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Jožef Stefan International Postgraduate School
Ljubljana, Slovenia, May 2013
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Prof. Dr. Marko Bohanec, Chairman, Jožef Stefan Institute, Ljubljana, Slovenia
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Abstract

Many applications, including smart environments, surveillance, human-robot interaction,
and ambient assisted living, involve the problem of learning patterns of agent behavior from
sensor data. Deviant behavior is a pattern in the data that either does not conform to the
expected behavior, that is, anomalous behavior, or matches previously defined unwanted
behavior, that is, suspicious behavior. The present thesis focuses on the detection of be-
havior patterns representing a security risk, health problem, or other abnormal behavior
contingency.

Real-life applications for deviant behavior detection present several challenges. First,
plan recognition research has assumed that atomic actions are either given or can be trivially
obtained, while real-life applications require activity recognition from raw sensor readings.
The second challenge is how to flexibly encode complex, unstructured, daily-living behavior
patterns that do not follow predefined scenarios. Thirdly, deviant behavior may be reflected
on different time scales and different modalities, which raises the question of how to combine
different time scales and modalities into a single evaluation. Finally, many domains include
behavior in which no single event is sufficient to decide whether the behavior is deviant;
therefore, an advanced approach is required to accumulate deviation over time.

This thesis proposes a unified framework to analyze agent behavior from prior knowledge
and external observations in order to detect deviant behavior patterns, regardless of whether
the observed entities are humans, software agents, or even robots. To address the problem of
activity recognition from sensor data, the thesis introduces an activity recognition pipeline
that includes filtering, attribute construction, activity identification, and activity smooth-
ing. From the behavior analysis perspective, we propose a novel, efficient encoding that we
refer to as a spatio-activity matrix. This matrix is able to capture behavior dynamics in a
specific time period using spatio-temporal features, whereas its visualization allows visual
comparison of different behavior patterns. The thesis also provides a feature extraction
technique, based on principal component analysis, in order to reduce the dimensionality of
the spatio-activity matrix. We then introduce a clear problem definition that helps establish
a theoretical framework for detecting anomalous and suspicious behavior from agent traces
in order to show how to optimally perform detection. We discuss why detection error is
often inevitable and prove the lower error bound, and provide several heuristic approaches
that either estimate the distributions required to perform detection or to directly rank the
behavior signatures using machine learning approaches. The established theoretical frame-
work is extended to show how to perform detection when the agent is observed over longer
periods of time and no significant event is sufficient to reach a decision. We specify condi-
tions that any reasonable detector should satisfy, analyze several detectors, and propose a
novel approach, referred to as a F-UPR detector, that generalizes utility-based plan recog-
nition with arbitrary utility functions. The unified framework is demonstrated empirically
in three studies. The first study addresses detection of decreased behavior that indicates
disease or deterioration in the health of elderly persons, while the second study deals with
the detection of suspicious passengers in the airport simulation. Finally, the third study
concerns the verification of persons at an access control point in high-security application.
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Povzetek

Aplikacije na področjih pametnih okolij, video nadzora, interakcije človek-robot in ambi-
entalno podprtega življenja običajno vključujejo problem učenja vzorcev obnašanja agenta
iz senzorskih podatkov. Odklonsko obnašanje je vzorec v podatkih, ki se bodisi ne ujema
s pričakovanim obnašanjem, kar ustreza nenavadnemu obnašanju, bodisi se ujema s pred-
hodno definiranim nezaželenim obnašanjem, kar ustreza sumljivemu obnašanju. Pričujoča
disertacija se osredotoča na detekcijo vzorcev, ki lahko predstavljajo varnostno grožnjo,
zdravstveni problem ali kakršnokoli drugo tveganje, povezano z obnašanjem agenta.

Pri aplikacijah v realnem življenju se soočamo s številnimi izzivi. Raziskave na po-
dročju razpoznavanja planov so predpostavile, da so osnovne akcije agenta podane ali pa
jih je mogoče enostavno pridobiti, medtem ko mnoge aplikacije v realnem življenju zahte-
vajo prepoznavanje akcij iz surovih senzorskih podatkov. Drugi izziv je kako predstaviti
zapleteno, nestrukturirano obnašanje ljudi, ki ne sledijo vnaprej določenim vzorcem. Tretji
izziv predstavlja dejstvo, da se odklonsko obnašanje lahko odraža na različnih časovnih in-
tervalih in preko različnih zaznavnih vhodov, pri čemer se poraja vprašanje kako združevati
različne časovne intervale in zaznavne vhode pri pridobivanju zanesljive ocene obnašanja. In
nenazadnje, v mnogih domenah je prisotno obnašanje, kjer iz posameznega zaznanega do-
godka ni mogoče sklepati ali je obnašanje odklonsko ali ne, zato je potrebno vpeljati pristop,
ki lahko kopiči ocene obnašanja v dalǰsih časovnih obdobjih.

V pričujoči disertaciji predstavimo enoten okvir za analizo obašanja agenta na podlagi
predhodnega znanja in zunanjih opažanj. Namenjen je odkrivanju odklonskega obnašanja
agentov, ne glede na to ali je predmet opazovanja človek, programski agent ali robot. Di-
sertacija najprej predstavi cevovod za razpoznavanje aktivnosti, ki vključuje odstranjevanje
šuma, izdelavo značilk, identifikacijo aktivnosti in izravnavanje šuma pri razpoznavanju. V
nadaljevanju opǐse novo predstavitev, poimenovano prostorsko-akcijska matrika, namenjeno
analizi obnašanja. Z matriko je mogoče z uporabo prostorsko-akcijskih značilk opisati di-
namiko obnašanja v določenem časovnem obdobju ter grafično ponazoriti primerjavo med
različnimi vzorci obnašanja. Predstavljen je postopek, ki s pomočjo analize glavnih kompo-
nent zmanǰsa dimenzije matrike ter poda njene značilke. V disertaciji se nato osredotočimo
na definicijo problema in vzpostavimo formalni okvir za detekcijo nenavadnega in sumljivega
obnašanja. Na podlagi formalnega okvira razložimo, zakaj je napaka pri detekciji običajno
neizogibna, podamo dokaz za spodnjo mejo napake in predstavimo številne približne metode,
ki bodisi neposredno ocenijo porazdelitve, potrebne za detekcijo, bodisi razvrstijo vzorce
obnašanja z uporabo strojnega učenja. Formalni okvir je nato razširjen z možnostjo za-
znavanja odklonskega obnašanja v dalǰsem časovnem obdobju, kjer posamezen dogodek
ne zadostuje za odločitev. Disertacija poda pogoje, ki jih mora detektor izpolnjevati, in
predstavi nov pristop poimenovan detektor F-UPR, ki posploši razpoznavanje planov na
podlagi koristnosti s poljubnimi funkcijami koristnosti. Uporabo enotnega okvira za anal-
izo obnašanja agenta predstavimo v treh empiričnih študijah. Prva študija se nanaša na
detekcijo obnašanja, ki nakazuje poslabšanje zdravstvenega stanja stareǰsega posameznika,
medtem ko se druga ukvarja z detekcijo sumljivih potnikov na simuliranem letalǐskem ter-
minalu. Tretja študija zadeva preverjanje identitete vstopajoče osebe v visoko varovanih
kontrolnih točkah vstopa.
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1 Introduction

The problem of learning behavior patterns from sensor data arises in many applications in-
cluding smart environments, video surveillance, network analysis, human-robot interaction,
and ambient assisted living. Our focus is on detecting behavior patterns that deviate from
regular behaviors and might represent a security risk, health problem, or any other abnormal
behavior contingency. In other words, deviant behavior is a data pattern that either does
not conform to the expected behavior (anomalous behavior) or matches previously defined
unwanted behavior (suspicious behavior). Deviant behavior patterns are also referred to
as outliers, exceptions, peculiarities, surprise, misuse, etc. Such patterns occur relatively
infrequently; however, when they do occur, their consequences can be quite dramatic, and
often negatively so. Typical examples include credit card fraud detection, cyber-intrusions,
and industrial damage.

This thesis targets a large class of problems with complex, spatio-temporal, sequential
data generated by an entity capable of physical motion in environment, regardless of whether
the observed entity is human, software agent, or even robot. In such domains, an agent often
has an observable spatio-temporal structure, defined by the physical positions relative to
static landmarks and other agents in environment. We suggest that this structure, along
with temporal dependencies and patterns of sequentially executed actions, can be exploited
to perform deviant behavior detection on traces of agent activities over time. Examples
of such detection include: elderly persons, who are being monitored in their smart home
and faces a gradual decrease in his health; a reckless driver zigzagging across two lanes; an
attacker that tries to gain access at a high-security access point with a stolen identity; and
a potentially suspicious passenger at the airport that appears to turn away in a presence
of a police officer, but not blatantly so, hence no single observation is enough to raise a
suspicion.

1.1 Problem Formulation

The general problem of deviant behavior detection from an agent’s sequential spatio-temporal
traces is related to the problem of keyhole plan recognition. We use the term agent to denote
an intelligent, independent entity capable of physical motion and action, such as humans,
simulated entities in virtual environments, or robots (Sukthankar and Sycara, 2008). Plan
recognition refers to inferring the plan, or plans, of an intelligent agent from action obser-
vations in the environment (Schmidt et al., 1978). In keyhole plan recognition, the observed
agent is unaware of, or indifferent to, being observed, whereas intended plan recognition
assumes that the agent actively cooperates by choosing actions to make its intentions clear
to the observer. By contrast, obstructed plan recognition assumes that the agent actively
obstructs the plan recognition process (Waern and Stenborg, 1995). Our work follows the
assumptions of keyhole plan recognition, but it is not restricted to plan recognition only;
instead, behavior is represented by patterns, as defined below.

Agents are observed via spatio-temporal traces, a vector time series of the agent’s
physical positions and other sensor data describing the agent’s state, such as inertial infor-
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mation, action, or activity. Such vectors are used to determine agent behavior, a term
that refers to the agent’s responses to various perceptual inputs, whether those responses
are overt or covert, and voluntary or involuntary. In other words, behavior is the range of
actions and mannerisms made by an intelligent agent in conjunction with its environment,
situation, and other agents.

From a complete set of observed spatio-temporal traces, we recognize and identify the
following characteristics:

• Actions and activities: Actions and activities are defined as behavior primitives;
that is, elements that help explain and describe the observed behavior of an agent in
a specific time span.

• Behavior signature: Agent behavior is presented in the form of behavior signa-
ture, such as a plan or pattern that encodes agent actions and responses to a situation
over a period of time.

• Degree of deviation: Behavior signature is compared to reference behavior signa-
tures and expressed as a degree of deviation, which measures the likelihood that the
observed behavior does not conform to the desired behavior.

We use the term deviant behavior to denote agent behavior that deviates from regular
behavior of the same agent or other agents. There are two approaches to deviant behavior
detection (Avrahami-Zilberbrand, 2009): suspicious and anomalous behavior detection.
Suspicious behavior detection assumes a behavior library that encodes negative behavior
signatures; that is, patterns are considered unwanted or suspicious as they correspond to
an identifying match in the library. Anomalous behavior detection uses the behavior
library in an inverse fashion, encoding only positive behavior signatures. When an observed
behavior cannot be matched against the library, it is considered anomalous.

1.2 Challenges

Deviant behavior detection is related to problems such as novelty detection (Markou and
Singh, 2003), rare class mining (Elkan, 2001), chance discovery (Ohsawa, 2009), exception
mining (Luo et al., 2008), and black swan events (Taleb, 2007). The common key challenges
include defining a representative library of behavior signatures, the availability of labeled
data for training/validation, dealing with noisy data, modeling normal behavior that keeps
evolving, and different application domains’ differing notions of an outlier. The class of
problems tackled in this thesis, that is, problems with complex, spatio-temporal sequential
data generated by an agent moving in a physical environment, poses several additional
challenges.

The first challenge is how to recognize atomic activities that constitute behavior patterns.
Previous work in plan recognition assumes that atomic actions are either given or trivially
obtained, while real-life applications require recognition from raw, and often multimodal,
sensor readings.

The second challenge is how to present complex, real-life behavior patterns that do not
follow predefined scenarios. Presentation must be robust and flexible to describe sequential
spatio-temporal traces compactly.

Third, deviant behavior may reflect on (i) different time scales, and (ii) different modal-
ities. For example, an elderly person can quickly start limping after a minor stroke, which
can be detected within hours with accelerometers attached to ankles, or can slowly start
limping due to arthritis, which can be detected by comparing month-to-month behavior of
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daily activities (since the change is not significant for hourly comparison). The question is
how to combine different time scales and modalities into a single evaluation.

Finally, many domains include behavior where no single event is sufficient to decide
whether behavior is deviant or not. There are three issues that need to be addressed.
First, there is no single significant event or incident that would help to immediately reach
a decision; rather the observed sequence is a series of observations that allow a decision.
Second, there is no knowledge about the exact plans devised by the observed agent. Third,
the behavior pattern’s deviance degree depends on the past agent behavior. For example, a
subsequent deviant pattern is evaluated differently than the first one, since the prior behavior
indicates a tendency for deviant behavior. Hence, the simple counting of deviant patterns
cannot be applied, since it accumulates all observations linearly. Furthermore, most of the
plan recognition methods, which rely on a plan library, are insufficient, since plans are not
known in advance. Hence, an advanced approach is required to combine and accumulate
deviation over time.

1.3 Approach and Hypothesis

There are four general evidence classes that are potentially valuable for deviant behavior
detection:

1. spatio-temporal relationship of agent movement between landmarks fixed over a period
of time,

2. temporal dependencies between atomic actions in behavior patterns,

3. time scales and modalities at which behavior patterns are processed, and

4. behavior patterns that can be considered deviant when repeated.

The hypothesis is that it is possible to leverage the available spatio-temporal
cues, temporal dependencies, various time scales and modalities, and repetitive
behavior patterns to detect anomalous and suspicious behavior.

Spatio-temporal relationships and temporal dependencies: Unlike the existing me-
thodology, which tries to recognize exact or flexible behavior patterns or describe them, our
proposed method focuses on activity dynamics and explores the relations between the spa-
tial information and the activities. Spatio-temporal cues assume that the positive behavior
patterns of the observed entity can be learned over time since they remain stable.

Time scales and modalities at which behavior patterns are processed: Most of
the related work focuses on one specific viewpoint, be it in terms of time scale or sensor
modality. Our main idea is to consider various aspects and hypotheses about a behavior
pattern and the environment in order to construct a situational awareness and then, on this
basis, make a reliable deviation estimation.

Repetitive behavior patterns: The main question addressed is how to combine multiple
events to decide whether an event trace corresponds to normal or a deviant agent behavior.

1.4 Scientific Contributions

This thesis led to the following original contributions:
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1. A unified anomalous and suspicious behavior detection framework, incorporating the
elements below, as well as demonstration on real-world domains.

2. Problem definition and theoretical analysis of anomalous and suspicious behavior de-
tection from agent traces, including optimality conditions and error bounds.

3. New heuristic functions for detecting deviant agent behavior observed over longer
periods of time where no significant event is sufficient to reach a decision.

4. New representation of spatio-temporal behavior patterns that allows visual comparison
of various patterns and can be efficiently deployed in anomaly detection algorithms.

5. A comprehensive and flexible approach to activity recognition that addresses sensor
noise and activity mislabeling to provide activity primitives at various abstraction
levels (that is, atomic activities and compound activities).

1.5 Overview of the Thesis Structure

This thesis comprises 11 chapters, organized in two parts as shown in Figure 1.1. Chapter 2
presents the background and surveys the related activity recognition work and anomalous
and suspicious behavior detection.

Chapter 1: Introduction
Chapter 2: Related Work

Part I: Deviant Behavior Detection
Chapter 3: Activity Recognition
Chapter 4: Behavior Signatures
Chapter 5: Anomalous and Suspicious Behavior Detection
Chapter 6: Accumulating Behavior Evaluations Over Time
Chapter 7: A Unified Detection Framework

Part II: Empirical Studies
Chapter 8: Ambient Assisted Living Domain
Chapter 9: Surveillance Domain
Chapter 10: Security Domain

Chapter 11: Conclusions

Figure 1.1: Thesis consists of 11 chapters structured in two parts.

Chapters 3–7 constitute Part I of the thesis, which gradually introduces components of
the unified detection framework. Chapter 3 deals with activity recognition and introduces
activity recognition pipeline as well as compound activity recognition and the recognition
of agent-agent interactions. Chapter 4 then presents the spatio-activity matrix approach
to encode daily-living behavior patterns along with a visualization technique and a dimen-
sionality reduction approach. Next, Chapter 5 establishes a formal detection framework,
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theoretically analyzes detection optimality and error bounds, and proposes several heuris-
tics. Chapter 6 then further extends the framework to address the problem of repeated
detection and proposes the F-UPR approach to accumulating suspicion over time. Finally,
Chapter 7 connects all the components into a unified detection framework.

Chapters 8–10 constitute Part II of the thesis, which demonstrates how the framework
is applied in three real-world domains. First, Chapter 8 focuses on the ambient assisted
living domain, where the goal is to assess an elderly person’s well-being to detect anomalies
in daily-living patterns. Second, Chapter 9 targets a class of applications where no single
event is sufficient to determine whether behavior of an agent is suspicious or not; that
is, suspicious passenger detection at an airport and dangerous driver detection. Third, in
Chapter 10, the unified framework is utilized to improve security at a biometric access point
using several modalities.

Finally, Chapter 11 summarizes the thesis, outlines the main contributions and discusses
future work.

1.6 Publications

A number of previous publications underlie this thesis. The initial work on activity recog-
nition was published by Luštrek and Kaluža (2009). To address the challenges caused
by sensor noise, Kaluža and Dovgan (2009) developed and published pre-processing filter-
ing techniques, while Kaluža (2009) published the removal of spurious activity transitions
(post-processing). The complete activity recognition pipeline was then fully applied and
first published at the European Conference on Ambient Intelligence (Luštrek et al., 2009).
This publication enabled analyzing high-level behavior patterns such as spatio-activity ma-
trices, which in turn was published at the International Conference on Machine Learning
and Data Mining (Kaluža and Gams, 2010) and won the best student paper award. The pa-
per was then further extended and published in Journal of Ambient Intelligence and Smart
Enviroments (Kaluža and Gams, 2012).

The initial ideas for repeated anomalous and suspicious behavior detection’s theoretical
foundations were published at the PAIR workshop at the AAAI Conference on Artificial
Intelligence (Kaluža et al., 2011e), and then distilled along with the F-UPR detector as a
full paper at the International Conference on Autonomous Agents and Multiagent Systems
(Kaluža et al., 2012b).

Empirical studies on the ambient assisted living domain were also published at the Inter-
national Joint Conference on Ambient Intelligence (Kaluža et al., 2010b) and demonstrated
at the European Conference on Artificial Intelligence (Luštrek et al., 2012) and the Inter-
national Conference on Autonomous Agents and Multiagent Systems (Kaluža et al., 2012a).
Results on the security domain were published in the Journal of Ambient Intelligence and
Smart Environments (Dovgan et al., 2010b) and Expert Systems with Applications (Kaluža
et al., 2011c). The comprehensive list of related publications is collected in Appendix B.
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2 Related Work

In this chapter, we review the related work in two research areas: activity recognition, which
includes activity recognition in computer vision and sensor-based activity recognition; and
anomalous and suspicious behavior detection based on pattern analysis, transaction analysis,
and plan recognition.

2.1 Activity Recognition

Activity recognition is the process whereby an agent’s behavior and its situated environ-
ment are monitored and analyzed to infer the undergoing activities (Chen et al., 2012). Re-
searchers from different application domains have investigated activity recognition for the
past decade by developing a diversity of approaches. We broadly classify activity recognition
in categories based on monitoring facilities, which are responsible for capturing contextual
information for activity recognition systems to infer agent’s activity. There are currently two
main activity recognition approaches: vision-based and sensor-based activity recognition.

2.1.1 Vision-Based Activity Recognition

Tracking and understanding the behavior of agents through videos has been a research focus
for a long period due to its important role in areas, such as human-computer interaction and
surveillance. In vision-based activity recognition, researchers have attempted a wide variety
of methods, such as optical flow, Kalman filtering, hidden Markov models, and conditional
random fields, under different modalities such as single camera, stereo, and infrared. In
addition, researchers have considered multiple aspects on this topic, including single agent
tracking, multiple-agent tracking, activity recognition, compound-activity recognition, and
finally recognition of multi-agent interactions.

The activity recognition process is typical composed of four steps, namely agent detec-
tion, agent tracking, activity recognition and then a high-level activity evaluation. Chen
and Khalil (2011) in their review conclude that while significant progress has been made,
vision-based activity recognition approaches suffer from issues related to scalability and re-
usability due to complexity of real world settings; that is, high variability of activities and
environment. In addition, cameras are in some communities perceived as invasive, which
may prevent this approach from large-scale uptake in some applications, such as home en-
vironments.

2.1.2 Sensor-Based Activity Recognition

Sensor-based activity recognition exploits a wide range of sensors, including accelerometers,
RFID tags, audio and motion detectors, to name but a few, to monitor an agent behavior
along with its environment. These sensors differ in purpose, technical infrastructure, output
signals, and underpinning theoretical principles. However, they can be classified in two main
categories in terms they are deployed in activity monitoring applications (Chen et al., 2012):
wearable sensors and embedded sensors.
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Wearable Sensors

Wearable sensors are positioned directly or indirectly on the body of an agent to generate
signals while the agent performs activities. When the observed entity is human, wearable
sensors can be embedded into clothes, eyeglasses, waists, shoes, mobile device, or positioned
directly on the body. They can be used to collect information, such as position, velocity
and acceleration of various body parts, pulse, and skin temperature. In the following, we
summarize the inertial sensors (for example, accelerometers, gyroscopes, magnetometers),
vital sign sensors (heart rate, temperature), and visual markers.

Accelerometer sensors are probably the most frequently exploited wearable sensors, since
they are both inexpensive and effective. The first generation of methods was based on a
tri-axial accelerometer with threshold algorithms (Kangas et al., 2008). Bourke and Lyons
(2008) introduced a threshold algorithm to distinguish between normal activities (sitting
down and standing up, lying down and standing up, getting in and out of a car seat,
walking etc.) and falls. The ability to discriminate was achieved using a bi-axial gyroscope
mounted on the torso, measuring pitch and roll angular velocities. They applied a threshold
algorithm to the peaks in the angular velocity signal, angular acceleration and torso angle
change. The second generation of methods is able to classify activities with machine-learning
methods, such as decision trees, SVM, kNN, and näıve Bayes. Huỳnh et al. (2007) presented
an approach for recognizing daily activities. The movement was sensed by three body-
worn accelerometers, while the recognition of 15 low-level and three high-level activities
was performed using four approaches: k-means clustering, SVM, nearest neighbor classifier,
and hidden Markov models. In the experimental setting the system achieved an accuracy of
69−80% for low-level (for example, sit, eat, walk) and 83−92% for high-level (preparing for
work, shopping, housework) activities. Tapia et al. (2007) presented a real-time algorithm for
automatic recognition of not only physical activities, but also, in some cases, their intensities,
using five wireless accelerometers and a wireless heart rate monitor. The accelerometers
were placed at shoulder, wrist, hip, upper part of the thigh and ankle. The features, for
example, FFT peaks, variance, energy, correlation coefficients, were extracted from time
and frequency domains using a predefined window size on the signal. The classification
of activity was done with C4.5 and näıve Bayes classifiers into three groups: postures (for
example, standing, sitting), activities (for example, walking, cycling) and other activities
(for example, running, using stairs). For these three classes they obtained the recognition
accuracy of 94.6% using subject-dependent training and 56.3% using subject-independent
training. Kwapisz et al. (2011) used an accelerometer placed on the thigh and compared the
results of three classification methods on dynamic activities such as walking, running and
jogging. Banos et al. (2013) proposed a hierarchical-weighted classification that combines
the majority voting and weighted hierarchical aggregation: at the first level each sensor
makes decision about the recognized activity using binary classifiers, while at the next level,
weighted majority vote scheme aggregates the decision in order to make the final decision.

Qian et al. (2004) introduced a gesture-driven interactive dance system capable of real-
time feedback. They used 41 markers on the body recorded by eight cameras with the
frame rate of 120 Hz to construct a human body model. The model was used to extract
features such as torso orientation, angles between adjacent body parts etc., which was used
to represent different gestures. Each gesture was statistically modeled with a Gaussian
random vector defined as the statistical distribution of the features for that gesture. To
recognize a new pose, the likelihood of its feature vector given the vector of each known
gesture was computed. The new pose was classified as the gesture for which this likelihood
was the largest. Experimental results with two dancers performing 21 different gestures
achieved gesture recognition rate of 99.3%. Sukthankar and Sycara (2005) presented a
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system that reconstructs the users posture and recognizes pre-defined behaviors. The data
were captured with 43 body markers and 12 cameras with the sampling rate of 120 Hz.
They constructed a human body model from the raw marker coordinates, and computed
features, for example the angles between body parts, limb lengths, range of motion etc.
from the model. Learning was performed using SVM. The method achieved 76.9% accuracy
in detecting walking, running, sneaking, being wounded, probing, crouching, and rising.
Behavior was defined as a sequence of elementary activities and was modeled with hidden
Markov models. The authors defined a number of behavior models and classified a new
sequence of activities into the model that fit it best.

Our work follows the second-generation acceleration-based activity recognition, but it
demonstrates an approach based on wearable location sensors, where considerable amount
of noise is present. In contrast to related work, it performs activity recognition in pipeline;
that is, noise removal, activity recognition, removal of spurious activity transitions, and
recognition of complex activities. Compared to work by Sukthankar and Sycara (2005) and
Qian et al. (2004), our work deals with two orders of magnitude less accurate location system
and only four location tags.

Activity recognition based on wearable sensors suffers from some limitations (Chen et al.,
2012); that is, most of the sensors need to run constantly and be operated hands-free.
Practical issues involve the user acceptability and ability to wear the sensors, while technical
issues include size, battery life and ease of use. Moreover, wearable sensors may not be
suitable for monitoring activities that include interactions with the environment. As a
result, it is often advantageous to combine wearable sensors with embedded sensors, which
are described bellow.

Embedded Sensors

Embedded sensors, sometimes referred to as dense sensors, are attached to objects and
activities are monitored by detecting object-agent interactions. Using dense sensing, a
large number of usually low-cost, miniaturized sensors are deployed in a range of objects
and locations within in an environment. This approach is based on the assumption that
activities are characterized by the objects that are manipulated during their performance;
that is, activities can be recognized from sensor data that monitor agent interactions with
the objects in the environment (Chen et al., 2012).

Activity recognition based on embedded sensors has been widely adopted in AAL via
smart home paradigm to monitor an inhabitant’s movements and environmental events, pro-
viding just-in-time context-aware ADL assistance. For example, Storf et al. (2009) studied
recognition of ADLs from sensors embedded in the environment. They introduced a multi-
agent approach that uses an event-driven activity recognition language to compose atomic
activities into high-level activities. The authors report accuracy of higher than 80%. In a
similar setting Cook and Holder (2011) applied hidden Markov models for recognition of
ADLs and varied the number of sensors used for recognition. The achieved accuracy ranged
between 80% and 90%, and dropped below 75% when significant number of sensors was
removed.

Different types of sensors and modalities have been in different combinations for activity
recognition, and it is impossible to claim that one sensor combination is superior. The
suitability and performance are tightly related to the type of activities being assessed and
the characteristics of the concrete applications.
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2.2 Anomalous and Suspicious Behavior Detection

There are two approaches to detecting deviant behavior (Avrahami-Zilberbrand, 2009): sus-
picious and anomalous behavior detection. The first approach assumes a behavior library
that encodes negative behavior, and thus recognizing observed behavior corresponds to iden-
tifying a match in the library. The second approach uses the behavior library in an inverse
fashion, meaning that the library encodes only positive behavior. When an observed behav-
ior cannot be matched against the library it is considered as anomalous. Several approaches
have been proposed to tackle the problem either way. We broadly classify anomalous and
suspicious behavior detection in three categories: pattern analysis, transaction analysis, and
plan recognition.

2.2.1 Pattern Analysis

Anomalous and suspicious behavior detection from patterns is usually based on visual modal-
ities, such as camera. Trajectories of moving objects have been used to infer anomalous
agent paths (Zhang et al., 2004; Vaswani et al., 2005), although image-plan trajectory itself
is sensitive to translations, rotations and scale changes. Zhang et al. (2007) proposed a
system for a visual human motion analysis from a video sequence, which recognizes unusual
behavior based on walking trajectories, namely treading tracks. Two types of line shapes
were studied: the closed curve and the spiral line. If preson’s treading track takes on one
of these shapes, this person is wandering around and is, therefore, suspicious. Lin et al.
(2009) described a video surveillance system based on color features, distance features, and
a count feature, where evolutionary techniques are used to measure observation similarity.
The system tracks each person and classifies their behavior by analyzing their trajectory
patterns. This is performed with a hybrid genetic algorithm that uses a Gaussian synapse.
Another approach includes behavior patterns based on visual features, for example, Arsić
et al. (2007) introduced an approach to visual surveillance of public transportation systems.
The system extracts a set of visual low-level features in different parts of the image, and
performs a classification with SVMs to detect aggressive, cheerful, intoxicated, nervous,
neutral, and tired behavior.

2.2.2 Transaction Analysis

Transaction analysis assumes discrete states/transations in contrast to pattern analysis,
which is based on continuous observations. A major research area is intrusion detection (ID)
that aims detecting attacks against information systems in general. There are two types
of ID systems: signature based and anomaly based. Helman and Liepins (1993) proposed
an intrusion detection system that provides a rating for computer activities, demonstrating
frequentist estimator and matching rules. Esponda et al. (2004) analyzed trade-offs between
positive and negative activity patterns in the library and presented an approach based
on partially matching rules. These approaches similarly address the problem of how to
decide whether a user’s activity is suspicious, but differ significantly in the approach to
matching and assessing the behavior. A comprehensive review of ID approaches was recently
published by Gyanchandani et al. (2012). Quah and Sriganesh (2008) presented an approach
to online-banking fraud detection based on persons’ spending behaviors. Their approach
makes use of a self-organization map to learn persons’ spending patterns, while neural
networks filter any unusual events and analyze the person behavior in order to detect fraud.
In addition, Alexandre (1997) proposed a system based on the keyboard signature behavior
recognition, which is more difficult to copy or fake than a fingerprint or a smart card. The
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presented technique implements a neural network, which is evaluated in terms of efficiency
and performance.

Our work leverages ideas by Helman and Liepins (1993) and Esponda et al. (2004) to
establish a formal detection framework based on behavior patterns and analyze detection
errors. On this basis, we extend the framework to formally address repeated behavior
detection and specify conditions any reasonable detector should satisfy.

Furthermore, AAL applications based on wearable sensors also fit to transaction analysis,
since sensing is typically event based. Lymberopoulos et al. (2008) proposed a system
for automatic extraction of the users’ spatio-temporal patterns from the sensor network
deployed inside their home. The proposed method, based on location, time and duration, was
able to extract frequent patterns using the Apriori algorithm and to encode the most frequent
patterns in the form of a Markov chain, while our work uses the location and the activity
performed by the user to build a model of normal behavior and detect anomalous behavior
patterns. Another area of related work includes hidden Markov models (HMMs) (Rabiner,
1989) that are widely used in traditional activity recognition for modeling a sequence of
actions. Brand et al. (1997) introduced coupled HMMs as an extension with multiple hidden
interacting chains that are able to model interactive behavior. Duong et al. (2005) focused on
the duration of activities and introduced switching hidden semi-Markov models that provide
probabilistic constraints over the duration of plans, and applied them to the detection of
anomalies in the activities of daily living. Monekosso and Remagnino (2010) used embedded
sensors and also addressed the problem of anomalous behavior detection. The output of
the sensors was directly used to train a HMM model based on normal observations. If
the likelihood that a new observation was generated by the trained model was low, the
behavior was considered abnormal. Our work first recognizes the user’s activities from
sensor data and then combines them with spatial information. Compared to HMMs, it does
not require an estimation of the parameters in the learning phase. Although widely used,
HMMs may become inadequate when actions are more complex or have long-term temporal
dependencies (Koller and Friedman, 2009).

Lee et al. (2004) proposed a fuzzy-association analysis of an individual’s daily patterns
based on an infrared location sensor and activity sensor groups (for example, sleeping,
eating, leisure sensor group). They defined two fuzzy membership functions: start time
(for example, dawn, morning) and duration (for example, short, medium), and transformed
a sequence of activities using these two functions to categorical attributes. Afterwards,
the Apriori algorithm was applied to the dataset, searching for activity patterns. The
authors suggest that the behavioral pattern changes indicate that the person is not well.
Lymberopoulos et al. (2008) proposed a system for automatically extracting person spatio-
temporal patterns from a home-deployed sensor network. The proposed method, based on
location, time, and duration, was able to extract patterns using the Apriori algorithm and
to encode the most frequent ones in a Markov chain.

In contrast to related work, we propose a presentation that encodes activity dynamics;
that is, it explores the relations between spatial information and activities to capature
behavior dynamics in a specific time period. Our work first recognizes the user’s activities
from sensor data and then combines them with spatial information.

2.2.3 Plan Recognition

Plan recognition focuses on a mechanism for recognizing the unobservable state of an agent,
given observations of its interaction with its environment (Avrahami-Zilberbrand, 2009).
Most existing investigations assume discrete observations in a form of activities. To perform
anomalous and suspicious behavior detection, plan recognition algorithms may use a hybrid
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approach: a symbolic plan recognizer is used to filter consistent hypotheses, passing them
to an evaluation engine, which focuses on ranking.

Avrahami-Zilberbrand and Kaminka (2007) presented Utility-based Plan Recognition
(UPR) that introduces utility to the observer in selecting the recognition hypotheses. The
main strength of UPR is that it can incorporate an observer’s bias to events with a low
likelihood, for example, the a-priori probability for planting a bomb is very low, but detecting
it has a high expected utility. We further discuss this approach in Section 6.3.3. Geib
and Goldman (2009) presented PHATT, a probabilistic approach based on tree grammars
able to cope with interleaved goals, partially ordered plans, and failed observed actions.
Sukthankar and Sycara (2008) addressed plan recognition for multiagent teams, where plans
were ordered by linear accumulation of observed actions consistent with the plan.

Our work leverages UPR approach to perform repeated behavior detection. The no-
tion of utility, which is assigned to each plan step by the observer, is extended with the
notion of utility function that generalizes utility-based plan recognition with arbitrary util-
ity functions. This allows to assign utility to repeated plan steps according to agent past
behavior.
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3 Activity Recognition

Activity recognition is an underpinning task in behavior analysis. It transforms sensor data
to a higher-level description of behavior primitives. This chapter presents a pipeline for
recognizing an agent’s atomic activities from multidimensional, sequential, spatio-temporal
data. We first formulate the problem and discuss the basic ideas, followed by a description
of the pipeline components, including noise filtering (Section 3.2), designing feature vectors
and model learning (Section 3.3), and providing recognized activity continuity (Section 3.4).
In addition, we present approaches for recognizing compound activities and activities that
result from interactions among agents (Section 3.6).

3.1 Problem Statement and Basic Ideas

Observing an agent’s atomic activities is relatively straightforward in domains with discrete
states. For example, observing a person on a computer terminal consists of typing a com-
mand that changes the state; hence, an atomic action corresponds to a command. Other
continuous domains, where an agent is observed with sensors providing sequential numerical
data, require more steps, since these sequences are not automatically labeled with activities.
The main problem is how to segment sequences into atomic activities.

Consider an environment where the movement of an agent is observed with several
sensors providing measurements at each time step t.

Definition 1. Observation vector xt is a multi-dimensional signal vector containing stochas-
tic values from each sensor at a given time point t.

At this point, we assume that it is possible to construct an observation from all the sensors
regardless of the frequency with which a particular sensor provides measurements.

Definition 2. Observation sequence X consists of T observation measurements such that
X = {xt|1 ≤ t ≤ T}.

Given a finite set of possible activities A = {a1, ..., aK}, our goal is to automatically
segment an observation sequence X = {x1, ...,xT } into a sequence of activities {a1, ..., aT }.
In the literature, activity is often referred to as action, activity, complex activity, compound
task, goal, or plan. The main difference is how many observations are used to assign an
activity. We define activity as behavior in a specific time span, as follows:

Definition 3. Activity ai,j ∈ A describes an action as behavior caused by an agent in a
particular situation limited by time span i ≤ t ≤ j that explains observations xi, ...,xj, where
A is a set of possible activities.

A special case is when activity corresponds to a single observation; that is, ai,i. We
denote such activity as atomic action.

Definition 4. Atomic action at ∈ A at time step t is an activity from a set of possible
activities A assigned to an observation xt with function

f : R|x| → A.
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However, in general, the number of observations described by an activity is not fixed,
since different behaviors require a different number of observations, and behavior itself can
be presented at different granularities. For example, behavior breakfast routine can be an
activity itself, or it can be segmented into several activities, for example, making coffee,
putting food on the table, eating, and cleaning.

Labeling multi-dimensional time-series sensor data is inherently more complex than clas-
sifying traditional, nominal data that contain little noise. First, each observation is tem-
porally connected to the previous and next observations, making it very difficult to apply
a straightforward classification of a single observation only. Second, the data obtained by
sensors at different time points are stochastic due to sensor noise, environmental distur-
bances, and many other reasons. Moreover, an activity can comprise various sub-activities
executed in different manners, resulting in high intra-class differences. Finally, all these rea-
sons make an activity recognition model imprecise, resulting in unseen observation vectors
being mislabeled. Therefore, it is highly desirable to ensure continuity and consistency in
the recognized activity sequence.

To deal with the above-mentioned challenges, we propose an activity-recognition pipeline,
referred to as ARPipe, as shown in Figure 3.1. We first devise a noise removal phase, which
is strongly tightened with the type of sensors deployed in the domain; then we show an
approach based on location-based sensors attached to the human body. The next phase ex-
tracts domain-dependent features from a set of observations and constructs a feature vector,
which is used in the next step. Based on the feature vector, an activity recognition model
assigns an atomic action to each observation. Finally, transitions between activities that
cannot occur in reality are removed in the last step.

Noise 

removal

Feature 

vector

Activity 

recognition 

model

Spurious 

activity 

transition

removal

Figure 3.1: ARPipe, an activity recognition pipeline.

The activity recognition model is constructed with a supervised learning approach, which
consists of training and classification steps. In the training step, a set of labeled data is
provided to train the model. The second step is used to assign a label to new, unseen data
by the trained model. The data in both phases must be pre-processed with the same set of
tools, such as filtering and feature vector computation.

The post-processing phase; that is, spurious activity removal, can also be a model itself
and, hence, also requires a learning step. In this case, the pre-processing step also includes
activity recognition. Therefore, it is important that the dataset used for training is not the
same as that used for the training activity recognition model.

The first two phases in the proposed pipeline are domain-dependent, while the last two
phases are general. We demonstrate our methods in the ambient-assisted living domain (see
Chapter 8) to recognize activities performed by an elderly person in a home environment,
wearing location-based tags that provide absolute three-dimensional coordinates. The goal
is to label an observation vector with eight atomic actions. Specifically, we present two
approaches for filtering and feature vector construction to illustrate how they can be used
to robustly recognize activities in the presence of noise, clutter, and human action execution
variability.
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3.2 Dealing with Noise

An important sensor technology that makes human activity recognition possible relies on
real-time location systems (RTLSs). They provide three-dimensional coordinates of tags
attached to the human body. High-fidelity optical system, such as Vicon (2009) and SMART
(eMotion, 2009), provide accurate measurements (±2 mm), but often include outliers due
to marker occlusion and mislabeling. Furthermore, they require a line-of-sight between
the body-attached tags and the cameras. They are good for lab use, but fail in real-
world applications as they are usually too expensive, hard to install, and have limitations,
such as line-of-sight or a confined operational area. More affordable systems rely on radio
technology, which is less obtrusive and cheaper, but less accurate. Systems based on ultra-
wideband technology (UWB), such as Ubisense (Steggles and Gschwind, 2009), achieve
±15 cm accuracy in an ideal setting, which makes human activity recognition challenging.
The main problem addressed in this section is how to de-noise human-motion trajectories
captured with UWB RTLS in order to improve activity recognition.

We demonstrate noise filtering on Ubisense, a commercially available localization sys-
tem. Ubisense allows local positioning by tracking a set of reasonably small tags, which
are attached to a person’s body. A sampling frequency of around 10 Hz can be achieved
with up to four tags attached to a person simultaneously. Each tag maintains radio con-
tact with a stationary sensor (for example, mounted on the wall). These sensors and tags
communicate using UWB radio technology. Both the time arrival difference and the radio
signal arrival angle are used to calculate the tag position. In a typical open environment, a
location accuracy ±15 cm can be achieved across 95% of the readings. However, in real-life
scenarios the accuracy occasionally exceeds ± 200 cm, which represents quite a challenge
for preprocessing and filtering.

De-noising human motion captured with UWB sensors raises several challenges. First,
motion-capture data may contain a certain percentage of missing values due to packet loss,
temporal sensor disability, low battery, etc. Second, due to sensor noise and environment
disturbances, motion-capture data often include outliers and unstable measurements, which
corrupt body posture reconstruction. This results in a violation of physical body constraints
as well as spatio-temporal body constraints, which in turn introduces additional noise into
the activity recognition models. Finally, essential activity recognition features that are com-
puted from noisy measurements (for example, velocity, acceleration) may have an integral
error term; that is, the error accumulates over time.

In this section, we propose an efficient approach for de-noising human-motion trajectories
that not only filters corrupted motion data, but also enforces the human body’s spatio-
temporal constraints and enables more accurate feature computation. The key idea is to
construct a series of filters that addresses the above-mentioned challenges.

3.2.1 Dealing with Outliers

Median filter is a non-linear filter that can suppress impulsive, isolated noise without blurring
sharp changes in the signal (Yin et al., 1996). The filter consists of a sequential sample
window with odd length w = 2n + 1. At each time step t, the filter returns the median of
the elements in the window:

x′t = median(xt−n, ..., xt, ..., xt+n). (3.1)

The only parameter of the median filter is the window length w, which introduces a delay
of length bw/2c. A larger window size may smooth the signal too much, while a smaller
window size may not remove the high density noise. A common approach is to choose a
window length such that desired signal features are preserved while attenuating noise.
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In our case, we apply the median filter at each tag, separately for each dimension.
The filter removes isolated spikes in the signal, while parts with high oscillation remain
unsuppressed.

3.2.2 Missing Values and Velocity Estimation

Motion capture data contains missing values due to packet loss or delay during transmission,
sensor failure, corrupted packets, etc. Our first goal is, hence, to fill the missing values.
Furthermore, we would like to estimate additional quantities such as velocity. For this
task, we use the recursive linear Kalman filter (Kalman, 1960) for optimally estimating he
system’s state, assuming that the underlying system is a linear dynamical system and that
all measurement errors have a multivariate Gaussian distribution. The underlying system,
that is, human body, is assumed to be reasonably approximated by a linear dynamical
system. Even though the original measurement error distribution is not Gaussian, the
median filtering removes signal spikes, which results in a measurement error distribution
that better resembles Gaussian distribution.

The Kalman filter performs the following three tasks: smoothing of the UWB mea-
surements, estimating the velocities of tags, and predicting the missing measurements. We
defined filter state as a six-dimensional observation vector xt that includes positions and
velocities in each of the three dimensions at time t, xt = [px,t, py,t, pz,t, vx,t, vy,t, vz,t]

ᵀ.

The next state is estimated from the previous state as follows:

xt+1 = Fxt + But + wt, (3.2)

where F encodes the linear dynamical system, B is a control matrix and wt is noise covari-
ance matrix. In our case, the Kalman update is simplified to Equation (3.3). The next state
is calculated as a sum of the previous position and a product of the previous velocity and the
time between the consecutive measurements ∆t for each direction separately. The velocities
remain constant. The measurement noise covariance matrix was set based on UWB system
specification, while the process noise covariance matrix was fine-tuned experimentally.

px,t+1

py,t+1

pz,t+1

vx,t+1

vy,t+1

vz,t+1

 =



1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





px,t
py,t
pz,t
vx,t
vy,t
vz,t

+ wt. (3.3)

3.2.3 Spatio-Temporal Body Constraints

Up to this point, each tag was considered as a separate measurement. In reality, the tags
are attached to a human body, which implies a set of tag position constraints. In activity
recognition, it is expected that a set of measurements resembles human body proportions
as well as spatio-temporal patterns in natural human motion. We construct a filter based
on iterative constraint relaxation that: (i) projects measured values in a valid domain;
(ii) applies human body constraints to the measured positions; and (iii) constrains spatio-
temporal motion patterns.

In the first step, we make an assumption about valid measurement domain. For example,
we expect all the measurements to be within a room, that is, cuboid, bounded with two
extreme points pX and pY (assuming the coordinate system is aligned with the room). To
keep the measurement pt within the expected bounds, it has to be translated to an edge (in
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case it is not already within the cuboid) as shown in Figure 3.2. The update step is:

p′t = min(max(pt,pX),pY ). (3.4)

pX

pY

p't
pt

Figure 3.2: All the measurements are bounded within a cuboid.

We model the human body using rigid-body components, which assume that there is
no deformation. Rigid-body components are connected to each other with joints and form
an articulated rigid body that approximates the human body as shown in Figure 3.3. The
distance between any two connected joints is constant regardless of external forces. Note
that at this point we do not pose any joint constraints.

Figure 3.3: Human body is modeled with an articulated rigid body.

In our case, the four RTLS tags provide the joint positions (ankles, waist, and chest),
but do not allow reconstructing the skeleton displayed in Figure 3.3 since the knees and
abdomen are missing.

The missing joints are reconstructed as follows: suppose we have two points A and C
with known positions and a joint B that interconnects A and C, with an unknown position.
Since the distances rA = d(A,B) (between A and B) and rc = d(C,B) are known, the point
B then lies at the intersection of two spheres, centered at A with radius rA and at C with
radius rC .

In general, there are three cases when the measurements are obtained: (i) rA + rB = d,
that is, the intersection includes a single point; (ii) rA+rB > d, that is, there is no solution;
and (iii) rA + rB < d, that is, the intersection consists of a circle. In the second case we
position the point B on a line between points A and C so that the distances between points
is in the same proportion as the lengths of rA and rB. In the third case, we proceed as
follows: to calculate the position of the point B, we use a new coordinate system in which
the first sphere is centered at the origin and the second sphere is centered at a point on
the positive x-axis, at distance d from the origin, as shown in Figure 3.4. Subtracting the
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sphere equations, we find a set of points representing a circular intersection of the spheres:

x =
d2 − rC2 + rA

2

2d
, (3.5)

y2 + z2 = rA
2 − (

d2 − rC2 + rA
2

2d
)2. (3.6)

We are not interested in the exact position of B, hence we pick an arbitrary point from the
circle and transform it to the original coordinate system. As explained below, the distance
between joints is enforced with Equations (3.8) and (3.9).

Figure 3.4: The result of sphere-sphere intersection is a circle.

Once we have all the joint positions we can introduce constraints between the connected
pairs. For example, suppose the true distance between joints A and B is rA, that is,

‖pA − pB‖ = rA. (3.7)

If measurements pA and pB violate the constraint given by Equation (3.7), the position of
both points is adjusted (Jakobsen, 2001). Each point is translated along the line connecting
the points for half of the error defined as the difference between the measured and the true
distance as shown in Figure 3.5. The update is:

p′A = pA +
‖pB − pA‖ − rA

2‖pB − pA‖
(pB − pA), (3.8)

p′B = pB −
‖pB − pA‖ − rA

2‖pB − pA‖
(pB − pA). (3.9)

pA

p'A

pB

p'B

pB

p'B

pA

p'A

rA

Figure 3.5: Move the points pA and pB to match the constraint given by Equation (3.7).

In addition to the constraints introduced by human body proportions, we also consider
physical motion constraints such as velocity and acceleration, of limbs. Suppose that a m/s2
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is the greatest possible acceleration of an ankle. This implies that it can travel at most
l = (vt−1 + a∆t/2)∆t meters in time interval ∆t, where 1/∆t is the sampling frequency.
Hence, the next ankle’s position pt is limited with a sphere with radius l, that is,

‖pt − pt−1‖ ≤ l. (3.10)

In case the new position is outside the sphere, the position is translated on the edge of the
sphere in the direction of the measurement. The update step is:

p′t = pt +
l(pt − pt−1)

‖pt − pt−1‖
. (3.11)

Finally, all the constraints are put together. Consider C = {Φi} as a set of constraints,
where Φ(p) applies the update step on point p using Equation (3.4); that is, p′ ← Φ(p),
while Φ(pA,pB) applies the update step on both points A and B using Equations (3.8) and
(3.9); that is, p′A,p

′
B ← Φ(pA,pB). If a constrained between points A and B is not present,

then Φ(pA,pB) does not alter the corresponding points. The algorithm below takes the set
of constraints and its value updates as an input and iteratively updates the values until the
convergence threshold τc or maximal number of iterations k is reached.

Algorithm 3.1 Iterative constraint relaxation.

Require: set of constraints C, set of points P, maximal number of iterations k, convergence
threshold τc

Ensure: set of points P
repeat

∆ = 0
for p ∈ P do

for q ∈ P do
p′,q′ ← Φ(p,q)
∆← ∆ + |q− q′|
q← q′

end for
p′ ← Φ(p)
∆← ∆ + |p− p′|
p← p′

end for
k ← k − 1

until k > 0 and ∆ > τc

An example of filter effects is shown in Figure 3.6, which shows x (top), y (middle) and
z (bottom) coordinates for a tag attached to the waist for T = 600 time steps (one time
step lasts approximately 1/8 s). The vertical axis corresponds to meters. The blue line
represents the original location measurements, the green line represents the median filter
result, and the red line represents the Kalman filtering and spatial body constraints results.

3.3 Feature Vector

Finding an appropriate representation of the person’s activities is probably the most chal-
lenging part of activity recognition. The behavior needs to be represented with simple and
general features, so that the model using these features will also be general and work well
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Figure 3.6: Filtered coordinates x (top), y (middle) and z (bottom) of a tag attached to the
waist.

on behaviors different from those in the learning set. In fact, it is not difficult to design
features specific to captured observations in a training set; such features would work well
on them. However, since the training set captures only a part of the whole range of human
behavior, overly specific features would likely fail on general behavior.

Definition 5. Feature vector ft at time step t is a vector of descriptors obtained from
observation xt.

Feature ft can hence contain values from observation as well as additional values computed
from observation ft or other observations. In general, the feature vector can be interpreted
as observation extended with additional descriptors that capture targeted behavior.

3.3.1 Features

We propose three sets of features describing the person behavior in a selected domain. We
demonstrate a possible feature set on a kinematic model of a human with 12 points as
shown in Figure 3.7 to illustrate potential variety. In practice, however, it is possible to
use a reduced feature set. First, reference features are expressed in the reference coordinate
system, which is fixed with respect to the person’s environment. Second, body features are
expressed in a coordinate system affixed to the person’s body. Third, angle features are the
angles between adjacent body parts.
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Figure 3.7: Kinematic model of a human body.

Reference Features

When selecting reference features, the x and y coordinates are usually ignored, since these
coordinates describe the person’s location in the environment, but the activities of interest

can generally take place at any location. A reasonable set of features can include z
(i)
t

coordinate of sensor tag i at time t, the velocity of sensor tag in z direction v
(i)
t , the absolute

distance d
(i,j)
t between sensor tags i and j, and others.

Body Features

Body features are expressed in a coordinate system affixed to the person’s body. This makes
it possible to observe x and y coordinates of the person’s body parts, since these coordinates
no longer depend on locations within the environment.

The body coordinate system is shown in Figure 3.8. Its origin o is at the mid-point of
the line connecting the hip tags (p7 and p10 in Figure 3.8). This line also defines the y axis,
which points towards the left hip. The z axis is perpendicular to the y axis, touches the line
connecting both shoulder tags (p1 and p4 in Figure 3.8) at point pz, and points upwards.
The x axis is perpendicular to the y and z axes and points forwards.

In order to translate reference coordinates into body coordinates, Equation (3.12) ex-
presses the origin o and basis (i, j,k) of the body coordinate system in the reference coor-
dinate system, which gives us the basis vector j:

o =
p7 + p10

2
, (3.12)

j =
p7 − o

|p10 − o|
. (3.13)
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Figure 3.8: The body coordinate system.

To obtain the basis vector k, Equation (3.14) is first used to calculate pz; Equation (3.16)
then gives us k:

pz = p7 + a(p4 − p7), (3.14)

a =
(p1 − o) · (p10 − p7)

(p4 − p1) · (p10 − p7)
, (3.15)

k =
p7 − o

|p10 − o|
. (3.16)

Finally, we obtain basis vector i using Equation (3.17):

i = j× k. (3.17)

To translate a point p coordinates in the reference coordinate system into the body
coordinate systems, Equation (3.18) is used. The vector pR = (xR, yR, zR, 1) corresponds to
the point p = (x, y, z) in the reference coordinate system. The vector pB = (xB, yB, zB, 1)
corresponds to the point p = (xB, yB, zB) in the body coordinate system. Matrix TR→B is
the transformation matrix from the reference to the body coordinate system.

pB = TR→Bpᵀ
B, (3.18)

TR→B =


ix ix ix −o · i
jx jx jx −o · i
kx kx kx −o · i
0 0 0 1

 .
Based on the above equations, a reasonable set of body attributes may include the tag’s

body features, absolute velocity, and the angles of movement with respect to the z axis and
xz plane, and others.
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Angle Features

Once the body coordinate system is obtained, it is possible to compute an advanced set of
features describing relative angles between different body parts represented by quaternions.
Unit quaternions provide a convenient mathematical notation for representing object orien-
tations and rotations in three dimensions. Compared to Euler angles, they are simpler and
avoid the gimbal lock problem. Compared to the rotation matrices, they are more efficient
and numerically stable.

This thesis will not go into further details on angle equations; the reader is referred to
Luštrek et al. (2008) for details. A reasonable set of attributes may include the angles of
the left and right elbow, the left and right knee, the left and right shoulder (represented by
quaternions), the left and right hip (also represented by quaternions), and others.

3.3.2 Canonical Representation

Due to its continuous nature, determining the exact transition points between activities is
difficult. We address this issue by combining features into short, overlapping time windows
during which we assume that a single activity is dominant. We denote this representation
as canonical form that represents the equivalence classes. To test whether two activities in
specific time interval are equivalent, it suffices to test their canonical forms for equality. A
canonical form thus enables classification and gives a distinguished (canonical) representative
of an action.

In practical terms, one wants to be able to recognize the canonical forms; that is, over-
lapping windows. Each window is classified independently as described in the next section
(Section 3.3.3).

More formally, we define:

• w is window length that contains an even number of observations,

• i is an index over |w| elements in window, and

• j is an index over W overlapping windows.

Given a sequence of observations {x1,x2, ...,xT }, we first compute the sequence of fea-
tures {f1, f2, ..., fT }. Then, for constants m and n, where m is the number of elements before
t, and n after t; that is, m+ n = |w|+ 1, we construct Wj , 1 ≤ j ≤ (|T | − |w|+ 1) windows
such that

Wj = {fi|j −m ≤ i ≤ j + n}. (3.19)

Each Wj is labeled with a dominant activity from A that is assigned to the feature vector
ft. Note, that Equation (3.19) allows ft to adopt any position in Wj ; in practice it is placed
at the beginning (m = 0), middle (m = n), or at the end (n = 0). An example for w = 9
and m = n = 4 is shown in Figure 3.9. First, each feature vector is constructed by three
sets of attributes. Then, the vector is presented in canonical representation with a window.
The end of the window is labeled with the dominant activity.

The intuition behind the canonical representation is that an agent’s actions are contin-
uous and, hence, defined not only by the current values but also by the values in a certain
time span. So far, the features were expressed in corresponding coordinate systems at each
time step t. However, the features fi at time steps i 6= t in the canonical representation
can be expressed in the coordinate system belonging to the feature at time step t. This
explicitly captures the changes between time steps within the interval.
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Figure 3.9: An example of 10 feature vectors in canonical representation.

3.3.3 Activity Recognition Model

Once feature vectors are represented in the canonical form, it is possible to apply standard
techniques for supervised classification, including feature selection, feature discretization,
model learning, k-fold cross-validation, etc. The thesis will not delve into the details of
the machine-learning algorithms. Any algorithm that supports numerical features can be
applied to canonical representation, including SVMs, random forest, AdaBoost, decision
trees, neural networks, multi-layer perceptrons, and others.

An important note considers k-fold cross-validation. Overlapping windows have a large
degree of similarity and hence straight-forward k-fold cross-validation may produce an opti-
mistic estimate of model performance. A better approach is to use folds that correspond to
different sets of measurements or even different agents. For example, if the available dataset
contains measurements of five agents, it makes sense to run k-agent cross-validation, where
the model is trained on four agents and tested on the fifth. The procedure is repeated for
each agent and results are averaged.

3.4 Reducing Spurious Activity Transitions

An activity-recognition model classifies each window into one of the predefined activities;
however, regardless of our efforts, it may still mislabel activities. The model usually misla-
bels single moments or short intervals more often than longer intervals. Activity recognition
can be improved by taking into account the continuity of activities, for example, the agent
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cannot switch between walking and lying every tenth of a second. Such transitions between
activities that do not occur in reality, but are caused by mislabeling, are considered spurious.

One approach to enhancing the activity recognition model is to the extend feature vector
with k previous activities as recognized by the classifier. This leads to a potential problem,
namely, the machine-learning algorithm may learn that the current activity is always the
same as the previous one, since this is often the case. The problem may be circumvented
by having two activity recognition models θA and θ, where θA’s attribute vector does not
contain any previous activities, and θ’s attribute vector contains k previous activities as
recognized by θA. This way, even if θ heavily weights previous activities, those recognized
by θA will change, as θA is not biased with θ’s inertia.

Based on the above intuition, we introduce two candidate approaches for reducing spu-
rious activity transitions: sequential grammar-based classifier (SGBS) and hidden Markov
models (HMM). The input to these models is a sequence of actions a labeled by an activity
recognition model θA.

Definition 6. Activity sequence a(T ) is a totally-ordered sequence of T actions s.t. a(T ) =
{at; 1 ≤ t ≤ T}.

The goal is to assign the best possible sequence of actions a′ given a criterion and a sequence
of input actions a, often referred to as an observation sequence.

3.4.1 Sequential Grammar-Based Classifier

A sequential grammar-based classifier, introduced by Goshorn (2001), classifies an observed
activity sequence a to the behavior which it most closely resembles. The similarity is defined
in terms of the transformation cost of a sequence into a syntactically correct sequence
belonging to that behavior.

Suppose there is a set of n possible behaviors bi ∈ B, 1 ≤ i ≤ n. A behavior bi consists
of a sequence of actions a ∈ A and is generated with a corresponding finite state machine
Mi(A, S, so, δ, F ), where A is the input alphabet (activities), S is a finite, non-empty set of
states, s0 is an initial state, δ : S × A → S is state-transition function, and F is the set of
final states.

Suppose you want to classify an observation sequence a(k) = {a1, a2, ..., ak}. If a(k) is
recognized by any of the automata Mi, then it is classified as behavior bi. If it is not,
then it must be edited into a sequence that is. In order to do so, a new automaton M ′i is
created, which is able to parse unrecognizable sequence a(k) by transforming any symbol
within its alphabet, but with an associated cost, as follows. There are two operations that
are used for transformations: substitution and deletion. Let S(ai, aj) denote the operation
of substituting an input symbol ai with aj , and let D(ai) denote the operation of deletion
of symbol ai. Denote edit costs as cS(ai, aj) and delete cost cD(ai), respectively.

In order to utilize the performance of the classifier θA, we use its performance measures
obtained from its confusion matrix. The error rate for mislabeling an activity ai with aj
is relevant for assigning the cost of substituting action ai with aj . Therefore, to derive
cS(ai, aj), we simply invert the probability Pr{ai|a = aj} from the confusion matrix:

cS(ai, aj) =
1

Pr{ai|a = aj}
. (3.20)

Similarly, the cost for deleting the action ai is defined inversely proportional to the
inherent probability that classifier θA labels ai with true activity correctly. The deletion
cost cD(ai) is:

cD(ai) =
1

Pr{ai|a = ai}
. (3.21)
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Suppose, that in order to transform the action sequence a(k) into a behavior bi, there
need to be nS(ai, aj) substitutions of ai with aj and nD(ai) deletions of ai. Then, the
distance d(a(k),bi) between the action sequence a(k) and a behavior bi is given by Equa-
tion (3.22):

d(a,bi) =

|A|∑
i=0

|A|∑
j=0

cS(ai, aj)nS(ai, aj) +

|A|∑
i=0

cD(ai)nD(ai). (3.22)

The action sequence a(k) is classified as a behavior bi represented by a finite state
machine M ′i that outputted the smallest distance:

a = arg min
bi∈B

d(a,bi). (3.23)

In general, the lengths of behaviors bi and action sequence a need not be be the same
(although the lengths of behaviors bi should be in to avoid length normalization). To avoid
this problem, we use the overlapping sliding windows of length |b| and assign the classified
behavior to the activity at the selected window index.

3.4.2 Hidden Markov Models

Hidden Markov model (HMM) is a temporal probabilistic model with two embedded stochas-
tic processes: a hidden process Q that can be observed only through another visible process
O. Each state has state-transition probabilities, which are visible, and a probability distri-
bution over the possible values of A. The key assumption is that the current hidden state
of the agent is affected only by its previous state.

A hidden Markov model θ(H,A, δ, ν, π) is characterized by the following:

• H = {hi} is a set ofN hidden states, individual states are denoted as H = {h1, h2, ..., hN},
and the state at time t as Qt,

• A = {aj} is a set of distinct observation symbols (that is, activities) per state,

• δ = {δij} is the state transition probability distribution, where

δij = Pr{qt+1 = sj |qt = hi}, 1 ≤ i, j ≤ N, (3.24)

• ν = {νj(k)} is the state observation probability distribution, where

νj(k) = Pr{ak|qt = hj}, 1 ≤ j ≤ N, 1 ≤ k ≤M, (3.25)

• π = {πi} is the initial state distribution, where

πi = Pr{q1 = hi}, 1 ≤ i ≤ N. (3.26)

An example of a hidden Markov model with N = 4 hidden states and M = 3 observation
symbols is shown in Figure 3.10.

Given a learning set of observation sequences, there are two problems of interest that
must be solved; that is, how to adjust model parameters so as to best describe agent behavior
observation sequences, and, given a new observation sequence a(t) and a model θ, how to
choose a corresponding state sequence s = {qi = hj |1 ≤ i ≤ t, 1 ≤ j ≤ M}, that best
explains the observations.

The first problem, where the goal is to adjust model parameters in order to maximize
observation sequence probability, has no optimal solution. Parameters can be locally maxi-
mized with the Baum-Welch method (Baum et al., 1970), which maximizes the likelihood of
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Figure 3.10: An example of a hidden Markov model with four hidden states and three
observation symbols.

the training set. Instead of calculating the required state transitions from the observations,
it iteratively estimates the parameters. The method starts with arbitrarily chosen values
and then computes the expected frequencies by weighting the observed sequences over the
current model probabilities. The expected frequencies substitute the old parameters and
the procedure iterates until converging on a local maximum.

The second problem, uncovering the hidden part of the model, is solved with the Viterbi
algorithm (Viterbi, 1967), which assumes that the output symbols in observation sequence
a correspond to hidden state sequence h. It finds the optimal state sequence h for the given
observation sequence a in terms of maximizing the expected number of correct states, which
is achieved with dynamic programming.

Suppose the task is to classify an observation sequence a. First, an HMM model θ is
created from the learning set of observations with the Baum-Welch method. Then, the
Viterbi algorithm applied on model θ and observation sequence a returns the most probable
hidden state sequence h. In the last step, we take into account the θ’s state observation
probability distribution ν to assign the most probable symbol to each state; that is, it is
assumed that a hidden state corresponds to the activity that is most likely observed in that
state.
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3.5 Compound-Activity Recognition

We use the term compound activity to describe behavior within an activity sequence. Ac-
tivities, in particular atomic actions, are mainly used as behavior primitives describing the
most elementary behavior aspects, while compound activities describe higher-level behavior
aspects, usually spanned over longer periods of time.

Definition 7. Compound activity bk ∈ B describes an activity sequence a(k) as behavior
caused by an agent in a particular situation limited by time span 1 ≤ t ≤ k that explains
activities a1, ..., ak, where A is a set of possible activities.

The main difference between activities and compound activities is in the mapping func-
tion: an activity is assigned from observation vector(s), that is, f : R|x| → A, while a

compound activity is assigned from an activity sequence, that is, g : A|a(k)| → B. Given a
set of possible compound activities B = {bi}, 1 ≤ i ≤ K, the goal is to classify an activity
sequence a into one of the activities from B.

For this task, we utilize hidden Markov models introduced in the previous section. The
idea is to segment the learning set by different behavior types and to create an HMM model
θi for each of the behaviors bi ∈ B, 1 ≤ i ≤ K.

Next, we compute the probability of the sequence a given a model θi, that is, P [a|θi].
The straightforward approach through enumerating every possible state sequence of length
T = |a| involves the order of 2TNT calculations (Koller and Friedman, 2009), which is
computationally unfeasible even for small values of N and T , for example, N = 5 states and
T = 100 requires 1072 calculations. A more efficient procedure, denoted as the forward-
backward algorithm (Rabiner, 1989), first computes a set of forward probabilities that pre-
dicts the likelihood of ending up in any particular state given the first t observations in the
sequence a. In the second pass, the algorithm computes a set of backward probabilities that
predicts the likelihood of the remaining observations given any starting point t. These two
probability distributions can then be combined to obtain the distribution over states at any
specific point in time given the entire observation sequence. The reader is referred to Koller
and Friedman (2009) for details.

Finally, the atomic action sequence a is classified as the behavior bi that outputted the
highest probability Pr{a|θi}:

arg max
bi∈B

Pr{a|θi}. (3.27)

3.6 Recognition of Agent-Agent Interactions

The previous sections were mainly focused on single-agent behavior. In order to assess all
the behavior aspects, some domains require recognition of interactions among agents.

Definition 8. Interaction between agents A and B or interactive behavior χi,j(〈aA,aB〉) ∈ I
is behavior in time span i ≤ t ≤ j that explains activity sequences aA and aB that corre-
spond to activity sequence of the agent A and agent B, respectively. I is a set of possible
interactions.

In other words, an interaction describes joint behavior of two agents in a specific time span.
This section demonstrates an approach for interaction recognition based on coupled

hidden Markov models (CHMMs), which are briefly described below. The reader is referred
to Brand et al. (1997) for details. The observation sequence â = 〈aA,aB〉 consists of two
activity sequences, namely aA of agent A and aB of agent B, when they are within some
predefined radius R. The CHMMs are able to model complex, interactive behavior by two
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HMM chains, where the hidden states from one chain directly impact the hidden states from
the other chain.

Figure 3.11 illustrates a CHMM for a pair of action traces with length l = 3. The current
state QAt of agent A is affected by both its previous state QAt−1 and previous state QBt−1 of
the agent B (similarly QBt is affected by QBt−1 and QAt−1). Each state Qi also impacts the
corresponding observation state Yt. For example, if agent A moves toward agent B, the
next state of the latter takes this into account and produces a corresponding atomic action,
for example, an avoidance maneuver.

AQ1
AQ2

BQ2
BQ1

AY1
AY2

BY2
BY1

AQ3

BQ3

AY3

BY3

Figure 3.11: An example of CHMM for a pair of action traces with length T = 3.

Similarly to the previous section, we create a CHMM model θ̂i for each interaction χi
from the set of possible interactions I. For an observation sequence â, the posterior probabil-
ity is computed given the model θ̂i using slightly modified standard HMM algorithms. The
reader is referred to Brand et al. (1997) and Koller and Friedman (2009) for details. Finally,
the interaction is classified by the model that outputs the highest probability Pr{â|θ̂i}:

arg max
χi∈I

Pr{â|θ̂i}. (3.28)

3.7 Summary and Discussion

This chapter addressed the activity recognition from sensor data, where considerable amount
of noise is present. We introduced a pipeline-based approach, ARPipe, that includes noise
removal, feature vector construction, activity recognition classifier, and spurious activity
transition removal. The noise removal as well as feature vector construction steps were
demonstrated on location-based sensors, which provide significantly less accurate measure-
ments compared to location sensors used in related work (Sukthankar and Sycara, 2005;
Qian et al., 2004). Since real locations, that is, true locations of a moving object, were in-
feasible to obtain, the noise removal was evaluated indirectly in (Kaluža and Dovgan, 2009;
Luštrek et al., 2009), where it proved beneficial. The removal of spurious activity transitions
was investigated in (Kaluža, 2009), where HMM approach achieved better results. In sum-
mary, the main two novelties presented in this chapter are activity recognition from noisy
location sensors, and the ARPipe, which represents a comprehensive approach to activity
recognition.

ARPipe provides the fist step to anomalous and suspicious behavior detection by rec-
ognizing behavior primitives, that is, activities. Additional approaches, such as compound
activity recognition and recognition of agent interactions, help us to recognize more com-
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plex behaviors. The next chapter will discuss how to encode and evaluate such behavior
components.



33

4 Behavior Signatures

This chapter discusses how to encode a sequence of actions into a behavior signature. It
introduces a novel presentation denoted as a spatio-activity matrix, demonstrates a visual-
ization technique, and proposes a feature extraction approach.

4.1 Definitions

In Chapter 3, we transformed a sequence of observation vectors to a higher-level description
of behavior primitives. This chapter discusses how to efficiently encode the sequence of
behavior primitives in order to perform additional analysis and effectively visualize the
data. By effective visualization, we aim at a presentation that allows humans to quickly
compare various behavior patterns and to find the main differences among them.

First, we define static points in the environment that refer to significant locations, specific
spatial areas, or regions of partitioned space (for example, squared partitioning).

Definition 9. Static landmark s is a point in the environment that remains fixed over the
observed period of time. A set of static landmarks in the environment is denoted as S = {si}.

Next, given a set of static landmarks S and a set of activities A, the behavior can be
described in landmark-activity state space S×A. The behavior can be then represented as
a trajectory through the landmark-action state space as follows.

Definition 10. Behavior trace b = {〈a, s〉t}, 1 ≤ t ≤ T is a sequence of tuples in which
each tuple 〈a, s〉t indicates the environmental state s and the activity a being performed at
this state at time step t.

4.2 Spatio-Activity Matrix

This section introduces a behavior-trace encoding that captures activity distributions, land-
mark distribution, distribution of activities over landmarks, and distribution of landmarks
over activities.

Consider a set A = {a1, a2, ..., aM} of predefined activities and a set S = {s1, s2, ..., sK}
of static landmarks where the agent can be present. Let vt denote a spatio-activity vector
of size M +K at time step t. The first M elements correspond to M activities in A and the
last K elements correspond to static landmarks in S; that is, i-th element corresponds to ai
if i ≤M or si−M if M < i ≤ K.

A tuple (a, s)t is then transformed to the spatio-activity vector with Equation (4.1),
which assigns a binary value to i-th element of the vector: 1, if the activity is equal to i-th
activity in A or if the landmark is equal to landmark at position i−M in S; 0, otherwise.

vt(i) =

{
1 ; if a = ai, 1 < i ≤M or s = si−M ,M < i ≤ K,
0 ; otherwise.

(4.1)
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A spatio-activity vector is basically a binary representation of activities and landmarks
present in a tuple.

Suppose we have two spatio-activity vectors vi and vj . Let t(vi,vj) denote a transition
vector from the spatio-activity vector vi to vj as an indication of a change constrained by
‖t(vi,vj)‖ = 1:

t(vi,vj) = ¬(vj → vi), (4.2)

where operator ‘→’ is binary implication and ‘¬’ is binary negation.
Now suppose we want to encode the behavior trace b = {(a, s)t}, 1 ≤ t ≤ T . First, we

assign a new vector vt to each tuple (a, s)t. Let M(b) denote the spatio-activity matrix,
where the dynamics of a person in the given behavior trace b is captured:

M(b) = v1v1
ᵀ +

∑
t∈[2,...,T ]

[vtvt
ᵀ + t(vt−1,vt)t(vt−1,vt)

ᵀ]. (4.3)

At this step, the spatio-activity matrix M registered element frequency in a spatio-activity
vector and their transitions. In order to make M comparable to other matrices constructed
from behavior traces of different lengths, the matrix M must be normalized.

Define norm(M) as an operation that normalizes the values of the matrix M to the
interval [0, 1]. The norm(M) is defined for an element Mi,j ∈M by the expression

Mi,j =



Mi,j∑M
k=1 Mk,k

; i = j ∧ i ≤M
Mi,j∑M+K

k=M+1 Mk,k
; i = j ∧ i > M

Mi,j∑M
k=1
l=1
l 6=k

Mk,l
; i 6= j ∧ i ≤M ∧ j ≤M

Mi,j∑M+K

k=M+1
l=M+1
l 6=k

Mk,l
; i 6= j ∧ i > M ∧ j > M

Mi,j∑M+K
k=M+1 Mi,k

; i ≤M ∧ j > M

Mi,j∑M
k=1 Mi,k

; i > M ∧ j ≤M

. (4.4)

Intuitively, the matrix M consists of six regions as shown in Figure 4.1. The interpretation
of the regions is as follows: the activity-activity part (top left) includes the fractions of
the time spent performing particular activities (diagonal elements) and the distribution of
transitions between activities (non-diagonal elements); the spatio-spatio part (bottom right)
includes the fractions of time spent at the particular landmarks (diagonal elements) and the
distribution of transitions between landmarks (non-diagonal elements); the activity-spatio
part (top right) describes the distribution of activities over landmarks; and the spatio-
activity part (bottom left) describes the distribution of landmarks over activities.

The complete spatial-activity construction procedure is described in Algorithm 4.1. The
input is a behavior trace B. Each tuple (a, s)t ∈ B is first transformed into the spatio-
activity vector vt using Equation (4.1) and added to a temporary sequence of vectors V.
The sequence V is then used to compute the spatio-activity matrix M using Equation (4.3).
Finally, the matrix M is normalized by Equation (4.4).

4.2.1 Time Complexity Analysis

The runtime complexity increases linearly with the behavior trace length T and quadratically
with the sizes of sets A and S. First, T (M + K) operations are required to transform
each tuple to a spatio-activity vector. Next, there are 2(T − 1)(M + K) operations to
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Figure 4.1: Regions of spatio-activity matrix.

compute T − 1 transition vectors using implication and negation on each pair of spatio-
activity vectors. The next step builds the spatio-activity matrix, where each of vector-vector
multiplications requires 2(M+K) operations that result in matrices. Matrix summarization
requires (M + K)2 steps, and is applied for each T. In total there are 2(M + K) + (M +
K)2 + T (4(M + K) + (M + K)2) operations. The normalization step can be implemented
by pre-computing the six divisors and applying them on each element in the matrix. This
requires T (M +K +M2 +K2 + 2(MK)) operations in total. The overall time complexity,
then, is O(T (M +K)2).

In practice, however, the behavior trace is a few orders of magnitude larger than the
number of activities and landmarks; that is, (M +K) << T , which makes the computation
of spatio-activity matrix dependent only on the behavior trace length T .

4.2.2 Visualizations

Since the matrix M is normalized to the interval [0, 1], it can be visualized with a color map.
Figure 4.2 shows an example of such a matrix M visualization, where the color ranges from
low frequency (blue) to high frequency (red); a warmer color represents a higher intensity
(see the legend on the left-hand side). It shows a behavior matrix constructed from a
daily behavior trace of a person for activities A = {lying, sitting, standing} and landmarks
S = {lounge, bedroom, kitchen, toilet}.

Figure 4.2 can be interpreted as follows. There are three red squares that indicate a high
ratio: Mbedroom,lying indicates that lying is the prevailing bedroom activity; Mkitchen,standing

indicates that standing is the prevailing kitchen activity; and Mlying,bedroom indicates that
lying is mostly carried out in the bedroom. Next, blue squares indicate activity absence; for
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Algorithm 4.1 Create spatio-activity matrix.

Require: behavior trace b = {〈a, s〉1, 〈a, s〉2, ..., 〈a, s〉n}
Ensure: normalized matrix M(b)

V← {}
for 〈a, s〉 ∈ b do

v← sa vector(〈a, s〉)
V← V ∪ v

end for
M← v1v1

ᵀ

for vi ∈ V, i > 1 do
M←M + vivi

ᵀ + ti−1,iti,i−1
ᵀ

end for
norm(M)

Lying Sitting Standing Lounge Bedroom Kitchen WC

Lying

Sitting

Standing

Lounge

Bedroom

Kitchen

WC

In
te
n
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ty

Figure 4.2: Visualization of a daily spatio-activity matrix of one person. A warmer color
represents a higher value.

example, Mkitchen,lying and Mkitchen,sitting indicate that lying and sitting rarely occurred in
the kitchen. Diagonal elements in the bottom-right part of the table (that is, Mlounge,lounge,
Mbedroom,bedroom, Mkitchen,kitchen, Mtoilet,toilet) reveal that the person spent most of the time
in the bedroom followed by the lounge and toilet, and almost no time in the kitchen.

The visualization is especially useful in a comparison of multiple behavior traces. A
small change, for example, in the ratio between sleeping in the bed (being ill) and walking
around the apartment (a healthy person), is rapidly propagated through the spatio-activity
matrix and, therefore, one can quickly notice the change and the type of change at the same
time.

4.2.3 Feature Extraction

The behavior matrix can be directly fed into models for anomalous and suspicious behavior
detection (discussed in Chapter 5) by transforming the spatio-activity matrix MM+K,M+K

to a feature vector m. Note that the vector m contains (M + K)2 elements, and some
of them rarely change in different behavior traces. The main idea, then, is to reduce the
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number of features to the most representative set. This section presents an approach based
on dimensionality reduction technique denoted as principal component analysis.

Principal component analysis (PCA) is an orthogonal linear transformation of possibly
correlated variables onto a subspace. The choice of the k-dimensional projection subspace
is made such that the projection distances have a minimal deformation: squares of the k-
dimensional subspace distances are as large as possible. By projecting the data onto the
new coordinate system, the greatest variance emerges on the first coordinate (called the first
principal component), while the second greatest variance emerges on the second coordinate,
and so on.

Implementing PCA is the equivalent of applying Singular Value Decomposition (SVD)
to the covariance matrix. Consider a set of spatio-activity matrices M = {Mi}, 1 ≤ i ≤ L.
Each spatio-activity matrix Mi is unrolled into a vector mi. Then we construct a matrix
M̂, which consists of L vectors mi, each unrolled from Mi, i = 1...L.

M̂ =


m1

m2
...

mL

 =


M1,1 M1,2 · · · M1,(M+K)2

M2,1 M2,2 · · · M2,(M+K)2

...
...

. . . · · ·
ML,1 ML,2 · · · ML,(M+K)2

 (4.5)

The PCA proceeds as follows: first, we compute the mean vector µ̄ with µj elements,

1 ≤ j ≤ (M+N)2 with Equation (4.6), and subtract the mean from M̂ with Equation (4.7),

which gives us matrix M̂z with zero mean.

µj =
1

L

L∑
k=1

Mk,j , 1 ≤ j ≤ (M +N)2 (4.6)

M̂z = M̂−


1
1
...
1


L

µ̄ (4.7)

Next, a matrix C of variances and covariances is computed with Equation (4.8), where
the diagonal elements i = j are variances σ2ij and the non-diagonal elements i 6= j are
covariances σiσj .

C =
1

L
M̂zM̂

ᵀ
z (4.8)

Finally, C is decomposed into three matrices with SVD (Equation (4.9)). S is a diagonal
matrix that stores singular values λ1, λ2, ..., λn. U and V are orthogonal matrices, while
their column vectors are the so-called left and right eigenvectors of C.

C = USVᵀ (4.9)

When these eigenvectors multiply M̂z, the coordinates are shifted and rotated until they
end up aligned with basis vectors. Note that PCA now re-expresses the data as a linear
combination of its basis vectors, M̂zV. V columns are found to produce the desired linear
combinations. The first V column corresponds to the largest principal component, the
second column corresponds to the second largest, and so on. These define the direction in
which the variability of the original data set is maximized.
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The transformed data now enable the use of anomalous and suspicious behavior detection
models. All the behavior matrices {Mi} ∈ M, 1 ≤ i ≤ L are first expressed in the new
coordinate system. When a new behavior matrix ML+1 is obtained, it is first expressed in
the same system; the first components are subsequently used for further detection.

4.3 Summary and Discussion

This chapter proposed a novel, efficient encoding denoted as spatio-activity matrix that is
able to capture behavior dynamics in a specific time period using spatio-temporal features.
We provided a visualization technique to compare different behavior patterns. We further
provided a feature extraction technique based on principal component analysis to reduce
the spatio-activity matrix dimensionality, which can be directly used in anomaly detection
algorithms. Compared to related work based on HMMs (Monekosso and Remagnino, 2010),
the behavior patterns dynamics is expressed explicitly and can be visualized. Moreover,
in contrast to research based on rule induction (Lee et al., 2004; Lymberopoulos et al.,
2008), the presentation does not extract the exact behavior patterns, which leads to better
generalization.

The obtained spatio-temporal features or their principal componentes will be used in the
next chapter, which evaluates behavior patterns to perform anomalous and suspicious be-
havior detection. The spatio-temporal matrix can be constructed on various time intervals,
such as hours, days, weeks, which provides different behavior encoding granularities; Sec-
tion 5.4 discusses how to combine such evaluations. Also, the approach was demonstrated
on spatio-temporal feature space, but in general, it can be applied on other feature spaces
as well, which is an interesting direction for further investigations.
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5 Anomalous and Suspicious Behavior Detection

This chapter discusses how to approach anomalous and suspicious behavior detection. It
first formalizes the problem and shows how to optimally perform detection. It then discusses
why optimal detection is not always possible, proves the lower error bound and discusses
heuristics approaches. Finally, it describes how to design multi-view detectors and combine
their evaluations.

5.1 Detection Objectives

Our focus is detection of deviant behavior patterns that might represent a security risk,
health problem, or any other abnormal behavior contingency. Such patterns occur infre-
quently; however, when they do occur, their consequences can be quite dramatic, and often
negatively. Typical examples include credit card fraud detection, cyber intrusions, industrial
damage, etc.

More formally, we define behavior pattern as follows:

Definition 11. Behavior pattern b̃ is a vector of features extracted from behavior trace
b = {(a, s)t|1 ≤ t ≤ T}.

The definition implies that a behavior pattern can be constructed from a behavior trace
by an arbitrary function. The main idea is to introduce a set of features that effectively
encodes the behavior trace, such as the spatio-activity matrix introduced in Chapter 4.

We use term deviant behavior to refer to behavior that is either suspicious or anomalous
and cast the deviant behavior detection problem in a statistical framework, which builds
upon Helman and Liepins (1993) intrusion detection framework. This will help introduce
rigorous notions, which are required later in the thesis, and allow future work to evolve
toward broader objectives.

At time step t, we observe a behavior pattern b̃t, generated by a hidden stochastic
process H. Now suppose that H is a mixture of two auxiliary stochastic processes, namely
the normal process N and the suspicious process S, that correspond to a legitimate and a
deviant behavior of an agent, respectively. The random variable yt = 0 if b̃t is generated by
N and yt = 1 if b̃t is generated by S. In reality, there can be many subprocesses contributing
to both N and S; that is, many legitimate agents with different behavior patterns or an
agent with many legitimate and deviant behavior profiles. However, here we assume only a
single N and a single S that capture all the variability.

To this point, we have assumed that an observer is able to observe perfectly whether
a behavior pattern is generated by S or N . In practice, however, it may appear that a
legitimate agent emits deviant behavior patterns (or vice-versa). An observer might be
limited for various reasons, such as an inability to detect characteristic features, and noisy
activity recognition models. Therefore, we relax this assumption as follows: a behavior
pattern b̃t is observed as generated by N with the probability

n(b̃t) = Pr{H(t) = b̃t|yt = 0}, (5.1)
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and as generated by S with the probability

s(b̃t) = Pr{H(t) = b̃t|yt = 1}. (5.2)

Given the preceding assumption, that is, a priori probability λ that a behavior pattern is
legitimate, the mixture distribution of a pattern b̃t is

Pr{H(t) = b̃t} = λn(b̃t) + (1− λ)s(b̃t). (5.3)

Note that in most applications, λ is close to 1, since deviant behavior patterns are rare,
necessitating the application of modeling techniques such as those described in the next
section.

We illustrate via a simple example the above-mentioned definitions and concepts. Sup-
pose the behavior pattern consists of only two features, activity and landmark, and that
the possible values for activity are A = {standing, lying}, while the possible values for
landmark are S = {kitchen, bedroom}. Hence, the spatio-activity space can be presented
by the set {〈kitchen, standing〉, 〈kitchen, lying〉, 〈bedroom, standing〉, 〈bedroom, lying〉} of
ordered pairs. Assume the following probability distribution on spatio-activity space for
1 ≤ t ≤ T :

Pr{H(t) = 〈kitchen, standing〉|yt = 0} = n(〈kitchen, standing〉) = 0.950,

Pr{H(t) = 〈kitchen, lying〉|yt = 0} = n(〈kitchen, lying〉) = 0.020,

Pr{H(t) = 〈bedroom, standing〉|yt = 0} = n(〈bedroom, standing〉) = 0.250,

Pr{H(t) = 〈bedroom, lying〉|yt = 0} = n(〈bedroom, lying〉) = 0.850,

Pr{H(t) = 〈kitchen, standing〉|yt = 1} = s(〈kitchen, standing〉) = 0.020,

Pr{H(t) = 〈kitchen, lying〉|yt = 1} = s(〈kitchen, lying〉) = 0.900,

Pr{H(t) = 〈bedroom, standing〉|yt = 1} = s(〈bedroom, standing〉) = 0.050,

Pr{H(t) = 〈bedroom, lying〉|yt = 1} = s(〈bedroom, lying〉) = 0.050.

Then, if, for example, λ = 0.9, the mixture probability is:

Pr{H(t) = 〈kitchen, standing〉} = 0.857,

Pr{H(t) = 〈kitchen, lying〉} = 0.108,

Pr{H(t) = 〈bedroom, standing〉} = 0.230,

Pr{H(t) = 〈bedroom, lying〉} = 0.770.

The objective of behavior detection is to identify those patterns that are likely to be
deviant activities, that is, patterns b̃ for which

Pr{yt = 1|H(t) = b̃t} > τ, (5.4)

is above some threshold τ or is large relative to the probability for other traces.
According to Bayes theorem and our definitions

Pr{yt = 1|H(t) = b̃t} =

=
(1− λ)Pr{H(t) = b̃t|yt = 1}

(1− λ)Pr{H(t) = b̃t|yt = 1}+ λPr{H(t) = b̃t|yt = 0}

=
(1− λ)s(b̃)

(1− λ)s(b̃) + λn(b̃)

=
(1− λ)r(b̃)

(1− λ)r(b̃) + λ

=
r(b̃)

r(b̃) + λ/(1− λ)
,

(5.5)
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where r(b̃) = s(b̃)/n(b̃) if n(b̃) > 0, and r(b̃) = ∞ if n(b̃) = 0. We derive from Equa-
tion (5.4) and Equation (5.5) that a behavior pattern is deviant iff:

r(b̃) >
λτ

(1− λ)(1− τ)
. (5.6)

Assuming the probabilities in the previous example, we can compute

r(〈kitchen, standing〉) = 0.021,

r(〈kitchen, lying〉) = 0.450,

r(〈bedroom, standing〉) = 0.200,

r(〈bedroom, lying〉) = 0.059.

However, in practice, some or all of the probabilities for the above calculations are
unknown. We have no direct knowledge of the a priori probability λ and distribution of
processes N and S. Our primary concern is hence to develop models that estimate the
likelihood of ratio r(b̃) and, therefore, distributions s(b̃) and n(b̃).

5.2 Detection Performance

First, we define detector as a behavior signature ranking mechanism. The larger the value
provided by the detector, the more deviation is attributed to the signature.

Definition 12. Graded detector Dg is a function from behavior signature space B̃ to non-
negative real set:

Dg : B̃→ R+
0 .

Definition 13. Binary detector Dg is a function from behavior signature space B̃ to binary
set:

Db : B̃→ {0, 1}.

For any graded detector Dg, we can associate a set of binary detectors Db,τ satisfying

Db,τ =

{
1; Dg ≥ τ
0; else

. (5.7)

For example, we could define a graded detector as Dg(b̃) = r(b̃). Similarly, we could define
a binary detector Db(b̃) = 1 if r(b̃) ≥ λ/(1− λ) and Db(b̃) = 0 otherwise.

In general, legitimate process N and deviant process S may overlap, which means that
for some signatures b̃, both n(b̃) and s(b̃) are non-zero. Therefore, a detector (graded or
binary) can map two signatures to the same value, even if one was generated by N and the
other by S. Consequently, some error is unavoidable.

There are four possible outcomes as shown in Table 5.1. The first column contains
possible signatures (deviant or legitimate), while the first line contains detector outcomes.

There are two types of error: type I error or false positive, which can be thought of as
convicting a legitimate agent ; and type II error or false negative; that is, letting a suspicious
agent go free. A perfect detector would have 0% false negatives and 0% false positives; that
is, it would correctly identify all deviant and legitimate signatures. However, theoretically
any detector will possess a minimum error bound if the distributions N and S overlap.

Figure 5.1 illustrates an example of overlapping distributions N and S (Duda et al.,
2000). The red and blue shaded areas in the tail of distributions N and S represent type
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Table 5.1: Detection outcomes.

Detector: legitimate Detector: deviant

Deviant signature miss (false negative) hit (true positive)

Legitimate signature correct rejection (true negative) false alarm (false positive)

Figure 5.1: Overlapping distributions N and S.

I and type II errors, respectively. An arbitrarily chosen decision point τ∗ represents the
binary detector’s decision boundary; that is, regions Db(b̃) = 0 and Db(b̃) = 1. The marked
triangular area represents reducible error, which can be eliminated if the decision boundary
is moved to τopt, the optimal decision boundary, which gives the lowest error probability.

Theorem 1. For any binary detector Db, the symmetric error is bounded below by

T∑
t=1

min (s(b̃t)(1− λ), n(b̃t)λ).

Proof. The error probability consists of two terms; that is, type I and type II errors as
shown in Equation (5.8).

Pr{error} =

T∑
t=1

Db(b̃)=0

s(b̃t)Pr{y = 1}+

T∑
t=1

Db(b̃)=1

n(b̃t)Pr{y = 0}

=

T∑
t=1

Db(b̃)=0

s(b̃t)(1− λ) +

T∑
t=1

Db(b̃)=1

n(b̃t)λ

(5.8)

As follows from Equation (5.8), it is advantageous to classify a behavior signature b̃ as
legitimate if s(b̃t)(1− λ) < n(b̃t)λ so that the smaller quantity will contribute to the error
sum; the other way around follows analogously. Consequently, the lower error bound as
defined in the theorem’s statement is achieved.
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Frequently, the type I and type II errors are not considered of equal importance; hence,
we can weight them with two constants α, β ∈ [0, 1] s.t. α + β = 1. The error probability
then follows from Equation (5.9).

Pr{error} = α

T∑
t=1

Db(b̃)=0

s(b̃t)(1− λ) + β

T∑
t=1

Db(b̃)=1

n(b̃t)λ (5.9)

5.2.1 Performance Measures

Optimality conditions assume that detection is performed with the benefit of perfect infor-
mation. In practice, knowledge of distributions is not readily available and the detectors
are evaluated on a behavior-signature database. The common performance measures are:

• sensitivity, also true positive rate or recall – the proportion of deviant signatures,
which are correctly identified as such

sensitivity =
TP

TP + FN
, (5.10)

• specificity, or true negative rate – the proportion of correctly identified legitimate
signatures

specificity =
TN

TN + FP
, (5.11)

• precision, or positive predictive value – the proportion of correctly raised alarms

precision =
TP

TP + FP
. (5.12)

In addition, sensitivity and precision, that is, the fraction of detected deviant signatures
and the fraction of relevant alarms are ideally close to 100% (that is, no type I and type
II errors). F-measure considers both the precision and the recall to compute the score as a
weighted precision and recall average, where the score reaches its best value at 1 and worst
at 0.

F = 2 · precision · recall

precision + recall
(5.13)

5.2.2 False Positive Paradox

The false positive paradox (Rheinfurth et al., 1998) occurs when the behavior signature-
database has a low deviant behavior signature share and the detector’s hit rate is lower
than the false positive rate. In this case, the false positive test is more probable than the
true positive test.

Consider the following example: suppose a detector D has false alarm rate 0.04% and
false negative rate (miss) 0%; that is, it marks all deviant signatures. Now suppose we have
a behavior signature database BA with a million signatures in which 2 of 100 signatures are
deviant; that is, 2%. The detection scores are as follows:

TP = 1, 000, 000 ∗ 0.02 ∗ 1.0 = 20, 000 signatures (hits),

FP = 1, 000, 000 ∗ 0.98 ∗ 0.0004 = 392 signatures (false alarms).

Hence, a signature is classified as deviant with over 98% confidence; that is, precision =
20, 000/20, 392.
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Now suppose the same detection is applied to a behavior signature database BB in which
1 of 10, 000 signatures are deviant; that is, 0.01%. The detector in this case scores as follows:

TP = 100, 000 ∗ 0.0001 ∗ 1.0 = 100 signatures (hits),

FP = 100, 000 ∗ 0.9999 ∗ 0.0004 ≈ 400 signatures (false alarms).

A signature is now classified as deviant with only 20% confidence, since only 100 of total
500 signatures marked as deviant are indeed deviant. Given the results on database BA,
it is considered paradoxical that deviant detection is mostly a false alarm in database BB.
The probability of a deviant detection result is hence determined not only by the accuracy
of the detection, but also by the distribution of the sampled behavior signatures. Hence
it is crucial that historical behavior signature distribution matches the behavior signature
distribution on which the detector is applied.

5.3 Detectors

Helman and Liepins (1993) divided detectors into: modeling approaches, which require es-
timation of distributions s(b̃) and n(b̃) to directly attack the problem of deviant behavior
detection, for example, neural networks (Biermann et al., 2001), k-nearest neighbors (Govin-
darajan and Chandrasekaran, 2009), näıve-Bayes estimators (Kruegel et al., 2003); and non-
modeling approaches that do not explicitly estimate s(b̃) or n(b̃), but use various heuristics
to flag deviant behavior patterns, for example, expert rules (Esponda et al., 2004), plan
recognition (Avrahami-Zilberbrand and Kaminka, 2007), and decision trees (Ektefa et al.,
2010).

5.3.1 Frequentist Estimator

Frequentist estimator is a basic approach that estimates distributions n(b̃) or s(b̃). The
distribution n(b̃) is estimated from a historical database of behavior signatures B:

n̄(b̃) = Pr{b̃} =
η(b̃)

|B|
, (5.14)

where η(b̃) counts the number of the occurrences of the signature b̃ in B.
Two promising models for estimating distribution s(b̃) are uniform and independence

model. The uniform model assumes that all signatures are equally likely, regardless of the
historical database:

s̄u(b̃) =
1

|b̃|
. (5.15)

The independence model assumes that the features in the behavior signature b̃ = 〈f1, ..., fL〉
are independent, that is:

s̄i(b̃) = Pr{f1, . . . , fL} =
L∏
i=1

Pr{fi} =
L∏
i=1

η(fi)

|B|
. (5.16)

The models are best illustrated by means of example. Consider a behavior signature
structure from the previous example. Suppose further that the historical database consists
of 100 signatures, yielding observed frequencies of the four possible behavior signatures as
shown in Table 5.2.

The frequentist estimator gives us, for example, n̄(〈kitchen, standing〉) = 0.030 and
n̄(〈kitchen, lying〉) = 0.070. With the uniform model, we obtain s̄u(b̃) = 0.25 for any
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Table 5.2: Example: Observed frequencies of four possible behavior signatures.

Activity / Landmark Kitchen Bedroom

Standing 3 8

Lying 7 82

b̃, which gives us ratios r̄u(〈kitchen, standing〉) = 8.333 and r̄u(〈kitchen, lying〉) = 3.571.
The uniform model simply exposes signatures less likely to be generated by process N ,
without any reference to process S. Hence, the signature 〈kitchen, standing〉 is considered
as anomalous, as it is the least frequent in the historical database.

The independence model gives us s̄i(〈kitchen, standing〉) = 0.011 and s̄i(〈kitchen, lying〉) =
0.089, leading us to ratios r̄i(〈kitchen, standing〉) = 0.367 and r̄i(〈kitchen, lying〉) = 1.271.
In this case, the signature 〈kitchen, lying〉 is marked as suspicious because activity lying is
something relatively unusual to be performed at landmark kitchen.

Each of the models is clearly better than the other for certain tasks. While we believe
those basic models to be reasonable starting points, we envision a framework in which several
models are combined to yield the final evaluation.

5.3.2 Density Estimator

The estimation can be based on a distance measure to deviant and legitimate behavior
signatures in the historical database B. Suppose the historical database B can be split into
legitimate Bn and deviant Bs signatures. The ratio r(b̃) can be then defined as a ratio
between distance to the k-nearest legitimate and deviant signatures:

r(b̃) =

∑k
b̃i∈nn(b̃,Bs)

d(b̃, b̃i)∑k
b̃i∈nn(b̃,Bn)

d(b̃, b̃i)
, (5.17)

where d is a distance measure (for example, Manhattan, Euclidean, or Mahalanobis distance)
and nn is a set of signatures ordered by the distance to behavior signature b̃:

nn(b̃,B) = {b̃1, b̃2, · · · , b̃|B||d(b̃, b̃i) ≤ d(b̃, b̃i+1)}. (5.18)

Practical applications are frequently faced with absence of one of the Bn or Bs databases.
In this case, the detection is focused on one of the tasks: suspicious or anomalous behavior
detection (Avrahami-Zilberbrand, 2009).

Definition 14. Consider a set of behavior patterns Bs that encodes negative (suspicious)
behavior. A behavior pattern b 6∈ Bs is suspicious iff

∃bi ∈ Bs : d(b,bi) < ε.

In other words, a behavior pattern is considered suspicious if it matches at least one sus-
picious behavior pattern. Since suspicious behavior is usually rare, this approach requires
an expert that specifies all the suspicious patterns. Thus, such detection systems can only
discover threats that are known a priori. Examples include models that encode possible at-
tacks in intrusion detection systems (Biermann et al., 2001), trying to identify if an attack
is under progress; and models with fall-dynamic templates in remote eldercare systems (Lee
et al., 2004) that are compared to observation to infer whether the situation matches one
or more templates.

The other approach uses a set of behavior patterns in an inverse fashion.
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Definition 15. Consider a set of behavior patterns Bn that encode positive (normal) behav-
ior. A behavior pattern b 6∈ Bn is anomalous iff

∀bi ∈ Bn : d(b,bi) > ε′.

The set of behavior patterns is limited to covering only positive, expected behavior pat-
terns. If a behavior pattern cannot be matched against those patterns, it is announced
as anomalous. An advantage of this approach is that it requires only examples of positive
behavior, which are usually abundant and attainable. This approach can thus detect un-
foreseen threats and contingencies. However, one potential issue is false positives caused by
an incomplete legitimate behavior set; that is, a legitimate behavior pattern is marked as
anomalous if it was not previously included in the set Bn.

A notable approach is Local Outlier Factor (LOF) (Breunig et al., 2000), an outlier-
detection algorithm based on computing the local neighborhoods densities. The main idea
of the LOF algorithm is to assign to each signature a degree of being an outlier. This degree
is the LOF of a vector. Vectors with a high LOF have local densities smaller than their
neighborhood and typically represent stronger outliers, unlike vectors belonging to uniform
clusters that usually tend to have lower LOF values. Due to the local approach, LOF is able
to identify outliers in a data set that would not be outliers in another area of the same data
set. For example, a point at a small distance to a very dense cluster is an outlier, while a
point within a sparse cluster might exhibit similar distances to its neighbors.

The more behavior signature features, the more likely each signature is unique, and the
less likely that any fixed size historical set represents a substantial mass of all signatures;
that is, any density estimator becomes less reliable.

5.3.3 Machine Learning Approaches

Detectors employ statistical models generated from historical signatures automatically or by
an expert. They specify relationships between the values of features and target value. For
example, a rule might state if the landmark is kitchen and activity is lying, then signature
is suspicious.

If no historical signature is available, an expert specifies a set of rules covering either
desired (legitimate) or unwanted (deviant) behavior. Detection is performed analogously as
in the previous section.

Data-driven rule generation is defined as a classification task, which constructs a model
able to exploit statistical differences in a database of historical behavior signatures. Notable
approaches are decision trees, SVMs, neural networks, etc.

5.4 Combining Multiple Detectors

As indicated in several studies, it is often advantageous to combine decisions of several
experts to reach the final conclusion (Woods et al., 1996; Gams, 2001; Vilalta and Drissi,
2002). A single detector might be weak in certain aspect; that is, unable to reliably detect or
evaluate specific behaviors. For example, consider the ambient assisted living domain. An
anomalous event, such as fall, must be detected within seconds, while gradual degradation
of gait resulting in limping might require months to be manifested. A detector specialized
for anomalous events on the seconds scale would be unable to detect such degradation;
analogously, a detector operating on months scale would simply filter out events such as
falls. The combination of both would address both behaviors to provide anomalous events
detection.
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The main idea is to construct several local views; that is, detectors trained on a subset
of complete feature space such as modalities differences, time scales, contextual information,
and detection method approaches, into the final evaluation.

There are several possible strategies for performing the final evaluation: first, all de-
tectors are considered equally important/reliable; second, accept the decision delivered by
the most reliable expert ignoring majority consensus; third, weight detectors by their im-
portance/past perfomance/reliability. A promising direction is to utilize expert knowledge
to encode the last approach in a form of a Bayesian network as a set of random variables
and their conditional dependencies via a directed, acyclic graph. For example, a Bayesian
network could represent the probabilistic relationships between the behavior in question and
detectors. Given detectors’ evaluations, the network can be used to compute the probabili-
ties that the behavior deviates.

5.5 Summary and Discussion

This chapter helped to understand the anomalous and suspicious behavior detection prob-
lem, and why it is difficult to solve. The chapter gave the first clear problem definition
and established a theoretical framework for anomalous and suspicious behavior detection
from agent traces. We showed how to optimally perform detection, discussed why detection
error is often inevitable, and proved the lower error bound. We further provided several
heuristic approaches that either estimated distributions required to perform detection or
directly rank the behavior signatures using machine-learning approaches.

The main assumption of this chapter was that the decision must is based on a single agent
observation. In practice, however, there are often many observations available, which allows
the observer to make a decision based on multiple observations. The next chapter extends
the theoretical framework to address multiple observations, discusses emerged issues, and
proposes an approach to evaluate multiple observations.
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6 Accumulating Behavior Evaluations Over Time

Anomalous and suspicious behavior detection becomes more challenging when agents are
observed over a longer period of time. In many domains, no single event is sufficient to
determine deviant behavior. Instead, multiple evaluations must be combined. This contrasts
with previous chapters, which focused on the detection of a single, clearly suspicious event.

This chapter proposes a two-step detection system, which first detects trigger events in
behavior trace, and then combines the evidence to provide a degree of suspicion. The chapter
specifies conditions that any reasonable detector should satisfy, analyzes three detectors, and
proposes a novel detector that generalizes a utility-based plan recognition with arbitrary
utility functions.

6.1 Problem Statement

We target a large class of applications where no single event is sufficient to make a decision
about whether or not behavior is suspicious. Instead, we face a sparse set of trigger events
that identifies interesting parts characterizing the behavior trace.

Definition 16. Trigger event et is an evaluation of a subsequence in behavior trace b. It is
described by probabilities that the corresponding subsequence is suspicious s(e) and normal
n(e).

Instead of constructing a behavior pattern from the complete behavior trace, only inter-
esting subsequences are extracted and denoted as trigger events. Each event is then further
analyzed as a behavior pattern and evaluated as described in the previous chapter. Multiple
trigger events are combined into an event trace.

Definition 17. Event trace e(k) is a totally-ordered sequence of k trigger events e(k) =
{e1, e2, ..., ek}.

Examples include a potentially suspicious passenger who appears to turn away in the
presence of security personnel, but not blatantly so; hence, no single event is enough to
raise suspicion. The main question we address is how to combine multiple events to decide
whether an event trace corresponds to the normal or a suspicious agent behavior.

We address the suspicious behavior detection problem in two steps, as shown in Fig-
ure 6.1. The first step analyzes an action trace and the surrounding environment to detect
trigger events that characterize its interesting parts. The event trace is then evaluated
in second step. If the evaluation exceeds a threshold value or is large relative to other
evaluations, the event is considered suspicious.

The key contributions of this chapter are in the second step, which is defined as a decision
problem: is the behavior of an agent suspicious given a sequence of trigger events? First,
we formally describe the detection problem and specify the conditions that any reasonable
detector should satisfy. Second, we analyze three detectors, namely the näıve Bayes detector,
the hidden Markov models and the utility-based plan recognition (UPR). These detectors,
however, either simplify the problem or evaluate the events linearly. Finally, we present
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Figure 6.1: Two-step detection of suspicious behavior: (i) detection of trigger events; and
(ii) detection of suspicious behavior.

a novel detector that generalizes UPR as Function-UPR (F-UPR): we define utilities as
a set of functions over state transitions and observations, and introduce an observation
utility function that is especially suitable for suspicious behavior detection, since it is able
to evaluate events non-linearly.

6.2 Detection Scheme

This section formally analyzes how to evaluate a sequence of trigger events. Our methods
are general, but we will make use of the airport domain (Chapter 9) to provide examples,
where the goal is to detect a suspicious passenger from a surveillance camera network. Even
though we will be focused on suspicious behavior detection, the same conclusion can be
drawn for anomalous behavior detection.

We leverage the Bayesian intrusion-detection framework (Helman and Liepins, 1993)
to define the problem. At each time step t, we observe an event et, generated by a hidden
stochastic process H. Now suppose that H is a mixture of two auxiliary stochastic processes,
namely the normal process N and the suspicious process S. The random variable yt = 0 if
et is generated by N and yt = 1 if et is generated by S. Since a suspicious passenger always
emits a suspicious event (and a normal person a normal event), y for a specific agent does
not change over time. In reality, there can be many subprocesses contributing to both N
and S; that is, many normal persons with different behavior patterns. However, here we
assume only a single N and a single S that capture all the variability.

To this point, we assumed that an observer is able to perfectly observe whether an event
is generated by S or N . In practice, however, it may appear that a normal person emits
suspicious events (or vice-versa). An observer might be limited for various reasons, such as
an inability to detect characterizing features and noisy trigger-event detectors. Therefore,
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we relax this assumption as follows. An event et is observed as generated by N with the
probability

n(et) = Pr{H(t) = et|yt = 0} (6.1)

and as generated by S with the probability

s(et) = Pr{H(t) = et|yt = 1} = 1− n(et). (6.2)

The mixture distribution of an event et and a prior probability λ is

Pr{H(t) = et} = λs(et) + (1− λ)n(et). (6.3)

The objective of suspicious behavior detection is to identify those traces e(k) = (e1, e2, ..., ek)
that are likely to be suspicious activities; that is, traces x for which

Pr{y = 1|H(t) = et, t = 1, ..., k} > τ, (6.4)

is above some threshold τ or is large relative to the probability for other traces.
The reason this problem is difficult is the non-linear effect. Consider the following

example: suppose we observe a person do a U-turn in front of a police officer, so such that
the likelihood that this was a suspicious person becomes high. Later, we see the same person
doing a half-turn in front of a police officer. This trigger event, if seen on its own, would
not contribute much to the overall suspicion. However, following the initial observed turn,
this new turn is a much stronger evidence to be attributed to the overall suspicion, because
we bias the new event with our previous observation.

Theoretically, it might be possible to optimally detect suspicious behavior using Equa-
tion (6.4). Unfortunately, this is usually not the case in practice. To see this, let us assume a
prior probability λ = Pr{yt = 1, t = 1, ..., k}. In most cases, λ is close to 0, since in real-world
applications suspicious activities are rare. Let the stochastic processes N , S and H denote
n(e(k)) = Pr{H(t) = et, t = 1, ..., k|y = 0}, s(e(k)) = Pr{H(t) = et, t = 1, ..., k|y = 1},
and h(e(k)) = Pr{H(t) = et, t = 1, ..., k}, respectively. Using Bayes theorem we can derive
from Equation (6.4)

Pr{y = 1|H(t) = et, t = 1, ..., k} =
λ · s(e(k))
h(e(k))

= (6.5)

=
λ ·
∏k
t=1 s(et|ei,i=t−1,...,1 )

λ
∏k
t=1 s(et|ei,i=t−1,...,1 ) + (1− λ)

∏k
t=1 n(et|ei,i=t−1,...,1 )

.

To this point, we implicitly assumed that the distributions λ, n, and s are reliably esti-
matable. The degree to which this assumption is valid depends on our detection capability.
Suppose we have a sufficiently large dataset Dl of labeled event traces: we can estimate the
prior probability λ using the relative frequency, presenting the number of traces generated
by a suspicious agent divided by the total number of traces (since traces can be of different
lengths, the quotient is normalized by the traces’ length). Note that in order to compute
Pr{H(t) = et, t = 1, ..., k|y = 1} we have to evaluate

s(e1) · s(e2|e1) · ... · s(ek|ek−1, ..., e1). (6.6)

While some first terms, that is, s(et), s(et|et−1), can still be estimated, latter term esti-
mation, including increasingly more history, becomes less and less reliable. In real-world
applications, we have no direct knowledge of the conditional probabilities values; that is, we
are unable to specify the probability of an event given all the possible combinations of his-
tory. For this reason, we must approximate the Bayes optimality in general. In particular,
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we will be concerned with estimating Pr{y = 1|H(t) = et, t = 1, ..., k} using approximate
approaches.

Given an event trace, some events may appear suspicious and some not. Hence, detec-
tion systems must have a scoring function that combines the evidence. Function output
is interpreted as the degree of suspicion attributed to the event trace. Although any two
scoring functions need not be exactly the same, we can specify the conditions that any rea-
sonable scoring function must satisfy. The class defined below appears to be both natural
and general.

The detection system can employ a scoring function f that interprets events to produce
a score characterizing the overall suspicion of the trace. Given a threshold value τ and an
event trace e(k), we can classify e(k) as suspicious if f(e(k)) ≥ τ .

Definition 18. A scoring function f over a trace of events e(k) is a function

f :
K⋃
k=1

e(k) → R.

The function f assigns a real value to any trace e(k) of length k = 1, ...,K.

Let ∆(et) decide whether a single event et is suspicious or not given a threshold τ ′:

∆(et) =

{
1; if s′(et) ≥ τ ′

0; else
, (6.7)

s′(et) =
λ · s(et)

λ · s(et) + (1− λ) · n(et)
. (6.8)

Definition 19. A class of well-behaved functions consist of scoring functions s.t. ∀e(k), ek+1 :

f(e(k), ek+1) ≥ f(e(k)) if ∆(ek+1) = 1,

f(e(k), ek+1) ≤ f(e(k)) if ∆(ek+1) = 0.

The conditions imply that the scoring function f ’s evaluation increases when a new suspi-
cious event is added to the trace, and decreases when a normal event is added to the trace.
The well-behaved scoring functions are motivated by the key observation that a suspicious
event ek+1 (that is, ∆(ek+1) = 1) is more likely to be generated by a suspicious process S
than a normal process N , regardless of the history e(k), that is,

s(ek+1|e(k)) ≥ n(ek+1|e(k)) if ∆(ek+1) = 1 and

s(ek+1|e(k)) ≤ n(ek+1|e(k)) if ∆(ek+1) = 0.

6.3 Detectors

This section analyzes approaches that determine whether an event trace is suspicious. First,
we discuss the näıve Bayes detector that relaxes the initial assumptions. Next, we discuss
an approach that directly tackles estimating the likelihood that a trace was generated by a
suspicious process using HMMs. Finally, we analyze an approach based on plan recognition
and present two extensions: (i) we define utilities as a potential function; and (ii) we present
an observation utility function able to address non-linear accumulation.
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6.3.1 Näıve Bayes Detector

A naive approach assumes that events are independent, which means that the current event
depends only on the current time step t and not on the time steps prior to t. The evaluation
of Equation (6.5) is simplified using the naive assumption:

Pr{y = 1|H(t) = et, t = 1, ..., k} =

λ ·
∏k
t=1 ŝ(et)

λ ·
∏k
i=1 ŝ(et) + (1− λ) ·

∏k
i=1 n̂(et)

. (6.9)

We have to evaluate the probability Pr{H(t) = et|yt} that an event is generated by both a
normal process n̂(et) and a suspicious process ŝ(et), which is tractable in terms of evaluation.
The approaches for estimating n̂ and ŝ may include a frequentist estimator, hidden Markov
models, k-nearest neighbors, neural networks, etc. We showed an approach using CHMM
in Section 3.6. An evaluation of the event trace is also well behaved when τ ′ = λ.

In practice, the model may be oversimplified by the assumptions; however, we will use
it as a baseline in our experiments.

6.3.2 Hidden Markov Models

A conditional probabilities estimation including the history can be encoded with HMMs
(Rabiner, 1989), as described in Section 3.4.2. Now suppose we create an HMM to estimate
Pr{H(t) = et|y = 1, t = 1, ..., k}; more precisely, it models the probability that an event
trace is generated by a suspicious agent. The hidden states of the process Q may be referred
to as internal states presenting the suspicious agent’s intentions. For the sake of clarity, let
us assume only two hidden states: a normal intention and a suspicious intention, emitting
normal and suspicious events, respectively. The transitions between the hidden states can
be explained as probabilities that the agent will either follow or change its current inten-
tion. Informally, this intention switching may be interpreted as follows: from an observer’s
perspective, sometimes suggesting that the observed agent is switching intentions appears
to provide a better explanation of the behaviors.

We construct two HMM models: a normal model N̄ and a suspicious model S̄. We split
all the labeled event traces e ∈ Dl to traces generated by normal and suspicious agents, and
use them to learn the parameters of the models N̄ and S̄, respectively. The parameters can
be locally optimized using an iterative procedure such as Baum-Welch method (Rabiner,
1989). Given a new event trace e(k) = (e1, e2, ..., ek), we compute the probability that the
trace was generated by each model Pr{e(x)|N̄} and Pr{e(x)|S̄} using a forward-backward
procedure (Rabiner, 1989). Given the prior probability λ̄ = Pr{yt = 1, t = 1, ..., k}, we
estimate the trace e(k) was generated by the suspicious process S:

Pr{y = 1|H(t) = et, t = 1, ..., k} =
λ̄ · Pr{e(k)|S̄}

λ̄ · Pr{e(k)|S̄}+ (1− λ̄) · Pr{e(k)|N̄}
. (6.10)

Although the information about previous behavior is now partially encoded in the tran-
sition probabilities (that is, given that the agent’s intention at time step t is suspicious, it
is more likely that the intention at t+ 1 will be suspicious as well), the model still uses the
Markov assumption; that is, the next agent’s intention depends only on its current inten-
tion. It is possible to introduce more complex HMM structures with long-term dependencies,
but learning and inference in such models becomes computationally intractable (Koller and
Friedman, 2009).
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6.3.3 Utility-Based Plan Recognition

We exploit UPR, a Utility-based Plan Recognition, briefly described below. The reader
is referred to Avrahami-Zilberbrand and Kaminka (2007) for details. UPR consists of a
plan library, which encodes observed agent behaviors in a form of directed graph, and
a matching algorithm. It follows the footsteps of the hierarchical HMM in representing
probabilistic information in a plan library. A plan step can be atomic, or non-atomic; that
is, broken down into atomic sub-steps, each a plan step in itself. Plan steps are linked via
sequential edges, describing the execution order of a given plan and its sub-steps. UPR
introduces three types of utilities on the edges: (i) the sequential utility from the current
step to the next; (ii) the interruption utility from the current step to the end of the plan;
and (iii) the decomposition utility from the current step at current level to its first substep
at the sub-level. A corresponding probability is maintained for each type of utility. The
observation sequence o is matched against the library using a Symbolic Plan Recognizer
(Avrahami-Zilberbrand, 2009), which filters hypotheses that are consistent with o. Finally,
the hypotheses are ranked by their expected utility.

We use a heuristic version of UPR as follows: let ŝ(et) = 1 − n̂(et) be the probability
that the trigger event et was generated by a suspicious person. Let cs > 0 be the cost of the
damage caused by a suspicious person if we do not stop him, and, similarly, let dn = 0 be
the cost of the damage caused by a normal person. The expected cost of letting this person
go (marking him as normal) is cgo = csŝ(et) + dnn̂(et) = csŝ(et). Now suppose cn > 0 is
the cost of arresting an innocent person and ds = 0 is the cost of the damage caused by a
suspicious person when arrested. The expected cost of stopping this person (marking him
as suspicious) is cstop = cnn̂(et) + dsŝ(et) = cnn̂(et). If there was only one event, we would
compare both hypotheses and choose the one with the lowest expected cost. Supposing in
this case cnn̂(et) is lower, we would call this person suspicious.

One possible approach, based on the above expected-cost calculation, would be to deter-
mine whether to categorize a trigger event as suspicious or normal, and then to accumulate
the total number of suspicious events, and subtract the total number of normal events; un-
fortunately, this simple strategy performs poorly. Therefore, not only do we count whether
an event is suspicious or normal, but we give it a weight proportional to the benefit or cost
accrued. The function UUPR then evaluates an event trace e(k) of a person by accumulating
the weighted benefit of stopping this person and subtracting the weighted cost of arresting
a normal person:

UUPR(e(k)) =
k∑
t=1

u(et), (6.11)

u(et) =

{
csŝ(et); if cnn̂(et) ≤ csŝ(et)

−cnn̂(et); if cnn̂(et) > csŝ(et)
. (6.12)

If the accumulated cost exceeds a threshold value τ ′, the person (that is, trace e(k)) is
marked as suspicious.

This remains a heuristic approach and further investigations could be a topic for future
work; however, given that our next approach has significantly superior results, we chose
to investigate that in more detail rather than providing more heuristics for the current
approach.
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6.4 Utilities as Potential Functions

Although the evaluation function UUPR is well behaved, the utilities are constant and hence
do not allow a dynamic adjustment for past agent behavior; for instance, the first time we
note a suspicious event counts equally, with subsequent suspicious events made by the same
agent. These utilities, however, are unable to express the empirical observation characteris-
tics. Therefore, we extend the notion of utility and define the utility U as follows.

Definition 20. The utility function U over a plan step qa, a plan step qb, and the entire
observation sequence e(t) until current time step t is a function

U : 〈qa, qb, e(t)〉n → R.

Utility function can be written as

U(qa, qb, e
(t)) =

n∑
j=1

λjuj(qa, qb, e
(t)),

where each utility function uj can be sequential, interruption, decomposition or any other
utility, and λj are parameters to be defined. This allows us to introduce a set of auxiliary
utility functions uj describing not only the plan-step transitions but also the additional
characteristics of the observation sequence. For example, the sequential utility from step qi
to qi+1 can be written as ut(qi, qi+1, e

(t)) = c, but in general, the constant c can be replaced
with any function over qi, qi+1 and e(t).

Theorem 2. U is a well-behaved function iff

∀uj , j = 1...k : uj is a well behaved function.

Proof. Consider two well behaved functions f and g, and two scalar constants λf and λg.
Let f ′ = λff . Since it is easy to see that multiplication with scalar constants preserves the
well-behaved property, f ′ is also a well behaved function. Let function u denote u = f ′+ g′.
Then, u(e(t), et+1) = f ′(e(t), et+1)+g′(e(t), et+1) ≥ u(e(t)) = f ′(e(t))+g′(e(t)) if ∆(et+1 = 1),
since f and g are well behaved and therefore f ′(e(t), et+1) and g′(e(t)), et+1) are non-
negative. Similarly, f ′ and g′ are non-positive when ∆(et+1) = 0.

6.4.1 Exponential Observation Utility

In order to include agent past behavior in an evidence evaluation, the utility function must
be defined over the observation sequence. We propose an observation utility function that
assigns cost using the number of past normal and suspicious events. Consider the example
from Section 6.1. Suppose we see a person do a full U-turn in front of a police officer and
we give this event a cost of 1. Later, we see the same person doing a half-turn in front of
a police officer. This event if seen on its own, would be given cost 0.5. However, following
this initial turn, this new turn becomes a 1 instead of 0.5. So, a linear accumulation would
have given us a cost of 1.5, whereas because we bias the new event to register higher on our
scale, our cost is 2 instead of 1.5.

Let ηs(e
(k)) define the number of suspicious events in an event trace e(k):

ηs(e
(k)) =

k∑
t=1

∆(et). (6.13)
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Similarly, let ηn(e(k)) = k − ηs(e
(k)) represent the number of normal events. Suppose

we observed a trace e(k) of all the suspicious events; that is, ∀t, t = 1, ..., k : ∆(et) = 1.
Intuitively, the likelihood that an event et was indeed generated by a suspicious process
increases exponentially according to the number of suspicious events in the past. On the
other hand, if the events in e were normal; that is, ∀t, t = 1, ..., k : ∆(et) = 0, the likelihood
decreases exponentially as the number of normal events increases. We define an observation
utility function uo over the current event et and trace e(t−1) recursively as follows:

uo(et, e
(t−1)) = ψ(e(t)) · (uo(e(t−1)) + ω(e(t))), (6.14)

uo(e
(0)) = 0,

ω(e(t)) = α · ηs(e(t))s(et)/β, (6.15)

ψ(e(t)) = γ · ρ−η∗n(e(t))/ηs(e(t)). (6.16)

The term ω(e(t)) uses an exponential function to assign a cost to the likelihood s(et) that
an event is suspicious. The parameter α > 0 is the initial cost, ηs corresponds to the growth
factor, and the parameter 0 < β < 1 is the likelihood of the cost increasing by the growth
factor. The parameters α and β are estimated from the data. In the case of observing
two full U-turns, the second U-turn attributes higher cost to the overall suspicion, since the
exponent base is increased due to the first U-turn.

Additionally, the term ψ(e(t)) employs an exponential time decay function that discounts
the accumulated cost at time t according to the number of consecutive normal events η∗n. The
modified η∗n represents the time elapsed since the last event ∆(ei) = 1; that is, the number of
normal events since the last suspicious event. The higher the number of consecutive normal
events, the faster the cost decay. The parameter 0 < γ ≤ 1 is the initial decay, the parameter
0 < ρ < 1 is the decay factor, and ηs is used to specify the number of events required for the
decay to decrease by the decay factor. The parameters γ and ρ are also estimated from the
data. Suppose we observe two agents, one already having made two U-turns and the other
having made a single U-turn. Suppose, then, we observe both agents do a clearly normal
event; the overall suspicion of the first agent is less than the overall suspicion of the second
agent. Hence, the higher the number of suspicious events, the slower the suspicion decay.

The function uo is a well-behaved function by definition. Equation (6.14) can be rewrit-
ten, which gives us the utility function UF−UPR:

UF−UPR(e(k)) =

k∑
t=1

n∑
j=1

λjfj(e
(t), q(t− i), q(t))

=

k∑
t=1

(ω(e(t))

k∏
i=t

ψ(e(i))). (6.17)

6.5 Summary and Discussion

This chapter extended the theoretical framework established in the previous chapter. It
showed how to perform detection when an agent is observed over longer periods of time
and no significant event is sufficient to reach decision. We first specified conditions any
reasonable detector should satisfy and analyzed several detectors. We further proposed a
novel approach denoted as F-UPR detector that generalizes UPR (Avrahami-Zilberbrand
and Kaminka, 2007) with arbitrary utility functions. This allows to assign utility to repeated
plan steps according to agent past behavior, which was, in turn, used to introduce an
exponential observation utility function that assigns cost using the number of agent’s past
normal and suspicious events.
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7 A Unified Detection Framework

In this chapter, a unified framework for anomalous and suspicious behavior detection is
presented. The goal is to design a framework rich enough to address various domains
and different configurations. Therefore, we summarize its components and explain their
relationships. The next part of the thesis then shows how to instantiate the detection
framework in various real-life domains.

7.1 Framework Components

All the components presented in the previous chapters form the unified framework for
anomalous and suspicious behavior detection. This section reviews the components, their
hierarchical structure, and explains the processing steps of the unified framework.

7.1.1 Framework Levels

Let us revisit the framework level hierarchy shown in Figure 7.1 that systematically processes
agent spatio-temporal data to perform deviant behavior detection. The information flow is
bottom-up through three main levels shown on the left-hand side: measurements, activity
assessment, and behavior assessment. Each of the main levels contains several sub-levels
(right-hand side): 13 in total.

The measurement level provides sensor data, which are collected at each time step t in
the next sub-level as an observation vector xt. In addition to the sensor data, the observation
vector may also contain contextual information and environmental variables such as time,
date, weather, etc. Subsequent observation vectors are bundled in an observation sequence
X.

The next main level is activity assessment. The first four sub-levels basically correspond
to ARPipe (activity recognition pipeline, Chapter 3), which first suppresses the sensor noise,
followed by the construction of activity recognition feature vectors and atomic activity
recognition itself. Finally, the spurious transitions among atomic activities that cannot
occur in reality are smoothed. Activity sequence containing an atomic action at each time
step a(T ) = {at|1 ≤ t ≤ T} is passed to the next sub-level, which can recognize complex
behaviors or interactions among agents.

The top level performs behavior assessment in order to detect deviance. The first sub-
level constructs a behavior trace that consists of 〈landmark, activity〉 tuples, which are
encoded as a behavior pattern in the next sub-level. The next sub-level then introduces
a set of detectors based on different features, views and modalities to provide different
evaluations of the behavior pattern. The evaluations are then combined at each time step in
the next sub-level as well as over time at the level above. Finally, the top sub-level outputs
the final agent behavior evaluation that comprehends all the behavior to the current time
step.
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Sensors

Observations

Noise removal
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Atomic activity recognition

Spurious activity removal
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agent-agent interaction

Behavior trace

Behavior pattern
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Combining multi-view detectors

Deviant behavior accumulation 

Behavior evaluation

Agent’s traces in the environment

Activity recognition

Deviant behavior detection

Measurements

Behavior assessment

A
bstraction level

Activity assessment

Figure 7.1: Hierarchy of abstraction levels and processes.

7.1.2 Processing Steps

A detailed unified framework flowchart is outlined in Figure 7.2. The start and the end of
the process are shown in rounded rectangles, processes are represented as rectangles, and
input/output data are represented as a parallelogram.

The process starts with an observation sequence describing agent movements in the
environment. The trace is first processed by the activity recognition pipeline as described
above and outputs an activity sequence. The activity sequence then enters deviant behavior
detection level marked with dashed-squared box. The activity sequence is first augmented
to behavior trace, which then enters into a variety of view transformation processes. Each
view-transformation process applies its specific viewpoint using either different features,
modalities, or time aggregation periods to construct corresponding behavior signatures.
Each behavior signature is then evaluated with a deviant behavior detector separately. The
next step combines all the evaluations that are further processed in a suspicious behavior
accumulation module over time, which finally outputs the input trace deviation.

General implementation principles and the theoretical background of particular flowchart
processes were discussed in the previous chapters, while the concreted domain implemen-
tation is demonstrated in Part II of this thesis. Note that, in some domains, not all the
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processes are required; a domain problem may simplify a certain process. For example, if
only a single behavior view is required, the multi-view detector combination is simplified
accordingly.
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Figure 7.2: Processing flowchart of the unified framework.

7.2 Framework Instantiation

As will be shown in the next part of the thesis, the framework can be instantiated for various
domains and problems. This section covers high-level framework instantiation, emphasizing
the learning and detection phases.
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7.2.1 Learning and Detection

Unified framework instantiation includes selecting and designing some domain-specific com-
ponents as well as implementing general components described in the previous chapters.
Since this will be covered in Part II of this thesis, these components will be abstracted and
the focus will be on the learning and detection phase.

Figure 7.3 depicts a high-level block diagram of the learning (left-hand side) and the
detection (right-hand side) phase within the unified framework. The goal of the learning
phase is to instantiate all the components, which includes building classifiers and detectors,
discovering patterns, and fine-tuning the parameters of the models. After that, the frame-
work is deployed in the detection phase, which is dedicated to evaluating new traces at the
input.

LEARNING DETECTION

Agent’s traces in 

the environment

Activity trace

New trace

Behavior pattern discovery, 

detector training

Discovered patterns, 

trained detectors

Deviant behavior

detection

Degree of 

deviation

Activity recognition 

(training)

Activity recognition

(labeling)

Trained classifier(s)

Figure 7.3: Block diagram for learning and detection phases.

The learning phase includes two components that require training. The first component
is activity recognition, which, unless the activities are already provided from the environ-
ment, requires classifier training. This includes recording labeled training data to construct
a training dataset, feature extraction, and building a classification model. Once the model
is trained, it can be used in the detection phase.
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The second component is dedicated to behavior patterns construction and detection
model training. According to our detection goals, that is, either anomalous or suspicious
behavior detection, the aim of this phase is to construct a dataset of positive or negative
behavior patterns, respectively, using either automatic/semi-automatic approaches, such
as clustering, or domain expert knowledge that encodes behavior patterns. As shown in
Figure 7.2, this can be applied for a variety of viewpoints. The next step then includes
detector training and initial parameter tuning, which also requires a training dataset. Note
that the second component already requires that the activity recognition component is
trained.

7.3 Summary

In summary, we proposed a unified framework for detection of anomalous and suspicious
behavior that can be observed from complex, spatio-temporal sequential data generated by
an agent moving in a physical environment. The framework incorporates the components
introduced in the previous chapters to address the main challenges. The second part of the
thesis shows how the framework is instantiated in three empirical studies.





Part II

Empirical Studies
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8 Ambient Assisted Living Domain

Analyzing daily-living behavior is an important approach to assessing the wellbeing of an
elderly person living at home alone. This chapter presents an approach to monitoring an
individual in the home environment by an ambient-intelligence system to detect daily living
pattern anomalies. It utilizes the proposed unified framework to recognize activities, extract
spatio-activity behavior signatures, and apply an outlier-detection method to classify the
individual’s daily patterns, regardless of the cause of the problem, be it physical or mental.
Experiments indicate that the proposed solution successfully discriminates between healthy
person behavior patterns and those of a person with health problems.

8.1 Introduction and Background

Recent years have seen increased interest in the deployment of systems for ambient assisted
living (AAL) (Augusto et al., 2012), including remote eldercare (Kaluža et al., 2010b),
smart homes (Cook, 2009), surveillance (Dore et al., 2011), etc. Whereas some of these
systems can be tele-operated, the AAL community strives to design systems that monitor
a person autonomously and act in the case of an emergency, warning or suggestion, such as
fall detection (Bourke and Lyons, 2008; Luštrek et al., 2009). Our study targets persons in
the home environment; that is, a male or female senior citizen, who does not need intensive
care or assistance in day-to-day living, but accepts an ambient-intelligence (AmI) system
to improve their health, safety, and well-being. The main issue is anomaly detection in the
monitored person’s daily behavior.

A predominant approach consists of three components: a sensor system, an activity-
recognition model, and a daily behavior analysis (Choudhury et al., 2006). There are several
challenges to constructing such a system. First, the person must be monitored with sensors
that are not obtrusive, invasive or privacy-violating, yet are precise enough to address the
second challenge, which is an accurate activity recognition model. An underlying recognition
model needs to detect a wide variety of activities performed differently under different
environmental conditions and across many individuals. Third, we have no knowledge about
the exact plans and schedules a person may follow during the day. In addition, the system
should adapt to each specific person while deployed at the person’s home.

In remote eldercare, the AAL systems use a wide variety of sensors, such as vision
systems (Cardinaux et al., 2011), inertial sensors (Bourke and Lyons, 2008) and embedded
sensors (Lymberopoulos et al., 2008; Monekosso and Remagnino, 2010). While some sensors
might violate privacy issues, for example, a camera, others do not provide additional location
context, for example, inertial sensors, or rich information required for accurate activity and
posture recognition, for example, embedded sensors. Daily behavior analysis may focus on
recognizing or describing exact schedules and assumes that the person will follow them.
Another approach relies on either observers, that is, a nurse who periodically observes an
elderly person, or on self-reporting, that is, having people complete an activity report at
the end of the day. Both ways of reporting have limited accuracy and usefulness due to the
aggregation in time, forgetfulness, and misreporting (intentional or unintentional).
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In contrast to related work discussed in Section 2.2.2; that is, fuzzy-association analysis
(Lee et al., 2004), Apriori algorithm combined with Markov chain (Lymberopoulos et al.,
2008), and HMMs (Monekosso and Remagnino, 2010), this chapter uses a localization system
(in other publications, accelerometers are more often used) with wireless body-worn tags
(described in Section 8.3), while low-level activity recognition is performed with a SVM
classifier. These two modules were developed within the Confidence system (Kaluža et al.,
2010b). This chapter focuses on the third component; that is, daily patterns analysis that
detects behavior changes indicating an early discovery of a potential health problem, such
as a person visiting a toilet unusually often. In contrast to related work, which mainly
dealt with a description of high-level activities, our method focuses on activity dynamics;
by contrast to Markov models, it explores the relations between spatial information and
activities. The method is general in the sense that it detects unusual behavior regardless of
the cause, be it illness of any kind, any physical or mental degradation or even an outside
cause, for example, being locked in a room.

8.2 System Architecture

The instantiated unified framework is presented in Figure 8.1. First, raw sensor readings are
obtained from the environment at each time step. Next, the activity recognition pipeline
(ARPipe) is deployed as described in Chapter 3. It prepocesses observation vectors to reduce
noise, and compute additional features. Next, an activity recognition algorithm classifies
the observation vector at time t into one of the activities an individual can perform; for
example, walking, sitting, lying. The output is a behavior trace consisting of activities and
the places where they were performed. The trace is converted to a spatio-activity matrix,
which is afterwards reduced with principal value decomposition. Finally, the LOF algorithm
compares the behavior to an historical behavior signature database.

8.2.1 Sensors and Observations

We deployed the system in a lab organized as a home apartment, equipped with the Ubisense
localization system (Steggles and Gschwind, 2009), which allows local positioning by tracking
a set of tags attached to a person. The tags were placed at the following locations on the
body, as shown in Figure 8.2: chest, waist, left and right ankle. Each observation vector
consists of the absolute x, y, and z coordinates. The observation sequence passed to the
next level was a movement trajectory of all the tags in time interval 1 ≤ t ≤ T :

X = {[xtag, ytag, ztag, · · · ]t|tag ∈ {chest, waist, l ankle, r ankle}, 1 ≤ t ≤ T}.

8.2.2 Activity Recognition Pipeline

The raw sensor data are further processed with ARPipe as described in Chapter 3. First,
a median filter is applied to remove the impulsive noise. Next, an iterative constrain satis-
faction method that enforces human body constraints between the measured tag positions
is applied. Finally, Kalman’s filter estimates additional parameters, such as tag velocity.

Activity recognition is performed in three steps. First, we extract tag attributes, such
as the z coordinates, all tag velocities, the absolute distances, and the z direction distances
between all the tag pairs. Activity recognition omits x and y coordinates because, from the
activity-classification point of view, the location of an activity is not important. However,
the x and y coordinates are essential for any daily living pattern analysis.
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Person’s coordinates in the apartment

Activity trace

Activity recognition: ARPipe

Behavior trace: activity trace + landmark

Behavior signature

Spatial-activity matrix:
Full day

Deviant behavior detection:
PCA + LOF

  No combination of multi-view detectors

  No accumulation of deviant behavior over time

End

Start

Degree of deviation

Deviant 

behavior

detection

Behavior trace

Figure 8.1: Flowchart of the instantiated unified framework for analyzing daily-living dy-
namics.

Second, person postures are classified into one of the following atomic activities: A =
{walking, sitting, lying}. The feature vector uses canonical representation with window
length W = 10. A new feature window is then obtained after every update, thus overlapping
with the previous one, and provides instant classification for each observation vector. We
have tested a variety of machine-learning algorithms (Luštrek and Kaluža, 2009), including
C4.5 decision trees, näıve Bayes, SVM, k-NN, bagging, AdaBoost, etc., with SVM offering
the highest classification accuracy.

Third, activity recognition errors that produced spurious activity transitions were re-
duced using the HMMs (Rabiner, 1989) as described in Section 3.4. Preliminary results in-
dicated that HMMs are superior compared to sequential grammar-based classifiers (Kaluža,
2009). The HMM was initialized with A = {walking, sitting, lying} observation symbols,
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Figure 8.2: Ubisense tag placement.

three internal hidden states corresponding to activities, the initial state transition proba-
bility δij = 1/3, the initial state probability πi = 1/3, and the output symbol distribution
in state νj(k) = 1 if k = j, otherwise νj(k) = 0. The parameters were estimated with the
Baum-Welch method using 50 iterations on the training data. The second phase, which finds
the optimal hidden state transitions according to the observation sequence, was performed
with the Viterbi algorithm.

8.2.3 Behavior Analysis

First, the behavior trace is constructed using 〈activity, room〉 tuples. The apartment
was divided into logical areas S = {lounge, bedroom, kitchen, toilet} and (xwaist, ywaist)t
coordinates were used to determine the area at time step t. Then, the behavior trace
b = {(a, s)t|1 ≤ t ≤ T} was passed to the next level.

Behavior signatures were constructed using the spatio-activity matrix approach intro-
duced in Chapter 4 using Algorithm 4.1. The matrix dimensionality was further reduced
with PCA. Finally, the LOF algorithm (Breunig et al., 2000) assigned each behavior signa-
ture an outlier degree, called the local outlier factor (LOF) of a vector. Vectors with a high
LOF have local densities smaller than their neighborhood and typically represent stronger
outliers, unlike vectors belonging to uniform clusters that tend to have lower LOF values.

More formally, assume that BT = {bi|1 ≤ i ≤ L} is a dataset of behavior traces. First,
for each behavioral trace bi, we compute the spatio-activity matrix Mi using Algorithm 4.1.
Next, we compute the principal component vector mi (Equations 4.6–4.9), and add vector
mi to a new behavior signature dataset B. Next, for each vector mi, we compute the
k disti as the distance to the kth nearest neighbor of mi, then compute the reachability
distance for each vector mi with respect to the vector mj , where d(mi,mj) is the Euclidean
distance from mi to mj , and compute the local reachability density lrdi of the vector mi

as the inverse of the average reachability distance based on the k nearest neighbors of the
vector mi. Finally, we compute the LOFi of the vector mi as the ratio of the average local
reachability density of mi’s k nearest neighbors and the local reachability density of the
vector mi.

8.3 Experimental Evaluation

For the prototype deployment we organized a room as an apartment of about 25 m2. The
apartment was equipped with a bed, a few chairs and tables, and divided into four logical
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Algorithm 8.1 Anomaly detection.

Require: set of behavior traces BT = {bi|1 ≤ i ≤ L}, number of k nearest neighbors
Ensure: outlier degree for each behavior trace LOFi
B ← {}
for bi ∈ BT do

Mi ← spatial activity matrix(bi)
mi ← PCA(Mi)
B ← B ∪mi

end for
for mi ∈ B do
k disti ← k distance(mi)
for mj ∈ B,mj 6= mi do
r disti,j ← max(d(mi,mj), k distj))

end for
lrdi = k∑

mj∈kNN(mi)
r disti,j

LOFi ←
1
k

∑
mj∈kNN(mi)

lrdj

lrdi
end for

areas: a kitchen, where a person can prepare a meal; a sleeping area; a lounge, where a
person can eat a meal, watch TV, write a letter, etc.; and a toilet.

8.3.1 Activity Recognition

To build an activity recognition model, we recorded five members of our department. Each
participant was recorded performing various activities in three episodes lasting approxi-
mately 15–20 minutes each. In total, there were around four hours of recordings. The
scenario details are available in Kaluža et al. (2010b).

The activity recognition confusion matrix presented in Table 8.1 was obtained with a
leave-one-person-out validation. The left-hand column shows the correct-activity label, and
the top row shows the assigned label. The overall classification accuracy is 87.52%.

Table 8.1: Confusion matrix for activity recognition. The overall accuracy is 87.52%.

True / Labeled [%] Lying Sitting Standing

Lying 98.99 0.93 0.08
Sitting 1.67 67.71 30.62
Standing 0.85 3.27 95.88

8.3.2 Anomalous Behavior Detection

We performed two experiments as follows: the first experiment condensed a full day of
activities into scenarios of around half an hour each, while the second test analyzed person
behavior in the office for a period of one month.

The first experiments proceeded as follows: the measurements were performed on two
people aged between 25 and 32 years, with each day corresponding to a particular scenario,
basically the same for each of the persons. The first, usual day represents a typical daily
routine for an elderly person. It consists of sleeping, morning routine, breakfast, using
toilet/household chores/reading newspaper, preparing and eating lunch, going out/watching
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Figure 8.3: Behavior matrix visualization for four normal (a,b, c, d) and two deviant days
(e, f) of one person.

TV/household chores/resting, dinner, watching TV/reading, and sleeping. In the second,
slow day, the scenario is that the person is not feeling well and, as a consequence, is moving
slowly and rests a lot. Such behavior could occur if person had the flu, heart failure, or
several other general health problems, either physical or mental. In the third scenario, the
person is limping due to, for example, hip pain. As a consequence, the person is also moving
slowly and does not stand a lot. The person is not lying as much as on the previous day,
but sits more than usual. Each person was given a loose daily scenario and an approximate
timing for each activity, but performed it on her/his own. The scenarios were performed
and recorded 12 times in total, consisting of eight normal days and four days where the
person was not healthy. The length of the recordings varied between 25 and 40 minutes.
Each recording/day was represented with one behavior trace.

First, we visually compared the usual-day scenario behavior traces with the slow-day
and the limping-day scenario behavior traces. Figure 8.3 represents spatio-activity matrix
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Figure 8.4: Visualization of principal components computed from the matrices shown in
Figure 8.3. Normal days are presented with circles, deviation days with crosses.

visualizations computed from the behavior traces of one person for the four usual days
(8.3a–8.3d) and two deviant days (8.3e, 8.3e). The spatio-activity matrices plotted in figures
8.3a–8.3d captured more or less the same daily dynamics with small variations; for example,
there was slightly more standing in the toilet in day 4 (8.3d) than in day 1 (8.3a). The
slow day (8.3e) had an activities over location distribution (lower-right part) quite different
compared from the normal days. The most significant feature is an additional orange square,
which means that there was more sitting in the lounge. The distribution also deviates during
a slow day (8.3f) where, for example, the share of standing is higher than in normal days.

The difference is even more obvious when PCA is applied. Figure 8.4 shows the first
three PCA components of the behavior traces plotted in Figure 8.3. The four circles ‘•’
represent the usual days, while the other days are represented by crosses ‘×’.

The anomalous behavioral traces were computed using Algorithm 8.1, using leave-one-
day-out validation; that is, one day was used for evaluation while the others were used
for training. Table 8.2 shows the LOF values for different values of k = {2, 3} for all the
recordings of both persons. Normal days have LOF < 1 in all cases, while the anomalous
days have a LOF value significantly higher than 1.

Table 8.2: LOF values of the behavior traces. A higher value represents a higher outlierness
of a behavior trace.

k=2 k=2 k=3 k=3
Scenario User 1 User 2 User 1 User 2

Normal day 1 0.619 0.615 0.887 0.963
Normal day 2 0.694 0.613 0.904 0.766
Normal day 3 0.652 0.639 0.843 0.797
Normal day 4 0.601 0.743 0.832 0.841

Limping day 2.369 4.270 4.519 6.465
Slow day 3.274 2.358 5.451 4.227
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In the second experiment, we recorded a member of our department for a period of one
month. The person was recorded during working hours, approximately eight hours per day.
In this experiment, the person wore only one Ubisense chest tag. The first 10 days were used
for training, while the next five days were used for evaluation. Additionally, we recorded
three days when the person was experiencing some difficulties: a limping day, where the
person limps while he walks; an agitation day, where person occasionally walks around the
office for half a minute; and an urinary tract infection day, where the person visits toilets
more than usual. In total, there were 18 working days resulting in over 90 recording hours.

The results for five regular and three anomalous days are presented in Table 8.3 for
k = 2, 3, 4. The normal working days have LOF values lower than 1 except on the third
day, while the days when the person experienced some kind of difficulty, have significantly
higher LOF values.

Table 8.3: LOF values of the long-term test. A higher value represents a higher outlierness
of a behavior trace.

Day k=1 k=2 k=3

Regular day 1 0.737 0.784 0.684
Regular day 2 0.803 0.698 0.594
Regular day 3 1.618 1.579 1.281
Regular day 4 0.840 0.866 0.738
Regular day 5 0.767 0.916 0.881

Limping 3.706 4.820 6.216
Agitation 7.110 8.987 12.960
Urinary infection 14.405 18.052 19.869

8.4 Discussion

In these experiments, we selected one day as a default unit, but in general, the approach can
be applied to various period lengths. Furthermore, monitoring the behavior with different
granularities by using different periods simultaneously; for example, half a day, a day, a
week, or a month, would allow us to detect behavior changes that occur with different pace.

It should be noted that the task is based on combining activities and spatial information;
therefore, applying a uniform method, such as HMMs, is not feasible. The novel method
explains the two concepts by combining several existing algorithms, and specializing them for
the particular task. In addition, HMMs must estimate the model learning phase parameters,
whose quality depends on the labeled data amount (Rabiner, 1989).

The spatio-activity matrix visualization can be used in two ways. First, it enables visual
anomalous behavior detection; by examining the matrices, one cannotice changes in behavior
dynamics. Second, it explains those cases when the automatic procedure detects anomalous
behavior patterns.

The final remark concerns the type of sensors used in the experiments. Even though our
approach was evaluated with wireless location sensors (that is, Ubisense), it can be applied
to any sensor type from which it is possible to locate and recognize activities; for example,
one can use embedded sensors as shown by Cook and Holder (2011) and Storf et al. (2009).
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8.5 Conclusion

The main goal of this chapter was to deliver a solution whereby a caregiver can constantly
and remotely observe a person’s daily behavior in an efficient and unobtrusive manner. We
demonstrated how to apply the unified detection framework for transforming behavior traces
into a spatio-activity matrix, which captures daily behavior and presents a visualization and
explanation of behavior deviations.

We proposed a method for automatic discovery of anomalous daily behavior, which
consists of feature extraction based on PCA and outlier detection implemented with the
LOF algorithm. The outputs can be directly used to signal a warning to the person and
caregivers, providing information that the person dynamics has changed significantly along
with a relevant explanation. The experimental results showed that the proposed approach is
successful in discriminating normal days from days where the person’s well-being is affected.

The method has not been tested thoroughly yet. Further realistic, long-term tests with
the target group are needed to verify the newly designed method’s performance, and to
further improve it. However, the first results are quite promising; with further modifications,
the novel method for daily living dynamics might prove useful as indicated.
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9 Surveillance Domain

This chapter focuses on two applications in surveillance domain, where the goal is to detect
suspicious agents in the environment. In particular, the chapter targets a large applications
class where no single event is sufficient to gauge whether or not agent behavior is suspicious.
Instead, we face a sparse set of trigger events that identify interesting parts in behavior
trace. The first application considers suspicious passenger detection at an airport, while the
second application tackles dangerous driver detection.

9.1 Introduction and Background

There is significant suspicious activity detection research, given its importance in many
domains (Arsić et al., 2007; Duong et al., 2005; Helman and Liepins, 1993; Vaswani et al.,
2005). The goal is to augment the traditional security measures by scrutinizing the all
subjects’ behavior in the environment. The main question we address is how to combine
multiple events to decide whether an event trace corresponds to the behavior of a normal
or a suspicious person.

In the airport scenario, various systems were introduced to automatically detect some of
the threats, such as leaving objects behind (Hongeng and Nevatia, 2003), suspicious trajec-
tory paths (Vaswani et al., 2005), thefts (Hongeng and Nevatia, 2003), and vandalism acts
and fights (Naylor and Attwood, 2003). There is also a commercially available system (Feris
et al., 2009) that is able to detect such events as running passengers, climbing over a fence,
etc. However, these approaches mainly deal with the detecting single, clearly suspicious
incidents and do not address accumulating suspicion.

This chapter addresses how to instantiate the unified detection framework to detect
trigger events, that is, interesting trace parts that serve as evidence, and combine evidence
from multiple events in order to estimate suspicion. The experimental evaluation of a
simulated airport application first compares the three detectors from Chapter 6 (Section 6.3)
with our proposed approach (Section 6.4.1). The best two approaches are additionally
compared in the dangerous-driver application.

9.2 System Architecture

Airports require numerous security solutions, including suspicious activity identification
among passengers and staff in surrounding areas. Our goal is to monitor passengers and
to detect those that indicate a high level of stress, fear, or deception. It is reasonable to
assume that there is a camera network to track a passenger throughout the airport. We
focus on a task where no single event is sufficient to identify a suspicious passenger, but
a series of events establishes the decision over time. The event detection might be limited
due to noise or an inability to extract some features, for example, ceiling-mounted cameras
can extract passenger trajectories, but not facial expressions; hence, a normal person may
appear suspicious and vice versa. Other domains may include identifying a reckless driver
executing dangerous (but still legal) maneuvers (Avrahami-Zilberbrand, 2009), detecting a
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pirate vessel that plans to capture a transport vessel and therefore avoids security patrols,
etc.

The unified detection framework is instantiated as shown in Figure 9.1. The lowest level
implements a simulated environment that provides Cartesian coordinates of agents’ move-
ments in time. Atomic activity recognition is simplified to recognize relative movements from
the current position, while compound activity recognition extracts trigger events; that is,
interesting behavior parts. Behavior is then evaluated with two detectors and accumulated
over time with approaches presented in Chapter 6.

Agent’s trace in the environment

Activity trace

Activity recognition: discretized actions

Behavior trace: Expert rules

Behavior signature

Agent-agent interaction Turning maneuvers

Detector:
Coupled HMM

Detector:
Bayes

Combining multi-view detectors: Bayes

Accumulating deviant behavior over time:
Naive Bayes, HMM, UPR, F-UPR

End

Start

Degree of deviation

Deviant 

behavior

detection

Behavior trace

Behavior signature

Figure 9.1: Flowchart of the instantiated unified framework using two trigger event detectors
and accumulating suspicious behavior.



System Architecture 77

9.2.1 Sensors and Observations

The experiments in this chapter use ESCAPES (Tsai et al., 2011), a state-of-the-art, multi-
agent airport evacuations simulator with several agent types exhibiting behaviors of regular
travelers, authorities, and families. The agents’ behavior incorporates emotional and in-
formational interactions, such as emotional contagion, the spread of knowledge/fear, social
comparison, etc. Therefore, an agent is affected other agents’ emotional states, and is faced
with uncertainty as to what happened and where the nearest exits are. We assume that the
agent behavior corresponds to real airport passengers behavior.

ESCAPES consists of two parts: a two-dimensional environment based on the open-
source project OpenSteer (OpenSteer, 2011), outputting agents’ physical trace coordinates;
and a three-dimensional visualization component using the Massive Software (Regelous,
2011) to generate three-dimensional movies of the scenarios. We used a scenario that im-
plemented the Tom Bradley International Terminal at Los Angeles International Airport,
including terminals and shops as a realistic simulation environment.

In addition to behaviors already modeled within ESCAPES, we introduced a suspicious
behavior profile: an agent that behaved suspiciously prior an evacuation. Additional im-
plementation details are given in the experimetal section. An output example is shown in
Figure 9.2, where traces of authorities (green), suspicious (red) and usual passengers (grey,
blue) are plotted.

Figure 9.2: Traces of all agents at the end of a simulation: authorities (green), suspicious
(red), usual passengers (grey), and selected highlighted usual passengers (blue).

An observation vector corresponds to absolute Cartesian coordinates at the airport map
xt = 〈xt, yt〉. Observation is then a sequence of vectors obtained during simulation; that is,
X = {x1, . . . ,xT }.
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9.2.2 Atomic Activities

We considered three transformations of observation vectors to actions. The first divides
the airport map with a square-based grid into N numbered squares (Avrahami-Zilberbrand,
2009), which gives a set of possible atomic actions Afixed = {as1, · · · , asN}. Each observation
sequence with Cartesian coordinates is transformed into a sequence of squares. We denote
this as fixed representation. By adjusting the square size, we can relax the model. By
decreasing the square size, the model is more strict, less generalized, and may over-fit, since
a too large size would cause over-generalization, that is, trajectories that are not similar
might fit.

The second representation, denoted as relative representation, transforms Cartesian co-
ordinates to actions taken in each time step as moving North, South, East, West and their
combinations (nine in total); that is,

Arrep = {aN , aS , aE , aW , aNE , aNW , aSE , aSW , a0}.

Compared to fixed representation, relative representation also describes trajectory shape,
but discards the location information, which leads to better generalization.

The third representation, denoted as relative position and orientation, defines actions as
moving Forward, Backward, Left, Right and their combinations; that is,

Arrepor = {aF , aB, aL, aR, aFL, aFR, aBL, aBR, a0}.

Compared to relative representation, it also discards orientation information.

Preliminary tests showed the relative representation performed best (Kaluža et al.,
2011e). The output of this level is an action sequence a = {a1, . . . ,aT }, where an action is
assigned to each observation vector.

9.2.3 Compound Activities and Agent-Agent Interactions

We focus on a well-known detector obtained from conversations with domain experts, and
which is commonly used by behavior detection officers1. We observe the interactions between
airport agents; more precisely, we are interested in how a passenger behaves in a uniformed
authority figure’s presence. A person exposed to a high level of stress produces behavior
that indicates fear, anxiety, pressure, tension, deception, etc. Hence, it is rational for the
suspicious agent to minimize contact with the authorities. Note, that no single avoidance is
enough to raise a flag, but many such events taken together label the person as suspicious.

We consider two types of trigger events or compound activities: interactions with au-
thorities I = {pass, avoid}, and changes of direction B = {turn, no turn}. The idea behind
these two trigger event types is to detect the likelihood that a passenger is trying to avoid
an authority figure and that the change of direction occurs in general.

Both types of compound activities are detected with basic rules. The change of direction
is detected by a threshold value over a trajectory curvature, while the interaction is detected
by a threshold value over the distance between an authority and a passenger. The output
of this level is behavior trace, where a tuple consists of a compound activity (indicating
activity) and corresponding action subsequence (indicating spatial information); that is, b =
{〈b1,ab1〉, . . . , 〈bT ′ ,abT ′ 〉}. Such tuple is denoted trigger event e, hence b = {e1, . . . , eT ′}.

1An approach for monitoring passengers behavior over longer periods of time relies upon security per-
sonnel such as behavior detection officers (BDOs) that patrol airports to identify passengers who display
involuntary physical and physiological actions. US Transportation Security Administration (www.tsa.gov)
trained and deployed BDO officers at over 160 US airports by 2011.
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9.2.4 Suspicious Behavior Evaluation

Behavior evaluation first evaluates each trigger event and estimates the likelihood that it
was generated by a legitimate or a suspicious passenger, then combines the evaluations as
shown in Chapter 6.

The probabilities for each type of the trigger events are estimated separately. The turn
event uses a frequentist estimator ; that is, a-priori probability that a turn is generated by
a suspicious or legitimate passenger:

n̂(et) = Pr{y = 0|b = turn}, (9.1)

ŝ(et) = Pr{y = 1|b = turn}. (9.2)

Interaction probability estimation is implemented with coupled hidden Markov models
(CHMMs, introduced in Section 3.6). The observations are constructed from two action
sequences, namely the agent of interest’s action sequence and the authority agent’s action
sequence when they are within some predefined radius. The CHMMs use two HMM chains,
where the hidden states from one chain directly impact the hidden states from the other
chain. For example, if the authority agent moves toward the suspicious agent, the next state
of the latter takes this into account and produces an action for an avoidance maneuver.

A regular passenger may not turn or do anything different in the presence of authorities,
while a suspicious person will, although as described below, an observer may not be perfectly
observable. Therefore, we create and train two CHMMs: N̂I models authorities’ and regular
passengers’ interactions, while ŜI models authorities’ and suspicious passengers’ interactions.
For a new event (that is, interaction) e, we compute the posterior probability that the event
is generated with both models yielding

n̂(et) = Pr{e|N̂}, (9.3)

ŝ(et) = Pr{e|Ŝ}. (9.4)

We also experimented with more complex CHMM structures including other features such
as relative speed and distance, but the results were comparable or even worse.

The second step, which evaluates the trigger event sequence, uses one of the detectors
introduced in Chapter 6: näıve Bayes, HMMs, UPR, and F-UPR detector.

9.3 Experimental Evaluation

In cooperation with security officials, we defined a scenario where a suspicious passenger
goes from point A to point B while trying to avoid security personnel at the airport. One
may argue that an adversary that plans to do something malicious would behave normally
in the presence of authorities, and this might be true for a highly trained individual. As
discussed previously, an average person exposed to a high level of stress exhibits fear, anx-
iety, and tension, and, hence, tries to cover it by minimizing close-range interactions by
making U-turns, avoidance maneuvers, hiding in nearby shops, etc. The agent behavior
implementation details within ESCAPES are provided in Appendix B.

A simulation in ESCAPES is run with a given airport map, authority agents, regular
passengers, and a suspicious agent going from point A to point B, outputting traces with
2D coordinates for all agents. We initialized the simulator with 100 agents, including Ka ∈
{5, 10, 15, 20, 25} authorities and a suspicious person with randomly chosen initial and final
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points. For each Ka setting, we ran 30 simulations, each consisting of 1,500–3,000 time
steps and 100 traces. On average, there were 215 interactions between the authorities and
the passengers per run. To avoid issues that can arise with highly unbalanced datasets, we
used random re-sampling without replacement to balance the data to the ratio suspicious :
normal = 20 : 80. For the evaluation, we used precision, recall, specificity and F-measure.
We evaluate the statistical significance of our results using the two-sample t-test.
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Figure 9.3: Confusion error rates for different threshold values.
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Table 9.1: Evaluation results when the F-measure is maximized (columns 2–4) and all the
suspicious cases are discovered (the last two columns).

maximized F-measure recall=1

Algorithm re pr FM 1− spec pr

∃k rule 0.619 0.464 0.530 1.000 0.202

Naive Bayes 0.857 0.581 0.693 0.270 0.436

HMMs 0.600 0.706 0.649 0.526 0.286

UPR 0.857 0.720 0.783 0.256 0.477

F-UPR 0.905 0.905 0.905 0.217 0.539

In the first experiment, we fixed the number of authority figures Ka = 10. We instan-
tiated the näıve Bayes, HMMs, UPR, and F-UPR detectors. Additionally, we considered
another baseline detector using a simple rule over the threshold k and the event trace e(t),
saying that if the number of suspicious events exceeds k (that is, ∃k : ηs(e

(t)) > k), then
mark trace e(t) as suspicious. All the detectors used the event-trace probabilities s′(e(t))
and n′ = 1 − s′(e(t)) as returned by the event-detection step. For the HMM approach, we
considered two ergodic HMMs as described in Section 9.3.1. We used two observations,
the normal ∆(et) = 0 and the suspicious ∆(et) = 1 event, and varied the hidden state
number. The best results were achieved with three hidden states. Note that the HMM
detector applied on top of the CHMM detector basically presents a version of the mixed-
layer HMM structure (Fine et al., 1998; Nguyen et al., 2005; Duong et al., 2005). All the
models, including UPR and F-UPR detectors, were evaluated with 10-fold-cross validation.

Figures 9.3(a)–9.3(e) show the confusion error rates for suspicious (1-recall) and normal
(1-specificity) passengers as a function of the normalized threshold value for all the five
algorithms. For example, if the threshold is zero, then all the passengers are marked as
suspicious. In this case, all the suspicious passengers are correctly identified as suspicious;
hence the error rate is also zero. Also, all the normal passengers are incorrectly identified
as suspicious; hence the error rate is 1. As the threshold value increases, the error rate
for correctly identifying suspicious passengers increases, while the error rate for correctly
identifying normal passengers decreases.

There are two points of interest: (i) when the error rates cross each other; that is, the
F-measure is maximized; and (ii) the right-most point when the error rate for suspicious
passengers is zero; that is, recall= 1 and the false-positive rate is minimized. These cases
are tabulated in Table 9.1. The first case is summarized in columns 2–4 showing the recall,
precision and F-measure. F-UPR outperforms the ∃k rule (p < 0.01), näıve Bayes (p < 0.01),
HMMs (p < 0.01), and UPR (p < 0.01). The second case, where the threshold value is such
that all the suspicious passengers are discovered, is shown in columns 5 and 6. Column
5 shows the confusion error for normal passengers (that is, 1-specificity), while column 6
shows the ratio of correctly raised alarms (that is, precision). The ∃k rule, for instance,
marks all the passengers as suspicious (FP rate is 100%) and consequently almost 80% of
alarms are false. HMMs achieve better performance, but still mark more than 50% of normal
passengers as suspicious. Other methods mark between 1/5 and 1/4 of normal passengers as
suspicious, but precision is around 50%, which means that every second passenger marked
as suspicious is indeed suspicious (and all suspicious passengers are discovered!). Overall,
F-UPR in this setting outperforms the ∃k rule (p < 0.01), näıve Bayes (p < 0.05), HMMs
(p < 0.01), and UPR (p < 0.05). Finally, Figure 9.4 depicts the ROC curves showing that
F-UPR performs the same, or better, in all the threshold settings.
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Figure 9.4: ROC curves comparing all the detectors.

In the last experiment, we varied the number of simulated authorities. We expected that
increased authority figures will result in more interactions with suspicious passengers, mak-
ing detection easier. Figure 9.5 shows the results for the Ka ∈ {5, 10, 15, 20, 25} authority
figures in a simulation: Figure 9.5a shows the F-measure for a maximizing threshold, while
Figure 9.5b shows the precision when recall = 1. Increased authority figures significantly
increases detection capabilities. For example, the F-measure for F-UPR increases by 15%
when the security resources are doubled from five to ten, but as the number increases, the
impact is smaller. We can also see that F-UPR achieves the same performance as other
methods using significantly fewer security resources.

9.3.1 Detection Based on the Action Sequence

We also applied a sanity check and tested the suspicious behavior detection from a sequence
of agent actions (that is, action sequence a) instead of a sequence of trigger events (that is,
event trace e). We used HMMs, since they are considered a baseline for modeling action
sequences. The goal is to differentiate between a sequence produced by a suspicious and by
a regular passenger. We expect this approach to perform poorly, since it is too general to
precisely model interactive behavior present in a multiagent environment.

The suspicious behavior detector consists of two ergodic HMMs: S′ trained on the
suspicious traces andN ′ trained on the regular action traces. A new trace is first transformed
to the action trace a(k) as previously described and then matched against both HMMs,
yielding the likelihood that it produced the given a(k). If the likelihood is greater than a
threshold, the action trace is marked as suspicious. We tested this approach for Ka = 10
authorities. At the threshold value such that the highest F-measure 18.01 was achieved,
this approach achieved an acceptable discovery rate (recall = 66.23) and an extremely low
precision (10.42). Such a performance positions this approach under the ∃k rule. The
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Figure 9.5: Evaluation results for varying the authority figure number in the simulation and
two different threshold values.

overall performance was consistent with our expectation that modeling single-agent actions
in a multiagent environment would not capture the interactive behavior.

9.4 Identifying a Dangerous Driver

In addition to the airport domain, we applied UPR and F-UPR to the dangerous-driver
domain, as introduced in Avrahami-Zilberbrand (2009). This domain also includes behavior
that becomes increasingly costly if repeated: a driver switching a lane once or twice is not
necessarily acting suspiciously, but a driver zigzagging across two lanes is dangerous. Our
goal was to detect such drivers as soon as possible.

We generated 100 zigzagging driver observation sequences, each consisting of N obser-
vations, and 1,000 safe driver sequences. The trajectory observations were sampled with
10% noise. If the driver stayed on the same lane as in the previous sample, the event was
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Table 9.2: Evaluation results at the peak F-measure in the dangerous driver domain.

Sequence length N F-UPR UPR

25 0.632 0.540
50 0.720 0.667
75 0.900 0.800
100 0.952 0.857
125 1.000 0.947

considered normal; otherwise, it was considered dangerous. For each sequence of trigger
events, we accumulated the associated cost using both UPR and F-UPR. Due to observa-
tion noise, the task is expected to be more difficult when less observations are available. As
the number of available observations increases, it should be easier to distinguish between
safe and dangerous drivers.

Table 9.2 reports the performance at the peak F-measure for different observation se-
quence lengths. The results confirm the airport domain experiments for two points. First,
F-UPR performs better than UPR for any selected sequence length. Second, the perfor-
mance of both methods increases as the number of observations increases, where F-UPR
requires fewer observations than UPR to achieve the same performance.

9.5 Conclusion

This chapter instantiated the unified detection framework to successfully address the prob-
lem of suspicious behavior detection from a set of observations, where no single observation
suffices to make the decision. The chapter addressed the problem in two steps; that is,
the trigger event detection and a combination of evidence to reach a final conclusion. The
proposed F-UPR approach was compared to competing approaches with comprehensive
experiments on two simulated domains.

With automatic behavior surveillance is it possible to identify passengers showing suspi-
cious behavior that currently remains unnoticed. However, there are still shortcomings that
are hard to bypass. For instance, observers can perceive whether someone appears anxious
or is acting deceptively, they cannot tell whether that person is planning an attack or an
extramarital affair. Although the intelligent behavioral surveillance presents an important
leap in security, it raises several privacy violation concerns, which should be addressed before
deploying such systems in practice.
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10 Security Domain

Entry control is an important security measure that prevents undesired persons from enter-
ing secure areas. The unified detection framework utilized in this chapter allows an advanced
risk analysis to distinguish between acceptable and unacceptable entries, based on several
entry sensors, such as fingerprint readers, and intelligent methods that learn behavior from
previous entries. First, it analyzes person behavior from different viewpoints and then per-
forms a joint risk analysis. The obtained results represent an improvement in detecting
security attacks.

10.1 Introduction and Background

Building and system safety and integrity have become more important due to the increased
threat of terrorist attacks, system intrusions, and frauds. An important security requirement
is to ensure effective entry controls that prevent unauthorized persons from accessing specific
areas.

The general approach is to combine a two-stage security check: the identification stage,
where the person introduces his/her identity; and the verification stage, based on a password
and/or one or more signals derived from physical traits, such as fingerprint, voice, iris or
written signature. Although widely used, entry control has certain weaknesses in the real
world. Classic security methods fail to recognize unauthorized access if, for example, an
identification card is stolen, a fingerprint is faked, or an employee is forced to open the door
for unauthorized persons. However, intelligent access-control systems offer the promise of
improved performance at a reasonable cost.

A common practice in most reported studies is to improve the two-stage security by (i)
using advanced biometric methods (Wahyudi and Syazilawati, 2007; Wong and Ho, 2009;
Sun and Tien, 2008); (ii) analyzing behavior (Zhang et al., 2007; Lin et al., 2009; Quah and
Sriganesh, 2008; Alexandre, 1997; Wilson, 2006; Stephen and Petropoulakis, 2005; Depren
et al., 2005); or (iii) combining multiple sensors into a single, reliable estimation (Lamborn
and Williams, 2006; Bontempi and Borgne, 2005; Fierrez-Aguilar et al., 2005). In all the
above-referenced studies, the methods successfully reduced the risk of intrusion, although
each approach was focused on one specific viewpoint. Wahyudi and Syazilawati (2007), for
example, presented a verification based on speech analysis. They constructed voice-based
models for authorized persons and performed the identification with an adaptive network-
based fuzzy-inference system. In a similar way, Wong and Ho (2009) and Sun and Tien
(2008) focused on face recognition. Various facial features were extracted from video, saved
in a database and compared with a new entry. The authors report an accuracy of over 90%.

Recent research efforts have focused on meta-learning (Brazdil et al., 2009; Vilalta and
Drissi, 2002; Wang, 1997). The basic objective is to consider various aspects and hypotheses
about an event and the environment to construct a situational awareness; then, on this basis,
risk is reliably estimated. Lamborn and Williams (2006) introduced an intelligent system
that consists of several heterogeneous sensors divided into clusters according to their GPS
location using self-organizing maps. Sensor outputs are classified into each cluster and a
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voting algorithm is used to compute the final classification. Several data-mining methods
were tested for cluster classification; for example, k-NNs, neural networks, and SVMs. A
similar system was presented by Bontempi and Borgne (2005). In addition, Fierrez-Aguilar
et al. (2005) exploited person-specific multimodal biometric parameters. They proposed an
adapted local learning scheme (person-dependent) and global learning scheme (person-in-
dependent), with both results fused with weighted voting. The authors reported that the
adapted learning outperformed the results from single learning.

The described approaches use state-of-the-art methods that successfully reduce intrusion
risk. They use additional biometric sensors and behavior analyses as upgrades to classic
access control. Our approach is a further step in combining an arbitrary number of methods
in three stages. In the first stage, an arbitrary number of intelligent modules is utilized, with
analyzing person behavior from different viewpoints and performing its own risk analysis.
Similar to Lamborn and Williams (2006), our system constructs a situational awareness
from different sensors, but, in contrast to their method, the intelligent module outputs in
the second stage are assembled using meta-learning, on top of which the final reasoning
is performed with a Bayesian network. In addition, the intelligent modules utilize both
person-specific parameters and global knowledge similar to Fierrez-Aguilar et al. (2005),
but the last integration is fused proficiently. Finally, the system is also able to explain the
evaluations to a human operator and helps him/her to understand the situation. The basic
assumptions of our approach are that (i) person behavior rarely changes significantly over
time, and (ii) combined methods are much harder to bypass than a single sensor or method.

10.2 Hierarchal Multimodal Framework

The aim of our system is to ensure increased security in critical areas, such as military
headquarters or political institutions, by detecting irregular accesses or unusual access point
behavior, and, on this basis, raising an alarm. In order to reduce intrusion risk, we have
designed a modular system that relies heavily on intelligent methods.

10.2.1 Functional Description

The entry procedure is shown in Figure 10.1 and is as follows: first, a person is identified.
Next, if his/her identity exists, the person is verified, which leads to the door lock being
released. The verification process is performed in two stages: a classic biometric verification,
and an intelligent verification. Intelligent modules evaluate the entry and suggest the proper
action.

The proposed intelligent access-control system’s development was based on the following
five requirements: first, the system must monitor entries and process evaluations in real time.
Second, several access points may need to be monitored at the same time, taking into account
knowledge of the person’s movement between them. Third, an arbitrary number of sensors
and intelligent modules will be used, depending on the equipment at specific access points
and data availability. Fourth, the system is expected to evaluate an entry and suggest the
proper action. Finally, the system should explain its evaluation in a user-friendly, interactive
control panel. In short, the aim is to create a system that will improve entry control security
and help the operator to control numerous access points effectively.
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Figure 10.1: Entry identification and verification procedure at a high-secured access point.

10.2.2 Architecture

The main architectural tasks are collecting the data from the peripheral devices and sensors,
processing and analyzing this data, integrating the analyses into a human-readable form,
and displaying them to a person with a suggestion for an appropriate action (Figure 10.2).

The system’s architecture is designed in eight layers. In the first layer, various access
point sensors are deployed, such as biometric sensors, visual sensors, or door opened/closed
sensors. The sensors’ output is captured in the next layer through a controller, providing
an observation vector xt at time step t, augmented with additional contextual information.

The activity recognition layer is simplified to recognizing A = {entry, other}. If all the
formal criteria are met, that is, the observation consists of all the required elements, then
the activity is marked as entry and evaluated as shown in Figure 10.1; otherwise, the entry
is not completed and an alarm is raised immediately.

The next three levels are implemented in several parallel instances. Each instance con-
structs its own behavior patterns from a specific data type, such as visual data or temporal
relations, and applies an intelligent method to evaluate the behavior. The methods include
decision trees, outlier detection, expert rules, computer vision and others. Finally, all previ-
ous parallel detector outputs are gathered and the system outputs the final evaluation using
a Bayesian network.
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Figure 10.2: Flowchart of the instantiated unified framework using multiple time scales and
modalities to evaluate behavior.

10.2.3 Observing the User’s Behavior

Each human tends to perform activities in a specific way, be it on micro-or macro-scale.
However, the person behavior in our system is actually monitored from three different points
of view. In the first of these, denoted as the micro-level, one typically deals with behavior
that changes in seconds or tenths of a second. For example, one person always carries his
identity card in a wallet and puts the whole wallet near the wireless identity-card reader,
while another person carries her card in a handbag and requires some time to take it out,
identify herself, and put the card back. The person’s movement around the access point
depends on his/her habits and mental/physical state. These facts determine the persons’
micro-level patterns.

The second viewpoint, denoted as the macro-level, describes the persons’ daily routines.
The activities are the access point arrival times, the movements between various access
points in the access-control network, and even the connections between persons; for example,
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person A often enters a short time after person B. The time scale used at the macro-level
can vary from seconds to months.

The third viewpoint, denoted as the visual level, captures the persons’ access point visual
movement using a camera. It is also focused on micro-level movements; that is, behavior
that changes over a short time interval. However, in addition to micro-level features, it
obtains visual characteristic features of the person and his/her movement; for example, the
person’s height and the door-opening dynamics.

Several rules additionally control the regular entry procedure, the regular working time,
and access permissions.

10.2.4 Experimental Environment

To design and test our intelligent access control modules, we set up the experimental envi-
ronment shown in Figure 10.3, which consisted of a single access point protecting an office
in a building. The access point was equipped with a camera (on the ceiling), a card reader
and a fingerprint reader (on the wall near the door), an electronic lock, and an open/close
sensor on the door. The input signals were collected with a multi-channel access controller
connected to various peripheral devices.

Figure 10.3: Prototype access-point configuration (camera view). The task is to detect
suspicious entries of persons, for example, under the influence of drugs or with a gun that
is outside the camera’s field of view.

When a person passed the access point, four different times were registered:

• tc – time of card-reader acceptance,

• tf – time of fingerprint-reader acceptance,

• tdo – time of door opening,

• tdc – time of door closing.
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The data was collected and written into the ontology for additional processing by six intelli-
gent modules. The first module, denoted as the expert rules, detected prohibited and basic
undesired behavior. It used SWRL rules to query the system ontology (see Section 10.3.1).
The second module, micro-learning, learned person micro-level behavior patterns during the
entry. The learning was performed with a local outlier-detection method (LOF) (described
in more detail in Section 10.3.2). The three macro-learning modules learned the macro-
level access patterns and were then combined at the meta-level (see Section 10.3.3). The
last module, visual learning, used optical flow histograms to detect visual-level behavior
patterns (see Section 10.3.4).

Each module performed its own entry risk analysis and then returned an evaluation
with an explanation. The meta-module used basic weighted voting based on single-module
decisions, while the integration module accepted the module classifications as observations
and performed the reasoning with a Bayesian network.

Based on the final probability, the entry was classified into one of the classes: OK, for
regular entry, and alarm, for irregular entry. The system ontology stored each module’s
evaluations and explanations. The platform is presented in Figure 10.4.

10.2.5 Ontology

The modules and methods use the same or similar data while processing, and therefore
require a comprehensible presentation. Besides the basic relationships between pieces of in-
formation, such as the sensor’s value, complex representations are also required; for example,
a sensor belongs to an access point.

We have developed an ontology using the Web Ontology Language (OWL) (Horrocks
et al., 2003) and the ontology editor Protégé (2009). The ontology consists of a central part,
including event data and its classifications, and several local parts, each of them storing
particular module knowledge. The central part includes information about:

• access points: position, security requirements etc;

• persons: personal details, position in a company, rooms of the building that a person
has permission to enter etc;

• sensors: type; for example, biometric sensor, sensor access point;

• events: person who produced the event, access point where it was produced, event
sensors, individual module and final classification, and actions enabled via evaluation.

The ontology structure ensures knowledge of the system and its setting in a flexible
presentation. This means that new sensors, modules, and access points can be easily added.

10.3 Detectors

This section describes the modules and algorithms in more detail. In this particular imple-
mentation, we prefer algorithms that can provide as much of an explanation as possible, but
in general, it is possible to select any learning algorithm.

10.3.1 Expert Rules Detector

The first module consists of expert rules defined by a security expert or a human opera-
tor. These rules do not learn from past person behavior; instead each rule has adjustable
parameters, enabling new rule creation by specifying the rule-parameter values. The rules
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Figure 10.4: Information flow in the implemented platform.
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event(?event_object) & swrl_end_of_testing(?event_object, ?event_swrl) &

swrlb:equal(?event_swrl, false) & card_time(?event_object, ?time_of_event) &

swrlb:greaterThan(?time_of_event, "18:00:00") &

swrlb:lessThan(?time_of_event, "7:00:00")

THEN

swrl_rules_result(?event_object, "0.0") &

swrl_rules_explanation(?event_object, ?event_swrl_explanation) &

swrlb:stringConcat(?event_swrl_explanation,

"Alarm: event time is between 18:00 and 7:00")

Figure 10.5: An expert-rule example written in SWRL.

are described in the SWRL language (Horrocks et al., 2009) for querying data stored in the
OWL. A test over the events is performed by the Jess rule engine (Friedman-Hill, 2009).

We have implemented two types of rules. If the entry procedure is violated, the first
rule type triggers an alarm independently of the other modules. The second rule type
refers to the entry observation; for example, “The person accessed this area more than
five times in the past two minutes”. Instead of unconditionally triggering an alarm, each
triggered ruleRi returns a probability Pr{Ri} that the entry is regular. If several second-type
rules R1, . . . , Rn are triggered, then min(Pr{R1}, . . . ,Pr{Rn}) is returned and the module
composes an explanation consisting of the violated rules and their parameters. Otherwise,
if none of the rules is violated, the entry is regular according to the rules, and, therefore,
the returned probability p equals 1.

An example of the second-type SWRL rule is shown in Figure 10.5. The rule queries
events that occurred between 6:00pm and 7:00am and marks these events as alarms, since
events are not allowed at night.

10.3.2 Micro-Movement Detector

The micro-learning module learns short-term behavior. The attributes are calculated as
three time differences from four input times:

∆t1 = tf − tc, (10.1)

∆t2 = tdo − tf , (10.2)

∆t3 = tdc − tdo. (10.3)

Each observation xi is thus represented by a triple xi = (∆ti,1,∆ti,2,∆ti,3). All the regular
entries of a particular person form a learning set X = {x1,x2, . . . ,xn}. When the person
produces a new observation xn+k, the module compares it with the learning set X and
returns an outlier factor: if the new observation is similar to the existing observations, xn+k
is a regular observation with a low outlier factor; otherwise, it is an outlier with a high
outlier factor.

In previous work, Tušar and Gams (2006) examined various outlier detection algorithms,
selected the LOF (Local Outlier Factor, (Breunig, 2001)) and implemented it. The algorithm
reportedly achieves reliable performance where instances are not uniformly distributed in
the attribute space. The LOF for a new observation xi is defined as

LOFk(xi) =
1

|ngbk(xi,X )|
∗

∑
y∈ngbk(xi,X )

ldnsk(y)

ldnsk(xi)
, (10.4)
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Figure 10.6: Regular entries of a particular person (circles) and a new entry denoted as an
outlier (’+’).

where ngb(xi,X ) is the set of k-nearest neighbors of the observation xi, and ldnsk(y) is the
local density of an observation y and its k nearest neighbors. Intuitively, LOFk(xi) ≤ 1
when the new observation is near an existing cluster within X , and LOFk(xi) > 1 when the
observation is far from the cluster.

The final outputs of the module are the LOF value, the probability that the entry is
regular, and a visual explanation. The probability is computed from the LOF value using
the following procedure. Let τl < 1 denote the regular entry threshold value and let τu > 1
denote the irregular entry threshold value. Then, the probability Pr{x} that the entry x is
regular is computed as a linear threshold values combination:

p(e) =


1.0 if LOF (e) ≤ τl,
0.0 if LOF (e) ≥ τu,
τu−LOF (e)

τu−τl otherwise.

(10.5)

Since the module uses only three micro-attributes, its visualization can be presented
in a three-dimensional space, with one dimension for each attribute. The entries are thus
presented as points, and the each point’s LOF value is represented by a color: red for outliers,
yellow for unclear entries, and green for regular clustered entries. Figure 10.6 shows an entry
cluster in a learning set X (circles) and a new entry xi (a plus).

10.3.3 Macro-Movement and Meta-Detector

The macro-level data are used in three modules, two of which also exploit the micro-level
data. The macro-level attributes are divided into two groups describing a current entry and
the relation between the current entry and previous entries. The attributes from the first
group are, for example, the current time and date, the day of the week, the date in relation
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to the month (that is, the second Friday in the month). The second group defines such
relations as the number of previous entries in the same day (for the current person), the
person who entered previously in a specific time interval, the entry time on the same day in
the previous week, etc. It is important to note that macro-learning would be more powerful
if we had monitored more than one access point.

The first macro-module learns only from macro-attributes. The positive learning ex-
amples are a person’s regular entries, while the negative learning examples are a person’s
irregular entries and the entries of other persons. Several machine-learning algorithms were
tested and, finally, decision trees were selected, Weka’s J48 implementation of C4.5, in par-
ticular (Witten and Frank, 2005). The main decision tree benefit is the ability to explain
a decision after classification. The path leading from the root to the chosen leaf is colored
according to the classification: green for regular entries and red for alarms. Target variable
distribution in the chosen leaf is interpreted as the probability that the entry is regular.
The classification problem was introduced as a verification, where each person has his/her
own decision tree with two possible outcomes: true, if the claimed identity is valid, and false
otherwise.

The second macro-module applies the same algorithm as the previous module, but uses
both micro- and macro-attributes. While the first macro-module considers only macro-level
behavior and discovers patterns, for example, “User X comes to work on Mondays between
8.15 and 8.40 (93%)”, the second macro-module refines these patterns by incorporating
micro-attributes.

In the third macro-module, the macro- and micro-attributes are used for learning with
the LOF algorithm. In contrast to the micro-module, where the visualization was intuitive,
the large number of attributes requires a different representation. For this purpose, we
implemented parallel coordinate visualization. Each attribute is presented on one vertical
axis, ranging from the minimum to the maximum normalized value. Thus, each entry is
represented as a broken line intersecting the attribute value coordinates. The line is colored
according to the entry’s LOF value: green for regular entries, yellow for unclear entries, and
red otherwise. Figure 10.7 shows a cluster of learning set entries and the new entry as a
dotted line.

Finally, the macro-meta-module combines the classifications of all three macro-modules.
Then, all the results and visualizations are written into the ontology. Also, in the tested
implementation, only the macro-meta-learning was applied, but in principle, an arbitrary
subgroup of modules could be connected using meta-learners.

10.3.4 Visual Detector

The visual learning module developed by Perš et al. (2007) learns person movement patterns
using an access point video camera and classifies a new entry as either regular or not. For
this purpose, a web camera with a 1.3 Mpixel resolution and 30-fps rate was used.

When a new entry occurs, the last 30 seconds of video are analyzed in the following steps:
first, the optical flow histograms are computed and divided into six segments, approximating
body parts. Next, in each segment, the prevailing movement is estimated and transferred
into a sequence of symbols. This sequence defines the movement’s digital signature and is
used for the verification. Each person has a learning set of valid regular entries, which are
compared with the new entry signatures. Finally, the module outputs the classification and
probability that the entry is regular as a normalized comparison.

It should be noted that other sensor analyses, such as speech or walking patterns, could
be added as well.
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Figure 10.7: Multi-dimensional representation of regular entries (thin lines) and a new
entry (dotted line) classified as an alarm. There are nine attributes with values normalized
between the minimum and maximum values.

10.3.5 Multimodal Detector Integration

After the expert rules, micro-learning, macro-learning, meta-learning, and visual-learning
have made their assessments, their results are integrated into a current entry joint risk
analysis. It estimates the event probability Pr{entry | entry is regular} given the module
observations. If the estimated probability does not exceed a threshold value, an alarm is
triggered. Note that an alarm can also be triggered by expert rules when there is sufficient
certainty.

The reasoning in the prototype system is performed with a Bayesian network, structured
as shown in Figure 10.8. Four modules have a direct impact on the entry event; that is,
expert rules, micro-learning and visual learning, and a macro-meta-learning module, while
the macro-meta-learning module depends only on the three macro-modules. The network
probabilities are computed from the train dataset, using the m-estimate for conditional
probabilities and the Laplace estimate for a-priori probabilities.

The integration proceeds in three steps. Firstly, the output from each module is con-
verted to interval the [0, 1] representing the a-posteriori probability Pr{Mi} that the entry
event is regular. Secondly, given the Bayesian network and the probabilities Pr{Mi}, the
estimated probability of an entry event is computed from the network.

Finally, the integration module outputs the joint analysis as a probability that the entry
is regular and provides an explanation. According to the threshold values, the integration
module triggers alarm or OK and stores the results in the ontology. In high-security areas,
the cost of a false alarm is negligible compared to the cost of an unrecognized intruder;
therefore, the system is set to minimize the latter.
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Figure 10.8: Bayesian network used for reasoning.

10.4 Experimental Results

An experimental verification was performed in the prototype environment as described in
Section 10.2.4. It consisted of learning and evaluation phases. In this chapter, we report on
one learning and three evaluation experiments.

10.4.1 Learning Phase

In the learning phase, four people were recorded accessing the system. Each individual
completed 40 regular entries that were used as positive learning examples. The negative
learning examples for one individual were the entries of the other three people. We built
decision trees for the macro-modules, constructed learning sets for the LOF algorithm in the
micro-and macro-module and a comparison set for the visual learning module, and adjusted
the system parameters. After the learning was completed, the system was ready to operate.

10.4.2 Evaluation Phase

In the evaluation phase, we performed three experiments: two with simulated entries and
one real-time experiment with security experts.

The first two experiments were performed off-line with simulated tests. The focus was on
a fake-identity scenario, where an adversary has stolen an employee’s identity. We recorded
the regular entries of four people in the role of an employee (the system already knew them)
and three people in the role of an intruder (new to the system). Each person made 31
regular entries, serving as the testing examples. Both experiments were tested without the
visual learning since it did not allow offline testing. Consequently, the Bayesian network for
the integration was slightly changed, omitting the visual learning module. The experiments
were run on already-learned and tuned modules from the learning phase, while the Bayesian
network probabilities were obtained with a 10-fold cross-validation.

In the first experiment, the identities of the employees were swapped. We took four
employees that were known to the system and shuffled their identities in order to simulate a
scenario where an employee hands over his/her identity. The dataset contained 496 examples
with a distribution of 75% negative examples (fake identity).
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The system and the module performance in the first experiment is presented in Ta-
ble 10.1. The first two columns represent irregular entries, where employee identity was
swapped, and regular entries with the correct employee identity. Each number denotes an
accuracy; for example, the left-most number represents the irregular entry percentage pre-
dicted as regular by the expert rules. The last column presents the overall module accuracy.
The system achieved an overall accuracy of 95.77%. The expert rules always predicted
OK, because all the entries were formally regular according to the entry procedure. The
micro-learning detected both irregular and regular entries well, while the macro-learning
had 10.08% more mistakes. The high accuracy of the micro-module was expected because it
is relatively easy to distinguish the movement of a couple of people given sufficient learning
examples.

In the second experiment, we used the intruders’ entries, which were unknown to the
system, and assigned them the employees’ identities. In this way, we simulated a stolen-
identity scenario. The dataset consisted of 496 examples with a distribution 75% of negative
examples.

The second experiment measurements are shown in Table 10.2. The system achieved
an overall accuracy of 96.57%. In contrast with the results in Table 10.1, where macro-
learning classified 16.13% false positives, the number of false positives in Table 10.2 is only
1.88%. However, the trend in the micro-learning is just the opposite; the overall accuracy is
comparable in both datasets. The decline in micro-learning performance was to be expected,
since it is more difficult to classify new, unseen behavior than to distinguish between known
cases.

Scenarios
Irregular entries Regular entries Overall

OK alarm OK alarm Accuracy
Modules [%] [%] [%] [%] [%]

Expert rules 100.00 0.00 100.00 0.00 25.00
Micro learning 5.91 94.09 92.74 7.26 93.75
Macro learning 16.13 83.87 83.06 16.94 83.67

Integration 1.08 98.92 86.29 13.71 95.77

Table 10.1: System and module performance in the offline swapped identity experiment with
four employees only.

Scenarios
Irregular entries Regular entries Overall

OK alarm OK alarm Accuracy
Modules [%] [%] [%] [%] [%]

Expert rules 100.00 0.00 100.00 0.00 25.00
Micro learning 22.04 77.96 92.74 7.26 81.65
Macro learning 1.88 98.12 82.26 17.74 94.15

Integration 0.00 100.00 86.29 13.71 96.57

Table 10.2: System and module performance in the offline stolen identity experiment with
four employees and three intruders.

In the third, most relevant experiment, we invited security experts from the Slovenian
Ministry of Defense to test the system with a live simulation of various security attacks.
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For the purpose of scientific experimentation, the following eight scenarios were proposed,
tested and executed live by the experts:

1. regular entry: a person enters normally;

2. unusual time: the access time is out of normal working hours or on a non-working
day;

3. multiple entries: a person regularly accesses a secure room several times in a short
period of time;

4. unusual behavior: a person is under threat or in a strange state of mind;

5. tailgating: two persons access a secure room using a single identity;

6. burglary: an attacker disables the hardware protection by force;

7. fake identity: an attacker accesses a secure room with a stolen identity card and a
forged fingerprint;

8. kidnapping: an attacker forces an employee to enable secure room access.

Each scenario was imitated several times by different persons and in a different order, as
requested by the security experts. In total, 45 irregular entries and 15 regular entries were
performed. The video learning module was active.

The results described in Table 10.3 are separated into two groups: regular entries (sce-
nario 1) and irregular entries (scenarios 2-8). The numbers show the percentage of test
examples classified as OK, alarm or failed by the corresponding module. The classification
may fail due to the disabling of sensors (for example, the burglary scenario).

Scenarios
Irregular entries Regular entries Overall

OK alarm failed OK alarm Accuracy
Modules [%] [%] [%] [%] [%] [%]

Expert rules 84.44 15.56 0.00 100.00 0.00 36.67
Micro learning 0.00 88.89 11.11 93.33 6.67 90.00
Macro learning 0.00 88.89 11.11 86.67 13.33 88.33
Visual learning 8.89 88.89 4.44 73.33 26.67 85.00

Integration 0.00 100.00 0.00 86.67 13.33 96.67

Table 10.3: System and module performance in the experiments with four employees and
four security experts in a role of intruder.

The system achieved an overall accuracy of 96.67%, identifying all the irregular entries,
and being too suspicious of two regular entries. Once again, the expert rules classified with
a low accuracy (36.67%), but when an entry was classified as an alarm, it was indeed so.
The rules were more robust compared to the other modules, which, for example, failed to
recognize the burglary scenario. The micro- and macro-learning modules recognized the
irregular entries with the same accuracy, but macro-learning made more mistakes when
classifying the regular entries. It should be noted that all the tests were performed within
two hours, which is not well suited to macro-learning. The visual learning was slightly more
robust (that is, less failures) than the learning modules, but achieved a lower accuracy.
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10.5 Discussion

We have designed a modular, intelligent system for analyzing access point intrusion risk.
The system, in principle, combines an arbitrary number of intelligent modules on top of
an arbitrary number of physical devices. The emphasis is on modeling the behavior of the
regular person and estimating the risk that a new entry is not regular, based on meta-
learning and integration.

In a practical evaluation1 we presented three experiments, which demonstrated encour-
aging results. It was clear that each module has its own strong and weak points. However, an
advanced combination and integration overcomes the individual weaknesses and combines
different aspects into a reliable risk evaluation. For example, if we had used only the best
module (micro-learning) in the third experiment, the achieved accuracy would have been
90.00%, while the default accuracy (which is rather meaningless) would have been 75.00%.
The accuracy of the integrated system was 96.67%.

In each system, there is a fine line between being too sensitive and not being sensitive
enough to small changes in behavior. Although some of the methods, for example, the
Bayesian network, are quite robust, any practical application needs some fine tuning of
the system parameters. One of the first major benchmarks painfully reminded us of the
difference between a laboratory test and a field test; that is, one of the early system versions
was able to successfully distinguish between normal persons, but security experts found a
way to trick the intelligent modules. Only after incorporating some modifications, was the
system able to cope with human expertise, as presented in Table 10.3.

One of the system drawbacks is that it requires a learning procedure: the system can
be used only after a certain amount of regular accesses have been made. Furthermore, if
a person changes behavior, for example, due to an injury, the learning must start anew.
Further work on the system must include a mechanism for continuous learning and person
adaptation over time.

The complex methods implemented seem to be excessive for a simple commercial appli-
cation. In its current form, the system is more appropriate for high-security areas. Namely,
the joint-verification methods turned out to be very hard to bypass. A single method can
be fooled relatively easily, but deceiving different methods within a normal time interval is
a much harder task.

In summary, intelligent access-point risk analysis represents an improvement and has
the potential to demonstrate this in real-time applications.

1A short video of the third experiment is available online:
http://www.youtube.com/watch?v=BNDgfFRQkU4.
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11 Conclusions

11.1 Summary and Discussion

This thesis addressed the problem of deviant behavior pattern detection within a large class
of problems with complex, spatio-temporal, sequential data generated by an entity capable
of physical motion in an environment.

The central scientific hypothesis of this thesis states that it is possible to leverage the
available spatio-temporal cues, temporal dependencies, various time scales and modalities,
and repetitive behavior patterns to detect anomalous and suspicious behavior.

To this end, we developed new methods to extract spatio-temporal cues and temporal
dependencies, and proposed a unified detection framework to address various viewpoints,
as well as repetitive behavior patterns for anomalous and suspicious behavior detection. To
examine the validity of the hypothesis, we empirically demonstrated the unified detection
framework on three domains. In the ambient assisted living domain, we demonstrated how
to apply the framework to monitor an elderly person in a home environment to detect
daily living anomalies, where the key component is an activity recognition pipeline and
a spatio-activity matrix analysis. In the surveillance domain, we addressed the issue of
repeated behavior detection and applied the framework to detect suspicious passengers at the
airport. The novel F-UPR detector significantly outperformed the competing approaches.
Finally, in the security domain, where the goal is to verify entering persons at a high-security
access control point, we demonstrated a proof of concept of how the multimodal detection
is beneficial. In summary, the thesis hypothesis is supported by the empirical evaluation
and thus confirmed.

11.2 Scientific Contributions

The work in this thesis has led to the following original contributions to science:

1. A unified anomalous and suspicious behavior detection framework: We pro-
posed a unified framework for detection of anomalous and suspicious behavior that
can be observed from complex, spatio-temporal sequential data generated by an agent
moving in a physical environment. The framework incorporates several components
to address the main challenges and is demonstrated empirically in three studies.

2. Contribution to anomalous and suspicious behavior detection: We gave the
first clear problem definition and established a theoretical framework for anomalous
and suspicious behavior detection from agent traces to show how to optimally per-
form detection. We discussed why detection error is often inevitable and proved
the lower error bound. We further provided several heuristic approaches that ei-
ther estimated distributions required to perform detection or directly rank the behavior
signatures using machine-learning approaches.
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3. Contribution to repeated behavior detection: We extend the established the-
oretical framework and showed how to perform detection when an agent is observed
over longer periods of time and no significant event is sufficient to reach decision. We
first specified conditions any reasonable detector should satisfy and analyzed
several detectors. We further proposed a novel approach denoted as F-UPR detector
that generalizes utility-based plan recognition with arbitrary utility functions.

4. Contribution to behavior analysis: We proposed a novel, efficient encoding de-
noted as spatio-activity matrix that is able to capture behavior dynamics in a
specific time period using spatio-temporal features. We provided a visualization tech-
nique to compare different behavior patterns. We further provided a feature extraction
technique based on principal component analysis to reduce the spatio-activity matrix
dimensionality, which can be directly used in anomaly detection algorithms.

5. Contribution to activity recognition: To address the problem of activity recog-
nition from sensor data we introduced ARPipe, an Activity Recognition Pipeline
that includes filtering, attribute construction, activity recognition, and activity smooth-
ing. Within the pipeline, several novel algorithms were introduced including body fil-
ter, which applies human-body constraints to location-based body-attached sensors,
and two approaches for reducing spurious activity transitions that cannot occur
in reality are demonstrated.

11.3 Future Work

Anomalous and suspicious behavior patterns are rare, hence, a direction for future work is
to consider approaches to expedite their appearance. For example, if the obtained deviation
degree does not lead to confirmation, an observer might trigger an action toward the observed
agent and observe its response to disambiguate his intentions, as it was demonstrated on an
air-combat domain in a seminal work by Tambe and Rosenbloom (1995).

The unified framework proposed in this thesis has certain limitations in terms of de-
ployment; for example, once the framework is trained and installed it does not take into
consideration any feedback provided by the human operators behind it. One way to over-
come this is to consider an online-learning mechanism that is able to incorporate human
operator feedback in future behavior evaluations. Such a mechanism must not only adapt
specific detectors to provide feedback, but also has to take into account gradual behavior
drift of the agents interacting with(in) the environment.
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Institute, Ljubljana, Slovenia, 2008).



107

Geib, C. W.; Goldman, R. P. Extended abstract: Recognizing plan / goal abandonment.
In: AAAI Technical Report FS-02-05. 1515–1517 (AAAI Press, North Falmouth, Mas-
sachusetts, USA, 2002).

Geib, C. W.; Goldman, R. P. A probabilistic plan recognition algorithm based on plan
tree grammars. Artificial Intelligence 173, 1101–1132 (2009).
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Kaluža, B. Reducing spurious activity transitions in a sequence of movement. In: Proceed-
ings of the Eighteenth International Electrotechnical and Computer Science Conference,
vol. B. 163–166 (IEEE Slovenija, Portorož, Slovenia, 2009).
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tehnologijo. In: Proceedings of the 12th International Multiconference Information Society,
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Society, vol. A. 22–25 (Jožef Stefan Institute, Ljubljana, Slovenia, 2008).
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Kaluža, B.; Luštrek, M.; Gams, M.; Tavčar, A. Pathology in minimax searching. In: Pro-
ceedings of the Sixteenth International Electrotechnical and Computer Science Conference,
vol. B. 107–110 (IEEE Slovenija, Portorož, Slovenia, 2007b).
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Jožef Stefan International Postgraduate School Students’ Conference. 30 (IPS, Ljubljana,
Slovenia, 2010).
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Appendix A: Generating Suspicious Behavior

To simulate suspicious passenger behavior within ESCAPES simulator, we defined a new
agent type going unnoticed from point A to point B as follows: suspicious agent’s state
contains the current position Qs(x, y). At each time step, the agent s computes the prob-
ability for being seen by any authority figure a ∈ S, where S is a set of authorities in a
certain range. Similarly, a state of an authority agent a is defined by position Qa(x, y) and
direction ~da. Probability that the authority agents a sees another agent at distance r with
an offset angle θ from the current direction ~da is defined as a bivariate normal distribution
Na(r, θ) as shown in Figure 12.1.
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Figure 12.1: Authority’s viewpoint modeled with bivariate normal distribution N(r, θ).
Warmer color represents higher probability too see a particular point.

Points A and B are randomly chosen for each independent simulation. When the agent
s reaches the point B, the simulation ends. The behavior of the suspicious agent follows a
few simple rules:
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1. Compute p as a sum of probabilities for being seen by any authority figure a ∈ A in
the current position Qs (and nearby ±ε region)

p =
∑
a∈A

∫∫ Qs+ε

Qs−ε
Na(r, θ) (12.1)

2. If p exceeds a threshold value, then compute eight random points ci ∈ C in radius r,
else restore the original final point B and go to step 4.

3. Select a point such that the sum of probabilities among the current point Qs and the
end point ci is the smallest

arg min
ci∈C

∑
a∈A

∫ ci

Qs

Na(r, θ)

and define it as a new final point B′.

4. Move towards the final point. If the distance d(Qs, B) < ε, end, else go to step 1.

The resulting behavior is quite convincing and complex; ability to take into account
several authorities and find the best solution in the given situation results in avoiding au-
thorities in a half circle, making U-turns and continuing in the opposite direction, and
even hiding in nearby stores. A visualization of the airport with viewpoint cones for eight
authorities is shown in Figure 12.2.

Figure 12.2: Authorities’ viewpoints at the airport displayed with colormap: red for high
and yellow for low probability.
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• Mirchevska, V.; Kaluža, B. Towards intelligent home caregiver. In: Proceedings of the
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• Kaluža, B.; Luštrek, M.; Gams, M. Patologija minimaksa v sintetičnih drevesih in
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