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Abstract

The goal of knowledge discovery in databases is to construct models or dis-

cover interesting patterns in data. Model construction and pattern discovery

are frequently performed by rule learning, as the induced rules are easy to be

interpreted by human experts. The standard classification rule learning task is

to induce classification/prediction models from labeled examples.

In contrast to predictive rule induction where the goal is to induce a model in

the form of a set of rules, the goal of descriptive rule induction is to discover

individual patterns in the data, described in the form of individual rules.

This thesis introduces the term supervised descriptive rule induction (SDRI),

as a unification of several areas of machine learning that deal with finding

comprehensible rules from class labeled data. We developed a unifying frame-

work for contrast set mining, emerging pattern mining and subgroup discovery,

as representatives of supervised descriptive rule induction approaches, which

includes the unification of the terminology, definitions and heuristics. By us-

ing our SDRI framework, we overcame some open issues and limitations of

SDRI sub-areas, like presenting the results to end users by visualization and

supporting factors. Applications of SDRI methods to real-life datasets are also

demonstrated. In collaboration with domain experts, this led to new insights in

the analyzed domains and to methodology developments. A new method called

mining of closed sets for labeled data (with the algorithm RelSets) and its ap-

plication in microarray data analysis is also presented. The main algorithms

used in the experiments are available on-line.
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Povzetek

Na vseh področjih človekovega delovanja smo priča razkoraku med količino

podatkov, ki se shranjujejo na elektronskih medijih, ter človeško sposobnos-

tjo interpretiranja teh podatkov. Kot odgovor na izzive analiziranja vse večjih

količin podatkov se uveljavlja raziskovalno področje, ki se imenuje odkrivanje

zakonitosti v podatkih. V disertaciji obravnavamo posebno podpodročje odkri-

vanja zakonitosti v podatkih, ki se ukvarja z avtomatskim učenjem pravil, ki so

namenjena človeški interpretaciji.

Uvod

Kot odgovor na izzive analiziranja vse večjih količin podatkov se v zadnjih letih

uveljavlja raziskovalno področje, ki se imenuje odkrivanje zakonitosti v podatkih

(ang. knowledge discovery in data(bases), s kratico KDD) (Cios et al., 2007;

Frawley et al., 1991). Namen področja je razvoj metodologij, tehnologij in

standardov za odkrivanje novih, veljavnih, netrivialnih, zanimivih in potencialno

uporabnih zakonitosti iz (baz) podatkov. KDD združuje metode, razvite na

področjih podatkovnih baz, strojnega učenja, razpoznavanja vzorcev, statistike,

umetne inteligence in vizualizacije podatkov. Posebno vlogo v KDD imajo

metode strojnega učenja (Michalski et al., 1986; Mitchell, 1997), ki iz podatkov

izluščijo modele in vzorce.

Metode strojnega učenja lahko v grobem razdelimo v dve kategoriji: nad-

zorovano učenje (Kotsiantis et al., 2006) in nenadzorovano učenje (Ghahra-

mani, 2004). Pri nadzorovanem učenju so podatki označeni s ciljno spre-

menljivko in cilj učenja je zgraditi model, ki bo preslikal ostale podatke v vred-

nosti ciljne spremenljivke. Pogosto se nadzorovano učenje enači z napovedno

indukcijo (ang. predictive induction) (Weiss in Indurkhya, 1998), kjer je na-

men uporabiti zgrajen model za napovedovanje vrednosti ciljne spremenljivke

pri novih primerih. Pri nenadzorovanem učenju ciljna spremenljivka ni dana,

cilj učenja pa je odkrivanje splošno veljavnih vzorcev, ki so v podatkih. Nenad-

zorovano učenje se enači z opisno indukcijo (ang. descriptive induction), kjer

uporabnika zanima razumevanje podatkov.
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V disertaciji smo osredotočeni na situacijo, ko imamo podatke v obliki primerni

za nadzorovano učenje, torej imamo dano ciljno spremenljivko, iz njih pa želimo

izluščiti opisna pravila, ki naj služijo razumevanju podatkov. Pravila so oblike

“ČE pogoji POTEM ciljna spremenljivka = vrednost”, kar je običajna oblika za

klasifikacijska pravila (Clark in Niblett, 1989), a neobičajna za opisna pravila

(Agrawal et al., 1996).

Cilji disertacije

Glavni cilj disertacije je združitev področij, ki se ukvarjajo z iskanjem opisnih

pravil iz označenih podatkov, s katero ustvarimo nov poenoten teoretski okvir

z imenom nadzorovano učenje opisnih pravil (ang. supervised descriptive rule

induction, s kratico SDRI). S tem pridobijo posamezna področja (podpodročja

nadzorovanega učenja opisnih pravil), ki so bila do sedaj ločena in so se neod-

visno razvijala, saj so določeni problemi še nerešeni na enem področju, medtem

ko so rešitve za isti problem na drugem področju že dobro razvite. Prednosti

razvitega teoretskega okvira demonstriramo z uspešnimi aplikacijami v medicini

in biologiji.

Nadzorovano učenje opisnih pravil

V disertaciji definiramo termin nadzorovano učenje opisnih pravil (Kralj Novak

et al., 2009b), v okvire katerega združimo odkrivanje podskupin (ang. sub-

group discovery) (Lavrač et al., 2004; Wrobel, 1997), odkrivanje kontrastnih

množic (ang. contrast set mining) (Bay in Pazzani, 2001; Webb et al., 2003),

odkrivanje porajajočih se vzorcev (ang. emerging pattern mining) (Dong in

Li, 1999) in druga sorodna področja. Našteta področja se ukvarjajo z učenjem

vzorcev v obliki pravil iz označenih podatkov, uporabljajo pa različne termi-

nologije, definicije ciljev in različne formulacije hevristik. V skupnem teoretskem

okviru poenotimo terminologijo, kar omogoči tudi poenotenje definicij. Kom-

patibilnost hevristik dokažemo s prevedbami formul in s prikazom izometrik v

ROC (ang. reciever operator characteristic) prostoru.

Uporaba poenotenega teoretskega okvira ima več prednosti. Prvi rezultat

uporabe je posplošitev vizualizacijskih metod, ki so bile razvite za odkrivanje

podskupin (Atzmüller in Puppe, 2005; Gamberger et al., 2002; Kralj et al.,

2005; Wettschereck, 2002; Wrobel, 2001), na nadzorovano učenje opisnih
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pravil (Kralj Novak et al., 2009b). S tem rešimo odprto vprašanje predstavitve

rezultatov uporabnikom s področja odkrivanja kontrastnih množic, ki so ga

izpostavili Webb et al. (2003).

Analiza podatkov o pacientih z možgansko kapjo, ki smo jo opravili v tesnem

sodelovanju z ekspertom s tega področja, je privedla do razvoja ustrezneǰse

metodologije za odkrivanje kontrastnih množic in novih spoznanj na področju

problemske domene. Cilj analize je bil odkriti dejavnike tveganja za možgansko

kap. Podatki so zajemali tako vsebino kartotek pacientov z možgansko kapjo

(razlikovali smo med dvema vrstama možganske kapi) kot tudi kartoteke pa-

cientov z drugimi nevrološkimi motnjami. Problem smo definirali v obliki od-

krivanja kontrastnih množic med dvema vrstama možganske kapi in z uporabo

SDRI teoretičnega okvira razvili teoretično korektno transformacijo odkrivanja

kontrastnih množic z uporabo odkrivanja podskupin (Kralj Novak et al., 2009a).

Diskusija o rezultatih je privedla do drugačne, a v danih okolǐsčinah primerneǰse

transformacije problema, ki nas je pripeljala tudi do bolǰsih rezultatov. Raziskave

so potekale v več iteracijah in v vsaki iteraciji so bile uporabljene tudi vizual-

izacijske metode. Za podkrepitev končnih rezultatov smo uporabili podporne

dejavnike (ang. supporting factors) (Gamberger et al., 2003), ki smo jih s

pomočjo SDRI teoretskega okvira posplošili iz odkrivanja podskupin na odkri-

vanje kontrastnih množic (Kralj Novak et al., 2009a).

Razvili smo novo metodo nadzorovanega učenja opisnih pravil, ki omogoča

prilagoditev metode odkrivanja zaprtih množic (ang. closed sets) za delo z

označenimi podatki. Nova metoda se imenuje odkrivanje zaprtih množic za

označene podatke (ang. mining of closed sets for labeled data) (Garriga

et al., 2008) in ima lepe teoretske lastnosti, kot so zagotavljanje optimalnosti

v ROC prostoru in zagotavljanje neredundantnosti odkritih pravil. To metodo

smo uporabili za analizo podatkov mikromrež krompirja, kjer smo iskali raz-

like med na virus občutljivimi in neobčutljivimi transgenimi linijami krompirja

(Garriga et al., 2008; Kralj et al., 2006). Za razumevanje problema, pripravo

podatkov in interpretacijo rezultatov smo sodelovali z eksperti, ki so iz rezul-

tatov lahko razbrali, kateri geni vplivajo na občutljivost in časovni odziv teh

genov (Baebler et al., 2009). Metoda odkrivanje zaprtih množic za označene

podatke je primerna za analizo podatkov mikromrež, ker nima težav z neso-

razmerjem med velikim številom atributov in malim številom primerov, tipičnim

za podatke mikromrež, kar predstavlja težavo pri uporabi drugih metod nad-

zorovanega učenja opisnih pravil.
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V okolju Orange (Demšar et al., 2004) smo razvili orodje za odkrivanje pod-

skupin Subgroup Discovery Toolkit for Orange, dostopno pod GPL licenco na

spletni strani http://kt.ijs.si/petra˙kralj/SubgroupDiscovery/. Oro-

dje vključuje tri algoritme za odkrivanje podskupin: SD (Gamberger in Lavrač,

2002), CN2-SD (Lavrač et al., 2004) in Apriori-SD (Kavšek in Lavrač, 2006),

dve metodi vizualizacije (palična vizualizacija in vizualizacija v ROC prostoru

(Kralj et al., 2005)) in postopek za evalvacijo podskupin (Kavšek in Lavrač,

2006). Algoritem za iskanje zaprtih množic za označene podatke RelSets je

dostopen na spletni strani http://kt.ijs.si/petra˙kralj/RelSets/ kot

spletni servis. Ostali algoritmi, uporabljeni v disertaciji (npr. Magnum Opus),

so dostopni pri njihovih avtorjih.

Prispevki k znanosti

V disertaciji so opisani naslednji prispevki k znanosti.

• Pregled področij odkrivanja podskupin, odkrivanja kontrastnih množic, po-
rajajočih se vzorcev in ostalih sorodnih pristopov (2. poglavje).

• Razvoj poenotenega teoretskega okvira za odkrivanje podskupin, odkri-
vanje kontrastnih množic in odkrivanje porajajočih se vzorcev z imenom

nadzorovano učenje opisnih pravil. Teoretski okvir poenoti terminologijo,

definicije in hevristike navedenih področij (2. poglavje).

• Kritični pregled metod za vizualizacijo nadzorovanih opisnih pravil in nji-
hova posplošitev v sklopu razvitega teoretskega okvira (2. poglavje).

• Metodologija za odkrivanje kontrastnih množic z odkrivanjem podskupin
(3. poglavje).

• Prilagoditev koncepta podpornih dejavnikov (supporting factors) iz odkri-
vanja podskupin na odkrivanje kontrastnih množic (3. poglavje).

• Praktična aplikacija algoritmov nadzorovanega učenja opisnih pravil na
domeni možganske kapi. (3. poglavje).

• Prilagoditev metode za odkrivanje zaprtih množic (closed sets) za delo z
označenimi podatki. Nova metoda se imenuje odkrivanje zaprtih množic

za označene podatke (ang. mining of closed sets for labeled data)

(4. poglavje).

http://kt.ijs.si/petra_kralj/SubgroupDiscovery/
http://kt.ijs.si/petra_kralj/RelSets/
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• Aplikacija metode odkrivanja zaprtih množic za označene podatke za anal-
izo podatkov mikromrež. (4. poglavje).

• Implementacija algoritmov in vizualizacjskih metod za odkrivanje pod-
skupin, odkrivanje kontrastnih množic in odkrivanje porajajočih se vzorcev

(5. poglavje).

Znanstveni prispevki disertacije so bili objavljeni v treh uglednih mednarodnih

revijah s področja strojnega učenja (Garriga et al., 2008; Kralj Novak et al.,

2009a,b) in na številnih mednarodnih znanstvenih konferencah. Seznam pub-

likacij je podan na koncu disertacije.

Zaključki in nadaljnje delo

V disertaciji smo z uvedbo enotnega teoretskega okvira za nadzorovano učenje

opisnih pravil dosegli zastavljene cilje, kar smo dokazali z uspešnimi aplikacijami

tega pristopa. Orodja za analizo podatkov, ki smo jih uporabili v disertaciji,

so prosto dostopna na svetovnem spletu v obliki paketa za programsko okolje

Orange (Demšar et al., 2004).

Ena od smernic za nadaljnje delo je dekompozicija SDRI pristopov na pred-

procesiranje, algoritme same in evalvacijo, in njihova implementacija v obliki

povezljivih spletnih servisov. Z definicijo primernega vmesnika med servisi bi

lahko omogočili povezovanje in uporabo kombinacij vseh pristopov, ki so na

voljo.

Področji, ki sta zaenkrat še razmeroma neraziskani in jih v disertaciji nismo

obravnavali, sta tudi odkrivanje zakonitosti iz kompleksnih podatkovnih struk-

tur in semantično odkrivanje zakonitosti v podatkih. Na področju odkrivanja

podskupin je Wrobel (1997, 2001) razvil algoritem Midos, Klösgen in May

(2002) pa sta razvila algoritem SubgroupMiner, ki je prilagojen odkrivanju za-

konitosti v prostorskih podatkih. Na to področje spada tudi algoritem RSD

(ang. Relational subgroup discovery) avtorjev Železný in Lavrač (2006). Al-

goritem SEGS (ang. Search for enriched gene sets) avtorjev Trajkovski et al.

(2008) predstavlja uspešen način semantičnega odkrivanja zakonitosti v po-

datkih v obliki opisnih pravil, saj uporablja specializirane biološke ontologije kot

predznanje za gradnjo pravil, ki razlagajo podatke mikromrež.

Kljub temu, da je disertacija osredotočena na metode strojnega učenja za grad-

njo razumljivih pravil, so uporaba in širjenje SDRI pristopa še kako pomembni.
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S tem, ko smo naredili algoritme dostopne na svetovnem spletu, smo naredili

prvi korak k priblǐzevanju le teh končnim uporabnikom. Objave v poljudno-

znanstvenih medijih in predavanja različnim publikam bi gotovo veliko prispevali

k uporabi metod v praksi.
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Abbreviations

CSM = contrast set mining

DBMS = data base management system

DM = data mining

EPM = emerging pattern mining

KDD = knowledge discovery in databases

ROC = receiver operator characteristics

SD = subgroup discovery

SDRI = supervised descriptive rule induction
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1 Introduction

This chapter introduces the terminology used in the dissertation, presents the motivation,

the hypothesis and goals of this work, and provides a list of specific scientific contributions

of this thesis.

1.1 Background

Nowadays, computer-based systems are applied in almost every aspect of everyday life.

In various domains, like business, science and medicine, huge amounts of data are being

collected on a daily basis. The data can then be analyzed and the analysis results can

be used to discover market trends, to improve customer service, to gain insights in the

domain and for decision support in general. Data analysis is frequently performed in the

knowledge discovery process (Chapman et al., 1999; Cios et al., 2007; Frawley et al.,

1991), which is defined as “the non-trivial extraction of implicit, unknown, and potentially

useful information from data” (Frawley et al., 1991).

The concept knowledge discovery from databases (KDD) emerged in 1989 to refer to

the process of finding interesting patterns and models in data. According to Fayyad et al.

(1996), the KDD process is interactive and iterative (with many decisions made by the

user), involving numerous steps, summarized as:

1. Learning the application domain: includes relevant prior knowledge and the goals of

the application;

2. Creating a target dataset: includes selecting a dataset or focusing on a subset of

variables or data samples on which discovery is to be performed;

3. Data cleaning and preprocessing: includes basic operations, such as removing noise

or outliers if appropriate, collecting the necessary information to model or account

for noise, deciding on strategies for handling missing data fields, and accounting for

time sequence information and known changes, as well as deciding DBMS issues,

such as data types, schema, and mapping of missing and unknown values;



2 INTRODUCTION

4. Data reduction and projection: includes finding useful features to represent the data,

depending on the goal of the task, and using dimensionality reduction or transfor-

mation methods to reduce the effective number of variables under consideration or

to find invariant representations for the data;

5. Choosing the function of data mining: includes deciding the purpose of the model

derived by the data mining algorithm (e.g., summarization, classification, regression

or clustering);

6. Choosing the data mining algorithm(s): includes selecting method(s) to be used for

searching for patterns in the data, such as deciding which models and parameters

may be appropriate (e.g., models for categorical data are different from models on

vectors over reals) and matching a particular data mining method with the overall

criteria of the KDD process (e.g., the user may be more interested in understanding

the model than in its predictive capabilities);

7. Data mining: includes searching for patterns of interest in a particular representa-

tional form or a set of such representations, including classification rules or trees,

regression, clustering, sequence modeling, dependency, and others;

8. Interpretation: includes interpreting the discovered patterns and possibly returning to

any of the previous steps, as well as possible visualization of the extracted patterns,

removing redundant or irrelevant patterns, and translating the useful ones into terms

understandable by the user;

9. Using discovered knowledge: includes incorporating this knowledge into the perfor-

mance system, taking actions based on the knowledge, or simply documenting it

and reporting it to interested parties, as well as checking for and resolving potential

conflicts with previously believed (or extracted) knowledge.

In summary, the knowledge discovery process is an iterative process of searching for

valuable information in large volumes of data. It is a cooperative effort of humans and

computers: humans design databases, describe problems, set goals and interpret results,

while computers search through the data looking for patterns that meet the human-defined

goals. In steps 5, 6 and 7 of the knowledge discovery process, data mining algorithms are

introduced. In this context, data mining can be viewed as an application of particular

algorithms for extracting patterns or models from data.

Data mining is being influenced by many other disciplines like statistics, machine learn-

ing and artificial intelligence, pattern recognition, and data visualization. In the rest of



Background 3

this section, the relation between machine learning and data mining will be clarified (Sec-

tion 1.1.1), and rule learning will be introduced (Section 1.1.2).

1.1.1 Machine learning and data mining

Machine learning builds on concepts from the fields of artificial intelligence, statistics,

information theory, and many others. It studies computer programs that automatically

improve with experience (Mitchell, 1997). The main types of machine learning approaches

are supervised learning (Kotsiantis et al., 2006) and unsupervised learning (Ghahramani,

2004), supplemented by semi-supervised learning (Chapelle et al., 2006), reinforcement

learning (Sutton and Barto, 1998), transduction (Vapnik, 1998), meta learning (Vilalta

and Drissi, 2002) and others. Most automatic data mining methods have their origin in

machine learning. However, machine learning can not be seen as a true subset of data

mining as it also encompasses fields not utilized for data mining (e.g., theory of learning,

computational learning theory, and reinforcement learning) (Kononenko and Kukar, 2007).

As a sub-field of artificial intelligence (Michalski et al., 1986), machine learning is

inspired by one of the main properties of intelligent systems: learning. Consequently,

machine learning terminology is based on human learning terminology. In human supervised

learning, there is a teacher, tutor or supervisor who knows both the questions and the

correct answers and, by giving the answers to the learner, helps him to learn a new skill.

Supervised machine learning emulates the supervisor by providing the learner with labeled

data for training. The training data consist of pairs of input examples - questions (usually

in the form of vectors of attribute values), and desired outputs - answers (called target

values or labels). The target values are most commonly either categories (in such a case

we talk about classification where each possible category is one class) or numbers. The

supervised learning task is to learn the skill of correctly predicting the value of outputs for

valid inputs after having seen a number of labeled training examples (i.e., pairs of input

and output). To achieve this, the learner has to generalize from the presented data to

unseen situations. In summary, supervised learning is about learning a function that maps

the inputs to the outputs based on given labeled data (Russell and Norvig, 2003). A review

of supervised machine learning techniques is available in Kotsiantis et al. (2006).

A special case of supervised learning is concept learning, defined by Bruner et al. (1956)

as “the search for and listing of attributes that can be used to distinguish exemplars from

non exemplars of various categories.” The learning system aims at determining a descrip-

tion of a given concept from a set of concept examples provided by the teacher. Concept

examples can be either positive or negative. Compared to the general classification setting

where the number of classes between which one aims to distinguish can be greater than
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two, in concept learning, one class is taken as the target and the goal to find character-

istics that distinguish this class from the others. Some machine learning techniques take

inspiration from concept learning, for example subgroup discovery (Wrobel, 1997).

Compared to supervised learning, unsupervised learning is about learning without a

supervisor. To translate this to the machine learning terminology, unsupervised machine

learning is about learning from data where no target values are supplied (Russell and Norvig,

2003). The learner’s goal is to build representations of the input. In a sense, unsupervised

learning can be thought of as finding patterns in the data above and beyond what would

be considered pure unstructured noise (Ghahramani, 2004).

While machine learning focuses on the development of data modeling techniques, data

mining is more application oriented (Kononenko and Kukar, 2007). Each data mining

application has a motivating story that should lead to a problem specification. Supervised

and unsupervised machine learning methods are the most frequently used methods in data

mining.

Predictive data mining is usually associated with supervised machine learning, since it

uses the data to infer predictions. For predictive data mining, representative examples

with known target values, summarizing past experiences, must be available. The technical

mission of predictive data mining is to induce a model for assigning labels to new unlabeled

cases (Weiss and Indurkhya, 1998).

Descriptive data mining aims at finding interesting patterns in the data. Descriptive

data mining describes the data in a concise way and presents interesting characteristics

of the data, usually without having any predefined target. The result of descriptive data

mining is a description of a set of data in a concise and summarized manner, the presen-

tation of the general properties of the data as well as the description of local patterns in

the data.

Supervised machine learning is used in predictive data mining and unsupervised machine

learning is used in descriptive data mining. Besides using supervised machine learning,

predictive data mining uses also other methods like sequential prediction and interpolation.

Similarly, besides using unsupervised machine learning, descriptive data mining uses also

other methods like correlation, associations and dependencies. Summarized and simplified,

predictive data mining is supervised machine learning used in practice and descriptive data

mining is unsupervised machine learning used in practice.

1.1.2 Rule induction

Rule induction is an area of machine learning in which formal rules are extracted from a

set of observations. The extracted rules may represent a full model of the data (in the



Background 5

form of a ruleset) like in Clark and Niblett (1989), or represent local patterns in the data

(in the form of individual rules) like in Agrawal et al. (1996). The general form of each

rule is an if-then rule:

IF Conditions THEN Conclusion.

Conditions contain one or more (conjunction of) attribute tests, i.e., features of the form

Ai = vi j for categorical attributes (where vi j is one of the possible values of attribute Ai),

and Ai < v or Ai ≥ v for numeric attributes (where v is a threshold value that does not
need to correspond to a value of the attribute observed in the examples). The form of

the Conclusion part of the rule depends on the type of the rule.

In the supervised rule learning setting, rules are induced from labeled data. Since rules

learned in a supervised manner are usually used for classification, supervised rule learning is

usually associated to classification rule learning. The classification rule learning task can be

defined as follows: Given a set of training examples (instances for which the classification

is known), find a set of classification rules that can be used for predicting or classifying

new instances, i.e., cases that have not been presented to the learner before. Classification

rules are of the form:

IF Conditions THEN Class = ci .

In this setting, the Conclusion consists of the target variable associated with one of the

examples’ labels (classes). Classification rules are not individual rules, but rather parts of

models (rulesets) that work together to classify new instances. Classification rulesets can

either be ordered (in the if-then-else form) or unordered where each rule votes for a class

label. Several classification rule learning algorithms have been developed so far, for example

CN2 (Clark and Boswell, 1991; Clark and Niblett, 1989) and RIPPER (Cohen, 1995). Most

classification rule learning algorithms use heuristic approaches for rule induction.

In the unsupervised rule learning setting, rules are induced from unlabeled data. The

goal of unsupervised rule learning is to discover interesting relations between variables

(attributes). The most famous and well researched unsupervised rule learning method is

association rule learning, which was introduced by Agrawal et al. (1996). Association rules

are of the form

IF Conditions THEN Conclusions,

where both the Conditions and the Conclusions are conjunctions of attribute values (or

items, depending on the data format). Each rule is an individual local pattern in the

data, not related to other rules. Compared to classification rule learning where heuristic

approaches are commonly used, the approaches used in association rule mining are usually

exhaustive and therefore guarantee optimality of results in terms of support and confidence.
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Traditional association rule mining produces an abundance of redundant rules, which

is due to their individuality. To overcome this redundancy, association rules based on

closed frequent itemsets were introduced by Pasquier et al. (1999). The number of non-

redundant rules produced by the new approach is substantially smaller than the rule set

from the traditional approach, since closed sets provide compacted data representations.

1.2 Supervised descriptive rule induction

In Section 1.1.1, we have introduced, on the one hand, supervised and unsupervised ma-

chine learning, and, on the other hand, predictive and descriptive data mining. If simplified,

it can be summarized as follows:

supervised machine learning ∼ predictive data mining

unsupervised machine learning ∼ descriptive data mining

However, even if the learning setting is supervised (labeled data is given) the goal can be

to build symbolic descriptions intended for human interpretation. This thesis addresses

this less common situation, which is a merge of supervised learning and descriptive data

mining in the context of rule induction, which we have named supervised descriptive rule

induction.

1.2.1 Motivation

A common question is “What is the difference between groups of individuals?”, where

groups are defined by a selected property of the individuals. For example, one could

specify as the property of interest the gender of patients and ask the question “What

is the difference between males and females affected by a certain disease?”, or, if the

property of interest was the response to a treatment, the question could be “What is

the difference between patients reacting well to the treatment and those who are not?”.

Searching for differences is not limited to any special type of individuals: one can search

for differences between molecules, patients, projects, organizations, etc.

Data mining tasks where the goal is to find comprehensible differences between groups

have been addressed by many researchers from both the descriptive and predictive data

mining side. On the one hand, in descriptive data mining - using the association rule

learning perspective - association rule learners like Apriori by Agrawal et al. (1996) were

adapted to perform the tasks named contrast set mining (CSM) (Bay and Pazzani, 2001)
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and emerging pattern mining (EPM) (Dong and Li, 1999). On the other hand, in pre-

dictive data mining, algorithms for building accurate classifiers (Clark and Niblett, 1989;

Cohen, 1995) have been adapted to build individual rules for exploratory data analysis and

interpretation, i.e., to solve the task named subgroup discovery (SD) (Lavrač et al., 2004;

Wrobel, 1997).

Past research in three distinct areas of data mining - contrast set mining, emerging

pattern mining and subgroup discovery - all dealing with finding comprehensible rules for

distinguishing between groups, has been performed independently of each other, using

different frameworks and terminology. Since researchers in these three areas were not

aware of each others’ work, they could not make sufficient use of each others’ discoveries.

The purpose of this dissertation is to unify data mining tasks that deal with finding

differences between groups in a novel unifying framework, named supervised descriptive

rule induction (SDRI). By doing so, our aim is to improve individual supervised descriptive

rule induction methods by cross-fertilizing the approaches developed in individual sub-

areas of supervised descriptive rule induction. Furthermore, we aim at developing novel

SDRI methods through component exchange (e.g., enabling the use of subgroup discovery

components like visualization and evaluation in contrast set mining). Finally, we aim at

showing the advantages of this approach in applications in important real life problems in

medicine and biology.

1.2.2 Supervised descriptive rule induction definition

In this dissertation, supervised descriptive rule induction is defined as follows. We assume a

set of data exists, described by attributes and their values and a selected nominal attribute

that is of interest (called the target attribute). The goal of supervised descriptive rule

induction (SDRI) is to induce rules in the classification rule form to explain the relation

between the target attribute and the other attributes in the data. In other words, supervised

descriptive rule induction is a process of inducing a set of comprehensible rules in the

classification rule form from class-labeled data. The classification rule format constrains

the conditions part of the rules to be in conjunctive form, and to have the target attribute

and one of its values in the conclusions part of the rules.

The purpose of supervised descriptive rule induction is to allow the user, interested in

the data, to browse through the rules and, by doing so, to gain insight in the data domain.

The final goal of supervised descriptive rule induction is to allow the user to understand

the phenomena underlying the data.
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1.2.3 Supervised descriptive rule induction areas

We have identified three main supervised descriptive rule induction areas: contrast set

mining, emerging pattern mining and subgroup discovery. Other related approaches in-

clude change mining (Liu et al., 2001), mining of closed sets for labeled data (Garriga

et al., 2008), exception rule mining (Daly and Taniar, 2005; Suzuki, 2006), bump hunting

(Friedman and Fisher, 1999), quantitative association rules (Aumann and Lindell, 1999)

and impact rules (Webb, 2001). The first three approaches are outlined in this section.

Contrast set mining

The problem of mining contrast sets was first defined by Bay and Pazzani (2001) as

finding contrast sets as “conjunctions of attributes and values that differ meaningfully in

their distributions across groups.”

The STUCCO algorithm (Search and testing for understandable consistent contrasts)

by Bay and Pazzani (2001) is based on the Max-Miner rule discovery algorithm (Bayardo,

1998). STUCCO discovers a set of contrast sets along with their supports1 on groups.

STUCCO employs a number of pruning mechanisms. A potential contrast set X is dis-

carded if it fails a statistical test for independence with respect to the group variable Y . It

is also subjected to what Webb (2007) calls a test for productivity. Rule X → Y is produc-
tive iff ∀Z ⊂ X : confidence(Z → Y ) < confidence(X → Y ) where confidence(X → Y )
is the probability P (Y |X), estimated by the ratio count(X,Y )

count(X)
, where count(X, Y ) represents

the number of examples for which both X and Y are true, and count(X) represents the

number of examples for which X is true. Therefore, a more specific contrast set must

have higher confidence than any of its generalizations. Further tests for minimum counts

and effect sizes may also be imposed.

STUCCO introduced a novel variant of the Bonferroni correction for multiple tests

which applies ever more stringent critical values to the statistical tests employed as the

number of conditions in a contrast set is increased. In comparison, the other techniques

discussed below do not, by default, employ any form of correction for multiple comparisons,

as a result of which they have a high risk of making false discoveries (Webb, 2007).

It was shown by Webb et al. (2003) that contrast set mining is a special case of the

more general rule learning task. A contrast set can be interpreted as the antecedent of rule

X → Y , and group Gi for which it is characteristic—in contrast with group Gj—as the rule
consequent, leading to rules of the form ContrastSet → Gi . A standard descriptive rule

1The support of a contrast set ContrastSet with respect to a group Gi , support(ContrastSet, Gi), is

the percentage of examples in Gi for which the contrast set is true.
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discovery algorithm, such as an association-rule discovery system (Agrawal et al., 1996),

can be used for the task if the consequent is restricted to a variable whose values denote

group membership. Other work in the contrast set mining area includes Bay (2000);

Hilderman and Peckham (2005); Lin and Keogh (2006); Wong and Tseng (2005) and

Simeon and Hilderman (2007).

Emerging pattern mining

Emerging patterns were defined by Dong and Li (1999) as itemsets whose support increases

significantly from one data set to another. Emerging patterns are said to capture emerging

trends in time-stamped databases, or to capture differentiating characteristics between

classes of data.

Efficient algorithms for mining emerging patterns were proposed by Dong and Li (1999)

and Fan and Ramamohanarao (2003). When first defined by Dong and Li (1999), the

purpose of emerging patterns was “to capture emerging trends in time-stamped data, or

useful contrasts between data classes”. Subsequent emerging pattern research has largely

focused on the use of the discovered patterns for classification purposes, for example,

classification by emerging patterns (Dong et al., 1999; Li et al., 2000) and classification

by jumping emerging patterns1 (Li et al., 2001). An advanced Bayesian approach (Fan

and Ramamohanara, 2003) and bagging (Fan et al., 2006) were also proposed.

From a semantic point of view, emerging patterns are association rules with an itemset

in rule antecedent, and a fixed consequent: ItemSet → D1, for given data set D1 being
compared to another data set D2.

The measure of quality of emerging patterns is the growth rate (the ratio of the two

supports). It determines, for example, that a pattern with a 10% support in one data set

and 1% in the other is better than a pattern with support 70% in one data set and 10%

in the other (as 10
1
> 70
10
). From the association rule perspective, growth rate provides an

identical ordering to confidence.

Some researchers have argued that finding all the emerging patterns above a minimum

growth rate constraint generates too many patterns to be analyzed by a domain expert.

Fan and Ramamohanarao (2003) have worked on selecting the interesting emerging pat-

terns, while Soulet et al. (2004) have proposed condensed representations of emerging

patterns.

Boulesteix et al. (2003) introduced a CART-based approach to discover emerging pat-

terns in microarray data. The method is based on growing decision trees from which the

1Jumping emerging patterns are emerging patterns with support zero in one data set and greater then

zero in the other data set.
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emerging patterns are extracted. It combines pattern search with a statistical procedure

based on Fisher’s exact test to assess the significance of each emerging pattern. Subse-

quently, sample classification based on the inferred emerging patterns is performed using

maximum-likelihood linear discriminant analysis.

Subgroup discovery

The task of subgroup discovery was defined by Klösgen (1996) and Wrobel (1997) as

follows: “Given a population of individuals and a property of those individuals that we are

interested in, find population subgroups that are statistically ‘most interesting’, e.g., are

as large as possible and have the most unusual statistical (distributional) characteristics

with respect to the property of interest”.

Subgroup descriptions are conjunctions of features that are characteristic for a selected

class of individuals (property of interest). A subgroup description can be seen as the

condition part of a rule SubgroupDescription → Class. Therefore, subgroup discovery can
be seen as a special case of a more general rule learning task.

Subgroup discovery research has evolved in several directions. On the one hand, exhaus-

tive approaches guarantee the optimal solution given the optimization criterion. One sys-

tem that can use both exhaustive and heuristic discovery algorithms is Explora by Klösgen

(1996). Other algorithms for exhaustive subgroup discovery are the SD-Map method by

Atzmüller and Puppe (2006) and Apriori-SD by Kavšek and Lavrač (2006). On the other

hand, adaptations of classification rule learners to perform subgroup discovery, including

algorithm SD by Gamberger and Lavrač (2002) and algorithm CN2-SD by Lavrač et al.

(2004), use heuristic search techniques drawn from classification rule learning coupled with

constraints appropriate for descriptive rules.

Relational subgroup discovery approaches have been proposed by Wrobel (1997, 2001)

with algorithm Midos, by Klösgen and May (2002) with algorithm SubgroupMiner, which

is designed for spatial data mining in relational spatial databases, and by Železný and

Lavrač (2006) with the algorithm RSD (Relational subgroup discovery). RSD uses a

propositionalization approach to relational subgroup discovery, achieved through appro-

priately adapting rule learning and first-order feature construction. Other non-relational

subgroup discovery algorithms have been developed, including an algorithm for exploiting

background knowledge in subgroup discovery (Atzmüller et al., 2005), and an iterative ge-

netic algorithm SDIGA by del Jesus et al. (2007) implementing, a fuzzy system for solving

subgroup discovery tasks.

Different heuristics have been used for subgroup discovery. By definition, the inter-

estingness of a subgroup depends on its unusualness and size, therefore the rule quality
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evaluation heuristics needs to combine both factors. Weighted relative accuracy (WRAcc)

is used by algorithms CN2-SD, Apriori-SD and RSD and, in a different formulation and in

different variants, also by MIDOS and EXPLORA. The generalization quotient (qg) is used

by the SD algorithm, and SubgroupMiner uses the classical binominal test to verify if the

target share is significantly different in a subgroup as compared to the whole population.

Different approaches have been used for eliminating redundant subgroups. Algorithms

CN2-SD, Apriori-SD, SD and RSD use weighted covering (Lavrač et al., 2004) to achieve

rule diversity. Algorithms Explora and SubgroupMiner use an approach called subgroup

suppression (Klösgen, 1996).

1.3 Hypothesis and goals

The hypothesis of this thesis is that contrast set mining, emerging pattern mining, sub-

group discovery and other similar data mining approaches can be re-interpreted as special

cases of a general task of supervised descriptive rule induction (SDRI), and that this novel

perspective can help solving current open issues of SDRI sub-areas. Moreover, SDRI ap-

proaches can be interpreted as workflows of individual SDRI algorithmic components and

therefore interchanged, leading to the development of novel SDRI algorithms, possibly

improved due to the cross-fertilization of ideas from the different SDRI sub-areas. Finally,

the applications of SDRI algorithms to problems in selected biomedical domains can lead

to improved problem solutions and novel domain insights.

The individual research goals of this dissertation are as follows:

1. Identification of supervised descriptive rule induction (SDRI) tasks (contrast set

mining, emerging pattern mining, subgroup discovery and other related approaches)

and a survey of past SDRI research;

2. Unification of the SDRI terminology, definitions and heuristics;

3. Selection of SDRI evaluation measures;

4. Experimental comparison of SDRI methods (existing and novel);

5. Avoiding current limitations of SDRI approaches by improving the presentation of

SDRI results to end users, which includes visualization and explanation in terms of

supporting factors;

6. Applications of SDRI algorithms to practical problem domains from medicine and

biology.



12 INTRODUCTION

1.4 Scientific contributions

The contributions of this dissertation to data mining are the following.

• A state-of-the-art survey of subgroup discovery, contrast set mining, emerging pat-
tern mining and other similar data mining approaches (Chapter 2).

• The development of a unifying framework for subgroup discovery, contrast set mining
and emerging pattern mining, named supervised descriptive rule induction (SDRI).

The unifying framework includes the unification of the terminology, definitions and

heuristics (Chapter 2).

• A critical survey of existing supervised descriptive rule visualization methods. The
visualization methods were developed in the subgroup discovery context while visu-

alization and the presentation of results to the end user was considered an open

issue in contrast set mining. By using the SDRI framework, we have analyzed the

visualization methods for general SDRI purposes (Chapter 2).

• A methodology for contrast set mining though subgroup discovery (Chapter 3).

• The adaptation of the supporting factor concept from subgroup discovery to contrast
set mining, also achieved by using the SDRI unifying framework (Chapter 3).

• An application of SDRI algorithms in a practical problem domain from medicine:
the real-life dataset of patients with brain ischemia. The analysis of this dataset

and interaction with a domain expert have lead to improved problem definition and

solutions, and novel domain insights (Chapter 3).

• The adaptation of closed sets mining to classification and discrimination purposes.
The new SDRI method is called mining of closed sets for labeled data (Chapter 4).

• An application of the closed sets for labeled data method in microarray data analysis
(Chapter 4).

• Implementation of supervised descriptive rule induction approaches and their avail-
ability on the web (Chapter 5).

The main scientific contributions of this work were published in the following journal

and conference papers:
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Journal papers

• [Kralj Novak et al.(2009a)] Kralj Novak, P., Lavrač, N., Gamberger, D., and Krstačić,
A. (2009a). CSM-SD: Methodology for contrast set mining through subgroup

discovery. Journal of Biomedical Informatics, 42(1), 113–122.

• [Kralj Novak et al.(2009b)] Kralj Novak, P., Lavrač, N., and Webb, G. I. (2009b).
Supervised descriptive rule discovery: A unifying survey of contrast set, emerging

pattern and subgroup mining. Journal of Machine Learning Research, 10, 377–403.

http://www.jmlr.org/papers/volume10/kralj-novak09a/kralj-novak09a.pdf.

• [Garriga et al.(2008)] Garriga, G. C., Kralj, P., and Lavrač, N. (2008). Closed sets
for labeled data. Journal of Machine Learning Research, 9, 559–580.

http://www.jmlr.org/papers/volume9/garriga08a/garriga08a.pdf.

• [Kralj et al.(2006)] Kralj, P., Rotter, A., Toplak, N., Gruden, K., Lavrač, N., and
Garriga, G. C. (2006). Application of closed itemset mining for class labeled data

in functional genomics. Informatica Medica Slovenica, (1), 40–45.

Conference papers

• [Kralj et al.(2007a)] Kralj, P., Lavrač, N., Gamberger, D., and Krstačić, A. (2007a).
Contrast set mining for distinguishing between similar diseases. In Proceedings of the

11th Conference on Artificial Intelligence in Medicine (AIME 2007), pages 109–118.

• [Kralj et al.(2007b)] Kralj, P., Lavrač, N., Gamberger, D., and Krstačić, A. (2007b).
Contrast set mining through subgroup discovery applied to brain ischaemia data. In

Proceedings of the 11th Pacific-Asia conference on Knowledge Discovery and Data

Mining (PAKDD 2007), pages 579–586.

• [Lavrač et al.(2007)] Lavrač, N., Kralj, P., Gamberger, D., and Krstačić, A. (2007).
Supporting factors to improve the explanatory potential of contrast set mining: An-

alyzing brain ischaemia data. In Proceedings of the 11th Mediterranean Conference

on Medical and Biological Engineering and Computing (MEDICON 2007), pages

157–161.

• [Garriga et al.(2006)] Garriga, G. C., Kralj, P., and Lavrač, N. (2006). Closed sets
for labeled data. In Proceedings of the 10th European Conference on Principles and

Practice of Knowledge Discovery in Databases (PKDD 2006), pages 163–174.
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• [Kralj et al.(2005a)] Kralj, P., Lavrač, N., Zupan, B., and Gamberger, D. (2005a).
Experimental comparison of three subgroup discovery algorithms: Analysing brain

ischemia data. In Proceedings of the 8th International Multiconference Information

Society (IS 2005), pages 220 – 223.

• [Kralj et al.(2005b)] Kralj, P., Lavrač, N., and Zupan, B. (2005b). Subgroup

visualization. In Proceedings of the 8th International Multiconference Information

Society (IS 2005), pages 228–231.

Papers by Petra Kralj (Novak) that are not related to the thesis:

• [Hren et al.(2007)] Hren, M., Boben, J., Rotter, A., Kralj, P., Gruden, K., and
Ravnikar, M. (2007). Real-time PCR detection systems for flavescence dorée and

bois noir phytoplasmas in grapevine: comparison with conventional PCR detection

and application in diagnostics. Plant Pathology , 56, 785–796.

• [Jenkole et al.(2007)] Jenkole, J., Kralj, P., Lavrač, N., and Sluga, A. (2007). A
data mining experiment on manufacturing shop floor data. In Proceedings of the

40th International Seminar on Manufacturing Systems (CIRP 2007). 6 pages.

• [Kralj et al.(2007)] Kralj, P., Lavrač, N., Gruden, K., Rotter, A., Štebih, D., Moris-
set, D., and Žel, J. (2007). A prototype decision support system for gmo traceabil-

ity. In Proceedings of the 10th International Multiconference Information Society

(IS 2007), pages 214–217.

1.5 Thesis structure

This thesis is structured as follows. The background, motivation and definition of su-

pervised descriptive rule induction (SDRI) are provided in Chapter 1, where the main

terminology is also introduced. This chapter includes also a brief survey of three main ap-

proaches to SDRI: contrast set mining, emerging pattern mining and subgroup discovery.

The main part of this thesis are three original research papers on supervised descriptive

rule induction co-authored by the author of this dissertation, which were published in in-

ternationally recognized journals of the machine learning field: Kralj Novak et al. (2009b),

Kralj Novak et al. (2009a) and Garriga et al. (2008), presented in Chapters 2, 3 and

4, respectively. Chapter 5 is dedicated to the methodology used to prove the disserta-

tion’s thesis, the summary and discussion of results, and software availability. Chapter 6

is devoted to conclusions and further work.
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2 Supervised Descriptive Rule Discovery:

A Unifying Survey of Contrast Set, Emerging

Pattern and Subgroup Mining

In this chapter, the paper (Kralj Novak et al., 2009b) titled “Supervised Descriptive Rule

Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining”

by Petra Kralj Novak, Nada Lavrač and Geoffrey I. Webb is presented. The paper was

published in the Journal of Machine Learning Research in February 2009.

This paper represents the core of the dissertation, since it provides a survey of super-

vised descriptive rule induction approaches, a unifying framework for supervised descriptive

rule induction, which includes unifications of the terminology, definitions and heuristics,

and a survey of visualization methods. Three representative supervised descriptive rule

induction approaches are discussed in detail (subgroup discovery, emerging pattern and

contrast set mining), while other related approaches are discussed in relation to the previ-

ously mentioned three approaches. The approaches are presented on a very small, artificial

sample dataset, adapted from Quinlan (1986), and the visualization methods are presented

on a real-life coronary heart disease dataset, both aimed at improving the clarity and un-

derstandability of the paper.

All three authors contributed significantly to this paper. Petra Kralj Novak and Nada

Lavrač conceived the unification of the three supervised descriptive rule induction ap-

proaches and framed the paper, while the brainstorming with Geoffrey I. Webb lead to the

final idea to make the paper a survey. After considering the comments from reviewers, we

have decided to add a section on visualization (Section 4), which was adapted from the

conference paper Kralj et al. (2005).
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Nada Lavrač∗ NADA .LAVRAC @IJS.SI

Department of Knowledge Technologies
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Abstract
This paper gives a survey of contrast set mining (CSM), emerging pattern mining (EPM), and sub-
group discovery (SD) in a unifying framework namedsupervised descriptive rule discovery. While
all these research areas aim at discovering patterns in the form of rules induced from labeled data,
they use different terminology and task definitions, claim to have different goals, claim to use dif-
ferent rule learning heuristics, and use different means for selecting subsets of induced patterns.
This paper contributes a novel understanding of these subareas of data mining by presenting a uni-
fied terminology, by explaining the apparent differences between the learning tasks as variants of
a unique supervised descriptive rule discovery task and by exploring the apparent differences be-
tween the approaches. It also shows that various rule learning heuristics used in CSM, EPM and SD
algorithms all aim at optimizing a trade off between rule coverage and precision. The commonali-
ties (and differences) between the approaches are showcased on a selection of best known variants
of CSM, EPM and SD algorithms. The paper also provides a critical survey of existing supervised
descriptive rule discovery visualization methods.
Keywords: descriptive rules, rule learning, contrast set mining, emerging patterns, subgroup
discovery

1. Introduction

Symbolic data analysis techniques aim at discovering comprehensible patterns or models in data.
They can be divided into techniques forpredictive induction, where models, typically induced from
class labeled data, are used to predict the class value of previously unseen examples, anddescriptive
induction, where the aim is to find comprehensible patterns, typically induced from unlabeled data.
Until recently, these techniques have been investigated by two different research communities: pre-
dictive induction mainly by the machine learning community, and descriptive induction mainly by
the data mining community.

∗. Also at University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia.
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Data mining tasks where the goal is to find humanly interpretable differences between groups
have been addressed by both communities independently. The groups canbe interpreted as class
labels, so the data mining community, using the association rule learning perspective, adapted as-
sociation rule learners like Apriori by Agrawal et al. (1996) to performa task namedcontrast set
mining (Bay and Pazzani, 2001) andemerging pattern mining(Dong and Li, 1999). On the other
hand, the machine learning community, which usually deals with class labeled data, was challenged
by, instead of building sets of classification/prediction rules (e.g., Clark andNiblett, 1989; Cohen,
1995), to build individual rules for exploratory data analysis and interpretation, which is the goal of
the task namedsubgroup discovery(Wrobel, 1997).

This paper gives a survey of contrast set mining (CSM), emerging pattern mining (EPM), and
subgroup discovery (SD) in a unifying framework, namedsupervised descriptive rule discovery.
Typical applications of supervised descriptive rule discovery include patient risk group detection
in medicine, bioinformatics applications like finding sets of overexpressed genes for specific treat-
ments in microarray data analysis, and identifying distinguishing features of different customer seg-
ments in customer relationship management. The main aim of these applications is to understand
the underlying phenomena and not to classify new instances. Take another illustrative example,
where a manufacturer wants to know in what circumstances his machines may break down; his
intention is not to predict breakdowns, but to understand the factors thatlead to them and how to
avoid them.

The main contributions of this paper are as follows. It provides a survey of supervised de-
scriptive rule discovery approaches addressed in different communities, and proposes a unifying
supervised descriptive rule discovery framework, including a critical survey of visualization meth-
ods. The paper is organized as follows: Section 2 gives a survey of past research done in the main
supervised descriptive rule discovery areas: contrast set mining, emerging pattern mining, subgroup
discovery and other related approaches. Section 3 is dedicated to unifyingthe terminology, defini-
tions and the heuristics. Section 4 addresses visualization as an important open issue in supervised
descriptive rule discovery. Section 5 provides a short summary.

2. A Survey of Supervised Descriptive Rule Discovery Approaches

Research on finding interesting rules from class labeled data evolved independently in three distinct
areas—contrast set mining, mining of emerging patterns and subgroup discovery—each area using
different frameworks and terminology. In this section, we provide a survey of these three research
areas. We also discuss other related approaches.

2.1 An Illustrative Example

Let us illustrate contrast set mining, emerging pattern mining and subgroup discovery using data
from Table 1, a very small, artificial sample data set,1 adapted from Quinlan (1986). The data set
contains the results of a survey on 14 individuals, concerning the approval or disapproval of an
issue analyzed in the survey. Each individual is characterized by fourattributes—Education (with
valuesprimary school,secondary school, oruniversity), MaritalStatus (single, married,
or divorced), Sex (male or female), andHasChildren (yes or no)—that encode rudimentary
information about the sociodemographic background. The last columnApproved is the designated

1. Thanks to Johannes Fürnkranz for providing this data set.
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Education Marital Status Sex Has ChildrenApproved

primary single male no no
primary single male yes no
primary married male no yes

university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes

secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes

Table 1: A sample database.

Marital Stat

0.357
14.0

Sex

0.600
5.0

single

no

1.000
3.0

male

yes

0.000
2.0

female

yes

0.000
4.0

married

Has Childre

0.400
5.0

divorced

yes

0.000
3.0

no

no

1.000
2.0

yes

Figure 1: A decision tree, modeling the data set shown in Table 1.

classattribute, encoding whether the individual approved or disapproved theissue. Since there is
no need for expert knowledge to interpret the results, this data set is appropriate for illustrating
the results of supervised descriptive rule discovery algorithms, whose task is to find interesting
patterns describing individuals that are likely to approve or disapprove the issue, based on the four
demographic characteristics.

The task ofpredictive inductionis to induce, from a given set oftraining examples, a domain
model aimed at predictive or classification purposes, such as thedecision treeshown in Figure 1, or
a rule setshown in Figure 2, as learned by C4.5 and C4.5rules (Quinlan, 1993), respectively, from
the sample data in Table 1.

Sex = female → Approved = yes
MaritalStatus = single AND Sex = male → Approved = no
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = yes → Approved = no
MaritalStatus = divorced AND HasChildren = no → Approved = yes

Figure 2: A set of predictive rules, modeling the data set shown in Table 1.
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MaritalStatus = single AND Sex = male → Approved = no
Sex = male → Approved = no
Sex = female → Approved = yes
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = yes → Approved = no
MaritalStatus = single → Approved = no

Figure 3: Selected descriptive rules, describing individual patterns in the data of Table 1.

In contrast to predictive induction algorithms,descriptive inductionalgorithms typically result
in rules induced from unlabeled examples. E.g., given the examples listed in Table 1, these al-
gorithms would typically treat the classApproved no differently from any other attribute. Note,
however, that in the learning framework discussed in this paper, that is, inthe framework ofsu-
pervised descriptive rule discovery, the discovered rules of the formX →Y are induced from class
labeled data: the class labels are taken into account in learning of patterns of interest, constraining
Y at the right hand side of the rule to assign a value to the class attribute.

Figure 3 shows six descriptive rules, found for the sample data using the Magnum Opus (Webb,
1995) software. Note that these rules were found using the default settings except that the critical
value for the statistical test was relaxed to 0.25. These descriptive rules differ from the predictive
rules in several ways. The first rule is redundant with respect to the second. The first is included as
a strong pattern (all 3 single males do not approve) whereas the second is weaker but more general
(4 out of 7 males do not approve, which is not highly predictive, but accounts for 4 out of all 5
respondents who do not approve). Most predictive systems will includeonly one of these rules,
but either may be of interest to someone trying to understand the data, depending upon the specific
application. This particular approach to descriptive pattern discovery does not attempt to second
guess which of the more specific or more general patterns will be the more useful.

Another difference between the predictive and the descriptive rule setsis that the descriptive rule
set does not include the pattern that divorcees without children approve. This is because, while the
pattern is highly predictive in the sample data, there are insufficient examplesto pass the statistical
test which assesses the probability that, given the frequency of respondents approving, the apparent
correlation occurs by chance. The predictive approach often includes such rules for the sake of
completeness, while some descriptive approaches make no attempt at such completeness, assessing
each pattern on its individual merits.

Exactly which rules will be induced by a supervised descriptive rule discovery algorithm de-
pends on the task definition, the selected algorithm, as well as the user-defined constraints concern-
ing minimal rule support, precision, etc. In the following section, the example set of Table 1 is used
to illustrate the outputs of emerging pattern and subgroup discovery algorithms(see Figures 4 and 5,
respectively), while a sample output for contrast set mining is shown in Figure 3 above.

2.2 Contrast Set Mining

The problem of mining contrast sets was first defined by Bay and Pazzani (2001) as finding con-
trast sets as “conjunctions of attributes and values that differ meaningfullyin their distributions
across groups.” The example rules in Figure 3 illustrate this approach, including all conjunctions
of attributes and values that pass a statistical test for productivity (explained below) with respect to
attributeApproved that defines the ‘groups.’
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2.2.1 CONTRAST SET M INING ALGORITHMS

The STUCCO algorithm (Search and Testing for Understandable Consistent Contrasts) by Bay and
Pazzani (2001) is based on the Max-Miner rule discovery algorithm (Bayardo, 1998). STUCCO
discovers a set of contrast sets along with their supports2 on groups. STUCCO employs a number
of pruning mechanisms. A potential contrast setX is discarded if it fails a statistical test for inde-
pendence with respect to the group variableY. It is also subjected to what Webb (2007) calls a test
for productivity. RuleX →Y is productive iff

∀Z⊂ X : confidence(Z→Y) < confidence(X →Y)

whereconfidence(X →Y) is a maximum likelihood estimate of conditional probabilityP(Y|X), es-
timated by the ratiocount(X,Y)

count(X) , wherecount(X,Y) represents the number of examples for which both
X andY are true, andcount(X) represents the number of examples for whichX is true. Therefore a
more specific contrast set must have higher confidence than any of its generalizations. Further tests
for minimum counts and effect sizes may also be imposed.

STUCCO introduced a novel variant of the Bonferroni correction formultiple tests which ap-
plies ever more stringent critical values to the statistical tests employed as the number of conditions
in a contrast set is increased. In comparison, the other techniques discussed below do not, by de-
fault, employ any form of correction for multiple comparisons, as result of which they have high
risk of makingfalse discoveries(Webb, 2007).

It was shown by Webb et al. (2003) that contrast set mining is a special case of the more general
rule learning task. A contrast set can be interpreted as the antecedent of rule X →Y, and groupGi

for which it is characteristic—in contrast with groupG j—as the rule consequent, leading to rules of
the formContrastSet→Gi . A standard descriptive rule discovery algorithm, such as an association-
rule discovery system (Agrawal et al., 1996), can be used for the taskif the consequent is restricted
to a variable whose values denote group membership.

In particular, Webb et al. (2003) showed that when STUCCO and the general-purpose descrip-
tive rule learning system Magnum Opus were each run with their default settings, but the consequent
restricted to the contrast variable in the case of Magnum Opus, the contrasts found differed mainly
as a consequence only of differences in the statistical tests employed to screen the rules.

Hilderman and Peckham (2005) proposed a different approach to contrast set mining called
CIGAR (ContrastIng Grouped Association Rules). CIGAR uses different statistical tests to STUCCO
or Magnum Opus for both independence and productivity and introduces a test forminimum sup-
port.

Wong and Tseng (2005) have developed techniques for discovering contrasts that can include
negations of terms in the contrast set.

In general, contrast set mining approaches require discrete data, which is in real world appli-
cations frequently not the case. A data discretization method developed specifically for set mining
purposes is described by Bay (2000). This approach does not appear to have been further used by
the contrast set mining community, except for Lin and Keogh (2006), who extended contrast set
mining to time series and multimedia data analysis. They introduced a formal notion ofa time
series contrast set along with a fast algorithm to find time series contrast sets. An approach to quan-
titative contrast set mining without discretization in the preprocessing phaseis proposed by Simeon

2. The support of a contrast setContrastSetwith respect to a groupGi , support(ContrastSet,Gi), is the percentage of
examples inGi for which the contrast set is true.
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and Hilderman (2007) with the algorithm GenQCSets. In this approach, a slightly modified equal
width binning interval method is used.

Common to most contrast set mining approaches is that they generate all candidate contrast sets
from discrete (or discretized) data and later use statistical tests to identify theinteresting ones. Open
questions identified by Webb et al. (2003) are yet unsolved: selection ofappropriate heuristics for
identifying interesting contrast sets, appropriate measures of quality for sets of contrast sets, and
appropriate methods for presenting contrast sets to the end users.

2.2.2 SELECTED APPLICATIONS OFCONTRAST SET M INING

The contrast mining paradigm does not appear to have been pursued in many published applications.
Webb et al. (2003) investigated its use with retail sales data. Wong and Tseng (2005) applied contrast
set mining for designing customized insurance programs. Siu et al. (2005)have used contrast set
mining to identify patterns in synchrotron x-ray data that distinguish tissue samples of different
forms of cancerous tumor. Kralj et al. (2007b) have addressed a contrast set mining problem of
distinguishing between two groups of brain ischaemia patients by transformingthe contrast set
mining task to a subgroup discovery task.

2.3 Emerging Pattern Mining

Emerging patterns were defined by Dong and Li (1999) as itemsets whose support increases sig-
nificantly from one data set to another. Emerging patterns are said to capture emerging trends in
time-stamped databases, or to capture differentiating characteristics between classes of data.

2.3.1 EMERGING PATTERN M INING ALGORITHMS

Efficient algorithms for mining emerging patterns were proposed by Dong and Li (1999) and Fan
and Ramamohanarao (2003). When first defined by Dong and Li (1999), the purpose of emerging
patterns was “to capture emerging trends in time-stamped data, or useful contrasts between data
classes”. Subsequent emerging pattern research has largely focused on the use of the discovered
patterns for classification purposes, for example, classification by emerging patterns (Dong et al.,
1999; Li et al., 2000) and classification by jumping emerging patterns3 (Li et al., 2001). An ad-
vanced Bayesian approach (Fan and Ramamohanara, 2003) and bagging (Fan et al., 2006) were
also proposed.

From a semantic point of view, emerging patterns are association rules with anitemset in rule
antecedent, and a fixed consequent:ItemSet→D1, for given data setD1 being compared to another
data setD2.

The measure of quality of emerging patterns is thegrowth rate(the ratio of the two supports).
It determines, for example, that a pattern with a 10% support in one data setand 1% in the other
is better than a pattern with support 70% in one data set and 10% in the other (as 10

1 >
70
10). From

the association rule perspective,GrowthRate(ItemSet,D1,D2) = confidence(ItemSet→D1)
1−confidence(ItemSet→D1)

. Thus it can
be seen that growth rate provides an identical ordering to confidence, except that growth rate is
undefined when confidence = 1.0.

3. Jumping emerging patterns are emerging patterns with support zero inone data set and greater then zero in the other
data set.
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MaritalStatus = single AND Sex = male → Approved = no
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = yes → Approved = no

Figure 4: Jumping emerging patterns in the data of Table 1.

Some researchers have argued that finding all the emerging patterns above a minimum growth
rate constraint generates too many patterns to be analyzed by a domain expert. Fan and Ramamoha-
narao (2003) have worked on selecting the interesting emerging patterns,while Soulet et al. (2004)
have proposed condensed representations of emerging patterns.

Boulesteix et al. (2003) introduced a CART-based approach to discover emerging patterns in
microarray data. The method is based on growing decision trees from whichthe emerging patterns
are extracted. It combines pattern search with a statistical procedure based on Fisher’s exact test to
assess the significance of each emerging pattern. Subsequently, sample classification based on the
inferred emerging patterns is performed using maximum-likelihood linear discriminant analysis.

Figure 4 shows all jumping emerging patterns found for the data in Table 1 when using a min-
imum support of 15%. These were discovered using the Magnum Opus software, limiting the con-
sequent to the variableapproved, setting minimum confidence to 1.0 and setting minimum support
to 2.

2.3.2 SELECTED APPLICATIONS OFEMERGING PATTERNS

Emerging patterns have been mainly applied to the field of bioinformatics, more specifically to
microarray data analysis. Li et al. (2003) present an interpretable classifier based on simple rules that
is competitive to the state of the art black-box classifiers on the acute lymphoblastic leukemia (ALL)
microarray data set. Li and Wong (2002) have focused on finding groups of genes by emerging
patterns and applied it to the ALL/AML data set and the colon tumor data set. Song et al. (2001) used
emerging patterns together with unexpected change and the added/perished rule to mine customer
behavior.

2.4 Subgroup Discovery

The task of subgroup discovery was defined by Klösgen (1996) and Wrobel (1997) as follows:
“Given a population of individuals and a property of those individuals that we are interested in, find
population subgroups that are statistically ‘most interesting’, for example, are as large as possible
and have the most unusual statistical (distributional) characteristics with respect to the property of
interest”.

2.4.1 SUBGROUPDISCOVERY ALGORITHMS

Subgroup descriptions are conjunctions of features that are characteristic for a selected class of
individuals (property of interest). A subgroup description can be seenas the condition part of a rule
SubgroupDescription→Class. Therefore, subgroup discovery can be seen as a special case ofa
more general rule learning task.

Subgroup discovery research has evolved in several directions. Onthe one hand, exhaustive
approaches guarantee the optimal solution given the optimization criterion. One system that can
use both exhaustive and heuristic discovery algorithms is Explora by Klösgen (1996). Other algo-
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Sex = female → Approved = yes
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = no → Approved = yes
Education = university → Approved = yes
MaritalStatus = single AND Sex = male → Approved = no

Figure 5: Subgroup descriptions induced by Apriori-SD from the data ofTable 1.

rithms for exhaustive subgroup discovery are the SD-Map method by Atzmüller and Puppe (2006)
and Apriori-SD by Kav̌sek and Lavrǎc (2006). On the other hand, adaptations of classification rule
learners to perform subgroup discovery, including algorithm SD by Gamberger and Lavrǎc (2002)
and algorithm CN2-SD by Lavrač et al. (2004b), use heuristic search techniques drawn from classi-
fication rule learning coupled with constraints appropriate for descriptiverules.

Relational subgroup discovery approaches have been proposed byWrobel (1997, 2001) with
algorithm Midos, by Kl̈osgen and May (2002) with algorithm SubgroupMiner, which is designed
for spatial data mining in relational space databases, and byŽelezńy and Lavrǎc (2006) with the
algorithm RSD (Relational Subgroup Discovery). RSD uses a propositionalization approach to
relational subgroup discovery, achieved through appropriately adapting rule learning and first-order
feature construction. Other non-relational subgroup discovery algorithms were developed, including
an algorithm for exploiting background knowledge in subgroup discovery (Atzmüller et al., 2005a),
and an iterative genetic algorithm SDIGA by del Jesus et al. (2007) implementing a fuzzy system
for solving subgroup discovery tasks.

Different heuristics have been used for subgroup discovery. By definition, the interestingness
of a subgroup depends on its unusualness and size, therefore the rulequality evaluation heuristics
needs to combine both factors. Weighted relative accuracy (WRAcc, see Equation 2 in Section 3.3)
is used by algorithms CN2-SD, Apriori-SD and RSD and, in a different formulation and in dif-
ferent variants, also by MIDOS and EXPLORA. Generalization quotient (qg, see Equation 3 in
Section 3.3) is used by the SD algorithm. SubgroupMiner uses the classical binominal test to verify
if the target share is significantly different in a subgroup.

Different approaches have been used for eliminating redundant subgroups. Algorithms CN2-SD,
Apriori-SD, SD and RSD use weighted covering (Lavrač et al., 2004b) to achieve rule diversity.
Algorithms Explora and SubgroupMiner use an approach called subgroup suppression (Klösgen,
1996). A sample set of subgroup describing rules, induced by Apriori-SD with parameterssupport
set to 15% (requiring at least 2 covered training examples per rule) andconfidenceset to 65%, is
shown in Figure 5.

2.4.2 SELECTED APPLICATIONS OFSUBGROUPDISCOVERY

Subgroup discovery was used in numerous real-life applications. The applications in medical do-
mains include the analysis of coronary heart disease (Gamberger and Lavrač, 2002) and brain is-
chaemia data analysis (Kralj et al., 2007b,a; Lavrač et al., 2007), as well as profiling examiners for
sonographic examinations (Atzmüller et al., 2005b). Spatial subgroup mining applications include
mining of census data (Klösgen et al., 2003) and mining of vegetation data (May and Ragia, 2002).
There are also applications in other areas like marketing (del Jesus et al., 2007; Lavrǎc et al., 2004a)
and analysis of manufacturing shop floor data (Jenkole et al., 2007).
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2.5 Related Approaches

Research in some closely related areas of rule learning, performed independently from the above
described approaches, is outlined below.

2.5.1 CHANGE M INING

The paper by Liu et al. (2001) onfundamental rule changesproposes a technique to identify the
set of fundamental changes in two given data sets collected from two time periods. The proposed
approach first generates rules and in the second phase it identifies changes (rules) that can not be
explained by the presence of other changes (rules). This is achieved by applying statisticalχ2 test
for homogeneity of support and confidence. This differs from contrast set discovery through its
consideration of rules for each group, rather than itemsets. A change in the frequency of just one
itemset between groups may affect many association rules, potentially all rules that have the itemset
as either an antecedent or consequent.

Liu et al. (2000) and Wang et al. (2003) present techniques that identify differences in the
decision trees and classification rules, respectively, found on two different data sets.

2.5.2 MINING CLOSED SETS FROMLABELED DATA

Closed sets have been proven successful in the context of compacted data representation for asso-
ciation rule learning. However, their use is mainly descriptive, dealing only with unlabeled data. It
was recently shown that when considering labeled data, closed sets can be adapted for classification
and discrimination purposes by conveniently contrasting covering properties on positive and nega-
tive examples (Garriga et al., 2006). The approach was successfully applied in potato microarray
data analysis to a real-life problem of distinguishing between virus sensitiveand resistant transgenic
potato lines (Kralj et al., 2006).

2.5.3 EXCEPTION RULE M INING

Exception rule mining considers a problem of finding a set of rule pairs, each of which consists
of an exception rule (which describes a regularity for fewer objects) associated with a strong rule
(description of a regularity for numerous objects with few counterexamples). An example of such
a rule pair is “using a seat belt is safe” (strong rule) and “using a seat belt is risky for a child”
(exception rule). While the goal of exception rule mining is also to find descriptive rules from
labeled data, in contrast with other rule discovery approaches described in this paper, the goal of
exception rule mining is to find “weak” rules—surprising rules that are an exception to the general
belief of background knowledge.

Suzuki (2006) and Daly and Taniar (2005), summarizing the research inexception rule mining,
reveal that the key concerns addressed by this body of research include interestingness measures,
reliability evaluation, practical application, parameter reduction and knowledge representation, as
well as providing fast algorithms for solving the problem.

2.5.4 IMPACT RULES, BUMP HUNTING, QUANTITATIVE ASSOCIATIONRULES

Supervised descriptive rule discovery seeks to discover sets of conditions that are related to devia-
tions in the class distribution, where the class is a qualitative variable. A relatedbody of research
seeks to discover sets of conditions that are related to deviations in a targetquantitative variable.
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Contrast Set Mining Emerging Pattern Mining Subgroup Discovery Rule Learning

contrast set itemset subgroup description rule condition
groupsG1, . . .Gn data setsD1 andD2 class/propertyC class/conceptCi

attribute-value pair item logical (binary) feature condition
examples in groups transactions in data sets examples of examples of

G1, . . .Gn D1 andD2 C andC C1 . . .Cn

examples for which transactions containing subgroup of instancescovered examples
the contrast set is true the itemset

support of contrast set onGi support of EP in data setD1 true positive rate true positive rate
support of contrast set onG j support of EP in data setD2 false positive rate false positive rate

Table 2: Table of synonyms from different communities, showing the compatibility of terms.

Such techniques include Bump Hunting (Friedman and Fisher, 1999), Quantitative Association
Rules (Aumann and Lindell, 1999) and Impact Rules (Webb, 2001).

3. A Unifying Framework for Supervised Descriptive Rule Induction

This section presents a unifying framework for contrast set mining, emerging pattern mining and
subgroup discovery, as the main representatives of supervised descriptive rule discovery approaches.
This is achieved by unifying the terminology, the task definitions and the rule learning heuristics.

3.1 Unifying the Terminology

Contrast set mining (CSM), emerging pattern mining (EPM) and subgroup discovery (SD) were
developed in different communities, each developing their own terminology that needs to be clar-
ified before proceeding. Below we show that terms used in different communities are compatible,
according to the following definition of compatibility.

Definition 1: Compatibility of terms. Terms used in different communities are compatible if they
can be translated into equivalent logical expressions and if they bare the same meaning, that is, if
terms from one community can replace terms used in another community.

Lemma 1: Terms used in CSM, EPM and SD are compatible.
Proof The compatibility of terms is proven through a term dictionary, whose aim is to translate all
the terms used in CSM, EPM and SD into the terms used in the rule learning community.The term
dictionary is proposed in Table 2. More specifically, this table provides a dictionary of equivalent
terms from contrast set mining, emerging pattern mining and subgroup discovery, in a unifying ter-
minology of classification rule learning, and in particular of concept learning (considering classCi

as the concept to be learned from the positive examples of this concept, and the negative examples
formed of examples of all other classes).

3.2 Unifying the Task Definitions

Having established a unifying view on the terminology, the next step is to provide a unifying view
on the different task definitions.
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CSM A contrast set mining task is defined as follows (Bay and Pazzani, 2001). Let A1, A2, . . . ,
Ak be a set ofk variables called attributes. EachAi can take values from the set{vi1, vi2, . . . ,
vim}. Given a set of user defined groupsG1, G2, . . . , Gn of data instances, a contrast set is
a conjunction of attribute-value pairs, defining a pattern that best discriminates the instances
of different user-defined groups. A special case of contrast setmining considers only two
contrasting groups (G1 andG2). In such cases, we wish to find characteristics of one group
discriminating it from the other and vice versa.

EPM An emerging patterns mining task is defined as follows (Dong and Li, 1999). Let I = {i1, i2,
. . . , iN} be a set of items (note that an item is equivalent to a binary feature in SD, andan
individual attribute-value pair in CSM). A transaction is a subsetT of I . A datasetis a set
D of transactions. A subsetX of I is called anitemset. TransactionT contains an itemset
X in a data setD, if X ⊆ T. For two data setsD1 andD2, emerging pattern mining aims at
discovering itemsets whose support increases significantly from one dataset to another.

SD In subgroup discovery, subgroups are described as conjunctions of features, where features
are of the formAi = vi j for nominal attributes, andAi > valueor Ai ≤ valuefor continuous
attributes. Given the property of interestC, and the population of examples ofC andC, the
subgroup discovery task aims at finding population subgroups that are as large as possible and
have the most unusual statistical (distributional) characteristics with respect to the property
of interestC (Wrobel, 1997).

The definitions of contrast set mining, emerging pattern mining and subgroupdiscovery appear
different: contrast set mining searches for discriminating characteristicsof groups called contrast
sets, emerging pattern mining aims at discovering itemsets whose support increases significantly
from one data set to another, while subgroup discovery searches forsubgroup descriptions. By us-
ing the dictionary from Table 2 we can see that the goals of these three mining tasks are very similar,
it is primarily the terminology that differs.

Definition 2: Compatibility of task definitions. Definitions of different learning tasks are compat-
ible if one learning task can be translated into another learning task without substantially changing
the learning goal.

Lemma 2: Definitions of CSM, EPM and SD tasks are compatible.

Proof To show the compatibility of task definitions, we propose a unifying table (Table3) of task
definitions, allowing us to see that emerging pattern mining taskEPM(D1,D2) is equivalent to
CSM(Gi ,G j). It is also easy to show that a two-group contrast set mining taskCSM(Gi ,G j) can be
directly translated into the following two subgroup discovery tasks:SD(Gi) for C = Gi andC = G j ,
andSD(G j) for C = G j andC = Gi .
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Contrast Set Mining Emerging Pattern Mining Subgroup Discovery Rule Learning

Given Given Given Given
examples inG1 vs. G j transactions inD1 andD2 in examplesC examples inCi

from G1, . . .Gi from D1 andD2 from C andC from C1 . . .Cn

Find Find Find Find
ContrastSetik →Gi ItemSet1k → D1 SubgrDescrk →C {RuleCondik →Ci}
ContrastSetj l →G j ItemSet2l → D2

Table 3: Table of task definitions from different communities, showing the compatibility of task
definitions in terms of output rules.

Having proved that the subgroup discovery task is compatible with a two-group contrast set
mining task, it is by induction compatible with a general contrast set mining task, as shown below.

CSM(G1, . . .Gn)
for i=2 to ndo

for j=1, j, i to n-1do
SD(C = Gi vs. C = G j)

Note that in Table 3 of task definitions column ‘Rule Learning’ again corresponds to a concept
learning task instead of the general classification rule learning task. In theconcept learning setting,
which is better suited for the comparisons with supervised descriptive rule discovery approaches,
a distinguished classCi is learned from examples of this class, and examples of all other classes
C1, . . . , Ci−1, Ci+1, CN are merged to form the set of examples of classCi . In this case, induced
rule set{RuleCondik → Ci} consists only of rules for distinguished classCi . On the other hand,
in a general classification rule learning setting, from examples ofN different classes a set of rules
would be learned{. . . , RuleCondik →Ci , RuleCondik+1 →Ci , . . . ,RuleCondj l →Cj , . . . ,Default},
consisting of sets of rules of the formRuleCondik →Ci for each individual classCi , supplemented
by the default rule.

While the primary tasks are very closely related, each of the three communities has concen-
trated on different sets of issues around this task. The contrast set discovery community has paid
greatest attention to the statistical issues of multiple comparisons that, if not addressed, can result in
high risks of false discoveries. The emerging patterns community has investigated how supervised
descriptive rules can be used for classification. The contrast set andemerging pattern communi-
ties have primarily addressed only categorical data whereas the subgroup discovery community has
also considered numeric and relational data. The subgroup discovery community has also explored
techniques for discovering small numbers of supervised descriptive rules with high coverage of the
data.

3.3 Unifying the Rule Learning Heuristics

The aim of this section is to provide a unifying view on rule learning heuristics used in different
communities. To this end, we first investigate the rule quality measures.

Most rule quality measures are derived by analyzing the covering properties of the rule and the
class in the rule consequent considered as positive. This relationship can be depicted by a confusion
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predicted
actual # of positives # of negatives

# of positives p = |TP(X,Y)| p = |FN(X,Y)| P
# of negatives n = |FP(X,Y)| n = |TN(X,Y)| N

p+n p+n P+N

Table 4: Confusion matrix:TP(X,Y) stands for true positives,FP(X,Y) for false positives,
FN(X,Y) for false negatives andTN(X,Y) for true negatives, as predicted by ruleX →Y.

matrix (Table 4, see, e.g., Kohavi and Provost, 1998), which considersthat ruleR = X → Y is
represented as(X,Y), and definesp as the number of true positives (positive examples correctly
classified as positive by rule(X,Y)), n as the number of false positives, etc., from which other
covering characteristics of a rule can be derived: true positive rateTPr(X,Y) = p

P and false positive
rateFPr(X,Y) = n

N .

CSM Contrast set mining aims at discovering contrast sets that best discriminate the instances
of different user-defined groups. The support of contrast setX with respect to groupGi ,
support(X,Gi), is the percentage of examples inGi for which the contrast set is true. Note
thatsupport of a contrast set with respect to group Gis the same astrue positive ratein the
classification rule and subgroup discovery terminology, that is,support(X,Gi) = count(X,Gi)

|Gi |
=

TPr(X,Gi). A derived goal of contrast set mining, proposed by Bay and Pazzani (2001), is to
find contrast sets whose support differs meaningfully across groups, for δ being a user-defined
parameter.

SuppDiff(X,Gi ,G j) = |support(X,Gi)−support(X,G j)| ≥ δ.

EPM Emerging pattern mining aims at discovering itemsets whose support increasessignificantly
from one data set to another Dong and Li (1999), wheresupportof itemsetX in data setD
is computed assupport(X,D) = count(X,D)

|D| , for count(X,D) being the number of transactions
in D containingX. Suppose we are given an ordered pair of data setsD1 and D2. The
GrowthRateof an itemsetX from D1 to D2, denoted asGrowthRate(X,D1,D2), is defined as
follows:

GrowthRate(X,D1,D2) =
support(X,D1)

support(X,D2)
. (1)

Definitions of special cases ofGrowthRate(X,D1,D2) are as follows, ifsupport(X,D1) = 0
thenGrowthRate(X,D1,D2) = 0, if support(X,D2) = 0 thenGrowthRate(X,D1,D2) = ∞.

SD Subgroup discovery aims at finding population subgroups that are as large as possible and have
the most unusual statistical (distributional) characteristics with respect to theproperty of in-
terest (Wrobel, 1997). There were several heuristics developed and used in the subgroup
discovery community. Since they follow from the task definition, they try to maximizesub-
group size and the distribution difference at the same time. Examples of such heuristics are
theweighted relative accuracy(Equation 2, see Lavrač et al., 2004b) and thegeneralization

389



KRALJ NOVAK , LAVRA Č AND WEBB

Contrast Set Mining Emerging Pattern Mining Subgroup Discovery Rule Learning

SuppDiff(X,Gi ,G j ) WRAcc(X,C) Piatetski-Shapiro heuristic
leverage

GrowthRate(X,D1,D2) qg(X,C) odds ratio forg = 0
accuracy/precision, forg = p

Table 5: Table of relationships between the pairs of heuristics, and their equivalents in classification
rule learning.

quotient(Equation 3, see Gamberger and Lavrač, 2002) , forg being a user-defined parameter.

WRAcc(X,C) =
p+n
P+N

·

(

p
p+n

−
P

P+N

)

, (2)

qg(X,C) =
p

n+g
. (3)

Let us now investigate whether the heuristics used in CSM, EPM and SD are compatible, using
the following definition of compatibility.

Definition 3: Compatibility of heuristics.
Heuristic function h1 is compatiblewith h2 if h2 can be derived from h1 and if for any two rules R
and R′, h1(R) > h1(R′)⇔ h2(R) > h2(R′).

Lemma 3: Definitions of CSM, EPM and SD heuristics are pairwise compatible.
Proof The proof of Lemma 3 is established by proving two sub-lemmas, Lemma 3a and Lemma 3b,
which prove the compatibility of two pairs of heuristics, whereas the relationships between these
pairs is established through Table 5, and illustrated in Figures 6 and 7.

Lemma 3a: The support difference heuristic used in CSM and the weighted relative accuracy
heuristic used in SD are compatible.
Proof Note that, as shown below, weighted relative accuracy (Equation 2) can be interpreted in
terms of probabilities of rule antecedentX and consequentY (classC representing the property of
interest), and the conditional probability of classY givenX, estimated by relative frequencies.

WRAcc(X,Y) = P(X) · (P(Y|X)−P(Y)).

From this equation we see that, indeed, when optimizing weighted relative accuracy of ruleX →Y,
we optimize two contrasting factors: rule coverageP(X) (proportional to the size of the subgroup),
and distributional unusualnessP(Y|X)−P(Y) (proportional to the difference of the number of posi-
tive examples correctly covered by the rule and the number of positives in the original training set).
It is straightforward to show that this measure is equivalent to the Piatetski-Shapiro measure, which
evaluates the conditional (in)dependence of rule consequent and ruleantecedent as follows:

PS(X,Y) = P(X ·Y)−P(X) ·P(Y).
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Weighted relative accuracy, known from subgroup discovery, and support difference between
groups, used in contrast set mining, are related as follows:4

WRAcc(X,Y) =
= P(X) · [P(Y|X)−P(Y)] = P(Y ·X)−P(Y) ·P(X)
= P(Y ·X)−P(Y) · [P(Y ·X)+P(Y ·X)]
= (1−P(Y)) ·P(Y ·X)−P(Y) ·P(Y ·X)
= P(Y) ·P(Y) ·P(X|Y)−P(Y) ·P(Y) ·P(X|Y)
= P(Y) ·P(Y) · [P(X|Y)−P(X|Y)]
= P(Y) ·P(Y) · [TPr(X,Y)−FPr(X,Y)].

Since the distribution of examples among classes is constant for any data set,the first two factors
P(Y) and P(Y) are constant within a data set. Therefore, when maximizing the weighted relative
accuracy, one is maximizing the second factorTPr(X,Y)−FPr(X,Y), which actually is support
difference when we have a two group contrast set mining problem. Consequently, forC = G1, and
C = G2 the following holds:

WRAcc(X,C) = WRAcc(X,G1) = P(G1) ·P(G2) · [support(X,G1)−support(X,G2)].

Lemma 3b: The growth rate heuristic used in EPM and the generalization quotient heuristic used
in SD are compatible.
Proof Equation 1 can be rewritten as follows:

GrowthRate(X,D1,D2) =
support(X,D1)

support(C,D2)
=

=
count(X,D1)

count(X,D2)
·
|D2|

|D1|
=

p
n
·
N
P

.

Since the distribution of examples among classes is constant for any data set,the quotientNP is
constant. Consequently, the growth rate is the generalization quotient withg = 0, multiplied by a
constant. Therefore, the growth rate is compatible with the generalization quotient.

GrowthRate(X,C,C) = q0(X,C) ·
N
P

.

The lemmas prove that heuristics used in CSM and EPM can be translated into heuristics used in
SD and vice versa. In this way, we have shown the compatibility of CSM and SDheuristics, as well
as the compatibility of EPM and SD heuristics. While the lemmas do not prove directcompatibility
of CSM and EPM heuristics, they prove that heuristics used in CSM and EPMcan be translated into
two heuristics used in SD, both aiming at trading-off between coverage anddistributional difference.

4. Peter A. Flach is acknowledged for having derived these equations.
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Figure 6: Isometrics forqg. The dotted lines show the isometrics for a selectedg> 0, while the full
lines show the special case wheng = 0, compatible to the EPMgrowth rateheuristic.

Figure 7: Isometrics forWRAcc, compatible to the CSMsupport differenceheuristic.

Table 5 provides also the equivalents of these heuristics in terms of heuristics known from
the classification rule learning community, details of which are beyond the scope of this paper
(an interested reader can find more details on selected heuristics and their ROC representations in
Fürnkranz and Flach, 2003).

Note that the growth rate heuristic from EPM, as a special case of the generalization quotient
heuristic withg= 0, does not consider rule coverage. On the other hand, its compatible counterpart,
the generalization quotientqg heuristic used in SD, can be tailored to favor more general rules by
setting theg parameter value, as for a generalg value, theqg heuristic provides a trade-off between
rule accuracy and coverage. Figure 65 illustrates theqg isometrics, for a generalg value, as well as
for valueg = 0.

Note also that standard rule learners (such as CN2 by Clark and Niblett, 1989) tend to generate
very specific rules, due to using accuracy heuristicAcc(X,Y) = p+n

P+N or its variants: the Laplace
and them-estimate. On the other hand, the CSM support difference heuristic and its SD counterpart
WRAccboth optimize a trade-off between rule accuracy and coverage. TheWRAccisometrics are
plotted in Figure 7.6

3.4 Comparison of Rule Selection Mechanisms

Having established a unifying view on the terminology, definitions and rule learning heuristics, the
last step is to analyze rule selection mechanisms used by different algorithms.The motivation for
rule selection can be either to find only significant rules or to avoid overlapping rules (too many
too similar rules), or to avoid showing redundant rules to the end users. Note that rule selection is
not always necessary and that depending on the goal, redundant rules can be valuable (e.g., clas-

5. This figure is due to Gamberger and Lavrač (2002).
6. This figure is due to F̈urnkranz and Flach (2003).
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sification by aggregating emerging patterns by Dong et al., 1999). Two approaches are commonly
used: statistic tests and the (weighted) covering approach. In this section,we compare these two
approaches.

Webb et al. (2003) show that contrast set mining is a special case of the more general rule
discovery task. However, an experimental comparison of STUCCO, OPUS AR and C4.5 has shown
that standard rule learners return a larger set of rules compared to STUCCO, and that some of them
are also not interesting to end users. STUCCO (see Bay and Pazzani 2001 for more details) uses
several mechanisms for rule pruning. Statistical significance pruning removes contrast sets that,
while significant and large, derive these properties only due to being specializations of more general
contrast sets: any specialization is pruned that has a similar support to its parent or that fails aχ2

test of independence with respect to its parent.
In the context of OPUSAR, the emphasis has been on developing statistical tests that are robust

in the context of the large search spaces explored in many rule discoveryapplications Webb (2007).
These include tests for independence between the antecedent and consequent, and tests to assess
whether specializations have significantly higher confidence than their generalizations.

In subgroup discovery, theweighted covering approach(Lavrǎc et al., 2004b) is used with the
aim of ensuring the diversity of rules induced in different iterations of thealgorithm. In each iter-
ation, after selecting the best rule, the weights of positive examples are decreased according to the
number of rules covering each positive examplerule count(e); they are set tow(e) = 1

rule count(e) .
For selecting the best rule in consequent iterations, the SD algorithm (Gamberger and Lavrǎc, 2002)
uses—instead of the unweightedqg measure (Equation 3)—the weighted variant ofqg defined in
Equation 4, while the CN2-SD (Lavrač et al., 2004b) and APRIORI-SD (Kavšek and Lavrǎc, 2006)
algorithms use the weighted relative accuracy (Equation 2) modified with example weights, as de-
fined in Equation 5, wherep′ = ∑TP(X,Y) w(e) is the sum of the weights of all covered positive
examples, andP′ is the sum of the weights of all positive examples.

q′g(X,Y) =
p′

n+g
, (4)

WRAcc′(X,Y) =
p′+n
P′+N

·

(

p′

p′+n
−

P
P+N

)

. (5)

Unlike in the sections on the terminology, task definitions and rule learning heuristics, the com-
parison of rule pruning mechanisms described in this section does not result in a unified view;
although the goals of rule pruning may be the same, the pruning mechanisms used in different
subareas of supervised descriptive rule discovery are—as shown above—very different.

4. Visualization

Webb et al. (2003) identify a need to develop appropriate methods for presenting contrast sets to
end users, possibly through contrast set visualization. This open issue, concerning the visualization
of contrast sets and emerging patterns, can be resolved by importing some of the solutions proposed
in the subgroup discovery community. Several methods for subgroup visualization were developed
by Wettschereck (2002), Wrobel (2001), Gamberger et al. (2002),Kralj et al. (2005) and Atzm̈uller
and Puppe (2005). They are here illustrated using the coronary heartdisease data set, originally
analyzed by Gamberger and Lavrač (2002). The visualizations are evaluated by considering their
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Figure 8: Subgroup visualization by pie charts.Figure 9: Subgroup visualization by box plots.

intuitiveness, correctness of displayed data, usefulness, ability to display contents besides the nu-
merical properties of subgroups, (e.g., plot subgroup probability densities against the values of an
attribute), and their extensibility to multi-class problems.

4.1 Visualization by Pie Charts

Slices of pie charts are the most common way of visualizing parts of a whole. They are widely used
and understood. Subgroup visualization by pie chart, proposed by Wettschereck (2002), consists
of a two-level pie for each subgroup. The base pie represents the distribution of individuals in
terms of the property of interest of the entire example set. The inner pie represents the size and the
distribution of individuals in terms of the property of interest in a specific subgroup. An example of
five subgroups (subgroups A1, A2, B1, B2, C1), as well as the basepie “all subjects” are visualized
by pie charts in Figure 8.

The main weakness of this visualization is the misleading representation of the relative size
of subgroups. The size of a subgroup is represented by the radius ofthe circle. The faultiness
arises from the surface of the circle which increases with the square of itsradius. For example, a
subgroup that covers 20% of examples is represented by a circle that covers only 4% of the whole
surface, while a subgroup that covers 50% of examples is representedby a circle that covers 25%
of the whole surface. In terms of usefulness, this visualization is not veryhandy since—in order to
compare subgroups—one would need to compare sizes of circles, which isdifficult. The comparison
of distributions in subgroups is also not straightforward. This visualizationalso does not show the
contents of subgroups. It would be possible to extend this visualization to multi-class problems.

4.2 Visualization by Box Plots

In subgroup visualization by box plots, introduced by Wrobel (2001), each subgroup is represented
by one box plot (all examples are also considered as one subgroup andare displayed in the top
box). Each box shows the entire population; the horizontally stripped areaon the left represents
the positive examples and the white area on the right-hand side of the box represents the negative
examples. The grey area within each box indicates the respective subgroup. The overlap of the grey
area with the hatched area shows the overlap of the group with the positive examples. Hence, the
more to the left the grey area extends the better. The less the grey area extends to the right of the
hatched area, the more specific a subgroup is (less overlap with the subjects of the negative class).
Finally, the location of the box along the X-axis indicates the relative share ofthe target class within
each subgroup: the more to the right a box is placed, the higher is the shareof the target value within
this subgroup. The vertical line (in Figure 9 at value 46.6%) indicates the default accuracy, that is,
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the number of positive examples in the entire population. An example box plot visualization of five
subgroups is presented in Figure 9.

On the negative side, the intuitiveness of this visualization is relatively poor since an extensive
explanation is necessary for understanding it. It is also somewhat illogicalsince the boxes that are
placed more to the right and have more grey color on the left-hand side represent the best subgroups.
This visualization is not very attractive since most of the image is white; the greyarea (the part of
the image that really represents the subgroups) is a relatively tiny part of the entire image. On the
positive side, all the visualized data are correct and the visualization is useful since the subgroups
are arranged by their confidence. It is also easier to contrast the sizesof subgroups compared to
their pie chart visualization. However, this visualization does not display thecontents of the data. It
would also be difficult to extend this visualization to multi-class problems.

4.3 Visualizing Subgroup Distribution w.r.t. a Continuous Attribute

The distribution of examples w.r.t. a continuous attribute, introduced by Gamberger and Lavrǎc
(2002) and Gamberger et al. (2002), was used in the analysis of several medical domains. It is
the only subgroup visualization method that offers an insight of the visualized subgroups. The
approach assumes the existence of at least one numeric (or ordered discrete) attribute of expert’s
interest for subgroup analysis. The selected attribute is plotted on the X-axis of the diagram. The
Y-axis represents the target variable, or more precisely, the number of instances belonging to target
propertyC (shown on theY+ axis) or not belonging toC (shown on theY− axis) for the values of
the attribute on the X-axis. It must be noted that both directions of the Y-axis are used to indicate
the number of instances. The entire data set and two subgroups A1 and B2are visualized by their
distribution over a continuous attribute in Figure 10.

This visualization method is not completely automatic, since the automatic approach does not
provide consistent results. The automatic approach calculates the number of examples for each value
of the attribute on the X-axis by moving a sliding window and counting the number of examples in
that window. The outcome is a smooth line. The difficulty arises when the attributefrom the X-axis
appears in the subgroup description. In such a case, a manual correction is needed for this method
to be realistic.

This visualization method is very intuitive since it practically does not need muchexplanation.
It is attractive and very useful to the end user since it offers an insightin the contents of displayed

Figure 10: Subgroup visualization w.r.t. a continuous attribute. For clarity ofthe picture, only the
positive (Y+) side of subgroup A1 is depicted.

395



KRALJ NOVAK , LAVRA Č AND WEBB

Figure 11: Representation of subgroups in
the ROC space.

all

A2

C1

B1

B2

A1

Figure 12: Subgroup visualization by bar
charts.

examples. However, the correctness of displayed data is questionable. It is impossible to generalize
this visualization to multi-class problems.

4.4 Representation in the ROC Space

The ROC (Receiver Operating Characteristics) (Provost and Fawcett,2001) space is a 2-dimensional
space that shows classifier (rule/rule set) performance in terms of its falsepositive rate (FPr) plotted
on the X-axis, and true positive rate (TPr) plotted on the Y-axis. The ROC space is appropriate for
measuring the success of subgroup discovery, since subgroups whose TPr

FPr tradeoffs are close to the
main diagonal (line connecting the points (0, 0) and (1, 1) in the ROC space)can be discarded
as insignificant (Kav̌sek and Lavrǎc, 2006); the reason is that the rules with theTPr

FPr ration on the
main diagonal have the same distribution of covered positives and negatives (TPr= FPr) as the
distribution in the entire data set. An example of five subgroups representedin the ROC space is
shown in Figure 11.

Even though the ROC space is an appropriate rule visualization, it is usually used just for the
evaluation of discovered rules. The ROC convex hull is the line connectingthe potentially optimal
subgroups. The area under the ROC convex hull (AUC, area under curve) is a measure of quality of
the resulting ruleset.7

This visualization method is not intuitive to the end user, but is absolutely clear toevery machine
learning expert. The displayed data is correct, but there is no content displayed. An advantage of this
method compared to the other visualization methods is that it allows the comparison of outcomes
of different algorithms at the same time. The ROC space is designed for two-class problems and is
therefore inappropriate for multi-class problems.

4.5 Bar Charts Visualization

The visualization by bar charts was introduced by Kralj et al. (2005). Inthis visualization, the
purpose of the first line is to visualize the distribution of the entire example set. The area on the
right represents the positive examples and the area on the left represents the negative examples of the
target class. Each following line represents one subgroup. The positive and the negative examples
of each subgroup are drawn below the positive and the negative examples of the entire example set.
Subgroups are sorted by the relative share of positive examples (precision).

7. Note that in terms ofTPr
FPr ratio optimality, two subgroups (A1 and B2) are suboptimal, lying below the ROC convex

hull.
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An example of five subgroups visualized by bar charts is shown in Figure 12. It is simple, un-
derstandable and shows all the data correctly. This visualization method allows simple comparison
between subgroups and is therefore useful. It is relatively straight-forward to understand and can be
extended to multi-class problems. It does not display the contents of data, though.

4.6 Summary of Subgroup Visualization Methods

In this section, we (subjectively) compare the five different subgroup visualization methods by con-
sidering their intuitiveness, correctness of displayed data, usefulness, ability to ability to display
contents besides the numerical properties of subgroups, (e.g., plot subgroup probability densities
against the values of an attribute), and their extensibility to multi-class problems.The summary of
the evaluation is presented in Table 6.

Continuous
Pie chart Box plot attribute ROC Bar chart

Intuitiveness + - + +/- +
Correctness - + - + +
Usefulness - + + + +
Contents - - + - -
Multi-class + - - - +

Table 6: Our evaluation of subgroup visualization methods.

Two visualizations score best in Table 6 of our evaluation of subgroup visualization methods:
the visualization of subgroups w.r.t. a continuous attribute and the bar chartvisualization. The
visualization of subgroups w.r.t. a continuous attribute is the only visualization that directly shows
the contents of the data; its main shortcomings are the doubtful correctness of the displayed data
and its difficulty to be extended to multi-class problems. It also requires a continuous or ordered
discrete attribute in the data. The bar chart visualization combines the good properties of the pie
chart and the box plot visualization. In Table 6, it only fails in displaying the contents of the data.
By using the two best visualizations, one gets a very good understanding of the mining results.

To show the applicability of subgroup discovery visualizations for supervised descriptive rule
discovery, the bar visualizations of results of contrast set mining, jumping emerging patterns and
subgroup discovery on the survey data analysis problem of Section 2 are shown in Figures 13, 14
and 15, respectively.
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0.80

0.20

0.00

0.40

0.60

1.00

0.00

0.33

0.67

0.44

0.00

0.22

Positives Rule

→Approved=yes

MaritalStatus=single AND Sex=male Approved=no→

Sex=male Approved=no→

Sex=female Approved=yes→

MaritalStatus=married Approved=yes→

MaritalStatus=divorced AND HasChildren=yes Approved=no→

MaritalStatus=single Approved=no→

Figure 13: Bar visualization of contrast sets of Figure 3.
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Negatives

1.00

0.60

0.00

0.40

1.00

0.00

0.44

0.00

Positives Rule

→Approved=yes

MaritalStatus=single AND Sex=male Approved=no→

MaritalStatus=married Approved=yes→

MaritalStatus=divorced AND HasChildren=yes Approved=no→

Figure 14: Bar visualization of jumping emerging patterns of Figure 4.

Negatives

1.00

0.00

0.00

0.20

0.20

1.00

0.44

0.33

0.67

0.33

Positives Rule

→Approved=yes

MaritalStatus=married Approved=yes→

MaritalStatus=divorced AND HasChildren=no Approved=yes→

Sex=female Approved=yes→

Education=university Approved=yes→

Figure 15: Bar visualization of subgroups of Figure 5 of individuals whohave approved the issue.

5. Conclusions

Patterns in the form of rules are intuitive, simple and easy for end users to understand. Therefore, it
is not surprising that members of different communities have independently addressed supervised
descriptive rule induction, each of them solving similar problems in similar ways and developing
vocabularies according to the conventions of their respective research communities.

This paper sheds a new light on previous work in this area by providing a systematic compari-
son of the terminology, definitions, goals, algorithms and heuristics of contrast set mining (CSM),
emerging pattern mining (EPM) and subgroup discovery (SD) in a unifying framework called su-
pervised descriptive rule discovery. We have also shown that the heuristics used in CSM and EPM
can be translated into two well-known heuristics used in SD, both aiming at trading-off between
coverage and distributional difference. In addition, the paper presents a critical survey of exist-
ing visualization methods, and shows that some methods used in subgroup discovery can be easily
adapted for use in CSM and EPM.
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Jǒze Jenkole, Petra Kralj, Nada Lavrač, and Alojzij Sluga. A data mining experiment on manu-
facturing shop floor data. InProceedings of the 40th International Seminar on Manufacturing
Systems (CIRP-07), 2007. 6 pages.
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3 CSM-SD: Methodology for Contrast Set

Mining through Subgroup Discovery

In this chapter, the paper (Kralj Novak et al., 2009a) titled “CSM-SD: Methodology for

Contrast Set Mining through Subgroup Discovery” by Petra Kralj Novak, Nada Lavrač,

Dragan Gamberger and Antonija Krstačić is presented. The paper was published on-line

on the Journal of Biomedical Informatics web site in August 2008 and was published in

Journal of Biomedical Informatics (Elsevier) in February 2009.

Compared to the theory-focused paper presented in the previous chapter, this paper

is application driven, since all the discoveries and conclusions were achieved while apply-

ing supervised descriptive rule induction approaches to a real-life data analysis problem of

distinguishing between groups of patients with similar diseases. The interaction and dis-

cussion with the medical practitioner Antonija Krstačić, who collected the data and also

co-authored the paper, was crucial in several steps of our research. Petra Kralj Novak and

Nada Lavrač in collaboration with Dragan Gamberger developed the theory, adapted the

algorithms, ran experiments and wrote the majority of the paper.

Parts of the research presented in this paper were published at scientific conferences.

First, the paper Kralj et al. (2007b), which compares contrast set mining and subgroup

discovery, was presented at the 11th Pacific-Asia Conference on Knowledge Discovery

and Data Mining (PAKDD 2007). The data mining task was later refined and the paper

Kralj et al. (2007a) discussing differences and advantages of pairwise and one-versus-

all contrast set mining was presented at the 11th Conference on Artificial Intelligence

in Medicine (AIME 2007). Finally, the paper Lavrač et al. (2007), which generalizes

supporting factors from subgroup discovery to contrast set mining, was presented at the

11th Mediterranean Conference on Medical and Biological Engineering and Computing

(Medicon 2007). All the listed papers were co-authored by the same authors. Only the

journal paper Kralj Novak et al. (2009a) is enclosed in this dissertation.
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Petra Kralj Novak a,*, Nada Lavrač a,b, Dragan Gamberger c, Antonija Krstačić d
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a b s t r a c t

This paper addresses a data analysis task, known as contrast set mining, whose goal is to find differences
between contrasting groups. As a methodological novelty, it is shown that this task can be effectively
solved by transforming it to a more common and well-understood subgroup discovery task. The transfor-
mation is studied in two learning settings, a one-versus-all and a pairwise contrast set mining setting,
uncovering the conditions for each of the two choices. Moreover, the paper shows that the explanatory
potential of discovered contrast sets can be improved by offering additional contrast set descriptors,
called the supporting factors. The proposed methodology has been applied to uncover distinguishing
characteristics of two groups of brain stroke patients, both with rapidly developing loss of brain function
due to ischemia:those with ischemia caused by thrombosis and by embolism, respectively.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The goal of automated data analysis is to construct models or
discover interesting patterns in the data. In many domains, includ-
ing medical data analysis, model construction and pattern discov-
ery are frequently performed by rule learning, as the induced rules
are easy to be interpreted by human experts. The standard classi-
fication rule learning task is to induce classification/prediction
models from labeled examples [4]. Opposed to predictive rule
induction, which goal is to induce a model in the form of a set of
rules, the goal of descriptive rule induction is to discover individual
patterns in the data, described in the form of individual rules.
Descriptive induction algorithms include association rule learners
[1], clausal discovery algorithms [20,19], as well as contrast set
mining [3,24] and subgroup discovery algorithms [25,8,17,2].

This paper addresses a data analysis task where groups of
examples are given and the goal is to find differences between
these contrasting groups. This data analysis task, named contrast
set mining, was first presented in Ref. [3]. We transform the con-
trast set mining task to a subgroup discovery task [25,8,17,2],
whose goal is to find descriptions of groups of individuals with

unusual distributional characteristics with respect to the given
property of interest. By doing so, this paper shows that even
though the contrast set mining and subgroup discovery tasks are
different, subgroup discovery techniques can de used to achieve
the goal of contrast set mining. It also shows that the subgroup dis-
covery approach to contrast set mining—as implemented in the Or-
ange [6] open source data mining toolbox—can solve some open
issues of existing contrast set mining approaches, like choosing
an appropriate search heuristic, selecting the level of generality
of induced rules, avoiding of overlapping rules, and presenting
the results to the end-user.

The formally justified pairwise transformation of contrast set
mining to subgroup discovery—called the round robin subgroup
discovery approach to contrast set mining—is performed pairwise,
for every pair of contrasting groups (i.e., for every pair of classes in
a multi-class problem setting). This setting can, however, in some
circumstances lead to poor results. The analysis of the reasons for
this undesired performance has triggered the development of an
alternative method, called the one-versus-all transformation of
contrast set mining to subgroup discovery, justified by improved
results in our experiments, as confirmed by the medical expert.

We argue that a descriptive induction task should not be con-
cluded when individual rules are discovered, as the discovered
rules typically uncover only the principal characteristics of the
analyzed groups. To enable a better interpretation and improve
the understanding of the uncovered characteristics, other proper-
ties that support the extracted rules are also important. In sub-
group discovery these additional properties are called the
supporting factors [10]. In this paper we adapt the concept of
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supporting factors from subgroup discovery to contrast set mining,
to fit the definition and the goals of contrast set mining.

The proposed approach to contrast set mining through sub-
group discovery is in this paper applied to a real-life problem of
analyzing a dataset of patients with brain ischemia, where the goal
of data analysis is to determine the type of brain ischemia from risk
factors obtained from anamnesis, physical examination, laboratory
tests and ECG data. The achieved results are interpreted by a med-
ical specialist.

This paper is organized as follows. Section 2 presents the back-
ground technologies: contrast set mining and subgroup discovery.
Section 3 provides the motivation for the new approach of contrast
set mining through subgroup discovery, by presenting the brain
ischemia data analysis problem, and the motivation for developing
specific techniques for contrast set mining (illustrated by the
shortcomings of the standard machine learning techniques). This
section also presents the implementation and a novel method for
contrast set visualization. Section 4 provides a unifying view on
contrast set mining and subgroup discovery by unifying the termi-
nology, the tasks and the rule quality measures. In Section 5 we
present the experiments performed on the brain ischemia data
and a refinement of the contrast set mining setting that is appro-
priate for distinguishing between similar diseases. Section 6 is ded-
icated to supporting factors as a mechanism to improve the
explanatory potential of contrast set mining.

2. Background technologies: contrast set mining and subgroup
discovery

Data analysis tasks that try to find differences between con-
trasting groups are very common. When end-users are interested
in analyzing different groups, they are usually not interested in
analyzing all the patterns that discriminate one group of individu-
als from the other contrasting groups, as the interpretation of large
amounts of patterns is too difficult. They typically prefer a small
set of representative and interpretable patterns that are novel,
potentially interesting and preferably unexpected.

This paper investigates two approaches to finding interesting
group descriptors: contrast set mining and subgroup discovery.
Contrast set mining is a data mining technique specifically devel-
oped for finding differences between contrasting groups (described
in Section 2.1). Subgroup discovery is aimed at finding descriptions
of interesting subgroups in the data (described in Section 2.2). In
Section 4.1 we show how to unify the terminology used in these
two—until now separate—areas of research.

2.1. Contrast set mining

The problem of mining contrast sets was first defined in [3] as
finding contrast sets as ‘‘conjunctions of attributes and values that
differ meaningfully in their distributions across groups”. Our defi-
nitions are epitomized from [24], which are based on the defini-
tions from [3] with some notational differences for better
enabling the comparison with subgroup discovery. Let
A1;A2; . . . ;Ak, be a set of k variables called attributes. Each Ai can
take on values from the set fvi1; vi2; . . . ; vimg. Given a set of mutu-
ally exclusive user defined groups G1;G2; . . . ;Gn of data instances,
a contrast set is a conjunction of attribute–value pairs (with no Ai

occurring more than once). A contrast set is equivalent to an item-
set in association-rule discovery when applied to attribute–value
data. Similar to an itemset, we measure the support of a contrast
set. However, support is defined with respect to each group. The
support of a contrast set X with respect to a group Gi is the percent-
age of examples in Gi for which contrast set X is true (denoted as
supportðX;GiÞ).

It was shown in [24] that contrast set mining can be viewed as a
special case of a more general rule learning task, and that a con-
trast set can be interpreted as an antecedent of a rule, and group
Gi—for which it is characteristic—as the rule consequent: X ! Gi.

Contrast set discovery seeks to find all contrast sets whose sup-
port differs meaningfully across groups. Once all significant (Eq. 1)
and large (Eq. 2) contrast sets are found, a subset which is ‘interest-
ing’ should be presented to the end user [3]. Formally,

ðXjGiÞ–pðXjGjÞ ð1Þ

SuppDiff ðX;Gi;GjÞ ¼ jsupportðX;GiÞ � supportðX;GjÞj > d ð2Þ

where X is the contrast set and d is a user-defined threshold called
the minimum support-difference. Contrast sets for which Eq. (1) is
statistically supported are called significant and those for which
Eq. (2) is satisfied are called large. Note that these are different
expressions of the same core principle, that the frequency of the
contrast set must differ meaningfully across groups. Eq. (1) provides
the basis of a statistical test of ‘meaningful’, while Eq. (2) provides a
quantitative test thereof.

The STUCCO algorithm (Search and Testing for Understandable
Consistent Contrasts), proposed in the original contrast set mining
paper [3], is based on the Max-Miner rule discovery algorithm [13].
STUCCO discovers a set of contrast sets along with their supports
on groups. STUCCO employs a number of pruning mechanisms. A
potential contrast set X is discarded if it fails a statistical test for
independence with respect to group variable Gi. It is also subjected
to what is in [23] called a test for productivity which is based on the
notion of confidence.1 A rule X ! Gi is productive iff

8Z � X : confidenceðZ ! GiÞ < confidenceðX ! GiÞ

that is, a more specific contrast set must have higher confidence
than any of its generalizations. Further tests for minimum counts
and effect sizes may also be imposed. STUCCO introduced a novel
variant of the Bonferroni correction for multiple tests which applies
ever more stringent critical values to the statistical tests employed
as the number of conditions in a contrast set is increased. When
using rule learners (e.g., OPUS-AR and C4.5 rules) for contrast set
mining [24], the user needs to select a quality measure (choosing
between support, confidence, lift, coverage and leverage). In this
setting the number of generated rules largely exceeds the number
of rules generated by STUCCO, unless pruned by the user-defined
maximum number of rules parameter. Expert interpretation of rules
can be difficult due to a large amount of rules and sometimes also
due to their specificity.

2.2. Subgroup discovery

The task of subgroup discovery is defined as follows: given a
population of individuals and a property of those individuals that
we are interested in, find population subgroups that are statisti-
cally ‘most interesting’, e.g., are as large as possible and have the
most unusual distributional characteristics with respect to the
property of interest [25]. The result of subgroup discovery is a
set of subgroup descriptions, where a subgroup description is a con-
junction of features defined as follows.

Let A1;A2; . . . ;Ak, be a set of k variables called attributes. An
attribute Ai is categorical if it has a predefined and limited set of
possible values fvi1; vi2; . . . ; vimg and is continuous if it can take
any value within a certain range ½min;max�. Features are of the
form Ai ¼ vij for categorical attributes, and Ai > value or
Ai 6 value for continuous attributes.

1 Confidence is the proportion of positive examples in all examples covered by the
rule. This metric is known under many different names, e.g., confidence in association
rule mining, or precision in information retrieval.
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Members of a subgroup are instances from the dataset that cor-
respond to the subgroup description. Good subgroups are large
(descriptions covering many examples with the given property of
interest), and have a significantly different distribution of exam-
ples with the given property compared to its distribution in the en-
tire population.

Since subgroup descriptions are conjunctions of features that
are characteristic for a selected class of individuals (class C, repre-
senting the investigated property of interest), a subgroup descrip-
tion can be seen as a condition part of a rule X ! C, therefore
subgroup discovery can be seen as a special case of a more general
rule learning task.2

Subgroup discovery algorithms include adaptations of rule
learning algorithms to perform subgroup discovery [9,14,17], algo-
rithms for relational subgroup discovery [22,25] and algorithms for
exploiting background knowledge for discovering non-trivial sub-
groups [2], among others. Presenting subgroup discovery results
to end-users has also been explored [15,11].

3. Motivation and methodology overview

This section provides a motivation for the development of a new
methodology for contrast set mining. First, it presents the brain
ischemia data analysis problem which is used to illustrate the po-
tential of the proposed methodology. Next, it presents results of
standard machine learning approaches to distinguishing between
patients with stroke due to ischemia caused by thrombosis, pa-
tients with stroke due to ischemia caused by embolism, and pa-
tients with normal CT test results, and discusses the
disadvantages of these approaches when used for distinguishing
between these contrasting groups of patients. Finally, it provides
the methodology overview by explaining the individual steps of
the methodology, and discusses some implementation issues.

3.1. Brain ischemia data analysis problem

Stroke or cerebrovascular accident (CVA) is the clinical designa-
tion for a rapidly developing loss of brain function due to a distur-
bance in the blood vessels supplying blood to the brain. This
phenomenon can be due to ischemia caused by thrombosis or
embolism, or due to a hemorrhage (bleeding). About 80% of all
strokes are ischemic while the remaining 20% are caused by
bleeding.

A stroke occurs when blood supply to a part of the brain is inter-
rupted, resulting in tissue death and loss of brain function [21].
Thrombi or emboli due to atherosclerosis commonly cause ische-
mic arterial obstruction. Atheromas, which underlie most thrombi,
may affect any major cerebral artery. Atherothrombotic infarction
occurs with atherosclerosis involving selected sites in the extracra-
nial and major intracranial arteries. Cerebral emboli may lodge
temporarily or permanently anywhere in the cerebral arterial tree.
They usually come from atheromas (ulcerated atheroscleritic pla-
ques) in extracranial vessels or from thrombi in a damaged heart
(from mural thrombi in atrial fibrillation). Atherosclerotic or
hypertensive stenosis can also cause a stroke.

For simplicity, in this paper we refer to brain stroke due to
ischemia caused by embolism as embolic stroke, and brain stroke
due to ischemia caused by thrombosis as thrombotic stroke.

The brain ischemia dataset available for the analysis consists of
records of patients who were treated at the Intensive Care Unit of
the Department of Neurology, University Hospital Center ‘‘Zagreb”,

Zagreb, Croatia, in year 2003. In total, 300 patients are included in
the database:

� Two hundred and nine patients with the computed tomography
(CT) confirmed diagnosis of stroke: 125 with embolic stroke, 80
with thrombotic stroke and 4 undefined.

� 91 patients who entered the same hospital department with
brain stroke neurological symptoms and disorders, but were
diagnosed (based on outcomes of neurological tests and CT) as
patients with transient ischemic attack (TIA, 33 patients),
reversible ischemic neurological deficit (RIND, 12 patients),
and severe headache or cervical spine syndrome (46 patients).
For simplicity, these patients are referred to as patients with
normal CT.

The distribution of patients is shown in Fig. 1. Patients are de-
scribed with their diagnosis and 26 descriptors representing anam-
nesis, physical examination, laboratory tests data and ECG data.
Anamnesis data: aspirin therapy (asp), anticoagulant therapy (aco-
ag), antihypertensive therapy (ahyp), antiarrhytmic therapy
(aarrh), lipid-lowering therapy—statin (stat), hypoglycemic ther-
apy (hypo), sex (sex), age (age), present smoking (smok), stress
(str), alcohol consumption (alcoh), family anamnesis (fhis). Physical
examination data: body mass index (bmi), systolic blood pressure
(sys), diastolic blood pressure (dya), and examination of the fundus
oculi (fo). Laboratory tests data: uric acid (ua), fibrinogen (fibr), glu-
cose (gluc), total cholesterol (chol), triglyceride (trig), platelets
(plat), and prothrombin time (pt). ECG data: heart rate (ecgfr), pres-
ence of atrial fibrillation (af), and signs of left ventricular hypertro-
phy (ecghlv).

It must be noted that this dataset does not include any healthy
individuals but consists of patients with serious neurological
symptoms and disorders. In this sense, the available database is
particularly appropriate for studying the specific characteristics
and subtle differences that distinguish between patients with dif-
ferent neurological disorders. The detected relationships can be ac-
cepted as generally true characteristics for these patients.3

In this paper, the goal of data analysis is to discover regularities
that discriminate between thrombotic stroke and embolic stroke
patients. Despite the fact that the immediate treatment for both
types of ischemic strokes is the same, the distinction between
thrombotic stroke and embolic stroke patients is important in later
phases of patient recovery and to better determine the risk factors
of the specific diseases. An example rule, induced by our method-
ology of contrast set mining through subgroup discovery, is

ahyp ¼ yes AND aarrh ¼ yes ! class ¼ emb

This rule, interpreted as ‘‘ischemic stroke patients with antihy-
pertensive therapy and antiarrhytmic therapy tend to have emboli
as main cause of stroke”, represents a contrast set for embolic
stroke patients in contrast with thrombotic stroke patients. It
should be further interpreted as ‘‘since both antihypertensive ther-
apy and antiarrhytmic therapy are therapies for cardiovascular dis-

2 Notice that in concept learning the task is to find rules that describe concept C.
Examples of concept C are considered the positive examples while the others,
belonging to C, are considered the negative examples of concept C.

Fig. 1. Distribution of diagnosis of patients in the brain ischemia dataset.

3 Not that the computed evaluation measures only reflect characteristics specific to
the available database, not necessarily holding for the general population or other
medical institutions.
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orders, ischemic stroke patients with cardiovascular disorders tend
to have emboli as main cause of stroke”. Therapies themselves are,
in line with medical knowledge, not causing strokes.

3.2. Motivation for contrast set mining

A common question of exploratory data analysis is ‘‘What are
the differences between the given groups?” where the groups are
defined by a property of individuals that distinguishes one group
from the others. For example, the distinguishing property that
we want to investigate could be the gender of patients and a ques-
tion to be explored can be ‘‘What are the differences between
males and females affected by a certain disease?” or, if the property
of interest was the response to a treatment, the question can be
‘‘What are the differences between patients reacting well to a se-
lected drug and those that are not?” Searching for differences is
not limited to any special type of individuals: we can search for dif-
ferences between molecules, patients, organizations, etc. In this
paper we address the problem of exploring the differences be-
tween two groups of ischemic stroke patients: patients with
thrombotic stroke and those with embolic stroke.

Despite the availability of specific contrast set mining tech-
niques, some of which adapt classification rule learners to contrast
set mining [24], we provide further motivat for the development of
our methodology by showing the inadequacy of standard machine
learning techniques for contrast set mining. To do so, we use a
standard decision tree learner and a standard classification rule
learner, and show their shortcomings for contrast set mining.

3.2.1. Inadequacy of decision tree learners for CSM
We used a decision tree learner [18], implemented in the Or-

ange data mining toolbox [6], to induce decision trees shown in
Figs. 2 and 3, contrasting between patient groups with embolic
stroke ðembÞ and thrombotic stroke ðthrÞ with and without the
presence of the third group of patients with normal ðnormCTÞ brain
CT test results, respectively. To explore the capability of decision
tree learning for contrast set mining we have applied harsh prun-
ing parameters to induce small and comprehensible decision trees
from the available data.4

Let us evaluate decision tree learning as a potential method for
contrast set mining. In the contrast set mining setting, the main
advantage of decision trees is the simplicity of their interpretation.
On the other hand, there are several disadvantages. All the con-
trasting patterns (rules formed of decision tree paths) include the
same root attribute, which is disadvantageous compared to con-

trast set rule representations. Due to attribute repetition and thus
a limited set of attributes appearing in decision tree paths, the vari-
ety of contrasting patterns is very limited. Another well-known
problem of decision trees is their sensitivity to changes in the data:
a small change in the training set may completely change the set of
attributes appearing in the nodes of the tree.

3.2.2. Inadequacy of Classification Rule Learners for CSM
Classification rules overcome some disadvantages of decision

trees. We experimented with JRip; the Java implementation of
the Ripper algorithm [5]. From the results in Table 1 we can see
that classification rules do not all share the same key feature, but
there are other disadvantages of classification rules making them
inappropriate for contrast set mining. First, the rules are generated
consequently by a covering algorithm, which implies that they also
need to be read and interpreted consequently—they are not inde-
pendent ‘chunks of knowledge’. The second disadvantage is the
low coverage of classification rules which is undesired in contrast
set mining. Last, in the concrete example in Table 1, only the last
‘generic’ rule has as a consequent embolic stroke patients—in the
entire ruleset there is no description of embolic stroke patients
at all.

3.3. Overview of the proposed methodology and its implementation

The novel contrast set mining methodology, proposed in this
paper, is performed in the following steps:

� preprocess the data (to comply with the data format of the
selected data mining toolbox),

� for each target class, transform the contrast set mining problem
into adequate subgroup discovery problems (see Section 4),

� induce a set of subgroup descriptions for every subgroup discov-
ery problem,

� list and visualize the induced subgroup descriptions (see Section
5),

� provide additional explanations by inducing the supporting fac-
tors (see Section 6), and

� evaluate the results in collaboration with the domain expert.

We here briefly describe the APRIORI-SD subgroup discovery
algorithm [14] which was used in our experiments. APRIORI-SD
is an adaptation of the APRIORI-C algorithm [12] for mining classi-
fication rules with association rule learning techniques. The main
modifications of the APRIORI-C classification rule learner, making
it appropriate for subgroup discovery, involve the implementation
of an example weighting scheme in rule post-processing, a modi-
fied weighted relative accuracy heuristic incorporating example
weights (see Eqs. 4 and 5 for the original WRAcc heuristic and its
modification with example weights), and a probabilistic classifica-
tion scheme. In brief, in APRIORI-SD, the set of potential rules (sub-
group descriptions) is generated by executing the APRIORI-C
algorithm. When selecting individual rules, APRIORI-SD repeatedly
finds a subgroup with the highest weighted relative accuracy (by
taking into account example weights) among subgroup description
candidates (APRIORI-C rules) and decreases example weights of
covered examples. This is repeated until WRAcc is greater than
zero.

We have chosen to implement the proposed methodology in
the Orange data mining toolbox [6]. We implemented three algo-
rithms that are adaptations of rule learners to perform the sub-
group discovery task: SD [9], CN2-SD [17] and APRIORI-SD [14]
with some minor adaptations compared to the descriptions in
the original papers. The implementation differences arise from
the internal representation of the data in Orange, based on attri-
butes and not on features (attribute–values). Data need to be dis-

Fig. 2. A strongly pruned decision tree aimed at distinguishing between patients
with embolic stroke and thrombotic stroke. Every node of the decision tree is
represented by a circle–rectangle pair. In the circle, the distribution of the classes of
the examples belonging to the node is visualized. The rectangle contains the
information on the majority class of the node (first line), the percentage of the
majority class (second line) and, depending on whether the node is an inner node of
the tree or a leaf, the attribute to test or the prediction of the leaf.

4 Note that the data is very noisy, hence the induced decision trees have a low
classification accuracy: 75.61% accuracy for a two-class problem, and 58% accuracy
for a three-class problem, estimated by 10 fold cross-validation, respectively.
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cretized in the preprocessing phase, as the implementations con-
struct attribute–value pairs from discretized data on the fly while
constructing the subgroup describing rules. Despite this data rep-
resentation limitation, the algorithm reimplementation in Orange
is valuable, as it offers various data and model visualization tools
and has excellent facilities for building new visualizations.

Orange goes beyond static visualization, by allowing the inter-
action of the user and combination of different visualization tech-
niques. In Fig. 4 an example of a visual program in the Orange
visual programming tool Orange Canvas is shown.5 The first widget
from the left (File) loads the dataset (in this example we load the
Brain Ischemia dataset with three classes). The following widget
(Discretize) takes care of data discretization in the preprocessing
phase. It is followed by the widget Build Subgroups which is in charge
of building subgroups. In this widget the user chooses the algorithm
for subgroup discovery and sets the algorithm parameters.

The widget Subgroup Bar Visualization provides the visualization
of the subgroups. It can be connected to several other widgets for
data visualization. In our case we connected it to the existing Linear
Projection visualization (see the left-hand side of Fig. 4) which visu-
alizes the entries of the entire dataset as empty shapes and the en-
tries belonging to the group selected in the Subgroup Bar
Visualization widget as full shapes. By moving the mouse over a
certain shape in the Linear Projection widget a detailed description
of the entry is displayed.

4. Proposed methodology: contrast set mining by
transformation to subgroup discovery

Even though the definitions of subgroup discovery and contrast
set mining appear to be substantially different, this section pro-

vides a proof of the compatibility of the two tasks and of the used
rule quality measures. It is also shown that by transforming a con-
trast set mining task to a subgroup discovery task, one can solve
the following currently open issues of contrast set mining [24]:
selecting the most appropriate heuristics for identifying interesting
contrast sets, avoiding of overlapping rules, and presenting con-
trast sets to the end-user.

4.1. Unifying the terminology of subgroup discovery and contrast set
mining

As contrast set mining and subgroup discovery were developed
in different research communities, each has developed its own ter-
minology, therefore a common terminology needs to be estab-
lished before proceeding. In order to show the compatibility of
contrast set mining and subgroup discovery tasks, we first define
the compatibility of terms used in different communities as follows:
terms are compatible if they can be translated into equivalent log-
ical expressions and if they bare the same meaning, i.e., if terms
from one community can replace terms used in another
community.

To show that terms used in contrast set mining (CSM) can be
translated to terms used in subgroup discovery (SD), Table 2 pro-
vides a term dictionary through which we translate the terms used
in CSM and SD into a unifying terminology of rule learning, or more
specifically, concept learning. In concept learning, class C is consid-
ered as the property of interest and examples with this property as
positive examples of C. The negative examples are formed of exam-
ples of all other classes.

Note at this point the main terminological and conceptual mis-
match between contrast set mining and subgroup discovery. First,
in contrast set mining, the contrasting groups are the input to the
algorithm, while in subgroup discovery, the subgroups are the out-
put of the algorithm. Furthermore, in contrast set mining all the
contrasting groups have the same importance while in subgroup
discovery there is only one property of interest and all the terminol-
ogy is centralized around this property (the true positives, true po-
sitive rate, etc.).

4.2. Task transformation

The definitions of contrast set mining and subgroup discovery
appear different: contrast set mining searches for discriminating
characteristics of groups called contrast sets, while subgroup dis-
covery searches for subgroup descriptions. Despite these apparent
differences this section shows that every contrast set mining task
can be translated into a sequence of subgroup discovery tasks.

5 This visual program is just one example of what can be done by using the
Subgroup discovery tool implemented in Orange. Subgroup evaluation and different
method for visualizing the contents of subgroups are also available.

Fig. 3. A pruned decision tree aimed at distinguishing between patients with embolic stroke, thrombotic stroke and patients with normal brain CT test results.

Table 1
Classification rules generated by JRip aimed at distinguishing between patients with
embolic stroke, thrombotic stroke and patients with normal brain CT test results

sys P 200 AND chol P 5:1! class ¼ thr
chol P 7:1 AND plat P 198! class ¼ thr
fibr P 5 AND af ¼ no AND ecghlv ¼ yes! class ¼ thr)
fibr 6 3:8 AND au 6 305! class ¼ normal
fibr 6 4:2 AND chol P 6:3! class ¼ normal
age 6 66 AND ecgfr P 75 ANDpt P 0:8 AND gluc 6 6:8! class ¼ normal
! class ¼ emb

Tenfold cross-validated classification accuracy is 65%.
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A special case of contrast set mining considers only two con-
trasting groups Gi and Gj. In this situation, the task of contrast
set mining is to find characteristics of one group discriminating it
from the other and vice versa. Using the dictionary of Table 2 it
is trivial to show that a two-group contrast set mining task
CSMðGi;GjÞ can be directly translated into the following two sub-
group discovery tasks: SD(C ¼ Gi vs. C ¼ Gj) and SD(C ¼ Gj vs.
C ¼ Gi). Since this translation is possible for a two-group contrast
set mining task, it is—by induction—also possible for a general con-
trast set mining task involving n contrasting groups. The induction
step is as follows:

CSMðG1; . . . ;GnÞ
for i ¼ 2 to n do

for j ¼ 1; j–i to n� 1 do
SDðC ¼ Gi vs: C ¼ GjÞ

Putting contrast set mining and subgroup discovery in a broader
rule learning context, note that there are two main ways of induc-
ing rules in multi-class learning problems: learners either induce
the rules that characterize one class compared to the rest of the
data (the standard one-versus-all setting, used in most classifica-
tion rule learners), or alternatively, they search for rules that dis-
criminate between all pairs of classes (known as the round robin
approach to classification rule learning, proposed in [7]). Subgroup
discovery is typically performed in a one-versus-all rule learning
setting, typically focusing on generating subgroup descriptions of
a single target class. On the other hand, contrast set mining imple-
ments a round robin approach (of course, with different heuristics
and goals compared to classification rule learning). Note that we
have shown above that using a round robin setting, a general n
group contrast set mining task can be translated into a sequence
of subgroup discovery tasks.

4.3. Compatibility of rule quality measures

Rule quality measures are usually based on the covering prop-
erty of rules, given the positive (target) class in the rule head. For
instance, the true positive rate TPrðX ! YÞ is defined as the per-
centage of positive examples correctly classified as positive by rule
X ! Y , and the false positive rate FPrðX ! YÞ is defined as percent-
age of negative examples incorrectly classified as positive by rule
X ! Y . We illustrate these measures in Table 3 and in Fig. 5.

In this section we show that the rule quality measures support
difference (SuppDiff) used in contrast set mining and weighted rela-
tive accuracy (WRAcc) used in subgroup discovery are compatible,
using the following definition of compatibility: rule quality mea-
sures h1 and h2 are compatible if

8 pairs of rules Ri and Rj : h1ðRiÞ > h1ðRjÞ () h2ðRiÞ > h2ðRjÞ:

A measure of contrast set quality defined in [3] is the support
difference (see Eq. 2). We here show that the support difference
heuristic can be rewritten, using the dictionary in Table 3 and
equations from Fig. 5, as follows:

SuppDiff ðX;G1;G2Þ ¼supportðX;G1Þ � supportðX;G2Þ
¼TPrðX ! G1Þ � TPrðX ! G2Þ
¼TPrðX ! G1Þ � FPrðX ! G1Þ

where TPr and FPr denote the true positive rate and the false posi-
tive rate, respectively.

Several heuristics have been developed and used in the sub-
group discovery community. We will consider here only the
weighted relative accuracy which is used in subgroup discovery
algorithms CN2-SD [17] and APRIORI-SD [14]. The weighted rela-
tive accuracy heuristic optimizes two contrasting factors: rule cov-

Table 2
Synonyms for terms used in contrast set mining and subgroup discovery

Contrast set mining (CSM) Subgroup discovery (SD) Rule learning (RL)

Contrast set Subgroup description Rule conditions
Groups Class/property Classes/concepts
G1; . . . ;Gn C C1; . . . ;Cn

Attribute–value pair Feature Condition
Examples in groups Examples of Examples of
G1; . . . ;Gn C and C C1; . . . ;Cn

Examples for which the contrast set is true Subgroup of examples covered examples

Fig. 4. An example of a visual program in the interactive interface for subgroup discovery implemented in Orange.
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erage pðXÞ (the size of the subgroup), and distributional unusual-
ness pðYjXÞ � pðYÞ (the difference between the proportion of posi-
tive examples in the subgroup describing rule and the proportion
of positives in the entire example set). The weighted relative accu-
racy heuristic is here written in terms of probabilities as follows:

WRAccðX ! YÞ ¼ pðXÞ � ðpðY jXÞ � pðYÞÞ ð3Þ

Below we demonstrate that the weighted relative accuracy
known from subgroup discovery and the support difference be-
tween groups used in contrast set mining are compatible, which
is derived as follows.6:

WRAccðX ! YÞ ¼pðXÞ � ½pðY jXÞ � pðYÞ� ¼ pðY � XÞ � pðYÞ � pðXÞ
¼pðY � XÞ � pðYÞ � ½pðY � XÞ þ pðY � XÞ�
¼ð1� pðYÞÞ � pðY � XÞ � pðYÞ � pðY � XÞ
¼pðYÞ � pðYÞ � pðXjYÞ � pðYÞ � pðYÞ � pðXjYÞ
¼pðYÞ � pðYÞ � ½pðXjYÞ � pðXjYÞ�
¼pðYÞ � pðYÞ � ½TPrðX ! YÞ � FPrðX ! YÞ�

Since the distribution of examples among classes is constant for
any dataset, the first two factors pðYÞ and pðYÞ are constant within
a dataset. Therefore, when maximizing the weighted relative accu-
racy, one is maximizing the second factor
½TPrðX ! YÞ � FPrðX ! YÞ�, which actually is the support difference
in a two group contrast set mining problem:

WRAccðX ! YÞ ¼WRAccðX ! G1Þ
¼pðG1Þ � pðG2Þ � ½supportðX;G1Þ � supportðX;G2Þ�

4.4. Solving other contrast set mining open issues through subgroup
discovery

Open issues of contrast set mining, identified by [24] are: choos-
ing an appropriate search heuristic (see the solution to this open is-
sue in Section 4.3 above), avoiding of too many overlapping rules,
and presenting the results to the end-user. We have also identified
dealing with continuous attribute values as an open issue.

4.4.1. Avoiding of too many overlapping rules
Webb et al. [24] show that contrast set mining is a special case

of the more general rule discovery task, but the comparison of

STUCCO, OPUS_AR and C4.5 shows that rules obtained from stan-
dard rule learners are a superset of rules obtained by STUCCO.
Moreover, the number of rules generated by OPUS_AR largely ex-
ceeds the number of rules generated by STUCCO, unless pruned
by the user-defined maximum number of rules parameter.

Complicated pruning mechanisms are used in STUCCO in order
to overcome this problem. Pruning of generated contrast sets re-
moves contrast sets that, while significant and large, derive these
properties only due to being specializations of more general con-
trast sets: any specialization is pruned that has similar support
to its parent or that fails a v2 test of independence with respect
to its parent. Details of the relatively complex pruning mechanisms
are elaborated in [3].

In subgroup discovery algorithms like CN2-SD [17] this problem
is elegantly solved by using the weighted covering approach with
the intention to ensure the diversity of rules induced in different
iterations. The weighted covering algorithm starts by constructing
and selecting the first rule, i.e., the ‘best’ rule with the highest va-
lue of the WRAcc heuristic, defined in Eq. 3 and computed as
follows:

WRAccðX;YÞ ¼ pþ n
P þ N

� p
pþ n

� P
P þ N

� �
ð4Þ

where p and n are the numbers of covered positive and negative
examples (i.e., p ¼ jTPj and n ¼ jFPj, the numbers of true positives
and false positives, respectively), and P and N are the numbers of
all positive and negative examples in the dataset. Having selected
the first rule, the weights of positive examples covered by the rule
are decreased. To do so, the rules covering each positive example
are counted. All example counts cðeÞ are initially set to 1. The exam-
ple weights are computed as wðeÞ ¼ 1

cðeÞ, and in each iteration of the
algorithm the example counts are recomputed, leading to decreased
example weights. For that purpose, the CN2-SD and the APRIORI-SD
algorithm use the weighted relative accuracy heuristic, modified
with example weights, as defined in Eq. (5) below:

WRAcc0ðX;YÞ ¼ p0 þ n
P0 þ N

� p0

p0 þ n
� P

P þ N

� �
ð5Þ

where p0 ¼
P

TPðRÞwðeÞ is the sum of the weights of all covered posi-
tive examples, and P0 is the sum of the weights of all positive
examples.

Although the weighted covering approach cannot guarantee the
statistical independence of generated rules, it aims at ensuring
good diversity of a relatively small set of rules.

4.4.2. Handling continuous attribute values
Subgroup discovery algorithms SD [9], CN2-SD [17] and APRI-

ORI-SD [14] use a feature-based data representation, where attri-
bute values needed for the construction of features are generated
automatically from the data. In this way, subgroup discovery algo-
rithms overcome this deficiency of contrast set mining.

4.4.3. Presenting the results to the end-user
Presenting subgroup discovery results to the end-user is an

interesting research problem. Several methods for subgroup visu-
alization have been proposed (see an overview in [11]). When visu-
alizing contrast set mining results on two groups, these methods
can be easily adopted without much adaptation. For example, the
pie chart visualization can easily be adapted for multi-class visual-
ization, while more advanced visualizations, like the distribution of
a subgroup by a continuous attribute, require more inventiveness
for being used for multi-class results visualizations.

In this work we propose a new subgroup visualization tech-
nique called visualization by bar charts, shown in Figs. 6 and 7. In
this visualization, the first row is used to visualize the distribution
of positive and negative examples in the entire example set. The

Table 3
Rule quality measures used in two-group contrast set mining and subgroup discovery,
where group G1 from contrast set mining is considered as property of interest C in
subgroup discovery

Contrast set mining (CSM) Subgroup discovery (SD) Rule learning (RL)

Groups G1 and G2 Classes C and C Classes C and C
Support of contrast set on G1 True positive rate True positive rate
Support of contrast set on G2 False positive rate False positive rate

Fig. 5. On the left: the large rectangle represents the whole dataset divided into
two groups: G1 and G2. The ellipse represents the subgroup of examples defined by
conditions X. On the right: the formulas for the true and false positive rate, showing
that FPrðX ! G1Þ ¼ TPrðX ! G2Þ.

6 These equations were derived by Peter Flach in another context, see [16]
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area at the right hand side represents the positive examples (one
group, in the contrast set mining terminology), and the area at
the left hand side represents the negative examples (the other
group). The following rows present the induced subgroup descrip-
tions, together with the fractions of positive and negative examples
covered. Subgroups are sorted by the relative share of the positive
examples in the subgroup.

This visualization method can help estimating the quality of the
results by allowing for simple comparisons between subgroups. It
is intuitive and simple, and therefore easy to be interpreted by the
end-user. However, as this visualization does not display the con-
tents of the data, it should best be used in hand with other visual-
ization methods, e.g., together with those available in the Orange
data mining toolbox (see Fig. 4) in order to allow for more detailed
exploration.

5. Application of contrast set mining to the problem of
distinguishing between similar diseases

The goal of our experiments was to find characteristic differ-
ences between patients with embolic and thrombotic stroke. We
have approached this problem in three ways: first by standard ma-
chine learning algorithms (see Section 3.2), second by the round
robin transformation of contrast set mining to subgroup discovery
(Section 5.1), and finally by a one-versus-all transformation of con-
trast set mining to subgroup discovery (Section 5.2). The latter two
are outlined below.

5.1. Experimental evaluation of the round robin CSM

To find characteristic differences between patients with em-
bolic and thrombotic stroke we applied the mathematically correct
round robin transformation from contrast set mining to subgroup
discovery, described in Section 4. We ran this experiment and
asked the expert for interpretation.

The resulting rules mainly include the feature af ¼ no for
thrombotic stroke patients and af ¼ yes for embolic stroke pa-
tients, which are very typical for the corresponding diseases. How-
ever, the rules turned out to be non-intuitive to the medical expert.
For example, the rule

af ¼ yes AND sys < 185 AND fo ¼ 1! class ¼ emb

covering many embolic and just one thrombotic stroke patient
ðp ¼ jTPj ¼ 33; n ¼ jFPj ¼ 1Þ was interpreted as patients with sus-
pected thromb in the heart in atrial fibrillation ðaf ¼ yesÞ, visible con-
sequences of hypertension in the eyes ðfo ¼ 1Þ, and with normal or
high—but not extremely high (not over 185)—systolic blood pressure.7

We have further investigated the reasons why the rules were
relatively difficult to be interpreted by the medical expert. One rea-
son is the difficulty of the contrast set mining task itself: physicians
are not used to distinguish between two types of the disease given
the condition that a patient has a disease, but are rather used to
find characteristics for a specific disease compared to the entire
population. Another reason are rules like the rule listed below:

fhis ¼ yes AND smok ¼ yes AND asp ¼ no AND dya < 112:5! class

¼ emb

This contrast set describing rule has good covering characteris-
tics ðjTPj ¼ 28; jFPj ¼ 4Þ, but practically describes healthy people
with family history of brain stroke. It is undoubtedly true that this
pattern is present in the dataset, but the discovered pattern does
not describe the reason why these patients are embolic stroke pa-
tients; the round robin CSM algorithm could not detect that the
combination of these features is not useful for group differentiation
from the medical point of view as it simply did not have the normal
CT people as a reference. This lesson learned has lead us to the
development of a different approach to contrast set mining: the
one-versus-all CSM algorithm whose experimental evaluation is
described below.

5.2. Experimental evaluation of the one-versus-all CSM

As the medical expert was not satisfied with the results of the
comparison of thrombotic and embolic stroke patients induced
by the round robin CSM algorithm, we further investigated the rea-
sons for the expert’s dissatisfaction and learned a lesson in medical
contrast set mining: to overcome the problems related to the origi-
nal definition of contrast set mining we need to modify the defini-
tion of the contrast set mining task as addressed in this paper as
follows. Instead of using the round robin approach where we com-
pare classes pairwise, we may better use the one-versus-all ap-
proach which is standard in classification rule learning and
subgroup discovery. In this way we give the algorithm also the
information about the normal CT patients.

In particular, in our dataset composed of three groups of pa-
tients (as described in Section 3.1 and shown in Fig. 1), to find
the characteristics of embolic stroke patients we should perform
subgroup discovery on the embolic stroke group compared to the
rest of the patients (thrombotic stroke patients and those with a
normal CT). Similarly, when searching for characteristics of throm-
botic stroke patients, we should compare them to the rest of the
patients (those with embolic stroke and those with a normal CT).

In this setting, we ran the experiment with the Orange imple-
mentation of APRIORI-SD,8 and got the results shown in Figs. 6
and 7.

Note that stroke caused by embolism is most commonly caused
by heart disorders. The first rule shown in Fig. 6 has only one con-
dition confirming the presence of atrial fibrillation ðaf ¼ yesÞ as an

7 High blood pressure is characteristic for both diseases and the boundary 185 is
very high, since blood pressure above 139 is already considered high in medical
practice. In our dataset there are 56 patients with sys > 185.

8 We used the following parameter values: minimal support = 15%, minimal
confidence = 30%, the parameter for tuning the covering properties k ¼ 5.

Fig. 6. Characteristic descriptions of embolic stroke patients displayed in the bar
chart subgroup visualization: on the right side the positive cases, in our case
embolic stroke patients, and on the left hand side the others—thombotic stroke
patients and those with normal CT.

Fig. 7. Characteristic descriptions of thrombotic stroke patients.
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indicator for embolic stroke. The combination of features from the
second rule also shows that patients with antihypertensive therapy
ðahyp ¼ yesÞ and antiarrhytmic therapy ðaarrh ¼ yesÞ, therefore pa-
tients with heart disorders, are prone to embolic stroke.

Thrombotic stroke is most common with older people, and of-
ten there is underlying atherosclerosis or diabetes. In the rules dis-
played in Fig. 7 the features presenting diabetes do not appear. The
rules describe patients with elevated diastolic blood pressure and
fibrinogen, but without heart or other disorders. High cholesterol,
age and fibrinogen values appear characteristic for all ischemic
strokes.

6. Supporting factors for contrast set mining

The descriptive induction task is not concluded when individual
rules are discovered. A property of the discovered rules is that they
contain only the minimal set of principal characteristics for distin-
guishing between the classes. For interpretation and understand-
ing purposes other properties that support the detected rules are
also relevant. In subgroup discovery these properties are called
supporting factors. They are used for improved human under-
standing of the principal factors and for the support in decision
making processes. This section explores an approach to improving
contrast set mining explanatory potential by using supporting
factors.

6.1. Supporting factors in subgroup discovery

In subgroup discovery the features that appear in subgroup
descriptions are called the principal factors, while the additional
features that are also characteristic for the detected subgroup are
called the supporting factors [10]. For every detected subgroup
the supporting factors detection process is repeated for every attri-
bute separately. For numerical attributes their mean values are
computed while for categorical attributes the relative frequency
of the most frequent or medically most relevant category is com-
puted. The mean and relative frequency values are computed for
three example sets: for the subset of positive examples that are in-
cluded into the pattern, for the set of all positive examples, and fi-
nally for the set of all negative examples (the control set).

The necessary condition for a feature to be determined as a sup-
porting factor is that its mean value or the relative frequency of the
given attribute value must be significantly different between the
target pattern and the control example set. Additionally, the values
for the pattern must be significantly different from those in the
complete positive population. The reason is that if there is no such
difference then such a factor is supporting for the whole positive
class and not specific for the pattern.

The statistical significance between example sets can be deter-
mined using the Mann–Whitney test for numerical attributes and
using the v2 test of association for categorical attributes. The deci-
sion which statistical significance is sufficiently large can depend
on the medical context. Typically the cut-off values are set at
p < 0.01 for the significance with respect to the control set and
p < 0.05 for the significance with respect to the positive set.

6.2. Supporting factors for contrast sets

Even though contrast set mining and subgroup discovery are
very similar, there is a crucial difference between these two data
mining tasks: in subgroup discovery there is only one property of
interest and the goal is to find characteristics common to sub-
groups of individuals that have this property. On the other hand,
in contrast set mining there are several groups of individuals and
the goal is to find differences between these groups. Therefore

the notion of supporting factor from subgroup discovery cannot
be directly adopted for contrast set mining.

We propose and show in our experiments a way of generalizing
the supporting factors from subgroup discovery to contrast set
mining. Since the goal of contrast set mining is to find differences
between contrasting groups, there is no need for the values of sup-
porting factors being significantly different from those in the entire
positive population. Another difference from subgroup discovery
supporting factors is that instead of presenting to the domain ex-
pert only the values of supporting factors for the positive class,
we also show the distribution (for categorical) or the average (for
numeric) attributes for the negative set and for the entire positive
set.

Since the interpretation of all the patterns discovered and pre-
sented in Section 5.2 is out of the scope of this paper, we focus only
on two contrast sets: Contrast set CS1 : ðTPr ¼ 0:4; FPr ¼ 0:14Þ

ahyp ¼ yes AND aarrh ¼ yes! class ¼ emb

Contrast set CS2 : ðTPr ¼ 0:56; FPr ¼ 0:2Þ

age > 66 AND trig > 1 AND af ¼ no AND acoag ¼ no! class ¼ thr

The first of the selected contrast sets is intuitive to interpret
since both primary factors are treatments for cardiovascular disor-
ders. The supporting factors for this set are shown in Table 4. We
can see that the first four supporting factors (as well as the two pri-
mary factors) for this contrast set are all about cardiovascular dis-
orders and therefore they substantiate the original interpretation.
It is therefore legitimate to say that embolic stroke patients are pa-
tients with cardiovascular disorders while cardiovascular disorders
are not characteristic for thrombotic stroke patients.9

Table 4
Supporting factors for contrast set CS1

CS1 Thrombotic Embolic

fo high 0.82 0.73 0.76
af = yes 80% 13% 53%
ahyp = yes 100% 81% 70%
aarrh = yes 100% 19% 45%
chol low 5.8 6.59 5.69
rrsys low 159 178 159
rrdya low 92 100 92
ecgfr high 87 77 94
acoag = yes 24% 5% 16%

9 Note that the computation of supporting factors differs if CS1 is interpreted as a
subgroup or as a contrast set. In Table 4 the top four supporting factors are
characteristic for group CS1, regardless if it is considered as a subgroup or as a
contrast set, while the next five supporting factors are characteristic for CS1 only if
considered as a contrast set to thrombotic.

Table 5
Supporting factors for contrast set CS2

CS2 Embolic Thrombotic

age high 74.2 69.85 69.29
chol high 6.3 5.69 6.59
fibr high 5.25 4.51 4.85
fo low 0.64 0.76 0.73
af = no 100% 47% 88%
smoke = no 73% 46% 55%
rrsys high 180 159 178
ecghlv = yes 60% 37% 61%
acoag = no 100% 84% 95%
aarh = no 93% 55% 81%
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The second selected contrast set is vague and is not directly
connected with medical knowledge. High age and triglyceride val-
ues are characteristic for thrombotic stroke, but the boundary val-
ues in the contrast set are not very high. The rest of the features in
this contrast set indicate no presence of atrial fibrillation and no
anticoagulant therapy: again nothing specific. The supporting fac-
tors for this set are shown in Table 5. They include high cholesterol
and fibrinogen, low fundus oculi and non-smoker. These patients
are old and they do not have cardiovascular disorders.

The experiments show the advanced interpretability of the dis-
covered contrast sets achieved by adding the supporting factors.
The presented approach to the detection of supporting factors ni-
cely supplements contrast set mining and enables in depth analy-
sis. These examples indicate that the supporting factors
appropriately complement the primary factors and can help the
expert interpretation to move from speculation towards better jus-
tified medical conclusions.

7. Conclusions

This paper has shown that contrast set mining and subgroup
discovery are very similar data mining tasks, and has presented ap-
proaches to contrast set mining by transforming the contrast set
mining task to a subgroup discovery task. We have also shown that
the subgroup discovery approach to contrast set mining solves sev-
eral open issues of contrast set mining. Moreover, in the brain
ischemia data analysis application, we have demonstrated that,
in the problem of distinguishing between similar classes, the right
task to address is the one-versus-all contrast set mining task rather
then the classical pairwise (round robin) formulation of the task.
Finally, we have improved the explanatory potential of discovered
contrast sets by offering additional contrast set descriptors, called
the supporting factors. A remaining open issue of contrast set min-
ing is the evaluation and the visualization of contrast set mining
results on several contrasting groups, which is the topic of further
work.
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[8] Gamberger D, Lavrač N. Descriptive induction through subgroup discovery: a
case study in a medical domain. In: Proceedings of the 19th international
conference on machine learning, 2002, pp. 163–170.
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4 Closed Sets for Labeled Data

In this chapter, the paper (Garriga et al., 2008) titled “Closed Sets for Labeled Data” by

Gemma C. Garriga, Petra Kralj and Nada Lavrač is presented. The paper was published

in the Journal of Machine Learning Research in April 2008.

The main part of the research presented in this paper was performed during a visit of

the first author of the paper, Gemma C. Garriga, to the Department of Knowledge Tech-

nologies, Jožef Stefan Institute, Ljubljana, Slovenia. Gemma C. Garriga is the main author

of the paper, since she has contributed most of the theory which connects closed sets with

the relevance theory by Lavrač and Gamberger (2005). Petra Kralj contributed the ex-

perimental section, which includes the implementation of the algorithm named RelSets,

and the evaluation in the ROC space. Nada Lavrač identified the potential of merging

closed sets and subgroup discovery, and supervised the whole work by providing support

and valuable advice.

Part of the research presented in this paper (Garriga et al., 2006) was first published

at the 10th European Conference on Principles and Practice of Knowledge Discovery in

Databases (PKDD 2006). The paper was later extended and improved to be published as

a journal paper.

Closed sets for labeled data were used on a real life problem of analyzing microarray

data from a potato experiment. Part of the results are published in the presented paper

(Section 6.3: Subgroup Discovery in Microarray Data Analysis), while an extended version

was published in Kralj et al. (2006). The biological aspect is described in Baebler et al.

(2009).

The research presented in this paper was performed before the supervised descriptive

rule induction framework was developed, therefore it does not use the unifying terminology

and definitions. However, Section 5 of the paper already evaluates closed sets for labeled

data as rules/ruleset in the ROC space and Section 6 compares closed sets for labeled

data with subgroup discovery and emerging patterns — as discussed in Chapter 2. The

paper fits well in the context of supervised descriptive rule induction, since closed sets for

labeled data are rules that are used for descriptive data mining.
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Abstract
Closed sets have been proven successful in the context of compacted data representation for associ-
ation rule learning. However, their use is mainly descriptive, dealing only with unlabeled data. This
paper shows that when considering labeled data, closed sets can be adapted for classification and
discrimination purposes by conveniently contrasting covering properties on positive and negative
examples. We formally prove that these sets characterize the space of relevant combinations of fea-
tures for discriminating the target class. In practice, identifying relevant/irrelevant combinations of
features through closed sets is useful in many applications: to compact emerging patterns of typical
descriptive mining applications, to reduce the number of essential rules in classification, and to ef-
ficiently learn subgroup descriptions, as demonstrated in real-life subgroup discovery experiments
on a high dimensional microarray data set.

Keywords: rule relevancy, closed sets, ROC space, emerging patterns, essential rules, subgroup
discovery

1. Introduction

Rule discovery in data mining mainly explores unlabeled data and the focus resides on finding
itemsets that satisfy a minimum support constraint (namely frequent itemsets), and from them, con-
structing rules over a certain confidence. This is the case of the well-known Apriori algorithm of
Agrawal et al. (1996), and its successors, for example, Brin et al. (1997), Han and Pei (2000) and
Zaki (2000b) among others. From a different perspective, machine learning is mainly concerned
with the analysis of class labeled data, mainly resulting in the induction of classification and predic-
tion rules, and—more recently—also descriptive rules that aim at discovering insightful knowledge
from the data (subgroup discovery, contrast set mining). Traditional rule learning algorithms for
classification include CN2 (Clark and Niblett, 1989) and Ripper (Cohen, 1995). Other approaches
have been proposed that are based on the association rule technology but applied to class labeled
data, for example, a pioneer work towards this integration is Liu et al. (1998), and later followed
by others, for example, the Apriori-C classifier by Jovanoski and Lavrač (2001), and the Essence
algorithm for inducing “essential” classification rules based on the covering properties of frequent
itemsets, by Baralis and Chiusano (2004).

c©2008 Gemma C. Garriga, Petra Kralj and Nada Lavrač.
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Subgroup discovery is a learning task directed at finding subgroup descriptions that are char-
acteristic for examples with a certain property (class) of interest. Special rule learning algorithms
for subgroup discovery include Apriori-SD (Kavšek and Lavrač, 2006), CN2-SD (Lavrač et al.,
2004) or SD (Gamberger and Lavrač, 2002). The goal of these descriptive mining algorithms is to
find characteristic rules as combinations of features with high coverage. If there are several rules
with the same coverage, most specific rules (with more features) are appropriate for description and
explanation purposes. On the other hand, the closely related task of contrast set mining aims at
capturing discriminating features that contrast instances between classes. Algorithms for contrast
set mining are STUCCO (Bay and Pazzani, 2001), and also an innovative approach presented in the
form of mining emerging patterns (Dong and Li, 1999). Basically, Emerging Patterns (EP) are sets
of features in the data whose supports increase significantly from one class to another. Interestingly,
also good classifiers can be constructed by using the discriminating power of the mined EPs, for
example, see Li et al. (2000). A condensed representation of EPs, defined in terms of a support
growth rate measure, has been studied in Soulet et al. (2004).

Indeed, we can see all these tasks on labeled data (learning classification rules, subgroup dis-
covery, or contrast set mining) as a rule induction problem, that is, a process of searching a space
of concept descriptions (hypotheses in the form of rule antecedents). Some descriptions in this hy-
pothesis space may turn out to be more relevant than others for characterizing and/or discriminating
the target class. The question of relevance has attracted much attention in the context of feature
selection for propositional learning (Koller and Sahami, 1996; Liu and Motoda, 1998). This is an
important problem since non-relevant features can be excluded from the learning process, thus facil-
itating the search for the final solution and increasing the quality of the final rules. Feature filtering
can be applied during the learning process, or also, by pre-processing the set of training examples
(Lavrač et al., 1999; Lavrač and Gamberger, 2005).

Searching for relevant descriptions for rule construction has been extensively addressed in de-
scriptive data mining as well. A useful insight was provided by closure systems (Carpineto and
Romano, 2004; Ganter and Wille, 1998), aimed at compacting the whole space of descriptions into
a reduced system of relevant sets that formally conveys the same information as the complete space.
The approach has successfully evolved towards mining closed itemsets (see, for example, Pasquier
et al., 2001; Zaki, 2004). Intuitively, closed itemsets can be seen as maximal sets of items/features
covering a maximal set of examples. Despite its success in the data mining community, the use of
closed sets is mainly descriptive. For example, they can be used to limit the number of association
rules produced without information loss (see, for example, how to characterize rules with respect to
their antecedent in Crémilleux and Boulicaut, 2002).

To the best of our knowledge, the notion of closed sets has not yet been exported to labeled
data, nor used in the learning tasks for labeled data described above. In this paper we show that
raw closed sets can be adapted for discriminative purposes by conveniently contrasting covering
properties on positive and negative examples. Moreover, by exploiting the structural properties and
the feature relevancy theory of Lavrač et al. (1999) and Lavrač and Gamberger (2005), we formally
justify that the obtained closed sets characterize the space of relevant combinations of features for
discriminating the target class.

In practice, our notion of closed sets in the labeled context (described in Sections 3 and 4)
can be naturally interpreted as non-redundant descriptive rules (discriminating the target class) in
the ROC space (Section 5). We also show that finding closed sets in labeled data turns out to be
very useful in many applications. We have applied our proposal to reduce the number of emerging
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patterns (Section 6.1), to compress the number of essential rules (Section 6.2), and finally, to learn
descriptions for subgroup discovery on potato microarray data (Section 6.3).1

2. Background

Features, used for describing the training examples, are logical variables representing attribute-
value pairs (called items in the association rule learning framework of Agrawal et al., 1996). If
F = { f1, . . . , fn} is a fixed set of features, we can represent a training example as a tuple of features
f ∈ F with an associated class label. For instance, Table 1 contains examples for the simplified
problem of contact lens prescriptions (Witten and Frank, 2005). Patients are described by four
attributes: Age, Spectacle prescription, Astigmatism and Tear production rate; and each tuple is
labeled with a class label: none, soft or hard. Then, F is the set of all attribute-value pairs in the
data, that is, F = {Age=young, . . . , Tear=normal} (the class label is not included in F), and each
example (a patient) corresponds to a subset of features in F with an associated class label. This
small data set will be used throughout the paper to ease the understanding of our proposals.

We consider two-class learning problems where the set of examples E is divided into positives
(P, target-class examples identified by label +) and negatives (N, labeled by −), and E = P∪N.
Multi-class problems can be translated to a series of two-class learning problems: each class is once
selected as the target class (positive examples), while examples of all the other classes are treated
as non-target class examples (thus, negative examples). For instance, when class soft of Table 1 is
the target class, all examples with label soft are considered as positive, as shown in Table 2, and all
examples labeled none and hard are considered as negative.

Given a rule X → + formed from a set of features X ⊆ F , true positives (TP) are those positive
examples covered by the rule, that is, p ∈ P such that X ⊆ p; and false positives (FP) are those
negative examples covered by the rule, that is, n ∈ N such that X ⊆ n; reciprocally, true negatives
(TN) are those negative examples not covered by X . Later, we will see that some combinations of
features X ⊆ F produce more relevant antecedents than others for the rules X → +. Our study will
focus specifically on the combinations of features from the universe F which best define the space
of non-redundant rules for the target class. We will do it by integrating the notion of closed itemsets
and the concept of feature relevancy proposed in previous works.

2.1 Closed Itemsets

From the practical point of view of data mining algorithms, closed itemsets are the largest sets
(w.r.t. set-theoretic inclusion) among those other itemsets occurring in the same examples (Bastide
et al., 2000a; Crémilleux and Boulicaut, 2002; Pasquier et al., 2001; Taouil et al., 2000; Zaki, 2000a,
2004; Zaki and Ogihara, 1998). Formally, let support of itemset X ⊆ F , denoted by supp(X), be the
number of examples in the data where X is contained. Then: a set X ⊆ F is said to be closed when
there is no other set Y ⊆ F such that X ⊂ Y and supp(X) = supp(Y ).

In the example of Table 2, the itemset corresponding to {Age=young} is not closed because it
can be extended to the maximal set {Age=young, Astigmatism=no, Tear=normal} that has the same
support in this data. Notice that by treating positive examples separately, the positive label will be
already implicit in the closed itemsets mined on the target class data. So, here we will work by

1. A preliminary version of this work appeared in Garriga et al. (2006). This paper is improved based on the valuable
reviewers’ comments, incorporates proofs, detailed explanations, extended comparisons with related work and more
experiments.
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Spectacle Tear
Id Age prescription Astig. prod. Lens

1 young myope no normal soft
2 young hypermetrope no normal soft
3 pre-presbyopic myope no normal soft
4 pre-presbyopic hypermetrope no normal soft
5 presbyopic hypermetrope no normal soft
6 young myope no reduced none
7 young myope yes reduced none
8 young hypermetrope no reduced none
9 young hypermetrope yes reduced none
10 pre-presbyopic myope no reduced none
11 pre-presbyopic myope yes reduced none
12 pre-presbyopic hypermetrope no reduced none
13 pre-presbyopic hypermetrope yes reduced none
14 pre-presbyopic hypermetrope yes normal none
15 presbyopic myope no reduced none
16 presbyopic myope no normal none
17 presbyopic myope yes reduced none
18 presbyopic hypermetrope no reduced none
19 presbyopic hypermetrope yes reduced none
20 presbyopic hypermetrope yes normal none
21 young myope yes normal hard
22 young hypermetrope yes normal hard
23 pre-presbyopic myope yes normal hard
24 presbyopic myope yes normal hard

Table 1: The contact lens data set, proposed by Witten and Frank (2005).

Spectacle Tear
Id Age prescription Astig. prod. Class

1 young myope no normal +

2 young hypermetrope no normal +

3 pre-presbyopic myope no normal +

4 pre-presbyopic hypermetrope no normal +

5 presbyopic hypermetrope no normal +

Table 2: The set of positive examples when class soft of the contact lens data of Table 1 is selected
as the target class. These examples form the set P of positive examples, while instances of
classes none and hard are considered non-target, thus treated together as negative examples
N. Note that examples are represented here in a simplified tabular form instead of the
feature set representation.
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{Spectacle=myope,

Figure 1: The lattice of closed itemsets for data in Table 2.

constructing the closure system of items on our positive examples and use this system to study the
structural properties of the closed sets to discriminate the implicit label. Many efficient algorithms
have been proposed for discovering closed itemsets over a certain minimum support threshold; see
a compendium of them in Goethals and Zaki (2004).

The foundations of closed itemsets are based on the definition of a closure operator on a lattice
of items (Carpineto and Romano, 2004; Ganter and Wille, 1998). The standard closure operator
Γ for items acts as follows: the closure Γ(X) of a set of items X ⊆ F includes all items that are
present in all examples having all items in X . According to the classical theory, operator Γ satisfies
the following properties: Monotonicity: X ⊆ X ′ ⇒ Γ(X) ⊆ Γ(X ′); Extensivity: X ⊆ Γ(X); and
Idempotency: Γ(Γ(X)) = Γ(X).

From the formal point of view of Γ, closed sets are those coinciding with their closure, that is,
for X ⊆ F , X is closed iff Γ(X) = X . Also, when Γ(Y ) = X for a set Y 6= X , it is said that Y is a
generator of X . By extensivity of Γ we always have Y ⊆ X for Y generator of X . Intensive work has
focused on identifying which collection of generators is good to ensure that all closed sets can be
produced. The named δ-free sets in Boulicaut et al. (2003) are minimal generators when δ = 0, and
these are equivalent to key patterns in Bastide et al. (2000b). Different properties of these δ-free
sets generators in Boulicaut et al. (2003) have been studied for different values of δ.

Considering Table 2, we have the following Γ({Age=young}) = {Age=young, Astigmatism=no,
Tear=normal}. Then, {Age=young} is a generator of this closed set. Note that for Γ(Y ) = X , both
Y and X are sets with exactly the same support in the data, but X being a largest set of items,
that is, Y ⊂ X for all Y such that Γ(Y ) = X . This property is ensured by the extensivity of this
operator. Moreover, closed sets formalized with operator Γ are exactly those sets obtained in closed
set mining process and defined above, which present many advantages (see, for example, Balcázar
and Baixeries, 2003; Crémilleux and Boulicaut, 2002).
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Closed itemsets are lossless in the sense that they uniquely determine the set of all frequent
itemsets and their exact support (cf. Pfaltz, 1996; Zaki and Ogihara, 1998, for more theoretical
details). Closed sets of items can be graphically organized in a Hasse diagram, where each node
corresponds to a closed itemset, and there is an edge between two nodes if and only if they are
comparable (w.r.t. set-theoretic inclusion) and there is no other intermediate closed itemset in the
lattice. In this partial order organization, ascending/descending paths represent the subset/superset
relation. Typically, the top of this lattice is represented by a constant T corresponding to a set of
items not included in any example.

Figure 1 shows the lattice of closed itemsets obtained from data from Table 2. Each node is
depicted along with the set of example identifiers where the closed set occurs. Notice that all closed
itemsets with the same support cover a different subset of transactions of the original data. In
practice, such exponential lattices are not completely constructed, as only a list of closed itemsets
over a certain minimum support suffices for practical purposes. Therefore, instead of closed sets
one needs to talk about frequent closed sets, that is, those closed sets over the minimum support
constraint given by the user. Also notice the difference of frequent closed sets from the popular
concept of maximal frequent sets (see, for example, Tan et al., 2005), which refers to those sets for
which none of their supersets are frequent.

Obviously, imposing a minimum support constraint will eliminate the largest closed sets whose
support is typically very low. The impact of such constraint depends on the application. In general,
there exists a trade-off between quality and speed up of the process. In the following we consider
a theoretical framework with all closed sets; in practice though, we will need a minimum support
constraint to consider only the frequent ones.

2.2 Relevant Features for Discrimination

The main aim of the theory of relevancy, described in Lavrač et al. (1999) and Lavrač and Gam-
berger (2005), is to reduce the hypothesis space by eliminating irrelevant features from F in the
pre-processing phase. Other related work, such as Koller and Sahami (1996) and Liu and Motoda
(1998), eliminate features in the model construction phase. However, here we concentrate on the
elimination of irrelevant features in the preprocessing phase, as proposed by Lavrač and Gamberger
(2005):

Definition 1 (Coverage of features) Feature f ∈ F covers another feature f ′ ∈ F if and only if
true positives of f ′ are a subset of true positives of f , and true negatives of f ′ are a subset of true
negatives of f . In other words, TP( f ′) ⊆ TP( f ) and TN( f ′) ⊆ TN( f ) (or equivalently, TP( f ′) ⊆
TP( f ) and FP( f ) ⊆ FP( f ′)).

Using the definition of feature coverage, we further define that f ′ ∈ F is relatively irrelevant if
there exists another feature f ∈ F such that f covers f ′. To illustrate this notion we take the data
of Table 1: if examples of class none form our positives and the rest of examples are considered
negative, then the feature Tear=reduced covers Age=young, hence making this last feature irrelevant
for the discrimination of the class none.

Other notions of irrelevancy described in Lavrač and Gamberger (2005) consider a minimum
coverage constraint in the true positives or accordingly, on the true negatives.
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3. Closed Sets on Target-class Data

Given a set of examples E = P∪N it is trivial to realize that for any rule X →+ with a set of features
X ⊆ F , the support of itemset X in P (target class examples) exactly corresponds to the number of
true positives (TP) of the rule; reciprocally, the support of X in N (non-target class examples) is
the number of false positives (FP) of the rule. Also, because of the anti-monotonicity property of
support (i.e., Y ⊆ X implies supp(X) ≤ supp(Y )) the following useful property can be easily stated.

Proposition 2 Let X ,Y ⊆ F such that Y ⊆ X, then TP(X) ⊆ TP(Y ) and FP(X) ⊆ FP(Y ).

Proof The anti-monotonicity property of support on the set of positive examples ensures that
|TP(X)| ≤ |TP(Y )|. Since Y ⊆ X , we necessarily have TP(X)⊆ TP(Y ). The same reasoning applies
to the set of negative examples.

For convenience, let supp+(X) denote the support of the set X in the positive set of examples
P, and supp−(X) the support in the negative set of examples N. Notice that for a rule X → + we
indeed have that supp+(X) = |TP(X)| and supp−(X) = |FP(X)|. In the following we will use one
notation or the other according to the convenience of the context.

Following from the last proposition, the next property can be readily seen.

Lemma 3 Feature f ∈ F covers another feature f ′ ∈ F (as in Definition 1), iff supp+({ f ′}) =
supp+({ f , f ′}) and supp−({ f}) = supp−({ f , f ′}).

Proof That f covers f ′ can be formulated as TP( f ′) ⊆ TP( f ) and FP( f ) ⊆ FP( f ′). Because all the
true positives of f ′ are also covered by f , it is true that TP( f ′) = TP( f , f ′); similarly, because all
the false positives of f are also covered by f ′ we have FP( f ) = FP( f , f ′). These two facts directly
imply that supp+({ f ′}) = supp+({ f , f ′}) and supp−({ f}) = supp−({ f , f ′}).

The other direction is proved as follows. The anti-monotonicity property of Proposition 2 ap-
plied over { f ′} ⊆ { f , f ′} leads to TP( f , f ′) ⊆ TP( f ′). Indeed, from supp+({ f ′}) = supp+({ f , f ′})
we have |TP( f ′)|= |TP( f , f ′)|, which along with TP( f , f ′)⊆ TP( f ′) implies an equivalence of true
positives between these two sets: that is, TP( f , f ′) = TP( f ′). From here we deduce TP( f ′)⊆TP( f ).
Exactly the same reasoning applies to the negatives. Proposition 2 ensures that FP( f , f ′) ⊆ FP( f )
because { f} ⊆ { f , f ′}. But from supp−({ f}) = supp−({ f , f ′}) we have |FP( f )| = |FP( f , f ′)|,
which together with FP( f , f ′) ⊆ FP( f ) leads to the equivalence of the false positives between these
two sets: that is, FP( f ) = FP( f , f ′). Then, we deduce FP( f ) ⊆ FP( f ′). That is f covers f ′ as in
Definition 1.

Indeed, this last result allows us to rewrite, within the data mining language, the definition
of relevancy proposed by Lavrač et al. (1999) and Lavrač and Gamberger (2005): a feature f is
more relevant than f ′ when supp+({ f ′}) = supp+({ f , f ′}) and supp−({ f}) = supp−({ f , f ′}). For
instance, the support of {Age=young} over the class none of data from Table 1 is equal to the
support of {Age=young, Tear=reduced} in this same class none ; at the same time, the support of
{Tear=reduced} is zero in the negatives (formed here by the classes soft and hard together), thus
equal to the support in the negatives of {Age=young, Tear=reduced}. So, the feature Age=young
is irrelevant with respect to Tear=reduced, as we identified in Section 2.1. In other words, f ′ is
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irrelevant with respect to f if the occurrence of f ′ always implies the presence of f in the positives,
and at the same time, f always implies the presence of f ′ in the negatives.

To the effect of our later arguments it will be useful to cast the result of Lemma 3 in terms of
the formal closure operator Γ. This will provide the desired mapping from relevant sets of features
to the lattice of closed itemsets constructed on target class examples. Again, because we need to
formalize our arguments against positive and negative examples separately, we will use Γ+ or Γ−
for the closure of itemsets on P or N respectively.

Lemma 4 A feature f is more relevant than f ′ iff Γ+({ f ′}) = Γ+({ f , f ′}) and Γ−({ f}) =
Γ−({ f , f ′}).

Proof It follows immediately from Lemma 3 and the formalization of operator Γ. A feature f is
more relevant than f ′ when f covers f ′ according to Definition 1. Then, by Lemma 3 we have that
supp+({ f ′}) = supp+({ f , f ′}) and supp−({ f}) = supp−({ f , f ′}). By construction of Γ, this means
that the sets { f ′} and { f , f ′} have the same closure on the positives, and the sets { f} and { f , f ′}
have the same closure on the negatives. That is: because Γ is an extensive operator, we can rewrite
it as Γ+({ f ′}) = Γ+({ f , f ′}) and Γ−({ f}) = Γ−({ f , f ′}).

Interestingly, operator Γ is formally defined for the universe of sets of items, so that these
relevancy results on single features can be directly extended to sets of features. This provides a
proper generalization, which we express in the following definition.

Definition 5 (Relevancy of feature sets) Set of features X ⊆ F is more relevant than set Y ⊆ F iff
Γ+(Y ) = Γ+(X ∪Y ) and Γ−(X) = Γ−(X ∪Y ).

To illustrate Definition 5 take the positive examples from Table 2, with negative data formed
by classes none and hard together. Feature Spectacle=myope alone cannot be compared to feature
Astigmatism=no alone with Definition 1 (because Astigmatism=no does not always imply Specta-
cle=myope in the negatives). For the same reason, Spectacle=myope cannot be compared to feature
Tear=normal alone. However, when considering these two features together, then Spectacle=myope
turns out to be irrelevant w.r.t. the set {Astigmatism=no, Tear=normal}. So, the new semantic
notion of Definition 5 allows us to decide if a set of features is structurally more important than
another for discriminating the target class. In the language of rules: rule Y → + is irrelevant if
there exists another rule X → + satisfying two conditions: first, Γ+(Y ) = Γ+(X ∪Y ); and second,
Γ−(X) = Γ−(X ∪Y ). E.g., when soft is the target class: the rule Spectacle=myope → + is not
relevant because at least the rule {Astigmatism=no, Tear=normal}→ + will be more relevant.

Finally, from the structural properties of operator Γ and from Proposition 2, we can deduce that
the semantics of relevant sets in Definition 5 is consistent.

Lemma 6 A set of features X ⊆ F is more relevant than set Y ⊆ F (Definition 5) iff TP(Y )⊆ TP(X)
and FP(X) ⊆ FP(Y ).

Proof That X is more relevant than Y means Γ+(Y ) = Γ+(X ∪Y ) and Γ−(X) = Γ−(X ∪Y ). Propo-
sition 2 ensures that TP(X ∪Y ) ⊆ TP(Y ) because Y ⊆ X ∪Y . Then, from Γ+(Y ) = Γ+(X ∪Y ) we
naturally have that |TP(Y )|= |TP(X ∪Y )| (by formalization of Γ), which together with TP(X ∪Y )⊆
TP(Y ) leads to the equality of the true positives between the following sets: TP(X ∪Y ) = TP(Y ).
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From here, TP(Y ) ⊆ TP(X). On the other hand, it is implied by the definition of relevancy that
Y ⊆ X , thus directly from Proposition 2 we have that FP(X) ⊆ FP(Y ).

The other direction is proved as follows. Let X and Y be two sets such that TP(Y ) ⊆ TP(X) and
FP(X) ⊆ FP(Y ). As all the true positives of Y are also covered by X , it is true that TP(Y ) = TP(X ∪
Y ); similarly, as all the false positives of X are also covered by Y we have that FP(X) = FP(X ∪Y ).
This directly implies that supp+(Y ) = supp+(X ∪Y ) and supp−(X) = supp−(X ∪Y ). By construc-
tion of Γ, this means we can directly rewrite this as Γ+(Y ) = Γ+(X ∪Y ) and Γ−(X) = Γ−(X ∪Y ).
That is: set X is more relevant than Y by Definition 5.

In the language of rules, Lemma 6 implies that when a set of features X ⊆ F is more relevant
than Y ⊆ F , then rule Y → + is less relevant than rule X → + for discriminating the target class.
Moreover, Lemma 6 proves the consistency of Definition 5. If we consider X = { f} and Y = { f ′},
then the definition is simply reduced to the coverage of Definition 1. Yet, the interestingness of
Definition 5 is that we can use this new concept to study the relevancy of itemsets (discovered in
the mining process) for discrimination problems. Also, it can be immediately seen that if X is
more relevant than Y in the positives, then Y will be more relevant than X in the negatives (by just
reversing Definition 5).

Next subsection characterizes the role of closed itemsets to find relevant sets of features for
discrimination. Notice that the first condition to consider a set X more relevant than Y in the dis-
crimination of target class examples is that Γ+(Y ) = Γ+(X ∪Y ). So, the closure system constructed
on the positive examples will be proved to be structurally important for inducing target class rules.

3.1 Closed Sets for Discrimination

Together with the result of Lemma 6, it can be shown that only closed itemsets mined in the set of
positive examples suffice for discrimination.

Theorem 7 Let Y ⊆ F be a set of features such that Γ+(Y ) = X and Y 6= X. Then, set Y is less
relevant than X (as in Definition 5).2

Proof By the extensivity property of Γ we know Y ⊆ X . Then, Proposition 2 ensures that TP(X) ⊆
TP(Y ) and FP(X) ⊆ FP(Y ). However, by hypothesis we have Γ+(Y ) = X , which by construction
ensures that |TP(Y )| = |TP(X)|; but because Y ⊆ X , it must be true that TP(Y ) = TP(X). In all,
we obtained that TP(Y ) = TP(X) and FP(X) ⊆ FP(Y ), and from Lemma 6 we have that X is more
relevant than Y .

Typically, in approaches such as Apriori-C (Jovanoski and Lavrač, 2001), Apriori-SD (Kavšek
and Lavrač, 2006) or RLSD (Zhang et al., 2004), frequent itemsets with very small minimal support
constraint are initially mined and subsequently post-processed in order to find the most suitable rules

2. We are aware that some generators Y of a closed set X might be exactly equivalent to X in terms of TP and FP,
thus forming equivalence classes of rules (i.e., Y → + might be equivalent to X → +). The result of this theorem
characterizes closed sets in the positives as those representatives of relevant rules; so, any set which is not closed can
be discarded, and thus, efficient closed mining algorithms can be employed for discrimination purposes. The next
section will approach the notion of the shortest representation of a relevant rule, which will be conveyed by these
mentioned equivalent generators.
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for discrimination. The new result presented here states that not all frequent itemsets are necessary:
as shown in Theorem 7 only the closed sets have the potential to be relevant.

To illustrate this result we use again data in Table 2, where Γ+({Astigmatism=no}) =
{Astigmatism=no, Tear=normal}. Thus, rule Astigmatism=no → + can be discarded: it covers ex-
actly the same positives as {Astigmatism=no, Tear=normal}, but more negatives. Thus, a rule whose
antecedent is {Astigmatism=no, Tear=normal} would be preferred for discriminating the class soft.

However, Theorem 7 simply states that those itemsets which are not closed in the set of positive
examples cannot form a relevant rule to discriminate the target class, thus they do not correspond to
a relevant combination of features. In other words, closed itemsets suffice but some of them might
not be necessary to discriminate the target class. It might well be that a closed itemset is irrelevant
with respect to another closed itemset in the system.

As illustrated above, when considering class soft as the target class (identified by +), we had
that feature Spectacle=myope is irrelevant with respect to set {Astigmatism=no, Tear=normal}; yet,
set {Spectacle=myope, Astigmatism=no, Tear=normal} is closed in the system (see the lattice of
Figure 1). Indeed, this latter closed set is still irrelevant in the system according to our Definition 5
and can be pruned away. The next section is dedicated to the task of reducing the closure system of
itemsets to characterize the final space of relevant sets of features.

4. Characterizing the Space of Relevant Sets of Features

This section studies how the dual closure system on the negative examples is used to reduce the
lattice of closed sets on the positives. This reduction will characterize a complete space of relevant
sets of features for discriminating the target class. First of all, we raise the following two important
remarks following from Proposition 2.

Remark 8 Given two different closed sets on the positives X and X ′ such that X * X ′ and X ′ *
X (i.e., there is no ascending/descending path between them in the lattice), then they cannot be
compared in terms of relevancy, since they cover different positive examples.

We exemplify Remark 8 with the lattice in Figure 1. The two closed sets: {Age=young, Astigma-
tism=no, Tear=normal} and {Spectacle=myope, Astigmatism=no, Tear=normal}, are not comparable
with subset relation: they cover different positive examples and they cannot be compared in terms
of relevance.

Remark 9 Given two closed sets on the positives X and X ′ with X ⊂ X ′, we have by construction
that TP(X ′) ⊂ TP(X) and FP(X ′) ⊆ FP(X) (from Proposition 2). Notice that because X and X ′

are different closed sets in the positives, TP(X ′) is necessarily a proper subset of TP(X); however,
regarding the coverage of false positives, this inclusion is not necessarily proper.

To illustrate Remark 9 we use the lattice of closed itemsets in Figure 1. By construction the
closed set {Spectacle=myope, Astigmatism=no, Tear=normal} from Figure 1 covers fewer positives
than the proper predecessor {Astigmatism=no, Tear=normal}. However, both closed sets cover ex-
actly one negative example. In this case {Astigmatism=no, Tear= normal} is more relevant than
{Spectacle=myope, Astigmatism=no, Tear=normal}.

Remark 9 points out that two different closed sets in the positives, yet being one included in
the other, may end up covering exactly the same set of false positives. In this case, we would like
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Transaction occurrence list Closed Set

1,2,3,4,5 {Astigmatism=no, Tear=normal }
2,4,5 {Spectacle=hypermetrope,

Astigmatism=no, Tear=normal }
3,4 {Age=pre-presbyopic,

Astigmatism=no, Tear=normal }
1,2 {Age=young, Astigmatism=no,

Tear=normal }

Table 3: The four closed sets corresponding to the space of relevant sets of features for data in Table
2.

to discard the closed set covering less true positives. Because of the anti-monotonicity property of
support, the smaller one will be the most relevant.

From these two remarks we obtain the following result.

Theorem 10 Let X ⊆ F and X ′ ⊆ F be two different closed sets in the positives such that X ⊂ X ′.
Then, we have that X ′ is less relevant than X (as in Definition 5) iff Γ−(X) = Γ−(X ′).

Proof That X ′ is less relevant than X is defined as: Γ+(X ′) = Γ+(X ′∪X) and Γ−(X) = Γ−(X ′∪X).
Since X ⊂ X ′ by hypothesis, we always have that X ′ = X ′∪X , so that the above two conditions can
be rewritten as Γ+(X ′) = Γ+(X ′) (always true) and Γ−(X) = Γ−(X ′), as we wanted to prove.

In the backward direction we start from Γ−(X) = Γ−(X ′), where X ⊂ X ′ as stated by hypothesis
of the theorem. Because X ⊂ X ′ it is true that X ′ = X ′∪X . Then, we can rewrite Γ−(X) = Γ−(X ′)
as Γ−(X) = Γ−(X ′∪X), thus satisfying already the first condition of Definition 5. Also, Γ+(X ′) is
simply the same as Γ+(X ′) = Γ+(X ′∪X), thus satisfying the second condition of Definition 5.

Thus, by Theorem 10 we can reduce the closure system constructed on the positives by discard-
ing irrelevant nodes: if two closed itemsets are connected by an ascending/descending path on the
lattice of positives (i.e., they are comparable by set inclusion ⊂), yet they have the same closure on
the negatives (i.e., they cover the same false positives, or equivalently, their support on the negatives
is exactly the same), then just the shortest set is relevant.

Finally, after Theorem 7 and Theorem 10, we can characterize the space of relevant sets of
features for discriminating the selected target class as follows.

Definition 11 (Space of relevant sets of features) The space of relevant combinations of features
for discriminating the target class is defined as those sets X for which it holds that: Γ+(X) = X and
there is no other closed set Γ+(X ′) = X ′ such that Γ−(X ′) = Γ−(X).

It is trivial to see after Remarks 8 and 9, that by construction, any two sets in this space always
cover a different set of positives and a different set of negatives. These final sets can be directly
interpreted as antecedents of rules for classifying the target class (i.e., for each relevant X ⊆ F in
the space, we have a relevant rule X → + for classifying the positives).

The four closed sets forming the space of relevant sets of features for the class soft are shown in
Table 3. It can be checked that the CN2 algorithm (Clark and Niblett, 1989) would output a single
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rule whose antecedent corresponds to the closed set in the first row of Table 3. On the other hand,
Ripper (Cohen, 1995) would obtain the most specific relevant rules, that is, those corresponding to
the three last rows from Table 3. Finally, other algorithms such as Apriori-C would also output rules
whose antecedents are not relevant as such, for example, Astigmatism=no → Lenses= soft.

To complete the example of the contact lenses database: the lattice of closed itemsets on the
class hard contains a total of 7 nodes, which is reduced to only 3 relevant sets; on the other hand,
the lattice of closed itemsets on the class none contains a total of 61 nodes, which is reduced to 19
relevant sets.

The space of relevant combinations defines exhaustively all the relevant antecedents for dis-
criminating the target class. Not to generate this space completely, in large sets of data a minimum
support threshold will be usually imposed (see more details in the experimental section). As ex-
pected, too large relevant sets will be naturally pruned by the minimum support constraint, which
might have an undesired effect depending on the application. Still, it is known that very long closed
sets, that is, too specific sets of features in our contribution, tend to overestimate when constructing
a classifier or learning a discriminative model. In general, it will be up to the user to find a proper
trade off between quality of the results and speed up of the process.

4.1 Shortest Representation of a Relevant Set

Based on Theorem 7 we know that generators Y of a closed set X are characterized to cover exactly
the same positive examples, and at least the same negative examples. Because of this property, any
generator will be redundant w.r.t. its closure. That is:

Remark 12 Let Y be a generator of X in the closure system on the positives; then, Γ+(Y ) = X
always implies TP(Y ) = TP(X) and FP(X) ⊆ FP(Y ) (from Lemma 6 and Theorem 7). However,
note that the inclusion between the set of false positives is not necessarily proper.

However, we have FP(X)⊆FP(Y ) for Y generator of X ; so, it might happen that some generators
Y are equivalent to their closed set X in that they cover exactly the same true positives and also the
same false positives.

Definition 13 (Equivalent generators) Let Γ+(Y ) = X and Y 6= X. We say that a generator Y is
equivalent to its closure X iff FP(X) = FP(Y ).

The equivalence between true positives of Y and X is guaranteed because Γ+(Y ) = X . Therefore,
it would be only necessary to check if generators cover the same false positives than its closure
to check equivalence. Generators will provide a more general representation of the relevant set
(because Y ⊂ X by construction). So, Y → + is shorter than the rule X → + and it is up to the
user to choose the more meaningful to her or to the application. For example, this may depend on a
minimum-length criterion of the final classification rules: a generator Y equivalent to a closed set X
satisfies by construction that Y ⊂ X , so Y → + is shorter than the rule X → +. Then, the minimal
equivalent generators of a closed itemset X naturally correspond to the minimal representation of
the relevant rule X → +.

In terms of the closure operator of negatives, we have the following way of characterizing these
equivalent generators.
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Figure 2: The evaluation of relevant combinations of features in the ROC space.

Proposition 14 Let Γ+(Y ) = X and Y 6= X. Then Y is an equivalent generator of X iff Γ−(X) =
Γ−(Y ).

Proof It is defined that the generator Y is equivalent to its closure X when FP(X) = FP(Y ), which
directly implies Γ−(X) = Γ−(Y ) by construction of Γ. On the other direction: Γ−(X) = Γ−(Y )
implies |FP(Y )| = |FP(X)|, but because Y ⊆ X by the extensivity of Γ, we necessarily have that
FP(Y ) = FP(X).

It is well-known that minimal generators of a closed set X can be computed by traversing the
hypergraph of differences between X and their proper predecessors in the system (see, for example,
Pfaltz and Taylor, 2002). In practice, efficient algorithms have been designed for computing free
sets and their generalizations (see, for example, Calders and Goethals, 2003).

5. Evaluation of Relevant Sets in the ROC Space

The ROC space (Provost and Fawcett, 2001) is a 2-dimensional space that shows a classifier (rule/
ruleset) performance in terms of its false positive rate (also called ‘false alarm’), FPr = |FP|

|TN|+|FP| =
|FP|
|N| plotted on the X-axis, and true positive rate (also called ‘sensitivity’) TPr = |TP|

|TP|+|FN| = |TP|
|P|

plotted on the Y -axis. The ROC space is appropriate for measuring the quality of rules since rules
with the best covering properties are placed in the top left corner, while rules that have similar
distribution of covered positives and negatives as the distribution in the entire data set are close to
the main diagonal.

A set of features from Definition 5 can be interpreted as a condition part of a rule or also
as a subgroup description. A set of relevant sets of features from Definition 11 can therefore be
visualized and evaluated in the ROC space as a ruleset.

Relevant sets are induced with a minimum support constraint on the positives (as discussed in
Section 4). This means that in the ROC space they all lie above the minimum true positive rate
constraint line (in Figure 2 denoted as minTPr). Relevant sets are depicted in Figure 2 as circles.
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Sometimes, depending on the application, additional filtering criteria are applied. In such cases
a maximum false positive rate constraint can be imposed (in Figure 2 this constraint is represented
by a dashed line, rules eliminated by this constraint are shown as circles with backslash), or we
can apply a minimum confidence constraint (represented by a dotted line, rules eliminated by this
constraint are shown as slashed circles in Figure 2). Alternatively we may simply select just the
rules on the convex hull.

Let us interpret and visualize Theorems 7 and 10 in the ROC space. According to Theorem 7,
sets of features Y , s.t. Y ⊂ X , that cover the same positives as X (i.e., T P(Y ) = T P(X)), are filtered
out. Since Y and X have the same true positive rate (i.e., T Pr(Y ) = T Pr(X)), both lie on the same
horizontal line in the ROC space. Since Y is a subset of X , which in rule learning terminology
translates into “rule X is a specialization of rule Y ”, FPr(X) ≤ FPr(Y ) so Y is located at the right
hand side of X . In Figure 2, a sample feature set filtered out according to Theorem 7 is depicted as a
diamond. Note that this captures exactly the notion of relevancy defined by Lavrač and Gamberger
(2005) and Lavrač et al. (1999).

According to Theorem 10, sets of features X ′, s.t. X ⊂ X ′, that cover the same negatives as
X (i.e., FP(X ′) = FP(X)), are filtered out. Since X ′ and X have the same false positive rate (i.e.,
FPr(X ′) = FPr(X)), both lie on the same vertical line in the ROC space. Since X is a subset
of X ′, which in rule learning terminology translates into “rule X ′ is a specialization of rule X ”,
T Pr(X)≥ T Pr(X ′), therefore X is located above X ′ in the ROC space. In Figure 2, a sample feature
set filtered out according to Theorem 10 is depicted as a square.

Note that the feature sets filtered out by the relevancy filter are never those on the ROC convex
hull. Furthermore, it can be proved that there are no sets of features outside the convex hull (grey
area on Figure 2 denotes an area without sets/rules).

6. Experimental Evaluation

The results presented above lead to the concept of closed sets in the context of labeled data. In
practice, closed sets can be discovered from labeled data as follows.

1. First, mining the set S = {X1, . . . ,Xn} of frequent closed itemsets from the target class (The-
orem 7). This requires a minimum support constraint on positives. For our experiments we
will use the efficient LCM algorithm by Uno et al. (2004).

2. Second, reducing S to the space of relevant set of features by checking the coverage in the
negatives (Theorem 10). Schematically, for any closed set Xi ∈ S, if there exists another
closed set X j ∈ S such that both have the same support in the negatives and X j ⊂ Xi, then Xi is
removed.

The first step of this process usually requires a minimum support constraint on true positives,
while the second step can be computed automatically without any constraints. However, depend-
ing on the purpose of the application we can apply an extra filtering criterion (such as forcing a
maximum false positive constraint on the negatives, or a minimum accuracy constraint), or com-
pute minimal equivalent generators of the relevant sets as described above. For short, we will name
this computing process as RelSets (i.e., the process of discovering the Relevant Sets of features of
Definition 5).
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Emerging Patterns
Growth rate > 1.5 Growth rate ∞

Data set Class Distrib. % EPs RelSets CF% EPs RelSets CF%

Lenses soft 20.8 31 4 87.10 8 3 62.5
hard 16.9 34 3 91.18 6 2 66.67
none 62.5 50 12 76.00 42 4 90.48

Iris setosa 33.3 83 16 80.72 71 7 90.14
versicolor 33.3 134 40 70.15 63 10 84.13
virginica 33.3 92 16 82.61 68 6 91.18

Breast-w benign 65.5 6224 316 94.92 5764 141 97.55
malignant 34.5 3326 628 81.12 2813 356 87.34

SAheart 0 34.3 4557 1897 58.37 2282 556 75.64
1 65.7 9289 2824 69.60 3352 455 86.43

Balance-scale B 7.8 271 75 72.32 49 49 0.00
R 46 300 84 72.00 90 90 0.00

Yeast MIT 16.4 3185 675 78.81 250 40 84.00
CYT 31.2 3243 808 75.08 68 16 76.47
ERL 0.3 1036 5 99.52 438 4 99.09

Monk-1 0 64.3 1131 828 26.79 321 18 94.39
1 35.7 686 9 98.69 681 4 99.41

Lymphography metastases 54.72 36435 666 98.17 10970 90 99.18
10% min supp. malign 41.21 61130 740 98.79 19497 55 99.72
Crx + 44.5 3366 782 76.76 304 26 91.44
10% min supp. − 55.5 3168 721 77.24 12 5 58.33

Table 4: Compression factor (CF% = (1− |RelSets|
|EPs| )× 100) of EPs in several UCI data sets. Note

that we did not impose any minimum true positive threshold on any data set, except for
Lymphography and Crx, where all EPs and RelSets were discovered with a 10% threshold
on true positives.

As discussed above, the minimum support constraint on the first phase will tend to prune too
long closed sets and this might have an impact in the application. In practice however, it is known
that the longest sets of features are sometimes too specific, thus leading to overfitting problems. It is
up to the user to trade off between the specificity of the closed sets and the speed up of the process.
Also notice that the lowest the minimum support constraint, the largest the number of closed sets,
and thus, the most expensive it becomes to compute the second phase of the approach. Our goal is
not to present efficient algorithms but to illustrate the concept of relevancy.

Still we find important to point out that the notion of relevancy explored in the paper prefers
typically the shortest closed sets. This is obvious by the second reduction phase shown in Theorem
10, where the shortest sets are always more relevant than the longest ones if they cover the same
negative examples. Thus, finding a proper threshold level for the minimum support is not critical in
our experiments as different minimum support thresholds lead to very similar results.
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6.1 Emerging Patterns on UCI data

Emerging Patterns (EP) (Dong and Li, 1999; Li et al., 2000; Dong et al., 1999) are sets of features
in the data whose supports change significantly from one class to another. More specifically, EPs
are itemsets whose growth rates (the ratio of support from one class to the other, that is, TPr

FPr of the
pattern) are larger than a user-specified threshold. In this experimental setting we want to show that
some of the EPs mined by these approaches are redundant, and that our relevant sets correspond to
the notion of compacted data representation for labeled data. Indeed, EPs are a superset of the result
returned by RelSets.

In our comparisons we calculate relevant sets over a certain growth rate threshold (1.5 and
infinite), and we compare this with the number of EPs by using the same growth rate constraint.
Numerical attributes in the data sets are discretized when necessary by using four equal frequency
intervals. Although being a very simple discretization scheme, we want to point out that our goal in
this experiment is to compare the number of EPs with our relevant sets, and thus, any preprocessing
decision on the original data will affect in the same way the two methods we wish to compare.

Results are shown in Table 4. We observe that compression factor may vary according to the data
set. When data is structurally redundant, compression factors are higher since many frequent sets
are redundant with respect to the closed sets. However, in data sets where this structural redundancy
does not exist (such as the Balance-scale data), the compression factor is zero, or close to zero.

A set of relevant properties of EPs have been studied in Soulet et al. (2004). This latter work
also identifies condensed representations of EPs from closed sets mined in the whole database. Our
approach is different in that we deal with pieces of the data for each class separately, and this allows
for a reduction phase given by Theorem 10. Indeed, the amount of compression that this second
phase provides in our approach depends on the distribution of the negative examples in the data, but
at least, the number of relevant sets obtained by RelSets will be always smaller than the number of
condensed EPs from Soulet et al. (2004).

6.2 Essential Rules on UCI Data

Essential rules were proposed by Baralis and Chiusano (2004) to reduce the number of association
rules to those with nonredundant properties for classification purposes. Technically, they correspond
to mining all frequent itemsets and removing those sets X such that there exists another frequent
Y with Y ⊂ X and having both the same support in positives and negatives. This differs from our
proposal in the way of treating the positive class with closed sets. The compression factor achieved
for these rules is shown in Table 5. Note that essential rules are not pruned by growth rate threshold,
and this is why their number is usually higher than the number of emerging patterns shown in
previous subsection.

6.3 Subgroup Discovery in Microarray Data Analysis

Microarray gene expression technology offers researchers the ability to simultaneously examine
expression levels of hundreds or thousands of genes in a single experiment. Knowledge about gene
regulation and expression can be gained by dividing samples into control samples (in our case mock
infected plants), and treatment samples (in our case virus infected plants). Studying the differences
between gene expression of the two groups (control and treatment) can provide useful insights into
complex patterns of host relationships between plants and pathogens (Taiz and Zeiger, 1998).
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Data set Class Distrib. % Essential rules RelSets CF%

Lenses soft 20.8 43 4 90.69
hard 16.9 39 3 92.30
none 62.5 89 19 78.65

Iris setosa 33.3 76 20 73.68
versicolor 33.3 111 41 63.06
virginica 33.3 96 27 71.87

Breast-w benign 65.5 3118 377 87.90
malignant 34.5 2733 731 73.25

SAheart 0 34.3 6358 4074 35.92
1 65.7 9622 4042 58

Balance-scale B 7.8 415 147 88.67
R 46 384 364 5.20

Yeast MIT 16.4 2258 1125 50.17
CYT 31.2 2399 1461 80.78
ERL 0.3 417 5 98.80

Monk-1 0 64.3 1438 1135 21.07
1 35.7 1477 363 75.42

Lymphography metastases 54.72 1718 369 78.52
10% min supp. malign 41.21 2407 476 80.22
Crx + 44.5 2345 1091 53.47
10% min supp. − 55.5 2336 1031 55.86

Table 5: Compression factor (CF% = (1− |RelSets|
|EPs| )×100) of essential rules in UCI data sets. Note

that essential rules and RelSets are not pruned by any growth rate threshold.

Microarray data analysis problems are usually addressed by statistical and data mining/machine
learning approaches (Speed, 2003; Causton et al., 2003; Parmigiani et al., 2003). State-of-the-art
machine learning approaches to microarray data analysis include both supervised learning (learning
from data with class labels) and unsupervised learning (such as conceptual clustering). A review
of these various approaches can be found in Molla et al. (2004). It was shown by Gamberger et al.
(2004) that microarray data analysis problems can be approached also through subgroup discovery,
where the goal is to find a set of subgroup descriptions (a rule set) for the target class, that preferably
has a low number of rules while each rule has high coverage and accuracy (Lavrač et al., 2004;
Gamberger and Lavrač, 2002).

The goal of the real-life experiment addressed in this paper is to investigate the differences
between virus sensitive and resistant transgenic potato lines. For this purpose, 48 potato samples
were used, leading to 24 microarrays. The laboratory experiment was carried out at the National
Institute of Biology, Ljubljana, Slovenia.

Our data set contains 12 examples. Each example is a pair of microarrays (8 and 12 hours after
infection) from the same transgenic line. All the data was discretized by using expert background
knowledge. Features of the form |gene expression value| > 0.3 were generated and enumerated.
Three groups of features were generated: first group corresponding to gene expression levels 8 hours
after infection (feature numbers ∈ [1,12493]); second group corresponding to gene expression levels
12 hours after infection (feature numbers ∈ [12494,24965]); finally, a third group corresponding
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Data set Class Num. of rules AUC Time
RelSets RelSets-ROC SD RelSets SD RelSets SD

potatoes sensitive 1 1 20 100% 100% <1s >1h
resistant 1 1 20 100% 91% <1s >1h

Table 6: Comparison of algorithms RelSets and SD on the potato microarray data. Column RelSets-
ROC shows the number of RelSets rules on the ROC convex hull.

to the difference between gene expression levels 12 and 8 hours after infection (feature numbers
∈ [24966,37559]).

We used the RelSets algorithm to analyze the differences between gene expression levels char-
acteristic for virus sensitive potato transgenic lines, discriminating them from virus resistant potato
transgenic lines and vice versa. We ran it twice: once the sensitive examples were considered pos-
itive and once the resistant ones were considered positive. In both cases the constraint of minimal
true positive count was set to 4, and in the first phase the algorithm returned 22 closed sets on pos-
itives. Rule relevancy filtering according to Definition 5, filtered the rules to just one relevant rule
with a 100% true positive rate and a 0% false positive rate for each class. The results gained are
shown below, where features are represented by numbers.

Twelve features determine the virus sensitive class for the potato samples used:

{13031, 13066, 19130, 23462, 24794, 25509, 29938, 33795, 33829, 35003, 35190, 36266} →
sensitive

Sixteen features determine the virus resistant class for the potato samples used:

{16441, 20474, 20671, 24030, 25141, 29777, 30111, 32459, 33225, 33248, 33870, 34108, 34114,
34388, 37252, 37484} → resistant

When comparing our results with the SD algorithm for subgroup discovery (Gamberger and
Lavrač, 2002), we observe that the running time of SD degrades considerably due to the high di-
mensionality of this data set. Moreover, SD obtains a larger set of rules which are less interpretable
and do not have the same quality as the rules obtained with RelSets. Table 6 shows the numbers of
discovered rules, area under ROC curve and the running time of both algorithms.

The results obtained with RelSets were validated by the experts from the National Institute of
Biology, Ljubljana, Slovenia, and evaluated as insightful. Based on the tested samples, the experts
have observed that the response to the infection after 8 hours is not strong enough to distinguish
between resistant transgenic lines and sensitive ones. None of the gene expression changes after 8
hours appeared significant for the RelSets algorithm. However, selected gene expression levels after
12 hours and the comparison of gene expression difference (12-8) characterize the resistance to the
infection with potato virus for the transgenic lines tested.3

3. Details of this analysis are beyond the scope of this paper: first qualitative analysis results have appeared in Kralj
et al. (2006), while a more thorough analysis is to appear in a biological journal.
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7. Conclusions

We have presented a theoretical framework that, based on the covering properties of closed itemsets,
characterizes those sets of features that are relevant for discrimination. We call them closed sets
for labeled data, since they keep similar structural properties of classical closed sets, yet taking into
account the positive and negative labels of examples. We show that these sets define a nonredundant
set of rules in the ROC space.

This study extends previous results where the notion of relevancy was analyzed for single fea-
tures (Lavrač and Gamberger, 2005; Lavrač et al., 1999), and it provides a new formal perspec-
tive for relevant rule induction. In practice the approach shows major advantages for compacting
emerging patterns and essential rules and solving hard subgroup discovery problems. Thresholds on
positives make the method tractable even for large databases with many features. The application
to potato microarray data, where the goal was to find differences between virus resistant and virus
sensitive potato transgenic lines, shows that our approach is not only fast, but also returns a small
set of rules that are meaningful and easy to interpret by domain experts.

Future work will be devoted to adapting efficient algorithms of emerging patterns by Dong and
Li (1999) for the discovery of the presented relevant sets.
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D. Gamberger and N. Lavrač. Expert-guided subgroup discovery: Methodology and application.
Journal of Artificial Intelligence Research, 17:501–527, 2002.
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5 Results Summary

The purpose of this dissertation is to unify data mining tasks that deal with finding dif-

ferences between groups in a novel unifying framework, named supervised descriptive rule

induction (SDRI). By doing so, our aim is to improve individual supervised descriptive

rule induction methods by cross-fertilizing the approaches developed by individual sub-

areas of supervised descriptive rule induction. Furthermore, we aim at developing novel

SDRI methods through component exchange (e.g., enabling the use of subgroup discovery

components in contrast set mining). Finally, we aim at showing the advantages of this

approach in applications in important real life problems in medicine and biology.

In this chapter, we present and discuss the achieved results. The discoveries are not

treated in their chronological order, since the research process was iterative and different

goals are entangled. We rather describe the results and discoveries in the following logical

order: first the contributions to data mining and then the contributions to application

areas. Besides the scientific contributions, the methodology used and the availability of

the developed software are also discussed.

5.1 Methodology

We used the following methodology to prove the research hypothesis (stated in Section 1.3)

and achieve the goals of the thesis. First, the existing literature on different data mining

tasks focused on distinguishing between groups was elaborated in an overview. Second, we

proposed a theoretical framework that unifies the terminology, definitions and heuristics

of supervised descriptive rule induction. We continued our research with experiments in

real-life domains. We next proposed a way of adapting subgroup discovery visualizations to

contrast set mining and emerging patterns. All in all, the methodology used to prove our

hypothesis was to implement the SDRI framework and show that it really brings the desired

benefits. The hypothesis has indeed been proven by successful applications in important

real-life problems in medicine (analysis of brain ischemia) and biology (analysis of virus

infected potato plants).
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5.2 Contributions to data mining

The basis of this thesis is the identification of supervised descriptive rule induction (SDRI)

tasks (contrast set mining, emerging pattern mining, subgroup discovery and other related

approaches) and a survey of past SDRI research (Chapter 2). The survey is a fundamental

step that enabled us to generalize from specific tasks that deal with finding descriptive

rules on labeled data to a general SDRI framework.

The proposed SDRI framework (Chapter 2) unifies the supervised descriptive rule in-

duction terminologies, definitions and heuristics. Once the general framework is available,

the cross-fertilization of approaches developed by individual sub-areas of supervised de-

scriptive rule induction can begin. We next describe a methodology for contrast set min-

ing though subgroup discovery, supporting factors, and visualization as examples of the

cross-fertilization process enabled by the SDRI unifying framework (Chapter 3). They are

followed by the RelSets methodology of closed sets for labeled data (Chapter 4).

Chronologically, one of our first steps towards the unifying supervised descriptive rule

induction framework was the identification of contrast set mining and subgroup discovery

as very similar data mining tasks. A methodology for contrast set mining though sub-

group discovery, named CSM-SD (Chapter 3), presents two possible transformations of

a contrast set mining problem to a subgroup discovery problem: the formally justified

pairwise transformation and the application driven one-versus-all transformation. Besides

presenting the contrast set mining results to the end user, we have identified other con-

trast set mining open issues, that can be solved through subgroup discovery: avoiding of

overlapping rules, handling attributes with continuous values and choosing the appropri-

ate search heuristics. The concrete application of our SDRI framework to contrast set

mining resulted in the novel CSM-SD methodology, developed in tight collaboration with

the domain expert while analyzing data about brain ischemia patients. This research was

application driven.

In subgroup discovery, the features that appear in subgroup descriptions are called the

principal factors, while the additional features that are also characteristic for the discovered

subgroup are called the supporting factors (Gamberger et al., 2003). Supporting factors

are useful for presenting the discovered rules to the end user, since they complement the

principal factors when distinguishing between the classes. Since presenting the contrast set

mining results to the end user was one of the contrast set mining open issues, we adapted

this subgroup discovery method to contrast set mining. Supporting factors from subgroup

discovery can not be directly used for contrast set mining, but, by using the unifying SDRI

framework, they can be effectively adapted to contrast set mining and therefore improve
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the contrast set mining explanatory potential (Chapter 3).

A relatively trivial, but nevertheless significant cross-fertilization achievement is the

generalization of subgroup discovery visualization methods to supervised descriptive rule

induction. Presenting the results of contrast set mining to the end user (which includes

visualization) was identified as an open issue of contrast set mining by Webb et al. (2003).

On the other hand, the visualization problem has been addressed by many authors in

another SDRI sub-area: subgroup discovery (Atzmüller and Puppe, 2005; Gamberger et al.,

2002; Kralj et al., 2005; Wettschereck, 2002; Wrobel, 2001). The SDRI framework allows

for the detection of similarities and differences between contrast set mining and subgroup

discovery and, by doing so, it proposes subgroup discovery visualization methods that fit

directly the desired contrast set mining problem and also shows the way of adaptation of

other methods that are not directly applicable. As mentioned above, we have not only

generalized the subgroup discovery visualization methods to contrast set mining, but to

SDRI tasks in general (Chapter 2).

To summarize, the unifying framework is not only a scientific achievement on its own,

but it allows for the cross-fertilization of different supervised descriptive rule induction

algorithms and approaches.

Besides contributing the unifying SDRI framework and its successful applications, we

have also developed a new method for SDRI named mining of closed sets for labeled data

and the algorithm RelSets (Chapter 4). We have presented a theoretical framework that,

based on the covering properties of closed itemsets, characterizes those sets of features

that are relevant for discrimination while keeping similar structural properties to classical

closed sets. We show that these sets define a non-redundant set of rules in the ROC space.

The RelSets algorithm returns all the relatively relevant rules which fulfill the minimum

true positive count constraint. The algorithm is complete in the sense that it finds all

the most specific rules satisfying the constraints. This is, for example, appropriate for

microarray data analysis since not many examples are available and exhaustive search of

the space can be desired (Kralj et al., 2006).

5.3 Applications of supervised descriptive rule induction

methods

We have applied SDRI methods to practical problem domains in medicine and biology.

In the medical application (Chapter 3), we developed and used our CSM-SD methodol-

ogy for contrast set mining through subgroup discovery on a real-life problem of analyzing



82 RESULTS SUMMARY

a dataset of patients with brain ischemia, where the goal of data analysis was to determine

the type of brain ischemia from risk factors obtained from anamnesis, physical examina-

tion, laboratory tests and ECG data. The data analysis process was iterative and included

interaction with the domain expert in each iteration. First, standard data mining methods

were used, like decision tree (Quinlan, 1986) and classification rule (Cohen, 1995) learn-

ing, but both lead to results that were not satisfactory to the domain expert. Second,

the data mining task was formulated as a contrast set mining task and a formally justified

transformation of contrast set mining to subgroup discovery was introduced, named the

pairwise transformation. In this iteration, the domain expert was not fully satisfied with

the result. Brainstorming on the methods used and the discussion of the expectations

and way-of-thinking in the analyzed domain led to important new insights that triggered

a new approach. In the next phase, an application driven transformation from contrast

set mining to subgroup discovery was developed, which incorporated the experiences from

the previous iterations and was well fitted to the problem and the expert’s expectations.

We named it the one-versus-all transformation. Last, we improved the explanatory po-

tential of the discovered patterns by providing the supporting factors for each discovered

pattern. The supporting factors, which have been defined and used in subgroup discovery,

were adapted to the contrast set mining task and successfully used in our experiments.

Visualization was also used in every iteration.

The analysis results were interpreted by the medical domain expert. The main aim of

our research was to discover the differences between two types of stroke: embolic stroke

and thrombotic stroke, to be able to define the risk factors for the diseases. Both types

of stroke are ischemic (a clot blocks the blood flow to the brain), but the origin of the

clot is different. The results confirmed some already known risk factors for stroke and

new insights were also gained. For example, high systolic blood pressure (above 139)

is in medical practice considered characteristic for both diseases. Our results confirm

this finding and also indicate that extremely high systolic blood pressure (above 185) is

not typical for embolic stroke patients. To summarize, our application proved successful:

known risk factors were confirmed and new insights were gained.

Several lessons have been learned from this experiment. First, iterative knowledge dis-

covery is a necessity. Second, the descriptive data analysis task is not concluded when

individual patterns are discovered; presenting the results to the end user with proper visual-

ization methods and additional information (in our case the supporting factors) makes the

discovered patterns more tangible and therefore more acceptable to the end user. Third,

the involvement of the end user is beneficial for achieving better analysis results. Last,

the involvement of the end user is beneficial also for the development of the theory and
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methodology. To summarize, the interaction with the end user is of vital importance, not

only for the application itself, but also for the development of the theory and methodology.

In the biological application (Chapter 4, Section 6.3), we applied the mining of closed

sets for labeled data (RelSets for short) to potato microarray data, where the goal was to

find differences in response to viral infection of virus resistant and virus sensitive potato

transgenic lines (see Kralj et al., 2006, for more details). The RelSets method was devel-

oped independently of any application and the motivation for its development was mainly

theoretical. The reason for applying it to microarray data was that data mining tasks on

microarray data differ from traditional data mining tasks because microarray domains are

characterized by very large numbers of attributes (genes) relative to the number of exam-

ples (observations, samples). Standard SDRI algorithms do not perform well on microarray

data because of this high dimensionality problem. In contrast, RelSets does not have any

difficulty when faced with the high dimensionality problem.

The involvement of the biological expert was crucial in the non-trivial data preparation

phase. Besides the data cleaning and normalization, which are standard preprocessing

steps in microarray data analysis, expert-driven data discretization was also performed for

semi-automatic feature generation, which was the most complex step due to the compli-

cated biological experimental setup. Such data preprocessing can be used in other similar

settings. Once the adequate features were generated, the algorithm was run and the

results were visualized with heatmaps, which are a standard method in micorarray data

visualization. RelSets is not only fast—much faster than other SDRI algorithms on mi-

croarray data—but also returns a small set of rules that are meaningful and easy to be

interpreted by domain experts (see Table 6 in Chapter 4).

The analysis results were interpreted by a biology expert. The expert was, for example,

able to determine the categories of genes that influence the sensitivity of potato plants

to the tested virus. The analysis results also helped to elucidate the time response of the

plants to the virus: all the plants responded similarly in the first eight hours after infection,

while the response twelve hours after the infection was different for resistant and sensitive

transgenic potato lines (Baebler et al., 2009).

In summary, we have shown the adequacy of supervised descriptive rule induction meth-

ods in real-life data analysis problems where the goal is to gain new insights into the domain.

In our applications, the domain experts were intensively involved in the knowledge discovery

process, which was beneficial for both, the expert and the methodology development.
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5.4 Software availability

The software that was used in most of the experiments in this dissertation is grouped in the

Subgroup Discovery Toolkit for Orange, implemented in the Orange data mining toolbox

(Demšar et al., 2004). The algorithm implementation in Orange is valuable, as it offers

various data structures, data and model visualization tools and has excellent facilities for

building new visualizations.

The Subgroup Discovery Toolkit for Orange includes the implementation of:

• three subgroup discovery algorithms: SD (Gamberger and Lavrač, 2002), CN2-SD
(Lavrač et al., 2004) and Apriori-SD (Kavšek and Lavrač, 2006),

• two visualization methods: the visualization by bar charts and the representation of
rules in the ROC space (Kralj et al., 2005; Kralj Novak et al., 2009b),

• six evaluation measures for subgroup discovery (Kavšek and Lavrač, 2006).

The algorithms are implemented in such a way that they can be used for both predictive

and descriptive data mining. It follows that also all the Orange’s facilities for classifiers

can be used for subgroup discovery.

The Subgroup Discovery Toolkit for Orange is available under the GPL (General Public

Licence) terms on the web page http://kt.ijs.si/petra˙kralj/SubgroupDiscovery/.

The description of the toolkit, system requirements, instructions for installation, screen-

shots and contact information are also available on the web page.

The Subgroup Discovery Toolkit for Orange does not include the implementation of the

algorithms Magnum Opus (Webb, 1995), used in Chapter 2, and the algorithm for finding

supporting factors (Gamberger et al., 2003), used in Chapter 3. For these implementa-

tions, one should contact the original authors of the algorithms, who also co-authored the

papers where the algorithms were used (for Magnum Opus contact Geoffrey I. Webb, for

supporting factors contact Dragan Gamberger).

The implementation of the RelSets algorithm, described in Chapter 4, is available as a

web service on the web site http://kt.ijs.si/petra˙kralj/RelSets/.

An effort was made to make the software available for use by the general public. Even if

such efforts do not bring scientific merits directly, they enable the continuity and spreading

of the methods and contribute to the popularization of machine learning in general. These

are important issues, even if they are not entirely scientific.

http://kt.ijs.si/petra_kralj/SubgroupDiscovery/
http://kt.ijs.si/petra_kralj/RelSets/
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6 Conclusions and Further Work

In this dissertation, we have introduced the term supervised descriptive rule induction

(SDRI), as a unification of several areas of machine learning that deal with finding com-

prehensible rules from class labeled data. We have developed a unifying framework for

subgroup discovery, contrast set mining and emerging pattern mining, as representatives

of supervised descriptive rule induction approaches, which includes the unification of the

terminology, definitions and heuristics. By using our SDRI framework, we were able to

overcome some open issues and limitations of SDRI sub-areas, like presenting the results

to the end user by visualization and explanation through supporting factors. We have also

developed a new method called mining of closed sets for labeled data - RelSets. It adapts

closed sets to classification and discrimination purposes. We have successfully applied this

method to the analysis of microarray data.

Applications of SDRI methods to real-life datasets and interaction with interested

domain experts lead to new insights in the analyzed domains and to new methodology

developments. For example, we have developed a methodology for contrast set mining

though subgroup discovery, which proposes two transformations from contrast set mining

to subgroup discovery. Depending on the problem at hand, a proper transformation should

be used.

The main algorithms used in the experiments in this dissertation were made available

on-line, mostly as downloadable tools. One direction for further research is to decompose

SDRI algorithms, preprocessing and evaluation methods into basic components and their

re-implementation as connectable web services, which includes the definition of interfaces

between SDRI services. For instance, this can include the adaptation and implementation

of subgroup discovery techniques to solving open problems in the area of contrast set

mining and emerging patterns. This would allow for the improvement of algorithms due

to the cross-fertilization of ideas from the different SDRI sub-areas.

Another issue that has not been addressed in this dissertation are complex data types

and background knowledge. The SDRI attempts in this direction include relational sub-

group discovery approaches proposed by Wrobel (1997, 2001) with algorithm Midos, by

Klösgen and May (2002) with algorithm SubgroupMiner, which is designed for spatial data

mining in relational space databases, and by Železný and Lavrač (2006) with the algorithm
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RSD (Relational subgroup discovery). An attempt to building rules when using specialized

biological background knowledge in ontological form is the method SEGS by Trajkovski

et al. (2008). It is a step towards semantically enabled creative knowledge discovery in

the form of descriptive rules, which may become the next knowledge discovery paradigm.

Even if the focus of this dissertation is on new theory and methods, the purpose of

the methods is to be used in practical data analysis. Dissemination of the methods to

additional applications is vital. A dissemination attempt is making the algorithm imple-

mentations available on-line and providing user friendly interfaces to their use. Other ideas

for dissemination include publications in popular science media and lectures to diverse au-

diences. By promoting the methods in this way, they can achieve their purpose of being

used in practical data analysis.

The core problem that motivated this thesis and the subsequent core contribution of

this dissertation arises from the granularity of the scientific community. For instance, at

least three “cliques” of data mining researchers in the field of supervised descriptive rule

induction formed in time—contrast set mining, emerging pattern mining and subgroup

discovery—each using their own terminology and background knowledge. In this thesis,

we have unified the terminology and, by doing so, we were able to unify the supervised

descriptive rule induction field and aggregate its achievements. We believe that the super-

vised descriptive rule induction field is not the only one using non-standardized terminology

and having its researchers fractioned into closed communities. All researchers should grow

awareness of the importance of standardized terminology and familiarity with related work.
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Kovač, M., Žel, J., Pompe Novak, M., and Ravnikar, M. (2009). PVYNTN elicits a diverse

gene expression response in different potato genotypes in the first 12h after inoculation.

Molecular Plant Pathology , 10(2), 263–275. doi:10.1111/j.1364-3703.2008.00530.x.

Bay, S. D. (2000). Multivariate discretization of continuous variables for set mining. In

Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD’00), pages 315–319.

Bay, S. D. and Pazzani, M. J. (2001). Detecting group differences: Mining contrast sets.

Data Mining and Knowledge Discovery , 5(3), 213–246.



90 REFERENCES

Bayardo, R. J. (1998). Efficiently mining long patterns from databases. In Proceedings

of the 1998 ACM SIGMOD International Conference on Management of Data (SIG-

MOD’98), pages 85–93.

Boulesteix, A.-L., Tutz, G., and Strimmer, K. (2003). A CART-based approach to

discover emerging patterns in microarray data. Bioinformatics, 19(18), 2465–2472.

Bruner, J. R., Goodnow, J. J., and Austin, G. A. (1956). A study of thinking. Wiley,

New York.

Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-Supervised Learning.

MIT Press, Cambridge, MA.

Chapman, P., Kerber, R., Clinton, J., Khabaza, T., Reinartz, T., and Wirth, R. (1999).

The CRISP-DM process model. Discussion Paper. http://www.crisp-dm.org.

Cios, K. J., Swiniarski, R. W., Pedrycz, W., and Kurgan, L. A. (2007). Data Mining:

A Knowledge Discovery Approach, chapter 2: The Knowledge Discovery Process, pages

9–24. Springer US.

Clark, P. and Boswell, R. (1991). Rule induction with CN2: Some recent improvements.

In Proceedings of the 5th European Working Session on Learning (EWSL’91), pages

151–163.

Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4),

261–283.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the 12th Interna-

tional Conference on Machine Learning (ICML’95), pages 115–123.

Daly, O. and Taniar, D. (2005). Exception rules in data mining. In Encyclopedia of

Information Science and Technology (II), pages 1144–1148.
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Trajkovski, I., Lavrač, N., and Tolar, J. (2008). SEGS: Search for enriched gene sets in

microarray data. Journal of Biomedical Informatics, 41(4), 588–601.

Vapnik, V. N. (1998). Statistical Learning Theory . Wiley, New York.

Vilalta, R. and Drissi, Y. (2002). A perspective view and survey of meta-learning. Artificial

Intelligence Review , 18, 77–95.
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Supervised descriptive rule discovery: A unifying survey of contrast set, emerging

pattern and subgroup mining. Journal of Machine Learning Research, 10, 377–403.

http://www.jmlr.org/papers/volume10/kralj-novak09a/kralj-novak09a.pdf.

• [Garriga et al.(2008)] Garriga, G. C., Kralj, P., and Lavrač, N. (2008). Closed sets
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