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Abstract

The thesis addresses the decision making problem of ranking a finite set of qualitative op-
tions that are sorted into a set of classes.

The problem is directly motivated by DEX methodology, where options that belong to the
same class are indistinguishable. A starting method for solving the problem is the linear-
based QQ method. QQ is based on assumptions that options are monotone or nearly linear,
hence it does not work as desired for non-linear non-monotone options. To solve this issue,
we propose and evaluate four different QQ-based methods for estimating a regression func-
tion: impurity functions for weights estimation in the linear regression function; polynomial
functions for regression; linear programming for search of the optimal parameters of the
regression function; and copula functions for aggregation and regression.

The main focus is on the last method which proposes a replacement of the linear func-
tions in QQ with copula-based functions. This approach leads to fully and partially nested
Archimedean constructions (FNACs and PNACs). Three families of Archimedean copu-
las are considered: Frank, Clayton and Gumbel. Regression functions are derived for the
FNACs and PNACs in order to obtain the option ranking with the method. Apart from
modeling the non-linearities in the data, the copula-based approach allows to define differ-
ent dependences among the considered attributes, and based on the different FNACs and
PNACs it provides different possible rankings for a given problem. To find the best ranking
function, a measure which maximizes the distances among the options in a given class is
proposed.

Extensive numerical experiments were performed to evaluate the performance and applica-
bility of the four proposed methods and to give insights into their applicability in practice.
The experiments confirmed the usefulness of the proposed copula-based method for ranking
non-linear decision tables. Finally, the copula-based methods were successfully applied to
two real-world cases: ranking of EC motors and ranking of workflows.
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Povzetek

Disertacija obravnava problem razvrščanja (rangiranja) končne množice kvalitativnih alter-
nativ, ki so razvrščene v posamezne razrede.

Problem razvrščanja je neposredno spodbudila DEX metodologija, kjer so alternative, ki
pripadajo istemu razredu, med seboj nerazpoznavne. Postopek za rešitev problema se prične
z linearno kvalitativno-kvantitativno (QQ) metodo. QQ temelji na predpostavkah, da so al-
ternative monotone ali približno linearne, zato v primeru nelinearnih in/ali nemonotonih al-
ternativ ne daje željenih rezultatov. Za rešitev težave disertacija predlaga in evaluira štiri raz-
ličice QQ metode za oceno regresijske funkcije: nečiste (impurity) funkcije za ocenjevanje
uteži v linearnih regresijskih funkcijah, polinomske funkcije za regresijo, linearno progra-
miranje za iskanje optimalnih parametrov regresijske funkcije, in kopule (copula functions)
za agregacijo in regresijo.

Glavni poudarek je na zadnje omenjeni metodi, ki predlaga zamenjavo linearnih funkcij
v QQ metodi kopulami. Uporaba kopul vodi k popolnim in delno vgrajenim Arhimedo-
vim konstrukcijam (FNACs in PNACs). Obravnavane so tri družine Arhimedovih kopul:
Frank, Clayton in Gumbel. Za razvrstitev alternativ so razvite regresijske funkcije z upo-
rabo FNACs in PNACs. Uporaba kopul poleg modeliranja nelinearnosti v podatkih omogoča
opredelitev različnih odvisnosti med atributi in na podlagi različnih FNACs in PNACs za-
gotavlja različne možne razvrstitve določenega problema. Pri iskanju najboljše funkcije za
razvrstitev predlagamo mero, ki povečuje razdalje med alternativami v danem razredu.

Za oceno učinkovitosti in uporabnosti štirih predlaganih metod so bili izvedeni obsežni nu-
merični eksperimenti. Le-ti so za razvrstitev nelinearnih tabel odločanja potrdili uporabnost
predlagane metode, ki temelji na kopulah. Nenazadnje se metoda kopul uspešno uporablja
v dveh resničnih primerih: za razvrščanje EC motorjev in pri razvrščanju delovnih tokov
(workflow).
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1 Introduction

Multi-criteria decision analysis (MCDA) is a sub-discipline of operations research, concerned with struc-
turing and solving decision problems that involve multiple criteria (Zopounidis and Pardalos, 2010). For
a given set of decision options, MCDA considers three types of problematics: choosing, sorting and
ranking (Roy, 2005). Choosing means a selection of one option (or a sub-set of options) from the set of
decision options as the best ones. Sorting aims at assigning a class to each of the available options from
a set of predefined classes. Ranking aims at defining a complete or partial order on given set of options.
This thesis addresses the problematic of ranking.

The starting point for the research are decision problems where options are represented with qual-
itative attributes that form a decision table. The decision maker’s preferences split the decision table
into subsets of equally preferred options, called classes, so that options belonging to the same class are
considered indistinguishable. In other words, the sorting problem is solved this way. In practice, this
is often inadequate and hence one wants to further distinguish between options belonging to the same
class. This means that, in addition to sorting the options into discrete classes, one also wants to rank
them within classes. Furthermore, the wish is to obtain such rankings with least effort, i.e., using only
the information already available in the decision table.

This dissertation presents a modeling approach that combines qualitative and quantitative models. In
particular, it addresses the following problem: Given some qualitative multi-criteria model, is it possible
to construct a corresponding quantitative multi-criteria model for the evaluation, and consequently for
ranking, of options? The resulting model should be in some way consistent with the original one and
should be preferably constructed in an automatic or semi-automatic way from the information contained
in the qualitative model. These are very important questions, both theoretically and practically. The-
oretically, it is important for bridging the gap between both types of models and involves a number of
theoretically interesting sub-problems, such as finding a suitable representation of a decision problem
in different forms for different computational process, within the same decision-making process (Doyle-
and and Thomason, 1999). Practically, bridging this gap is important to overcome some limitations of
qualitative models, such as low sensitivity and limited applicability for the ranking of options.

Therefore, the goal of this thesis is to develop and study quantitative methods that rank the options
belonging to the same class solely by using the information contained in the qualitative decision table.
The obtained ranking must have three main properties. Firstly, it has to distinguish among all options, if it
is possible, or allow equal ranking in cases when is desired (for example, symmetric options in symmetric
decision tables). Secondly, the ranking should be monotone. Finally, it has to provide consistency with
the qualitative model, so that the evaluation of each option must belong to the interval [c± 0.5], where
c ∈C is the quantitative value of the class. The last property additionally provides direct information to
the decision maker about the class c in which the evaluated option belongs to, hence it ensures readability
of the rankings.

The problem addressed here is directly motivated by decision expert (DEX) methodology (Bohanec
and Rajkovič, 1990; Bohanec et al., 2012). DEX is a qualitative modeling methodology that, in the
process of developing a decision model, produces decision tables which can be interpreted either as a set
of options or a set of decision rules governing the preference evaluation. To solve the ranking problem,
the qualitative-quantitative method (QQ) (Bohanec, 2006; Bohanec et al., 1992) has been developed. QQ
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is based on assumptions that options are monotone or nearly linear, hence it does not work as desired for
non-linear non-monotone options. There are other qualitatiative MCDM methods that also deal with this
issue, as described in section 3.1. However, none of them solves the problem stated above.

1.1 Aims and Hypothesis

The aim of the dissertation is to develop, implement and evaluate a method for monotonic, consistent
and full ranking of a set of qualitative multi-attribute decision options derived from DEX methodology.

The overall aim is addressed through the following main objectives:

Objective 1 Definition of theoretical framework for automatic ranking of qualitative options derived
with DEX methodology.

Objective 2 Evaluation, modification and definition of shortcomings of three proposed state-of-the-art
research directions for ranking of qualitative options: usage of impurity functions for weights
estimation in the linear regression function; usage of polynomial functions for regression; and
usage of optimization for regression.

Objective 3 Development and implementation of methodology based on copula functions for option
ranking.

Objective 4 Demonstration and evaluation of the benefits and generality of the copula-based methodol-
ogy.

The thesis addresses the following hypotheses that are developed and experimentally tested:

Hypothesis 1 The integration of qualitative decision problems and statistical copula-based functions
enables full option ranking based solely on the information provided in decision tables derived
from DEX methodology.

Hypothesis 2 Copula-based regression equations improve the number of solvable qualitative decision
tables compared to the state-of-the-art methods.

1.2 Research Methodology and Specific Contributions

The thesis starts with the existing QQ method, designed for ranking of monotone qualitative options.
The modifications of QQ lead to four research directions:

Research direction 1 Usage of impurity functions for weights estimation in the linear regression func-
tion in QQ.

Research direction 2 Usage of polynomial functions for regression.

Research direction 3 Usage of optimization technique for providing a regression function.

Research direction 4 Usage of copula-based functions for performing the regression task.

In each of the four research directions, the regression function is used for ordering the options and
hence for ranking.

The first research direction includes investigation of different impurity functions for estimation of co-
efficients in the linear regression equation used by QQ. The main contribution arising from this research
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direction is the usage of different non-linear functions instead of the standard least squares algorithm,
that lead to full rankings of many non-monotone decision tables, for which QQ provides equal rankings
(ties) of options or fails to fulfill the monotonicity of the rankings. The main disadvantage of these func-
tions is their limitation to provide full option ranking when option attributes have different probability
distributions but receive equal weights in the linear regression equation in QQ.

The second research direction introduces polynomial functions instead of the linear one in QQ. For
that purpose the methods Constrained Induction of Polynomial Equations for Regression (CIPER) and
New CIPER are employed for heuristic search of the best polynomial for a given decision table. Results
show that polynomial functions outperform QQ. They are suitable for cases when the requited solution
should be monotone, but usually fail to provide full ranking of options.

The third research direction redefines the option ranking problem as constraint optimization prob-
lem, and as such, investigates the usage of linear programming for defining its solution. This intuitive
approach mainly leads to overly stringent constraints that rarely form a feasible region for solutions. The
main contribution here is the investigation of optimization technique for option ranking and answering
the question why the optimization could not be used in most cases of the examined decision tables.

The fourth research approach, which is the main focus of this thesis, changes the view of the deci-
sion tables from deterministic to stochastic. In this approach, the attributes are considered as random
variables. Copulas are functions which connect marginal distributions of random variables and their
joint distribution. The copula function is highly sensitive to small variations of input variables, thus
providing distinct results for cases where linear regression used in QQ fails. The combination of the
sensitivity of copulas and their monotonicity property leads to correct option rankings unlike QQ, which
may lead to inverse option rankings. This thesis uses one-parametric multivariate copulas for evalua-
tion of symmetric decision tables, and bi-variate copulas which are extended to multi-variate ones, for
non-symmetric decision tables. To form a multi-variate copula, the bi-variate ones are merged forming a
hierarchical copula construction. In the thesis, two types of hierarchical copulas are examined: the fully
nested Archimedean construction (FNAC) and partially nested Archimedean construction (PNAC). For
the obtained hierarchical copula constructions, the thesis presents new quantile regression equations for
different position of the dependent variable in the FNAC and PNAC. FNAC and PNAC are built from
bi-variate Clayton, Frank and Gumbel copulas, which belong to the family of Archimedean copulas.

Another contribution of this thesis is the evaluation of the proposed methods in the four research
directions. For evaluation, different decision tables (artificial and real) are used to demonstrate the gener-
ality and applicability of the methods. Firstly, evaluation on three artificially constructed sets of decision
tables with different number of attributes and different cardinality is performed. Secondly, the applica-
bility of the copula-based method on two real-case examples is demonstrated: ranking of EC motors, and
ranking of data mining workflows.

The proposed methods lead to new decision support methods for qualitative option evaluation and
ranking within classes, and are competitive with current state-of-the-art methods. The new methods
lead to several contributions. Firstly, the used approaches extend the space of solvable monotone and
linear decision tables to the space of general discrete decision tables. Secondly, methods bridge the gap
between qualitative and quantitative models in terms of improving qualitative methods’ low sensitivity
and limited applicability for the ranking of options within classes. Finally, the methods are applicable
for ranking of qualitative options specified with non-linear and or non-monotone decision tables.

1.3 Organization of the Thesis

The thesis is based on two main theoretical fields: qualitative decision making methods, and regression
methods for option ranking. Due to the diversity of the methods in each of the two research fields,
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Chapters 3, 5 and 6 in the thesis contain the background and the references to the related state-of-the-
art literature. For better presentation of the discussed topics, several running examples are presented
throughout the dissertation, which are chosen to provide best description of the used techniques and
methods.

The organization of the thesis is shown in Figure 1.1. The center of the Figure 1.1 is the problem that
is considered in the thesis denoted as ‘Ranking of options’. The chapters that are presented as circles are
enumerated in clockwise direction, starting with Chapter 2, and ending with Chapter 10.

Ranking of options

Illustrative
examples
Chapter 8

FNAC

PNAC

Symmetry

Ties

Experiments
Chapter 7

Three
attributes

Four
attributes

Five
attributes

Research
directions

Copula
functions
Chapters
5 and 6

Constraint
optimiz.

Chapter 4

Polynomial
functions
Chapter 4

Impurity
functions
Chapter 4

DEX
and QQ

Chapter 3

Problem
definition
Chapter 2

Conclusion
Chapter 10

Applications
Chapter 9

Ranking of
EC motors

Ranking
of Data
Mining

Workflows

Figure 1.1: Organization of the thesis

The thesis starts with the mathematical formulation of the problem that is given in Chapter 2. The
proposed solutions in the thesis are based on the QQ method. The structure of QQ is described in Chapter
3. Chapter 4 describes three modifications of QQ: usage of different non-linear estimators for weights
calculation in the linear regression function; usage of polynomial functions instead of the linear one; and
redefinition of the problem in terms of constraint optimization that is solved using linear programming.
The main accent in the thesis is given on the fourth modification of QQ that applies copulas as functions
for statistical regression. These are introduced in Chapter 5, along with the theoretical framework for
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constructing Archimedean multi-variate copulas. Chapter 6 defines the quantile regression using copu-
las. The chapter presents the developed regression equations for the multi-variate Archimedean copulas,
which is one of the main contributions of this dissertation. Chapter 7 provides results of three groups of
experiments based on randomly generated artificial decision tables. The experiments are performed for
uniform distribution of attributes as the least informative setting of decision tables. Chapter 8 provides
different examples on which the modeling process are presented starting from qualitative model, copula
regression and ranking. Different typical examples are provided based on artificial decision tables in
order to describe the behavior of the method for symmetric decision tables, functions where linear re-
gression methods breach the monotonicity and resolving decision tables with ties. Chapter 9 presents the
applicability of the copula-based method on two real case examples in two different domains: ranking
of electrically commutated motors and ranking of data-mining workflows. Chapter 10 gives conclusion
remarks and directions for future research.
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2 Formal Description of the Problem

The thesis addresses the problem of qualitative option ranking, when the set of options is accompanied
with the decision makers’ preferences. There are three prevailing approaches designed to support the
preference modeling in MCDA:

1. Multiple Attribute Utility Theory (MAUT),

2. outranking methods,

3. logical “if . . . , then . . .” decision rules.

MAUT exploits the idea of assigning a score to each alternative. In outranking methods the pref-
erences of the Decision maker (DM) are given as pairwise comparison of options. The third approach
presents the preferential information in terms of exemplary decisions by building preferential model that
consists of “if . . . , then . . .” decision rules. The thesis uses the later approach for defining the preference
model which has several properties (Greco and Matarazzo, 2005):

1. it is expressed in natural language,

2. its interpretation is immediate, and

3. it can represent situations of hesitation.

Based on the given preference model, a function for option ranking is estimated.
This chapter provides the basic definitions that will be used throughout the thesis.

2.1 Problem Formulation

Decision problems that are of interest in the thesis are represented in the form of a Decision table (DT),
whose separate rows refer to distinct options ui, i = 1,2, . . . ,r, and columns refer to different attributes
A j, j = 1,2, . . . ,n. Based on the attribute’s values there are two types of decision tables: a qualitative
decision table, and a quantitative decision table.

Definition 2.1. A qualitative decision table (QDT) is a 5–tuple

QDT =<U,QA,QC,QV,Q f >

where

U is a finite set of r options (index of options),

QA = {QA1,QA2, . . . ,QAn} is a finite set of n qualitative condition attributes,

QC is a qualitative decision or class attribute

QVq is the domain of qualitative attribute q, q = {1,2, . . . ,nc}, QV = QV1×·· ·×QVn×QVc and
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Q f : U×QA→ QVc is a qualitative mapping function.

Definition 2.2. A quantitative DT is a 5–tuple

DT =<U,A,C,V,q f >

where

U is a finite set of r options (index of options),

A = {A1,A2, . . . ,An} is a finite set of n quantitative condition attributes,

C is a quantitative decision or class attribute

Vq is the domain of attribute q, q = {1,2, . . . ,nc}, V =V1×·· ·×Vn×Vc and

q f : U×A→Vc is a quantitative mapping function.

In this thesis, the DTs are obtained from QDTs using the mapping function F that is defined as
follows:

Definition 2.3. A mapping function F : QVi → Vi, is a function that maps the qualitative attributes’
domains into quantitative ones, so that:

F(QVi) =Vi,where min(Vi) = 1,max(Vi) = p, where |QVi|= p, p ∈ Z,∀i ∈ {1,2, . . . ,nc}.

The values of U are the same in both decision tables. U represents the index of the options. The
ith option in QDT and DT will be denoted as a(i), where i ∈U . The domain of QVq is represented with
discrete, ordered qualitative values.

The labels of the attributes in both tables are changed from QA and QC to A and C, respectively,
expressing the distinction that QA and QC refer to a decision table with qualitative domain of attributes
while A and C refer to a decision table with quantitative domain of attributes.

In this thesis we will use QDTs with attributes whose values are preferentially ordered. We will
distinguish the following preference relations between qualitative attribute values:

• a(i) �q a( j) denotes that a(i) is strictly preferred to a( j) with respect to the qth attribute, q ∈ {QA∪
QC},

• a(i) ≺q a( j) denotes that a( j) is strictly preferred to a(i) with respect to the qth attribute, q ∈ {QA∪
QC},

• a(i) ∼q a( j) denotes that a(i) is indistinguishable to a( j) with respect to the qth attribute, q ∈ {QA∪
QC}.

In Definition 2.1, the mapping function Q f which maps the different combinations of attributes into
a class attribute is called a utility function. It reflects the degree of preference of the decision maker for
each option.

The mapping function F must preserve the preferences of the decision maker given in the qualitative
decision table, i.e., for all preferential values of the input attributes (x,y) ∈ QAi or (x,y) ∈ QC, x 6= y,
i ∈ {1, . . . ,n} the following must hold:

(x� y)⇒ F(x)> F(y)

(x∼ y)⇒ F(x) = F(y)

(x≺ y)⇒ F(x)< F(y).

(2.1)

These notations are mapped in the quantitative space, that is obtained by applying of the function F ,
in the following manner:
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• � is mapped to >, which denotes “is greater than”

• ≺ is mapped to <, which denotes “is less than”

• ∼ is mapped to =, which denotes “is equal to”.

Definition 2.4. A QDT (DT) is called symmetric if all attributes share the same domain and the evalu-
ations of the class attribute are invariant to any permutation of attributes QA = {QA1, . . . ,QAn} (A =
{A1, . . . ,An}).

Definition 2.5. A QDT (DT) is called partially symmetric if a subset of attributes share the same domain
and the evaluations of the class attribute are invariant to any permutation of that subset of attributes
QA = {QA1, . . . ,QAr} (QA = {A1, . . . ,Ar}), r ≥ 2,r < n.

If a QDT (DT) is neither symmetric nor partially symmetric, it is called non-symmetric.

Definition 2.6. For A= (A,C), an aggregation function f that maps n real arguments into a real value
is defined as:

f : A ∈ Rn→ R. (2.2)

In the QQ context, an aggregation function f should satisfy the following properties:

Property 1: Monotonicity (increasing) For a,b ∈ A,

(∀i ∈ {1, . . . ,n} : ai ≥ bi)⇒ f (a)≥ f (b). (2.3)

Property 2: Full ranking within classes For (a,c),(b,c) ∈A where a,b ∈ A and c ∈C

(∃i ∈ {1, . . . ,n} : ai 6= bi)⇒ f (a) 6= f (b). (2.4)

Property 3: Consistency preservation For (a,c) ∈A,

f (a1, . . . ,an) ∈ [c−0.5,c+0.5]. (2.5)

In addition to these properties, the aggregation function f should be symmetric for a symmetric DT.

Definition 2.7. (Symmetry) (Beliakov et al., 2007) An aggregation function f is called symmetric, if its
value does not depend on the permutation of the arguments, i.e.,

f (a1,a2, . . . ,an) = f (aP(1),aP(2), . . . ,aP(n))

for every a and every permutation P = (P(1),P(s), . . . ,P(n))o f (1,2, . . . ,n)

Given Definitions 2.1–2.7 the problem addressed in this thesis reads:
Given the information in the QDT and the mapping function F , find an aggregation function f that
provides full option ranking for DT. The property of full option ranking should be relaxed, when that
is desired, such as in cases of symmetric DT.
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2.2 Structure of the Decision Model

Decision models, which are used for representing a decision problem, may be given with

1. a linear structure or

2. a hierarchical structure of attributes.

In the linear structure, the attributes are given as a set, or are sorted according to some criteria, such as by
descending importance of the attribute. This setting does not specify dependencies among the attributes
because they are all given at the same level. It is the main limitation of these methods, as humans have
the upper limit capacity to cope approximately with up to seven attributes at the same time. Hence, the
linearly structured problems are limited to a small number of attributes. This problem may be solved by
using a hierarchical structure of attributes, in which attributes are presented at several levels. A higher-
level attribute, which is obtained by aggregation of lower level attributes, represents a class attribute as
given with Definition 2.1.

This thesis considers models built with the DEX method, which have hierarchical structures. DEX
is presented in more detail in section 3.2.

2.3 Variability as a Measure for Ranking

To consider a solution provided by the function f as a good one, it must fulfill the three properties (2.3)–
(2.5). When two or more functions f fulfill (2.3)–(2.5), the one that provides the highest differentiability
of options is preferred. Therefore, the most preferred ranking is the one with the highest spread of values
in the intervals [c±0.5],c ∈C. For that purpose, the sum of mean absolute deviation D for each class k,
k = 1, . . . ,m, where m is the number of classes, is used as a measure of variability:

D =
m

∑
k=1

1
nk

nk

∑
i=1
|xik−mk(X)| (2.6)

where xik = f (Ai), mk(X) is the mean value of evaluated options that belong to class ck, and nk is the
number of elements in the class ck.

2.4 Running Example

In this section, the running example given in Table 2.1 is used to demonstrate the problem formulation
provided in section 2.1. The example is used throughout the thesis to illustrate and compare the different
algorithms and approaches for option ranking.

Table 2.1 is an example of a QDT. In Table 2.1, U is the universe of all nine options, therefore r = 9.
The set of qualitative condition attributes is QA = {QA1,QA2} thus n = 2. The qualitative class attribute
is QC. The domain of the attributes is QV1, QV2, QVc ∈ {good, better, the best}. The data in Table 2.1
specify the function Q f .

The preferential order of the attribute’s and the class’s values is: the best � better � good. This
gives a partial ranking of the options, for instance, all ‘better’ options are preferred to all ‘good’ options.
However, this gives no indication of option ranking within each class, even though it is clear that, for
example, option 2 is better than option 1: both are classified as ‘good’, but option 2 is better with respect
to the value of attribute QA1. Therefore, the goal is to fully rank the options that belong to the same class
solely by using the information contained in Table 2.1.
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Table 2.1: Qualitative decision table

No. QA1 QA2 QC

1 good good good
2 better good good
3 good better good
4 good the best good
5 the best good better
6 better better better
7 the best better the best
8 better the best the best
9 the best the best the best

Table 2.2: Quantitative decision table

No. A1 A2 C Ranking

1 1 1 1 0.7857
2 2 1 1 1.1429
3 1 2 1 1.0000
4 1 3 1 1.2143
5 3 1 2 2.1000
6 2 2 2 1.9000
7 3 2 3 2.9615
8 2 3 3 2.8077
9 3 3 3 3.1923

In order to perform ranking, a quantitative representation of the decision Table 2.1 is defined using
the function F : QVi→ Vi. Here one may demonstrate the properties of the function F , which are given
with (2.1). For example, Table 2.2 is obtained from Table 2.1 using the mapping function F :

F(good) = 1, F(better) = 2 and F(the best) = 3.

The function F defines the values of all rows in Table 2.2 with respect to columns 2–4. Following (2.1)
we may write:

(better � good)⇒ F(better)> F(good)
(the best � better)⇒ F(the best)> F(better).

The next step is to find an aggregation function f and demonstrate that it fulfills (2.3)–(2.5). For
Table 2.2, the function f is obtained by using the QQ method, which is presented in Chapter 3. The
values of f for the given options are provided in the last column in Table 2.2. Based on these values, one
may check that f satisfies the properties (2.3)–(2.5).

Checking of (2.3) is a two-step approach. The first step is to find a minimal set of all comparable
groups of options in the given decision tables. For the given Table 2.2 the set is: {(1,2,5,7,9), (1,2,6,8),
(1,3,4,8,9), (3,6,7), (6,7,9)}. To find this set, we first define all groups of comparable options. Then we
select those which can not be represented as a subset of some of the other groups. The second step is
checking (2.3) for all options that belong to the same group. For example, taking the group (6,7,9) and
applying (2.3) leads to:

a(7) ≥ a(6)⇒ f (a(7)) = 2.9615≥ f (a(6)) = 1.9000

a(9) ≥ a(7)⇒ f (a(9)) = 3.1923≥ f (a(7)) = 2.9615

The variability is calculated according to (2.6) as:

D =
1
4
{|0.7963−1.0357|+ |1.1429−1.0357|+ |1.000−1.0357|+ |1.2143−1.0357|}+

+
1
2
{|2.1000−2.0000|+ |1.9000−2.0000|}+

+
1
3
{|2.9615−2.9872|+ |2.8077−2.9872|+ |3.1923−2.9872|}= 0.3796.

The following chapters describe different approaches to obtaining the aggregation function f in an
analytical format using only the information provided in a DT.
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3 From Qualitative to Quantitative Multi-Criteria Models

DEX is a qualitative modeling methodology which provides a decision model that governs the pref-
erences of the decision maker represented as qualitative decision tables. In order to solve the task of
ranking of options with equal preference, the QQ method is used (Bohanec, 2006; Bohanec et al., 1992).
QQ is a three-stage method based on linear regression for evaluation of options. The usage of linear
functions in QQ for ranking is appropriate for linear, or nearly linear decision tables. A decision table
is considered nearly linear if it can be ‘sufficiently well’ (by some distance measure) approximated by
some linear function.

In this chapter we first provide an overview of the related state-of-the-art qualitative decision making
methods. Then we present the details of the DEX methodology, followed by the QQ method.

3.1 Qualitative Decision Making Methods

In qualitative decision making one may distinguish two major groups of methods. The first one is based
on interactive questioning procedure used for obtaining the DM’s preferences and final evaluation of
options. These methods do not allow inconsistent judgements, which are solved by asking the DM
to decide upon them. Two methods belong in this group. The first one is Measuring Attractiveness
by a Categorical Based Evaluation Technique (MACBETH) that uses the semantic judgements about
differences in attractiveness of several attributes to quantify the relative preferability of individual options
(Bana e Costa et al., 1999).

The name of the second method is ZAPROS (an abbreviation of Russian words for Closed Procedures
near Reference Situations). It is based on the verbal decision analysis approach that provides outranking
relationships among options (Larichev, 2001a,b; Moshkovich and Larichev, 1995). It is designed to deal
with a large number of options, however the number of criteria should be relatively small.

The second group of methods avoids the long interactive questioning procedures by employing the
preference disaggregation principal (PDA) (Jacquet-Lagreze and Siskos, 2001). PDA requires a set of
reference options for which the DM knows his/her preferences. Based on the preferential structures in the
reference set, the preference models for evaluation of options are obtained. Four methods are considered
in this group: UTA (UTilité Additive stands for additive utility), DRSA (Dominance-based Rough Set
Approach), Doctus and DEX.

UTA method (Jacquet-Lagreze and Siskos, 1982) is considered as the best representative of the PDA.
The DMs’ preferences are given as a weak order of a reference subset of alternatives. UTA uses the
DM’s preferences as constraints in the linear programming (LP) and it assesses an additive utility func-
tion (AUF) used for option ranking. The AUF is piece-wise linear on arbitrary chosen intervals. UTA
is based on two assumptions. Firstly, it assumes a preferential independence of the criteria for the DM.
Secondly, the method assumes existence of an AUF. Consequently, when the AUF does not exist, it is as-
sumed that the given DM’s preferences are ’irrational’ in the sense of exhibiting intransitive preferences,
that the preferences are not independent, or that preferences are not monotonically increasing (Beuthe
and Scannella, 2001). To deal with these issues, a plethora of UTA-based methods have been devel-
oped (Figueira et al., 2005). The most recent ones, UTAGMS (generalizes UTA), UTADISGMS (a variant
of UTA for sorting and classification) and GRIP (generalization of UTA by considering both pairwise
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comparison and intensities of preferences), are developed by applying the concept of a robust ordinal
regression (ROR). ROR takes into account all AUFs compatible with the preferential information (Greco
et al., 2010). The result of the method considers two preference relations: the necessary and the possible
one. The necessary preference relation is the one where option a is necessarily preferred to option b, if
a is at least as good as b for all compatible value functions, while a is possibly preferred to option b, if a
is at least as good as b for at least one compatible value function. To support the DM in situations when
the preference statements cannot be represented in terms of AUF, methods introduce interactions with
the decision maker in the process of defining the pairwise comparisons. Two solutions are proposed:
the DM can work with AUF which is not fully compatible with preferences, or to remove some of the
preference information causing the incompatibility (Greco et al., 2008). UTA originally does not deal
with hierarchical structure of attributes. A recent extension of UTA introduces this concept under the
name of Multiple Criteria Hierarchy Process (Corrente et al., 2012). The main drawback of the methods
is their inability to represent interactions among criteria due to the limitation of the AUF. Hence two
aggregation models are proposed defining the interaction of criteria. The first one builds non-additive
utility function by engaging a specific fuzzy integral, the Choquet integral (Angilella et al., 2004). This
results in obtaining weights that are interpreted as the "importance" of coalitions of criteria. The second
one redefines the additive value function in UTA by adding terms such as "bonuses" and "penalty" in
order to define the interaction among the criteria (Greco et al., 2012).

The preferential independence of the criteria is avoided by the last three methods in this group, which
represents the DMs’ preferences in terms of “if . . . ,then . . .” decision (or production) rules. The decision
rules are given in a data table. The methods differ from other approaches by the possibility to handle
inconsistencies in the DMs preferences, which may result from several reasons: hesitation of the DM,
indiscernibility of some attributes or non-linearities imposed by some attributes.

DRSA uses the basis of rough sets theory with primary goal of solving classification and sorting
problems in MCDA (Greco et al., 2001). However, DRSA can be used also for ranking and choosing
options, by converting the data table into pairwise comparison table (PCT).

Doctus (Baracskai and Dörfler, 2003) is a Knowledge-Based Expert System Shell used for evaluation
of decision options that are called cases. There are three types of evaluation of cases, called reasoning:
Rule-Based Reasoning (RBR), Case-Based Reasoning (CBR), and Case-Based Rule Reasoning (CBRR).
In RBR, the method uses "if . . . , then . . ." production rules provided by the decision maker based on
which the evaluation of cases is performed. If the decision maker cannot articulate the rules, but he can
provide important cases, then the CBR is used. In CBR a decision tree is built in order to define the
evaluation rules. The CBRR is used to decrease the number of attributes given by the cases in CBR and
RBR. The reasoning in Doctus leads to partial ordering of cases.

DEX was developed independently of DRSA and Doctus, and implemented in the DEXi software
package (Bohanec, 2013). It decomposes a multi-attribute decision problem into smaller parts leading to
a hierarchical evaluation model which contains the dependencies among attributes. In order to provide
full ranking of options, the QQ method is used. The following two sections provide details about DEX
and QQ.

3.2 Qualitative Modeling with DEX

DEX belongs to the group of qualitative multi-criteria decision making (MCDM) methods. In DEX,
the qualitative attributes build a hierarchical structure which represents a decomposition of the decision
problem into smaller, less complex and possibly easier to solve sub-problems. There are two types
of attributes in DEX: basic attributes and aggregated ones. The former are the directly measurable
attributes, also called input attributes, that are used for describing the options. The latter are obtained by
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aggregating the basic and/or other aggregated attributes. They represent the evaluations of the options.
The hierarchical structure in DEX represents a tree. In the tree, attributes are structured so that there is
only one path from each aggregate attribute to the root of the tree. The path contains the dependencies
among attributes such that the higher-level attributes depend on their immediate descendants in the tree.
This dependency is defined by a utility function. The higher-level attribute, its immediate descendants
and the utility function form a qualitative decision table as defined by Definition 2.1.

In DEX, the aggregation of the qualitative attributes into a qualitative class in each row in the deci-
sion table is interpreted as if-then rule. Specifically, the decision maker’s preferences over the available
options are given with the attribute that is called a qualitative class, or only class as given with Defini-
tion 2.1. Options that are almost equally preferred belong to the same qualitative class.

Car

Cost

Price Maintenance

Safety

ABS Size

Figure 3.1: Hierarchy of attributes for evaluation of cars

An example of a DEX model tree that is used for the evaluation of cars is presented in Figure 3.1. The
basic attributes in Figure 3.1 are given with rectangles with curved edges, such as Price, Maintenance,
ABS and Size. The aggregated ones are given with rectangles with sharp edges, such as Costs, Safety and
Car. The value scales of each attribute are given in Table 3.1, which is obtained from the implementation
of the DEX model for car assessment in the computer program DEXi. The aggregation process in DEX
results in a partial ranking of options, meaning that several options may be evaluated to belong in the
same qualitative class, thus making them indistinguishable.

Table 3.1: DEXi model tree and attribute scales for assessment of cars

Attribute Scale

CAR
COSTS

Price
Maintenance

SAFETY
ABS
Size

low, acceptable, medium, good, excellent
high, medium, low
high, medium, low
expensive, medium, cheap
low, acceptable, good, excellent
no, yes
small, medium, big

For example, the aggregation of the qualitative basic and aggregated attributes in a hierarchical set
up of tables is given with Tables 3.2, 3.3 and 3.4. The given tables show that several options may be
evaluated as equal. For example, several Cars are evaluated as medium, but one may not distinguish
among them.

Starting from an existing DEX model, and Definitions 2.1–2.7, the goal in the thesis is to find an
aggregation function f which is able to differentiate among the options in the same class, possibly by
providing full ranking of the options.
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Table 3.2: Car aggregation

Costs Safety Car

low excl. excl.
low good good
low accept. medium
low low low

medium excl. medium
medium good accept.
medium accept. medium
medium low low

high excl. good
high good medium
high accept. low
high low low

Table 3.3: Costs aggregation

Price Maint. Costs

low cheap low
low medium low
low exp. medium

medium cheap low
medium medium medium
medium exp. high

high cheap high
high medium high
high exp. high

Table 3.4: Safety aggregation

ABS Size Safety

no small low
no medium accep.
no big good
yes small low
yes medium good
yes big excl.

3.3 The Qualitative-Quantitative Method

The QQ method (Bohanec, 2006; Bohanec et al., 1992) was developed as an extension to the DEX
method (Bohanec and Rajkovič, 1990; Bohanec et al., 2012) with the aim of option ranking within
classes. The goal of QQ is finding a function f as defined in (2.2) that would provide full ranking of
options that belong to the same class.

Figure 3.2: Three stages of the QQ method

QQ consists of three stages, as schematically presented in Figure 3.2. In the first stage, the values of
the qualitative attributes QA1, . . . ,QAn and the qualitative class QC are mapped into discrete quantitative
values A1, . . . ,An,C ∈ Z, using the mapping F : QVi,→ Vi, i = {1, . . . ,n+ 1} given with Definition 2.3
(step 1 in Figure 3.2). As a result, a numerical table is obtained such as the one given in Table 2.2, that
represents an output of the first stage of QQ, and an input to the second stage of the method. For example,
let us use Tables 3.2, 3.3 and 3.4 as inputs to QQ. In the first stage, QQ maps them in Tables 3.5, 3.6 and
3.7, respectively. 1

In the second stage, QQ estimates a regression function2 g : Rn→ R that

Aagg = g(A1, . . . ,An). (3.1)

1Note that Table 3.6 is equivalent to the running example given in Table 2.2
2Despite Ai ∈ N, the function g(A1, . . . ,An) is defined in Rn
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Table 3.5: Mapping to quantitive
aggregation table of Car

Costs Safety Car

3 4 5
3 3 4
3 2 3
3 1 1
2 4 3
2 3 3
2 2 2
2 1 1
1 4 4
1 3 3
1 2 1
1 1 1

Table 3.6: Mapping to quantitive
aggregation table of Costs

Price Maint. Costs

3 3 3
3 2 3
3 1 2
2 3 3
2 2 2
2 1 1
1 3 1
1 2 1
1 1 1

Table 3.7: Mapping to quantitive
aggregation table of Safety

ABS Size Safety

1 1 1
1 2 2
1 3 3
2 1 1
2 2 3
2 3 4

The most frequent approach of defining g in (3.1) is the usage of additive functions as a result of their
simplicity (Malakooti, 2011).

QQ uses the following linear regression function for option evaluation:

Aagg = ∑
i

wiAi +w0 (3.2)

and defines the relation between the aggregated (dependent) attribute Aagg and input attributes Ai. Aagg

is an estimation of the class attribute C. In (3.2), Ai are attributes and wi are weights obtained by the
method of least squares. For example, for options given in Table 3.6, the equation (3.2) has the form:

g = 0.833A1 +0.500A2−0.778.

The third stage of QQ ensures the consistency between the qualitative and quantitative models. It means
that whenever the former yields the qualitative class, the latter should yield a numerical value in the
interval [ci−0.5,ci +0.5],ci ∈C.

This is of interest in hierarchical evaluation models in which the values of the aggregation of basic
attributes into a class attribute are propagated in the next higher level as an input attribute. These are
further on aggregated, and the procedure is repeated to the top most aggregation (class) attribute. This
means that the arguments of (3.1) are not integers, but real numbers spread in the interval [a - 0.5, a +
0.5], where a is some ordinal value of the attribute A. Consequently, the range of Ai is [0.5, m + 0.5]
where m is the number of values that receives the respective qualitative attribute QAi.

When using QQ for aggregation, the evaluation result represents a continuous value, which may not
capture the information about the class into which a certain option belongs to. Therefore QQ introduces
the third step, of ensuring that the evaluation result belongs into the interval [ci−0.5,ci+0.5],ci ∈C. To
achieve this, for the regression function (3.2), a set of functions fc is defined which ensures compliance
with the original class ci. We call this process normalization, which in addition should achieve the
maximal spread of the rankings in the class. The set of ranking functions that ensures compliance with
the qualitative model is:

fc(A1, . . . ,An) = kcg(A1, . . . ,An)+nc, (3.3)
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where kc and nc are given with

kc =
1

maxc−minc
(3.4)

nc = c+0.5− kcmaxc. (3.5)

In (3.4) and (3.5), kc and nc are parameters for the normalization of the function g. Here c is the value of
the class. In order to obtain the values of kc and nc, QQ uses Algorithm 1 for each of the classes.

Algorithm 1 Calculations of weights kc and nc in QQ method

1: for ∀eli ∈ ci where eli = {A1i, A2i, · · · Ani} do . for each option eli that belongs to class ci

2: Gci ←{g(∀A ji ∈ eli±0.5)} . find all values of g for all combinations of A ji±0.5
3: minc = min(Gci) . find the minimum of the function g in class ci

4: maxc = max(Gci) . find the maximum of the function g in class ci

5: kc =
1

maxc−minc
. calculate the coefficient kc

6: nc = ci +0.5− kcmaxc . calculate the coefficient nc

7: end forPSfrag replaements

Attribute 1Attribute 2
Regressionpla
nes

1 1.5 2 2.5 311.522.530.511.522.533.5

Figure 3.3: Estimated regression curves obtained with QQ for options given in Table 2.2

Each linear function in equation (3.3) represents a model for the corresponding class in the originally
defined qualitative decision table. These functions are used to rank the options in the classes. For
example, the options given in Table 3.6 are ranked with the following functions fc:

fc =


0.4286g+0.5476, if c = 1;

0.6000g+0.7667, if c = 2;

0.4615g+1.7051, if c = 3.

These are shown in Figure 3.3. The final evaluation of the options is presented in column Evaluation in
Table 3.8. These values are used for ranking of the options. The higher evaluation value leads to higher
rank of the option.

This method encounters the following main difficulties:

1. It is restricted to using linear functions in the second stage of the method given with (3.2), which
leads to satisfactory performances only for linear or nearly linear decision tables. The goal in the
thesis is to improve QQ so that it would lead to satisfactory rankings in case of non-linear and/or
non-monotone decision tables.



From Qualitative to Quantitative Multi-Criteria Models 19

Table 3.8: Quantitative ranking of options

No. Price Maint. Costs Evaluation

1 3 3 3 3.192
2 3 2 3 2.962
3 3 1 2 2.100
4 2 3 3 2.808
5 2 2 2 1.900
6 2 1 1 1.143
7 1 3 1 1.214
8 1 2 1 1.000
9 1 1 1 0.785

2. QQ is limited to discrete attributes due to the mappings in the first stage. Another goal of the
thesis is to find a way to include other types of attributes (including the class attribute), such as
probabilistic values, sets, interval or fuzzy values.

To overcome the limitations, and to achieve the above goals, the thesis investigates the following
modifications of QQ:

1. To tackle the first problem, different impurity functions are examined to determine the weights in
the linear regression estimator.

2. Introduction of polynomial functions instead of the linear function in the second stage of QQ.

3. The problem is redefined as a constraint optimization problem and a solution using linear program-
ming is sought.

4. In order to tackle the second difficulty when using QQ, a solution in the probabilistic space is
proposed, leading to probabilistic regression.

The first three modifications of QQ are explained in Chapter 4. The last proposal is explained in Chap-
ters 5 and 6.
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4 Modifications of QQ with Impurity Functions,
Polynomials and Optimization Functions

To provide a way of ranking non-linear non-monotone decision tables we studied four methods in the
thesis:

1. Usage of impurity functions for weights estimation in the linear regression function;

2. Replacement of the linear function with a polynomial regression equation;

3. Reformulation of the quantitative problem of option ranking as an optimization problem, and pro-
viding insight into its limitations.

4. Usage of copula-based functions for regression and consequently for option ranking.

The first three methods are described in this chapter. The last one differs from the first three in two
main aspects: it does not use weights in the regression equation for option ranking, and it redefines the
attributes as random variables. To provide an extensive background for such an approach, the method is
separately described in Chapters 5 and 6.

4.1 Impurity Functions for Weights Estimation in QQ

In order to improve the performance of QQ, different weights estimators are examined for which it was
expected to provide better results than QQ. QQ estimates weights in (3.2) by least square regression,
which is based on an often too strong assumption that the underlying quantitative mapping is linear or
nearly linear. Alternatively, one can use alternative methods for estimating the weights, hence circum-
venting this assumption. In particular, we use the impurity functions. The impurity functions are defined
to measure the goodness of a split at a node for a given variable in a decision tree which is used in ma-
chine learning and data mining (Izenman, 2008). Here, the impurity functions are used to determine the
similarity between an input attribute and the output attribute (the class attribute). Following the definition
of node impurity function (Izenman, 2008), we define the impurity function between the input and class
attribute as follows.

Definition 4.1. Let c1, . . . ,ck, k ≥ 2, are the classes of the output attribute C. For the input attribute A,
an impurity function i(A) between the input and the class attribute is:

i(A) =
k

∑
i=1

µ(p(a1|ci), . . . , p(an|ci))

where a1, . . . ,an are all possible values that the attribute A may receive, and p(a j|ci) is an estimate of
the conditional probability that an observation a j is in ci.

The function µ:

1. is symmetric (its value does not depend on the permutation of the arguments),
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2. defined on the set (pa1 , . . . , pan) that sums to a unit,

3. have minimum at points (1,0, . . . ,0),(0,1, . . . ,0), . . . ,(0,0, . . . ,1), and have maximum at the point
( 1

K , . . . ,
1
K ).

The following impurity functions are examined here: Gini index, information gain and χ2. These
impurity functions are used in the following subsections for weights estimation in (3.2) with w0 = 0. For
each of the input attributes, the value of the impurity function is calculated between the input attribute and
the class attribute, followed by normalization of the obtained values in the unit interval. The normalized
values are regarded as weights in (3.2).

4.1.1 Gini Index

The Gini index was firstly proposed by Italian statistician Corrado Gini (Xu, 2004) as a measure of
income inequality. It is mathematically defined as a ratio between the Lorenz curve that plots the income
of population versus population and perfect equality of income, as shown in Figure 4.1. It is also defined
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C
u
m

u
la

ti
v
e

P
er

ce
n
ta

g
e

o
f
W

ea
lt
h Perfect Equality Line (45 Degree Slope)

Lorenz Curve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: Gini index is calculated as a ratio between the Lorenz curve and the perfect equality line

as second order of the generalized information function by Louis (1996). In his work, Louis starts from
defining the entropy of type β , where β is a constant such as β > 0,β 6= 1. For a discrete probability
distribution (p1, · · · , pm), the generalized information function reads:

Hβ (p1, · · · , pm) =
m

∑
i=1

piuβ (pi) (4.1)

where uβ (pi) is uncertainty defined by

uβ (pi) =
2β−1

2β−1−1
(1− pβ−1

i ). (4.2)

The measure uβ is strictly decreasing function of pi. When β = 2 in (4.1) and (4.2) it follows:

H2 = 2[1−
m

∑
i=1

p2
i ] = 4∑

i6= j
pi p j = 2

m

∑
i=1

pi(1− pi). (4.3)
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Equation (4.3) is known as Gini index and it was firstly used in machine learning by Breiman et al.
(1984). Since its proposal, the Gini index has been used in many different areas to measure different
kinds of distributions. In machine learning it is used for making splits in decision trees (Breiman et al.,
1984) and for representation of the performances of different classifiers (Hand and Till, 2001). In this
thesis, three estimates of the Gini index are used to define the weights in (3.2): Gini Breiman (gB), Gini
covariance (gC), and Gini population (gP).

The gB approach The estimation of the Gini index according to Breiman et al. (1984) is calculated
for each of the attributes A j as follows:

gB = 1−
m

∑
k=1

p2(ck). (4.4)

In (4.4), p(ck) is the estimated probability that the class attribute C obtains the value k, k = 1, . . . ,m.
The weights in (3.2) are obtained through the importance of each attribute Ai, that is calculated as
(Kononenko, 1997):

gB(Ai) =
p

∑
j=1

p(Ai j)
m

∑
k=1

p2(ck|Ai j)−
m

∑
k=1

p2(ck).

Here Ai is the ith attribute, p(Ai j) is the probability that the attribute Ai obtains the value j, p(ck|Ai j) is
the conditional probability that the attribute Ai receives the value j and is classified in ck.

For the running example given with Table 3.6, the importance of the attributes is gB(A1)= 0.2716 and
gB(A2)= 0.1235, which, when normalized, lead to the following weights: ω1 = 0.6875 and ω2 = 0.3125.

The gC approach Calculating the Gini index by using a covariance matrix was introduced by Xu
(2004), and it has the following form

gC =
2cov(Ai,C)

s

where Ai and C are the input and the class attribute C and s is the mean of Ai. The notation cov(Ai,C)
denotes the covariance between the two attributes Ai and C. It is a measure of linear dependency between
random variables and is calculated as:

cov(Ai,C) = E(AiC)− (EAi)(EC)

where E(X) = ∑
∞
i=1 xi pi is the expected value of the discrete random variable X that receives the values

x1,x2, . . . ,xi, with probabilities p1, p2, . . . , pi. It is a weighted average of all possible values that the
random variable may take.

Using gC, the importance of the attributes in Table 3.6 is gC(A1) = 0.0649 and gC(A2) = 0.0147,
which, when normalized, give the following weights: ω1 = 0.6250 and ω2 = 0.3750.

The gP approach Noorbakhsh (2007) used the source form of the Gini index defined by Gini, for
calculating wealth distribution among population. It has the following form:

gP =
1
µ

r

∑
i=1

r

∑
j=1

pi p j|ci− c j| (4.5)

where r is the number of options, and

µ =
r

∑
i=1

ci pi
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and

pi =
Ai

∑
r
i=1 Ai

.

This approach leads to the following calculations for the attributes in Table 3.6; gP(A1) = 0.2066 and
gP(A2) = 0.2357. These values are normalized to the following weights values: ω1 = 0.4670 and ω2 =
0.5329.

4.1.2 Chi Square χ2

The distribution of χ2 has its origin in statistics and was devised as a test of goodness of fit of an observed
distribution to a theoretical one (Fisher, 1924). As an impurity measure it was firstly used in the algorithm
CHAID (Kaas, 1980). In this thesis, χ2 is used for measuring the association between each of the input
attributes and the class attribute under the hypothesis of independence.

Determination of the value of χ2 is a two-step process for a given contingency table. A contingency
table is a two-entry frequency table that reports the joint frequencies of two variables. Here the variables
are an input attribute and the class attribute. The first step for obtaining χ2 is calculation of the expected
value for each cell in the contingency table. The second step is comparison of the expected values with
the observed values using:

χ
2(A j,C) =

|A j|

∑
i=1

|C|

∑
j=1

(x(i, j)−Ei, j)
2

Ei, j
(4.6)

where A j is the jth attribute, C is the class attribute, |A j| and |C| are the number of different values that
the input and class attribute may receive, respectivly, x(i, j) are observed frequencies in cell (i,j) in the
contingency table, and Ei, j is the corresponding expected value under the assumption of independence
(Härdle and Simar, 2007):

Ei, j =
xi0x j0

x00
.

Here xi0 and x j0 are observed frequencies in each row and column in the contingency table respectively,
and

x00 =
|C|

∑
i=1

xi0.

The values for χ2, obtained between each input attribute and the class attribute, are finally normalized in
order to obtain the weight of each of the attributes in (3.2).

To demonstrate the usage of χ2 for weights calculation, consider the running example given in Ta-
ble 2.2. The contingency tables and the values of xi0, x j0 and x00 between A1 and C, and between A2 and
C are given with Tables 4.1 and 4.2, respectivlly.

Table 4.1: Contingency table, xi0, x j0 and x00 between a1 ∈ A1 and ci ∈ C for the running example in
Table 2.2

x(i,j) c1 = 1 c2 = 2 c3 = 3 x j0

a1 = 1 3 0 0 3
a1 = 2 1 1 1 3
a1 = 3 0 1 2 3

xi0 4 2 3 x00 = 9
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Table 4.2: Contingency table, xi0, x j0 and x00 between a2 ∈ A2 and ci ∈ C for the running example in
Table 2.2

x(i,j) c1 = 1 c2 = 2 c3 = 3 x j0

a2 = 1 2 1 0 3
a2 = 2 1 1 1 3
a2 = 3 1 0 2 3

xi0 4 2 3 x00 = 9.

The values of χ2 are χ2
1 (A1,C) = 6.5 and χ2

2 (A2,C) = 3.5, which, when normalized, lead to the
following weights values in (3.2): ω1 = 0.65 and ω1 = 0.35.

4.1.3 Information Gain

Information gain (IG) has its origin in information theory and it is frequently used in decision tree learn-
ing for determining the attribute that gives most information regarding some splitting criteria. It is defined
as:

IG(C,A j) = H(C)−
p

∑
q=1

|ASq|
r

H(cq) (4.7)

where C is the class attribute, A j is the jth input attribute, r is the number of options, p is the number of
values that the attribute A j may receive, |ASq| is the number of options that receive the same value ASq,
cq is the subset of the class attribute for which the attribute A j receives the qth value. The equation (4.7)
may be expanded with the equation for entropy H, leading to (Raileanu and Stoffel, 2000):

IG(C,A j) =−
m

∑
k=1

p(ck) log(p(ck))+
p

∑
q=1

p(aq)
m

∑
k=1

p(ck|aq) log(p(ck|aq)) (4.8)

where aq =
|ASq|

r , p(ck) is the probability that a randomly selected example belongs to the class ck ∈C,
− log(p(ck)) is the information that it conveys with, p(aq) is the probability that the attribute A j will
receive the value ASq, and p(ck|aq) is the conditional probability.

4.1.4 Weights Calculation with Impurity Functions

Each of the explained impurity functions (4.4)–(4.8) are used to calculate the weights in (3.2) (and setting
w0 = 0) by applying Algorithm 2.

Algorithm 2 Calculation of weights wi with impurity function

1: for i = 1→ n do . for each input attribute Ai, and class attribute C
2: Wi = f (Ai,C) . calculate the value of the impurity function f (Ai,C)
3: end for
4: wi← norm(Wi) in the interval [0,1] . obtain the weights wi with normalization

In the next step, the set of regression functions (3.3) is calculated and finally the third stage of QQ
is applied. This procedure has been used on the running example given in Table 2.2, and the final
numerical results are presented in Table 4.3. These calculations lead to different regression curves given
in Figures 4.2a–4.2e. The Figures show that regression curves are very similar to each other, and they



26 Modifications of QQ with Impurity Functions, Polynomials and Optimization Functions

differ in the inclination angle. The most dissimilar are the curves obtained using gP approach, given
in Figure 4.2c. Here the regression estimation curve for the second class given in Figure 4.2c provides
an inverse rank estimation for the two options belonging in this class in comparison with the rankings
obtained by the rest of the methods. This can be better noticed from the numerical calculations in
Table 4.3, where option 6 is better ranked than option 5 only when gP method is used. Both rankings are
considered as correct in this case, as all conditions for the required method given in Chapter 2 are fulfilled.
The example shows that different methods lead to different rankings that can satisfy the requirements.

Table 4.3: Quantitative ranking of options with different impurity functions

No. A1 A2 C gB gC gP IG χ2

1 1 1 1 0.7963 0.7857 0.7420 0.7910 0.7941
2 2 1 1 1.2037 1.1429 0.9681 1.1640 1.1765
3 1 2 1 0.9815 1.0000 1.0000 1.0000 1.0000
4 1 3 1 1.1667 1.2143 1.2580 1.2090 1.2059
5 3 1 2 2.1364 2.1000 1.9691 2.1099 2.1154
6 2 2 2 1.8636 1.9000 2.0309 1.8901 1.8846
7 3 2 3 3.0185 2.9615 2.8262 2.9765 2.9848
8 2 3 3 2.7963 2.8077 2.8692 2.8047 2.8030
9 3 3 3 3.2037 3.1923 3.1738 3.1953 3.1970

4.2 Polynomial Models for Regression

The linear regression, introduced in the second stage of QQ, may be replaced with a different form
of regression, the polynomial regression. The polynomial regression introduces a regression model in
a form of polynomial equation which predicts the value of the dependent variable y. A polynomial
regression equation over the attributes A1,A2, . . . ,An can be written as:

y = w0 +
m

∑
i

wiTi (4.9)

where Ti = ∏
n
j=1 Aui, j

j , and ui, j ∈ N. Here y is estimation of the class attribute C. To explore the usage of
polynomial functions for regression in the second stage of QQ, the CIPER machine learning algorithm is
used. There are two versions of the CIPER algorithm: CIPER (Todorovski et al., 2004) and New CIPER
(Pečkov et al., 2008). Both algorithms are explained next.

4.2.1 CIPER

CIPER is an algorithm that uses a specific heuristics to define and search the space of possible polynomial
functions. As a result it finds one (or several) polynomial function that satisfies the heuristics and that
provides best fit for the data. The heuristics is given with a set of constraints. In order to define the
constrains, CIPER introduces the following notation for (4.9):

1. length of y is Len(y) = ∑
m
i=1 ∑

n
j=1 ui, j,

2. the size of y (number of terms) is size(y) = m,

3. a degree of a term Ti is Deg(Ti) = ∑
n
j=1 ui, j and
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(b) Gini covariance
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(c) Gini population
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Figure 4.2: Regression curves obtained with different weights estimation in QQ

4. degree of y is Deg(y) = maxm
i=1Deg(Ti).

In order to search the space of possible polynomial equations using the predefined heuristics, CIPER
employs iterative beam search. The beam may be initialized in two ways: with the simplest polynomial
equation or with some user-defined polynomial, that is considered as the minimal one in the beam search.
In each iteration a new set of polynomials is generated from the existing polynomials in the beam by using
some refinement operator.

A refinement operator is a function which takes as input some polynomial structure y and generates
a new one by modifying y. The refinement operator in CIPER modifies y by increasing Len(y) for one
unit. It may be performed in two ways: by adding a new first degree term Ti or by increasing an existing
term with a variable. The coefficients wi in the newly created polynomial equations are calculated using
the method of least squares.
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Each of the generated polynomial equations are evaluated so that the degree of fit of the equation
to the given data set is estimated. For evaluation of equations a minimum descriptor length (MDL)
heuristics is used. CIPER uses an ad-hoc MDL heuristic given as (Todorovski et al., 2004):

MDL(y) = Len(y) log(k)+ k log(MSE(y)) (4.10)

where MSE(y) is the mean squared error and k is the number of training examples. The first term in
(4.10) represents a penalty for the equation complexity, while the second term measures the degree of fit
of the equation. More preferred equations are those with smaller MDL.

During the search, CIPER maintains a set of b best possible equations in the beam that satisfy the im-
posed constraints. The search finishes when the refinement operator cannot generate any new equations
whose evaluation outperforms the evaluation of the equations that are already kept in the beam.

4.2.2 New CIPER

The New CIPER improves and extends CIPER in following maners:

1. it provides an improved refinement operator,

2. it provides a new MDL Scheme for polynomial regression,

3. it employes error on unseen data as search heuristics.

The New CIPER extends CIPER so that it:

1. learns piecewise polynomial models,

2. is capable for multi-target polynomial regression,

3. performs classification via multi-target regression.

Each of the improvements and extensions are explained.

Improved refinement operator The need for improving the refinement operator is motivated from the
fact that when a term is added to a polynomial, it decreases its error. On the other hand, when a term is
replaced with a more complex version, such as a multiplication of the term with a variable, it does not
decrease the error in general. For example, adding A1 to A2 yielding to A1 +A2 would reduce the error
of the equation. However, the replacement of A1 with A1A2 may increase the error of the equation. New
CIPER introduces a third refinement operator, which takes a term in the equation, copy it and multiply
it with the new variable. The obtained term is added to the existing equation. For example, the equation
A1+A2 is refined by coping the term A1 and multiplying it with A2. The new term is added to the equation
leading to A1 +A2 +A1A2. This refinement operator increases the complexity of the newly generated
polynomial equation. Therefore, in each step of the algorithm, for the newly generated equation, each
term is removed and an evaluation of the equation is performed. If the evaluation outperforms the existing
equation in the beam, the new equation is added to the beam.

New MDL Scheme for polynomial regression For evaluation of polynomial equations, the New
CIPER uses the following MDL:

MDL(y) = L(y)+2W (y,D)
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where L(y) is the number of bits for encoding the polynomial structure, and W is a stochastic complexity
of a linear regression model that uses least squares. To calculate L(y), the following equation is used
(Pečkov et al., 2008):

L(y) = 2log(l)+2log(log(l))+ log |G(n, l)|+ log |G′(u1,u2, . . . ,un)|.

Here l = Len(y), |G(n, l)| is the number of polynomial structures with n terms and length l. The class of
polynomials that belong to G(n, l) is partitioned into subclasses with fixed term degrees G′(u1,u2, . . . ,un).
All polynomials that belong to this subclass have n terms with degrees u1≥ u2≥ ·· ·≥ um. |G′(u1,u2, . . . ,un)|
is the number of polynomial structures in G′(u1,u2, . . . ,un).

W is calculated with (Rissanen, 2000):

W = min
γ
(N− p) log(τ̂)+ p log(N, R̂)+(N− p−1) log(

N
N− p

)− (p+1)log(p)

where γ is an index that goes though all subsets of variables in the linear regression, N is the size of the
data table, p is the number of elements in γ , τ̂ is the maximum likelihood estimation of the model error,
and R̂ = 1

N ŵT (AT A)ŵ where ŵ = (AT A)−1AT y.

Employing error on unseen data as search heuristics New CIPER introduces additional heuristics
for evaluation of polynomial models as an alternative to the MDL. It is called CV (cross validation)
heuristics. It considers the data set as a training set that is used to build the polynomial model. It splits
the train set into 10 parts (options), and builds the model on 9 parts. It calculates the square relative
error on 9 parts obtaining the value of the variable reTrain2, and on the 10th part leading to the value
of reTest2. The procedure of splitting the training set and building a polynomial model is repeated
according to a predefined number of times. For each of the modes, the tuple (reTrain2,reTest2) is kept.
The beam search is modified so that a derived model with the refinement operator may enter the beam
only if its heuristics value is smaller than min(reTrain2,reTest2).

In the process of generating new polynomial models, an over-fitting may occur. To avoid it, New
CIPER poses a requirement that the reTrain2 should be smaller than reTest2. Otherwise the model is
rejected from further refinement. This procedure decreases the probability of over-fitting. As soon as the
models are built, a final model is produced by averaging all built models.

Learning piecewise polynomial models New CIPER introduces the possibility of including piecewise
polynomial models in the beam search. It is designed so that it partitions the space along each attribute
before the the search begins. The partitioning of the attribute’s space is not dependent on the output
attribute (class attribute).

The procedure for partitioning the array of real values A is the following. First, k arrays are obtained
from A: A1,A2, . . . ,Ak. For the particular partitioning, a heuristics H is calculated according to:

H(A1,A2, . . . ,Ak) = k(
k

∑
j=2

(
m j−m j−1

2
)2 + ∑

x∈A

k
min
j=1

(x−m j)
2) (4.11)

where m j is the mean of the values in A j. The value of (4.11) is compared to the sum of variances:

∑
x∈A

(x−mean(A))2. (4.12)

If 4.11 is smaller than (4.12), then the splitting is called possible split with the number k for values in A.
For a given k, the best possible split is given with As

1,A
s
2, . . . ,A

s
k and it holds:

H(As
1,A

s
2, · · · ,As

k)≤ H(A1,A2, · · · ,Ak)
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for any other partitioning A1,A2, · · · ,Ak of the array A. Next, a function Pk(A) is defined so that it finds
the best partitioning of an array A into k arrays, where k ∈ [2,9]. Hence, Pk(A) chooses an interval (a,b),
where b≥ a and a,b ∈ [2,9] so that:

H(Pk(A))≤ H(Pj(A)), for ∀ j = a, . . . ,b.

Pk(A) creates k binary attributes, one for each As
j, j = 2, . . . ,k. This procedure is extended to all attributes.

The obtained binary attributes slice the space. The binary attributes are used for obtaining a piecewise
polynomial model.

The last two extensions of New CIPER include inducing a polynomial equation for prediction of
several variables, and introducing of classification by using the induced polynomial structure. These
were not of interest here.

CIPER induces the following polynomial on the running example:

Ĉ = 0.2903A1 +0.0461A2 +0.1515A1A2 +0.6216. (4.13)

The results from the polynomial (4.13) are given in the last column in Table 4.4 and the regression curve
is presented in Figure 4.3.

Table 4.4: Ranking obtained with CIPER
for the running example

No. A1 A2 C CIPER

1 1 1 1 1.1095
2 2 1 1 1.5514
3 1 2 1 1.3072
4 1 3 1 1.5048
5 3 1 2 1.9932
6 2 2 2 1.9006
7 3 2 3 2.4940
8 2 3 3 2.2498
9 3 3 3 2.9948

Table 4.5: Ranking obtained with New CIPER
for the running example

No. A1 A2 C New CIPER

1 1 1 1 0.9734
2 2 1 1 1.6106
3 1 2 1 1.0630
4 1 3 1 1.1527
5 3 1 2 2.2106
6 2 2 2 1.8961
7 3 2 3 2.6549
8 2 3 3 2.1816
9 3 3 3 3.0992
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Figure 4.3: Regression curve obtained with CIPER for the running example

By applying New CIPER on the running example, the following polynomial is obtained.

Ĉ = 0.4412A1−0.1434A2 +0.2516A1A2−0.0186A2
1A2 +0.4426. (4.14)
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The results from the polynomial (4.14) are given in the last column in Table 4.5, and the regression
function is presented in Figure 4.4.
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Figure 4.4: Regression curve obtained with New CIPER for the running example

4.3 Reformulation of the Problem as Optimization Problem with Con-
straints

In this section, the ranking problem is reformulated as optimization problem with constraints. The ob-
jective is to find a weight vector x, which would minimize the distances between the ranking values
in-between two consecutive classes. The constrains are given so that ranking values are always in the
intervals c±0.5. These constrains eliminate the need of the third stage of QQ. The objective function is
linear, hence a linear programming is used to find the solution of the problem.

The general form of the linear programming model is given with:

max f (ω)

subject to gi(ω) = li, for i = 1, · · · ,n Equality constraints

h j(ω)≤ d j, for j = 1, · · · ,m Inequality constraints

ωi ≥ 0

where ω is a vector of decision variables residing in a n-dimensional space, or in this case weights of the
linear objective function, f (ω) is the objective function, and gi(ω) and h j(ω) are constraint functions
that need to be satisfied, and li and d j are constants (Hillier and Lieberman, 2001). The model may also
get one of the following forms:

1. The objective function may solve the dual problem of minimization, min f (ω), instead of the
primal problem of maximization;

2. Additional inequality constraints with ‘greater-than-or-equal’ sign: hk(ω)≥ pk for k = 1, · · · ,r;

3. Deleting the non-negativity constraint for some of the decision variables ωi.

The reformulation of the problem of option ranking to an optimization problem is demonstrated on
the running example given in Table 3.6. The Table 3.6 consists of two quantitative attributes and a class.
The constraints are defined directly from Table 3.6 as follows. Each row, which may be written in the
form of ω1A1 +ω2A2, has to receive an evaluation in the interval ci± 0.5. This is written with two
constraints:

ω1A1 +ω2A2 ≥ ci−0.5 and ω1A1 +ω2A2 ≤ ci +0.5



32 Modifications of QQ with Impurity Functions, Polynomials and Optimization Functions

The constraints using this formulation are given with (4.15). Next, we have to define the optimization
function.

ω1 +ω2 ≥ 0.5,

ω1 +ω2 ≤ 1.5

2ω1 +ω2 ≥ 0.5,

2ω1 +ω2 ≤ 1.5

ω1 +2ω2 ≥ 0.5,

ω1 +ω2 ≤ 1.5

ω1 +3ω2 ≥ 0.5,

ω1 +3ω2 ≤ 1.5

3ω1 +ω2 ≥ 1.5,

3ω1 +ω2 ≤ 2.5

2ω1 +2ω2 ≥ 1.5,

2ω1 +2ω2 ≤ 2.5

3ω1 +2ω2 ≥ 2.5,

3ω1 +2ω2 ≤ 3.5

2ω1 +3ω2 ≥ 2.5,

2ω1 +3ω2 ≤ 3.5

3ω1 +3ω2 ≥ 2.5,

3ω1 +3ω2 ≤ 3.5.

(4.15)

There are two ways to define the optimization function for the running example. The first one is to
minimize the distances between border classes and the second one is to maximize the distances between
border classes. The maximization of the distances of two neighbouring classes would lead to small differ-
ences among options in the class, which is in contrast to the goal of this thesis. Hence the minimization
approach is used, in order to obtain rankings of options with maximum spread into the intervals ci±0.5
where ci ∈C.

The goal is to find the values of ω1 and ω2 that would minimize the distances between the consecutive
classes. For the running example, we would like to find a function that would rank all options so that it
minimizes the sum of the distances between the highest option in one class ci and the lowest in the next
higher class ci+1.

When defining the objective function, the rankings of the options are unknown, and consequently
the highest and lowest evaluations of options in classes are also unknown. To solve this problem, we
define all possible objective functions over the given decision table, and then we search among them for
solution of the defined problem. For example, let us choose that the maximal ranking in the first class of
the running example is the option number 4, and the minimal ranking in the next higher class, the second
class, receives option 6. Next, let option 5 receives the maximal ranking in the second class and let us
choose that option 7 receives the minimal ranking in the third class. Then the objective function that is:

min (2ω1 +2ω2)− (ω1 +3ω2)+(3ω1 +2ω2)− (3ω1 +ω2) = min (ω1 +2ω2).
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Writing down all possible combinations would lead to the following objective functions:

min 3ω1 +ω2,

min 3ω1

min 3ω1−ω2,

min 3ω1−2ω2

min 2ω1 +2ω2,

min 2ω1 +ω2

min 2ω1−ω2,

min 2ω1

min ω1 +3ω2,

min ω1 +2ω2

min ω1 +ω2,

min ω1

min 3ω2,

min 2ω2

min ω2,

min −ω1 +3ω2

(4.16)

The set of all possible objective functions may be decreased by deleting the functions which are linear
combination of some other function in the set. For example, instead of having two functions min 3ω1 and
min ω1, we may delete the first one and use only the second one in the set of possible objective functions.

Table 4.6: Ranking of options with constraint optimization

No. A1 A2 C Evaluation

1 3 3 3 3.0000
2 3 2 3 2.5001
3 3 1 2 2.0002
4 2 3 3 2.4999
5 2 2 2 2.0000
6 2 1 1 1.5001
7 1 3 1 1.9998
8 1 2 1 1.4999
9 1 1 1 1.0000

The next step is to find a solution of the problem defined with any of the objective functions. For that
reason, the implementation of the Simplex algorithm in MATLAB was used. The Simplex algorithm did
not find a solution for any of the defined objective functions that satisfy the constraints 4.15.

For example, the obtained solution from applying the first objective function given in (4.16), min 3ω1+
ω2, is provided in Table 4.6.

This solution is proposed by the Simplex solver algorithm in MATLAB as the closest one to the
constraint region of solutions defined by the problem. It does not satisfy the constrains (4.15). For
instance, the evaluation of option 7 belongs to the interval 2± 0.5, instead of the required interval of
1± 0.5. The example shows that the main difficulty of this approach are the stringent constraints that
rarely lead to a solution in the constraint space.
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4.4 Implementation of the QQ-Based Algorithms

QQ and its modifications with impurity functions are implemented in MATLAB for a single or hierar-
chical setting of decision tables. The optimization approach uses the implemented function for linear
programming in MATLAB, however a set of functions were developed in order to: automatically define
all constrains and all possible objective functions for a given decision table, and to search among the
objective functions for a solution.

Calculations for CIPER and New CIPER were performed by using the developed tools provided by
their authors 1. Shell commands were used for iterative calculations of all decision tables covered in the
three sets in Chapter 7. Analysis was performed in MATLAB afterwards for checking the monotonicity,
full ranking and consistency of the results.

1CIPER is also available at http://kt.ijs.si/software/ciper/.
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5 Copula Theory

The main focus of this thesis is the usage of copula-based functions as estimators of the regression
function for option ranking. To be able to use copulas, attributes in the decision tables are considered as
random variables described with their marginal distributions. Copulas are functions which connect the
marginal distributions of the random variables and their joint distribution, which is used for regression.
In particular, the thesis exploits bi-variate copulas and extend them to multi-variate ones. This is of
essential interest when working with multi-attribute qualitative models. Bi-variate copulas provide the
dependencies between two random variables, while multi-variate ones provide the dependancies among
all random variables at hand. To form a multi-variate copula, the bi-variate ones are merged forming
a hierarchical copula construction. This chapter presents the basic concepts of probability theory and
describes all steps required for building a hierarchical copula.

For the obtained hierarchical copula constructions, the thesis presents new quantile regression equa-
tions which are given in Chapter 6.

5.1 Basic Concepts of the Probability Theory

Random variables may be discrete or continuous depending on the values they receive. A random vari-
able X is discrete, if its set of possible values X is finite, or at mostly, countably infinite. It is uniquely
defined by:

• the set of possible values X ,

• its cumulative distribution function (CDF) or probability density function (PDF).

In continuation, several definitions and theorems are given in order to provide step-by-step formalization
of the theory behind copulas.

Definition 5.1 (Leemis and Park (2005)). A probability density function for a discrete random variable
X is a real-valued function f (·) defined for each possible x ∈ X as the probability that X has the value x

f (x) = Pr(X = x).

In addition, f (·) is defined so that
∑

x∈X
f (x) = 1.

Definition 5.2 (Leemis and Park (2005)). A probability density function for the continuos random vari-
able X is a real-valued function f (·) defined for each x ∈ X as∫ b

a
f (x)dx = Pr(a≤ X ≤ b),

for any interval (a,b) ∈X . In addition, f (·) is defined so that∫
x∈X

f (x)dx = 1.
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Definition 5.3. (Leemis and Park, 2005) A cumulative distribution function of the discrete random vari-
able X is the real-valued function F(·) defined for each x ∈ X as

F(x) = Pr(X ≤ x) = ∑
t≤x

f (t)

where the sum is over all t ∈X , for which t ≤ x.

Definition 5.4. (Leemis and Park, 2005) A cumulative distribution function of the continuos random
variable X is the continuos real-valued function F(·) defined for each x ∈R as

F(x) = Pr(X ≤ x) =
∫

t≤x
f (t)dt.

The CDF has the following properties:

• it is strictly increasing: if x1 < x2, then F(x1)< F(x2),

• CDF values belong to the interval [0,1].

Definition 5.5. (Leemis and Park, 2005) Let X be a discrete random variable with CDF F(·). The inverse
distribution function (idf) of X is the function F−1 : (0,1)→X defined for all u ∈ (0,1) as

F−1(u) = minx{x : u < F(x)}

where the minimum is over all posible values x ∈ X.

An example of idf F−1(u) of the discrete random variable x is given in Figure 5.1.

x = F−1(u)

a x b
0

u

1

Figure 5.1: Inverse distribution function F−1(u)

Theorem 5.1. (Leemis and Park, 2005) Let X be an integer-valued random variable with X = {a,a+
1, ...,b} where b may be ∞ and let F(·) be the CDF of X. For any u∈ (0,1), if u < F(a) then F−1(u) = a,
else F−1(u) = x where x ∈X is the (unique) possible value of X for which F(x−1)≤ u < F(x).

Theorem 5.2. (Probability integral transformation) If X is a discrete (continuous) random variable with
idf F−1(·) and the continuos random variable U is U(0,1) and Z is the discrete (continuous) random
variable defined by Z = F−1(U) then Z and X are identically distributed.

Here U(0,1) stands for uniform distribution on the interval [0,1]. An example of the theorem 5.2
is given in Figure 5.2. In Figure 5.2, the random variable X and the random variable Z obtained with
the probability integral transformation of a random variable U with uniform distribution, share the same
normal distribution N (µ,σ).

Multi-criteria decision models deal with more than one attribute, therefore, we need to define the
relations that may exist between different attributes. In probability theory, the relation between random
variables is determined with their joint distribution function.
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Figure 5.2: Probability integral transform of a random variable X with PDF f (x) and CDF F(x)

Definition 5.6. A joint (two-dimensional) distribution function H(x,y) of two random variables X and Y
is given with H(x,y) = Pr(X ≤ x,Y ≤ y).

The function H(x,y) maps H : [0,1]× [0,1]→ [0,1], and it has the following properties:

• H(∞,∞) = 1 and H(−∞,y) = H(x,−∞) = H(−∞,−∞) = 0

• H(x1,y1)−H(x1,y2)−H(x2,y1)+H(x2,y2)≥ 0, ∀ x1 ≤ x2,y1 ≤ y2.

5.2 Quantile Regression

Quantile regression is a tool for performing statistical regression when there is vague or no knowledge
of the relationship among the random variables. It models the relation between specific quantiles of the
regression variable and a set of independent variables. The difference between the linear and quantile
regression is that the linear regression coefficients represent the increase (decrease) of the regression
variable produced by increase (decrease) in the independent variables associated with their coefficients.
The quantile regression estimates the change in a specified quantile of the regression variable produced
by a change in the independent variables (Despa, 2007).

Definition 5.7. A quantile q ∈ [0,1] is a value which divides the distribution F(x) so that there is a given
proportion of observations below the quantile:

F−1(q) = in f{x : F(x)≥ q}.

In case when the quantile in the regression equation is q = 0.5, a median is obtained. The median
represents a central value of the distribution, so that half of the data points are less than or equal to it and
half are greater than or equal to it. The advantage of using median regression as a measure of centre,
compared to the mean regression that is obtained when using the least-square algorithm, is due to its
ability to resist the strong effect of outliers (Walters et al., 2006).
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The need of joint distribution functions for performing regression To define the regression func-
tion (3.2), a copula-based approach is used. When using copulas, attributes Ai are regarded as random
variables. When attributes and options are given in a decision table, we have at hand a sample of joint be-
havior of the attributes for which we can also estimate their marginal distributions Fi(Ai). For determining
the dependences among the random variables, we need to find their joint distribution F(A1, . . . ,An,Aagg)
in the unseen space of options. In order to estimate the multi-variate joint densities with a constant esti-
mation accuracy, the required sample size rapidly increases with the number of dimensions (Silverman,
1986). As we deal with small sample sizes, we adopt the copula approach for estimation of the joint
density and distribution. Having defined the joint distribution function and the marginals of each random
variable, we may proceed with the regression task in the probability space.

5.3 Copula Functions

By definition, for two random variables X and Y , which are defined on the same probability space, the
joint distribution function H(x,y) defines the probability of events defined in terms of both X and Y .
Finding the joint distribution function in an explicit form is a difficult task. Sklar (1973, 1996) proved
that the joint distribution function H(x,y) of two random variables is equal to the copula C(u,v).

Theorem 5.3. (Sklar’s theorem) Let H be a two-dimensional distribution function with marginal distri-
bution functions FX1 and FX2 . Then a copula C(u,v) exists that for all x1,x2 ∈R2,

H(x1,x2) =C(u,v) (5.1)

where u = FX1(x1) and v = FX2(x2). Moreover, if FX1 and FX2 are continuos, then C(u,v) is unique. Oth-
erwise C(u,v) is uniquely determined on the Cartesian product Range(FX1) × Range(FX2). Conversely, if
C(u,v) is a copula and FX1 and FX2 are distribution functions then H is a two–dimensional distribution
function with marginals FX1 and FX2 .

From Theorem 5.3 it follows that, in order to use (5.1), the theorem 5.2 is fundamental for usage of
copulas. For example, let consider a vector of two random variables (X1,X2), each one with marginal
cdfs F1(X1) = Pr(X1 ≤ x1) and F2(X2) = Pr(X2 ≤ x2). Applying theorem 5.2 to each of the components
of the vector, leads to (U1,U2) = (F1(X1),F2(X2)). Finally, the copula of (X1,X2) is defined as the joint
cumulative distribution function of (U1,U2):

C(u1,u2) = Pr(U1 ≤ u1,U2 ≤ u2).

In the thesis, we use copulas as aggregation functions, which map from the unit m-interval [0,1]m to the
unit interval [0,1].

Copulas are bound with the Fréchet-Hoeffding bounds (Durante and Sempi, 2010):

max(u+ v−1,0)6C(u,v)6 min(u,v),∀u,v ∈ [0,1] (5.2)

where

u = F1(X1), u∼ U(0,1),

v = F2(X2), v∼ U(0,1),

and

M(u,v)≡max(u,v),

W (u,v)≡min(u,v)
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where U(0,1) is uniform distribution on the interval [0,1], and M(u,v) and W (u,v) are called the max-
imum and the minimum copula, respectively. Thus copulas lie between these two extremes. They have
three specific properties:

Property 1 C(1,v) =C(v,1) = v, ∀v ∈ [0,1]

Property 2 C(u,v) = 0, if u = 0 and/or v = 0

Property 3 C(u1,v1)−C(u1,v2)−C(u2,v1)+C(u2,v2)≥ 0 holds whenever u1 ≥ u2 and v1 ≥ v2.

The first property says that if we know that the marginal probability of one of the variables is one,
then the joint probability is the same as the probability of the other variable. The second property says
that the joint probability is zero if the marginal probability of any variable is zero. The third property,
known as 2-increasing property, says that the value of copula function is always non-negative. The last
property is of special interest. Therefore, its derivation is given below, by using the following cases:

1. Let us fix the first argument to u1, and let v1 ≥ v2. In this case one obtains

C(u1,v1)−C(u1,v2)≥ 0. (5.3)

Decreasing the fixed argument to a smaller value u2 ≤ u1, while still holds that v1 ≥ v2, results in:

C(u2,v1)−C(u2,v2)≥ 0 (5.4)

Finally, the difference between (5.3) and (5.4) leads to:

C(u1,v1)−C(u1,v2)−C(u2,v1)+C(u2,v2)≥ 0

whenever u1 ≥ u2 and v1 ≥ v2.

2. For the opposite case let us fix the first argument to u1, and v1 ≤ v2. In this case one obtains

C(u1,v1)−C(u1,v2)≤ 0 (5.5)

Decreasing the first argument to a smaller value u2 ≤ u1, while still holds that v1 ≤ v2, results in:

C(u2,v1)−C(u2,v2)≤ 0 (5.6)

Finally, the difference between (5.5) and (5.6) leads to:

C(u1,v1)−C(u1,v2)−C(u2,v1)+C(u2,v2)≥ 0

whenever u1 ≤ u2 and v1 ≤ v2.

The 2–increasing property does not require C(u,v) to be actually increasing in either argument as
the "increasingness" can be negative as well. For example, if C(u,v) = au+ bv where a and b are any
constants, then C(u,v) is 2-increasing, since the inequality (5.3) holds. So we may fix u, increase v and
C(u,v) may decrease, but the inequality (5.3) will still hold. If C(u,v) is increasing in each argument
then C(u,v) is 2-increasing. The opposite does not hold.

The three properties of copulas ensure that they can be used as functions that link a multidimen-
sional distribution to its one-dimensional margins. Therefore they are building blocks for models for
construction of multi-variate dependence (Berg and Aas, 2009).
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5.3.1 Archimedean Copulas and Connection to T-norms

If two random variables x and y are independent, then their joint distribution function is H(x,y) =
F(x)G(y). In this case, H(x,y) = Π(u,v) = uv, where Π(u,v) is called the product copula. M(u,v),
W (u,v) and Π(u,v) are the three most important copulas, as well as the three most important t-norms. If
two random variables are dependent, one may write their joint distribution function as a sum of functions
of its marginal distributions:

ϕ(H(x,y)) = ϕ(F(x))+ϕ(G(y)), (5.7)

where ϕ(·) is called a constructor function (Nelsen, 2006). Depending on the form of ϕ(·), one may
elicit different kinds of copulas. In order for a function ϕ : [0,1]→ [0,∞] to be a constructor function, it
must be:

• continuous,

• strictly decreasing from I = [0,1] to [0,∞] and

• ϕ(1) = 0.

The inverse function of ϕ is ϕ−1, defined in the interval 0 6 t 6 ϕ(0). If ϕ(0) < ∞, then the inverse
function is called pseudo-inverse ϕ [−1]. In terms of copulas (5.7) reads:

ϕ(C(u,v)) = ϕ(u)+ϕ(v),

which leads to:
C(u,v) = ϕ

[−1](ϕ(u)+ϕ(v)). (5.8)

Copulas obtained using (5.8) are called Archimedean copulas (Joe, 1997). The usage of Archimedean
copulas is mainly motivated by the following three properties:

• symmetry: C(u1,u2) =C(u2,u1) for all u1,u2 ∈ [0,1];

• associativity: C(C(u1,u2),u3) =C(u1,C(u2,u3)), for all u1,u2,u3 ∈ [0,1];

• if ϕ is the generator, then cϕ is also generator for c > 0.

This dissertation focuses on Frank, Clayton and Gumbel copulas which belong to the family of Archimedean
copulas. These three copulas and their generator functions are given in Table 5.1. The median regression
curve v based on the different Archimedean copulas is given in the last column of Table 5.1. Details of
estimation of the parameter θ are given in Section 5.3.2.

Table 5.1: Different Archimedean copulas, their generator functions ϕ , borders of θ parameter and value
of regression variable v

Cθ (u,v) ϕθ (t) θ Solve( ∂Cθ (u,v)
∂u = q,v)

Clayton
[
max

(
u−θ + v−θ −1,0

)]−1/θ 1
θ

(
t−θ −1

)
[−1,∞)\{0} (1−u−θ +(qu1+θ )−

θ

1+θ )−
1
θ

Frank − 1
θ

ln
(

1+
(e−θu−1)(e−θv−1)

e−θ −1

)
− ln

e−θ t −1
e−θ −1

(−∞,∞)\{0} 1
θ

log −eθ (1−q+qeθu)
−eθ+qeθ−qeθu

Gumbel-Hougaard exp
(
−
[
(lnu)θ +(− lnv)θ

]1/θ
)

ln
1−θ(1− t)

t
[1,∞) only numerical solution
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5.3.2 Estimation of the Parameter θ̂

The PDF and CDF are connected with the derivative (integral) relation. In terms of copulas, the joint
CDF is H(x,y) =C(u,v), hence to obtain the joint PDF one uses the relation:

c(u,v) =
∂ 2C(u,v)

∂u∂v
.

As an example, one may consider the Clayton copula. Starting from its CDF, one gets the density
function as:

c(u,v) = (1+θ)(uv)−(θ+1)(u−θ + v−θ −1)−
1+2θ

θ

The rearrangment of the last equation leads to:

c(u,v) = (1+θ)(uv)−(θ+1)(u−θ + v−θ −1)−
1+2θ

θ (5.9)

The only free parameter when using the Archimedean copulas is θ . One way to find θ in (5.9) is to use
the maximum likelihood estimation. By definition, the likelihood function of a random sample of size n
is the joint probability density (mass) function denoted by (Martinez and Martinez, 2002):

L(θ) = L(θ ;x1,x2, ...,xn) = f (x1,x2, ...,xn;θ) (5.10)

where θ is a vector of parameters. In order to estimate θ̂ that maximizes the likelihood function (5.10),
we take the derivative of L(θ) with respect to θ and set it equal to zero:

∂L(θ)
∂θ

= 0

The function log(L(θ)) varies monotonically with its argument, or in other words, log(L(θ)) increases
and decreases when L(θ) increases and decreases respectively. This is because both functions are mono-
tonically related to each other, leading to the same maximum estimate for both functions (Myung, 2003).
In other words, the maxima of the likelihood function and the maxima of the logarithm of the likelihood
function are the same. We use this fact in cases when it is easier to find the maxima of a logarithm
likelihood function, such as when exponents are involved in the density function, as it is in our case. The
logarithm of the density function c(u,v) is:

logc(u,v) = log(1+θ)− (θ +1) log(uv)− 1+2θ

θ
log(u−θ + v−θ −1)

Finally, θ̂ is determined as the minimum negative log likelihood (Brent, 1993; Forsythe et al., 1976).
The same procedure may be applied to all copulas that belong to the Archimedean family.
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5.3.3 Interpretation of the Parameter θ

Copulas can help us in studying the dependence association between random variables. For example, one
may use the well-known Kendall’s τ measure of association, which measures the concordance between
random variables. The population version for Kendall’s τ is

τθ = 1+4
∫ 1

0

ϕ(t)
ϕ(t)′

.

An example, of Kendall’s tau τθ , for different Archimedean copulas is given in Table 5.2. From Table 5.2

Table 5.2: Kendall’s tau (Nelsen, 2006)

Copula Kendall’s tau

Gumbel θ−1
θ

Clayton θ

θ+2
Frank 1−θ

4 [1−D1(θ)], D1(θ) =
1
θ

∫
θ

0
t

et−1 dt

it is clear that the higher values of θ mean higher dependence association between the two random
variables.

Another measure of dependence is the tail dependence. It is a concept which relates the amount of
dependence in the upper-right quadrant tail or lower-left quadrant tail of a bi-variate distribution. It is
a useful concept for studying dependence between extreme values. The Gumbel copula has upper tail
dependence λu given with Rachev (2003):

λu = 2−2
1
θ .

Clayton copula does not have upper tail dependence, however it has a lower tail dependence λL given
with Rachev (2003):

λL = 2−
1
θ .

The Frank family of copulas does not have upper nor lower tail dependence.

5.4 Higher-Dimensional Copulas

Quantitative models generally consist of more than two attributes. In order to use the described bi-
variate copulas in multi attribute models, one needs to extend them to higher dimensions. There are two
approaches of extending to higher dimensional copulas (Fischer et al., 2009; Savu and Trade, 2006):

1. The first approach extends the bi-variate copula to multi-variate copula using only one dependence
parameter θ to specify the dependences among n random variables. Such copulas are known as
exchangeable Archimedean copulas (Berg and Aas, 2009; Hofert, 2008). In this case the copula
functions and the joint distribution function are related with the relation:

H(x1, . . . ,xn) =C(u1, . . . ,un;θ).

Their main drawback is that copula densities for dimensions higher than two are tedious to derive
(Trivedi and David, 2006);



Copula Theory 43

2. The second approach uses bi-variate copulas to form a hierarchical structure with at most n−
1 dependence parameters θi for n random variables. There are two possibilities to build such
hierarchical structures (Berg and Aas, 2009): the FNAC, as shown in Figure 5.5, and the PNAC,
as shown in Figure 5.7.

For a given decision table, the described two approaches can be used as follows:

1. Symmetric decision tables are aggregated with the first approach, which uses only one dependence
parameter θ . This approach ensures the symmetry in the evaluations of options.

2. Partially symmetric decision tables are aggregated in two-step procedure. In the first step, each
group of symmetric attributes is aggregated with one parametric copula. In the second step, the
non-symmetric attributes and the formed copulas are aggregated either with one parametric or with
multi parametric copula.

3. Non-symmetric decision tables are aggregated either with one parametric or with multi parametric
copula (FNACs or PNACs).

5.4.1 One-Parametric Archimedean Multi-Variate Copulas

Multivariate Archimedean copulas are given with:

C(u1,u2, . . . ,ud) = ϕ
[−1](ϕ(u1)+ϕ(u2)+ . . .+ϕ(ud), (5.11)

where ϕ is a generator function with single parameter θ . In the 3-dimensional case, (5.11) is given
with:

C(u1,u2,u3) = ϕ
[−1](ϕ ◦ϕ

[−1](ϕ(u1)+ϕ(u2))+ϕ(u3)) =C(C(u1,u2),u3).

The simbol ◦ stands for composite functions. It means that the argument of the function standing before
the simbol ◦ is the outcome of the function after the simbol ◦.

Similarly, one may show that:

C(u1,u2,u3) =C(u1,C(u2,u3)) =C(C(u1,u2),u3) =C(C(u1,u3),u2).

In other words, the one-parametric Archimedean copula may be written as a structure of nested bi-variate
copulas with the same value of the parameter θ .

To estimate θ in (5.11), we use the maximum-likelihood approach. For that purpose one needs to
calculate the corresponding probability density c(u1,u2, . . . ,ud). The general form of the copula density
expressed through the generator function is:

c(u1,u2, . . . ,ud) = ϕ
−1(d)(ϕ(u1)+ϕ(u2)+ . . .+ϕ(ud))

d

∏
i=1

ϕ
′(ui)

where ϕ−1(d) denotes the d-th derivative of the inverse generator function.
The canonical loglikelihood function is

lnL(θ ;uit , i = 1, . . . ,d, t = 1, . . . ,T ) =
T

∑
t=1

lncL(u1t , . . . ,udt ;θ) (5.12)

where d is number of attributes, t is number of observations (options), and the canonical maximum
likelihood estimator of θ is

θ̂ = argmaxlnL(θ). (5.13)
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5.4.2 Specific Derivation for Multi-Variate Clayton Copula

The generation function ϕ and its inverse ϕ−1 are given with:

ϕ(t) =
1
θ
(t−θ −1).

ϕ
−1(x) = (1+ xθ)

−1
θ .

The derivative of the inverse generator of order d is:

ϕ
−1(d)(x) = (−1)i(1+θx)−

1+dθ

θ

i−1

∏
j=0

(1+ jθ).

With these equations, the loglikelihood (5.12) reads:

lnL(θ ;uit , i = 1, . . . ,d, t = 1, . . . ,T ) =
T

∑
t=1

(
d−1

∑
i=0

log(1+ iθ)− (1+θ)
d

∑
i=1

log(uit)+(1+2θ)

(
− 1

θ
log(1−d +

d

∑
i=1

u−θ

it )

))
.

(5.14)

Solving (5.13) for (5.14) can be calculated numerically in Matlab. The specific derivations for Frank and
Gumbel copulas are given in Appendix C.

5.4.3 Fully Nested Archimedean Constructions

FNAC structure is a tree-like structure, as shown in Figure 5.5, where the basic element represents the
bi-variate copula. The first two nodes u1 and u2 are coupled into copula C1(u1,u2) with θ1. In the next
step C1 is coupled with u3 into C2(C1(u1,u2),u3) with θ2, and so on. Hence, the leafs in the FNAC
represent the values of the marginal distributions of the attributes. The final output of the topmost copula
results in:

C(u1,u2,u3,u4,u5) =C4(u5,C3(u4,C2(u3,C1(u1,u2)))). (5.15)

In order for (5.15) to represent a valid copula structure, the following conditions have to be fulfilled
(Rachev, 2003):

θi ≤ θi−1 ≤ ·· · ≤ θ1 (5.16)

where θ1 is the most nested dependence parameter. In addition, FNAC allows different groupings of
the marginal distributions of the variables. For example, if n = 3, the following FNACs are possible:
(u3, [u1,u2;θ2];θ1), (u2, [u1,u3;θ2];θ1), (u1, [u2,u3;θ2];θ1), as shown in Figure 5.6. The requirement
θ2 > θ1 follows from (5.16), and it must be fulfilled for the examples in Figure 5.6.

Table 5.3: Values of θi parameters obtained with FNACs for the example in Table 2.2

Method Clayton Gumbel Frank

θ1 0.6125 2.8053 8.3609
θ2 0.1880 1.3945 1.8536

For the example given in Table 2.2, when using the Clayton, Frank and Gumbel bi-variate copula,
the FNAC given in Figure 5.6b is obtained. The different values of θi are given in Table 5.3. For each
of the three cases given in Table 5.3 holds: θ1 ≥ θ2 which fulfill the nesting condition given with (5.16).
Hence each of the copulas may be further on used for option ranking.
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Figure 5.5: Fully nested Archimedean constructions of multi-dimensional copulas

(a) First permutation (b) Second permutation (c) Third permutation

Figure 5.6: Three permutations of the input variables

5.4.4 Partially Nested Archimedean Constructions

Another approach to obtain a hierarchical structure of Archimedean copulas is by plugging in bi-variate
Archimedean copulas into each other, which leads to structures known as partially nested Archimedean
copulas (PNAC). PNACs are more complex structures than FNACs and are found useful when it is not
possible to build FNAC due to the constraints (5.16).

Two examples of PNACs for a decision problem with four attributes and an output class are presented
in Figure 5.7. In order for the PNAC to represent a copula itself, the general condition is that parameters
θi must decrease with the level of nesting, while there are no constraints on their values when two or more
copulas are built on the same level (details are given in Section 5.4.5). Consequently, for the copula given
in Figure 5.7a, the following nesting conditions must hold:

θ2 ≤ θ11, θ2 ≤ θ12, θ3 ≤ θ2,

while regarding the copula given in Figure 5.7b the following must be fulfilled:

θ2 ≤ θ11, θ3 ≤ θ12, θ3 ≤ θ2. (5.17)
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u1

C1,1(u1,u2;θ11)

C2(C1,1,C1,2;θ2)

u2 u3 u4

C1,2(u3,u4;θ12)

C3(C2,u5;θ1)

u5

(a) First PNAC

u1

C1,1(u1,u2;θ11)

C2(C1,1,u3; θ2)

u2 u3 u4

C1,2(u4,u5;θ12)

C3(C2,C1,2;θ1)

u5

(b) Second PNAC

Level 1

Level 2

Level 3

Input level

Figure 5.7: Partially nested Archimedean constructions with five attributes

5.4.5 Conditions for FNAC and PNAC

In this section, an explanation of the origin of equations (5.16) and (5.17) is provided. In order for Cn to
represent a valid n - dimensional FNAC or PNAC, the inverse of ϕ in (5.7), the ϕ−1, must be completely
monotone on the interval [0,∞] as given in (Rachev, 2003, Theorem 6.8). In order for a function to
be completely monotone on an interval, it must have derivatives of all orders which alternate in sign
(Rachev, 2003, Definition 6.2). The inverse generator function for the Clayton copula is:

ϕ
−1(t) = (θ t +1)−1/θ

In each level n ≥ 2, the argument into the inverse generator function ϕ
−1
i+1 is the generator function ϕi

from the previous level, leading to composite generator functions:

ϕ(t) = ϕi ◦ϕ
−1
i+1(t) =

((θi+1t +1)
−1

θi+1 )−θi−1
θi

(5.18)

where i is the level in the FNAC or PNAC. In order to get a valid hierarchical copula, the composite
functions must fulfill

(−1) j−1(ϕi ◦ϕ
−1
i+1)

( j)(t)≥ 0 (5.19)

as described in (Rachev, 2003). Next, if we find the derivatives of (5.18) we get:

ϕ
(1)(t) = (θi+1t +1)

θi−θi+1
θi+1

ϕ
(2)(t) = (θi−θi+1)(θi+1t +1)

θi−2θi+1
θi+1

ϕ
(n)(t) = (θi−θi+1)(θi−2θi+1)...(θi− (n−1)θi+1)(θi+1t +1)

θi−nθi+1
θi+1 (5.20)

In order (5.20) to fulfill (5.19), the nesting condition (5.16) has to be fulfilled, which here receives
the form: θi+1 ≥ θi.

The same may be applied for Gumbel (Rachev, 2003, Example 6.13) and Frank copulas.
Here we should note that the Fréchet-Hoefding inequality (5.2) bounds the values of the hierarchical

copula in such a way that, whenever adding one more level in the FNAC or PNAC, the resulting copula
will be smaller or in best case equal to the previous one. In other words, in each level of copula construc-
tion, the bounds of the resulting inverse cumulative function will become closer to each other and closer
to the lower output class.
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5.5 Kernel Smoothing of Attribute’s Distributions in Hierarchical DEX
Models

The copula-based aggregation function for option ranking is defined in the intervals given with the quan-
titative decision table. For example, the copula-based aggregation function for Table 6.5 leads to values
in the interval [1,3]. These values are linearly mapped into expanded intervals defined by the third stage
of QQ. The expanded interval for the example in Table 6.5 is [0.5,3.5].

Next, the calculations of the class variables are propagated into the higher hierarchical levels, as
input attributes. For example, the attributes Cost and Safety are input attributes for evaluation of the
class attribute Car. If the FNAC obtained for evaluation of the attribute Car is built on the interval
values for input attributes seen only in the Table 6.4, then the copula-based models would provide values
only in these intervals. For example, the FNAC for Car will define its values in the interval [1,3], while
providing equal evaluation values of zero, or one in the intervals [0.5,1) and (3,3.5], respectively. To
deal with this issue, one has to extend the distribution of the variables into the regions not covered with
the observed data.
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Figure 5.8: Smoothing of distribution function

The standard tool for displaying samples of data is via the empirical distribution function represented
as a step function. An example is given with the green line in Figure 5.8. In addition, the inverse of the
empirical distribution (the quantile) function and the histogram of the data are given with green lines in
Figures 5.9 and 5.10, respectively. The advantage of this representation is that individual observations
can be identified from the plot. In order to achieve improved estimation of attribute’s values, we assume
that the true underlying distribution function is smooth. To construct a smooth estimate, we place a
kernel function, which is itself a distribution function, over each data point in the form (Bowman and
Azzalini, 1997):

F̂(y) =
1
n

n

∑
i=1

W (y− yi;h).

Here the parameter h controls the standard deviation associated with the kernel function W, and hence
controls the degree of smoothing applied to the data. Using kernel functions for estimation, the red line
in Figures 5.8, 5.9 and 5.10 are obtained over the whole interval of the real axes.

Censoring is a technique which is applied on a data set that is incomplete due to some random
cause. Censoring of data is used in cases when it is known that attribute values belong in the interval
[x,y], however, attribute’s values are observable only in the interval [xL,yR], where x < xL and y > yR.
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Figure 5.9: Smoothing of inverse distribution function
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Figure 5.10: Smoothing of density function

Different censoring techniques may be found in Topp (2002) (Klein and Moeschberger, 2003). When
some observations in a sample are censored, a convenient approach to estimating the distribution function
with the distinctive feature that the steps are not all of size 1/n. This suggests that in the case of censored
data a density estimate should be constructed of the form

fc(y) =
n

∑
i=1

viw(y− yi;h)

where vi denotes the size of the jump at observation yi.
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6 Regression Using Nested Archimedean Copulas

The aim of this thesis is to provide ranking of qualitative options as described in Chapter 2. As soon as
the qualitative options are mapped into quantitative ones, using the mapping function F : QS→ S, where
S = {(I1,C1), . . . ,(Ik,Ck)}, Ii = [Ai1,Ai2, ...,Ain], the next step is to define the function given with (2.2):

f : (Ii,Ci) ∈ S→ R.

In this thesis different regression functions are used as a solution to finding a suitable analytical form
for the function given with (2.2). Regression task is employed to determine function’s parameters that
would best model the relation between independent variables (attributes) and the dependent variable (the
class). In this chapter the regression function (2.2) is obtained by employing a copula-based approach.

When using copulas, attributes Ai are regarded as random variables. For each random variable its
marginal distributions Fi(Ai) are estimated. For determining the dependences among the random vari-
ables, one has to find their joint distribution F(A1, . . . ,An,Aagg). In order to estimate the multi-variate
joint densities with a constant estimation accuracy, the required sample size rapidly increases with the
number of dimensions (Silverman, 1986). As the problem at hand provides only small sample sizes, one
possibility to determine the joint distribution is by employing copula functions.

The final step of using copulas for solving the problem given in Chapter 2 is to derive the regression
function. Such a relation will describe the link between the input attributes and the class attribute. The
regression with copulas is performed in a way that we determine the probability density from the joint
distribution by differentiating over the dependent variable (Brown et al., 2005; Wasserman, 2006). The
regression using bi-variate copulas is described in (Bouyé and Salmon, 2002; Nelsen, 2006).

This thesis extends the bi-variate copula-regression algorithm to multi-variate regression using FNAC
and PNAC in which the dependent variable may be positioned at any leaf in the hierarchical copula (see
Figures 5.5 and 5.7). This approach is demonstrated on Clayton copula, however, the same procedure is
used later in the thesis for the results obtained with Frank and Gumbel copulas (see Table 5.1).

To perform regression, first the partial derivative in respect with the dependent variable is obtained:

q =
∂C(u,v)

∂u
=− 1

θ
(u−θ + v−θ −1)−

1+θ

θ (−θu−(1+θ)) = (1+uθ (v−θ −1))−
1+θ

θ (6.1)

solving for q ∈ [0;1], where q is the quantile, leads to v:

v = [1−u−θ +(qu1+θ )−
θ

1+θ ]−
1
θ (6.2)

Replacing u with F(x) and v with G(y) (Nelsen, 2006), where F(x) and G(y) are CDFs of the random
variables x and y leads to:

G(y) = [1−F(x)−θ +(qF(x)1+θ )−
θ

1+θ ]−
1
θ . (6.3)

Finaly, to obtain the different quantile regression curves for the variable Y one needs to find the inverse
of (6.3) (Chen, 2005; Koenker, 2005):

y = G−1[(1−F(x)−θ +(qF(x)1+θ )−
θ

1+θ )−
1
θ ] (6.4)
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Function (6.4) represents one solution for the required function (2.2) in the problem definition given in
Chapter 2. This way, a non-linear regression is performed, instead of a linear one as in the QQ method.
The curve for copula regression depends on the value of θ . Different regression curves that are obtained
with different values for θ in the Clayton copula are given in Figure 6.1.
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Figure 6.1: Copula-based regression curves for different values of θ in (6.2)

6.1 Quantile Regression

The non-linear regression curves (6.4) used for option ranking when using the copula-based approach,
may receive different forms based on two parameters in the regression models:

1. the values of the parameters θ and

2. the quantile q.

In the first case, one may fix the quantile q and examine the curves that are obtained for different
values of θ in model. Such an example is given in Figure 6.1, where the regression lines are obtained
for fixed value of q = 0.5, while examining different values for θ in the Clayton copula-based model
(6.2). Figure 6.1 shows that when the value of θ increases, the non-linear regression curves approach
the perfect linearity curve (u = v).

In the second case, the values of θ are fixed, and regression curves for different values of the quan-
tiles q are presented. The quantile q is a value which divides the distribution F(x) so that there is a given
proportion of observations below the quantile. Such examples with different values of q are given in
Figures 6.2–6.5. The provided examples show the quantiles q = 0.1,0.2, ...,0.9 for Clayton and Frank
copula-based regression curves, and q = 0.01,0.05,0.25,0.5,0.75,0.95,0.99 for Gumbel copulas in Fig-
ures 6.2–6.5, respectively. The figures illustrate 200 observations for pairs (u,v) and (X ,Y ) represented
with dots, and different curves that represent the corresponding non-linear quantile regression estimates
obtained from bi-variate copulas with the following parameters:

1. Clayton with uniform marginals and θ = 0.7 (Figure 6.2).

2. Frank with Student marginals and two degrees of freedom for: θ = 2.5 (Figure 6.3) and θ =−2.5
(Figure 6.4). In the study of several random variables, the distribution function of each one is called
a marginal (Papoulis, 1991). The student-t distribution of a random variable x with n degrees of
freedom is given with:

f (x) =
γ√

(1+ x2/n)n+1
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γ =
Γ[(n+1)/2]√

πnΓ(n/2)

where Γ(·) is the gamma function:

Γ(n) =
∫

∞

0
yn−1e−ydy, b >−1

When the argument of gamma function is integer, the function is called generalized factorial due
to Γ(n+1) = nΓ(n) = · · ·= n!, and Γ(1) = 1. The uniform distribution of a random variable x that
receives values in the interval (x1,x2) is given with:

f (n) =
{ 1

x2−x1
x1 ≤ x≤ x2

0 otherwise.

3. Gumbel with uniform marginals and θ = 5.7681 (Figure 6.5).
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Figure 6.2: Clayton qth quantile curves (for q = 0.1,0.2, ...,0.9): (a) for (u,v) and (b) for (X ,Y ) under
hypothesis for uniform margins and for θ = 0.7
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Figure 6.3: Frank qth quantile curves (for q = 0.1,0.2, ...,0.9): (a) for (u,v) and (b) for (X ,Y ) under
hypothesis for Student margins with two degrees of freedom and for θ = 2.5
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Figure 6.4: Frank qth quantile curves (for q = 0.1,0.2, ...,0.9): (a) for (u,v) and (b) for (X ,Y ) under
hypothesis for Student margins with two degrees of freedom and for θ =−2.5
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Figure 6.5: Gumble qth quantile curves (for q = 0.01,0.05,0.25,0.5,0.75,0.95,0.99): (a) for (u,v) and
(b) for (X ,Y ) under hypothesis for uniform margins and for θ = 5.7681
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Figure 6.6: Frank copula contours curves: (a) for θ = −2.25 and (b) for θ = 2.25 under hypothesis for
Student margins with two degrees of freedom
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Figure 6.7: Clayton copula contours curves for
θ = 5.7 under hypothesis for uniform margins
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Figure 6.8: Gumbel copula contours curves for
θ = 5.7 under hypothesis for uniform margins

In each of the examples in the second case, different values of θ are used to provide difference in
the visibility of the examples. In Figure 6.4, a negative value for θ is provided that leads to decreasing
regression curves, unlike all other cases with increasing regression curves for positive values of θ .

The contour curves for the Frank, Clayton and Gumbel copulas are given in Figures 6.6, 6.7 and 6.8
respectively. The values on the curves represent the calculated values of the copulas in each of the cases.

6.2 Regression with FNAC: Different Positions of Dependent Variable in
the Input Level in the FNAC

Equation (6.4) holds for bi-variate copulas or for a FNAC where the dependent variable enters the con-
struction last, such as u5 in Figure 5.5. For such a case, the left hand side of the FNAC can be regarded as
a single variable that enters the top-most bi-variate copula together with the dependent variable. There-
fore the dependent variable value can be determined as (6.4) for Clayton copula. In cases when such a
FNAC breaches the conditions (5.16), one has to rearrange the order in which variables enter the FNAC.
The rearranging of the order is possible since the joint distribution function is invariant on the order of
the variables. Consequently, by rearranging the order in which the variables enter the FNAC, one can
ensure that the resulting FNAC fulfills the condition (5.16).

To solve the regression task in this case, first a FNAC has to be obtained that fulfills the condition
(5.16). Afterwards, the regression part is solved as an iterative procedure starting from the highest level
of FNAC and descending down to the level which contains the dependent variable by substituting the
correct quantities in (6.2). In each of the iterations, the value of q in (6.2) is substituted with a vector of
regression values obtained from the previous iteration procedure.

The final regression function for obtaining the values of the dependent variable has different forms
depending on the position i in the FNAC with n attributes. For example, for the Clayton FNAC, the
regression function reads:

ui =



[
1− v−θ +

(
qv1+θ

)− θ

1+θ

]− 1
θ

i = n[
1−C−θi−1

i−2 +
(

vi+1C−1+θi−1
i−2

) θi−1
1+θi−1

]− 1
θi−1

i ∈ {3, ...,n−1}[
1−u−θ1

j +
(

v3u−1+θ1
j

)− θ1
1+θ1

]− 1
θ1

i, j = 1,2, i 6= j.

(6.5)
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Here and in section 6.3, the position of the variable in the FNAC and PNAC is denoted with i or j and
should not be confused with the order of the attributes in both hierarchical constructions. The position
is determined with counting starting from the leftmost input variable in the FNAC and PNAC, and going
to the rightmost variable. For the example given in Figure 5.6 in the middle position, the position of
the output variable is 2, while the output variable at this position is u3 having a subscript 3. Further on,
the equations in the thesis are derived regarding the positions in the FNAC and PNAC, while for the
examples, these values have to be adopted to the names of the real variables.

6.3 Regression with PNAC: Case of Four and Five Attributes and Gener-
alization to n Attributes

The second type of hierarchical copula structures that are used in this thesis are PNAC. The smallest
PNAC may be formed with four attributes.

In the PNAC with four attributes, for example the copula C2(C1,1,C1,2;θ2) formed with u1 - u4 in
Figure 5.7a, the regression function depending on the position i, and based on the Clayton bi-variate
copula, reads:

ui =

[
1−u−θk

j +
(

vu−1+θk
j

)− θk
1+θk

]− 1
θk

,v =
[

1− vs
−θr +

(
vpvs

1+θr
)− θr

1+θr

]− 1
θr

, (6.6)

where

(k,vs,r,vp) =

{
k = 1,vs =C2,r = 3,vp = q for i, j = 1,2, i 6= j,
k = 2,vs =C1,r = 3,vp = q for i, j = 3,4, i 6= j.

When PNAC is formed with five attributes, there are two possible constructions as given in Figure 5.7.
For PNAC with five attributes, as the one shown in Figure 5.7a, the regression function has two

possible forms:

1. when the dependent variable positioned at u5, the regression form is given with:

u5 =

[
1−C2

−θ3 +
(

qC2
−1+θ3

)− θ3
1+θ3

]− 1
θ3

. (6.7)

2. For other positions ui, i ∈ {1,2,3,4}, the regression equation is given with (6.6) where:

(k,vs,r,vp) =

{
(11,C12,2,v), where v(vs,r,vp) = v(u5,3,q) for i, j = 1,2, i 6= j,
(12,C12,2,v), where v(vs,r,vp) = v(u5,3,q) for i, j = 3,4, i 6= j.

In case of a PNAC with five attributes as the one shown in Figure 5.7b, the regression equation is
given with (6.6) where:

(k,vs,r,vp) =


(11,u3,2,v), where v(vs,r,vp) = v(C12,1,q) for i, j = 1,2, i 6= j,
(11,C11,2,v) where v(vs,r,vp) = v(C12,1,q) for i = 3 and u j =C11,

k = 12,vs =C2,r = 1,vp = q for i, j = 4,5, i 6= j.
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The mathematical reasoning The mathematical reasoning of these equations is the following. For
a PNAC that consists of four attributes, for example the copula C2(C1,1,C1,2;θ2) formed with u1 - u4
in Figure 5.7a, and the dependent variable ui, where i ∈ 1,2, the regression function gets the following
form:

ui =

[
1−u−θ11

j +
(

vu−1+θ11
j

)− θ11
1+θ11

]− 1
θ11

, i, j = 1,2, i 6= j

where

v =

[
1−C2

−θ3 +
(

qC2
1+θ3

)− θ3
1+θ3

]− 1
θ3

.

When the dependent variable is ui, where i ∈ 3,4, the regression function reads:

ui =

[
1−u−θ12

j +
(

vu−1+θ12
j

)− θ12
1+θ12

]− 1
θ12

, i, j = 3,4, i 6= j

where

v =

[
1−C1

−θ3 +
(

qC1
1+θ3

)− θ3
1+θ3

]− 1
θ3

.

In case of a PNAC with five attributes as the one shown in Figure 5.7a, the regression function gets
one of the two following forms.

For PNAC with five attributes, as the one shown in Figure 5.7a, the regression function has two
possible forms:

1. In case the dependent variable is u5, the regression form is (6.7), which is obtained from (6.2) by
substituting the appropriate labels.

2. When the dependent variable is ui where i ∈ 1,2, the regression function is:

ui =

[
1−u−θ11

j +
(

v1u−1+θ11
j

)− θ11
1+θ11

]− 1
θ11

, i, j = 1,2, i 6= j (6.8)

where

v1 =

[
1−C12

−θ2 +
(

v2C12
1+θ2

)− θ2
1+θ2

]− 1
θ2

and

v2 =

[
1−u5

−θ3 +
(

qu5
1+θ3

)− θ3
1+θ3

]− 1
θ3

(6.9)

Similarly, in case when the dependent variable is ui where i ∈ 3,4, the regression function is:

ui =

[
1−u−θ12

j +
(

v1u−1+θ12
j

)− θ12
1+θ12

]− 1
θ12

, i, j = 3,4, i 6= j (6.10)

where

v1 =

[
1−C11

−θ2 +
(

v2C11
1+θ2

)− θ2
1+θ2

]− 1
θ2

and v2 is given with (6.9).
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In case of a PNAC with five attributes as the one shown in Figure 5.7b, the following forms of the
regression functions are possible.

1. If the dependent variable is u1 or u2, the regression function is as given in (6.8), however, the value
of v1 in this case is given with:

v1 =

[
1−u3

−θ2 +
(

v2u3
−1+θ2

)− θ2
1+θ2

]− 1
θ2

where

v2 =

[
1−C12

−θ3 +
(

v2C12
−1+θ3

)− θ3
1+θ3

]− 1
θ3

(6.11)

2. If the dependent variable is u3, the regression function is:

u3 =

[
1−C11

−θ2 +
(

v2C11
−1+θ2

)− θ2
1+θ2

]− 1
θ2

where v2 is given with (6.11).

3. If the dependent variable is u4 or u5, the regression function is given with (6.10) where i, j = 4,5,
i 6= j and only the value of v1 changes to

v1 =

[
1−C2

−θ3 +
(

qC2
−1+θ3

)− θ3
1+θ3

]− 1
θ3

.

Generalization of PNACs to n attributes When the number of attributes increases, the number of
possible combinations of PNACs increases, too. However, the obtained PNACs will consist of subsets of
elements presented in Figure 5.7. Hence the careful combination and repetition of these equations will
lead to the required regression functions for all kinds of PNACs regardless of the number of attributes.
Additionally, the maximum number of parameters θi that have to be estimated will always be equal to
the number of input attributes.

6.4 Number of Possible FNAC and PNAC Structures

The number of possible FNAC structures is n!
2 , where n is the number of variables. The possible combi-

nations of PNACs increases with the number of attributes. However, the obtained PNACs will consist of
subsets of elements presented in Figure 5.7. Hence the careful combination and repetition of equations
(6.5) and (6.6) will lead to the required regression functions for all kinds of PNACs regardless of the
number of attributes. Additionally, the maximum number of parameters θi that have to be estimated will
always be equal to the number of input attributes. The number of possible full binary trees that may be
used for calculating copula functions, as function of the number of its attributes, is given in Table 6.1
(Bohla and Lancaster, 2006; Sloane, 2011).
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Table 6.1: Number of PNAC structures depending on the number of attributes

Number of attributes 2 3 4 5 6 7 8 9 10

Number of trees 1 1 2 3 6 11 24 47 103

6.5 Running Example for Regression Using FNAC

For demonstration of the regression using FNAC, consider the example given in Table 2.2, for which
different FNACs are built and their θi parameters are given in Table 5.3. For this example, the position of
the attributes in the FNAC is u1,u3,u2, as given in Figure 5.6 (b), where u3 is the variable that is obtained
from mapping the class attribute. Therefore, the regression should be performed at this position, leading
to two regression iterations which use (6.5). In the first iteration the value of v3 is calculated using the
equation

ui = [1− v−θ +(qv1+θ )
− θ

1+θ ]−
1
θ

where ui = v3, q = 0.5, v = u2 and θ = θ2 = 0.1880 for Clayton-based FNAC. Thus

v3 = [1−u2
−0.1880 +(0.5u2

1.1880)
− 0.1880

1.1880 ]−
1

0.1880

In the second and last iteration, the final regression equation is:

ui = [1−u−θ1
j +(v3u−1+θ1

j )
− θ1

1+θ1 ]
− 1

θ1 (6.12)

where the position of the regression variable is given with i = 2, j = 1 and θ1 = 0.6125. Using (6.12)
and substituting ui = u2 with the name of the variable u3 as given in Figure 5.6 in the middle position,
leads to

u3 = [1−u−0.6125
1 +(v3u−0.3875

1 )−
0.6125
1.6125 ]−

1
1.6125 .

The obtained values for u3 are used for the last step of obtaining the values of the inverse distribution
function (for example see (6.4)), which are the regression values that are required. The regression values
are given in Table 6.2, in column Clayton FNAC. The final step in calculation of the regression values

Table 6.2: Quantitative ranking of options

No. A1 A2 C Clayton FNAC
FNAC Normalized

1 1 1 1 1.4151 0.8876
2 2 1 1 1.9020 1.2950
3 1 2 1 1.5744 1.0209
4 1 3 1 1.6624 1.0945
5 3 1 2 2.1685 2.2062
6 2 2 2 2.0604 2.0085
7 3 2 3 2.3228 3.2035
8 2 3 3 2.1467 2.9090
9 3 3 3 2.4062 3.3432

is application of the third stage of QQ. This stage is important because it corrects the inconsistencies
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that might have occured in the second phase, and leads to consistence between the regression values
and the original model. One such inconsistency that is solved using this stage, is given with options 5
and 8. Namely, option 5 has higher ranking value than option 8, however it belongs to a smaller class
than option 8. This is corrected and the obtained values after application of the third stage are given in
Table 6.2, in column FNAC Normalized.

Applying the copula method on the example given in Table 2.2, leads to the regression curves that are
given in Figure 6.9. Here the regression curves are obtained with calculation of the regression values of
the FNAC built with Gumbel bi-variate copula for the options in Table 2.2. The contours of the regression
curves are given in Figure 6.10, respectively.
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Figure 6.9: Regression curves obtained with FNAC built with Clayton bi-variate copulas
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Figure 6.10: Contours of the regression curves given in Figure 6.9.

6.6 Copula-Based Option Ranking Algorithms

The approach of option ranking with copulas is a computationally much more demanding compared with
the approach of option ranking with the linear methods. Therefore the goal of this section is to make this
task more user-friendly by providing the algorithms required for ranking of options.

The copula-based option ranking algorithm is given as Algorithm 3. The algorithm starts with the
distribution estimation of the random variables. Then it checks if the DT consists of symmetric attributes.
In case of symmetric DT of random variables (see Definition 2.4 for symmetric DT), the algorithm
proceeds with estimation of a one-parametric copula construction. If DT is not symmetric, the algorithm
checks if the DT is partially symmetric. In case of partially symmetric DT (see Definition 2.5 for partially
symmetric), the algorithm estimates one-parametric copulas for each subgroup of symmetric attributes.
Next, a FNAC or PNAC is built from the obtained copulas and the rest of the attributes, if any. In case
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of non-symmetric DT, the algorithm searches for a valid FNAC or PNAC by using bi-variate copulas.
For the obtained copula constructions, a suitable regression function is defined according to (6.1)–(6.6).
Next normalization of the results is performed as given with (3.3)–(3.5). Finally full ranking of options
is checked as defined in (2.4).

Algorithm 3 Implementation algorithm

The process of finding a suitable PNAC or FNAC is presented in Algorithm 4. The tree-like structure
of the FNAC has the same form regardless of the number of attributes, in contrast to the diferent tree-like
shapes that the PNAC may receive, and whose number increases with the number of the attributes (see
Table 6.1). Therefore it is less complex to look for a valid FNAC hence the algorithm first searches for a
valid FNAC. In case it does not exist, the algorithm continues with a search for a valid PNAC.
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Algorithm 4 Branching the algorithm for search of a valid hierarchical copula

Find FNAC 

or PNAC

Find valid FNAC

Found

copula?

Calculate

regression

depending on

the position

Find PNAC

structures

Find valid

PNAC

Found

copula?

Look for

different copula

functions

Perfrom 

regression depending 

on the structure 

and position

yes

no

no

yes

To check the validity of the nested copula construction (FNAC or PNAC) one has to evaluate all
possible input combinations of the attributes, as presented in Algorithm 5. The algorithm sorts the pos-
sible combinations of attributes, in a way that in the following step the simpliest cases are first examined
for formation of a valid FNAC. The simplest cases are determined in terms of the regression function
that will be formed for the valid FNAC. Hence the simplest FNAC is considered the one for which the
dependent variable enters the construction as least nested (right most position). If such a structure fails to
produce a valid copula, all possible nested constructions are examined. For each generated construction,
the values of θi are calculated and conditions (5.16)–(5.17) are checked. If there are more solutions than
one, the algorithm picks the one where the dependent variable is least nested.

Algorithm 5 Search algorithm for a valid FNAC

θ 
condition 

fulfilled?

Find FNAC 

or PNAC

Find all

combinations 

of attributes

Sort all combinations

of attributes so that

dependent variable 

is least nested

Calculate θ
i

For each

combination

Next 

combination

Valid

copula structure

not found

Valid

copula structure

found

no

yes

6.6.1 Regression Algorithms for FNAC and PNAC

For bi-variate copula, a suitable regression function linking the two variables can be found by Algo-
rithm 6 (Nelsen, 2006).

In Algorithm 6, first the copula function is differentiated over the input variable to derive the re-
gression function. Then the obtained expression is set equal to a quantile value q, leading to quantile
regression function,.

To use Algorithm 6, the dependent variable should be placed in the right most position in the FNAC,
such as the variable u5 in Figure 5.5. Algorithm 7, on the other hand, gives a general solution for copula-
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based regression with FNAC for n random variables where the regression variable seats in an arbitrary
position p (Mileva-Boshkoska and Bohanec, 2012).

Algorithm 6 Regression using bi-variate copula

1: ∂Cθ (u,v)
∂u = q . calculate median regression for q = 1

2

2: v← Solve( ∂Cθ (u,v)
∂u = q,v) . see Table 5.1 for different copulas

3: u← F1(x1) . replace u by F1(x1)
4: v← F2(x2) . replace v by F2(x2)

Algorithm 7 Regression algorithm for FNAC structure and dependent variable in the p position
1: v← 0.5
2: q← 0.5 . calculate median regression for q = 1

2
3: if p == n then . if regression variable is positioned last,
4: . n is the number of random variables/attributes;
5: v← Solve( ∂Cθ (u,v)

∂u = q,v) . calculate v
6: else
7: for i = 1→ (n− p),
8: (or i = 1→ (n−2), when p=1,2) do . if position of regression
9: . variable other than the last

10: q← v . replace q with the value of v
11: v← Solve( ∂Cθ (u,v)

∂u = q,v) . recalculate the new value of v
12: i← i−1
13: end for . p is the output variable position
14: q← v . replace q with the value of v
15: v← Solve( ∂Cθ (u,v)

∂u = q,v) . recalculate v; if p = 1, u = u2,
16: . if p = 2, u = u1
17: end if
18: u← F1(x1) . replace u by F1(x1)
19: v← F2(x2) . replace v by F2(x2)

Algorithm 7 performs regression in iterations. It starts with regression at the topmost copula. The
obtained regression values are propagated downwards in the hierarchical structure, where the value of
q is replaced with the regression values of v. The iterations continue until the dependent variable p in
FNAC is reached. Finally, the regression function is obtained as in Algorithm 6, for q = v from the last
iteration.

The Algorithm 7 is adopted as a building block for obtaining regression functions from PNACs as
well. An example of Algorithm 7 for the Clayton copula is given in Algorithm 8. The algorithm for
calculation of kc and nc is different in case of copula-based regression. Due to the nonlinearity of the
method, we need to find the minimum and maximum value that may occur when applying the built
copula structure, and then apply them for calculation of kc and nc parameters in (3.4) and (3.5). The
procedure is given in Algorithm 9. After the model is built, we may use it for evaluation of new options.
The evaluation phase uses the saved model structure however it requires to modify the attribute’s order
according to the model and then to perform several calculations as given in Algorithm 10.
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Algorithm 8 Regression algorithm for FNAC structure and dependent variable in the p position for
Clayton copula

1: v← 0.5
2: q← 0.5 . calculate median regression for q = 1

2
3: if p == n then . if regression variable is positioned last; n is the number of random

variables/attributes;
4: v← [1−u−θ +(qu1+θ )−

θ

1+θ ]−
1
θ . calculate v

5: else
6: for j = 1→ (n− p),
7: (or j = 1→ (n−2), when p=1,2) do . if position of regression variable other than the last
8: q← v . replace q with the value of v
9: v← [1−u−θ +(qu1+θ )−

θ

1+θ ]−
1
θ . recalculate the new value of v

10: i← i−1
11: end for . p is the output variable position
12: q← v . replace q with the value of v
13: v← [1−u−θ +(qu1+θ )−

θ

1+θ ]−
1
θ . recalculate v; if p = 1, u = u2; if p = 2, u = u1

14: end if
15: u← F1(x1) . replace u by F1(x1)
16: v← F2(x2) . replace v by F2(x2)

Algorithm 9 Calculate kc and nc for copula-based regression algorithm

1: for i = 1→ c do . c is the number of classes
2: for j = 1→ nc do . nc is the number of options n in the class c
3: minp( j)←C(n−0.5) . C is the regressor from the FNAC/PNAC
4: maxp( j)←C(n+0.5)
5: end for
6: minc← min(minp) . find the minimum value in the class c
7: maxc← max(maxp) . find the maximum value in the class c
8: kc =

1
maxc−minc

. calculate kc as in (3.4)
9: nc = c+0.5− kcmaxc. . calculate nc as in (3.5)

10: end for

Algorithm 10 Option evaluation using copula-based algorithm
1: Reorder the option according to the obtained PNAC/FNAC model.
2: Estimate the option attribute’s CDF, using the distribution functions provided by the model.
3: Calculate the values of the bi-variate copula values in the FNAC / PNAC, using the parameters in the

model.
4: Perform the regression task as in Algorithm 7.
5: Apply kc and nc on the obtained result to obtain the evaluation value.
6: Propagate the evaluation value to the next hierarchical table. . Applies only for the hierarchical

case.
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6.6.2 Implementation of the Copula-Based Algorithms

All presented algorithms 3–10 for performing copula-based regression are developed and implemented
in MATLAB, which originally implements only bi-variate copulas. To perform copula-based regression,
a toolbox was developed which covers building of FNACs, PNACs and regression with hierarchical
copulas on a hierarchical setting of decision tables.

6.7 Hierarchical Running Example for Usage of Copula-Based Option
Ranking Algorithm

Attributes in DEX form tree structures. Such example is shown in Figure 3.1. The example represents
a DEX model for cars evaluation, and it is used here to present the propagation of the regression values
from one hierarchical level to the next one. As explained in section 3.3, in the hierarchical models the
evaluation values, obtained from the aggregation of basic attributes into a class attribute, are propagated
in the next higher level as values of an input attribute. These are further on aggregated, and the procedure
is repeated to the top most aggregation (class) attribute. The evaluation values are continuous, when using
QQ for aggregation, which may not capture the information about the class into which a certain option
belongs to. In order to propagate the class with the evaluation value of the option, QQ introduces the
third stage, of ensuring that the evaluation result belongs into the interval [ci−0.5,ci +0.5],ci ∈C. This
third stage of QQ is used when aggregation is performed with copula functions as well. For the given
example in Figure 3.1, the final evaluation of cars is obtained at the topmost hierarchical level.

The qualitative decision tables for aggregation of attributes, and their mappings into quantitative
ones are presented in Tables 3.2, 3.3 and 3.4 and Tables 3.5, 3.6 and 3.7 respectively. The evaluation of
options, represented as cars in the given example, is a two-step process. In the first step, copula-based
models are built for each of the Tables 3.5, 3.6 and 3.7. For example, using the Frank bi-variate copulas,
FNACs are built for each of the aggregated attributes Costs, Safety and Car. Their parameters are given
in Table 6.3. The option rankings obtained with these models for each of the aggregated attributes are
given in columns Eval in Tables 6.4, 6.5 and 6.6.

Table 6.3: Parameters of copula-based models for evaluation of car

Parmeter Costs Safety Car

θ1 5.4187 15.2057 11.5403
θ2 2.1108 1.4573 0.9783
kc [0.6239 0.4887 0.6239] [0.9202 0.6255 [0.5573 0.7473

0.2386 0.2908] 0.2176 0.3284 0.4166]
nc [0.0779 1.0226 1.4265] [-0.0383 0.6659 [0.1612 0.6051

2.1434 2.6474] 2.2204 2.6672 2.9178]

In the second step, the evaluation values obtained for attributes Costs and Safety are propagated to
the copula-based model for the aggregated attribute Car for final evaluation. For example, the following
case:

i f Price = 1 and Maint.= 1 then Costs = 0.6744

i f ABS = 1 and Size = 1 then Sa f ety = 0.8296

leads to the following evaluation by the model built for aggregation of the attribute Car:

i f Costs = 0.6744 and Sa f ety = 0.8296 then Car = 0.6102
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Table 6.4: Option rankings of
Car

Costs Safety Car Eval

1 1 1 0.6576
2 1 1 0.6857
3 1 1 0.7160
1 2 1 1.0850
2 2 2 1.9599
3 2 3 2.6488
1 3 3 2.8578
2 3 3 2.8867
2 4 3 3.2125
3 3 4 3.7175
1 4 4 4.0956
3 4 5 4.9118

Table 6.5: Option rankings of
Costs

Price Maint. Costs Eval

1 1 1 0.6744
2 1 1 1.1318
1 2 1 0.8156
3 1 2 2.2672
2 2 2 2.0000
1 3 2 1.7328
3 2 3 3.1844
2 3 3 2.8682
3 3 3 3.3256

Table 6.6: Option rankings of
Safety

ABS Size Safety Eval

1 1 1 0.8296
2 1 1 0.9304
1 2 2 1.9656
2 2 3 2.6863
1 3 3 3.0427
2 3 4 3.8443

The same procedure is used for evaluation of all options.
This model reflects the change of the values of basic attributes in the final evaluation of options. For

example, if the value of ABS = 1 is changed for one unit into ABS = 2, the final car evaluation changes
from Eval = 0.6102 to Eval = 0.6326. The slight increment in the final evaluation reflects the decision
maker’s preferences for having a car with ABS to a car which does not have the ABS. The same may be
demonstrated in case when change of the value of basic attribute changes the class into which an option
belongs to. For example:

i f Price = 1 and Maint.= 1 then Costs = 0.6744

i f ABS = 2 and Size = 2 then Sa f ety = 2.6863

i f Costs = 0.6744 and Sa f ety = 2.6863 then Car = 2.7679.

Now, let change the class of the basic attribute Size from Size = 2 to Size = 3. This changes the
class into which the option belongs to, from Sa f ety = 3 to Sa f ety = 4, which is propagated to the next
level, in which the class of the option for the attribute Car is changed from Car = 3 to Car = 4. This is
reflected in the evaluations of options as follow:

i f Price = 1 and Maint.= 1 then Costs = 0.6744

i f ABS = 2 and Size = 3 then Sa f ety = 3.8443

i f Costs = 0.6744 and Sa f ety = 3.8443 then Car = 3.9872.
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7 Experimental Evaluation on Artificially Generated Data
Sets

This chapter provides comparison among all regression methods that are presented in Chapters 4–6.
The comparison of methods consists of evaluation of the methods in terms of fulfilling the conditions
(2.3)–(2.4), and assessment of their performances in different experimental set-ups.

7.1 Datasets

Three groups of artificial datasets of decision tables are generated, with different number of input at-
tributes and different value scales:

Dataset 1: a set of all decision tables that consist of two input attributes and attribute values {1,2,3},
with all possible combinations results in 19 683 decision tables. The data set is small, meaning
that all generated decision tables can be used for processing with no requirements for expensive
computer or algorithmic setups.

Dataset 2: a collection of decision tables that consist of three input attributes and the set of attribute
values {1,2,3} with all possible combinations. The whole possible set comprises of 327 different
tables. In order to choose a smaller sampling subset, the principle of maximum entropy is used.
The maximum entropy of the discrete probability distribution is the uniform distribution, hence
only the decision tables where the class attribute is uniformly distributed are examined. From
the uniformly distributed subset, each 10000th decision table was selected leading to a dataset of
2 278 734 decision tables.

Dataset 3: a collection of tables that consist of four input attributes. Each attribute receives equal
number of values from the set of attribute values {1,2,3,4,5}. The full decision table with four
attributes, each one with cardinality of five, consists of 625 options. From them we choose 25 as
shown in Table 7.1. The experimental dataset 3 consists of 1 000 000 decision tables containing
25 options each. The output attributes are obtained by systematically sampling each 1000th vector
starting from a randomly selected first output attribute.

7.2 Evaluation Results of the Performed Experiments

Methods are evaluated and compared on each of the three datasets, denoted as three experiments. The
evaluation criteria is based on the percentage of decision tables that are fully ranked, and which fulfill
monotonicity property (2.3) at the same time. The monotonicity property is checked in a two-stage
procedure as described in Section 2.4. First a set of groups of options is determined so that each group
consists of comparable options. Then the monotonicity property (2.3) is checked within each of the
groups.
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Table 7.1: Input attributes of the decision tables used in dataset 3

No. A1 A2 A3 A4

1 1 1 1 1
2 2 4 1 1
3 5 3 3 1
4 4 1 4 1
5 4 2 5 1
6 3 5 1 2
7 2 1 2 2
8 5 2 2 2
9 1 3 2 2
10 4 5 3 2
11 1 4 1 3
12 4 3 2 3
13 3 3 3 3
14 5 1 4 3
15 2 5 5 3
16 5 5 1 4
17 1 2 3 4
18 2 2 3 4
19 4 4 4 4
20 3 1 5 4
21 3 4 2 5
22 3 2 4 5
23 2 3 4 5
24 1 4 5 5
25 5 5 5 5

The experimental evaluations of the discussed methods are presented in Table 7.2. The first column
in Table 7.2 are all considered methods. In addition, the union of the results obtained with all copula
methods is included under the name of All copulas. It provides the number of solved decision tables with
at least one of the proposed copula functions: Frank, Clayton or Gumbel. The graphical representations
of experimental evaluations are given in Figures 7.1–7.5. All results are discussed in comparison to
the original QQ method, by grouping them as follows. Firstly, all copula-based methods are compared
to QQ, then the constrained-based optimization method is discussed followed by the CIPER and New
CIPER. Finally, the modified QQ methods are compared to the original QQ method.

7.2.1 Results from Copula-Based Methods

Results from Experiment 1

The percentage of decision tables ranked using the three examined copula-based methods, denoted as
Frank, Gumbel and Clayton are shown in Figure 7.1. The percentage of solved decision tables is notably
higher than those ranked by QQ. In addition, the union of all different decision tables ranked by the
three copula-based methods increases the number of fully ranked decision tables from less that 10 %,
ranked by QQ, to more than 70 %. This clearly indicates that copula-based methods outperform QQ in
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Table 7.2: Percentage of monotonic and fully ranked decision tables by different methods

No. Method Experiment 1 (%) Experiment 2 (%) Experiment 3 (%)

1 QQ 8.74 0.45 0.09
2 Frank 29.75 17.23 84.01
3 Gumbel 63.56 24.54 80.00
4 Clayton 36.18 54.05 96.38
5 All copulas 73.23 65.78 99.03
6 Optimization 0.15 0 0
7 CIPER 0.82 0.002 0
8 New CIPER 14.88 0.0001 0.01
9 gB 67.07 66.64 56.15

10 gC 29.78 11.79 38.75
11 gP 93.07 96.57 98.01
12 IG 73.31 80.61 89.61
13 χ2 74.32 67.38 56.15
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Figure 7.1: Percentage of fully ranked and monotonic decision tables obtained with different methods on
dataset 1

terms of the proportion of fully ranked decision tables and indeed alleviates the QQ difficulties outlined
in Chapter 3. The reasons for such a good performance of copulas in comparison to QQ may be the
following:

1. The dataset 1 consists of linear, nearly linear and non-linear decision tables. Copulas are functions
which are used mainly for describing non-linear data. In the dataset 1, as well as in datasets 2 and
3, the number of non-linear tables is higher than the linear ones. QQ on the other hand, is a method
that performs best for linear or nearly linear decision tables.
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Figure 7.2: Percentage of fully ranked and monotonic decision tables obtained with different methods on
dataset 2

PSfrag replaements

P
er

ce
n
ta

g
e

of
f
u
ll
y

ra
n
k
ed

d
ec

is
io

n
ta

bl
es

Experiment 3

QQ Frank Gumbel Clayt.All copulas gB gC gP IG χ2 opt ciper new ciper
010
2030
4050
6070
8090

100

Figure 7.3: Percentage of fully ranked and monotonic decision tables obtained with different methods on
dataset 3

2. For each decision table that consists of two input and one class attribute, there are three possible
FNACs that may provide up to three different models that are checked for full ranking. Unlike
copulas, QQ provides only one model for each decision table. The number of possible copula-
based models increases with the number of attributes as explained in section 6.4, while QQ would
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always build only one model regardless of the number of attributes. This increases the chances
that the copula-based models would indeed provide a solution.

The percentages of fully ranked and monotone decision tables, for each of the methods, are presented in
Table 1 in Appendix A.

Results from Experiment 2

In these experiments, the only possible PNAC is the one provided in Figure 7.4. Any bi-variate copula
built from combination of any of the two variables, will lead to the smallest possible value of θ1i, i ∈
{1,2} in Figure 7.4. Hence, in the next level, the value of θ2 would usually increase compared to one of
the values θ1i. The newly obtained copula breaches PNACs constraints:

θ2 ≤ θ11, θ2 ≤ θ12.

Therefore in experiment 2 the copula-based results are obtained only with FNACs.

u1 u2

C1,1(u1,u2;θ11)

C2(C1,1,C1,2;θ2)

u3 u4

C1,2(u3,u4;θ12)

Figure 7.4: FNAC with four variables

The percentages of fully ranked decision tables with QQ and three copula-based approaches are
shown in Figure 7.2. QQ fully ranks only less than 1 % of decision tables, while copula-based methods
collectively rank more than 65 %. The reasons why copula-based models provide better results than QQ
are similar as in dataset 1. Here the number of non-linear tables is much higher than the linear or nearly
linear tables, and the number of models built with FNAC using one copula function is up to 12, versus
only one when using QQ. This increases the possibility that the copula-based model would provide the
desired ranking.

The percentages of fully ranked and monotone decision tables, for each of the methods, are presented
in Table 2 in Appendix A.

Results from Experiment 3

We used both FNACs, given in Figure 5.5, and PNACs, given in Figure 5.7, to build copula-based models.
The obtained results are presented in Figure 7.5. From the nine bars, the first three represent results

obtained with Clayton copula-based method, the next three are results obtained with Frank copula-based
method, and the last three with Gumbel copula-based method. In each of the three groups, the first bar
are results obtained with PNACs, the second are results obtained with FNACs, and the last are combined
results from the first two. Compared with the results from ranking obtained with QQ in Figure 7.3, these
results show an increase of the number of fully ranked decision tables from less than 0.1 %, solved by
QQ, to more than 99 %, when the results of all copula-based methods are combined. For the rest of the
decision tables, it was not possible to build a FNAC or PNAC with the examined copulas, or results lead
to partial ranking.
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Figure 7.5: Union of PNACs and FNACs

These results confirm that we have found a way of increasing the number of fully ranked decision ta-
bles using the copula-based method. Additionally, the performance of the copula-based method improves
with the number of attributes and their cardinality.

7.2.2 Results from Experiments Based on Constraint Optimization Approach

The results of the constraint optimization approach are presented in Table 7.2. They show that the
reformulation of the problem as constrained optimization task does not lead to better results than those
obtained with the current state-of-the-art QQ method. Instead it leads to definition of constraints that
are overly stringent thus no feasible point could be found in the second and third experiment. Several
research directions arise for overcoming this issues:

1. redefinition of the objective function (for example minimization of the error between the estimated
class attribute Ĉ and the real class C (Kosmidou et al., 2008))

2. relaxing these constrains (for example define the constraints for comparable options so that mono-
tonicity holds, and introduce the third stage of QQ).

These are left for future work.

7.2.3 Results from Experiments Based on CIPER and New CIPER

Although polynomial functions have several promising properties such as simple form, computational
easiness of use and independence of the used metric (linear data transformations result in a polynomial
model being mapped to another polynomial model), the experiments here showed that polynomials ex-
hibit worse results compared to the rest of the models. This is a consequence of the unwanted polynomial
properties as well as the desired properties of the resulting ranking function (Shestopaloff, 2011):

1. Polynomial models have a shape/degree tradeoff. It means that complicated data structures, are
modeled with high degree polynomials, leading to high number of estimated parameters. High-



Experimental Evaluation on Artificially Generated Data Sets 71

degree polynomial models are known for oscillatory behavior at the edges of the interval in which
they are fitted, leading to poor interpolatory properties.

2. Additionally, when they provide good data fits, the goodness of fit may rapidly deteriorate outside
the data range leading to poor extrapolatory properties.

3. Polynomial models have poor asymptotic properties. In comparison to copulas that use function
mapping [0,∞)→ [0,1], polynomials have an infinite response if some variable takes an infinite
value.

4. The obtained coefficients in the polynomial models may be sensitive to small variations in the data.

5. Although many of the solutions here fulfill the monotonicity property required by the ranking
function, polynomial models obtained with CIPER and New CIPER provide ties in the rankings in
most cases.

Details of the obtained results are given in Tables 6 and 7 in Appendix A.

7.2.4 Results Obtained with QQ when Modified with Impurity Functions

Although some of the linear methods exhibit the best results in comparison to the rest of the methods,
linear methods have several drawbacks. Some of them are the following (Seeber and Lee, 2003):

1. Exhibit only linear relationships

Linear models tell how much a change in a variable effects the outcome variable leading to a
measurement of linear relationships between dependent and independent variables. However this
may not always be correct. A simple example is the relationship between income and age. In this
example the relationship between two variables should be curved, since income tends to rise in the
elderly parts of life, then to flatten and decline in retirement. One possible improvement may be
achieved with fitting of piecewise linear functions (Greco et al., 2008), in which the independent
variable is partitioned into intervals and a separate linear function is fit to each interval. Still, the
following two drawbacks hold also for piecewise linear functions.

2. Provide a relationship only with the mean of the dependent variable

Linear regression provides a relationship between the mean of the dependent and independent
variables. However, the mean is not a complete description of a single variable. Consequently the
linear regression is not a complete description of relationships among variables. In order to deal
with this problem, one should use quantile regression, which is used with copulas in this thesis.

3. Variables must be independent

Linear regression assumes that the data at hand are independent, meaning that the attributes’
values of one option have nothing to do with those of another. Although this situation is frequent,
it is not always sensible. A typical example are student test scores when students come from
various classes, grades and schools. Students from the same class tend to be similar, thus they
are not independent. For example, such students would come from the same neighborhoods, they
have the same teachers, etc. Unlike linear models, copulas exhibit different types of dependencies
expressed via the values of θ , such as tail dependence and concordance.

According to the results of experiments, gP given with (4.5) provides best results in all three cases in
terms of monotonicity and full ranking. In spite of that, there are cases where copulas outperform them:
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1. The example provided in Table 7.3, consists of attributes and a class with different distributions.
In this case the regression values obtained with the QQ and its modifications, represented with the
column Impurity 7.3, are the same and provide only partial ranking of options, as options 5 and 7
are ranked the same.

2. The example provided in Table 7.4 consists of two symmetric attributes. There are six different
options, where one may argue that the methods should provide six different ranks. QQ based
methods manage to provide five, while copulas provide six different ranks. The reasoning comes
from the fact that the option 2, which receives the value of 2 for both attributes, is classified in the
lest preferred class 1. This option differs from the rest two options in class 1 by having all vales of
its attributes other than 1, hence one could expect that it would receive different evaluation from
the other two options.

Table 7.3: Example 1 of fully ranked options only with copula functions

No. A1 A2 C QQ Imp. Clayton ClaytonN Frank FrankN Gumbel GumbelN

1 1 1 1 1.0000 1.0000 1.0258 1.3473 1.2313 0.9213 1.2324 1.2895
2 2 1 2 1.7500 1.7500 2.2435 2.2907 2.1146 1.7335 1.9282 1.7362
3 3 2 2 2.2500 2.2500 3.4073 2.4508 3.9744 2.1642 3.9253 1.9865
4 1 3 2 2.0000 2.0000 1.6780 2.2129 1.5394 1.6003 1.7406 1.7127
5 3 1 3 2.9000 2.9000 2.8785 3.3582 3.5736 3.0142 3.4790 2.8920
6 1 2 3 2.7000 2.7000 1.4625 3.1707 1.3773 2.5774 1.4122 2.6777
7 2 2 3 2.9000 2.9000 2.7656 3.3433 2.3555 2.7719 2.1892 2.7583
8 2 3 3 3.1000 3.1000 3.0115 3.3758 2.6223 2.8250 2.6487 2.8059
9 3 3 3 3.3000 3.3000 3.6475 3.4600 4.4189 3.1823 4.6694 3.0155

Table 7.4: Example 2 of fully ranked options only with copula functions

No. A1 A2 C QQ Imp. Gumbel GumbelN Clayton ClaytonN Frank FrankN

1 3 1 1 1.0000 1.0000 1.7130 1.2515 0.7677 1.1514 1.6332 0.8102
2 2 2 1 1.0000 1.0000 1.9188 1.3895 2.0767 1.3928 1.8483 1.1175
3 1 3 1 1.0000 1.0000 1.7130 1.2515 0.7677 1.1514 1.6332 0.8102
4 2 1 2 2.0000 2.0000 1.6680 2.4587 0.7677 2.3244 1.5744 1.9232
5 1 2 2 2.0000 2.0000 1.6680 2.4587 0.7677 2.3244 1.5744 1.9232
6 1 1 3 2.6667 2.6667 1.5850 2.7087 0.7344 2.9848 1.4803 2.5454
7 3 2 3 3.1667 3.1667 2.0941 2.7941 2.1426 3.1793 2.0561 2.9517
8 2 3 3 3.1667 3.1667 2.0941 2.7941 2.1426 3.1793 2.0561 2.9517
9 3 3 3 3.3333 3.3333 2.4341 2.8511 3.3108 3.3408 2.4388 3.2218

7.2.5 Time Execution of Methods

One parameter which is of interest is the time needed to compute the different models and the outcomes
from the regression functions. The results are given in Table 7.5 and are obtained by averaging the time
over 100 decision tables for all methods. The first and second columns in Table 7.5 give the number of
options and input attributes respectively. The third column provides the time that is needed to calculate
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all QQ based methods simultaneously, and the next three columns provide time needed to get results with
the copula-based method that uses Clayton, Frank and Gumbel copulas respectively, and the last column
gives the execution time for constraint optimization method. All experiments are performed on UNIX
based system equipped with Intel(R) Core(TM) i7 CPU 870 @2.93GHz.

Table 7.5: Time execution in seconds of different methods averaged over 100 calculations

No. of options No. of inputs All QQ Clayton Frank Gumbel Constraint optimization

9 2 0.0349 0.3069 0.2883 0.2749 0.0575
27 3 0.1159 0.9934 0.6022 0.7718 1.4285
25 4 0.1017 1.8255 1.0135 0.8935 1.6216

It is clear that time execution is higher for the copula-based methods in comparison to other methods
and it increases with the number of input attributes. This can be explained with the fact that the number of
possible FNAC structures increases with the number of input attributes, therefore the time for searching
the solution increases as well.

7.3 Summary

The motivation of the presented experiments was to investigate the usage of different functions for eval-
uation of options so that (2.3)–(2.5) are fulfilled. Presented results show that the usage of copulas is
justified by the number of possible solutions that they provide in each of the experiments. Based on the
presented results one may conclude the following.

• The best results in the first and the second experiment are obtained with the modified QQ method
with the Gini population function.

• The best results in the third experiment are obtained using the combined copula-based results and
QQ method modified with the Gini population.

• The combinations of copula-based results presented in Figure 7.5 show that combination of PNACs
and FNACs improve the final evaluation of the copula-based regression method.

• Although the modified QQ with Gini population performs best, there are cases which may be
solved only with the copula-based method, such the ones presented in Tables 7.3 and 7.4.
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8 Illustrative Examples

In this chapter, the copula-based approaches are illustrated on three examples. The examples illustrate the
methodology on small decision tables, which consists of three to five attributes that receive values from
the subset {1,2,3,4,5}. The examples were specially chosen to highlight several important properties of
copula-based approach 1:

1. to show that monotonicity condition may be fulfilled when using FNAC for copula-based regres-
sion, for cases when QQ fails to fulfill it,

2. to show that monotonicity condition may be fulfilled when using PNAC for copula-based regres-
sion, for cases when QQ and FNACs fail to fulfill it, and

3. to demonstrate the behavior of copulas when dealing with symmetric decision tables

8.1 FNAC Solves the Breaching Monotonicity

The first example in this chapter demonstrates the ability of FNAC to produce regression functions which
overcome the problem of breaching monotonicity that is present when using QQ. The example that is
considered for this purpose is given in Table 8.1. The first column is the option number and the next
four columns are the quantitative values of attributes followed by the corresponding class. The last four
columns in Table 8.1 represent the calculations obtained with QQ, and with the different copula-based
regression functions from FNACs built with Clayton, Gumbel and Frank bi-variate copulas. The values
of the θi parameters and the permutations of the attributes in the FNACs for each of the copula-based
methods is given in Table 8.2. The values of the θi fulfill (5.16), thus each of the obtained regression
functions is considered as applicable for further examination.

In contrast to copula-based methods, QQ breaches the monotonicity in several occasions. For ex-
ample, options 3 and 5 in Table 8.1, show that option 5 is better or at least as good as option 3 for
all attributes. Consequently one would expect that the methods would rank option 5 better than option
3. However, this is not the case with QQ calculations, which provide higher ranking value to option
3. The same kind of behavior may be noticed with the following pairs of options: {(16,20), (17,20),
(18,20),(19,20), (21,22), (21,24), (21,23), (21,25), (23,25), (24,25)}. Unlike QQ calculations, the values
obtained with FNACs based on bi-variate copulas produce correct ranking which does not breach the
monotonicity of the comparable options and provides full ranking of options. Hence this example shows
that this kind of failures of the QQ method that we want to address may be solved with the regression
functions obtained from FNACs.

1Methods that use modified QQ with impurity functions, polynomial functions and constraint optimization are also applied
on the three examples, and the results are given in Appendix B
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Table 8.1: Rankings obtained by different methods

No. A1 A2 A3 A4 Class QQ Clayton Gumbel Frank

1 4 2 5 1 1 0.6699 1.1780 0.7464 0.5533
2 4 5 3 2 1 1.3015 1.3077 0.8658 0.7733
3 2 2 3 4 1 1.3301 1.2213 0.7822 0.6038
4 3 1 5 4 1 0.7326 1.2208 0.7772 0.5877
5 3 2 4 5 1 1.0485 1.3121 0.8700 0.7709
6 2 4 1 1 2 2.3701 2.2092 1.5730 1.5042
7 4 1 4 1 2 1.6771 2.2551 1.5822 1.5074
8 2 1 2 2 2 2.1366 2.2310 1.5770 1.5051
9 5 5 1 4 2 2.3744 2.3563 1.6154 1.5773
10 1 4 5 5 2 1.6256 2.3600 1.6167 1.5769
11 3 5 1 2 3 3.3791 3.1702 2.7387 2.5233
12 5 1 4 3 3 2.7120 3.2411 2.7890 2.5435
13 2 5 5 3 3 2.6209 3.3483 2.9085 2.6660
14 3 4 2 5 3 3.2095 3.3256 2.8788 2.6473
15 2 3 4 5 3 2.8182 3.3299 2.8835 2.6386
16 5 3 3 1 4 3.9091 4.1862 3.5710 3.5257
17 1 4 1 3 4 4.3857 4.0395 3.5470 3.5059
18 4 3 2 3 4 4.1378 4.2549 3.5883 3.5642
19 3 3 3 3 4 3.9674 4.2722 3.5934 3.5781
20 5 5 5 5 4 3.6143 4.4639 3.7306 4.1639
21 1 1 1 1 5 5.3492 5.1125 4.7125 4.5003
22 5 2 2 2 5 5.0527 5.3395 4.9213 4.5444
23 1 3 2 2 5 5.1548 5.2669 4.8352 4.5111
24 1 2 3 4 5 4.9261 5.3069 4.8752 4.5228
25 4 4 4 4 5 4.6508 5.4512 5.1798 4.9086

Table 8.2: Permutations and values of θi parameters obtained with FNACs

Method Clayton Gumbel Frank

θ1 0.1123 1.1419 1.1975
θ2 0.0729 1.1248 0.2506
θ3 0.0193 1.0561 0.2021
θ4 1.45·10−6 1.0129 0.1756

permutation 1-2-4-3-5 1-2-4-3-5 1-2 4-3 5

8.2 PNAC Solves the Breaching Monotonicity

Regression function originating from a PNAC manages to fulfill all required conditions: the monotonic-
ity, full ranking ad consistency of options, by using only the information provided in Table 8.3. The
calculations obtained with QQ, and with the regression function obtained form PNAC built with Frank
copulas are presented in the last two columns of Table 8.3. In the given example, a regression function
obtained from PNAC built with Frank copulas provides full option ranking. On the other hand, QQ
breaches the monotonicity condition (2.3) for pairs (6,7), (6,10), (7,8), (7,10), (8,10), (9,10), (18,19),
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Table 8.3: Rankings obtained with QQ and Frank copula using the PNAC given in Figure 5.7a, before
and after applying equations (3.3)–(3.5)

No. A1 A2 A3 A4 Class QQ Frank PNAC

1 2 4 1 1 1 1.3663 1.2650
2 5 2 2 2 1 0.8669 0.7409
3 5 1 4 3 1 0.6337 0.7313
4 2 2 3 4 1 0.9060 1.0777
5 3 1 5 4 1 0.6702 1.0213
6 4 2 5 1 2 1.9640 1.6499
7 2 1 2 2 2 2.1754 1.5710
8 4 4 4 4 2 1.9802 2.1447
9 1 4 5 5 2 2.2128 2.2984
10 5 5 5 5 2 1.7872 2.3867
11 4 3 2 3 3 3.1848 2.7232
12 3 3 3 3 3 3.2488 2.8536
13 3 4 2 5 3 3.2262 3.1023
14 3 2 4 5 3 2.7512 2.9082
15 2 3 4 5 3 3.0527 3.2106
16 5 3 3 1 4 3.8831 3.8229
17 4 1 4 1 4 3.6848 3.5794
18 1 4 1 3 4 4.3152 4.0117
19 2 5 5 3 4 4.1305 4.3784
20 5 5 1 4 4 3.9456 4.1405
21 1 1 1 1 5 5.0429 4.5738
22 3 5 1 2 5 5.2787 5.2563
23 1 3 2 2 5 5.1599 4.9629
24 4 5 3 2 5 5.0352 5.3526
25 1 2 3 4 5 4.7213 4.9564

(18,20), (21,24), (21,25), (22,24), (23,24).
As a lesson from the last two examples, it is recommend to build PNAC in cases when regression

functions obtained from FNAC fail to provide full ranking of options. The background for this rec-
ommendation comes from the fact that when working with copulas, it is less complex to calculate the
regression functions obtained with FNAC than with PNAC.
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8.3 Evaluation of Symmetric Decision Tables

Options in symmetric decision tables are evaluated with one-parametric copulas as explained in sec-
tion 5.4.1. One such example is given in Table 8.4. It is taken from a real case example, which is further
discussed in section 9.2. In this example, the qualitative values of attributes A–D are converted into quan-
titative one so that they form a monotone decision table, represented with columns A1–D1. Symmetric
are the attributes A and B.

Table 8.4: Utility function (A–D) and mapping from the qualitative attributes into quantitative ones (A1–
D1). Basic attributes are: A–Generality, B–Scalability and C–NoiseSensitivity. The aggregated attribute
is D–Robustness.

No A B C D A1 B1 C1 D1

1 ’low’ ’low’ ’high’ ’very low 1 1 1 1
2 ’med’ ’low’ ’high’ ’low’ 2 1 1 2
3 ’high’ ’low’ ’high’ ’low’ 3 1 1 2
4 ’low’ ’med’ ’high’ ’low’ 1 2 1 2
5 ’med’ ’med’ ’high’ ’low’ 2 2 1 2
6 ’low’ ’high’ ’high’ ’low’ 1 3 1 2
7 ’low’ ’low’ ’med’ ’low’ 1 1 2 2
8 ’med’ ’low’ ’med’ ’low’ 2 1 2 2
9 ’low’ ’med’ ’med’ ’low’ 1 2 2 2
10 ’low’ ’low’ ’low’ ’low’ 1 1 3 2
11 ’high’ ’med’ ’high’ ’med’ 3 2 1 3
12 ’med’ ’high’ ’high’ ’med’ 2 3 1 3
13 ’high’ ’high’ ’high’ ’med’ 3 3 1 3
14 ’high’ ’low’ ’med’ ’med’ 3 1 2 3
15 ’med’ ’med’ ’med’ ’med’ 2 2 2 3
16 ’high’ ’med’ ’med’ ’med’ 3 2 2 3
17 ’low’ ’high’ ’med’ ’med’ 1 3 2 3
18 ’med’ ’high’ ’med’ ’med’ 2 3 2 3
19 ’med’ ’low’ ’low’ ’med’ 2 1 3 3
20 ’high’ ’low’ ’low’ ’med’ 3 1 3 3
21 ’low’ ’med’ ’low’ ’med’ 1 2 3 3
22 ’med’ ’med’ ’low’ ’med’ 2 2 3 3
23 ’low’ ’high’ ’low’ ’med’ 1 3 3 3
24 ’high’ ’high’ ’med’ ’high’ 3 3 2 4
25 ’high’ ’med’ ’low’ ’high’ 3 2 3 4
26 ’med’ ’high’ ’low’ ’high’ 2 3 3 4
27 ’high’ ’high’ ’low’ ’very high’ 3 3 3 5

Here QQ method and its modifications that use impurity functions (4.4)–(4.6) provide equal weight
values wi for each of the attributes in (3.2). Hence these cases represent an intersection of the QQ
methods because all of them provide the same option evaluation. Evaluations and option ranks using QQ
method are given in the column QQ in Table 8.5 and Table 8.6 respectively.

Table 8.6 shows that QQ (as well as its modifications with impurity functions) divide the options into
7 different ranks, Clayton divides them in 8 and Frank and Gumbel provide 10 different ranks. CIPER
manages to distinguish seven ranks, while New CIPER finds a polynomial structure that distinguishes
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among all 27 options. The question that has to be answered is which ranking one should consider as
the most acceptable? In other words, which information in the decision table one may use in order to
distinguish among the different rankings?

Firstly, in cases of symmetric attributes, an acceptable aggregation function is the one which provides
the same ranking for the symmetric attributes. Therefore the condition for full ranking given with (2.4)
has to be relaxed for symmetric attributes. Consequently, the ranking obtained with New CIPER is not
acceptable. Considering the heuristics based on which New CIPER works, and relaxing it to work for
symmetric attributes, leads to the results obtained with CIPER. The ranking with CIPER are the same as
the ranking obtained with QQ.

Table 8.5: Option evaluation using QQ method and Clayton, Frank and Gumbel copulas

No. A1 B1 C1 D1 QQ Clayton ClaytonN Gumbel GumbelN Frank FrankN

1 1 1 1 1 1.0000 1.6598 1.0000 2.1738 0.5898 2.3049 1.4773
2 2 1 1 2 1.8750 1.6610 0.8865 2.1955 1.5657 2.3229 2.1857
3 3 1 1 2 2.1250 1.6610 0.8865 2.2077 1.5868 2.3325 2.1938
4 1 2 1 2 1.8750 1.6610 0.8865 2.1955 1.5657 2.3229 2.1857
5 2 2 1 2 2.1250 1.6631 0.8886 2.2483 1.6569 2.3655 2.2214
6 1 3 1 2 2.1250 1.6610 0.8865 2.2077 1.5868 2.3325 2.1938
7 1 1 2 2 1.8750 1.6610 0.8865 2.1955 1.5657 2.3229 2.1857
8 2 1 2 2 2.1250 1.6631 0.8886 2.2483 1.6569 2.3655 2.2214
9 1 2 2 2 2.1250 1.6631 0.8886 2.2483 1.6569 2.3655 2.2214
10 1 1 3 2 2.1250 1.6610 0.8865 2.2077 1.5868 2.3325 2.1938
11 3 2 1 3 2.8750 1.6631 2.3494 2.2793 2.6020 2.3900 2.6353
12 2 3 1 3 2.8750 1.6631 2.3494 2.2793 2.6020 2.3900 2.6353
13 3 3 1 3 3.1250 1.6631 2.3494 2.3224 2.6381 2.4241 2.6418
14 3 1 2 3 2.8750 1.6631 2.3494 2.2793 2.6020 2.3900 2.6353
15 2 2 2 3 2.8750 2.7437 2.6219 2.3896 2.6943 2.4821 2.6529
16 3 2 2 3 3.1250 2.7461 2.6225 2.4832 2.7727 2.5591 2.6676
17 1 3 2 3 2.8750 1.6631 2.3494 2.2793 2.6020 2.3900 2.6353
18 2 3 2 3 3.1250 2.7461 2.6225 2.4832 2.7727 2.5591 2.6676
19 2 1 3 3 2.8750 1.6631 2.3494 2.2793 2.6020 2.3900 2.6353
20 3 1 3 3 3.1250 1.6631 2.3494 2.3224 2.6381 2.4241 2.6418
21 1 2 3 3 2.8750 1.6631 2.3494 2.2793 2.6020 2.3900 2.6353
22 2 2 3 3 3.1250 2.7461 2.6225 2.4832 2.7727 2.5591 2.6676
23 1 3 3 3 3.1250 1.6631 2.3494 2.3224 2.6381 2.4241 2.6418
24 3 3 2 4 4.0000 2.7500 3.6229 2.6311 3.6854 2.6814 3.5519
25 3 2 3 4 4.0000 2.7500 3.6229 2.6311 3.6854 2.6814 3.5519
26 2 3 3 4 4.0000 2.7500 3.6229 2.6311 3.6854 2.6814 3.5519
27 3 3 3 5 5.0000 3.8617 4.7091 2.8956 4.7587 2.9035 4.5487

The number of different options that are not symmetric among themselves, in Table 8.6 is 10. There-
fore one may argue that methods that provide 10 different ranks are better than those that provide less
ranks, under the assumption that monotonicity and consistency are fulfilled in both cases. To support this
argument for the particular example, one has to consider the rank of the options according to the classes
attribute. It classifies the options from 1 to 5, with preference order given with 1≺ 2≺ 3≺ 4≺ 5 . Can
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Table 8.6: Ranks of options using QQ and FNACs based on Clayton, Frank and Gumbel bi-variate copula

No. A1 B1 C1 D1 QQ Clayton Gumbel Frank
1 1 1 1 1 1 1 1 1
2 2 1 1 2 2 2 2 2
3 3 1 1 2 3 3 3 3
4 1 2 1 2 2 2 2 2
5 2 2 1 2 3 4 4 4
6 1 3 1 2 3 3 3 3
7 1 1 2 2 2 2 2 2
8 2 1 2 2 3 4 4 4
9 1 2 2 2 3 4 4 4
10 1 1 3 2 3 3 3 3
11 3 2 1 3 4 5 5 5
12 2 3 1 3 4 5 5 5
13 3 3 1 3 5 5 6 6
14 3 1 2 3 4 5 5 5
15 2 2 2 3 4 6 7 7
16 3 2 2 3 5 7 8 8
17 1 3 2 3 4 5 5 5
18 2 3 2 3 5 7 8 8
19 2 1 3 3 4 5 5 5
20 3 1 3 3 5 5 6 6
21 1 2 3 3 4 5 5 5
22 2 2 3 3 5 7 8 8
23 1 3 3 3 5 5 6 6
24 3 3 2 4 6 8 9 9
25 3 2 3 4 6 8 9 9
26 2 3 3 4 6 8 9 9
27 3 3 3 5 7 9 10 10

this information somehow lead to further separations of option ranks from 7 to 10?
One may notice that the only option that belongs to class 1 has evaluation of all attributes as 1.

Options belonging to class 2 have one or two attributes that are evaluated with 1. Options that belong to
class 3 have one or none of the attributes evaluated with 1, while none of the options in classes 4 and 5
have evaluation of attributes equal to one. One may conclude that more preferred options are the ones
with less evaluation of attributes to one. This information is incorporated in Clayton, Frank and Gumbel
copulas, and hence it leads to three more ranks than QQ and CIPER methods.
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9 Applications of Copula-Based Method for Option Ranking

This chapter demonstrates the applicability of the copula-based regression method for option ranking on
hierarchically combined decision tables which are characteristic decision problems with larger number
of attributes, usually more than five. In the following two sections two examples are provided showing
how and when the copula-based regression for option ranking in hierarchical settings may be used. In the
first example the copula-based decision support system (DSS) is used for assessment of 840 electrically
commutated (EC) motors (Mileva-Boshkoska et al., 2013). In the second example a model for ranking
of workflows that are uploaded by researchers on the website www.myexperiment.org is built (Mileva-
Boshkoska et al., 2012).

9.1 Assessment of Electrically Commutated Motors

Quality assessment of finished products (QAFP) is usually the final step in a manufacturing line. It is
performed by aggregating feature set values according to a set of pre-defined preferences and rules. Such
a task can be implemented by applying concepts of decision support systems (DSS).

A typical structure of QAFP system is shown in Figure 9.1. Such a system has two inputs: features,
extracted from the performed measurements, and expert’s preferences regarding the final quality eval-
uation. These inputs are processed through the two main stages: integration of system’s features and
expert’s preferences, and definition of a copula-based DSS for assessment of overall quality and ranking
of finished products. Implementation of these steps has to ensure high sensitivity to the variations in the
quality of the finished product. Consequently, each segment of the system has to be custom-made for the
problem in hand.

The input of the system is a set of measured features calculated from the acquired vibrations gener-
ated by the examined electronically commutated (EC) motor. Furthermore, the system employs available
expert’s knowledge provided in DEX model tree. Employing copula-based regression functions resulted
in a full quality ranking of EC motors. The system was evaluated on a batch of 840 motors. Due to the
different background of each segment of this problem, each one is described in details in a depth that is
required to understand the problem at hand.

Figure 9.1: Structure of the end-quality assessment system
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The extracted feature set should contain the most useful features for determining the fault condition
of the monitored system (Vachtsevanos et al., 2006). In absence of faults, feature values should belong
to the set of nominal (admissible) values. Any discrepancy in one or several features is regarded as a
presence of fault, hence indicating decrease in the overall quality. In order to meet such requirements,
two steps should be performed: the most informative features should be selected based on existing fault
models, and extraction of their values should be performed using fast and accurate signal processing
techniques.

The problem of specifying the most informative feature set in the case of electrical motors has been
addressed by many authors (Boškoski et al., 2011; Didier et al., 2007; Juričić et al., 2001; Röpke and
Filbert, 1994; Sasi et al., 2001). Generally features are extracted from vibration and/or electrical signals.
In our particular case, the features were extracted solely from vibration signals. From a plethora of
available signal processing methods, we opted for the well established approach using envelope analysis
(Jardine et al., 2006; Peng and Chu, 2004; Randall and Antoni, 2011; Sawalhi et al., 2007). As a pre-
processing step we used spectral kurtosis (Antoni, 2006) and cyclostationary analysis (Boškoski et al.,
2010), due to their capabilities of selecting the most appropriate frequency band for envelope analysis,
hence significantly improving the sensitivity of the approach.

The construction of the copula-based DSS starts with integration of features with expert’s prefer-
ences. The integration addresses the issues of fusing information from the extracted features into an
abstract quality rank based on a set of pre-defined expert’s preferences. Usually these preferences are
expressed using qualitative grades. For this purpose, qualitative aggregation functions are suitable can-
didates, such as the ones proposed in the DEX methodology. As DEX uses qualitatively described
aggregation functions, it leads to partial ranking of the options at hand. To achieve a full ranking of
options, we employ copula functions. Unlike linear regression functions, which tend to provide partial
ranking when two or more attributes receive the same weight value (Mileva-Boshkoska and Bohanec,
2011) or evidential reasoning method which sometimes leads to evaluations that are not in line with the
expert’s expectations (Boškoski et al., 2011), the usage of DEX and copula-based regression leads to
high sensitivity to small variations of the input values. This process produces twofold output informa-
tion. Firstly, the constructed copula-based DSS yields a grade (also called class) to which the examined
EC motor belongs. Secondly, it produces a rank value that can be employed for ordering the EC motors
within each grade. Therefore, one can easily specify the position of each finished EC motor within the
population of produced units based on its quality rank.

Implementing quality assessment systems has the potential for creating sustainable competitive ad-
vantage (Reed et al., 2000). The proposed quality assessment system allows immediate detection of
quality change for each produced item individually. Furthermore, the quality assessment output can be
used by any subsequent manufacturing execution system, which will handle any general changes in the
production quality (Ertugrul and Aytac, 2009; Orth et al., 2012).

9.1.1 Feature Selection and Organization in DEX Structure

According to several surveys, bearing faults represent the most common cause for failure of mechanical
drives (Albrecht et al., 1986; Crabtree, 2010). Besides bearing faults, in the context of EC motors, rotor
faults are also frequent. Therefore we propose a feature set that describes these two groups of faults.

Proper selection of the feature set is crucial for the overall effectiveness of the quality assessment.
When analyzing vibration signals generated under constant operating conditions, feature values are usu-
ally the amplitudes of particular spectral components.

Rotor faults Due to improper manufacturing or improper assembly, rotor faults include:

• mass unbalance, and
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• misalignment faults.

The presence of either of the faults influences the mass displacement on the rotor, hence changing its
moment of inertia. Under constant rotational speed, such a change can be detected by analysing the
generated vibrations and it is generally expressed as an increase of the amplitudes of the spectral compo-
nents at the rotational frequency frot and its higher harmonics n× frot , n∈ {2,3, · · ·} (Xu and Marangoni,
1994).

Bearing faults Bearings in EC motors are the most susceptible element to mechanical faults. During
the manufacturing process the most common causes for introducing bearing faults are improper bear-
ing lubrication, improper mounting and alignment, as well as improper handling during the assembly
process.

The detection of these faults is a challenging task. Vibrations, caused by a bearing fault, originate
from impacts produced by the rolling elements hitting a damaged place. Each time a hit occurs, an exci-
tation of system eigenmodes occurs in terms of an impulse response s(t). The frequency of occurrence
of these impulse responses can be estimated using the rotational speed frot of the rotating ring and the
physical characteristics of the bearing, i.e. the pitch diameter D, the rolling element diameter d, the
number of rolling elements Z, and the contact angle α (see Figure 9.2). Using these parameters the
bearing fault frequencies can be calculated according to the relations shown in Table 9.1 (Tandon and
Choudhury, 1999).

D

d

Pitch
Diameter

Ball Diameter

Contact angle

Outer race
fault

Inner race
fault

Rolling element
fault

Figure 9.2: Bearing dimensions used for the calculation of the bearing’s characteristic frequencies

Table 9.1: Bearing frequencies (Tandon and Choudhury, 1999)

Name Relation to the rotational frequency
frot

Bearing pass frequency inner race
(BPFI)

fBPFI =
Z frot

2

(
1+ d

D cosα
)

Bearing pass frequency outer race
(BPFO)

fBPFO = Z frot
2

(
1− d

D cosα
)

Fundamental train frequency (FTF) fFT F = frot
2

(
1− d

D cosα
)

Ball spin frequency (BSF) fBSF = D frot
2d

(
1−
( d

D cosα
)2
)
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Figure 9.3: From qualitative attributes and quantitative features to final quantitative evaluation

9.1.2 Implementation Within the Quality Assessment System

The implementation of the copula-based quality assessment system follows the steps shown in Figure 9.3.
Firstly, one has to present the decision maker’s preferences in a qualitative decision table. Then, a map-
ping from qualitative attributes into quantitative ones has to be performed. Finally, for each quantitative
decision table, a copula function is defined. After the completion of these steps, one can apply the
Algorithms 6 and 7 for copula-based regression described in section 6.6.

DEX Hierarchical Model

Assessing the overall motor quality rank directly from the measured features is a rather difficult task.
Therefore, the problem is transformed into a hierarchical decision making model in which the overall
mechanical quality rank is obtained by aggregating two simpler attributes: rotor quality and bearings
quality as shown in Table 9.2. The former attribute can be directly assessed from the measured features
described in subsection 9.1.1. The latter attribute is still complex as it can be further decomposed into
four simpler attributes: inner ring quality, outer ring quality, quality of the rolling elements and quality
of the bearing cage. These four attributes can be assessed from the measured features describing bearing
condition, as shown in section 9.1.1. Based on this logical structure a DEX hierarchical model is built,
which is shown in the first column of Table 9.2, where the aggregated attributes are given with upper
cases and the basic attributes are given in plain letters.

Following the expert’s preferences and knowledge, each attribute in the proposed hierarchical struc-
ture was described or aggregated using the expert’s defined scale with five qualitative values:

QC = {not satis f actory,good,very good,excellent, top}.

For instance, the aggregation of the basic attributes BPFI and 2×BPFI into attribute Inner ring is given
in the first three columns of Table 9.3. These aggregations may be interpreted as a set of if-then rules,
for instance, the last row in Table 9.3 can be interpreted as follows:

if BPFI is Top and 2× BPFI is Top then
Inner ring is Top

end if.
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Table 9.2: DEX model tree and qualitative and quantitative evaluations of EC motors 744 and 9

Attribute Evaluation of motor 744 Evaluation of motor 9
Qualitative Quantitative Qualitative Quantitative

MECHANICAL QUALITY
ROTOR QUALITY

frot

2× frot

Variance
BEARINGS QUALITY

INNER RING
Bpfi
2×Bpfi

OUTER RING
Bpfo
2×Bpfo

ROLL ELEMENTS
Bsf
2×Bsf

Ftf

not satisfactory
top
top
top
top
not satisfactory
good
good
very good
good
good
very good
not satisfactory
not satisfactory
very good
good

1.3389
4.9702
4.7851
5
5
0.7592
1.9583
1.7096
2.6319
1.8009
1.9043
2.1660
0.8810
1.2396
2.6100
2.6279

very good
top
top
top
top
good
very good
very good
excellent
good
very good
good
very good
very good
excellent
very good

3.3056
5.0302
5
5
5
1.7899
2.8051
2.8227
2.8830
2.1889
3.0203
2.0238
2.8454
2.9361
2.9288
3.0974

9.1.3 Qualitative to Quantitative Value Mapping

After defining the qualitative model, the next step is to obtain the quantitative model. For that reason,
each of the qualitatively defined expert rules and preference values are mapped into a quantitative one.
In the qualitative model, the preferences given by the decision maker are:

not satis f .≺ good ≺ very good ≺ excellent ≺ top

where the sign ≺ stands for “is strictly less preferred than”. In the quantitative model, these values are
mapped into {1, 2, 3, 4, 5} respectively. In addition, the sign ≺ is mapped into <, where < stands for ‘is
greater than’. The mapping ensures that the more preferred values are mapped into greater numbers. An
example of the mapping is given in the last three columns of Table 9.7, where the qualitative values of
attributes Bpfi, 2× Bpfi and Inner ring are mapped into quantitative values of A1, A2 and C respectively.

Based on the QQ model given in Table 9.2, six linear aggregation functions are built for each of the
aggregated attributes. Each aggregation function is built from the quantitative decision table, such as the
one given with the last three columns in Table 9.3. The aggregation functions are obtained by applying
(3.1)–(3.5). For the given example in Table 9.3, function g in (3.1) reads:

g = 0.5600A1 +0.5600A2−0.9200. (9.1)

After applying (3.4)–(3.5) on (9.1) we obtain:

fc =



0.2976g+0.6071, if c = 1

0.5952g+1.0476, if c = 2

0.5952g+1.3810, if c = 3

0.5952g+1.7143, if c = 4

0.8929g+0.8214, if c = 5.
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Here fc is an estimation of C in Table 9.3. The obtained quantitative value fc for the attribute Inner ring
is then propagated to the aggregation function in the next level, which estimates the quantitative value
of Bearings quality. This procedure is repeated until the final evaluation of the Mechanical Quality is
achieved.

Table 9.3: Expert defined rules for aggregation of the attribute Inner ring and mapping from the qualita-
tive attribute values into quantitative ones.

BPFI 2xBPFI Inner ring A1 A2 C

‘not satisf.’ ‘not satisf.’ ‘not satisf.’ 1 1 1
‘not satisf.’ ‘good’ ‘not satisf.’ 2 1 1
‘not satisf.’ ‘very good’ ‘not satisf.’ 1 3 1
‘not satisf.’ ‘excellent’ ‘not satisf.’ 1 4 1
‘not satisf.’ ‘top’ ‘not satisf.’ 1 5 1

‘good’ ‘not satisf.’ ‘not satisf.’ 2 1 1
‘good’ ‘good’ ‘good’ 2 2 2
‘good’ ‘very good’ ‘good’ 2 3 2
‘good’ ‘excellent’ ‘very good’ 2 4 3
‘good’ ‘top’ ‘very good’ 2 5 3

‘very good’ ‘not satisf.’ ‘not satisf.’ 3 1 1
‘very good’ ‘good’ ‘good’ 3 2 2
‘very good’ ‘very good’ ‘very good’ 3 3 3
‘very good’ ‘excellent’ ‘very good’ 3 4 3
‘very good’ ‘top’ ‘excellent’ 3 5 4
‘excellent’ ‘not satisf.’ ‘not satisf.’ 4 1 1
‘excellent’ ‘good’ ‘very good’ 4 2 3
‘excellent’ ‘very good’ ‘very good’ 4 3 3
‘excellent’ ‘excellent’ ‘excellent’ 4 4 4
‘excellent’ ‘top’ ‘excellent’ 4 5 4

‘top’ ‘not satisf.’ ‘not satisf.’ 5 1 1
‘top’ ‘good’ ‘very good’ 5 2 3
‘top’ ‘very good’ ‘excellent’ 5 3 4
‘top’ ‘excellent’ ‘excellent’ 5 4 4
‘top’ ‘top’ ‘top’ 5 5 5

9.1.4 Integration of Feature Values and Expert’s Preferences

Experts’ preferences may be subjective, even inconsistent, and may differ between experts. Therefore in
the development of this model we paid special attention to the consistency of the evaluation model. First,
whenever possible, we closely followed the ISO 10816 standard, which denotes the maximal allowed
vibrations for particular drives. Second, additional requirements were specified by the manufacturer
itself as well as the targeted customers. Finally, the DEX model was built which is guaranteed to be
complete and consistent.

The actual integration of the measured feature values and the expert’s preferences is performed using
fuzzification. The expert’s preference is towards motors with lower vibrations, hence lower feature
values are more preferred. The maximum allowed value for each feature determines the limit for the not
satisfactory grade. This limit was determined either by governing standard rules or by the company’s
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Figure 9.4: Intervals for mapping feature values to quantitative ones

Figure 9.5: FNAC structure for aggregation of the attribute Inner Ring

quality requirements. The remaining interval below the limit for the not satisfactory grade was divided
dyadically, as shown in Figure 9.4. Such mapping ensures more sensitivity at lower feature values. The
feature values fi are fuzzified and mapped accordingly into the expert’s defined interval [1,5], employing
the relation:

Ãi( fi) = ∑
n

µn( fi)cn. (9.2)

Here µn( fi) is the membership function of the nth rule as given in Figure 9.4, and cn ∈ {1,2,3,4,5} are
values of the class attribute.

9.1.5 Constructing the Copula-Based Regression Functions

According to the model shown in Table 9.2 there are six aggregation tables. For each of the decision
tables, there are two possibilities: to build FNACs or one-parametric copulas. Both approaches are given
in continuation.

Constructing FNACs

For each decision table, a FNAC based on the Frank bi-variate copula was built. Hence six copula-based
regression functions were derived. The obtained values from (9.2) enter the appropriate copula-based
regression functions, and for each of them a copula-based regression value is calculated. For the given
example in Table 9.3, we built a FNAC, such as the one given in Figure 9.5. When building the FNAC,
the attributes enter the input level at any position as long as the obtained FNAC fulfills (5.16). For the
attribute Inner Ring, in the obtained FNAC, first the attribute BPFI is coupled with the output Inner ring
forming a copula Cθ1 with parameter θ1 = 5.5. The obtained copula is then coupled with the attribute
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2×BPFI leading to the copula Cθ2 with parameter θ2 = 2.5529. The values of θ1 and θ2 fulfill (5.16)
thus, we may proceed with the regression procedure. Here, the position of the dependent variable Inner
ring is p = 2 hence we use Algorithm 7 for regression.

The regression part is solved as an iterative procedure starting from the highest level of FNAC and
descending down to the level which contains the dependent variable by substituting the correct quantities
for q in the Frank regression equation (see last column in Table 5.1). In each of the iterations, the value
of q is substituted with a vector of regression values obtained from the previous iteration procedure. For
example, in the first iteration the value of v3 is obtained using Frank-based regression equation given in
Table 5.1 that leads to:

v3 =
1

2.5529
log

−e2.5529(1−0.5+0.5e2.5529u3)

−e2.5529 +0.5e2.5529−0.5e2.5529u3
. (9.3)

The values obtained with (9.3) are propagated to the next iteration, the last one, that provides the final
copula regression equation v:

v =
1

5.5
log
−e5.5(1− v3 + v3e5.5u1)

−e5.5 + v3e5.5− v3e5.5u1
.

The regression values v are afterwards normalized in order to retain consistency with the qualitative
model as defined in (3.4)–(3.5) (Stage 3 in Figure 3.2):

fc =



0.2667F−1(v)+0.4752, if c = 1

0.5564F−1(v)+1.0214, if c = 2

0.3659F−1(v)+1.9901, if c = 3

0.4639F−1(v)+2.3345, if c = 4

1.0834F−1(v)+0.1608, if c = 5.

(9.4)

The obtained values from (9.4) are propagated in the higher hierarchical level, where they are used as
inputs in the next regression function. The procedure is recursively repeated up to the topmost decision
table. The result of the topmost decision table is regarded as the overall quality rank for each motor.

Constructing One-Parametric Copulas

In this approach, for each decision table, a one-parametric Clayton multi-variate copula was built. Hence
six copula-based regression functions were derived. For each copula, only one parameter θ is obtained.
For example, for the attribute Mechanical quality, the copula has parameter θ1 = 0.2953.

The regression is performed in one step by using the regression equation for the Clayton copula given
in Table 5.1:

v = (1−u−0.2953 +(0.5u1.2953)−
0.2953
1.2953 )−

1
0.2953 .

In the last equation, the values of u are obtained by building one-parametric copula with θ1 = 0.2953
with all input attributes. This is possible due to the associative property of the Archimedean copulas:
C(C(u1,u2),u3) =C(u1,C(u2,u3)). The regression values v are afterwards normalized in order to retain
consistency with the qualitative model as defined in (3.4)–(3.5) (Stage 3 in Figure 3.2):

fc =



0.2801F−1(v)+0.9049, if c = 1

1.6325F−1(v)−1.1857, if c = 2

1.8293F−1(v)−1.1183, if c = 3

2.7279F−1(v)−2.9315, if c = 4

5.7322F−1(v)−10.6250, if c = 5.
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9.1.6 The Final Evaluation of EC Motors and Two Characteristic Examples

The Assessment Rig

Each EC motor is tested using the assessment rig shown in Figure 9.6. The rig consists of a fixed pedestal
on top of which a metal disk is positioned. The metal disk holds three rubber dampers that suspend the
tested EC motor. The experiment starts by positioning the EC motor vertically on the rubber dampers in
such a way that the drive-end bearing is on the bottom. Afterwards, two accelerometers are positioned
on the motor housing nearest to the both bearings. The test-rig minimizes the environmental influence,
hence guaranteeing sufficiently constant experimental conditions.

The data acquisition process commences as soon as the nominal rotational speed is reached. Firstly,
both vibration signals are low-pass filtered with cut-off frequency at 22 kHz. Afterwards, both signals
are sampled at 60 kHz. During the whole data acquisition process the nominal rotational speed of frot =
38 Hz is maintained. Each acquisition process lasts 8 seconds. After finishing the acquisition the motor
is decelerated down to the stop position.

Electrical 

Motor

Power 

Supply

Vibration 

sensors
Signal 

conditioning unit

Figure 9.6: The prototype assessment point

Results on a Test Batch of Motors

During the evaluation process a test batch of 840 EC motors was analyzed. The overall quality rank
is shown in Figure 9.7. For the purpose of testing the system on small differences in data, during the
initial start-up of the line, motors with intentionally introduced various mechanical faults were evaluated.
Consequently, there are many motors with different overall quality rank.

From the results shown in Figures 9.7 and 9.8, it is clearly visible that the quality ranks of the tested
motors are spread over the interval [0.5,5.5]. This is an indication that the proposed copula-based DSS is
highly sensitive even to minor variations in the motor quality. Unlike methods that use weighted utility
functions, where options with not satisfactory feature values are ranked highly, this approach averts such
performance. Such example is given in (Boškoski et al., 2011), where the first 130 motors were evaluated
using evidential reasoning approach which lead to cases where final evaluations were inconsistent with
the expert’s preferences. Besides the overall quantitative evaluation, the calculated rank also shows the
class of each EC motor.
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Figure 9.7: Rankings obtained with Frank FNAC
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Figure 9.8: Rankings obtained with one-parametric Clayton copula

Detailed Analysis of Two Characteristic Examples

The effectiveness of the proposed copula-based DSS can be best illustrated by detailed analysis of two
characteristic cases. One case refers to the dominance of the not satisfactory grade and the other on
ranking of motors whose quality belongs between two adjacent grades.

The First Case From the expert’s preferences (see Table 9.3) it is clearly visible that if any of the
attributes acquires a value that belongs to the grade not satisfactory, the examined motor will obtain
overall qualitative rank that belongs to the lowest class. The 744th EC motor is the case with the highest
quality rank from the class of not satisfactory motors. The measured features for this motor are given in
Table 9.2.

From Table 9.2 it is visible that the rotor quality belongs to the highest grade, denoted as top. Namely,
the values of frot , 2× frot and Variance belong to the interval [5±0.5], where the first value denotes the
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class top. Additionally, one may notice that bearing features mostly belong to the qualitative class good,
for instance Ft f , Bp f o and Bp f i which have values in the interval [2± 0.5], and very good, such as
2×Bp f o, 2×Bp f i and 2×Bs f that have values in the interval [3± 0.5]. Unlike them one feature
describing the condition of the rolling element Bs f has a value that belongs to the interval [1± 0.5],
which is a quantitative employment of the not satisfactory class. This qualitative value is propagated
through all levels of the hiearhical structure of the model, hence leading to not satisfactory evaluation
of the higher level aggregated attributes Roll elements, Bearing quality and final qualitative evaluation
of Mechanical quality. Consequently, the overall quality rank is just 1.333, which clearly states that the
particular EC motor is of not satisfactory quality.

The second case The second case is the 9th EC motor, whose overall quality rank is 3.3056, which
belongs to the qualitative class very good. The calculated features for this EC motor are given in the last
column in Table 9.2.

According to the measured features, the bearing quality of the 9th motor can be easily graded as
very good, since most of the features have value from the interval spanned by this grade. Still, the qual-
itative value of the attribute 2×Bpfo is good, and this value is propagated up in the hierarchy leading to
qualitative evaluation of Bearing Quality to good, as defined by the expert’s preferences. Rotor features,
on the other hand, undoubtedly state that this particular case has top quality of the rotor. Consequently,
the overall motor quality is very good, however, the numerical rank suggests that the quality is very close
to the next higher class excellent. These examples show that the hierarchy of attributes aids the process
of integration of expert’s preferences into the final quality evaluation of motors.

Differences in rankings between linear and copula-based models Additionally, we have examined
the differences in rankings for different values of q ∈ {0.1,0.25,0.75,0.9} and QQ, and compared it
with the rankings of the model built with q = 0.5, which are presented in Figure 9.9. It may be noticed
that ranking variations in the different copula-based models are substantially smaller than the ranking
variations obtained by QQ. QQ fails to distinguish among 29 pairs of motors, which it ranked the same.
Therefore this ranking is considered less appropriate than the copula-based method.
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Figure 9.9: Differences in rankings between models built with different quantiles q and QQ, and the
selected model built with q = 0.5

9.1.7 Discussion

The quality ranking of EC motors was regarded as a hierarchical decision making task, in which the final
motor’s quality is aggregated from the quality of its components. The proposed solution is a copula-
based decision support system. The input of the system is a set of measured features calculated from the
acquired vibrations generated by the examined EC motor. Furthermore, the system employes available
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expert’s knowledge condensed in DEX qualitative decision table. Employing copula-based regression
functions resulted in a full quality ranking of EC motors. The system was evaluated on a batch of 840
motors.

The merging of expert’s knowledge with DEX, and employment of copula-based regression leads to
a final evaluation system with four properties. First, the qualitative evaluation of each EC motor pro-
vides easily understandable quality description. Second, the system has ability of distinguishing small
variations of the input features. Therefore, each EC motor is assigned a quantitative value, leading to dis-
tinct evaluation of all EC motors in the test batch. Third, the hierarchical decomposition of the problem
gives explanation how the qualities of each of the lower level components lead to the final evaluation.
Therefore, besides the process of quality assessment, such a system can be seamlessly employed as a
fault detection module that is able to perform fault evaluation too. Finally, the proposed evaluation sys-
tem for EC motors leads to rankings that are fully in compliance with the decision maker’s (or expert’s)
preferences and the required regulations.

The output of the proposed quality assessment system was employed for deciding whether the pro-
duced EC motor satisfies the proposed quality requirements. Besides this application, there are two more
immediate possibilities for its usage. First, the output of this system can also be used for monitoring
and supervisory control of the production process, i.e. it can be used as input for any subsequent man-
ufacturing execution system. Second, the same concepts applied for the implementation of the quality
assessment system can be employed for on-line condition monitoring of running motors. The overall
quality assessment as well as the intermediate outputs can be used as features for estimating the motor’s
remaining useful life.

9.2 Assessment of Workflows

In this section a one-parametric copula-based regression model and a QQ-based model are proposed for
assessment of data-mining workflows (DW). The DEX model for the DW has been developed in the
frame of the FP7 STREP project e-LICO (eLICO, 2012). In this section two approaches for modification
of the second stage of QQ are examined. In the first one, different functions are investigated for the
estimation of the weights wi in (3.1) based on the impurity functions (4.4)–(4.6) defined in Section 4.1.
In the second approach one-parametric copula-based regression functions are employed in order to rank
the different DW.

9.2.1 Data-Mining Workflow Assessment

The aim of the DW assessment is to provide a set of measures that describe individual workflows
(Žnidaršič et al., 2011). An example of a DW is given in Figure 9.10 (Antulov, 2011; Bošnjak et al.,
2011). The workflows may be described with different attributes such as the number of nodes, number
of edges, number of paths, density of paths etc. These attributes were used to build a qualitative multi-
attribute evaluation model using DEXi. The model tree and the preferential values of the attributes are
shown in Table 9.4. In the model in Table 9.4, the basic attributes are given in plain letters, while the
aggregated attributes are given with upper case letters. The attributes’ left-most and right-most values
are the least and most preferred ones, respectively. Each aggregated attribute has an associated utility
function such as the one given for the attribute Robustness in Table 9.7, in columns A–D. For the purpose
of performing regression for option ranking, these qualitative utilities are mapped into quantitative ones,
as shown in columns A1–D1.



Applications of Copula-Based Method for Option Ranking 93

SVD decompo... Declare Missin...

K reduction def

Filter Examples Select Attribut...

inp

inp

in

in

in

in

out

out

exa exa exa exa exa exa

orioriori

out

out

Filter Example...

exa exa

ori

ProcessingCross Distances

out

out

in

inref

ref

req

req res

Data to Weights

exa

exa

wei

Join

joilef

rig

Postprocessing

in

in

in res

resout

out

Figure 9.10: Example of a workflow for a collaborative filtering recommender system (Antulov, 2011;
Bošnjak et al., 2011)

Figure 9.11: Example of DEX hierarchical tree for assessment of data-mining workflows

9.2.2 Models for Ranking DW Options

To provide option ranking within each class, different linear regression functions were developed us-
ing the QQ method and its modifications for weights estimation in (3.1) based on the impurity func-
tions (4.4)–(4.6). Firstly, the qualitative values are mapped into quantitative one, using a mapping
function which preserves the order of the qualitative attributes’ values. Such example is given in Ta-
ble 9.7, where the qualitative values of the attributes A, B, C and D are mapped into quantitative val-
ues A1, B1, C1 and D1. The preferential values for the attributes A and B are {low, medium, high},
where the value of high is most preferred, in contrast to the the value of low which is least preferred.
The qualitative values {low, medium, high} are mapped into the ordered numbers {1,2,3}, respec-
tively. On the other hand, the preferential values for attribute C are {high, medium, low}, where
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Table 9.4: DEXi model tree and attribute scales for assessment of data-mining workflows

Attribute Scale

OVERALL ASSESSMENT
UNDERSTANDABILITY

Interpretability
Familiarity
COMPLEXITY

SIZE
NumNodes
NumEdges

CONTROL FLOW
INTERCONNECTEDNESS

NumPaths
Density

SplitJoints
Modularity

GRAPH DEGREE
AverageGD
MaxGD

ROBUSTNESS
Generality
NoiseSensitivity
Scalability

bad, acceptable, appropriate, good, excellent
very low, low, medium, high, very high
low, medium, high
low, medium, high
very high, high, medium, low, very low
high, medium, low
high, medium, low
high, medium, low
bad, acceptable, good
high, medium, low
many, some, few
high, medium, low
high, medium, low
poor, good
high, medium, low
high, medium, low
high, medium, low
very low, low, medium, high, very high
low, medium, high
high, medium, low
low, medium, high

the value of low is most preferred, while the value of high is least preferred. Therefore, the values
{high, medium, low} are mapped into the ordinal numbers {1,2,3}, respectively, hence ensuring that
preference order is kept in the quantitative space. In the same manner, the preferential values of the
attribute D, {very low, low, medium, high, very high}, are mapped into {1,2,3,4,5}, respectively.

9.2.3 Experimental Evaluation

For each aggregated attribute given in Table 9.4, a proper quantitative model is defined. For example,
the qualitative model of the attribute Size given in Table 9.5 is maped into a quantitative one presented in
the first three columns in the Table 9.6. The quantitative model is used to develop six linear regression
functions based on the linear QQ method and a one-parametric copula-based regression functions. An
example of the ranking with QQ and the Frank one-parametric copula is given in the last two columns of
the Table 9.6, denoted as QQ, for the ranking with QQ and FC for the ranking with the Frank copula. The
obtained numbers show that the copula-based method provides six different ranking levels, unlike QQ,
which provides five different ranking levels. All of the linear regression methods based on QQ provide
the same number of ranking levels for options in the symmetric decision tables.

Examples of evaluating different workflows using Frank copula Four DW are presented to demon-
strate the copula-based evaluation of different workflows. All of them are qualitatively ranked as ‘good’
by the model given in Table 9.4. The first two DWs, DW1 and DW2, are differently evaluated on several
attributes: Familiarity, COMPLEXITY , SIZE, NumNodes, NumEdges, Generality, NoiseSensitivity
and Scalability. The quantitative values of the attributes of the two workflows, DW1 and DW2, are
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Table 9.5: Aggregation of the attribute
Size

No. NumNodes NumEdges Size

1 high high high
2 high medium high
3 high low medium
4 medium high high
5 medium medium medium
6 medium low low
7 low high medium
8 low medium low
9 low low low

Table 9.6: Quantitative mapping of the at-
tribute Size

NumNodes NumEdges Size QQ FC

1 1 1 0.8333 0.6852
1 2 1 1.1667 0.9191
1 3 2 2.0000 1.7680
2 1 1 1.1667 0.9191
2 2 2 2.0000 2.1193
2 3 3 2.8333 2.7631
3 1 2 2.0000 1.7680
3 2 3 2.8333 2.7631
3 3 3 3.1667 3.1561

given in Table 9.8, where basic attributes are given with plain letters, while the aggregated attributes are
given with upper case letters. Their copula-based regression values using one-parametric Frank copula
are given in Table 9.9. In the Table 9.9 all values are in the intervals c± 0.5, hence one may use them
for ranking of options. For example, the value of the attribute OveralWFAss for both options DW1 and
DW2 in Table 9.8 is 4, however DW1 has greater or equal values for all attributes except NoiseSensitivity.
The difference is reflected in the regression values for Size, Robustness and OverAllAssessment given
in the columns DW1 and DW2 in Table 9.9. The difference is propagated up to the topmost attribute
OveralWFAss resulting in greater ranking of DW1 than DW2.

The other two workflows, ‘Mod 1 of DW1’ and ‘Mod 2 of DW1’, represent modifications of DW1.
They show how minor changes in some of the attributes affect the overall evaluation of the model.
Therefore two modifications of the aggregated attribute Robustness of DW1 are investigated, by changing
the values of the basic attributes Generality and NoiseSensitivity. The results are given in the last two
columns ‘Mod 1 of DW1’ and ‘Mod 2 of DW1’ in the Table 9.9. In the first modification, the values of
the two attributes NoiseSensitivity and Generality change. The value of the OverAllAssesment increases
leading to better rank than DW1. In ‘Mod 2 of DW1’, the values of Generality and NoiseSensitivity
are exchanged with those in DW1. The final evaluation is given in Table 9.9. Results show that the
evaluation of DW1 and ‘Mod 2 of DW1’ remain the same, due to the change in the symmetric attribute.

These results demonstrate two things. Firstly, one-parametric copula-based methods may provide
more ranking levels than the linear models. Secondly, the small changes in the basic attributes lead to
different copula-based regression values, and to different rankings within the same class. At the same
time, the symmetric property of the decision tables is kept.
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Table 9.7: Utility function (A-D) and mapping from the qualitative attributes into quantitative ones (A1
- D1). Basic attributes are: A - Generality, B - Scalability and C - NoiseSensitivity. The aggregated
attribute is D - Robustness.

No A B C D A1 B1 C1 D1

1 ’low’ ’low’ ’high’ ’very low 1 1 1 1
2 ’low’ ’med’ ’high’ ’low’ 1 2 1 2
3 ’low’ ’high’ ’high’ ’low’ 1 3 1 2
4 ’low’ ’low’ ’med’ ’low’ 1 1 2 2
5 ’low’ ’med’ ’med’ ’low’ 1 2 2 2
6 ’low’ ’high’ ’med’ ’med’ 1 3 2 3
7 ’low’ ’low’ ’low’ ’low’ 1 1 3 2
8 ’low’ ’med’ ’low’ ’med’ 1 2 3 3
9 ’low’ ’high’ ’low’ ’med’ 1 3 3 3
10 ’med’ ’low’ ’high’ ’low’ 2 1 1 2
11 ’med’ ’med’ ’high’ ’low’ 2 2 1 2
12 ’med’ ’high’ ’high’ ’med’ 2 3 1 3
13 ’med’ ’low’ ’med’ ’low’ 2 1 2 2
14 ’med’ ’med’ ’med’ ’med’ 2 2 2 3
15 ’med’ ’high’ ’med’ ’med’ 2 3 2 3
16 ’med’ ’low’ ’low’ ’med’ 2 1 3 3
17 ’med’ ’med’ ’low’ ’med’ 2 2 3 3
18 ’med’ ’high’ ’low’ ’high’ 2 3 3 4
19 ’high’ ’low’ ’high’ ’low’ 3 1 1 2
20 ’high’ ’med’ ’high’ ’med’ 3 2 1 3
21 ’high’ ’high’ ’high’ ’med’ 3 3 1 3
22 ’high’ ’low’ ’med’ ’med’ 3 1 2 3
23 ’high’ ’med’ ’med’ ’med’ 3 2 2 3
24 ’high’ ’high’ ’med’ ’high’ 3 3 2 4
25 ’high’ ’low’ ’low’ ’med’ 3 1 3 3
26 ’high’ ’med’ ’low’ ’high’ 3 2 3 4
27 ’high’ ’high’ ’low’ ’very high’ 3 3 3 5
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Table 9.8: Example of workflow options

Attributes DW 1 DW 2 Mod 1 of DW 1 Mod 2 of DW 1
OVERALL ASSESSMENT 4 4 4 4
UNDERSTANDABILITY 3 3 3 3
Interpretability 1 1 1 1
Familiarity 3 2 3 3
COMPLEXITY 4 3 4 4
SIZE 3 1 3 3
NumNodes 2 1 2 2
NumEdges 3 2 3 3
CONTROL FLOW 3 3 3 3
INTERCONECTEDNESS 3 3 3 3
NumPaths 2 2 2 2
Density 3 3 3 3
SplitsJoins 2 2 2 2
Modularity 2 2 2 2
GRAPH DEGREE 2 2 2 2
AverageGD 2 2 2 2
MaxGD 2 2 2 2
ROBUSTNESS 3 3 3 3
Generality 3 2 2 1
NoiseSensitivity 1 2 2 3
Scalability 2 3 2 2

Table 9.9: Evaluation of different workflows using one-parametric Frank copula

Attributes DW 1 DW 2 Mod 1 of DW 1 Mod 2 of DW 1
OVERALL ASSESSMENT 3.7088 3.6266 3.7165 3.7088
UNDERSTANDABILITY 2.6103 1.6224 2.6103 2.6103
COMPLEXITY 3.6024 2.5797 3.6024 3.6024
SIZE 2.7631 0.9192 2.7631 2.7631
CONTROL FLOW 2.6222 2.6222 2.6222 2.6222
INTERCONECTEDNESS 2.7433 2.7433 2.7433 2.7433
GRAPH DEGREE 2.0082 2.0082 2.0082 2.0082
ROBUSTNESS 2.6020 2.7727 2.6943 2.6020
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10 Conclusions

10.1 Contributions of the thesis

This thesis addresses the problem of full, monotonic and consistent ranking of a set of qualitative multi-
attribute options which are derived with the DEX methodology. The existing QQ algorithm, developed
for this purpose, is based on the assumption that when qualitative data are suitably mapped into discrete
quantitative ones, they form monotone or nearly linear functions. The main limitation of QQ is that
in many cases it fails to model non-linear functions. Consequently, the main goal of this thesis was to
present a methodology that overcomes this limitation.

The main novelty of the work in this thesis can be associated with three most relevant results:

1. We have proposed four different and novel QQ-based methods for estimating a regression func-
tion, including the use of impurity functions for weights estimation in linear regression functions,
the use of polynomial functions for regression, the use of optimization techniques for providing
a regression function. The main focus is on the fourth method, i.e., hierarchical copula-based
constructions for regression.

2. We have experimentally evaluated and compared the proposed methods.

3. We have applied the proposed copula-based solution on two real case examples.

The search for a regression function in all four proposed methods initially exploits the existing QQ
method, which maps the qualitative options into discrete quantitative ones and then employes linear re-
gression with least squares for ranking. In the first proposal, QQ is modified by introducing impurity
functions for weights estimation in the linear regression function: χ2, information gain and three esti-
mators of the Gini index (the Gini covariance, the Gini population and the Gini Breiman). The second
proposal introduces polynomial functions by employing the CIPER and the New CIPER algorithms to
heuristically search for the best polynomial for ranking. The third proposal redefines the problem as a
constraint optimization problem. It tries to find a function that fulfills the constraints arising from the
requirement of consistent ranking of options. The final method proposes a replacement of the linear
functions in QQ with copula-based functions. This approach leads to the usage of FNACs and PNACs
built with three kinds of bi-variate Archimedean copulas: Frank, Clayton and Gumbel. The usage of
bi-variate copulas for ranking led to the following novelties:

• We have developed an algorithm for using simple bi-variate copulas as aggregation functions for
ranking of multi-attribute options;

• we have derived quantile regression equations for the FNAC and PNACs, which allow positioning
of the dependent variable at arbitrary leaf position in FNAC and PNACs;

• we have developed an algorithm for using the copula-based method in hierarchically connected
decision tables by introducing censoring.
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An important advantage of the proposed copula-based method is the use of distribution functions of
attributes in the modeling process, instead of the attribute values. This makes the method applicable
to attributes with different scale units (for example kilometers, seconds, intervals), or for scale-free
attributes. Furthermore, the introduction of copulas for solving the task of full ranking of discrete options
does not limit the method to only one type of variables. It can be used without modification for continuos,
probabilistic or combined attributes.

Having defined the four modifications of QQ, the next step was their evaluation. To achieve the
evaluation and comparison of all methods, three artificially generated data sets of decision tables were
designed. To assess the performance of each of the methods, monotonicity (2.3), full ranking (2.4) and
consistency (2.5) were examined for each decision table. The experiments lead to the conclusion that the
Gini population measure provides results fastest and solves most of the cases. However, there are several
advantages of copulas that were evident from the simulations:

• Copula functions can provide more ranking levels for options in symmetric or partially symmet-
ric decision tables. These are cases where QQ methods provide the same weight value for the
symmetric attributes.

• Unlike all other examined methods, which provide only one solution of full rankings, copulas can
provide all different possible combinations of allowed rankings, due to the different FNACs and
PNACs that may be built.

The applicability of the copula-based method is presented on two real cases of hierarchical models.
The results show that the method performs well for modeling non-linear qualitative decision tables.

Finally, the copula-based algorithms were implemented in MATLAB. MATLAB provides functions
only for the basic calculations of bi-variate copula. To be able to perform the experiments, a toolbox
was developed which covers building of FNACs, PNACs and regression with hierarchical copulas on a
hierarchical setting of decision tables. Another toolbox was developed for performing regression with
impurity functions for a hierarchical setting of decision tables and several functions were developed
to automatically define constrains, i.e., possible objective functions for a given decision table in the
algorithm that uses optimization for providing a regression function.

We can thus conclude that modeling with copulas is a good choise for aggregation of the numerical
utilities of qualitative decision options.

10.2 Future Work

The presented results which cover the copula-based method for option ranking raise the following chal-
lenges:

1. The first one is to include different types of mappings from the qualitative to the quantitative space,
and investigate the sensitivity of the copula-based method when the mapping changes;

2. The second is to investigate the usage of different copula families for option ranking;

3. Probably the biggest challenge would be to determine patterns for mixing different copula families
in the FNACs and PNACs which would guarantee monotonicity of the constructions and provide
full ranking of options simultaneously.

Other research directions for future work arise from the optimization approach, where improvement
of results may be expected with:
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1. More careful design of the objective function (for example minimization of the error between the
estimated class attribute and the real class value) and/or

2. Relaxing the constraints, i.e., define constraints for comparable options so that the monotonicity
holds;

3. Introducing the third stage of QQ to ensure consistence between QDT and DT.
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Appendix

A Distribution of results with different tables

No. Method Fully ranked (%) Breached
monotonicity (%)

1 QQ 8.90 91.10
2 Frank 49.72 0
3 Gumbel 63.56 0
4 Clayton 36.18 0
5 All copulas 73.23 0

Table 1: Distribution of full ranking results of tables with two input and one output attributes

No. Method Fully ranked (%) Breached
monotonicity (%)

1 QQ 5.20 94.80
2 Frank 41.14 0
3 Gumbel 20.00 0
4 Clayton 26.10 0
5 All Copulas 52.44 0

Table 2: Distribution of full ranking results of tables with three input and one output attribute.

No. Method Fully ranked (%) Breached
monotonicity(%)

1 QQ 0.09 99.91
2 Frank 84.01 0
3 Gumbel 80.00 0
4 Clayton 96.38 0
5 All Copulas 99.03 0

Table 3: Distribution of full ranking results of tables with four input and one output attributes



Copula type Constructed tables (%) Full ranking (%)

Clayton FNAC 84.21 84.21
Clayton PNAC 14.71 12.26

Frank FNAC 83.03 83.03
Frank PNAC 1.91 1.91

Gumbel FNAC 78.98 78.98
Gumbel PNAC 1.3 1.13

Table 4: Distribution of the tables solved with copulas with four input and one output attribute

No. of dataset No. of tables # obtained solutions (%) Monotonicity fulfilled (%)

1 19 683 0.4014 0.1575
2 2 278 734 0 0
3 1 000 000 0 0

Table 5: Time execution in seconds of different methods averaged over 100 calculations

No. of dataset No. of tables Monotonic (%) # solutions fulfilling monotonicity
and without ties (%)

1 19 683 79.08 0.8230
2 2 278 734 89.79 0.0018
3 1 000 000 59.69 0

Table 6: Polynomial interpolation with CIPER

No. of dataset No. of tables Monotonic (%) # solutions fulfilling monotonicity
and without ties (%)

1 19 683 16.99 14.88
2 2 278 734 0.0006 0.0001
3 1 000 000 0.01 0.01

Table 7: Polynomial interpolation with CIPER NEW

Table 8: Percentage of fully ranked tables obtained with QQ modified with impurity functions

Method Dataset 1 (%) Dataset 2 (%) Dataset 3 (%)

gB 67.23 66.64 86.84
gC 30.65 11.79 57.67
gP 93.08 96.57 99.91
IG 75.85 80.61 95.76
χ2 77.71 66.64 86.84
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B Illustrative examples: rankings with different methods

This Appendix provides results from different methods on the examples provided in Chapter 8, which
are provided in Tables 9, 11 and 13. For each result, the three properties are checked: monotonicity (2.3),
full ranking (2.4) and consistency (2.5), which are given in Tables 10, 12 and 14. Bolded numbers in
Tables 9, 11 and 13 represent ties in the results.

B.1 Appendix to Section 8.1

Table 9 gives the rankings obtained with modified QQ methods, CIPER and New CIPER, while Table 10
tells which of the properties: monotonicity (2.3), full ranking (2.4) and consistency (2.5), are fulfilled by
each method. None of the methods fulfill all three properties.

Table 9: Rankings obtained by different methods: FNACs solves the breaching monotonicity

No. A1 A2 A3 A4 Cls gB gCov gPop InfG χ2 CIP. New CIP.

1 4 2 5 1 1 0.8125 1.1667 0.9463 0.8354 0.8125 3 2.0416
2 4 5 3 2 1 1.2344 0.6806 1.1707 1.2273 1.2344 3 2.9505
3 2 2 3 4 1 0.7656 0.8056 0.7824 0.7727 0.7656 3 3.0265
4 3 1 5 4 1 0.9375 1.3194 1.0995 0.9739 0.9375 3 1.6342
5 3 2 4 5 1 1.1406 1.1250 1.2176 1.1666 1.1406 3 2.4236
6 2 4 1 1 2 1.7832 1.6327 1.7224 1.7699 1.7832 3 3.1766
7 4 1 4 1 2 1.8363 2.2653 1.9304 1.8528 1.8363 3 2.3653
8 2 1 2 2 2 1.6504 1.9184 1.6667 1.6538 1.6504 3 3.4481
9 5 5 1 4 2 2.3496 1.8469 2.2995 2.3462 2.3496 3 3.2981
10 1 4 5 5 2 2.2345 2.3673 2.3333 2.2496 2.2345 3 2.8781
11 3 5 1 2 3 2.7931 2.6368 2.7402 2.7838 2.7931 3 2.8122
12 5 1 4 3 3 2.8793 3.3632 3.0500 2.9300 2.8793 3 2.7924
13 2 5 5 3 3 3.2069 3.2684 3.2598 3.2162 3.2069 3 2.7848
14 3 4 2 5 3 3.1897 2.9526 3.1207 3.1869 3.1897 3 2.9813
15 2 3 4 5 3 3.0690 3.2579 3.1501 3.0945 3.0690 3 2.6771
16 5 3 3 1 4 3.8033 4.0047 3.8442 3.8122 3.8033 3 3.3753
17 1 4 1 3 4 3.6393 3.6215 3.6312 3.6376 3.6393 3 3.5883
18 4 3 2 3 4 3.8279 3.9019 3.8389 3.8329 3.8279 3 3.3261
19 3 3 3 3 4 3.8033 4.0047 3.8442 3.8122 3.8033 3 2.9506
20 5 5 5 5 4 4.3607 4.3785 4.3688 4.3624 4.3607 3 3.0927
21 1 1 1 1 5 4.6250 4.6512 4.6250 4.6250 4.6250 3 4.1451
22 5 2 2 2 5 5.0735 5.0233 5.0627 5.0744 5.0735 3 3.7740
23 1 3 2 2 5 4.8824 4.8023 4.8697 4.8780 4.8824 3 3.6427
24 1 2 3 4 5 4.9853 5.1047 5.0051 4.9891 4.9853 3 3.3739
25 4 4 4 4 5 5.3750 5.3488 5.3750 5.3750 5.3750 3 2.8397
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Table 10: Fulfillment of properties by different methods for the example in Table 9

Method Monotonicity (2.3) Full ranking (2.4) Consistency (2.5)

gB yes no yes
gC yes no yes
gP yes no yes
IG yes no yes
χ2 yes no yes

CIPER yes no no
New CIPER no yes no

B.2 Appendix to Section 8.2

Table 11 gives the rankings obtained with modified QQ methods, CIPER and New CIPER, while Table 12
tells which of the properties: monotonicity (2.3), full ranking (2.4) and consistency (2.5), are fulfilled by
each method. None of the methods fulfill all three properties.

Table 11: Rankings obtained by different methods: PNACs solves the breaching monotonicity

No. A1 A2 A3 A4 Cls gB gCov gPop InfG χ2 CIP. New CIP.

1 2 4 1 1 1 0.7079 0.6303 0.7108 0.7104 0.7079 3 3.8170
2 5 2 2 2 1 1.0787 1.0806 1.0630 1.0728 1.0787 3 2.5633
3 5 1 4 3 1 1.2921 1.3602 1.2892 1.2896 1.2921 3 1.9889
4 2 2 3 4 1 1.0787 1.0806 1.0493 1.0807 1.0787 3 2.9001
5 3 1 5 4 1 1.2809 1.3697 1.2815 1.2848 1.2809 3 2.2367
6 4 2 5 1 2 1.8814 2.1516 1.9219 1.8838 1.8814 3 2.5663
7 2 1 2 2 2 1.6186 1.7254 1.6182 1.6184 1.6186 3 3.0694
8 4 4 4 4 2 2.1442 2.0533 2.1454 2.1447 2.1442 3 2.7811
9 1 4 5 5 2 2.0737 1.9631 2.0790 2.0797 2.0737 3 3.1200
10 5 5 5 5 2 2.3814 2.2746 2.3818 2.3816 2.3814 3 2.5205
11 4 3 2 3 3 2.8475 2.7778 2.8301 2.8413 2.8475 3 2.9181
12 3 3 3 3 3 2.8136 2.8120 2.8278 2.8152 2.8136 3 3.0244
13 3 4 2 5 3 3.1864 2.7350 3.1341 3.1848 3.1864 3 3.0508
14 3 2 4 5 3 3.1864 3.2650 3.1722 3.1848 3.1864 3 2.3587
15 2 3 4 5 3 3.1525 3.0342 3.1508 3.1587 3.1525 3 2.8006
16 5 3 3 1 4 3.9635 4.1394 4.0309 3.9627 3.9635 3 2.7714
17 4 1 4 1 4 3.7760 4.3333 3.8475 3.7738 3.7760 3 2.4526
18 1 4 1 3 4 3.6927 3.6667 3.6977 3.6947 3.6927 3 3.8517
19 2 5 5 3 4 4.2135 4.0727 4.3023 4.2291 4.2135 3 3.4942
20 5 5 1 4 4 4.3073 3.9636 4.3023 4.3053 4.3073 3 3.2377
21 1 1 1 1 5 4.6468 4.8661 4.6439 4.6465 4.6468 3 3.4590
22 3 5 1 2 5 5.1468 4.7165 5.1314 5.1465 5.1468 3 3.8143
23 1 3 2 2 5 4.9246 4.8661 4.9223 4.9273 4.9246 3 3.6623
24 4 5 3 2 5 5.3532 5.0866 5.3561 5.3535 5.3532 3 3.4263
25 1 2 3 4 5 5.0992 5.2835 5.0735 5.0991 5.0992 3 3.1363
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Table 12: Fulfillment of properties by different methods for the example in Table 11

Method Monotonicity (2.3) Full ranking (2.4) Consistency (2.5)

gB yes no yes
gC no no yes
gP yes no yes
IG yes no yes
χ2 yes no yes

CIPER yes no no
New CIPER no yes no
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B.3 Appendix to Section 8.3

Table 13 gives the rankings obtained with modified QQ methods, CIPER and New CIPER, while Table 14
tells which of the properties: monotonicity (2.3), full ranking (2.4) and consistency (2.5), are fulfilled by
each method. Only New CIPER fulfills all three properties.

Table 13: Rankings obtained by different methods: symmetric attributes

No. A1 A2 A3 Cls gB gCov gPop InfG χ2 CIP. New CIP.

1 1 1 1 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.1111 1.2559
2 2 1 1 2 1.8750 1.8750 1.8750 1.8750 1.8750 1.6667 1.7333
3 3 1 1 2 2.1250 2.1250 2.1250 2.1250 2.1250 2.2222 2.2379
4 1 2 1 2 1.8750 1.8750 1.8750 1.8750 1.8750 1.6667 1.7587
5 2 2 1 2 2.1250 2.1250 2.1250 2.1250 2.1250 2.2222 2.2670
6 1 3 1 2 2.1250 2.1250 2.1250 2.1250 2.1250 2.2222 2.2892
7 1 1 2 2 1.8750 1.8750 1.8750 1.8750 1.8750 1.6667 1.7023
8 2 1 2 2 2.1250 2.1250 2.1250 2.1250 2.1250 2.2222 2.2016
9 1 2 2 2 2.1250 2.1250 2.1250 2.1250 2.1250 2.2222 2.2098
10 1 1 3 2 2.1250 2.1250 2.1250 2.1250 2.1250 2.2222 2.1758
11 3 2 1 3 2.8750 2.8750 2.8750 2.8750 2.8750 2.7778 2.8025
12 2 3 1 3 2.8750 2.8750 2.8750 2.8750 2.8750 2.7778 2.8283
13 3 3 1 3 3.1250 3.1250 3.1250 3.1250 3.1250 3.3333 3.3946
14 3 1 2 3 2.8750 2.8750 2.8750 2.8750 2.8750 2.7778 2.7280
15 2 2 2 3 2.8750 2.8750 2.8750 2.8750 2.8750 2.7778 2.7446
16 3 2 2 3 3.1250 3.1250 3.1250 3.1250 3.1250 3.3333 3.3066
17 1 3 2 3 2.8750 2.8750 2.8750 2.8750 2.8750 2.7778 2.7449
18 2 3 2 3 3.1250 3.1250 3.1250 3.1250 3.1250 3.3333 3.3152
19 2 1 3 3 2.8750 2.8750 2.8750 2.8750 2.8750 2.7778 2.6970
20 3 1 3 3 3.1250 3.1250 3.1250 3.1250 3.1250 3.3333 3.2453
21 1 2 3 3 2.8750 2.8750 2.8750 2.8750 2.8750 2.7778 2.6880
22 2 2 3 3 3.1250 3.1250 3.1250 3.1250 3.1250 3.3333 3.2493
23 1 3 3 3 3.1250 3.1250 3.1250 3.1250 3.1250 3.3333 3.2278
24 3 3 2 4 4.0000 4.0000 4.0000 4.0000 4.0000 3.8889 3.9128
25 3 2 3 4 4.0000 4.0000 4.0000 4.0000 4.0000 3.8889 3.8379
26 2 3 3 4 4.0000 4.0000 4.0000 4.0000 4.0000 3.8889 3.8293
27 3 3 3 5 5.0000 5.0000 5.0000 5.0000 5.0000 4.4444 4.4580
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Table 14: Fulfillment of properties by different methods for the example in Table 13

Method Monotonicity (2.3) Full ranking (2.4) Consistency (2.5)

gB yes no yes
gC yes no yes
gP yes no yes
IG yes no yes
χ2 yes no yes

CIPER yes no yes
New CIPER yes yes yes



C Specific derivations for multi-variate Frank and Gumbel copulas

C.1 Specific derivation for multi-variate Frank copula

The generator function

ϕ(x) =− ln
(

e−θx−1
e−θ −1

)
. (1)

First derivative of the generator (1)

dϕ

dx
=

θe−θx

e−θx−1
.

The inverse generator for Frank copula is:

ϕ
−1(x) = 1+

x− ln
(
1− eθ + eθ+x

)
θ

. (2)

Finally, the derivative of the inverse generator (2) of order i is:

diϕ−1

dxi =
eθ −1

θ

eθ+x

(eθ − eθ+x−1)i

×
i−1

∑
j=1

Bi−1, je(i− j−1)(θ+x)
(

eθ −1
) j−1

,

where Bi, j = (i− j+1)Bi−1, j−1 + jBi−1, j and Bi1 = Bii = 1.

C.2 Specific derivation for multi-variate Gumbel copula

The generator function of Gumbel copula is given with:

ϕ(x) = (− lnx)θ . (3)

The first derivative of the generator (3)

dϕ

dx
=

(− lnx)θ θ

x lnx
.

The inverse generator function is:

ϕ
−1(x) = exp

(
−x1/θ

)
. (4)

The first derivative of (4) is:

ϕ
−1[1] =

e−x
1
θ x

1
θ
−1

θ
.

The second derivative of (4) is:

ϕ
−1[2] =

e−x
1
θ x

2
θ
−2

θ 2 −
( 1

θ
−1
)

e−x
1
θ x

1
θ
−2

θ
.
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Third derivative of (4) is:

ϕ
−1[3] =−e−x

1
θ x

3
θ
−3

θ 3 +

( 1
θ
−1
)

e−x
1
θ x

2
θ
−3

θ 2

+

( 2
θ
−2
)

e−x
1
θ x

2
θ
−3

θ 2 −
( 1

θ
−2
)( 1

θ
−1
)

e−x
1
θ x

1
θ
−3

θ
.

Fourth derivative of (4) is:

ϕ
−1[4] =

1
θ 4

{
e−x

1
θ x

1
θ
−4

×
[
6θ

3 +11θ
2
(

x
1
θ −1

)
+ x3/θ −6x2/θ

+7x
1
θ +6θ

(
x2/θ −3x

1
θ +1

)
−1
]}

.

Fifth derivative of (4) is:

ϕ
−1[5] =

1
θ 5

{
e−x

1
θ x

1
θ
−5

×
[
−24θ

4−50θ
3
(

x
1
θ −1

)
−35θ

2
(

x2/θ −3x
1
θ +1

)
−x4/θ +10x3/θ −25x2/θ +15x

1
θ −10θ

(
x3/θ −6x2/θ +7x

1
θ −1

)
−1
]}
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