.

Table 16: Micro- and macro-averaged F} scores of the classifiers on the imbalanced data sets. The
best score in each line is in bold.

kNN hw-kNN h-FNN NHBNN HIKNN
FI“ 0.61 0.68 0.66 0.70 0.69
F"[0.43 0.52 0.47 0.57 0.53

The property of hw-kNN, h-FNN and HIKNN of significantly raising the recall of the
majority class is a very useful one. Especially since they are able to do so without harming
the minority class recall, on average. We have already seen that a significant portion of bad
hubness in the data is caused by minority class hubs and that it’s mostly directed towards
the majority class, reducing its recall substantially. These three hubness-aware approaches
are there to rectify some of that damage by exploiting the bad hubness information captured
by their occurrence models. The advantages are twofold. They are able to generalize and
build a model without significantly compromising the classification of the minority classes
in the data, which is exactly the opposite of what most imbalanced data algorithms are
trying to do. Most importantly, they represent easily extensible voting frameworks. This
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designates them as a good basis for constructing hybrid approaches. Indeed, including over-
sampling/under-sampling [Chawla et al., 2002][He et al., 2008][Liu et al., 2006][Zhang and
Mani, 2003][Batista et al., 2004][Kubat and Matwin, 1997], instance weighting [Tan, 2005b]
or examplar-based learning [Li and Zhang, 2011] would not be difficult. Also, unlike the basic
kNN and most of its common extensions, hubness-aware kNN algorithms can in principle
support cost-sensitive learning. This is made possible by the occurrence model, as not every
occurrence has to be given the same weight when calculating N .(x). Distance-weighted
occurrence models were already analyzed [TomaSev and Mladenié, 2011b], but cost-sensitive
occurrence models should also be considered.

2.2.4.4 Robustness: Mislabeling and Class Overlap

Mislabeled examples are not uncommon in large, complex systems. Detecting and correcting
such data points is not an easy task and many correction algorithms have been proposed
in an attempt to solve the problem [Hayashi, 2012][Guan et al., 2011][Valizadegan and
Tan, 2007]. Regardless, some errors always remain in the data. This is why robustness
to mislabeling is very important in classification algorithms. Instance mislabeling is not
unrelated to class imbalance. [Hulse et al., 2007] Algorithm performance depends on the
distribution of mislabeling across the categories in the data. Even more importantly, the
impact of mislabeling on algorithm performance in high-dimensional data depends heavily
on the average hubness of mislabeled examples. Mislabeling anti-hubs makes no difference
whatsoever. Mislabeling even a couple of hub-points should be enough to cause significant
misclassification. Yet, we have predicted that hubness-aware classification algorithms should
be able to implicitly deal with mislabeling via occurrence modeling.

Table 17: Experiments on mislabeled data. 30 % mislabeling was artificially introduced to each
data set at random. All experiments were performed for k = 5. The symbols /o denote statistically
significant worse/better performance (p < 0.05) compared to kNN. The best result in each line is in
bold.

Data set kNN hw-kNN h-FNN NHBNN HIKNN
diabetes 54.1 4+ 3.7 64.7 390 66.2 4+ 3.40 66.1 + 340 654 £ 390
ecoli 68.1 4+ 56 80.2 +£470 8.8 +4.10 793 £+ 48 0 81.7 + 460
glass 50.6 7.3 616 =730 62.8 + 6.80 56.8 £+ 6.6 61.5 4+ 6.70
iris 71.1 £+ 85 88.2 £6.00 90.7 =+ 540 93.2 + 4.6 0 87.8 £ 6.3 0
mfeat-factors 70.7 £+ 2.3 914 £ 150 94.9 £ 1.10 947 4+ 120 939 + 120
mfeat-fourier 57.1 £+ 2.5 75.0 + 2.1 0 81.0 + 1.70 80.7 £+ 190 787 &+ 1.70
ovarian 58.1 +66 76.3 +£6.10 81.1 +560 794 + 560 783 £ 550
segment 62.7 +£22 81.1 £190 84.3 +£1.70 838 £ 160 80.8 + 1.70
sonar 615 7.7 710.8 680 724 £ 640 72.9 £6.30 714 £ 6.80
vehicle 482 + 3.9 575 +£390 581 =+ 400 56.8 £ 4.00 59.2 + 3.8 0
iNet3 51.0 +£2.3 69.9 £ 220 81.2 +1.80 80.6 =+ 160 753 £ 2.0o0
iNet4 446 + 14 525 £ 130 63.3 +1.30 63.1 + 1.20 576 + 130
iNeth 40.0 £ 14 472 £ 140 60.6 £+ 1.20 60.0 + 1.20 53.1 £ 1.3 o0
iNet6 495 + 1.7 551 £+ 140 68.0 &+ 1.30 674 =+ 1.30 628 £ 140
iNet7 331 £+ 1.1 448 + 110 576 +£1.10 56,8 £+ 1.1 0 51.0 + 1.1o0
iNet3Imb 56.7 £ 3.0 787 £220 87.0 £1.60 81.1 £ 220 832 =+ 2.1o0
iNet4Imb 51.8 &+ 1.7 55.0 £ 1.70 68.7 +1.70 673 + 1.80 63.9 £ 1.70
iNet5Imb 50.7 £ 2.1 535 +200 64.2 +£2.00 60.5 £+ 1.80 606 =+ 120
iNet6Imb 54.7 4+ 2.1 55.8 £ 200 69.7 £1.70 666 = 190 628 + 200
iNet7Imb 33.1 £23 520 £190 62,9 £1.90 61.1 + 190 586 =+ 1.7o0
AVG 53.37 65.57 73.03 71.41 69.38

In our experiments, mislabeling was distributed uniformly across different categories and
only the training data on each cross-validation fold was mislabeled. The algorithms were
evaluated by consulting the original labels. An overview of algorithm performance under
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30% mislabeling rate is shown in Table 17. The results are pretty convincing and reveal
that the hubness-aware algorithms exhibit much higher robustness than kNN.
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Figure 34: The drop in accuracy as the mislabeling rate increases. The kNN accuracy drops linearly,
but that is not the case with hubness-aware approaches, which retain good performance even under
high mislabeling rates.

Out of the compared hubness-aware algorithms, h-FNN dominates in this experimental
setup. On many datasets h-FNN is no more than 1-2% less accurate than before, which
is astounding considering the level of mislabeling in the data. On the other hand, the
hubness-weighting approach (hw-£NN) fails in this case and is not able to cope with such
high mislabeling rates. This was to be expected, since it is not based on class hubness scores
and instances still vote by their own label instead of their occurrence profile.

Of course, we have experimented with various noise levels and Figure 34 depicts the drop
in accuracy as mislabeling is slowly introduced in the data. These graphs are interesting, as
they show kNN performance decreasing at a linear rate with increasing noise. At the same
time, hubness-aware approaches retain most of their accuracy as the mislabeling rate goes
all the way up to 40% — 50%. This amazing result has an intuitive explanation. In hubness-
aware classification, hub-points are not voting by their labels, so mislabeling does not affect
them directly in any way. They vote by their occurrence profiles. As the mislabeling was
uniformly distributed, really high mislabeling levels were required to sufficiently compromise
the occurrence profiles of major hubs.

These results show that it is actually possible to exploit the curse of dimensionality and
hubness in particular in order to improve algorithm performance. All that is required is an
algorithm design that is implicitly aware of the underlying structure of the data.

Class imbalance is by itself usually not enough to cause serious misclassification. It has
to be coupled with some overlap between different class distributions. Such overlap is often
present in complex, real-world data. It is, however, very difficult to measure or even detect
when the data is very sparse and high-dimensional. Also, in order to study specifically
the impact of class overlap on classification performance, we must be able to observe it
independently. This is easiest to achieve in synthetic data, as it is the only way that we can
be really confident that there is no mislabeling present.

Assuring substantial overlap between classes in high-dimensional data is not as easy as
it sounds, as everything tends to be spread far apart. A degree of overlap high enough
to induce severe misclassification was required, since we wanted to make the data hard for
nearest-neighbor methods (not necessarily for other types of classifiers). We generated a
series of 10 synthetic data sets as random 100-dimensional 10-category Gaussian mixtures.
High overlap degree was achieved by placing each distribution center (for a given feature)
randomly within a certain multiple of the standard deviation from some other randomly
chosen, previously determined, distribution center. As shown in Table 18, all the data sets
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Table 18: Classification accuracies on synthetic Gaussian mixture data for k = 10. For each data set,
the skewness of the Njg distribution is given along with the bad occurrence rate (BNjg). The symbols
e /o denote statistically significant worse/better performance (p < 0.01) compared to kNN. The best
result in each line is in bold.

Data set size SNj9g BNjg kNN hw-kNN h-FNN NHBNN HIKNN

DS, 1244 6.68 53.5%| 43.8 +£3.1 644 £5.30 72.6 £2.80 80.7 +£2.40 658 +£3.00
DS, 1660 4.47 49.2%| 48.4 +£2.8 73.6 £6.90 79.3 £2.20 83.9 +£2.20 73.1 250
DS; 1753 5.50 42.0%| 67.3 +2.3 85.3 £2.60 8.8 £1.70 90.0 +1.40 8.7 =190
DSy 1820 3.45 51% | 52.2 +2.6 72.8 +£2.30 784 +£2.20 81.9 +2.00 722 +230
DSs 1774 4.39 46.3%| 59.2 £2.7 80.2 £3.40 84.6 £1.80 87.2 £1.50 81.1 £210
DSe 1282 3.98 45.6%| 58.6 £3.3 80.0 £3.30 81.7 £2.50 86.6 £2.20 794 £250
DS, 1662 4.64 41.5%| 65.0 =2.4 84.6 £2.40 8.4 £1.90 90.1 +1.50 84.5 =200
DSg 1887 4.19 40.0%| 71.0 £2.3 82.7 £2.50 859 +£1.90 88.4 +1.80 83.9 £230
DSo 1661 5.0247.5%| 57.9 2.7 76.3 £3.30 82.3 £2.00 87.5 +1.70 777 240
DSqg 1594 4.8246.9%| 57.5 +£2.9 781 £330 81.1 £2.30 85.5 +£1.90 77.7 220

AVG 58.09 77.80 81.81 86.18 78.21

exhibited very high hubness and very high bad hubness. Imbalance level in the data was
moderate. There were no clear majority or minority classes, but some overall imbalance
was present, with RImb= 0.2 in most data sets. As in previous experiments, we performed
10-times 10-fold cross- validation and the corrected re-sampled z-test was used to verify the
statistically significant differences. For this round of experiments, we have opted for setting
the neighborhood size to k = 10, as we thought that the algorithms might benefit from more
information in borderline regions. Euclidean distance was used for dissimilarity, as it makes
more sense than the Manhattan distance when dealing with Gaussian data.

The results are given in Table 18. The baseline kNN is on average only able to achieve
58.09% accuracy, while NHBNN stands best among the hubness-aware methods with an
impressive average accuracy of 86.18%. Not only NHBNN, but all hubness-aware approaches
clearly and convincingly outperform kNN in this experimental setup. The weighted approach
(hw-kNN) was the least successful among the hubness-aware approaches. Even though
all differences seem very obvious, we also report the macro-averaged F; measure for each
algorithm on each data set in Figure 35. The difference in F} score is even more convincing
that in accuracy, so we can safely say that hubness-aware voting helps in successfully dealing
with class distribution overlap.

Data points located in overlap regions can vary in difficulty that they pose for the kNN
method. This depends mostly on how far they lie from their own distribution mean and
how close they are to other clusters. We can take advantage of the already discussed point
characterization scheme [Napierala and Stefanowski, 2012] and use it to analyze and better
understand the nature of the observed improvements. Figure 36 shows the precision that
each of the algorithms achieves on safe points, borderline examples, rare points and outliers,
separately. The charts are given for DSy and DS; but are very similar for other data sets,
as well.

Not surprisingly, kNN is completely incapable of dealing with rare points and outliers
- and performs badly even on borderline points. We should point out that the reason why
the precision isn’t 100% on safe points is that k =35 is used (as described in [Napierala and
Stefanowski, 2012]) to determine point types, but here we are observing 10-NN classification.
Hubness-aware methods achieve higher precision on all point types, safe points included. The
difference in performance is most pronounced for more difficult point types and this is where
most of the improvement stems from. Also, we are able to see why NHBNN scores better
than the other hubness-aware algorithms on this data. It performs better when classifying
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Figure 35: Macro-averaged Fj score on overlapping Gaussian mixture data.

all the difficult point types in the overlap regions. On average, NHBNN manages to correctly
assign the labels to more than 90% of borderline points, about 75 — 80% of rare points and
40% of outliers. We have verified that this is indeed true for all 10 examined Gaussian
mixtures. It is interesting to note that the same trend is not detected in iNet data that was
previously discussed. Bad hubness in iNet data is not exclusively due to class overlap, so it is
a different story altogether. In any case, these results show that the Bayesian way of building
the occurrence model remains promising. This was not anticipated, as it is in contrast with
what some earlier experiments had implied [Tomasev and Mladenié¢, 2011c|[Tomasev and
Mladenié¢, 2012][N. and D., 2012].

As a final remark, we report the performance of some other well-known algorithms on
class overlap data. Table 19 contains a summary of results given for the fuzzy k-nearest-
neighbor (FNN) [Keller et al., 1985], probabilistic nearest neighbor (PNN) [Holmes and
Adams, 2002], neighbor-weighted kNN (NWKNN) [Tan, 2005a], adaptive kNN (AKNN)
[Wang et al., 2007], J48 (a WEKA [Witten and Frank, 2005a] implementation of the Quin-
lan’s C4.5 algorithm [Quinlan, 1993]), random forest classifier [Breiman, 2001] and Naive
Bayes [Mitchell, 1997]. The first thing to notice is that FNN scores much worse than its
hubness-aware counterpart h-FNN. This shows that there is a large difference in semantics
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Figure 36: Classification precision on certain types of points: safe points, borderline points, rare
examples and outliers. We see that the baseline kNN is completely unable to deal with rare points
and outliers and this is precisely where the improvements in hubness-aware approaches stem from.

between the fuzziness derived from direct and reverse k-nearest neighbor sets. The best
performance among all the tested hubness-unaware kNN methods is attained by the adap-
tive kNN (AKNN), which is not surprising since it was designed specifically for handling
class-overlap data [Wang et al., 2007]. Its performance is still, however, somewhat inferior
to that of NHBNN, at least in this experimental setup.

Decision trees, on the other hand, seem to have been heavily affected by the induced
class overlap, as using either C4.5 or random forest classifiers results in low overall accuracy
rates. Naive Bayes was the best among the tested approaches on these Gaussian Mixtures.

What this comparison reveals is that the currently available hubness-aware k-nearest
neighbor approaches rank rather well when compared to the other kNN-based methods, but
there is also some room for improvement.
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Table 19: Classification accuracy of a selection of algorithms on Gaussian mixture data. The re-
sults are given for fuzzy k-nearest-neighbor (FNN), probabilistic nearest neighbor (PNN), neighbor-
weighted ANN (NWKNN), adaptive kNN (AKNN), J48 implementation of the Quinlan’s C4.5 algo-
rithm, random forest classifier and Naive Bayes, respectivelly. A neighborhood size of k = 10 was
used in the nearest-neighbor-based approaches, where applicable. Results better than than the ones
of NHBNN in Table 18 are given in bold.

Data set‘ FNN PNN NWKNN AKNN J48 R. Forest Naive Bayes
DS, 36.6 +£3.0 398 £3.5 46.5 +3.3 795 £26 424 +4.3 595 £3.7 95.6 + 1.3
DS, 40.5 +£2.9 359 £3.2 54.0 £2.6 82.7 £2.1 473 +£3.9 654 £39 97.1 + 0.9
DS;3 61.5 +2.7 713 £24 674 +£25 88.7 £1.7 489 +£39 69.2 £3.1 98.6 + 0.2
DSy 46.6 +2.4 434 £4.6 56.5 +2.9 84.7 £1.7 44.0 +£3.7 59.7 £3.7 98.4 + 0.2
DSs 52.3 £2.9 54.1 £43 61.8 £2.6 83.2 +£2.1 456 +£2.9 64.1 +£3.2 98.3 £ 0.1
DS¢ 51.5 £3.0 51.5 £3.5 622 £3.0 786 +£3.2 521 £42 67.2 £3.1 973 £ 1.1
DSy 59.0 £2.7 60.0 £4.0 66.9 +£2.6 90.1 +£1.5 51.0 +£3.7 70.7 £2.6 98.3 + 0.7
DSg 67.8 +£2.6 726 £2.6 T71.5 2.5 8.2 £19 50.2 3.7 671 £3.1 98.7 + 0.4
DSo 519 +£2.7 489 +46 61.7 +£26 845 +2.0 439 +3.6 64.5 +3.7 98.3 + 0.7
DSio 51.0 £2.7 478 +£4.2 62.1 £25 796 +2.0 46.2 +£3.8 64.0 +£3.1 97.9 £ 0.8

AVG ‘ 51.87 52.53 61.06 83.68 47.16 65.14 97.85
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2.3 Hubness-aware Metric Learning

This section presents a paper titled Hubness-aware Shared Neighbor Distances for High-
dimensional k-Nearest Neighbor Classification by Nenad Tomagev and Dunja Mladenié. The
brief version of the paper was first published at the Hybrid Artificial Intelligence Systems
conference in Salamanca, Spain, in 2012 [N. and D., 2012]. This initial manuscript has
been greatly extended by introducing an in-depth analysis of the metric components, as
well as including new benchmarks and data types. The final manuscript was published in
the Knowledge and Information Systems journal in 2013 [Tomasev and Mladenié, 2013].

The notion of working with the k-nearest neighbors is based on the ability to produce
a ranking for each query point, that reflects some explicit or implicit underlying similarity
measure defined for all pairs of points in the feature space. The effectiveness of k-nearest
neighbor methods depends on the effectiveness of the underlying metric. For some types and
distributions of data it is easy to find an appropriate metric, even among the standard ones
like the Euclidean, cosine, Jaccard, Manhattan or fractional [Han, 2005]. However, these
standard metrics become highly inappropriate for many forms of very high-dimensional data
due to the distance concentration phenomenon [Frangois et al., 2007]. Therefore, learning
the appropriate metric directly from the data instead of defining it a priori is sometimes
justified, regardless of the increase in computational complexity.

Shared neighbor distances are a class of secondary pseudo-metrics derived from the k-
nearest neighbor topology of the data and are often used in high-dimensional data clustering
applications. In our paper we have proposed a novel secondary similarity measure, simhuby,
derived from the original shared neighbor similarity score. The proposed approach was
evaluated on a wide range of high-dimensional datasets and was shown to significantly
outperform the baseline in the context of k-nearest neighbor classification. The best results
were thus obtained by using a combination of hubness-aware metric learning and hubness-
aware k-nearest neighbor classification.
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Abstract. Learning from high-dimensional data is usually quite atradfing, as
captured by the well known phraserse of dimensionalityData analysis often
involves measuring the similarity between different exapThis sometimes
becomes a problem, as many widely used metrics tend to coatein high-
dimensional feature spaces. The reduced contrast makesdtdiificult to distin-
guish between close and distant points, which renders nmaditibnal distance-
based learning methods ineffective. Secondary distareesdbon shared neigh-
bor similarities have recently been proposed as one pessiiilition to this prob-
lem. However, these initial metrics failed to tal@bnessnto account. Hubness
is a recently described aspect of the dimensionality cunskitaaffects all sorts
of k-nearest neighbor learning methods in severely negatiyes.wehis paper
is the first to discuss the impact of hubs on forming the shaegghbor simi-
larity scores. We propose a novel, hubness-aware secosphifgrity measure
simhubs and an extensive experimental evaluation shows it to be mumte
appropriate for high-dimensional data classification ttrenstandardsimcos
measure. The proposed similarity changes the underlyilg graph in such a
way that it reduces the overall frequency of label mismatché-neighbor sets
and increases the purity of occurrence profiles, which imgsalassifier perfor-
mance. It is a hybrid measure, which takes into account atstipervised and
the unsupervised hubness information. The analysis sH@t®6th components
are useful in their own ways and that the measure is thergiagerly defined.
This new similarity does not increase the overall compaoreti cost and the im-
provement is essentially 'free’.
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1 Introduction

Machine learning in many dimensions is often rendered véfigult by an interplay
of several detrimental factors, commonly referred to asctivee of dimensionalityn
high-dimensional spaces, all data is sparse, as the reggiits for proper density esti-
mates rise exponentially with the number of features. Erapsice predominates [Scott
and Thompson, 1983] and data lies approximately on the crdé hyper-spheres
around cluster means, i.e. in distribution tails. Relatieatrast between distances on
sample data is known to decrease with increasing dimerigigres the distances con-
centrate [Aggarwal et al., 2001][Francois et al., 200Te Expectation of the distance
value increases, but the variance remains constant. lerefibre much more difficult
to distinguish between close and distant points. This hasf@pnd impact on nearest
neighbor methods, where inference is done based oh &xamples most similar (rel-
evant) to the point of interest. The very concept of a nearesthbor was said to be
much less meaningful in high-dimensional data [Durrantidadan, 2009].

Difficulty in distinguishing between relevant and irrelev@oints is, however, not
the only aspect of the dimensionality curse which burdengarest neighbor based in-
ference. The recently described phenomendmubiesss also considered to be highly
detrimental. The term was coined afterbs very frequent neighbor points which dom-
inate among all the occurrences in thaeighbor sets of inherently high-dimensional
data [Radovanovit et al., 2009][Radovanovic et al., 2)1Bost other points either
never appear as neighbors or do so very rarely. They areedfer asanti-hubs

The skewness of the-occurrence distribution has a geometric interpretatiath a
does not reflect the underlying semantics of the data. Thesfisst noticed in music
retrieval applications [Aucouturier and Pachet, 2004 8uturier, 2006] and is still an
unresolved issue [Flexer et al., 2010][Schedl M., 2012ZfEr A., 2012]
[Schnitzer et al., 2011][Gasser M., 2010]. Some songs werg frequently retrieved
by the recommendation systems, but were in fact irrelevarthie considered queries.
Their occurrences were simply an artifact of the employetlarity measures, when
applied to high-dimensional audio data.

There is no easy way out, as demonstrated in [Radovanosit 010a], since di-
mensionality reduction techniques fail to eliminate theghbor occurrence distribution
skewness for any reasonable dimensionality of the prajecpace. The skewness de-
creases only when the data is projected onto spaces belanttimsic dimensionality
of the data, where some potentially relevant informatidarretrievably lost. It is there-
fore necessary to work under the assumption of hubness wdieg nearest neighbor
methods for analyzing high-dimensional data.

Different metric spaces exhibit different degrees of hudsneo choosing a proper
distance measure becomes a non-trivial task. The appar@heduacy of many com-
mon metrics (Manhattan, Euclidean, etc.) in high-dimemaidata has motivated some
researchers to start using higher-order secondary distalpased on shared nearest
neighbor similarity scores. This approach has frequengignbused in clustering ap-
plications [Jarvis and Patrick, 1973][Ertz et al., 2001 ¥t al., 2005][Mo¢llic et al.,
2008]

[Patidar et al., 2012][Zheng and Huang, 2012]. The basia id¢hat the similarity be-
tween two points can be measured by the numbéréarest neighbors that they have



in common. This is somewhat similar to collaborative filtgriwhere the purchase set
intersections are used to determine similarity betwedrmdint customers.

Turning a similarity score into a distance is a trivial tale will address the details
in Section 2.1. Shared neighbor distances are considersoiby as a potential cure for
the curse of dimensionality [Houle et al., 2010].

Even though the shared neighbor distances have mostly loasidered in the con-
text of clustering, we will focus on the supervised learniage and show their useful-
ness ink-nearest neighbo&(N) classification.

Hubness exhibits a dual influence on shared neighbor dissars the secondary
metric is introduced, the overall hubness in the data musst eéhange. We will show
that even though the skewness in fheccurrence distribution is somewhat reduced,
some non-negligible hubness still remains and using thedsgzaware classification
methods yields definite improvements. More importantlg, flubness in the original
metric space has a profound impact on how the shared neigirhdarity scores are
formed in the first place. Hubs are very frequent neighbortheg become very fre-
quently shared neighbors as well. As we have already mesdionubs are usually
points where the semantics of the similarity measure is reegtrely compromised,
so relying on them when defining a secondary distance is netyawise choice. This
is why we have proposed a néwbness-awarmethod for calculating shared neighbor
similarities/distances [TomaSev and Mladeni¢, 2012a].

The paper is structured as follows. In Section 2 we outlireelihsic concepts in
defining the shared neighbor distances and discuss somet feudings in learning
under the assumption of hubness. We proceed by considesinghe two might be
successfully combined and propose a new way to define shaighbor similarities
in Section 3. In Section 4 we test our hypothesis on sevegaltimensional synthetic
and image datasets and examine the findings.

2 Related work

2.1 Shared neighbor distances

Regardless of the skepticism expressed in [Durrant anéiKa009], nearest neighbor
queries have been shown to be meaningful in high-dimenbkitata under some natu-
ral assumptions [Bennett et al., 1999], at least when it aa@meistinguishing between
different clusters of data points. If the clusters are paievstable, i.e. inter-cluster dis-
tances dominate intra-cluster distances, the neighbdkrsand to belong to the same
cluster as the original point. An obvious issue with thiglof reasoning is that cluster
assumption violation is present to different degrees inwedd data, so that sometimes
the categories do not correspond well to the aforementiohustiers. Nevertheless, this
observation motivated the researchers to consider ustandary distances based on
the ranking induced by the original similarity measure [koet al., 2010]. A common
approach is to count the number of shared nearest neighBbifd)(between pairs of
points for a given, fixed neighborhood size.
Let D = (z1,11), (z2,¥2),..(zn, yn) be the data set, where each € R%. The

x; are feature vectors which reside in some high-dimensionaliean space, and



yi € c1,ca,..cc are the labels. Denote Wy (z;) the k-neighborhood of;. A shared
neighbor similarity between two points is then usually defias:

Ds 1 D5 ;
simcoss (i, ;) = |Ds (2 ): (z;)] )

where we have usegto denote the neighborhood size, since we will use these simi
larity measures to perforiinearest neighbor classification and the neighborhood size
in these two cases will be different. Théncos, similarity can easily be transformed
into a distance measure in one of the following ways [Houle €2010]:

dinvs(z;, ;) = 1 — simcoss(z;, ;)
dacoss(x;, x;) = arccos(simcoss (s, ;)) 2)

ding(z;, ;) = — In(simcoss(x;, x;))

All three of the above given distance measures produce the sanking, so they
are essentially equivalent when being usedifarearest neighbor inference. We based
all our subsequent experiments@muv (;, ;).

In shared neighbor distances, all neighbors are treateciag lequally relevant.
We argue that this view is inherently flawed and that its deficies become more
pronounced when the dimensionality of the data is increa&drhittedly, there have
been some previous experiments on including weights irtloSNN framework for
clustering [Ayad and Kamel, 2003], but these weights weseciated with the positions
in the neighbor list, not with neighbor objects themselWesSection 3 we will discuss
the role of hubness in SNN measures.

2.2 Hubs: very frequent nearest neighbors

High dimensionality gives rise thubs influential objects which frequently occur as
neighbors to other points. Most instances, on the other,tapd/ery rarely included in
k-neighbor sets, thereby having little or no influence on sghent classification. What
this change in thé-occurrence distribution entails is that potential errdrpresent in
the hub points, can easily propagate and compromise rhargighbor sets. Further-
more, hubness is a geometric property of inherently highedisional data, as the points
closer to the centers of hyper-spheres where most of thdidateend to become very
similar to many data points and are hence often included ighlbers [Radovanovic
et al., 2010b]. This means that hubness of a particular gastlittle to do with its
semantics. Hubs are often not only neighbors to objectseif twn category, but also
neighbors to many points from other categories as well. bhsiases, they exhibit a
highly detrimental influence and this is why hubness of the dsually hamperk-
nearest neighbor classification.

Hubness has only recently come into focus, but some hulawease algorithms
have already been proposed for clustering [TomaSev €2@l.1d], instance selection
[Buza et al., 2011], outlier and anomaly detection [Radovih et al., 2010a]
[TomaSev and Miladeni¢, 2011] and classification [Radovén et al., 2009]
[TomaSev et al., 2011b][TomaSev et al., 2011c][Tomaded Mladeni¢, 2011b]



[TomaSev and Mladeni¢, 2012b][TomaSev and Mladent,12], which we will dis-
cuss below.

Let us introduce some notation. DenoteRy(x;) the reverse neighbor setef, so
the number ok-occurrences is theN(z;) = | Rx(z;)|. This total number of neighbor
occurrences includes both tgeod occurrences, where the labels of points and their
neighbors match and thead occurrences where there is a mismatch between them.
Formally, Ny, (z;) = GNg(z;) + BNy (z;), the former being referred to as the good
hubness and the latter as the bad hubness.ofFhe bad hubness itself can be viewed
as a composite quantity, comprising all the class-spekHiccurrences where label
mismatch occurs. L&V, .(x;) = |z € Ri(z;) : y = ¢| denote such class-specific hub-
ness. The total occurrence frequency is then sinmlyz;) = > .~ Ni.c(z;). Calcu-
lating all the Ny (z;) equals building an occurrence model, which can be used te-ssom
how estimate all the implied posterior class probabilittethe point of interesp(y =
clz; € Dy(x)). This observation served as the basis for several recemelsskaware
approaches [TomaSev et al., 2011b][Toma3ev et al., IPMdmasev and Mladenic¢,
2011b]
[TomaSev and Mladenic, 2012b].

2.3 Hubness-aware classification methods

The basick-nearest neighbor method [Fix and Hodges, 1951] is very Isinfut has
nevertheless been proven to exhibit certain beneficial ptyim properties
[C.J.Stone, 1977][L. Devroye and Lugosi, 1994][T.M.Coward P.E.Hart, 1967]
[Devroye, 1981]. A label in the point of interest is decidgubo by a majority vote
of its nearest neighbors. Many extensions of the basic iigerthave been developed
over the years, improving the original approach in varioaysv [Keller et al., 1985]
[Jensen and Cornelis, 2008][Song et al., 2007][Hodge andstiAu 2005]
[Ougiaroglou et al., 2007][Zhang et al., 2006][Triguero etl., 2011]
[Ambert and Cohen, 2012] The-nearest neighbor classification is still widely used
in many practical applications, with a recent focus on timees analysis [Xing et al.,
2009]

[Chaovalitwongse et al., 2007] and imbalanced data claasifin [Holte et al., 1989]
[van den Bosch et al, 1997][Li and Zhang, 2011][Tan, 2005]
[Wang et al., 2010][Van Hulse and Khoshgoftaar, 2009].

Hubness in high-dimensional data, nevertheless, affétiéin some severely neg-
ative ways [Radovanovit et al., 2009][Radovanovit et2010a][Radovanovit et al.,
2010b]. This is why several hubness-aware classificatigoréihms have recently been
proposed. An effective vote weighting scheme was first duoed in [Radovanovic et
al., 2009], assigning to each neighbor a weight inversalsetated with its bad hubness.
More specificallywy (z;) = e~ (*i:F) whereh,(2;, k) = (BNg(z:) — uBnN, )/ 08BN,
is the standardized bad hubness. We will refer to this ambrea hubness-weighted
k-nearest neighbor (hwNN).

Fuzzy measures based 8 .(x;) have been introduced in [TomaSev et al., 2011b],
where the fuzzy;-nearest neighbor voting framework was extended to indfudeess
information (h-FNN). This was further refined in [TomaSewlaMladeni€, 2011b] by



considering the self-information of each individual ogeunce. Anti-hubs were there-
fore treated as more informative. Intuitively, such neighpoints are more local to the
point of interest, as they are not frequent neighbors. Thershm was named hubness
informationk-nearest neighbor (HIKNN).

Along with the fuzzy approaches, a naive Bayesian model wesrilted in
[TomaSev et al., 2011c], where the algorithm naive hubiBeggesiankNN (NHBNN)
was proposed for probabilistie-nearest neighbor classification in high dimensional
data.

We will see in Section 4.3 that these hubness-aware algaesithre in fact well
suited for dealing with the secondary SNN distances.

3 Hubness-aware shared-neighbor distances

Since hubness affects the distribution of neighbors, ittralso affect the distribution
of neighbors shared between different points. Eacls shared betweeiV;(z;) data
points and participates |(1N§”) similarity scores. Hub points, by the virtue of be-
ing very frequent neighbors, are expected to arise quitpifretly as shared neighbors
in pairwise object comparisons. What this means, howesdhat sharing a hub-
neighbor is quite common and not very informative. This iagistent with observa-
tions in [TomaSev and Mladeni¢, 2011b]. Rarely sharedmeors (anti-hubs), on the
other hand, carry information more local to the points oéiest and should be given
preference when calculating similarities. Figure 1 oetithis observation.

Fig. 1. An illustrative examplez; andz. share two neighbord)s(z1) N Ds(z2) = {za, zs}.
The two shared neighbors are not indicative of the same tEhvaimilarity, asz, is a neighbor
only toz, z2 and one other point, while, is a more frequently shared neighbor.

Each neighbor point can, depending on its hubness, cotdribumany pairwise
similarities. Some of these similarities will be betweer #lements from the same



class and some between the elements from different claBsersefore, we can expect
some neighbors to contribute more to the intra-class siitida and some more to the
inter-class similarities, depending on the class distigouin their occurrence profiles.

Clearly, hubs which occur almost exclusively as neighborsiints from a single cate-

gory ought to be preferred to those which occur inconsiltantong various categories
in the data. This is illustrated in Figure 2. The purity of tieeerse neighbor sets can
clearly be exploited for improving class separation.

Xa

wr @ oo
Xp

Ns(xb): “ . 1

Fig. 2. A binary example where the shared neighbors have significdifterent occurrence pro-
files. z, is equally often present as a neighbor to objects from ba#gogies, whiler;, is almost
exclusively ins-neighbor sets of the second class. By favoringverz, in the similarity score,
the average intra-class similarity is expected to increaskthe inter-class similarity decreases.

X
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In order to refine the basic shared neighbor similarity, wegiie preference to less
frequent and good neighbor points and reduce the influenbadhubs. We propose a
new SNN similarity measure:

ZxEDS(wi)UDS(xj) In(x) ! (max HS - H(RS(‘T)))

simhubg(x;, x;) =
(@i 25) s-max H, - max I,

®)

I,(x) = log (Nsnw; max I, = logn (4)
Ns () Nie(x)

H(Rs(z)) =H(Y|x € Ds) = — ) ;
Z N N(@)

max Hs; = loge (B)

Though it may seem slightly complicatedmmhub; is in fact very simple and intu-
itive. The denominator merely serves the purpose of nomagdin to the[0, 1] range.
Each shared neighbor is assigned a weight which is a prodtwwbajuantities. Occur-
rence informativenesd,((z)) increases the voting weights of rare neighbors. The re-
verse neighbor set entrop¥( R, (z))) measures the non-homogeneity (inconsistency)
in occurrences. When subtracted from the maximum entnepy (), it represents the
information gainfrom observing the occurrence of under the uniform label assump-
tion. The labels are, of course, not uniformly distributbdit it is convenient to have
(max Hs — H(Rs(z))) > 0. For the purposes of calculatidg (xz) and H(Rs(x)), =
is treated as its owAth nearest neighbor, in order to avoid zero divisions fomfmi
which haven't previously occurred as neighbors on the itngilata. In other words,



Ns(z) := Ng(x) + 1, Ng y(x) := N5 () + 1, wherey is the label of x. Theimhubs
similarity can be turned into a distance measure in the saayeas thesimcos,, as
previously demonstrated in Eq. 2.

What is great about this new way of defining similarity is ttfeg extra computa-
tional cost is negligible, since all theneighbor sets need to be calculated anyway. One
only has to count the occurrences, which is don@{a - n) time. Calculating all the
D, (z) neighbor sets accurately tak@$d - n2) time in high dimensional data, whede
is the number of features (since usually- s), which is the time required to compute
the distance matrix in the original metric. An approximapaithm exists, however,
which does the same i@(d - n'*?), ¢t € [0,1] [Chen et al., 2009]. It is a divide and
conquer method based on recursive Lanczos bisection. Imiiat experiments, very
good estimates are obtained eventfet 0 (so, in linear time!), provided that the stop
criterion for subset division is set high enough, since tt®ueates-neighborhoods are
computed in the leaves of the split.

It is possible to observe themhub, similarity in terms of its constituents, as it
is jointly based on two different quantities - neighbor imf@ativeness and neighbor
occurrence purity. These factors can be considered separas given in Equation 6
and Equation 7.

2we D, (@)D, (z;) In(2)

simhubIgN = ©)
) s-max I,
simhub? VR = €D, (2:)uD, (zy) (Max Hs — H(Rs(2))) )
’ a s-max Hg

In some of the experiments we will examine the influence ohexdhe two con-
stituent measures on the fin@lmhub, similarity score and the overall classification
performance.

4 Experiments and Discussion

4.1 Overview of the data

The analysis was performed on both synthetic and real-waatd. In synthetic data,
we were interested only in such datasets that would poséfisant difficulties for
kNN-based methods, as this fits well with the analysis of habraad the rest of the
experimental setup. To that purpose, we have generatedffiduidil00-dimensional
Gaussian mixtures with a significant class overlap, eachpeising 10 different cat-
egories. The overlap was achieved by randomly placing e#thbadition center for
each feature within a certain range of another already géeecenter, constraining the
distance between them to a certain multiple of their stathdaviations. This is well re-
flected in Table 1, where we can see that these dataBéts D.S1,) exhibit substantial
bad hubness.

Most of the analysis was done on high-dimensional imagesgegmtations, but some
brief comparisons were also performed on relatively lomelsional data, in order to
gain further insights into the potential applicability bktsimilarity measures (Table 2,
Section 4.9).



Ten image datasets were selected for the basic high-diovedgxperiments, as the
image data is known to exhibit significant hubness [Tomasel., 2011a]. They rep-
resent different subsets of the public ImageNet reposituitp://www.image-net.org/).
We have selected the same subsets that were used in classifllanchmarks in pre-
vious papers on hubness-aware classification [Tomasdv, @04 1b][TomaSev et al.,
2011a]

[TomaSev and Mladeni¢, 2011b][TomaSev and Mladerdd,2a], to simplify the com-
parisons.

Table 1. The summary of high-hubness datasets. Each dataset isbdesboth by a set of basic
properties (size, number of features, number of classes}ame hubness-related quantities for
two different neighborhood sizes, namely: the skewneske#t{occurrence distributionYy, ),
the percentage dfad k-occurrencesBB Ny), the degree of the largest hub-pointgx Ny). Also,
the relative imbalance of the label distribution is givesveell as the size of the majority class
(expressed as a percentage of the total)

(a) ImageNet datal,; distance

Dataset size d C Sy, BNs maxNs Sn,, BNsp max Nso RImb p(car)

iNet3 2731 416 8.38 21.0% 213 3.10 25.0% 665 0.40 50.2%
iNet4 6054 416 7.69 40.3% 204 356 46.2% 805 0.14 35.1%
iNet5 6555 416 1472 44.6% 469 6.10 51.1% 1420 0.20 32.4%
iNet6 6010 416 8.42 434% 275 3.60 51.0% 836 0.26 30.9%

iNet7 10544 416

iNet3lmb 1681 416
iNetdimb 3927 416
iNet5imb 3619 416

7.65 46.2% 268 4.21 54.3% 1149 0.09 19.2%

348 17.2% 75 145 212% 271 0.72 81.5%
7.39 382% 191 3.47 432% 750 0.39 54.1%
9.35 414% 258 4.61 47.4% 995 0.48 58.7%
iNetélmb 3442 416 496 41.3% 122 2.64 48.0% 534 0.46 54%
iNet7lmb 2671 416 6.44 428% 158 2.72 50.4% 551 0.46 52.1%

AVG 4723.4 416 7.5 5 37.64% 2233 3.55 43.8% 797.6 0.36 46.8%
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(b) Gaussian mixture datd,, distance

Dataset size d C SNm BN10 maleo SN BN50 maxN50 RImb p(Cjw)

50

DS, 1244 100 10 6.68 53.5% 291 3.87 58.8% 802 0.21 20.2%
DS, 1660 100 10 4.47 49.2% 234 3.42 55.4% 705 0.19 16.7%
DSs 1753 100 10 5.50 42.0% 253 3.19 50.9% 783 0.16 16.8%
DS, 1820 100 10 3.45 51.0% 174 2.63 59.5% 560 0.13 15.6%
DSs 1774 100 10 4.39 46.3% 177 3.15 55.0% 565 0.13 16.6%

DSs 1282 100 10 3.97 45.6% 149 290 55.1% 482 0.21 20.7%
DSy 1662 100 10 4.64 41.5% 209 3.64 50.3% 738 0.16 16.7%
DSs 1887 100 10 4.19 39.9% 210 3.14 49.1% 622 0.14 15.3%
DSy 1661 100 10 5.02 47.5% 259 3.11 56.0% 748 0.10 14.7%
DSho 1594 100 10 4.82 46.9% 217 3.24 56.2 655 0.14 17.7%

AVG 1633.7 100 10 4.71 46.34% 217.3 3.23 54.63% 666.0 0.161%7.




The images in these ten datasets (iNet3-iNet7, iNet3Indt{iNnb) were repre-
sented as 400-dimensional guantized SIFT feature vectors
[Lowe, 2004][Zzhang and Zhang, 2008] extended by 16-bin rchistograms. SIFT
features are commonly used in object recognition systemthey exhibit invariance
to scale, rotation and translation. Each part of the reptatien was normalized sep-
arately. This particular image representation may not bebttst choice for the given
datasets [Toma3ev et al., 2011a], but is neverthelessigahahoice and quite challeng-
ing for kNN classification, which makes it a good benchmark. It cangemsn Table 1
that these image datasets exhibit substantial bad hubness.

As implied by the names, there is a correspondence betwedingh(iNet3..iNet7)
and the second five datasets (iNet3Imb..iNet7Imb). Therative been obtained from
the former via random sub-sampling of the minority claseexrdler to increase the im-
balance in the data. The difference is easily seen in Tabjecbhsidering the relative
imbalance factorRImb = /(3 ... (p(c) — 1/C)?)/((C —1)/C), which is merely
the normalized standard deviation of the class probadslifrom the absolutely ho-
mogenous mean value df c.

We will not focus on class imbalance in this paper. We willnveger, use one re-
cently proposed framework for imbalanced data analysipi®fala and Stefanowski,
2012] to outline the most important differences betweeratieyzed metrics. This will
be discussed in Section 4.6.

Additionally, three partially faulty quantized Haar feedu representations
[Lienhart and Maydt, 2002] of iNet3 (iNet3Err:100, iNet3B150, iNet3Err:1000) were
presented in Section 4.7 as a pathological special caseewhemeous hub-points ren-
dered thek-nearest neighbor classification completely ineffectitill be shown that
the secondary shared neighbor similarities are able taceethe negative consequences
of hubness in the data and that the proposedhub; measure does so more effectively
thansimcoss,.

Table 1 shows the properties of the data when the primanyjiesetre used. Since the
images have been represented in a form of coupled probatisitributions, Manhattan
distance [1) is used in experiments on image data, as it represents tigrah of the
absolute difference between the distributions. The Eeeliddistancel{;) was used
when analyzing Gaussian data, as it induces hyper-spheéitshborhoods, which are
well suited for modeling Gaussian clusters. In our initigberiments, the difference
between the two metricd.{,L>) was not so big, but we have nevertheless opted for the
more natural choice in both cases.

The reason why Table 1 shows the statistics for severakdifterneighborhood sizes
(k = 5 andk = 50 for the image data ankl = 10 andk = 50 for the synthetic data)
is that we will be performing — NN classification of the image data and — NN
classification of the synthetic data, while using the shaeidhbor distances based on
50-neighbor sets. The neighborhood size for the image datadsen for comparison
with previous work, while a largek is beneficial in Gaussian mixtures, as it allows for
better estimates in the borderline regions. In Section £.%ill show that the difference
between the examined metrics actually holds regardleseeqgddrticular choice of.

An increase in neighborhood size somewhat reduces the slssvafithe occurrence
distribution, since more points become hubs. Bad hubnessases, as well as the non-




homogeneity of reverse neighbors sets. This is illustrateBigure 3 for iNet5Imb
dataset. The increase is not always smooth as in the giverefigut the same general
trend exists in all the datasets that we have analyzed inx@aranents.
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Fig. 3. s-occurrence skewness and reverse neighbor set entropyaaerge of neighborhood
sizes for iNetimb5 dataset.

The degree of major hubs is quite high foe= 50 neighborhood size which will
be used to calculate the secondary SNN distances. In sonhe afatasets, the major
hub appears in approximate?% of all neighbor lists. This shows why it might be
important to take the hubness into account when deducinggbendary distances for
high-dimensional data. Likewise, high reverse neighbbestopies indicate that good
hubs are a rarity when using large neighborhoods - so thBireimce on similarity
should be emphasized, whenever possible.

Even though bothsimcoss; and simhubs were designed primarily for
high-dimensional data, it is prudent to perform some coispas on low-to-medium
dimensional data as well. We have selected 10 such datasatglie UCI repository
(http://archive.ics.uci.edu/ml/). The summary of low @insional datasets is given in
Table 2. We see that the skewness of the occurrence digbribist even negative in
some datasets, so there is no hubness to speak of. The ceamsaoin this data are
given in Section 4.9.

4.2 Hubness in the shared neighbor metric space

Switching to secondary distances induces a change in theelsstof the data. As the
similarities are recalculated, so are theearest neighbor sets and this affects the struc-
ture of thekNN graph. The change can be either beneficial or detrimentte fol-
lowing classification process. The impact on kNN classification can already be esti-
mated by observing the change in the total number of bad ceeces on the data. This

is summarized in Figure 4, for both the synthetic and the & data.

As mentioned in Section 2.1, we are using diev,(x;, z;) method of converting a
similarity into a distance measure, which essentially rsghat we are subtracting the
normalized similarity score from 1 to obtain the normalizistance score. Therefore,
the primary distances in Figure 4 are compared todhe,(x;,z;) distances based



Table 2. The summary of low-to-medium dimensional datasets fromUf# repository. The
same properties are shown as in Table 1. This data does nibitextbness and is briefly dis-
cussed in Section 4.9.

Data set size d C SN5 BNs; max N SN50 BNs5o max Nsg RImb p(C]u)

diabetes 768 8 2 0.34 33.7% 13 0.03 36.0% 112 0.30 0.65
wpbc 198 33 2 -0.09 33.7% 10 -0.80 35.4% 75 0.52 0.76
wdbc 569 30 2 0.09 8.9% 13 -0.86 11.6% 82 0.25 0.63
yeast 1484 8 10 0.40 51.3% 16 0.28 56.4% 132 037 0.31
wine 178 13 3 0.04 31.9% 10 -0.99 38.3% 71 0.11 0.40
page-blocks 5473 10 5 0.25 5.2% 14 -0.12 7.8% 108 0.87 0.90
segment 2310 19 7 0.32 6.8% 14 -0.06 23.4% 96 0 0.14
ecoli 336 7 8 0.43 20.4% 15 0.10 29.3% 118 0.41 0.43
mfeat-fourier 2000 76 10 0.87 18.5% 24 0.43 27.5% 145 0 0.1
ozone 2534 72 2 0.76 9.6% 25 0.70 10.2% 157 0.87 0.93
AVG 1585 27.6 5.1 0.34 25.0% 154 -0.13 27.6% 109.6 0.37 0.53

on thesimcoss and simhubs similarity scores. To simplify the notation in Figures
and Tables we will be using themcos; andsimhub, interchangeably throughout the
following sections to denote either similarity or the ingalidissimilarity, depending on
the context.

The comparison between the bad occurrence percentageguireH reveals that
both secondary distances achieve a significant reductitireiloverall bad hubness of
the data. The proposed hubness-awarehubs, similarity score clearly outperforms
the standardimcosso similarity, as it produces fewer bad occurrences on eveylsi
analyzed dataset. The reduction in both similarity measisrenore pronounced in the
synthetic data, both fot = 5 andk = 10 (though only the latter is shown in Figure 4).
As mentioned before, two different neighborhood sizes éllused for classifying the
image data and the Gaussian mixtures, so the analysis haleoisligned with the
following classification experiments in Section 4.3.

Both similarity measures significantly reduce the skewiegsoccurrences on the
analyzed data, which is shown in Figure 5. The reductiorsrate similar, though the
simcossy induces somewhat less hubness in the secondary metric. Spasds an
important property of both shared neighbor similarity esorReducing the hubness
in the data partly resolves the implications of the curseinfethsionality ink-nearest
neighbor inference. This result reaffirms the previouswataiegarding the usefulness of
shared neighbor distances [Houle et al., 2010]. Neverskeieshould be noted that the
remaining occurrence skewness is non-negligible. On s¥fiatata, it amounts to 1.62
and 1.75 on average feimcossy andsimhubsg, respectively. This remaining hubness
implies that even though the shared neighbor similaritesdaubtlessly helpful in re-
defining the metric space, the subsequent classificationléipoobably be performed
in a hubness-aware way as well. In other words, these sitgilsgores reduce but do
not entirely eliminate the consequences of the dimensigralrse.
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Fig. 4. Bad occurrence percentages in each of the examined mefies.standard shared-
neighbor similarity measur&mcos manages to reduce the overall bad hubness in the data, but
the proposed hubness-awatiegnhub similarity reduces the frequency of bad occurrences even
more, on all of the analyzed datasets.

Figures 4,5 have shown us hadémcossg andsimhubsg change the overall nature
of hubness in the data. However, the average occurrencensksvand the average bad
occurrence percentage cannot tell us everything abouththege in thekNN graph
structure. What needs to be seen is if the good/bad hubspaiatinvariant to this par-
ticular change of metric. Figure 6 gives the pointwise R@arorrelations in the total
occurrence frequenciesVi,(z)) and bad occurrence frequencid3N(z)) between
the kNN graphs in the primary and secondary metric spaces, ohaiatata. Similar
trends are present in the ImageNet data as well.

The two comparisons in Figure 6 reveal a major differencevben the standard
simcosso and the proposegimhubsg similarity measure. Namely, there exists low-to-
moderate positive correlation between hubs and bad hulbeiprimary metric space
and the metric space induced biyncossg. Some primary hubs remain secondary hubs
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Fig. 5. Overall hubnessi-occurrence skewness) in each of the examined metrics.d@atindary
similarity measures significantly reduce the hubness ofitite, which should be beneficial for
the ensuing classification.

and even more importantly - some primary bad hubs remaimskecy bad hubs. On
the other handsimhubsy, changes th&NN graph structure more drastically, as there
is nearly no correlation in bad hubness between the two exgtaces. The correlation
in N(z) is even slightly negative both in Gaussian mixtures and iadeiNet data.
This may be a part of the reason whkinhubs, succeeds in reducing the overall bad
occurrence percentage much more effectively #iatrossg - as itis able to reconfigure
the kNN graph enough to rectify most of the semantic similaritydmhes.

An illustrative example is given in Figure 7, showing how tieghbor occurrence
profile of a particular image changes when the secondaryasitiés are introduced.
The number of the reverdenearest neighbors df,4 in each category is written above
the arrow connecting it to the image. This example is takemfthe iNet3 dataset,
the simplest among the examined ImageNet subsets. It ¢omdithree different cat-
egories: sea moss, fire and industrial plant. Not surprigimgost misclassifications
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Fig. 6. The Pearson correlation in point hubne3; (x)) and point bad hubnesB(V, (z)) be-
tween the primary metric space and the secondary metri@spaduced byimcosso and the
proposedsimhubso shared neighbor similarity.

occur between the fire and sea moss image categories. Maggsoéfire were taken
in the dark and most sea moss images taken at consideralite @lep have a dark
background. Some sea mosses are yellow or reddish in cdimr, Ais clear from the
selected photo in Figure 7 how sometimes the shape of thedlaméd be confused
with leaf-like organic objects.

The example in Figure 7 nicely illustrates both propertiethe secondary simi-
larity measures that were discussed in this Section. Dueréalaction in the overall
hubness of the iNet3 data, a hub poi¥it, is reduced to being slightly above aver-
age in number of occurrences undemcossg and below average under the proposed
simhubso Similarity score. Both secondary measures significantiyce its number of
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Fig. 7. The change in the neighbor occurrence profile of péini in iNet3 dataset, as the sec-
ondary similarities are introduced. The iNet3 data contlaiee image categories: sea moss, fire,
industrial plant. In the primary metric space, imafes is above average in terms of its occur-
rence frequency. Howeved(% (18/20) of its occurrences are bad, it acts as a neighboritbspo
in other categories. We see how the secondary similaritsesagradually resolve this issue.

bad occurrenceBN;(X14), butsimhubso performs better thagimcossg by allowing
only one remainingX14 bad occurrence into theNN graph.

4.3 Classification with the secondary metrics

The analysis outlined in Section 4.2 suggests that the lasbaare definition of shared-
neighbor similarities might prove more useful for theN classification when com-
pared to the standard approach. In order to test this hypisth@e have compared
simhubsg With simcossg in the context ofk-nearest neighbor classification both on
synthetic and image data.

The choice of parameters was the same as before: the shagéthoresimilarities
were derived from th&0-neighbor sets and the valuesfof= 5 andk = 10 were used
for ImageNet data and the Gaussian mixtures, respectigiher parametrizations are
certainly possible and Section 4.4 deals precisely withrtipact of different neighbor-
hood sizes on the classification process.

As some hubness remains even in the shared neighbor medde,sihe similar-
ity measures were compared both in the ba#N and across a range of hubness-
awarek-nearest neighbor classification methods (fMN [Radovanovi€ et al., 2009],
h-FNN [TomaSev et al, 2011b], NHBNN [TomaSev et al, 2€11
HIKNN [TomaSev and Mladeni¢, 2012b]).



Table 3. Algorithm performance when using the primary metrics. €ifesation accuracy is given
for kNN, hubness-weightedNN (hw-£NN), hubness-based fuzzy nearest neighbor (h-FNN),
naive hubness-BayesiaNN (NHBNN) and hubness informatidi-nearest neighbor (HIKNN).
The symbolss/o denote statistically significant worse/better perforngafc< 0.05) compared
to kNN. The best result in each line is in bold.

(a) ImageNet datd,; distancek =5

Data set kNN hw-£NN h-FNN NHBNN HIKNN
iNet3 72.0 £ 2.7|80.8 + 230 |824 + 220 |81.8 + 2.30 (822 + 200
iNet4 56.2 +2.0(63.3 + 190 |65.2 + 1.70 |646 £ 190 |647 4+ 190
iNet5 46.6 +2.0|56.3 £ 1.70 (619 £+ 1.70 [61.8 £ 190 |60.8 £ 190
iNet6 60.1 +22(68.1 + 160 |69.3 + 1.70 |694 + 1.70 |699 4+ 190
iNet7 434 +£1.7|551 + 150 (59.2 £150 |582 4+ 150 (569 + 160
iNet3Imb{72.8 + 2.4 |87.7 + 1.70 [87.6 £ 1.60 [849 + 190 (883 + 160
iNet4lmb|63.0 + 1.8 |68.8 + 1.50 (69.9 + 140 |69.4 + 150 |70.3 + 140
iNet5Imb|59.7 + 1.5 |63.9 + 1.80 (647 + 1.80 |63.9 + 1.80 |65.5 + 1.80
iNet6lmb|62.4 + 1.7 |[69.0 + 1.70 |70.9 £+ 1.80 |68.4 4+ 1.80 (70.2 + 1.80
iNet7Imb|55.8 + 2.2 |63.4 4+ 2.00 (64.1 + 230 |63.1 +210 |64.3 £ 210
AVG 59.20 67.64 69.52 68.55 69.31
(b) Gaussian mixture datd,, distancek = 10

Data se| kNN hw-kNN h-FNN NHBNN HIKNN
DS, 438 +3.1|644 4+ 530 |72.6 + 280 (80.7 + 240 |65.8 + 3.00
DS, 484 4+ 28 |73.6 £ 6.90 |793 £ 220|839 £ 220 |73.1 £ 250
DS; 67.3 + 23853 +£ 260 (868 £ 170|900 +£ 140 |86.7 + 190
DSy 522 + 261|728 +£ 230 |784 £ 220|819 4+ 200 |72.2 4+ 230
DSs 59.2 +27|80.2 + 340 (846 + 180 |87.2 +150 (811 + 210
DSe 58.6 + 3.3|80.0 +£ 3.30 |81.7 £250 |86.6 + 220 (794 4+ 250
DS~ 65.0 £ 241|846 + 240 (854 +£190 |90.1 + 150 (845 4+ 2.00
DSs 71.0 +£ 231|827 £ 250|859 +£190 |884 4+ 180 (839 4+ 230
DSy 579 +£ 27763 + 330 (823 £ 200|875 +1.70 |77.7 + 240
DSio |575 £29 (781 + 330 |81.1 £ 230 |85 4+ 190 |77.7 + 220
AVG [58.09 77.80 81.81 86.18 78.21

All experiments were run as 10-times 10-fold cross val@atind the corrected re-
sampled-test was used to check for statistical significance. Thiufea in ImageNet
data were normalized prior to classification. No normali@atvas performed on the
Gaussian mixtures, as it was noticed that it actually hahmesctassification perfor-
mance. For example, the averdg¢N accuracy drops frord9.2% to 41.78% when the
Euclidean distance is applied to the normalized featurtovec

The classification accuracy under the primary metrics L5) is given in Table 3.
These results were already discussed from the perspeétiVassification in presence

of class imbalance?], so we will merely use them here as a baseline for compagison
with the classifier performance on the secondary metric¢h Bte synthetic and the
image data exhibit high hubness, so it is no surprise thattihemess-aware classifica-
tion methods clearly outperform the bagiIN. In ImageNet data, all hubness-aware
algorithms perform similarly, but NHBNN achieves the besgtuit in the synthetic ex-
periments.



Table 4. Experiments withsimhubso andsimcosso on ImageNet data. Classification accuracy
is given forkNN, hw-kNN, h-FNN, NHBNN and HIKNN. All displayed experiments wererp
formed fork = 5. The comparisons are done pairwise betweensthehubso and simcosso

for each classifier, so that the higher value is in bold afiddenotes statistically significant
worse/better performance efmhubso compared t&imcosso (p < 0.05)

(a) Distancesimcosso
Data set kNN hw-kNN h-FNN NHBNN HIKNN

iNet3 769 +18(81.2 +18(83.6 + 16831 + 1.4 (83.6 + 1.5
iNet4 59.2 +14|634 + 141|656 +14 (651 + 131|655 £+ 1.3
iNet5 56.1 +14|61.8 +14(639 +£13(63.0 +1.2(643 £1.3
iNet6 612 +13(68.1 +1.3|700 +£13(694 4+ 1.2|70.2 + 1.3
iNet7 476 +£10(566 +1.1(60.1 + 1.1|594 +1.0(59.9 + 0.9
iNet3Imb|[86.5 + 1.8 |89.2 + 1.7 [89.8 + 1.7 [86.7 + 1.8 (89.8 + 1.6
iNet4lmb|67.8 + 1.6 |{70.3 + 1.5|70.8 + 1.7 |68.3 + 1.6 |71.2 + 1.6
iNet5lmb|64.8 + 1.7 |67.4 + 1.5|68.6 + 1.6 [63.3 + 1.7 |69.0 + 1.5
iNet6lmb|62.3 + 1.6 |69.8 + 1.5|71.7 + 1.8 |68.9 4+ 1.6 |71.9 £+ 15
iNet7Imb|56.7 + 1.9 |62.7 + 2.0 |64.8 + 1.8 |61.9 + 1.9 |65.0 + 2.2
AVG 63.91 69.05 70.89 68.91 71.04
(b) Distancesimhubso
Data set kNN hw-£NN h-FNN NHBNN HIKNN
iNet3 833 +£1.70 (847 £170 (848 +16 (847 +14 (848 £15
iNet4 622 + 150 |640 £44 |660 +14 (659 +13 |65.7 £14
iNet5 63.0 £ 1.20 (664 £+ 130 675 £ 130 [66.7 £ 130 (676 £ 130
iNet6 66.6 + 150 [69.7 +1.3 (705 + 1.3 704 +14 |705 £1.3
iNet7 56.6 + 1.10 |60.9 + 43 |629 + 110 (625 4+ 1.00 |63.0 +1.10
iNet3Imb[{88.9 + 160 (89.8 +1.6 [90.1 +1.7 [88.1 £18 [89.9 +15
iNet4lmb|69.7 + 1.70 |71.2 £ 1.7 (715 + 1.6 |69.7 +1.6 |71.6 + 1.7
iNet5Imb|67.3 + 1.70 [69.7 + 1.60 |70.4 + 1.5 66.4 + 1.70 |705 + 1.6
iNet6lmb|68.0 + 1.70 |71.9 + 1.7 72.8 + 1.8 70.6 +1.7 |73.0 +1.8
iNet7Imb|62.5 + 2.00 [65.1 + 1.90 |65.8 + 1.8 639 +21 (658 +£1.9
AVG 68.81 71.34 72.23 70.89 72.24

Classification performance on the image datasets when tr@rgecondary shared-
neighbor similarities is given in Table 4. The usesdfncossg increases the average
kNN accuracy by abou’% when compared to thé&; distance case. However, the
proposedsimhubsg similarity performs even better and further improves theested
accuracy by anothéi%. This is consistent with the observed difference in induzad
occurrence percentages which was shown in Figure 4. Bottndacy measures im-
prove not only the basikNN method, but all the examined hubness-aware approaches
as well. The hubness-awasénhubs is clearly to be preferred, since it leads to equal
or higher accuracies for all the algorithms on all the datase

In both secondary metric spaces, the hubness-aware meilbdsrform favorably
when compared t&NN. On the other hand, when tih&N is coupled withsimhubsg,
it performs better than some of the hubness-aware appredchbe primary metric



Table 5. Experiments withsimhubso and simcosso on Gaussian mixture data. Classification
accuracy is given fokNN, hw-ENN, h-FNN, NHBNN and HIKNN. All displayed experiments
were performed fok = 10. The comparisons are done pairwise betweensthehubso and
simcosso for each classifier, so that the higher value is in bold afddenotes statistically
significant worse/better performanceséfnhubso compared taimcosso (p < 0.05)

(a) Distancesimcosso

Data se ENN hw-kNN h-FNN NHBNN HIKNN

DS, 64.7 + 3.1 (76.0 + 3.4 |73.7 £ 2.7|76.2 £ 241|739 £+ 2.6
DS, 69.6 + 2.6 |82.7 4+ 2.6 |79.7 £ 2.2 (805 4+ 251|794 + 2.2
DSs 814 + 21885 +18|89.1 +1.7|884 + 1.8(88.7 + 1.6
DSy 725 £ 231|768 +£24|779 £ 23|79.1 £ 21783 + 2.1
DS5 77.3 + 221|850 +19|834 +£201(83.6 +£2.1(83.2 + 2.0
DSe 765 + 2.6 (837 + 23822 + 231|832 + 241|826 + 2.4
DS7 814 + 2.2 (88.1 4+ 2.1|86.2 +1.9|87.1 + 201864 £+ 1.9
DSs 826 +19|87.7 + 171|869 + 1.7|86.7 4+ 1.7 |86.7 + 1.7
DSy 81.1 +£23|857 +19(859 £+ 20865 4+ 2.0(86.2 + 2.1
DS10 |781 4+ 221|843 +2.0(86.2 + 1.9 84.2 + 1.8 (83.6 + 1.8

AVG 76.25 83.85 83.12 83.55 82.90
(b) Distancesimhubso

Data se| kNN hw-kNN h-FNN NHBNN HIKNN
DS, 828 + 240|837 £250(83.6 &+ 240 (851 £ 220 (836 +240
DSs 845 4+ 170 (865 + 160 (868 + 1.80 |87.9 + 160 (858 £+ 1.70
DSs 90.0 £+ 160|904 +16 [91.3 £15 (929 + 130 (90.3 + 1.5
DSy 825 4+ 230 (849 4+ 170 (845 + 180 (852 + 170 (83.8 £ 190
DSs 85.8 + 190|873 +19 (879 £ 170 (888 + 1.60 |86.8 + 190
DS 88.4 4+ 180 (885 4+ 190 (89.1 + 180 (914 + 160 [88.8 + 180
DS~ 88.1 + 180 (898 £16 |90.2 + 160 (921 + 130 (889 £ 1.8
DSg 88.3 &+ 1.70 [88.7 + 1.6 895 + 160 (905 + 150 (886 + 1.70
DSy 858 + 190 (884 4+ 170 (886 + 1.70 |90.3 + 150 [87.7 £ 1.7
DS1o |86.8 £ 160 (89.1 £ 140 (896 4+ 150 (909 +£1.40 (883 + 160
AVG [86.30 87.73 88.11 89.51 87.26

space. Nevertheless, the best results are obtained by oimgliie hubness-aware met-
ric learning with the hubness-aware classification.

The results on the synthetic data (Table 5) are even morerazing. The standard
simcosso raises the averageNN classification accuracy fro9.2% to 76.25%. Us-
ing thesimhubs, similarity gives86.3% instead, which is a substantial further increase.
As in the ImageNet data, the hubness-aware methods outpettie basidNN in both
secondary metric spaces asianhubsg outperformssimcossy on every algorithm and
for every dataset. The major difference is that here we sseiiing thesimcossg sim-
ilarity actually reduced the accuracy of NHBNN, which was #lingle best approach in
the primary metric space. A decrease was observed on eactir®dsynthetic dataset.
Furthermore, the best obtained average result when usingriiross, measure equals
to 83.85% (by hw-kNN, Table 5), which is still less than the best result obtdiire



the primaryL, metric space (86.18%, shown in Table 3). This shows that sieeofi
simcossg IS not always beneficial to hubness-awaNN classification.
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Fig. 8. The average accuracy for each algorithm and similarity omeasvhen taken over all the
analyzed datasets (both ImageNet and the Gaussian mixtlihesincrease in performance when
using the shared neighbor similarities is most pronounoddN N, which was to be expected,
as the hubness-aware methods are less affected by the dimeditg curse and the hubness phe-
nomenon. The proposedmhubso similarity measure leads to better accuracy in each examine
algorithm.

4.4 The influence of neighborhood size

All the previously discussed experiments depended on tighberhood size param-
eters §,s). The choice ofs affects the overall quality of the induced secondaRN
graph and the choice df affects the algorithm performance in the secondary metric
space. This is why it is very important to test the sharedhisig similarities over a
range of different parameter values, in order to deternfitieel previously discussed
results are relevant and not merely an artifact of a pagidls) choice. Figure 9 and
Figure 10 show that theNN and h-FNN classification performance &x5; andDSs
is not greatly affected by a changekinThe same holds on other datasets as well.

Figure 10 shows a peculiar trend, especially when comparé&tjure 9. The sec-
ondarysimcosso similarity reduces the overall bad hubness in the data, wihiproves
the classification accuracy @NN. On the other hand, there is a very small improve-
ment in h-FNN and the other hubness-aware methods forl 0 and it seems that even
this is lost as thé is further increased. As all algorithms are operating irsdame met-
ric space, we would expect the decrease in bad hubness tb thiféen in similar ways
and yet this is not the case when uskigicossg. This result suggests that there has to
be another, more subtle difference betwegncossy andsimhubsg.

It turns out that thésNN graphs induced byimhubso have a significantly lower
reverse neighbor set entropy, as shown in Figure 11. Theseveighbor set entropy
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Fig. 9. kNN accuracy over a range éfneighbor set sizes. The hubness-awarehubso Simi-
larity leads to better results in all cases.
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Fig. 10.h-FNN accuracy over a range bfneighbor set sizes.

is defined asi (Rx(x)) = > .co %k((zﬁ) -log ]\I,\:(z) Anti-hubs with no previous
occurrences are assigned aeverse neighbor set entropy by default. The observed
difference between the entropies inducedsbyicossy andsimhubsg increases witlk.
In other wordssimhubsg increases the average purity of neighbor occurrence pspfile
which increases the quality and the reliability of occuoemodels inferred by the
hubness-aware classification methods. This is preciselyghson why theimhubsg
measure turns out to be more useful thamcosso when used in conjunction with the
hubness-aware classifiers. Even though it reduces theldvadaoccurrence frequency,
simcossy reduces the purity of the secondary neighbor occurrendégeoespecially
when considering larger neighborhoods. These two faceesal each other out, so in
the end no significant change in the hubness-aware clasisifigeerformance remains.
The other neighborhood parameterwhich is used to determine the size of the
neighbor set from which the shared neighbor counts will Bertais directly involved
in the quality of the resulting secondary metric spaces. 0$w of relatively large
values was advocated feimcos; [Houle et al., 2010], as it was argued that it leads
to a better similarity score. The propessize was said to be of the same order as the
cluster size. In our synthetic Gaussian mixtures, that daewmhount to anywhere be-
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Fig. 11. The normalized reverse neighbor set entropies over a rahngeighborhood sizesk]
for Lo, simcosso and simhubso, averaged over all the synthetic datasékS( - DS10). The
hubness-awareimhubso increases the purity of reverse neighbor sets, whilecosso de-
creases it.

tween50 and200, depending on the dataset. IndeedDif; andD.S; the optimum for
simcos in terms of bad occurrence frequencies is reached arsund 50, as shown

in Figure 12. The hubness-awargnhubs, seems to behave differently, as it reaches
its optimum fors values betweef0 and100 in these two datasets. After reaching the
optimum, the performance ofimhubs slowly deteriorates ifs is further increased.
Nevertheless, its bad hubness optimum seems to be well tletosimcoss optimum.
Also, for everys € [10,200], BN;i™" b < BN;imes: in all the examined cases. It is
actually beneficial to reach the optimum for lowevalues, if possible, since it entails
less computations and a shorter execution time.
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Fig. 12.Bad occurrence frequencies for= 10 in the secondary metric space as thygarameter
is varied insimcoss andsimhubs similarity measures.



0.4 (38

035
k- \ C 03—
S 03 1> g \
-~ \ 025 |
=025 = \ —
< = \ 2
8 53 \ £ 02 )
e 0 = & = simcosg
T o015 e T 015 B ----simhubg

0.1 L o S S 0.1

10 50 100 150 200 10 50 100 150 200
s s
(@) DSy (b) DS>

Fig. 13.Normalized reverse neighbor set entropy#c£ 10 in the secondary metric space as the
s parameter is varied igimcoss andsimhubs similarity measures.

The trends involving the reverse neighbor set entropy ameesdat different. Un-
like bad hubnesdi (R1o(z)) monotonously decreases both fémcos, andsimhubs.
This is shown in Figure 13, fapS; andD.S,. The difference between the two measures
seems to be constant, regardless of the choigevalue. This reaffirms the previously
stated observation thaimhubs; seems to generate metric spaces where the hubness-
aware occurrence models yield greater improvements. Veall s-neighborhoods are
not well suited for this task, as the improvemenfiiR1(z)) over L, is achieved by
simhubs only for s > 50. On the other handsimcos, requires at least = 150 to
produce equally pure neighbor occurrence profiles as timegpyi metric.

We can conclude that the proposéthhub similarity measure outperformsmcoss
not only fors = 50 as confirmed above, but also over the entire range of differen
values. Additionally,simhubs seems to reach its optimum sooner and it seems to be
somewhere in the rangec [50, 100] on the synthetic datasets that we have examined.

4.5 Individual contributions of the two hubness-aware weigiting terms

The hubness-awargmhub, similarity measure is based on the occurrence weighting
which incorporates both the unsupervised hubness-awanpauwent gimhub'N) and
the supervised occurrence profile homogeneity terimpubt VR). Here we will ana-
lyze how each of these individual weights affects the prigeiof the finalsimhubs
similarity score.

Since bad hubness has been a focal point of the previoussdiscilit is important
to see how each of these weighting terms helps in reducinguéeall bad hubness in
the data. Figure 14 shows the reduction rates on two repsenimageNet datasets,
iNet5Imb and iNet6lmb. Naturally, agmhub'N is an unsupervised weighting term and
simhub? VR a supervised onajmhubl VR induces less bad hubness in the secondary
metric space. Nevertheless, as Figure 14 suggests, thpamiged term also slightly
decreases the overall bad hubness. More importantly, iribotes to the overall bad
hubness reduction in the finadmhubs measure, as we see that gievhub, similarity
induces less bad hubness thamhub? VR on these image datasets.
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Fig. 14.The induced bad occurrence frequencies in two ImageNeselatagiven over a range of
neighborhood sizes fotimcosso, simhubso, simhubl‘rf(\)I andsimhubgoUR.

Figure 14 shows that both hubness-aware terms are releveeducing the overall
bad hubness of the data, but it also wrongly suggestssthabub'N a minor role in
the final similarity measure. Even though the bad hubnesgisod indicator of the
difficulty of the data, it needs not be very strongly correthtvith the actuatNN clas-
sification performance fot > 1. Indeed, as shown in Figure 1&mhubl} is the single
best similarity measure on the iNet5Imb dataset when3, in terms of both the accu-
racy and the macro-averagéy score. The difference ifi is more pronounced than
in the overall accuracy, which implies thatnhubllj better improves the minority class
recall under the class imbalance in the iNet5Imb data. Tlakes sense, agmhublly
gives preference to those neighbors which are judged to lve local to the points of
interest. The observation is confirmed in Figure 16, wheeeréitall for each class in
the iNet5Imb dataset is shown. Similar trends can also be isethe other examined
imbalanced ImageNet datasets. On the other hand, both tirejghrms perform more
or less equally on the examined Gaussian mixtures, whicbtisurprising, as this data
is not so highly imbalanced.
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Fig. 15. The accuracy and the macro-averadgédscore on INet5Imb fokNN when using some
of the different secondary similaritiesimcosso, simhubso, simhubiy andsimhubiy ®.
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Fig. 16. The class-specific recall given fafimcosso, simhubly and simhubSy ™ on the
iNet5Imb dataset fok = 5. The unsupervised hubness-aware teimhubly outperforms the
supervisedsimhubS T on all the minority classes in the data. The recallsohhublP Y is

higher only for the majority class.

Whether it turns out that the stated conclusions hold in ggre not, it is already
clear thatsimhub'N and simhubt VR affect the finalsimhub, similarity measure in
different ways. Therefore, it makes sense to consider anpetrized extension of the
simhubs weighting by introducing regulating exponents to the imdisal hubness-
aware terms.

ZxGDs(zi)uDs(mj) I (2)* - (max Hy — H(Rs(x)))ﬁ
(8)
s-max H,® - max I,,*

However, it remains rather unclear how one should go abdetméning the opti-
mal («, ) combination for a given dataset without over-fitting on ttaérting split. The
parameter values could also be derived from the misclaasdit cost matrix in unbal-
anced classification scenarios. A thorough analysis ofideia is beyond the scope of
this paper, but it is something that will definitely be catifinvestigated in the future
work.

simhub® P (z;, ;) =

4.6 Handling of the difficult points

Some points are more difficult to properly classify than ehand each individual
dataset is composed of a variety of different point type wdispect to the difficulty
they pose for certain classification algorithms. A pointreleterization scheme based on
the nearest neighbor interpretation of classificationdaliffy has recently been proposed
for determining types of minority class points in imbalaticedata
[Napierala and Stefanowski, 2012]. As the method is limitedmbalanced data, it
can be used to characterize points in any class and on argetldtas the most natural
approach to adopt in our analysis, as the point difficultyxigressed in terms of the
number of label mismatches among its 5-NN set. Points witmadét one mismatch
are termedsafe points with 2-3 mismatches are referred to as béioglerline exam-
ples points with 4 mismatches are considerate among their class and points with
all neighbors from different classes are said tomh#iers



As the SNN similarity measures induce a change inkiN& structure of the data,
we can expect that a change in metric might lead to a chandpeiowerall point type
distribution. Reducing the overall difficulty of points cha directly correlated with the
improvement in thekNN classification performance. This is precisely what haspe
when the SNN measures are used, as shown in Figure 17 fomtleetig datasets. Both
the standardimcosso and the proposesimhubsg, simhubly and simhublY® sig-
nificantly increase the number of safe points when comparéukt primaryL. metric.
The hubness-aware shared neighbor similarities improgepttint difficulty distribu-
tion more tharsimcosso, which explains the classification accuracy increase dissdl
in Section 4.3.

The two hubness-aware weighting terms lead to an approglynatiual classifi-
cation accuracy on the examined Gaussian mixtures, sodnewhat surprising that
they induce different distributions of point difficulty. &purity term,simhubi 'R, is
better at increasing the number of safe points than the oence self-information term,
simhubly . This is compensated by the fact that the difference in tmetrer of border-
line points is in favor okimhubLy by a slightly larger margin. As borderline points are
correctly classified approximateiy% of the time, the two distributions exhibit similar
overall difficulties for thekNN classification methods.

0.9
0.8
0.7

g% MW safe
0.5 .
borderline
0.4 -
Erare
0.3 +
P outlier
0.2 -
* T ey -
0 - : Fh. i e L
L

simcossg  simhubsg  simhub'™sg simhubPRs,

point type %

Fig. 17. Distribution of point types on synthetic data under sevenaployed metrics. The
hubness-aware secondary similarity measures significenatiease the proportion of safe points
which leads to an increase NN classification performance.

The difference between the examined similarities/metsiggesent in each exam-
ined dataset. The proportion of safe points is shown in Eig& for each of the Gaus-
sian mixtures. ImageNet data exhibit the same properties.ificrease in the propor-

tion of safe points is yet another desirable property of tiogppsed hubness-aware SNN
measures.
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4.7 Reducing the error propagation

Data processing and preparation sometimes introducesauddierrors in the feature
values and these errors can more easily propagate andvetgatifect the learning
process under the assumption of hubness. We will briefljudsthree such datasets
(iNet3Err:100, iNet3Err:150, iNet3Err:1000) describedTomasSev et al., 2011a]. The
three datasets contain the 100, 150 and 1000-dimensioaatiged representations,
respectively. While the system was extracting the Haaufeatepresentations for the
dataset, some 1/O errors occurred which left a few imagesmsvactors, without hav-
ing been assigned a proper representation. Surely, thisylar error type can easily
be prevented by proper error-checking within the systermwieuvill nevertheless use it
as an illustrative example for a more general case of dateylm@mpromised by faulty
examples. In a practical application, obvious errors sugcthase would either be re-
moved or their representations recalculated. In gendraletrors in the data are not
always so easy to detect and correct. This is why the subsédata analysis ought to
be somewhat robust to errors and noise.

Even though errors in the data are certainly undesirablewazéro vectors among
2731, whichis the size of iNet3 data, should not affect theral classifier performance
too much, as long as the classifier has good generalizatjpabdaies. ThekNN clas-
sifier, however, suffers from a high specificity bias and ihfsirther emphasized by the
curse of dimensionality under the assumption of hubnessidiathe employed metric
(L1) induced an unusually high-hubness of zero-vectors. leeaily be shown that the
expectedl; dissimilarity between any two quantized image represemsatncreases
with increasing dimensionality. On the other hand, theagisé to the zero-vector re-
mains constant for each image. Eventually, wHea 1000 the few zero-vectors in the
data infiltrated and dominated all tiheneighbor sets and caused the 5-NN to perform



worse than zero rule, as they were, incidentally, of the miipelass. The increasing
bad hubness of the top 5 bad hubs is shown in Figure 19.
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Fig. 19.The increasing bad hubness of the top 5 erroneous bad hufs quantized iNet3 Haar
feature representations. All the bad hubs were in fact zeobers generated by a faulty feature
extraction system and all of them were of the minority cla$gse zero vectors became dominant
bad hubs as the dimensionality of the data representatienineaeased. Such a pathological
case clearly illustrates how even a few noisy examples avaginto compromise akt-nearest
neighbor inference in high-hubness data.

Such pathological cases are rare, but clearly indicateahgets in disregarding the
skewness of the underlying occurrence distribution. As éxample is quite extreme,
it is a good test case to examine the robustness of the seyosiddlarity measures
to such a high violation of semantics in ttkenearest neighbor graph. The compar-
isons were performed as 10-times 10-fold cross validati@hthe results fokNN are
summarized in Figure 20. The neighborhood dize 5 was used.

For the 1000-dimensional faulty representation, the s#&onsimcossgy and
simhubsagg Similarities improved the overallNN accuracy from20% to 94%, which
is undeniably impressive. Both thémcoss and simhubs reached their optimum for
s = 200, but fors € [50,200] the hubness-aware similarity measure outperformed its
counterpart, as it converges to the corfdéN graph configuration faster thawncoss,
which was previously discussed in Section 4.4. This is shiovifigure 20 fors = 50.

What this example shows is that the hubness-aware sharglbmgidistances are
able to significantly reduce the impact of errors on high+teds data classification.
Such robustness is of high importance, as real world dattiea eaccurate and noisy.
This particular example might have been extreme, but suttbree cases are likely to
occur whenever errors end up being hubs in the data, whicandispon the choice of
feature representation and the primary metric.
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Fig.20. The kNN accuracy on high-hubness erroneous image data uhdersimcosso,
stmhubso, simcosao0, simhubago. The secondary similarity measures reduce the impact of
faulty and inaccurate examples.

4.8 Class separation

Ensuring a good separation between classes is what a godd shetuld ideally be able
to achieve. This is not always possible, as the cluster gssoims sometimes severely
violated. Even so, we would expect the examples from the sdese to be, on average,
closer to each other than the pairs of examples taken frdiereift classes. Increasing
the contrast between the average intra-class and intss-dlatance is one way to make
the classification task somewhat easier. The improvememtjshowever, guaranteed,
especially when théNN methods are used. Unless %N structure changes in such
a way that the ensuing distribution of point difficulty becesrfavorable, the contrast is
of secondary importance.

The proposedimhubt VE measure was designed in such a way that the neighbors
with higher occurrence profile purity are valued more, ay timually contribute more
to the intra-class similarities. However, note that thisngy guaranteed in binary clas-
sification. If there are only two classes in the dafdR, (1)) < H(Rs(x2)) directly
follows from the fact that:;; has a higher relative contribution to the contrast than

There is also a downside to using the occurrence entropiegfermining neighbor
occurrence weights. The entropies measure the relativy purich reflects the relative
positive contribution of the neighbor point. However, if wee interested specifically
in increasing the contrast, we are interested in rewardieg@lbsolutepositive contri-
butions, not the relative ones. In other words, even if twonsor; andz, have the
same reverse neighbor set purity, has a higher contribution to the overall similarity
if Ng(x1) > Ns(z2). Within the simhubs measure, this problem is even more pro-
nounced becaus¥,(z1) > Ns(z2) = In(z1) < In(x2).

This is very interesting, as we have seen in Section 4.5 #thtaing the weight
of hubs bysimhub™ is highly beneficial. It increases the reverse neighbor setyp
reduces bad hubness and improves ANN classification as much agmhubt VR,
However, it seems that it actually reduces the contrastdmtwthe intra-class and inter-
class similarities, especially when used in conjunctiothwimhubt V.



In multi-class data, things get even more complicated. E&efphbor pointz; con-
tributes to ("+{*9) = GS(x;) + BS(x;) shared neighbor similarity scores, where
GS(z;) andBS(z;) represent the number of intra-class and inter-class giiis, re-
spectively. Denote b¢’'S(z;) = GS(z;) — BS(z;) the contribution of each; to the
total difference between the two similarity sums.

GS(x:) =Y (ng(z,-))
ceC (9)
BS(x;) = Z Ni,e (@i)  Ni ey (1)

Cl,CQEC,Cl;éCZ

The occurrence purit9 P(z;) = max H; — H(Rs(x;)) is tightly correlated with
CS(z;). Nevertheless, in non-binary classification, some ocoge@rofiles exist such
thatOP(z;) < OP(x;), butCS(z;) > CS(z;) or vice versa. Consider the following
4-class example:

C =4, max Hy, = log4 = 2
N(z;) = Ng(z;) = 100

Nsi(xi) =5, Nso(x;) =15, Nyz(x;) =25, Nga(r;) =55
Ns,l(xj) = 6, Nsyz(xj) = 10, N373($j) = 34, NSA(.’IIJ‘) =50

CS(z;) = GS(x;)—BS(z;) = 1900—3050 = —1150  (10)
CS(z;) = GS(z;)—BS(z;) = 1846—3104 = —1258

OP(z;) = 2-H(Rs(z;)) ~ 2-16010 = 0.3990

OP(z;) = 2-H(Ry(z;)) ~ 2-15989 = 04011

OP(z;) < OP(x;) N CS(z;) > CS(x )

This example shows that the reverse neighbor set purity isnmomotonous with
respect to the difference between the intra-class andates similarity contributions
of a neighbor point.

Note, however, that maximizing the sum total @5p = »_ ., CS(z) is not
equivalent to maximizing the contrast between the inted iatra-class distances, as
that quantity requires normalization. L&p = :1:2 ”i’;fj;tg;;i)ﬁi\i?y:Jyé Ld;iiffifi
quantify the contrast. The denominator is necessary, asutdwtherwise be possible
to increase the contrast arbitrarily simply by scaling upha distances. In practice, this
means that the contrast also depends on the maximum/minaimise distances on
the data - and these quantities also change while we are icigathg instance weights
when trying to increas€’Sp. Nevertheless, increasigSp seems like a sensible ap-
proach to improving class separation, slightly more natinan increasing the overall




purityOPp = > . p OP(x). To see if this is really the case, we defined two additional
hubness-aware similarity measures.

simhub®! — ZmGDs(zi)uDs(acj) ]]-{E:CS(sE)>0} (I)

S

11

> weD, (z)uD. (zy) (CS(@) — minge p(CS(2)))
s+ (maxzep CS(Z) — mingep CS(T))

simhub™ =

12)

If we limit the weight of each shared neighbor point to theeialw(z) € [0, 1],
it is not difficult to see that th€'Sp is trivially maximized if and only ifw(z) = 1
whenCS(z) > 0 andw(x) = 0 whenCS(z) < 0. This weighting in embodied in
simhub?!, defined in Equation 11 above. Even though the total diffeedsetween the
contributions to inter- and intra-class distances is m@eah it is clear that this measure
has some very undesirable properties. First of all, it isingtossible to construct a
dataset with a severe cluster assumption violation wkiere D : C'S(z) < 0. All the
simhub?! similarities would then equal zero and this is certainlywhat we want. In
less extreme, real world data, this measure could simikamtyul some of the pairwise
similarities when all the shared neighbors h&i€(xz) < 0. What this example clearly
shows is that even though we would like to incre@s#, and improve the contrast, not
only does the global optimum fa@r'Sp not guarantee the best class separation, it also
involves having a similarity measure which has many prattieaknesses.
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Fig.21. The average class separation induced by different metriche Gaussian mixtures
(DS1-DS10). Even though theimcosso measure has been shown to be inferiokMN classi-
fication, it achieves better class separation than the quisiyi consideredimhubso, simhubly
andsimhubSY’® similarities. On the other hand, the newly proposedhuble ™ measure gives

the best separation between the classes.



The simhubFL similarity score is a far less radical approach thanhub®'. The
neighbor occurrence weights are proportional to the ndeeéineighbor contributions
CS(x) to theC'Sp total. Even though this measure is in a sense similaintohubl VR,
there are no more problems with monotonicitywofz) with respect toC'S(z). This
ought to help improve the class separation. Alsty) > 0 for points withC'S(z) < 0,
so there is no risk of having many zero similarities, as wasc#se withsimhub?!.

Figure 21 shows the class separation induced by each of théamed similarity
measures, on the Gaussian mixture datasets. The stasidatdss, measure achieves
better class separation than the previously considereddssbaware SNN measures:
simhubso, simhubly andsimhubtF. This is somewhat surprising, given that it was
shown to be clearly inferior in terms &NN classification accuracy, bad hubness,
as well as the inverse neighbor set purity. However, thiQislass data and, as was
explained above, there is no guarantee that any of the threeess-aware measures
would improve the separation, as defined®)y. On the other hand, the newly pro-
posedsimhubSE" measure does manage to increase the separation, unlikeittbk i
choicesimhubl}, which fails for reasons already discussed.

The difference between th&mcossg and simhubg)RdEL is present in all datasets.
The comparisons were also performed in terms of the widedyg &ilhouette coeffi-
cient [Tan et al., 2005], which is shown in Figure 22. The Qilbtte coefficientis used
for evaluating cluster configurations. If we observe ea@s<slas a cluster, a higher
Silhouette score means that the classes in the data conédten to the cluster assump-
tion. If the index value is low, it means that the classes ateeally compact and either
overlap or are composed of several small clusters, scdtsemrind a larger volume of
space. The Silhouette values for the considered overlggpaussian mixtures are still
rather low, but the original ones (in tHe metric) were even negative in some datasets,
meaning that the points from some different class are orageecloser than the points
from the same class. So, bothncosso andsimhubie™ improve the cluster structure
of the data, but theimhubfL does it better.

Regardless of the fact that it improves class separatiomhub2FL turns out to be
not nearly as good agimhubs when it comes to reducing bad hubness and improv-
ing the classification performance. This is why we would remtommend it forcNN
classification purposes. Regardless, as it raises theugitteocoefficientsimhubtFl
could be used in some clustering applications. Admitteitlig, a supervised measure
(it requires the data points to have labels), but these dadmild either be deduced by
an initial clustering run or already present in the data. Nigrma considerable amount
of research was done in the field of semi-supervised clusgfd¢Bilenko et al., 2004],
where some labeled/known examples are used to help impnevedstering process.
This was done either by introducing constraints [Lu, 200 frecisely by some forms
of metric learning [Kumar et al., 2005][Bilenko et al., 2904

To conclude, we can say that not increasing the class sépasastmuch asimcoss
is the only apparent downside of usisgnhub,, but one which can be tolerated, as we
have seen that the proposed hubness-aware shared-negjynilarity measure helps
where it matters the most - in improving the classifier perfance and reducing bad
hubness, which is a very important aspect of the curse ofrbineality. Nevertheless,
simhubs still significantly improves the class separation when carag to the primary
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Fig. 22.The comparison in terms of the Silhouette index on the Gaanssixtures DS1-DS10)
betweensimcosso and simhubie. The newly proposed hubness-aware SNN measure makes
the class-clusters more compact in all considered datasets

metric, and if the class separation and the cluster strectiithe data is of highest im-
portance in a given applicatiogimhubRFL is still preferable to the standasdmncoss.

4.9 Low-dimensional data

Low dimensional data does not exhibit hubness and is usealjer to handle as
it doesn't suffer from the curse of dimensionality. We havalgzed 10 such low-
dimensional datasets. The detailed data description was @i Table 2. Some datasets
even exhibited negative skewness of the neighbor occwem@istribution, which might
even be interpreted amnti-hubnessan opposite of what we have been analyzing up
until now.

We have compared th@mcosso and simhubsg with the primary Euclidean dis-
tance on this data, by observing thidN accuracy in 10-times 10-fold cross-validation
for k = 5. All features were standardized by subtracting the meandanding by
standard deviation prior to classification. The resultssti@vn in Figure 23.

Apparently, both shared neighbor similarities seem to beesehat inadequate in
this case. They offer no significant improvements over thiegry metric, sometimes
being slightly better, sometimes slightly worse. The ageraccuracy over the ten con-
sidered low-dimensional datasets is 85.17 for 84.55 forsimcossg and 85.1 for
simhubsg.

This comparison shows that the shared neighbor similardiegght to be used pri-
marily when the data is high dimensional and exhibits natide hubness. In low di-
mensional data, other approaches might be preferable.
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Fig. 23.The accuracy of thg-nearest neighbor classifier on low dimensional data unifferent
distance measures. As there is no hubness in this data afeen® visible improvements.

5 Conclusions and Future Work

In this paper we proposed a new secondary shared-neiginhitarsly measureimhubs,

in order to improve thé&-nearest neighbor classification in high-dimensional date
like the previously usedimcos; score,simhub, takes hubness into account, which is
important as hubness is a known aspect of the curse of diovadily which can have
severe negative effects on all nearest-neighbor methoelertheless, it has only re-
cently come into focus and this is the first attempt at incoapog hubness information
into some form of metric learning.

An experimental evaluation was performed both on syntlidgie-dimensional over-
lapping Gaussian mixtures and quantized SIFT representatf multi-class image
data. The experiments have verified our hypothesis by shpwiat the proposed
simhubs similarity measure clearly and significantly outperforsisicos; in terms of
the associated classification performance. This improm¢cen be attributed to a re-
duce in the bad hubness of the data and the increased putiitg akighbor occurrence
profiles. ThekNN graphs induced by theimhubs measure are less correlated to the
primary metrickNN structure, which shows that the hubness-aware measargehk
the kNN structure much more radically thawncoss.

As simhub, was defined in a hybrid way, by exploiting both the supervesed the
unsupervised hubness information, we have thoroughlyaadithe influence of both



constituents imhubt VR andsimhub'N, respectively) on the final similarity score. It
was shown that both factors decrease the bad hubness oftéhedbthat they do it best
when combined, as igimhubs. On the other handsimhub'N seems to be somewhat
better in dealing with imbalanced datasets.

All secondary metrics change the overall distribution ahptypes in the data. The
hubness-aware measures excel in increasing the propoftiafepoints, which are the
ones that are least likely to be misclassifiedinearest neighbor classification. This is
closely linked to the improved classifier performance.

The only notable downside to theémhubs, measure is that it does not increase the
class separation as much as the standardos,. This has been thoroughly discussed
in Section 4.8, where we have tried to overcome this difficblt proposing an addi-
tional two hubness-aware SNN measurgsthub?! andsimhubREL. The experiments
have shown thatimhub®F" does indeed improve the class separation better than both
simcoss andsimhubs. The proposedimhub, is still to be preferred for classification
purposes, butimhubREL might be used in some other applications, as for instance the
semi-supervised clustering.

In our future work we would like to compare the outlined apgaioes to other forms
of metric learning, both theoretically under the assumptibhubness, as well is var-
ious practical applications. As for the possible extensignwould be interesting to
include position-based weighting, as was done before iressimared nearest neighbor
clustering algorithms. In this paper we focused mostly engtipervised case, but we
intend also to explore in detail the use of hubness-aware SiiNarity measures in
unsupervised data mining tasks.
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3 Practical Applications of the Hubness-aware
Methods

Many frequently encountered types of data exhibit non-negligible hubness. Therefore, the
hubness phenomenon is potentially of high interest in various practical applications of ma-
chine learning and data mining. Unlike the previous text, this chapter presents a data-driven
perspective on the role of hubs in high-dimensional data analysis on four rather different
data types: images, sensor data, documents and bug duplicate reports.

We will begin by considering hubs in image data (Section 3.1). We will look at how dif-
ferent feature representations affect the overall neighbor occurrence distribution and proceed
by showing how these insights might help in practical image retrieval and object recognition
systems.

Vast quantities of data are being collected by sensors nowadays and are being aggregated
and assessed by various automatic or semi-automatic analytical systems. We will show that
hubs may also arise in this type of data and propose a simple semi-automatic anomaly
detection sub-system for oceanographic sensor data in Section 3.2.

Textual data is available in many different languages and cross-lingual information re-
trieval allows for a unified approach to querying multi-lingual document collections. In
Section 3.3, we will examine the correlation between the neighbor occurrence distribution in
different languages, as well as the consequences of using the canonical correlation analysis
(CCA) for projecting data onto a common semantic space. We will propose a simple weight-
ing scheme that improves the performance of cross-lingual document retrieval systems that
are based on CCA.

Bug resolution is an important task in software engineering. Prior to assigning a bug
report to a responsible engineer, one needs to determine if the same issue had already been
reported in the past. Given that there is a large number of issues being reported and that
the users phrase their complaints and/or observations in very different ways, bug report
duplicate detection is a difficult problem that has recently received some attention. In
Section 3.4, we will show that this data exhibits substantial hubness and that the temporal
hubness information can be used for secondary re-ranking of the neighbor sets, which results
in the actual duplicates being ranked higher and becoming easier to notice by the users of
the system.

3.1 Image Data

Object detection and recognition in images has many practical applications. It is one of the
essential tasks in face recognition, optical character recognition, robotics, automated vehicle
control, object tracking and content-based image indexing.

3.1.1 Feature Representations

Raw images first need to be assigned a proper feature representation. Different feature types
might be appropriate for different analytical tasks. This usually involves extracting infor-
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mation from color, texture, edges, or any property which we feel might be worth capturing.
All such features can be divided in two groups - local and global image features. Global
image features are used to summarize the average properties of an observed segment, while
the local features represent information extracted from neighborhoods of some sampling
points [Zhang and Zhang, 2008]. These points may simply define a grid over an image, but
local features can also be computed at some informative points, according to some opti-
mization criterion, as is often the case with extracting SIFT features [Lowe, 1999]. There
are many different types of local image features and we have decided to limit our discussion
to SIFT, Histogram of oriented features and Haar features, for practical reasons.

Our hypothesis was that different image feature representations may lead to different k-
nearest neighbor topologies, so that the image dataset exhibits different degrees of hubness
when different types of features are used. To test our hypothesis, we have examined several
different types of local features: SIFT, Histogram of oriented gradient features and Haar
filters. In some cases, we have also used the color information in form of global color
histograms.

The experiments have been performed on both the quantized and the non-quantized
feature representations, for each examined feature type. The process of forming a quantized
feature representation is given in more detail in Section 3.1.1.4.

3.1.1.1 Haar Features

Haar filters, derived from Haar wavelets, have been introduced by [Papageorgiou et al.,
1998] that used the wavelet representation for recognition of two classes of objects: faces
and persons. The representation has been exploited and extended by [Jones and Viola,
2001] and [Lienhart and Maydt, 2002] that completed the set of features and improved the
detection algorithm.

Haar filters operate on gray level images and their value is represented by the difference of
sums computed over rectangular regions. The regions have the same size and shape and are
horizontally or vertically adjacent. Two types of features have been used: two-rectangular
and three-rectangular as shown in Figure 37:

Two-rectangular features
Three-rectangular features

Figure 37: Example of Haar filters

The value of a two-rectangular Haar feature is the difference between the sums of the
pixels within two rectangular regions (the white and black regions in Figure 37). The regions
have the same size and shape and are horizontally or vertically adjacent. A three-rectangular
feature computes the sum within two outside rectangles subtracted from the sum in center
rectangle. The integral image representation has been used for a fast computation of feature
values [Zhang and Zhang, 2008].

3.1.1.2 Histogram of Oriented Gradient Features

The histograms of oriented gradients (HoG) were used successfully for pedestrian classifica-
tion in [Triggs and Dalal, 2005] and extended to generic object recognition [Felzenszwalb et
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al., 2010].
The process of constructing the histograms of oriented gradients comprises the following
steps:

e gradient computation
e spatial/orientation binning
e normalization and descriptor blocks

Figure 38 represents the above mentioned steps. The same feature parameters were used as

Figure 38: Basic steps in Hog Extraction a) original image; b) gradient computation c) spatial
orientation binning and histogram computation within each cell; d) normalization and descriptor
values

in [Triggs and Dalal, 2005].

3.1.1.3 SIFT Features

The scale invariant feature transform (SIFT) approach for object recognition or scene match-
ing has been introduced by [Lowe, 1999] and extended by [Lowe, 2004] that applied a fast
nearest-neighbor algorithm to invariant keypoints and obtained a robust object recognition
scheme. It is one of the most widely used approaches in practice. The main steps of the
algorithm comprise:

e Difference of Gaussians used to find candidate interest points that have the property
of being invariant to scale and orientation.

e Stability measure of candidate interest point and selection of keypoint locations.

e Rotation invariant representation by representing each keypoint descriptor relative to
a consistent orientation.

e Final keypoint representation, considering shape distortion and change in illumination
invariance.
3.1.1.4 Quantized Feature Representations

Given a set of extracted local features, one needs a way of measuring similarity between
pairs of images, as this is essential in many practical applications. One conceivable way of
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doing this would be to calculate the maximum, minimum or average distance between pairs
of individual local features from each image. If we're dealing with large images with many
features, this would be unfeasible and not a good measure of similarity. This is why the
quantized representations are most often used in practice [Zhang and Zhang, 2008].

The quantized feature representation for images is in principle similar to what the bag of
words representation means in document analysis [Han, 2005]. Not surprisingly, local image
features are sometimes referred to as wvisual words.

The process of forming the quantized representation is roughly as follows:

e Form a stratified sample of local features from the image collection.
e Perform clustering on the feature sample.

e Select the centroid of each feature cluster and add it to the codebook of representative
features.

e For each image in the collection and for each local feature, assign the feature to the
closest representative feature from the codebook, i.e. to the closest cluster of visual
words.

e Count the codebook assignments for each image and form a histogram of codebook
frequencies

e Normalize the codebook histogram, if necessary. TF/IDF is an option, similar to
handling textual data.

All quantized representation for a given codebook are of the same length and can thus
be easily compared. Several types of metrics can be used, including the Manhattan metric,
the Euclidean distance, fractional distances, cosine or even some form of Kullback-Leibler
divergence, if the histograms are properly normalized first to form probability distributions.

The quantized representations for different feature types can be combined, as well as ex-
tended by color histograms or correlograms. Dimensionality reduction via PCA/SVD [Jol-
liffe, 2002] or random projections [Bingham and Mannila, 2001] is also possible.

The dimensionality of the codebook representation is a parameter which is sometimes
difficult to guess in advance. For a given type of features and a given image collection,
the best would be to run a small set of preliminary experiments in order to detect which
codebook size works best in the desired context.

3.1.2 Object Recognition in Images

The k-nearest neighbor approach is not uncommon in image retrieval systems, as one of the
most typical tasks is usually image search, which returns the "top k” most similar images
from the database. Regardless of the algorithm that produces the ranking, this can be
viewed as the k-nearest neighbor search.

In object detection and recognition, nearest neighbor methods have recently been shown
to be competitive with other state-of-the-art approaches, like support vector machines [Boiman
et al., 2008][Wang et al., 2010a][Gu et al., 2011].

We have tested the proposed hubness-aware k-nearest neighbor classification methods
and compared them to the baseline kNN, on several different datasets for different types of
quantized and non-quantized feature representations.

The overview of datasets and their properties is given in Table 20. The datasets have
been split into several groups. Most notably, datasets 1-12 represent binary classification
problems, while datasets 13-27 contain multiple categories. Some of the binary datasets are
balanced, so that each class comprises 50% of the data. The imbalanced binary datasets
are given with the suffix -imb. All the given multi-class datasets are unbalanced. Some
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Table 20: Summary of data sets. NN-related parameters are given for k=5 and k = 10. Sy, denotes
the skewness of Ni(x). Mean entropy of neighbor sets is given by Hy, and mean entropy of inverse
neighbor sets by Hjy, .maxN; denotes the highest hubness achieved by a single data point on the data
set, which is in fact the maximal node degree in the kNN graph obtained from the data.

Data set features size d C Sy, Swn, maxNs maxNio Hy, Hn,, Hins Hiny,
ds1: nicta HoG 15891 2268 2 21.68 15.45 844 1215 0.13 0.17 0.07 0.10
ds2: nicta 16x40 HoG 8000 972 2 3.92 3.42 106 160 0.13 0.17 0.11 0.18
ds3: nicta-imb 64x80 HoG 9000 2268 2 10.72 8.30 440 628 0.05 0.06 0.05 0.08
ds4: nicta-imb-small 64x80 HoG 500 2268 2 3.84 3.66 69 122 0.12 0.16 0.13 0.20
dsb5: daimler HoG 9804 1440 2 4.87 4.55 88 166  0.07 0.12 0.09 0.16
ds6: nicta 16x40 Haar 8000 11920 2 1.64 1.60 38 67 0.24 0.29 0.20 0.29
ds7: nicta-imb 64x80 Haar 9000 1881 2 3.05 2.89 95 183 0.04 0.03 0.11 0.17
ds8: nicta-imb-small 64x80 Haar 500 1881 2 2,99 2.54 59 94  0.03 0.03 0.18 0.24
ds9: daimler Haar 9804 12555 2 2.14 2.21 44 89 0.07 0.12 0.10 0.16
ds10: nicta 64x80 SIFT 8000 4480 2 10.96 8.94 336 512 0.12 0.16 0.09 0.14
ds1l: nicta-imb 64x80 SIFT 9000 4480 2 10.72 8.45 376 577 0.05 0.07 0.05 0.09
ds12: nicta-imb-small 64x80 SIFT 500 4480 2 3.89 3.89 71 114 0.14 0.19 0.13 0.22
ds13: caltech-6 Haar-bow 280 650 6 2.79 2.15 40 61 0.07 0.17 0.03 0.07
ds14: ImgNet-s3 Haar-bow 2731 100 3 2.10 1.83 50 72 0.01 0.01 0.01 0.01
ds15: ImgNet-s4 Haar-bow 6054 100 4 1.94 1.75 45 70 0.01 0.01 0.01 0.01
ds16: ImgNet-sb Haar-bow 6555 100 5 2.06 1.94 45 78 0.01 0.01 0.01 0.01
ds17: ImgNet-s6 Haar-bow 6010 100 6 1.79 1.58 51 79 0.01 0.01 01 0.1
ds18: ImgNet-s7 Haar-bow 10544 100 7 2.29 2.03 60 108 0.01 0.01 0.01 0.01
ds19: ImgNet-s3Er Haar-bow 2731 100 3 20.56 15.67 375 560 0.05 0.20 0.01 0.01
ds20: ImgNet-s3Er Haar-bow 2731 150 3 25.1 17.83 1280 1683 0.22 0.61 0.01 0.01
ds21: ImgNet-s3Er Haar-bow 2731 1000 3 23.3 15.67 2363 2426 0.03 0.87 0.01 0.01
ds22: caltech-6 SIFT-bow 280 306 7.25 6.20 90 166 0.74 1.12 0.45 0.76
ds23: ImgNet-s3 SIFT-bow+cH 2731 416 3 8.38 6.19 213 294 0.40 0.50 0.23 0.34
ds24: ImgNet-s4 SIFT-bow+cH 6054 416 4 7.69 6.32 204 311 0.77 0.95 0.45 0.65
ds25: ImgNet-sb SIFT-bow+cH 6555 416 5 14.72 11.88 469 691 0.85 1.05 0.42 0.63
ds26: ImgNet-s6 SIFT-bow+cH 6010 416 6 8.42 6.23 275 384 0.87 1.10 0.48 0.70
ds27: ImgNet-s7 SIFT-bow+cH 10544 416 7 7.65 6.72 268 450 0.86 1.12 0.54 0.80

of the datasets refer to the same image collections, but they represent different feature
representations. This is the case with {ds4, ds8, ds12}, {ds3, ds7, ds11}, {dsb, ds9}, {ds2,
ds6}, {ds13, ds22}, {ds14, ds19, ds20, ds21, ds23}, {ds15, ds24}, {ds16, ds25}, {ds17, ds26},
{ds18, ds27}.

Several different feature representations were used. Datasets 1-5 are HoG feature rep-
resentations, datasets 6-9 Haar feature representations, datasets 10-12 are SIF'T feature
representations. The binary data was represented in a non-quantized way. Datasets 13-27
are quantized representations, 13-21 of Haar features and 22-27 of SIF'T features. Datasets
23-27 are hybrid feature representations, where the first 400 dimensions refer to the visual
word frequencies and the last 16 features denote a color histogram, calculated globally for
each image. All distances between images were calculated by the Manhattan distance (the
sum of absolute differences). Also, all features were normalized to the [0, 1] range.

The distribution of k-occurrences seems to exhibit high skewness in all cases. Therefore,
the hubness phenomenon is present in image data, regardless of the choice of feature repre-
sentation. As images are inherently high-dimensional, this is not surprising. Specifically, on
dsl the main hub occurs in 10-neighbor sets 1215 times, which greatly exceeds the expected
value of 10. Whether such a hub acts as a good hub or a bad hub depends on the context.
Both scenarios are possible. Such bad hubs can easily compromise the k-nearest neighbor
classification.

If we compare the Haar feature representations ds6-9 with their respective HoG or SIFT
representations, we see that the hubness is much less pronounced for Haar representations in
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all cases. This suggests that Haar-based image representations might be in general less sus-
ceptible to the Ni(x) skew. The comparison between Haar and Hog k-occurrence distribution
skewness is given in Figure 39.
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Figure 39: Comparison between the Ns distribution skewness between HoG and Haar feature repre-
sentations on several datasets.

The direct and reverse neighbor set entropies (Hy, and Hyy, ), as given in Table 20, reflect
the uncertainty when basing the classification on the direct or reverse neighbor sets. The
hubness-aware classification methods are based on the latter. Figure 40 shows that the direct
5-neighbor sets are much less homogenous than the reverse neighbor sets, for the 6 SIFT
quantized feature representations. This strongly implies that taking hubness into account
might lead to better results. The experimental evaluation of the hubness-aware classifiers
on these datasets confirms these initial observations.

w7 177 % -
0.5 —% % % % % H-Mk
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Figure 40: Comparison between Hy, and Hjy, on several quantized multi-class datasets.

kNN, hw-kNN, h-FNN and HIKNN were evaluated on all 27 image datasets/representations
via 10-times 10-fold cross-validation for a fixed neighborhood size of k =5. Using an odd
number made ties impossible in the binary classification case. Corrected re-sampled #-test
was used to check for statistical significance. The results are given in Table 21. The thresh-
old value in h-FNN was set to zero, so no global or local estimate was used, the fuzziness
was obtained in all cases directly from previous k-occurrences. The Manhattan distance was
used to calculate all image-to-image distances, after previous feature normalization.

Using the hubness based methods often improves the classification results, in cases where
such an improvement is possible. Such improvements are more often present in those rep-
resentations where the entropy of the direct k-neighbor sets dominates the entropy of the
reverse neighbor sets, as previously discussed.

Some improvement has been detected even in the ’simple’ binary cases, as can be seen in
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Table 21: Classification accuracy of kNN, hubness-weighted kANN (hw-kNN), hubness-based fuzzy
nearest neighbor (h-FNN) and hubness information k-nearest neighbor (HIKNN). The symbols e/o

denote statistically significant better /worse performance (p < 0.01) compared to kNN.

Data set kNN hw-kNN h-FNN HIKNN
dsl 86.1 £ 0.7 89.0 = 08 e 947 £ 0.6 e 93.1 =+ 0.6 e
ds2 947 £ 0.7 959 £+ 05 e 956 + 0.6 e 958 £ 0.7 e
ds3 91.7 £ 08 925 £ 0.6 926 £ 07 921 +£ 08
ds4 915 £ 04 935 £ 03 e 926 =+ 3.6 929 £ 39
ds5 982 £+ 03 981 + 04 978 £ 04 978 £ 04
ds6 849 £ 12 8.3 £ 12 e 873 £ 12 e 8.9 £ 1.1 e
ds7 91.7 £ 08925 £ 07 926 + 07 921 £ 09
ds8 813 £ 54 80.8 £ 5.0 80.6 £ 4.8 81.8 £ 5.1
ds9 974 £ 05 970 £ 06 975 £ 05 975 £ 05
ds10 942 £ 08 962 £ 08 e 958 + 0.8 ¢ 956 £ 0.6 e
ds11 972 £ 05 981 + 04 e 976 £ 0.5 974 £ 0.5
ds12 919 £ 04 946 =+ 04 e¢ 941 £ 03 e 946 =+ 03 e
ds13 95.7 £ 38 976 £ 29 95.7 £ 3.6 96.8 £ 4.7
ds14 99.7 £ 0.01 99.7 £ 0.01 99.7 £ 0.01 99.7 £ 0.01
ds15 99.9 £ 0.01 999 =+ 0.01 99.9 £ 0.01 99.9 £ 0.01
ds16 99.7 £ 0.01 99.9 £ 0.01 99.9 £ 0.01 99.9 £ 0.01
ds17 99.6 £ 0.01 99.7 £ 0.01 99.7 £ 0.01 99.7 £ 0.01
ds18 99.8 £ 0.01 999 =+ 0.01 99.9 £ 0.01 99.9 £ 0.01
ds19 924 +£ 0.02 93.6 =+ 0.01 975 £ 0.01 ¢ 97.6 =+ 0.01 e
ds20 80.0 £ 0.02 88.7 £ 0.02 e 946 =+ 0.01 e 94.8 £ 0.01 e
ds21 21.2 +£ 0.02 27.1 &+ 0.11 59.5 £ 0.03 e 59.6 =+ 0.03 e
ds22 730 £ 88 821 £+ 68 e 827 £ 6.6 e 8.0 + 6.2 e
ds23 720 £ 27 80.8 £ 23 e 824 £+ 22 e 822 £ 20 e
ds24 56.2 £ 20633 £ 19 e 652 £ 1.7 ¢ 647 £ 19 e
ds25 466 £+ 2.0 563 £+ 1.7 ¢ 619 £ 1.7 ¢ 608 £ 19 e
ds26 60.1 £ 22681 £ 16 e 693 =+ 1.7 ¢ 699 £ 19 e
ds27 434 £ 1.7 551 £ 15 e 592 £ 15 e 569 £+ 16 e
AVG 83.34 86.23 88.36 88.34
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the first half of the table. The best results there were obtained by using the simplest hubness-
aware approach, hw-kNN. This is not surprising, as the other hubness-aware classifiers that
are based on modeling the class-specific occurrence profiles offer more in multi-class prob-
lems. However, the most tangible improvement in the binary case was seen on dsl, where
the 8.6% improvement was achieved by h-FNN. This is interesting, since this particular
dataset exhibits the highes skewness in the k-occurrence distribution, as seen in Table 20.

Even though all tests were performed for k =5, the results are by no means an artefact
of the selected neighborhood size. For two multi-class datasets we have performed 10-times
10-fold cross-validation for an entire range of neighborhood sizes k € {1,2,..,20}, as shown in
Figure 41. All three hubness-based algorithms remain dominant when compared to the basic
kNN throughout the k-range in both datasets. It seems that on these two datasets, HIKNN
algorithm performs best. For the lower range of k-values, h-FNN achieves slightly higher
accuracies, but this trend is completely reversed for k > 5 and the best overall accuracies on
both datasets are reached for higher k-values. Similarly, hw-kNN trails behind h-FNN and
HIKNN in small-to-medium neighborhood sizes, but it slowly improves and becomes quite
competitive for larger k-values.
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Figure 41: Accuracy of h-FNN, HIKNN, kNN and hw-kNN for different k-values, obtained by 10-times
10-fold cross-validation.

Representations ds19-21 are all quantized Haar representations of ImgNet-s3 data. This
is where the most convincing improvement was observed. A closer look at the data reveals
that major bad hubs appeared as a result of a preprocessing error that occurred during the
feature extraction. Under the chosen metric and normalization, zero vectors tend to become
on average closer to all other points as the dimensionality is increased, which results in them
becoming major hubs. The images for which an I/O exception occurred were unintentionally
left with empty representations, i.e. they were zero vectors and have hence emerged as hubs.
This leads to a dramatic decrease in accuracy of the k-nearest neighbor classifier. For a 1000-
dimensional representation, kNN was worse than Zero-rule, which would assign each instance
to the majority class. Figure 42 shows the major bad hubs in the data.

This is quite a remarkable thing. Only five erroneous instances were enough to render
5-NN classifier totally useless in a very high dimensional setting - due to their high hubness.
In a 100-dimensional case, kNN was still at 93.6% accuracy, but already slightly affected,
as can be seen by comparing it to h-FNN and HIKNN. Also, this scenario marks a princi-
pal difference between hw-kNN and the other two hubness-based classifiers. hw-kNN only
weights down the bad hubs, but they still vote by their label. In cases where an entire
k-neighborhood is compromised, it is powerless. h-FNN and HIKNN are therefore, more
robust.

All this might seem somewhat irrelevant, since we are basically discussing erroneous
data, if only very slightly erroneous. However, it is well known that most data in real world
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Figure 42: The five most pronounced hubs in ds21 representation of ImgNet-s3 data. Bad hubness
(BNy) completely dominates good hubness (GNy).

applications contain much higher noise levels and inaccuracies. The erroneous instances do
not need to be zero-arrays as in this case. All it takes for a problem to appear is that for
a chosen representation and distance metric such instances exhibit a high enough hubness.
Unless the representation is very high dimensional with a high enough hubness, this problem
may even pass unnoticed, as would have been the case for ds-19, if we had not also generated
ds-20 and ds-21 representations where the error became apparent.

Several important points stem from this discussion. The phenomenon of hubness is by
itself not necessarily detrimental, as witnessed on several datasets where kNN reaches a
very high accuracy, close to 100%. Yet, a combination of class overlap, imbalance and high
hubness is in fact quite difficult to handle, as some very bad hubs may emerge and negatively
affect the k-nearest neighbor classification.

3.1.3 Visualizing the k-Nearest Neighbor Topology

In practical applications, machine learning practitioners need to chose from among a great
variety of feature representations, metrics, data preprocessing techniques, normalizations
and learning/ranking/retrieval algorithms and models. This choice is non-trivial and it is
not always clear exactly how to proceed. Some methods might be considered state-of-the-
art for certain types of tasks, but the performance is usually data dependent and even
good/robust algorithms perform worse than expected in some specific cases. The approach
usually consists of trial and error, where different techniques are implemented and tested on
the actual data that the system will have to handle.

Evaluating the system performance based on a few aggregate measures does not reveal
much. In case of classification this might be the accuracy or the F-score, in case of clustering
the Silhouette coefficient, etc. These numbers may be used to quickly compare different
algorithms and see which one is better. However, they are not well suited for a detailed
analysis of a single algorithm’s performance. Knowing in which cases an algorithm performs
well and in which cases it fails is often essential. Such detailed characterization might allow
us either to modify and improve the existing algorithms or to carefully combine them and
use different approaches for different types of examples.

In order to explore and analyze the advantages and disadvantages of various approaches
for handling image data, we have assembled an application that would help the practitioners
in choosing the metrics, methods and feature representations when building larger systems.
Additionally, it would allow the researchers deeper insight into the workings of their methods
and how it all relates to the phenomenon of hubness. We have named the first version of
the software Image Hub Explorer [N. and D., 2013]. It is built on top of the Hub Miner
java data mining library (http://ailab.ijs.si/nenad_tomasev/hub-miner-library/) that was
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developed during the course of working towards this thesis.
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Figure 43: The motivation behind the Image Hub Explorer system.

The examples that we will examine have been generated by analyzing the Leeds Butterfly
dataset [Wang et al., 2009] (http://www.comp.leeds.ac.uk/scs6jwks/dataset/leedsbutterfly /).

3.1.3.1 Image Hub Explorer Interfaces

Image Hub Explorer offers several different views of the data, organized in 4 tabs and several
drop-down menus. We will go through each of them separately and explain the typical use
cases. Several primary and secondary metrics are supported and this will be discussed in
more detail after the specification of interfaces and main functionalities.

The primary tabular view is contained in the Data Overview tab. It contains a data
visualization component, as well as many data properties that are relevant for the hubness-
related analysis. This is shown in Figure 44.

The data is projected onto a 2D plane via multi-dimensional scaling (MDS) [Borg and
Groenen, 2005]. It is a dimensionality reduction technique that tries to preserve the ratios
between the distances between different data points. In other words, points close in the
original feature space tend to be projected in such a way that they remain close in the
plane. The MDS panel is interactive and it is possible to select images by clicking on their
thumbnails. Each image thumbnail is contained in a slightly larger rectangle that shows the
color of the respective image category. This allows for easy visualization of labeled data.
As we might be working with some very large datasets, not all the images are shown, but
rather a fixed number of hub-images, frequent nearest neighbors.

The background of the MDS panel is colored according to good/bad hubness of the
projected points. Naturally, the green color corresponds to good hubness and the red one to
bad hubness. The landscape is generated in two steps. The first step is a sort of a Gaussian
blur, implemented efficiently, as in [Fortuna et al., 2005]. The panel is split into buckets by a
grid and each image is assigned to its bucket according to the (x,y) coordinates obtained by
applying MDS. Each pixel is assigned its good hubness weight wg and bad hubness weight
wgi. Within each bucket B, the weight of each pixel is determined by the following rule:
WGk (x,y) = L1,ep GNi(I;) e 0=+ 0-v)) and wp(x,y) = Lpcp BN(I)) e o (=2 +(—9))%)
If either of the two weights are non-zero for a given pixel (i.e. the bucket contains some
points), the green component of the RGB representation of the color in the pixel is given by
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Figure 44: The Data Overview screen of Image Hub Explorer

g(x,y) =255 #% and the red component as its complement r(x,y) =255 — g(x,y).
After this initial stage, a two pass box blur is performed in order to further soften the
landscape. Box blur sets the color of each pixel in the image to be the color of its neighboring
pixels. It is a low pass convolution filter.

One such landscape is generated for each neighborhood size k, as it depends on good and
bad hubness that are k-dependent quantities. One of the main features of the application
is the slider-selector for neighborhood size, which allows the user to quickly change among
different k-values and observe the differences in all quantities and all tabular views of the
application.

The quantities that are shown on the Data Overview tab are as follows: data size, the
number of classes, neighbor occurrence frequency distribution skewness (hubness), neigh-
bor occurrence frequency distribution kurtosis, entropy of the direct and reverse neighbor
sets, skewness of the entropy distribution, percentage of points that occur at least once
as neighbors, percentages of hubs, orphans and regular points, degree of the major hub in
the data and the percentage of label mismatches in k-neighbor sets (bad hubness). The
neighbor occurrence frequency distribution is also given in a separate plot below for easier
interpretation.

Whereas the Data Overview tab gives some important properties of the occurrence dis-
tribution, the Neighbor View tab allows the user to pinpoint some critical subsets of points
that might exhibit interesting behavior. A screenshot is given in Figure 45. All displays
in all the tabs and views support image selection, so there are various ways in which a
user can select a certain image. Once selected, there is an option to add the image to the
selected subgraph that is currently being inspected. Apart from adding images one by one,
the interface also supports an option of adding all neighbors of any selected image, as well
as all of its reverse nearest neighbors. The graph panel displays the selected image subset
and a directed edge is inserted between individual nodes to denote a neighbor relation. The
weights on the edges correspond to the distance between the selected points in the selected
metric.
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Figure 45: The Neighbor View screen of Image Hub Explorer, showing the selected subgraph of the
kNN graph.

Figure 46: An example of a bad hub shown in the Neighbor View of Image Hub Explorer. We can
see that its reverse neighbors originate from different classes.

In the Neighbor View, apart from the graph panel, there is a possibility of examining the
neighbor occurrence profile of the selected image. The pie chart showing the class hubness
tendencies of the selected neighbor point is shown in the upper part. The list of its nearest
neighbors and reverse nearest neighbors is shown below.
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Let us say that a user wants to examine a profile of one of the bad hubs in the data.
This way, the user can select each reverse neighbor individually and check if there is a
label mismatch and if it causes misclassification. The user can also interactively change the
neighborhood size and see for which k-values the two points remain connected.

The Class View shown in Figure 47 offers an insight into a hub-structure of each class,
as well as the interplay between hubs in different classes, which is summarized in the class-
to-class hubness matrix on the lower right side. The main set of panels in this view is
contained in a scroll pane and shows an ordered list of major hubs, good hubs and bad hubs
for each class separately. As before, they are selectable. Additionaly, there is a point type
distribution, where the points are labeled either as safe, borderline, rare or outliers, based
on the percentage of label mismatches in the respective k-neighbor sets. The chart in the
upper part shows a distribution of classes, which allows us to see if the data is imbalanced.
Imbalanced data is known to pose some difficulties for many data mining techniques.

|£ | Image Hub Explorer —

Collection Mefric Learning Edit Codebook Classification

{ Data Overview T Meighbor View Iclaas View T Searcnw

Class Distribution . )
Danaus plexippus

100 T
E ‘Heliconius charitonius
0 |
Heliconius erato
25 |
[

= Junonia coenia
D... He.. He.. .. .. "

=
Size
u

o

Category

Point Type Distribution

Al
E Aphotos'\HeliconiusCharitoniust002_0017 jpg

* iDan | Heli.. | Heli.. | Jun.. | Jun.. | N

30

20

10

safe border... rare outlier

PL

Figure 47: The Class View screen of Image Hub Explorer, which enables the user to examine different
properties of data classes and their respective hub structures.

The Query View (Figure 49) is the last view offered by the applet and it deals with
potential queries to the image database, i.e. the similarity search. A user can upload an
image and the applet will return the set of most similar images, based on the quantized
SIFT features extended by binned color histograms. The applet extracts the features of the
new image and does the metric comparisons. Apart from the k-neighbor set, a user can also
look at how various variants of the k-nearest neighbor algorithms would assign the label,
based on the retrieved points. Eight such algorithms are currently supported, some of which
are our own and have been recently proposed precisely for dealing with this sort of data.
The applet shows the classification confidence of: kNN [Fix and Hodges, 1951], FNN [Keller
et al., 1985], NWKNN [Tan, 2005a], AKNN [Wang et al., 2007], hw-kNN [Radovanovi¢ et
al., 2009], h-FNN [Tomasev et al., 2011b], HIKNN [Tomasev and Mladeni¢, 2011c|[Tomasev
and Mladeni¢, 2012] and NHBNN [Tomasev et al., 2011c].

Apart from classification, a user can also try to invoke hubness-based re-ranking of the
neighbor set, performed based on what was learned from the previous occurrences of those
neighbor points. In practice, this seems to work quite well. A more detailed analysis is given
in Section 3.4.
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Figure 48: A comparison of three different classes representing butterfly species from the Class View
of Image Hub Explorer. We can see a great difference in point type distribution. Danaus plexippus
seems to be relatively easy to recognize within the observed 10-species dataset. On the other hand,
Heliconius erato class comprises mostly outliers and rare points, which means that it is much more
difficult to handle and should be carefully dealt with within the system.

Some points are bad hubs and in case of images
we can visualize what helps an image become a good
or a bad hub, feature-wise. Image Hub Explorer in-
cludes a feature visualization and assessment compo-
nent that currently supports the standard SIFT fea-
tures, that allows the user to visualize the location
of good and bad features on each image. Good fea-
tures are those that occur mostly on images within a
single class and therefore help in classification. Bad
features are those that occur across different classes
and carry little or no discriminative information. The
comparison is shown in Figure 51.

3.1.3.2 Image Hub Explorer Functionality
and Applicability

The architecture of Image Hub Explorer is very flex-
ible. We have seen some examples of its use in ana-
lyzing the Leeds Butterfly dataset [Wang et al., 2009]
under the Manhattan metric. We have used the Im-
age Hub Explorer to analyze various image collec-
tions. The applet can load different sorts of image
feature representations and use various primary and
secondary metrics. Furthermore, it is not merely re-

HUB-BASED
PRIMARY RE-RANKING

I
q

L4

Figure 50: On the left: the original
ranking. On the right: the secondary
hubness-aware re-ranking.
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Figure 49: The Query View in Image Hub Explorer, which enables the user to query the image
database and label new images by using several kNN classification approaches.

stricted to image data. Any form of data that is aligned with image thumbnails that can be
used in visualizations is permitted. In other words, objects that the features are extracted
from could also be people or documents or other complex data structures. All that is needed
is that each object is assigned an image thumbnail.

The system can calculate the distance matrix in a multi-threaded way from a specified
feature representation or it can simply load the distance matrix, in which case the underlying
features need not be specified. The distance matrix is persisted to the disk automatically
in any case, so that it can be later loaded if the same combination of parameters is invoked
at a later time. All files relevant for the analysis are kept in the workspace directory that is
selected by the user.

Image Hub Explorer supports several primary and secondary distance measures. The
primary metrics include: Manhattan, Euclidean, Cosine and Jaccard. These are all standard
distance/similarity measures. The secondary measures of similarity/dissimilarity are more
interesting and include simcossy [Houle et al., 2010], simhubsy [N. and D., 2012], mutual
proximity (MP) [Schnitzer et al., 2011], NICDM [Jegou et al., 2007] and local scaling [Zelnik-
manor and Perona, 2004].
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Figure 51: Image Hub Explorer feature assessment tool helps in locating discriminative features and
textures, as well as those that do not help in object recognition.
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3.2 Hubs in Sensor Data

In this section, we will examine a particular type of sensor data as a test case, the publicly
available data that was collected during oceanographic monitoring/survey in 2010 from a
series of sensors spread across several bodies of water.

Data mining in sensor data analysis is growing in importance [Ganguly et al., 2008], as
the number of sensors and the quantity of data that they output increases. A single sensor
is usually a rather simple measurement device that produces a stream of data points, a
time series. Several sensors can be grouped at a single node, measuring different quantities.
Sensors are used nowadays for many purposes. A typical example would be a sensor that
measures power consumption by a household and allows the power distribution company
to predict the overall consumption in the network at any point in time. Another typical
use case is industrial process control, where sensors are used to detect any anomalies or
unexpected patterns that may arise during the production process.

There are many approaches to analyzing sensor data and the applications are domain-
specific. Some techniques involve working with streams real-time for continuous monitoring,
while other tasks exist that can be processed off-line at request [Ganguly et al., 2008].
Sometimes, there are missing or incorrect values if a sensor hasn’t been working properly.
Detecting sensor malfunction is very important, as faulty sensors feed the wrong data to
the system which may result in incorrect predictive or analytic models. This can be further
generalized as anomaly detection, detecting unexpected emerging patterns in time series
data. An anomaly may or may not be related to some form of malfunction. It may also
be caused by correct measurements of an unexpected state of the system that is being
monitored by the sensors.

Many approaches exist that allow for anomaly detection in sensor data [Hill et al.,
2007][Hill and Minsker, 2010][Yao et al., 2010][Wang et al., 2008b][Siripanadorn et al., 2010].
We will demonstrate that it is possible to exploit hubness information for a simple semi-
automatic anomaly detection tool in oceanographic sensor data. These results were pub-
lished in [Tomasev and Mladeni¢, 2011a].

In our experiments, we were working with the Integrated Ocean Observing System data
(http://www.ioos.gov/). We were analyzing a sample of measurements from many nodes and
attached sensors in a period of 20 days in November 2010. Each sensor was monitoring some
particular physical property. Eight properties were observed: air temperature, barometric
pressure, wind observation, water level observation, water level prediction, salinity, water
temperature and conductivity. The data came from sensors distributed across the coastlines
of North America, so it was partly about the Pacific, partly about the Atlantic ocean and
also partly about the Great Lakes. These three location profiles we used as the labels for
the sensors, thereby dividing them into 3 location categories.

Each physical property was analyzed separately. There were some missing values in
the data, but not much. Out of the total 4801 time points, usually 50-100 was missing,
sometimes none. The values were sampled once every six minutes. This means that there
was essentially little difference between neighboring points, so we replaced the missing values
by the means of the closest known values.

It is by no coincidence that we have decided to analyze hubness in oceanographic survey
data, as hubs are known to emerge in many types of time series data [Radovanovié¢ et al.,
2010], though they are not always present. Naturally, the degree of occurrence distribution
skewness may vary, depending on the processing techniques and the distance measures em-
ployed. We have used two distance measures in our primary experiments, the Manhattan
distance and the variance of differences between two time series. The obtained results were
somewhat similar, as shown in Tables 22 and 23 for two different neighborhood sizes, k =3
and k =5. The same quantities have exhibited occurrence distribution skewness (SN3,SNs)
in both cases. The label mismatch percentages (BN3, BNs) we calculated based on the three
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location labels.

Table 22: Hubness-related properties of oceanographic sensor data under the Manhattan distance

quantity size | SN3 BN; SN5 BN5;
air temperature 211 | 0.34 | 4.7% | 0.14 | 6.7%
barometric pressure | 214 | 0.26 | 3.4% | -0.06 | 4.2%
wind 205 | 3.8 | 23% | 3.6 | 28%
water level obs. 238 | 0.6 | 81% | 0.47 | 10%
water level pred. 218 | 0.34 | 8.7% | -0.03 | 11%
salinity 18 | -0.13 - -0.67 -

water temperature 183 | 0.81 | 22% | 0.67 | 26%
conductivity 18 0 - -0.73 -

Table 23: Hubness-related properties of oceanographic sensor data when the distance is defined as
the variance of point-wise differences

quantity size | SN3 | BNj SNs BNs
air temperature 211 | 0.60 | 6% | 0.55 | 7.9%
barometric pressure | 214 | 0.11 | 3.9% | -0.05 | 4.3%
wind 205 | 5.2 | 20% 4.8 24%
water level obs. 238 | 0.92 | 9.5% | 0.92 | 12%
water level pred. 218 | 0.27 | 6.6% | -0.03 | 8.9%
salinity 18 | 0.79 - 0.68 -

water temperature | 183 | 1.16 | 26% | 1.40 | 31%
conductivity 18 | 1.01 - 0.81 -

Tables 22 and 23 show that, even though many measurements of different physical quan-
tities were taken at the same nodes, the nature of the quantity that is measured influences
the shape of the time series and its intrinsic dimensionality, which in turn influences the
overall hubness. Time series resulting from measurements of different physical quantities
exhibit different degrees of hubness, as can be seen from comparing the skewness of air tem-
perature data, barometric pressure data, wind data, water level data and water temperature
data. Salinity and conductivity were under-represented in our sample, so we will not discuss
them further, as not much can be gained from merely 18 data points (measurement nodes).

The wind measurement data exhibits high hubness, while the air and water temperature
data and the water level observations exhibit medium hubness. The neighbor label mismatch
percentages are non-negligible in many cases, which means that some sensor reports from
one ocean are more similar to observations in another ocean than in its own. Oceans are
big bodies of water and this may not sound very surprising, but it will be shown that this
might indicate anomalous sensor behavior.

Unlike most other types of data discussed in this thesis, oceanographic sensor data can be
visualized on a world map, since the geolocation coordinates are known for each measurement
node. This can help in visualizing the spread of hubness across the data space. We have
created a java applet which loads the sensor data and generates visualizations of hubness
spread in oceanographic data. Some of these visualizations for different physical quantities
are shown in Figures 52-56.

Each measurement node is shown on the map as a filled circle. The diameter of the circle
is proportional to the hubness of the node, i.e. its number of occurrences as a neighbor to
other points. The larger the circle, the more common the neighbor point. This way, a user
can easily detect and find hubs in the data. The label mismatch information is encoded by
the color of the circle. The color of each node is a linear combination of green and red colors,
so that the percentage of red corresponds to the percentage of label mismatches and the
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Figure 52: Good/bad and overall hubness of oceanographic sensors shown for air temperature data.

percentage of green corresponds to the number of label agreements in the reverse neighbor
sets of the observed node. What we are most interested in is large red circles, i.e. major
bad hubs in the data, points that are very frequently neighbors to points from the opposite
class.

The highest percentage of label mismatches in air temperature data in Figure 52 is
achieved by an isolated sensor node in the Bermuda region. As there are no other air
temperature sensors nearby, this makes sense. If there were other sensors nearby, we would
expect them to report similar measurements and often be each other’s neighbors, reducing
the bad hubness. So, bad hubness in itself does not suggest anomalous measurements. What
does seem potentially suspicious is nodes that are prominent bad hubs, but are located very
near to points that exhibit very low bad hubness. Of course, some physical quantities that
are being measured vary more than others, but in general - sensor proximity is correlated
with measurement similarity.

In Figure 53 that shows hubness of barometric pressure data, such an example can
be seen. On the entire coastline, only two nodes exhibit any bad hubness at all and are
very prominent bad hubs. Furthermore, they are located next to nodes that have no bad
occurrences, that never induce a label mismatch as neighbors. This suggests that something
might be wrong with the measurements. Similar cases can be seen in Figures 54-56.

Having bad hubs in close proximity of good hubs and regular nodes is certainly suspicious,
but this does not necessarily mean that the sensors are broken. An expert would need to
first take a closer look at the data in order to come to that conclusion. What our system
allows by means of the shown visualizations is for users to easily detect potential anomalies
and faulty sensors. Once such potentially anomalous nodes are pinpointed, checking for
actual anomalies in the reported time series shouldn’t take too much time.

The approach that we have discussed is a very simple method and is by no means meant
to be a match for the state-of-the-art anomaly detection systems, especially since it relies
on the notion that locations can be clearly separated into disjoint groups, which is not
always the case. Generalizations are certainly possible, where instead of label mismatches
one might observe the average geolocation distance between a node and its reverse nearest
neighbors. In any case, what this system demonstrates is that visualizing and analyzing
hubs in sensor data can be beneficial and that it is in principle possible to exploit hubness
for semi-automatic anomaly detection.
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Figure 53: Good/bad and overall hubness of oceanographic sensors shown for barometric pressure
data.

(a) The whole map (b) Zoomed view

Figure 54: Good/bad and overall hubness of oceanographic sensors shown for water temperature
data.

(a) The whole map (b) Zoomed view

Figure 55: Good/bad and overall hubness of oceanographic sensors shown for wind data.
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(a) The whole map (b) Zoomed view

Figure 56: Good/bad and overall hubness of oceanographic sensors shown for water level data.
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3.3 Cross-lingual Document Retrieval

This Section deals with the problem of cross-lingual document retrieval approach extending
correlation analysis to be aware of hubness as published in [Tomasev et al., 2013d].

Text mining has always been one of the core data mining tasks, not surprisingly, as
we use language to express our understanding of the world around us, encode knowledge
and ideas. Analyzing textual data across a variety of sources can lead to some deep and
potentially useful insights.

The use of internet has spawned vast amounts of textual data, even more so now with
the advent of Web 2.0 and the increased amount of user-generated content. This data,
however, is expressed in a multitude of different languages. There is a high demand for
effective and efficient cross-language information retrieval tools, as they allow the users to
access potentially relevant information that is written in languages they are not familiar
with.

Nearest neighbor approaches are common both in text classification [Tan, 2006][Jo,
2008][Trieschnigg et al., 2009] and document retrieval [Chau and Yeh, 2004][Peirsman and
Padd, 2010][Lucarella, 1988], which is not surprising given both the simplicity and the ef-
fectiveness of most kNN methods. Nearest neighbor methods can be employed both at the
document level or at the word level.

Information retrieval in multi-lingual document repositories is of high importance in
modern text mining applications. Textual data is known to exhibit hubness [Radovanovié
et al., 2010b], so it is important to see how this phenomenon relates to textual search and
cross-lingual document retrieval.

In order to deepen the understanding of the process, it is important first to compare
the k-nearest neighbor topologies across different language representations. An important
question that arises is whether hubness is language-dependent. This relates to both the
overall skewness of the neighbor occurrence distribution as well as the ratios of relative
occurrence frequency between different neighbor points.

3.3.1 Canonical Correlation Analysis

A common approach to analyzing multilingual document collections is to find a common
feature representation, so that the documents that are written in different languages can
more easily be compared. One way of achieving that is by using the canonical correlation
analysis.

Canonical Correlation Analysis (CCA) [Hotelling, 1935] is a dimensionality reduction
technique somewhat similar to Principal Component Analysis (PCA) [Pearson, 1901]. It
makes an additional assumption that the data comes from two sources or views that share
some information, such as a bilingual document corpus [Fortuna et al., 2006] or a collection
of images and captions [Hardoon et al., 2004]. Instead of looking for linear combinations
of features that maximize the variance (PCA) it looks for a linear combination of feature
vectors from the first view and a linear combination for the second view, that are maximally
correlated.

Formally, let S = (x1,y1),...,(xs,yx) be the sample of paired observations where x; € R?
and y; € RY represent feature vectors from some p and g-dimensional feature spaces. Let
X = [x1,...,x,) and let Y = [x1,...,x,] be the matrices with observation vectors as columns,
interpreted as being generated by two random vectors £~ and #'. The idea is to find two
linear functionals (row vectors) a € R? and B € R? so that the random variables o - 2" and
B -% are maximally correlated. The o and B map the random vectors to random variables,
by computing the weighted sums of vector components. This gives rise to the following
optimization problem:
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where Cxy and Cyy are empirical estimates of the variances of 2~ and % respectively and
Cxy is an estimate of the covariance matrix. Assuming that the observation vectors are
centered, the matrices are computed in the following way: Cxx = nl—lXX’ , Cyy = ﬁY Y’ and
Cxy = XY’

This optimization task can be reduced to an eigenvalue problem and includes inverting
the variance matrices Cxyx and Cyy. In case of non-invertible matrices, it is possible to use
a regularization technique by replacing Cxx with (1 — k)Cxx + kI, where k € [0,1] is the
regularization coefficient and I is the identity matrix.

A single canonical variable is usually inadequate in representing the original random
vector and typically one looks for k projection pairs (o, B1),..., (o, Br), so that o and B;
are highly correlated and ¢ is uncorrelated with c; for j# i and analogously for f.

The problem can be reformulated as a symmetric eigenvalue problem for which efficient
solutions exist. If the data is high-dimensional and the feature vectors are sparse, iterative
methods can be used, such as the well-known Lanczos algorithm [Cullum and Willoughby,
2002]). If the size of the corpus is not prohibitively large, it is also possible to work with the
dual representation and use the "kernel trick” [Jordan and Bach, 2001] to yield a nonlinear
version of CCA.

3.3.2 Data

For the experiments, we examined the Acquis aligned corpus data (http://langtech.jrc.it /JRC-
Acquis.html), which comprise a set of more than 20000 documents in many different lan-
guages. To simplify the initial analysis, we focused on the bi-lingual case and compared
the English and French aligned document sets. The documents were labeled and associated
with 14 different binary classification problems.

The documents were analyzed in the standard bag-of-words representation after tok-
enization, lemmatization and stop word removal. Only nouns, verbs, adjectives and adverbs
were retained, based on the part-of-speech tags. The inter-document similarity was mea-
sured by the cosine similarity measure.

Common semantic representation for the two aligned document sets was obtained by
applying CCA. Both English and French documents were then mapped onto the common se-
mantic space (CS:E, CS:F). The used common semantic representation was 300-dimensional,
as we wanted to test our assumptions in the context of dimensionality reduction and slight
information loss. Longer representations would be preferable in practical applications.

3.3.3 Cross-lingual Hub Structure

The Acquis corpus exhibits high hubness. This is apparent from Figure 57. The data
was normalized by applying TF-IDF, which is a standard preprocessing technique. The
normalization only slightly reduces the overall hubness.

The common semantic projections exhibit significantly lower hubness than the original
feature representations, which already suggests that there might be important differences in
the hub structure. The outline of the data is given in Table 24. The two languages exhibit
somewhat different levels of hubness.

If the hubness information is to be used in the multi-lingual context, it is necessary to
understand how it maps from one language representation to another. Both the quantitative
and the qualitative aspects of the mapping need to be considered. The quantitative aspect
refers to the the correlation between the total document neighbor occurrence counts and
provides the answer to the general question of whether the same documents become hubs
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Figure 57: The logarithmic plots of the 5-occurrence distribution on the set of English Acquis
documents with or without performing TF-IDF feature weighting. The straight line in the un-
weighted case shows an exponential law in the decrease of the probability of achieving a certain
number of neighbor occurrences. Therefore, frequent neighbors are rare and most documents are
anti-hubs. Note that Ns(x) is sometimes much more than 20, both charts are cut-off there for clarity.
Performing TF-IDF somewhat reduces the overall hubness, even though it still remains high.

Table 24: Overview of the k-occurrence skewness (Sy, ) for all four document corpus representations.
To further illustrate the severity of the situation, the degree of the major hub (maxNy) is also given.
Both quantities are shown for k=1 and k=5.

Data set size d Sy, maxN; Sy, maxNs

ENG 23412 254963 16.13 95 19.45 432
FRA 23412 212955 80.98 868 54.22 3199
CS:E 23412 300 520 38 199 71
CS:F 23412 300 490 38 199 62

in different languages. The qualitative aspect is concerned with characterizing the type of
influence expressed by the hubs in correlating the good and bad hubness (label mismatch
percentages) in both languages.
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Figure 58: Comparing the 5-occurrences of one randomly chosen document (Doc-3) across various
classification tasks (label arrays) in English and French language representations. The hubness of
Doc-3 differs greatly, but the type of its influence (good/bad hubness ratio) seems to be preserved.

Let us consider one randomly chosen hub document from the corpus. Figure 58 shows
its occurrence profiles in both English and French over all 14 binary classification problems.
The good/bad occurrence distributions for this particular document appear to be quite
similar in both languages, even though the total hubness greatly differs. From this we can
conclude that, even though the overall occurrence frequency depends on the language, the
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semantic nature of the document determines the type of influence it will exhibit if and when
it becomes a hub. On the other hand, this particular document is an anti-hub in both
projections onto the common semantic space, i.e. it never occurs as a neighbor there. This
illustrates how the CCA mapping changes the nature of the k-nearest neighbor structure,
which is what Table 24 also confirms.

The observations from examining the influence profiles of a single document are easily
generalized by considering the average Pearson correlation between bad hubness ratios over
the 14 binary label assignments, as shown in Table 25. There is a quite strong positive
correlation between document influence profiles in all considered representations and it is
strongest between the projections onto the common semantic space, which was to be ex-
pected. As for the total number of neighbor occurrences, the Pearson product-moment gives
positive correlation between the hubness of English and French texts, as well as between the
projected representations. In all other cases there is no linear correlation. We measured the
non-linear correlation by using the Spearman correlation coefficient. It seems that there is
some positive non-linear correlation between hubness in all the representations.

Table 25: Correlations of document hubness and bad hubness between different language represen-
tations: English, French, and their projections onto the common semantic space.

(a) Pearson correlation between (b) Pearson correlation between (¢) Spearman correlation be-
bad hubness ratios of documents total hubness (occurrence fre- tween total hubness (occurrence
(BNy(x) /Ny (x)) quencies) frequencies)
[ENG[FRA [CSE[CSF [ENG [FRA [CS:E[CS:F [ENG[FRA [CS:EE[CS:F
0.68 |0.61 |0.58 |ENG 0.47 [0.08 |0.06 |ENG 0.67 [0.29 |0.25 |ENG
0.56 |0.58 |FRA 0.01 |0.01 |FRA 0.25 |0.29 |FRA
0.76 |CS:E 0.64 |CS:E 0.70 |CS:E
CS:F CS:F CS:F

The results of correlation comparisons can be summarized as follows: frequent neighbor
documents among English texts are usually also frequent neighbors among the French texts
and the nature of their influence is very similar. Good/bad neighbor documents in English
texts are expected to be good/bad neighbor documents in French texts and vice-versa. We
will exploit this apparent regularity for improving the neighbor structure of the common
semantic space.

3.3.4 Hubness-aware CCA extension

In the canonical correlation analysis, all examples contribute equally to the process of build-
ing a common semantic space. However, due to hubness, it is not clear whether all doc-
uments are to be considered equally relevant or equally reliable. Documents that become
bad hubs exhibit a highly negative influence. Furthermore, as shown in Figure 58, a single
hub-document can act both as a bad hub and as a good hub at the same time, depending
on the specific classification task at hand. Therefore, instance selection doesn’t seem to be
a good approach, as we cannot both accept and reject an example simultaneously.

Introducing instance weights into the CCA procedure might help to control the influence
of hubs on forming the common semantic representation in hope that this would in turn
improve the cross-lingual retrieval and classification performance in the common semantic
space.

The weights introduce a bias in finding the canonical vectors: the search for canonical
vectors is focused on the spaces spanned by the instances with high weights.

Given a document sample S, let uy,...,u, be the positive weights for the examples x; € X
and vi,...,v, be the positive weights for the examples y; € Y. The modified covariance and
variance matrices can be computed as follows:
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Figure 59: The CCA procedure maps the documents written in different languages onto the com-
mon semantic space. According to the analysis given in Table 25, this changes the kNN structure
significantly, which has consequences for the subsequent document retrieval and/or classification. By
introducing instance weights we can influence the mapping so that we preserve certain aspects of the
original hub-structure and reject the unwanted parts of it.

. J ~ 1 ¢
Cxx := I Zu%xixl(, Cyy = 1 ZV,‘Z)’D’;
n—13 n=lia (10)
Cyy := ! Y uivixiy
XY - n—1 4 (A Rg]

i=1

These matrices are input for the standard CCA optimization problem. By modifying
them, it is possible to directly influence the outcome of the process. The weighting approach
is equivalent to performing over-sampling of the instances based on their specified weights
and then computing the covariances and variances.

Let h(x;, k) and hp(x;,k) be the standardized hubness and standardized bad hubness scores

Ni(xi)— - BN (xi)— X . .
respectively, i.e. h(x; k) = % and hp(x;, k) = %. A high standardized
i k(i

hubness score means that the document is very influential and relevant for classification and
retrieval, while a high bad hubness score indicates that the document is unreliable.

Many different weighting schemes are possible. Two approaches stand out as most
intuitive. The first approach would be to increase the influence of relevant points (hubs) in
the CCA weighting. The second meaningful approach is to reduce the influence of unreliable
points (bad hubs). Additionally, the opposite of what is proposed will also be considered for
comparisons, i.e. reducing the influence of hubs and increasing the influence of bad hubs.
Therefore, the considered weighting schemes are given as follows: un-weighted, v; ;== 1,
emphasized hubs, v; := "%k de-emphasized hubs, v; := e k) emphasized bad hubs,
v := ek and de-emphasized bad hubs, v; := e 80ik)

In the experimental protocol, two disjoint subsets of the aligned corpus were randomly
selected: 2000 documents were used for training ad 1000 for testing. For each of the 14
binary classification problems five common semantic spaces were computed with CCA on
the training set: the non-weighted variant (CS:N), emphasized hubs (CS:H), de-emphasized
hubs (CS:h), emphasized bad hubs (CS:B) and de-emphasized bad hubs (CS:b). The train-
ing and test documents in both languages were then projected onto the common semantic
space. In each case, the quality of the common semantic space was evaluated by measuring
the performance of both classification and document retrieval. The whole procedure was re-
peated 10 times, hence yielding the repeated random sub-sampling validation. The average
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performance was measured and its standard deviation calculated.

Many of the binary label distributions were highly imbalanced. This is why the clas-
sification performance was measured by considering the Matthews Correlation Coefficient
(MCC) [Powers, 2011]. It measures the correlation between the observed and the predicted
class assignments, as shown in Equation 11, where TP, FP, TN, FN denotes the number of
true positives, false positives, true negatives and false negatives, respectively.

e — TP-TN—FP-FN (a1)
~ /(TP=FP)(TP+FN)(TN+FN)(TN +FP)

Comparing the classification performance on the original (non-projected) documents
with the performance on the common semantic space usually reveals a clear degradation in
performance, unless the dimensionality of the projected space is high enough to capture all
the relevant discriminative information.

The overview of the classification experiments is given in Table 26. We only report the
result on the English texts and projections, as they are basically the same in the French
part of the corpus. The kNN classifier with k =5 was used. It is immediately apparent that
the weights which emphasize document hubness (CS:H) achieve the best results among the
common semantic document representations. Reducing the influence of bad hubs (CS:b) is
in itself not enough to positively affect the classification performance. This might be because
many hubs reside in borderline regions, so they might carry some relevant disambiguating
feature information. It seems that emphasizing the relevance by increasing the preference
for all hub-documents gives the best classification results.

Table 26: The Matthews correlation coefficient (MCC) values achieved on different projected rep-
resentations. The symbols e/o denote statistically significant worse/better performance (p < 0.01)
compared to the non-weighted projected representation (CS:N).

Label‘ Original CS:N CS:H CS:h CS:B CS:b

labl |73.0+ 3.3| 34.2+ 4.6| 69.2+ 2.80 66.0 = 3.30 52.8 + 4.80 46.6£10.20
lab2 |69.2+ 3.0| 52.3+ 4.4| 65.1+ 3.90 383 £ 3.8e 458 £ 7.0 357+ 86e
lab3 |50.2+ 3.3| 276+ 3.8| 44.1 &+ 3.00 422 £ 5.00 44.8+£3.60 33.7£t 3.00
lab4 (32.24+ 4.4| 188+ 6.4| 28.1+ 2.80 21.1 =+ 3.9 20.6 +£3.7 203+ 6.5
lab5 |28.9+124| 16.8+12.9| 17.7 £11.7 21.9+14.4 102 £55 157+ 6.0
lab6 |38.1+ 6.2| 31.2+ 6.0| 29.3 +£ 82 33.6+ 5.4 235 £ 58e 262+ 6.6
lab7 |54.54+ 3.2| 389+ 4.0| 48.4+ 4.20 45.7 =+ 3.00 423 £ 6.3 36.5% 6.8
lab8 |44.6+ 6.3| 31.5+ 6.9| 40.4+ 6.40 335 £ 57 23.0 £50e 19.6+ 8.7e
lab9 |76.2+ 3.4| 320+ 54| 74.4+ 3.40 61.8 £ 3.70 45.7 £ 520 37.7£ 7.6
lab10{41.4 4+ 4.2| 26.1+ 3.8| 34.0 £ 3.80 31.6 =+ 55 34.44+4.60 26.6+L 5.2
lab11|53.5+ 2.5| 279+ 2.8| 48.6+ 4.00 42.0 £ 3.50 449 £+ 3.80 33.7+f 3.80
lab12|139.2+ 4.0| 31.5+ 34| 354 £ 59 35.6+ 6.6 228 £49e 203% 5.7e
lab13|45.4 4+ 3.4| 299+ 5.2| 38.5+ 6.00 37.1 =+ 4.60 32.6 =54 28.0£ 4.9
lab14|49.9+ 45| 354+ 7.1| 44.8+ 7.6 441 £ 74 224 £59e 234+£11.7

AVG [49.7 | 31.0 | 44.1 39.6 33.3 28.9

In evaluating the document retrieval performance, the k-neighbor set purity was chosen
as the most relevant metric. The inverse mate rank is certainly also important, but the
label matches are able to capture a certain level of semantic similarity among the fetched
results. A higher purity among the neighbor sets ensures that, for instance, if your query
is about the civil war, you will not get results about gardening, regardless of whether the
aligned mate was retrieved or not. This is certainly quite useful. The comparisons are given
in Table 27.

Once again, the CS:H weighting proves to be the best among the evaluated hubness-
aware weighting approaches, as it retains the original purity of labels among the document
kNNs. It is significantly better than the un-weighted baseline (CS:N).
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Table 27: The average purity of the k-nearest document sets in each representation. The symbols
e /o denote significantly lower/higher purity (p < 0.01) compared to the non-weighted case (CS:N).
The best result in each line is in bold.

Label‘ Original CS:N CS:H CS:h CS:B CS:b

labl [84.5 £ 1.3 | 80.7 1.6 | 84.1 = 1.1 o 83.3 = 1.5 0 83.7 1.5 0 81.7 £ 2.1
lab2 [90.5 = 1.2 | 84.5 321901 £1.20 8.2 £ 200 89.6 150 849 £+ 3.7
lab3 |74.4 £ 0.9 | 71.3 1.0 | 744 £ 1.00 736 £ 090 74.6 £ 1.2 0 726 £ 1.1
lab4 |85.8 £ 1.6 | 84.6 44189 £ 15 859 +1.8 851 1.5 841 £+ 3.6
lab5 [96.0 £ 0.6 | 95.9 1.3 1959 £ 0.8 96.3 +£0.8 953 1.0 945 £ 3.0
lab6 |91.7 &+ 0.9 | 90.2 341916 +£1.1 916 £ 1.5 908 1.5 895 £ 35
lab7 |79.7 £ 0.8 | 78.0 22797 +£1.0 790 £ 1.6 79.5 0.6 778+ 1.7
lab8 |89.1 &+ 1.3 | 87.0 34| 89.0£1.2 885 £ 16 880 1.3 856 £ 3.2
+
+
+
+
+

lab9 |91.8 + 1.1 | 84.7 3.1 ]192.0£ 1.1 0 896 1.5 0 90.9 130 839 £ 3.1
lab10|84.3 £ 0.7 | 84.5 £ 1.4 | 844 £ 0.6 84.4 0.8 83.7 0.7 834 +£1.6
lab11|77.0 £ 09 | 73,5 £ 1.1 | 771 £ 0.8 o 75.5 090 77.3 £ 0.6 0 747 £ 1.2
lab12 |88.7 + 1.2 | 88.7 £ 3.3 | 88.6 £ 1.3 88.7 1.9 876 1.5 879 £ 35
lab13(82.3 + 1.5 | 81.9 + 2.1 | 82.4 £ 1.5 82.2 1.8 820 £ 14 80.7 £ 2.5
lab14]92.7 £ 0.8 | 92.1 £ 2.8 | 923 £ 0.7 92.7 £1.2 91.7 = 1.3 91.7 £ 3.1

AVG |86.3 | 84.1 | 86.3 85.7 85.7 83.8

HH B HHHHH
HoH B HH B HHH B H B

The CS:H weighting produces results most similar to the ones in the original English
corpus. Our hypothesis was that it was because this particular document weighting scheme
best helps to preserve the kNN structure of the original document set. The relevant corre-
lations were examined and it turns out that this is indeed the case, as shown in Table 28.
By preserving the original structure, it compensates for some of the information loss which
would have resulted due to the dimensionality reduction during the CCA mapping.

Table 28: The correlations of document hubness between some of the different common semantic
representations, as well as the original English documents. CS:H (emphasize hubness when building
the rep.) best preserves the original kNN structure, which is why it leads to similar classification
performance, despite the dimensionality reduction.

(a) Pearson correlation between (b) Pearson correlation between
total hubness on the training set total hubness on the test set (oc-
(occurrence frequencies) currence frequencies)
[ENG[CS:N[CS:H[CS:h [ENG[CS:N|CS:H[CS:h
0.05 |0.42 (0.02 |[ENG 0.65 |0.88 (0.75 |ENG
0.03 [0.05 |CS:N 0.68 [0.93 [CS:N
0.02 |CS:H 0.80 |CS:H
CS:h CS:h

Even though the hub-structure of the data remains preserved across different languages,
it is radically changed by the CCA mapping onto the common semantic space. It seems
that the we can slightly compensate for the information loss and kNN topology deformation
by introducing the hubness-aware instance weights into the CCA optimization problem and
this helps in preserving the original kNN structure of the data during the CCA mapping.
These initial results need to be verified on more language pairs and larger document corpora.

3.4 Bug Duplicate Detection

This section deals with the issues of bug duplicate detection and proposes a novel hubness-
aware re-ranking approach. The results were reported in [Tomasev et al., 2013a).
In software development, despite the initial testing and the best efforts of the developers,
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some minor or major bugs and issues are often detected only after the product/service had
been released/deployed. Issue tracking systems are therefore useful tools which allow the
users either to report bugs in specific use cases of the software or to suggest new features that
would extend the existing functionality of the software. Therefore, bug tracking systems are
an integral part of developer infrastructure in most large software engineering companies.
Most bugs are reported multiple times by the users and manually checking for similar issues
can be time-consuming and costly. Providing some support for handling duplicates is highly
desirable. This is often achieved by using semi-automatic bug duplicate detection systems.

There are many existing bug tracking systems. Some of the best known include Bugzilla,
JIRA, Launchpad and Redmine!. There are several types of information that a user is
usually able to report to such systems. Apart from the textual description, a user can leave
his/hers contact information, specify the type of the request (eg. bug, suggestion), specify
the component where the issue was noticed, the build version, the platform on which the
system was running, the priority with which the issue needs to be resolved, etc.

If the issue can be replicated, it is verified by the responsible person and needs to be
assigned to the engineer who would be working on the fix. Before the assignment takes
place, the system needs to check if the same issue had previously already been reported, as
there is no need to forward the issue reports have either already been resolved or are being
resolved.

Bug duplicate detection is not an easy task, as different users may formulate their free-
text reports in entirely different ways, depending on their background and experience.

As the basic component of bug reports is their textual description and textual data is
known to exhibit hubness [Radovanovié et al., 2010b], it is to be expected that hubs might
play a certain role in similarity based bug duplicate detection systems.

Automatic bug duplicate detection is a rather recent research direction. One of the
first information retrieval approaches to duplicate detection was proposed in [Runeson et
al., 2007]. Textual clustering was another approach [Hiew, 2006]. A natural language
processing based duplicate detection method based on both the textual and the execution
similarity was used in [Wang et al., 2008a]. Using n-grams is also possible and somewhat
more robust to noise and domain-specific term usage [Sureka and Jalote, 2010]. Classifiers
can be trained to classify the reports into duplicates, but they currently do not achieve high
precision [Jalbert and Weimer, 2008]. Using advanced techniques for topic modeling also
seems promising [Nguyen et al., 2012].

3.4.1 Bug Duplicate Data

The November 2010 image of the KDE bug repository (https://bugs.kde.org/) was used
for the experiments and it contained 249.129 reports. A large portion of these reports were
marked as duplicates, 47.061. The reports were filed between 21.1.1999 and 2.11.2010. Bugs
in KDE repository are related to 479 different products.

The similarity between the reports is obtained by calculating the similarity between the
textual bug report descriptions. All the relevant provided information was used, including
the subject line, main description and the associated comments.

Standard text processing was performed, including stemming and stop word removal.
Porter stemmer [Porter, 1980] was used for word inflection removal and the data was rep-
resented by the standard vector space model [Raghavan and Wong, 1986] with TF-IDF
weighting [Feldman and Sanger, 2006]. Assuming V = [v,v2..vw] is the vocabulary used to
form the reports, each report is then represented as a |V|-dimensional vector of weights.
Fach weight corresponds to a given word in the vocabulary, its frequency and the inverse
document frequency. This is a well-known textual representation.

Thttp://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems



Practical Applications of the Hubness-aware
192 Methods

Let R be the set of all filed issues and let 7; = [r{,r7...r}'] and 7j = [rj,r5...r¥] be the

vectors representing two such bug reports. The similarity between the two reports is then
defined as the cosine similarity between the corresponding vectors [Feldman and Sanger,

2006].

. woop.p
Con ooy it p=1"i 'Tj
sim(7;, ;)
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(12)

3.4.2 Outline of the Duplicate Detection Process

Issue reports arrive at some fixed order of precedence. Upon arrival, each report is compared
to the previously archived documents to check for possible duplicates. Therefore, if a bug
arrives at time T, it is only compared to the reports that have arrived at some t < T. All
the experiments are performed by taking this into account.

Time t; corresponds to the time of receipt of report r;. Let Ty = ty be the time of receipt
for the last received report. When the newly received report is analyzed, its cosine similarity
towards each earlier report is calculated and the list is sorted in a descending order, so that
the most similar earlier report is shown first to the system user. This allows the responsible
engineers and easy overview of the possible duplicate reports. By inspecting the list, they
will mark some of the suggestions as duplicates.

This process is far from perfect, as it involves manual inspection of many free-text
issue reports. Sometimes, duplicates do not get noticed. However, the precision of the
automatic duplicate detection software is not high enough to be able to replace actual
human participation in the process. This is why bug report duplicate detection remains a
semi-automatic process for the time being.

3.4.3 The Influence of Hub Reports

The temporal component of the duplicate detection process requires us to introduce temporal
hubness as a concept and extend all the relevant quantities by the parameter T.

Denote by NkT (r) the number of times that the report r occurred in the top-k similarity
queries of the duplicate detection system up until time 7. We will refer to NkT (r) as the
temporal occurrence frequency of r. It is a function that is monotonously non-decreasing
with respect to T. The temporal neighbor occurrence skewness at time T is defined as
follows:

v L (N (ri) —k)?

(4 T (V] (i) — K0)2)3

SNI =

(13)

Positive (right) skewness means that the distribution tail is longer on the right side and
that most values are lower than the mean. Figure 60 shows the skewness of the bug report
occurrence frequency distribution of the analyzed data for different values of k. The bug
reports exhibit very high hubness.

The consequences of high occurrence frequency skewness can be seen in Figure 61, where
the degree of the major hub is shown, i.e. the maximal Nka(r) over the set of all reports. We
can see that the major hub report occurs very frequently, much more often than it actually
occurs as a genuine duplicate. For k= 10, the major hub report occurs 1421 times, out of
which it is only an actual duplicate once and not a duplicate 1420 times. Out of those 1420
occurrences, in 373 cases an actual duplicate of the query report existed, but it was not the
major hub. As the system can not always pinpoint the exact duplicate as the most similar
document, k > 1 has to be used in practice. The above given analysis of the nature of hub
occurrences suggests that this might significantly increase the number of false positives.
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Figure 60: Final skewness of the bug report occurrence frequency distribution, indicating high hub-
ness, as everything above SN; of 1-2 can be considered quite high).
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Figure 61: The maximum report occurrence frequency, shown for different values of k.

In the context of bug duplicate detection, a bad k-occurence is defined as each occurrence
of report r; in the query top-k result set of report g such that r; is not a duplicate of g, if the
report g has duplicates in the previously gathered data. Denote by BNka (r) the temporal
bad occurrence frequency. The occurrences that are not bad will be referred to as good
occurrences and we will denote them by GNka (r),so that Nka(r) = BNka(r) + GNka(r).

If a report has no previous duplicates, whatever gets retrieved by the system does not
affect its performance. Therefore, we are only interested in those queries where actual
duplicates exist.

Most occurrences in the systems turn out to be bad occurrences, as shown in Figure 62.
This is not surprising, as the problem of bug duplicate detection is a hard one and systems
usually achieve low precision.

3.4.4 Secondary Hubness-aware Re-Ranking

In the spirit of learning from past occurrences, potential duplicate occurrence profiles can
be exploited in order to improve system effectiveness in detecting actual duplicates.

Denote by gr the currently received report at time T for which the query is made to
the bug duplicate detection system. Let R, 7 = {r;,,ri,,...ri, } be the top-k result set returned
by the system. The system also provides the primary similarity scores. The secondary
hubness-aware re-ranking is performed by re-defining the similarity measure based on the
temporal occurrence model. The secondary similarity will be denoted by simf’T. After the
secondary similarity is calculated, the final ranking is obtained by re-ordering the initial
result set based on the new similarity value.

In the temporal occurrence model, the nature of the report occurrence profile might
change over time. A good hub might become a bad hub and a false positive as time goes by
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Figure 62: The total cumulative percentage of bad occurrences in the result sets of the initial bug
duplicate detection system, up until time 7.

and the distribution of the data changes, or vice-versa.

Therefore, the total aggregate occurrence count is not a reliable quantity. This is it is
beneficial to observe only the occurrence counts within a time-dependent sliding window.
Denote by GN,S u(r) the good truncated occurrence frequencies, that is obtained by counting
only among the past u occurrences of r (or less, if r has occurred less than & times total).
The truncated total occurrence count is then N,Z u (r) = min(y, (NE(r)+1)), where we have
increased the original occurrence count by one to avoid zero divisions. In a sense, each query
report is implicitly included in its own result set at position zero.

The secondary simf’T similarity measure is defined as follows:

GN!
simkH’T = Tk’“ -sim(qr,r) (14)
Nk,u

This simple formula increases the similarity between the query report and those retrieved
reports that have recently had very few bad occurrences. This increases the confidence that
the retrieved report is actually relevant for the query and is more likely to be an actual
duplicate, if such exists.

It would probably not be advisable to sort the query set according to the good occurrence
percentages alone, as the primary similarity measure is needed to convey the content-wise
relevance information.

The effectiveness of the proposed approach was evaluated by considering the changes
in two quality indices: the average rank of the first detected duplicate (rankil;) and the
overall average rank of detected duplicates (ranky,;). A lower rank would indicate and
improvement in performance, as it is important to sort the reports in a way that requires
least effort from the user. This is why ranking is important. Additionally, re-ranking can
also improve the detection rates, if the system operates with two different k-values, one for
simf’T calculation and the other for top-k result retrieval.

The difference in the average first and overall KDE duplicate ranks before and after
re-ranking by simf’T is shown in Figures 63 and 64, for different values of k. The rank
reduction for the first (most similar) duplicate is present for all k-values. The improvement
in reducing the overall detected duplicate rank increases with k.

The proposed ranking system is self-adaptive as it learns the secondary similarity mea-
sure by observing and estimating the deficiencies of the primary similarity at each time
step, thereby making duplicate reports more similar to each other. The effectiveness of this
simple modification to the original bug duplicate detection system demonstrates that learn-
ing from past occurrences might be promising in temporal query-based systems. Figure 50
shows the use of the same re-ranking idea in querying image databases. Naturally, there
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might be better solutions for exploiting the temporal good/bad hubness information and
more complex and elaborate ideas ought to be tested in the future.
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4 Conclusions

This thesis examines the phenomenon of emerging hubs in the k-nearest neighbor topologies
of intrinsically high-dimensional data, known as hubness. It is a recently described aspect
of the well-known curse of dimensionality that is known to plague many standard data
analysis and modeling approaches. The hubness phenomenon has previously mostly been
examined from a theoretical standpoint and this thesis presents some of the first steps
towards designing robust, hubness-aware machine learning and data mining algorithms that
are able to perform well even under the assumption of severe hubness of the data.

We have proposed several novel analytic algorithms, provided their theoretical justifi-
cation, and evaluated their performance on a wide spectrum of high-dimensional datasets,
including images, documents, bug duplicate reports, sensor data and other types of time
series, as well as different kinds of synthetic data.

4.1 Scientific Contributions

The main scientific contributions of the thesis are discussed below.

SC 1. Clustering: We have closely examined the role of hubs and hubness in clustering
high dimensional data.

SC 1.1: We have shown that hubs can be used as cluster prototypes and that hubness
is a good local centrality measure in high-dimensional feature spaces, unlike
density, which works good only in the low-dimensional case.

SC 1.2: We have closely examined the role of hubs and hubness in clustering high
dimensional data. We have proposed three novel clustering algorithms that ex-
ploit this fact: K-hubs, global hubness-proportional clustering (GHPC) and global
hubness-proportional K-means (GHPKM). They were shown to be quite robust
in various experimental setups. Improvements in clustering quality have been
observed in terms of cluster homogeneity, isolation and the Silhouette index.

SC 1.3: Further analysis has shown the improvements to be related primarily to
a better overall clustering of hub points, which are usually difficult to han-
dle [Radovanovié, 2011]. The proposed algorithms also manage to find the glob-
ally optimal cluster configuration more often, as their stochastic nature allows
them to avoid premature convergence to local optima.

SC 2. Classification: In the case of supervised learning, we have shown that it is possi-
ble to exploit the class-conditional neighbor k-occurrence models to design robust
hubness-aware methods for high-dimensional data classification. We have proposed
three novel classification methods: hubness-based fuzzy k-nearest neighbor (h-FNN),
hubness-information k-nearest neighbor (HIKNN) and the naive hubness-Bayesian k-
nearest neighbor (NHBNN).

SC 2.1: We have shown that it is possible to use the class-conditional neighbor
occurrence information to derive hubness-based fuzzy scores and use them within
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the fuzzy k-nearest neighbor classification framework in order to improve the
performance of fuzzy kNN classification. The proposed h-FNN algorithm was
also shown to improve on the hw-kNN, a previous instance-weighting approach
for dealing with hubness in high-dimensional kNN classification.

SC 2.2: The h-FNN model was subsequently extended to include a way of weighting
the individual votes based on the neighbor relevance scores that were derived
from the neighbor occurrence self-information. The proposed HIKNN algorithm
also included ways of combining the label information with the past occurrence
information. It has been shown to improve the accuracy of h-FNN on many
intrinsically high-dimensional data types.

SC 2.3: Asan alternative to the fuzzy kNN classification models, we have proposed a
Naive Bayesian way for learning from past neighbor occurrences. All occurrences
are treated as random events and the Naive Bayes rule is then applied in order to
determine the class affiliation of the query point. Special mechanisms have been
introduced in order to properly handle anti-hubs and orphans, as these points
have no past occurrence information to learn from. NHBNN was shown to be
better than the probabilistic k-nearest neighbor classifier (PNN) on intrinsically
high-dimensional data. Additionally, it was shown to be better suited for learning
under class imbalance than h-FNN and HIKNN.

The robustness of the proposed methods was also confirmed in presence of high levels of
mislabeling and class overlap. They have all been shown to achieve a superior average
performance in terms of classification accuracy and F-measure on intrinsically high-
dimensional datasets, when compared to the standard k-nearest neighbor classification
baselines. The proposed approaches seem to be scalable, as our initial experiments
suggest that using the approximate k-nearest neighbor sets to learn the model does
not induce a significant difference in classification performance.

SC 3. Class imbalance: This thesis presents the first study that was aimed at better
understanding the impact of class imbalance on classification under the assumption of
hubness in intrinsically high-dimensional data.

SC 3.1: While examining the link between hubness and class imbalance, we have
discovered and described a previously unknown high-dimensional phenomenon
which we have named the curse of minority hubs. In low-dimensional data, ma-
jority class usually overwhelms the minority class and the relative difference in
density causes the minority class examples to be misclassified. However, we have
noticed that as the dimensionality is increased, the minority class points some-
times tend to become large bad hubs and induce significant misclassification of
the majority class.

SC 3.2: Additionally, we have demonstrated that our proposed hubness-aware kNN
classification methods help in dealing with this issue. As learning under class
imbalance is among the most important fields of research in supervised learning,
this is an important discovery. Many real-world problems are inherently imbal-
anced and we hope that these observations might help in designing better and
more reliable adaptive systems in those domains.

SC 4. Instance selection: Instance selection is often performed as a preprocessing
step prior to k-nearest neighbor classification. We have performed a first in-depth
study of the influence of hubness on various standard prototype selection strategies.

SC 4.1: We have implemented and compared a series of standard instance selection
strategies. The experiments suggest that these selection strategies vary in terms
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of hub selection bias, as some tend to select more hubs than others, on average.
Selecting a large proportion of hubs can help in maintaining the original structure
of influence/relevance in the data.

SC 4.2: Different instance selection strategies induce different degrees of hubness in
the prototype neighbor space. This induced hubness sometimes greatly differs
from the actual hubness of the data and this influences subsequent classification
as it leads to underestimation or overestimation of some hubness-related data
properties by the kNN classification models.

SC 4.3: In order to deal with the difficulties outlined in SC 4.2 and SC 4.3, we have
proposed a new hubness-aware framework for high-dimensional instance selection
and classification. The experiments have shown that the use of the unbiased
hubness estimator alongside the hubness-aware classification methods yields the
best performance under data reduction.

SC 5. Metric learning: Many standard primary metrics do not perform well in
high-dimensional feature spaces, mostly due to the well-known distance concentration
phenomenon. Secondary distances are often used in order to deal with this problem.
The shared-neighbor similarity /distance framework is frequently used for analysing
high-dimensional data. We have extended this framework by including the informa-
tion about past neighbor occurrences.

SC 5.1: We have proposed a novel hubness-aware secondary shared-neighbor
similarity measure, simhub;. The experimental evaluation suggests that the
new similarity measure might be more appropriate for high-dimensional data
analysis than the widely used simcosg similarity score. Substantial improvements
in terms of classification accuracy and F-measure have been observed in most
studied experimental setups. We have shown that simhub; significantly changes
the structure of the kNN graph and reduces the label mismatch percentages, as
well as the overall hubness of the data.

SC R. Other/Remaining: We have applied our proposed methodologies and approaches
to a series of practical problems that incorporate different data domains.

SC R.1: The role of hubness in object recognition from images was carefully
examined under several different feature representations. We have shown that
different local feature types exhibit different degrees of hubness and that this in-
fluences the recognition process. In order to help the image mining practitioners
in selecting the proper combination of feature representation and metric, we have
developed a new visualization tool, Image Hub Explorer. It provides sup-
port in hub detection, local subgraph visualization, feature assessment, metric
learning, querying, labeling and re-ranking.

SC R.2: The analysis of the oceanographic survey sensor data has shown that
this type of time series data exhibits some hubness and that bad hubs can be
used for semi-automatic anomaly detection. The anomalous streams can be de-
tected by observing the discrepancies between spatial proximity and measurement
similarity. Bad hubs appear as potential sensor anomalies.

SC R.3: We have explored the correlations between the hub-structure in different
languages, by analyzing an aligned document corpus. By focusing on the case
of cross-lingual document retrieval, we have shown that it is possible to
exploit the hubness information to improve the common semantic feature space
that the data is projected to. Preserving the original neighbor structure helps us
in improving the performance of the cross-lingual document retrieval system.
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SC R.4: Analyzing the temporal aspect of hubness in the problem of bug dupli-
cate detection helped us to devise a secondary self-adaptive re-ranking proce-
dure that improves the overall retrieval performance by improving the visibility
of the previously bug duplicates.

The main conclusion of all the experiments and research presented in this thesis would
be that hubness as a phenomenon plays a very important role in high-dimensional data
analysis, negatively affecting many types of standard instance learning algorithms in many
data domains. Yet, we have shown that it is possible to exploit the information contained
in the neighbor k-occurrence models and learn from the past occurrences in order to achieve
better system performance.

4.2 Future Work

As this thesis has shown, data hubness has an impact on many different types of data
mining methods. We have but scratched the surface with the presented analysis and there
are certainly many opportunities for further advancing the proposed approaches, as well as
finding new practical applications.

The proposed hubness-based clustering methods (K-hubs, GHPC, GHPKM) can only
handle hyper-spherical clusters and need to be extended in order to properly handle arbi-
trarily shaped clusters. We intend to achieve this by considering a potential application
of kernel methods, as in kernel K-means. Additionally, we intend to examine the role of
hubs in shared neighbor clustering, which has previously been successfully applied to high-
dimensional data.

There are many ways in which hubness information can be exploited in classification.
The proposed methods (h-FNN, HIKNN, NHBNN) are not the only ideas worth exploring.
Furthermore, many other existing kNN classifiers could be extended by applying the same
ideas embodied in these hubness-aware approaches. As for the three hubness-aware methods
that have been proposed in this work, NHBNN is the one that offers most possibilities
for further improvement, as it assumes independence between co-occurring neighbors, an
assumption that is clearly violated in practice. Therefore, a more careful Bayesian treatment
could potentially yield better results in practice.

Unlike many existing kNN classifiers, the hubness-aware approaches that are based on
the neighbor k-occurrence models can be boosted. This follows from the fact that instance
weights could be used to obtain the weighted hubness scores. We intend to explore the
possibilities for successful boosting of the hubness-aware classifiers in our future work.

Almost all examined instance selection strategies have proved ineffective under the as-
sumption of hubness, so it would be useful to design novel, hubness-aware instance selection
schemes. Furthermore, as hubness-aware classifiers depend on the neighbor k-occurrence
models, it would be interesting to optimize selection in order to reduce the overall prototype
reverse neighbor set entropy, i.e. induce more purity in the prototype occurrence profiles.

Apart from the theoretical research and algorithm design, we intend to continue working
on visualizations and various practical applications on multimedia data, in order to increase
the robustness and improve the overall performance of various multimedia systems.
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