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Ljubljana, 2007





University of Ljubljana

Faculty of Computer and Information Science

Tomaž Curk
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Abstract

This dissertation proposes a set of computational methods for inference of gene

networks from heterogeneous data sources. These methods address several im-

portant problems in gene network inference, including function prediction from

different types of gene profile/phenotype data (i.e., gene expression profiles,

mutant transcriptional phenotypes and mutant sensitivity profiles), methods

for the analysis of gene regulatory regions, and methods for decomposition of

gene expression signature profiles.

The central part of the dissertation and its main contribution is a method

that can combine sequence and phenotype information to find clusters of genes

with similar phenotype and sequence. The method relies on a new machine

learning approach called rule-based clustering. The approach is able to discover

clusters – groups of data items, or genes – that are described using a sym-

bolic assertion on the gene sequence (the conditional part), with genes in the

group bearing similar phenotypes (the action part of the rule). While designed

with bioinformatics problems in mind, the proposed rule-based clustering can

be regarded as a general machine learning technique. It requires two sets of

attributes: one is used to calculate distance among examples, while the other

set is used for construction of symbolic descriptions of discovered clusters. Our

inference algorithm uses beam-search heuristics and statistical tests for rule se-

lection and stopping criteria. Rule-based clustering can discover overlapping

clusters. Rule-based relations between data items (genes) can be regarded as

networks. We propose a set of visualizations to aid in the presentation and

interpretation of inferred rules.

We experimentally evaluated and successfully applied the proposed methods

to infer patterns of gene regulation in slime mold Dictyostelium discoideum and

budding yeast Saccharomyces cerevisiae from DNA microarray and regulatory

region DNA sequence data. We show how rule-based clustering can help to

answer some very important biological questions about the regulation of gene

expression: what are the most informative features in the regulatory region and

where in the DNA sequence do they reside. Experiments with different kinds of

genomic phenotypes (DNA microarray, mutant transcriptional phenotype and

mutant sensitivity profiles) show that each better predicts different aspects of

gene annotation.

We also propose a computational method for the decomposition of gene
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expression profile signature into a combination of known mutant expression

profiles or profiles from different treatments or both. Again, the resulting model

is a network of genes (mutants) and conditions (treatments) that complements

the analysis done with rule-based clustering and can be used to infer pathways

and functions in which genes are involved.
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Chapter 1

Introduction

Indeed, we believe computer science is poised to become as

fundamental to biology as mathematics has become to physics.

The 2020 Science Group, July 2005

Computer science is already having a profound impact and it is playing a cru-

cial role in sciences investigating complex systems such as biology, chemistry,

physics, biotechnology and biomedicine. Recently it has been argued that the

development of new conceptual and technological tools is required to further ad-

vance scientific computing and take the leap from the application of computing

to support scientists to ‘do’ science (i.e., computational science) to the inte-

gration of computer science concepts, tools and theorems into the very fabric

of science [The 2020 Science Group, 2006; Foster, 2006]. Nonetheless, allowing

and supporting the scientists to discover, ‘look at’ and easily interact with pat-

terns in heterogeneous data remains a key enabler of research and discovery in

data-rich scientific domains for many years to come.

This dissertation focuses on the development and application of computa-

tional methods, especially those from the field of machine learning and bioin-

formatics, for the analysis of heterogeneous genomic data. For over a decade,

modern high throughput technology in genomics allows biological experimen-

talists an almost real-time acquisition of huge amounts of various genomic data.

Sequencing the DNA of an organism and identifying all genes were the ini-
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1. Introduction

tial steps taken to build the “parts” list of an organism [International, 2004;

McPherson et al., 2001]. To get an overview of the dynamic part of the cellu-

lar processes geneticists then devised various methods to measure the presence

and activity of individual genes and their products – proteins [Luscombe et al.,

2001]. Analyzing all these heterogeneous data sets represent a great chal-

lenge and opportunity to advance our understanding of the underlying cel-

lular processes and as a consequence improve medical treatment procedures

[Schlitt and Brazma, 2005, 2006].

With a fast-growing base of genome data sets, new computational methods

for analysis and tools for visualization are needed to extract and represent dis-

covered patterns in an intelligible form and thus enable the user to interpret

and gain new knowledge from experimental data. A widely used formalism in

this area is a gene network that can, in general, represent any inferred relations

between genes, their products and other cell components in biological systems.

Depending on the level of biological inquiry and available experimental data,

there are many different types of gene network models, including transcription

regulation networks, metabolic networks, signaling networks, protein interac-

tion networks, etc. Although in nature all these networks are profoundly in-

terlinked and understanding each on its own is a prerequisite to understanding

the complete biological network [Schlitt and Brazma, 2005], this dissertation

focuses on networks for which genome-wide data on sequence and expression

is available. These include transcription regulation networks, for which we de-

veloped a new inference algorithm called rule-based clustering, gene networks

representing functional similarity that are often modeled and assessed with gene

co-expression networks, and networks of gene expression response for which we

propose a method based on decomposition of gene signature profiles.

The most intuitive way to visualize networks is in form of graphs where

nodes and edges bear problem domain-specific symbolic meaning. Methods

that discover patterns from experimental data and encode them in transparent

and intelligible symbolic models of low complexity (e.g., set of IF-THEN rules)

are suitable for human interpretation and can be, when combined with appro-

priate visualization and software implementations, used for explorative data

analysis [Tukey, 1977]. We believe that the computational methods proposed

and described here (especially rule-based clustering and decomposition of gene

signature profiles) are of this kind.
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Contributions of the dissertation

State-of-the-art experimental techniques enable us to collect various types

of genomic data for the same experimental condition. An important question is

how a model’s ability to correctly predict gene function depends on the choice

of the type of genomic data used to infer the predictive model. For example,

Winzeler et al. [1999] showed that there is little correlation between gene ex-

pression as measured with DNA microarrays and gene function. Consequently,

one can expect that predictive models built using DNA microarray data will

successfully predict function of only a small portion of genes. We take this con-

sideration further and try to, using computational tools for in silico experimen-

tation, systematically evaluate, compare, and determine which types of gene

profile data (gene expression under various conditions, mutant transcription

phenotypes, and mutant sensitivity profiles) can better predict specific func-

tional annotations. Our particular advantage is that we stem from the machine

learning framework, where model testing, evaluation, and statistics to report on

the evaluation scores are well developed. Various types of gene profiles are then

assessed through how well do modeling methods perform on these profile types

in terms of predictive accuracy.

Another important question is how to make best use of huge and ever grow-

ing amounts of available genomic data that is being collected in genome-wide

studies (e.g., DNA microarray data, mutant sensitivity profiles, etc.). We be-

lieve that specialized tools, which allow the user to compare and relate data

from his experiment to what has already been observed and reported in other

experiments, are crucial. The decomposition of gene profile signatures that we

propose is a step in this direction.

1.1 Contributions of the dissertation

The main and original contributions of this work are:

• the design and implementation of a rule-based clustering method – a new

machine learning clustering method for handling complex and feature rich

problem domains,

• a practical application of rule-based clustering in the area of bioinfor-

matics, which also required us to formalize and evaluate the descriptive
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1. Introduction

(hypothesis) language used to model the structure of gene regulatory re-

gions,

• the design and implementation of a computational method for decompo-

sition of gene profile signatures,

• investigations in computational phenomics, where we have used the de-

vised computational techniques to experimentally evaluate the predictive

value of different types of genomic data.

We also propose a set of visualizations to support explorative analysis and

interpretation of models inferred with rule-based clustering. The developed

methods are applied for the analysis of data on two model organisms of interest:

Saccharomyces cerevisiae and Dictyostelium discoideum.

Practical contributions of the dissertation include the implementation of the

rule-based clustering method through Python scripts and implemented within

the Orange data mining suite [Demsar et al., 2004a], and the implementation

of the decomposition of gene profile signatures method as a publicly available,

web-based application (available at http://bubble.fri.uni-lj.si/microCOMB).

1.2 Overview of the dissertation

This dissertation is organized in eight chapters. An overview of computational

methods for inference of gene networks and methods for the analysis of reg-

ulatory regions is given in Chapter 2. In Chapter 3 we introduce the terms

“computational phenotype” and “computational phenomics” and present a sys-

tematic, empirical study showing that different types of gene profile data are

more suitable for reasoning and inference of predictive models for different as-

pects of gene functional annotation.

Our rule-based clustering method is described in Chapter 4. The heuristic

rule search is presented first, followed by a description of the on-the-fly operator-

based feature construction which is then incorporated into the search. A method

for the final generalization and post processing of the discovered model (i.e.,

set of IF-THEN rules) is described next. Space and time complexity of rule-

based clustering is investigated and compared to the complexity of the standard

CN2 [Clark and Nibblet, 1989] rule induction algorithm. Chapter 4 concludes
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Overview of the dissertation

with the proposal of an evaluation method for models inferred by rule-based

clustering.

In Chapter 5 we propose a set of intuitive visualizations that can be used

to gain insight into the discovered clusters of objects (i.e., genes in all our

applications), relations between overlapping clusters, and also conditional terms

of rules describing the discovered clusters. These visualizations allow the user to

explore individual objects, observe how they cluster into higher-order structures,

and observe terms in the conditional part of discovered rules (i.e.feature from

data or newly constructed features) that are common to objects or clusters.

We also describe the structure of web-pages that are automatically generated

for presentation of rule-based clustering results. In this dissertation, applied

to problems in bioinformatics, the pages are linked to already existent tools

and databases, such as the Genome Browser [Durbin et al., 2000] and GO Term

Finder (http://www.yeastgenome.org), and which foster further exploration of

discovered patterns of gene regulation and corresponding gene clusters.

Results of experimental analyses using rule-based clustering and evaluation

of inferred models on the data from two model organisms are presented in

Chapter 6. In this Chapter, we also investigated the predictive value of various

features from gene sequences, constructed during machine learning using con-

structive operators of different kinds and complexity. We also use rule-based

clustering and standard model evaluation procedures from machine learning to

computationally determine the most informative sub-interval in the gene regu-

latory region.

The idea of decomposition of gene expression profiles is introduced in Chap-

ter 7. A heuristic algorithm for decomposition is presented and some operators

suitable for decomposition are discussed and evaluated. Examples for the two

model organisms are given. We also describe a web-based tool we have imple-

mented for decomposition of gene profile signatures.

Chapter 8 concludes the dissertation with a discussion of the proposed meth-

ods and results of our experimental studies, and present several ideas for further

work.
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Chapter 2

Background in artificial

intelligence and bioinformatics

The Thesis is related to research at the intersection of machine learning and

bioinformatics. In this Chapter, we present the background on both research

areas that are related to our original approach we have developed for machine-

learning based inference of gene interaction networks.

2.1 On search and inference of

predictive models

A substantial part of the research in this Thesis involves the construction of

search algorithms. Search is a fundamental topic in artificial intelligence and in

its subfields on machine learning [Mitchell, 1997], data mining, and knowledge

discovery [Fayyad et al., 1996b,a]. Search is the main approach used for problem

solving, automated reasoning, inference of models, and many other combinato-

rial processes whose goal is to find an optimal, if not the best solution. For

example, in algorithmic problem solving, a general scheme called state space

is normally applied for representing and solving problems. The state space is

most intuitively represented as a graph, where nodes correspond to problem

situations, and edges correspond to “legal moves” or transitions between situa-

tions. Solving a given problem is then translated to searching of a state space

graph and exploring alternatives with the goal of finding the optimal path to the

solution. In optimization, the state space is explored to find an optimal state
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2. Background in artificial intelligence and bioinformatics

according to some criteria function. Basic strategies for exploring alternatives

include depth-first search, breadth-first search and iterative deepening [Bratko,

2001].

Real–life problem solving may be extremely complex and implementation of

automated reasoning and construction of search algorithm often require repre-

sentation of a problem and data at various levels of abstraction. Even then, the

number of alternatives, for example, the size of the problem space, can be ex-

tremely high and complexity of the search algorithm becomes most critical. For

example, if we represent the search space with a tree, where each internal node

has b successors, and all solutions are found by traversing at least d nodes form

the root of the tree, then the total number of paths is in the order of bd or O(bd).

Even with relatively small values of b, the number of candidate paths grows ex-

ponentially with their length, and one is faced by the so called phenomenon

of combinatorial explosion [Bratko, 2001]. This combinatorial complexity is

typical and an unavoidable problem associated with search.

Basic, also called uninformed or greedy search strategies mentioned above

are not sufficient for solving large-scale problems. They treat all alternatives

in a state-space as equally promising and will explore every one of them. The

approach becomes unfeasible when faced with complex combinatorial problems.

Search for solutions of such problems must be guided by problem-specific infor-

mation or heuristic. These kinds of algorithms are thus called heuristic search

algorithms. A well-known example of one such classic algorithm uses best-first

heuristic principle where the currently most promising node, according to a

heuristic estimate, is explored and expanded first [Bratko, 2001].

The task of inferring symbolic models by learning rule-based relational de-

scriptions from a set of examples, which we address in this Thesis, is subject to

similar search and combinatorial complexity and thus also requires appropriate

heuristics. The goal of learning is to find a kind of generalized theory that

explains and is able to recognize all objects forming a concept. A concept is a

subset of all possible examples that a learner may encounter when applying the

inferred theory to recognize (new) examples, including examples which were not

seen in the learning phase. Examples belonging to a concept are called positive

examples, all other are negative examples. Most approaches to rule induction,

including the well-known CN2 covering algorithm [Clark and Nibblet, 1989] for

discovering rules of form IF condition THEN consequence, start with a simple
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On search and inference of predictive models

rule (normally the predicate “True”) that covers all examples in a learning set

given by the user. An example is said to be covered by a rule if it matches

the description stated in the conditional part of the rule. The initial rule is

subsequently refined by systematically changing the conditional part until the

best rule is found. Various criteria are used to evaluate rules. The currently

best rule is then added to the set of discovered rules forming the final model or

hypothesis. Examples covered by the rule are either removed or their weights

are decreased, and search for the next best rule is reiterated. This is repeated

until all examples are covered or some other stopping criteria are met. Ideally,

each rule in the final model has to be complete, i.e., it must cover all positive

examples, and it has to be sound, i.e., it must not cover any negative example.

In practice, relaxed variants are used that allow covering some negative exam-

ples and not covering all positive examples. Rule inference is an inherently

combinatorial search problem. The normally vast hypotheses space can be sig-

nificantly constrained by the hypothesis language (which introduces a linguistic

or language bias) which allows the construction and testing of only certain hy-

potheses. Search is also constrained by the search method that determines what

parts of the hypotheses space will be explored. This is called the search bias.

Using problem-specific information, i.e., background knowledge and data, in

the automated, computer-aided data analysis and discovery process is referred

to as intelligent data analysis. This type of analysis is possible and most desir-

able in knowledge rich fields where knowledge is encoded in an electronic form

and readily shared in open data and knowledge bases. Biology and functional

genomics are such fields. Using additional knowledge sources in the analysis

can prevent discovering the obvious, it can complement an inferred hypothesis

with references to already proposed relations, it can prevent inferring overcon-

fident models and it allows for a systematic comparison of findings to existent

knowledge. In this Thesis we heavily rely on background knowledge and data

stored in publicly available databases (e.g., TRANSFAC for data on known

transcription factors binding sites, www.geneontology.org for gene annotation

on molecular function, biological process, and localization within the cell, etc.)

for the formalization of the descriptive language used to model problems. For

these reasons the proposed methods can be classified as methods for intelligent

data analysis.
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2. Background in artificial intelligence and bioinformatics

2.2 Related methods for gene network

construction

A gene is defined as a stretch of DNA that can be transcribed into RNA by

the transcriptional cell machinery. The gene itself is a passive entity. It needs

to be transcribed into RNA and eventually translated into proteins to have an

active role in cell processes. There are different types of RNAs. For exam-

ple, microRNA (miRNA), small nuclear RNA (snRNA), small nucleolar RNA

(snoRNA), and other noncoding RNAs have a regulatory role in transcription

and translation, while the messenger RNA (mRNA) is used as a template for

translation into a polypeptide chain which then folds into a protein encoded by

the gene [Alberts et al., 1994; Kimball, 2006]. The ribosomal RNAs (rRNA)

are used in the building of ribosomes, which are the machinery for synthesiz-

ing proteins by translating mRNA. There are different kinds of transfer RNAs

(tRNA), each responsible for bringing the correct amino acid (one of the twenty

amino acids) into the growing polypeptide chain [Kimball, 2006]. Transcription

factors are special kinds of proteins, which can inhibit or excite the expression

of other genes by binding to sequence-specific binding sites in their regulatory

region [Latchman, 1998]. Usually, a transcription factor can directly influence

the expression of only a small number of genes, but those genes subsequently can

regulate the expression of other genes. A gene can thus, figuratively speaking,

directly or indirectly influence the activity of many other downstream genes,

and at the same time its activity can be driven by many genes upstream of

it Auto regulation, when a gene regulates its own activity directly or indi-

rectly through regulatory loops, is also found in gene networks. Regulation by

binding of transcription factors is just one of the many mechanisms of gene

expression regulation. Gene expression is also determined by changes in the

cell’s environment that can influence gene expression through both transcrip-

tion factors or through epigenetic effects [Pedersen et al., 1999] (e.g., chromatin

structure). Other forms of regulation that affect DNA structure [Segal et al.,

2006; Choi et al., 2004], mRNA and protein activity, stability, localization in-

clude post-transcriptional, translational, post-translational, and other regula-

tion [Wasserman and Sandelin, 2004].

Genetic (regulatory) network is a widely used formalism to model the reg-

ulatory influences between genes. Different formalisms were developed to rep-
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Related methods for gene network construction

resent genetic networks at various levels of abstraction, each type providing

answers to different kinds of biological questions. These network formalisms

range from simple Boolean networks [Akutsu et al., 1999, 2000; Liang et al.,

1998; Wuensche, 1998], generalized Boolean networks [Tanay and Shamir, 2001],

directed graph models [Wagner, 2001], qualitative network models [Shrager et al.,

2002; Thieffry et al., 1998], complex non-linear differential equations

[Wessels et al., 2001; Wahde and Hertz, 2001; De Jong et al., 2004b,a] to proba-

bilistic graphical models [Pournara and Wernisch, 2004; Friedman et al., 2000;

Yoo and Cooper, 2002], [Yoo et al., 2002; Pe’er et al., 2001; Hartemink et al.,

2001; Toh and Horimoto, 2002], and gene regulation networks and their recon-

struction through abductive inference [Van Driessche et al., 2005; Zupan et al.,

2003a,b]. For a detailed overview of listed methods see Chapter 2 in Juvan Most

of the methods for gene network reengineering, that is, their reconstruction from

experimental data, use data on either DNA microarray gene expression, possi-

bly from experiments that measure expression at different time points or under

different perturbations of environment or genes. Time series data is used to

model the change of gene expression levels and also to model the relations of

gene expression among genes. Perturbation data is used to model the relations

between perturbed and all other genes.

Inference of Boolean networks, solving differential equations, probabilistic

networks and other similar computational methods have been shown to have

high predictive accuracy. However, it may be argued that some of these tech-

niques generate and encode models in forms which can be quite challenging to

interpret and understand (e.g., set of differential equations). Intelligent data

analysis favors machine learning methods which can present the inferred mod-

els in an intelligible form that allows the interpretation and study of discovered

patterns in data. Methods like the induction of symbolic rules may be better in

this respect. While, in general, the inferred models have a high predictive power,

e.g., in successfully predicting gene expression levels, they can be substantially

different in terms of structure (gene relations) from the real, underlying model.

This was shown on synthetic data and it suggests a low inferential power of

some numeric methods mentioned above [Wessels et al., 2001].

The DNA hybridization array technology allows to measure simultaneously,

in a single experiment, the levels of transcribed RNA for thousands of genes

[Friend and Stoughton, 2002]. The raw measurement data has to be adjusted by
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2. Background in artificial intelligence and bioinformatics

various within-array and across-array normalization steps [Quackenbush, 2002].

These measurements are finally reported as expression levels in log base two of

ratios of the quantity of RNA in a test sample over the quantity of RNA in a

reference cell sample.

Each DNA microarray measurement gives a “snapshot” of gene expression

levels of sampled cells at a global, whole genome scale. As such, the snapshot

can be said to report on a state of the organism. This concept was recently

studied by Van Driessche et al. [2005], who explored the idea of treating a mu-

tant’s expression profile, also called a transcriptional profile, as a “universal”

phenotype and use it for inference of gene networks by means of epistasis analy-

sis and abductive reasoning. This approach stems from a method [Zupan et al.,

2003a,b] which uses “classical” qualitative phenotypes of an observed biological

process or biological entity (e.g., organism grows normally/grows slowly/does

not grow, cells aggregate/do not aggregate, etc.) for epistasis analysis and ab-

ductive reasoning. When experimental results cannot be explained within a

given background theory, a reasoning process, called abduction, can be used to

explore all possible explanations (set of relations) for the observed experimental

results. The newly constructed explanations (hypotheses) for the observed phe-

nomena have to be consistent with a given background theory, and preference

criteria are used to select ‘the best’ among alternative explanations. Four abduc-

tive inference patterns, forming the background theory of genetic regulation, are

formalized and used by Zupan et al. [2003a]: influence, no-influence, epistasis

and parallelism. While influence and no-influence describe the relation between

a gene and a biological entity (i.e., qualitative phenotype of the observed bio-

logical process or some other gene), epistasis and parallelism patterns are used

to indirectly relate two (mutated) genes with respect to a common biological

entity, and thus play a major role in determining the final genetic network.

The logic of epistasis analysis was described by Avery and Wasserman [1992].

Epistasis analysis serves as a genetic tool for determining the order of action of

genes in a regulatory hierarchy, in which the phenotype of the double mutant

is compared with that of single mutants. The epistatic gene is said to act after

the other gene in a regulatory network. The abductive inference patterns are

stated in form of rules ‘IF certain genetic experiments exist, THEN a certain

relation between genes and a biological process is hypothesized’ [Zupan et al.,

2003a]. The two most important inference patterns (rules) are:
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• Epistasis: IF genes g1 and g2 act in a liner pathway and p1 �= p2 and

p2 = p12 (this implies that p1 �= p12), THEN gene g1 influences gene g2.

• Parallelism: IF p1 �= p12 and p2 �= p12 (note that there is no condition on

p1 and p2), THEN g1 and g2 act in parallel pathways.

Variables p1 and p2 are qualitative phenotypes of single mutants in genes g1

and g2 respectively, and p12 is the qualitative phenotype of the double mutant

where both genes g1 and g2 are mutated.

These same rules can also be applied when using global transcriptional phe-

notypes of wild-type, single and double mutants. Determining the exact value

of a qualitative phenotype may be problematic, as qualitative states may not

be so distinctive when observed experimentally, and mapping between an ex-

perimentally observed behavior and qualitative state is not trivial. However,

their subsequent use in inference patterns is simple since it requires only the

comparison (“equal” or “different”) of symbolic values. On the contrary, mea-

suring quantitative global-scale phenotypes with DNA microarray technology is

in principle straightforward, while comparing and assessing the similarities of

phenotypes proves to be more challenging. For example, how do we determine

if one quantitative phenotype is different from another? Instead of using crisp

degrees of similarity between quantitative phenotypes, as is the case with qual-

itative phenotypes where two phenotypes can only be “equal” or “different,”

a quantitative degree of similarity can be calculated and subsequently used.

For example, applying statistical tests, e.g., ANOVA, on repeated experimental

measurements were shown to work for the task

Transcriptional phenotypes have been proven useful for reconstruction and

reconfirmation of genetic networks initially inferred using classical phenotypes

[Van Driessche et al., 2005]. For example, see Figure 2.1 for data and inferred

epistatic relations between two genes in D. discoideum. The richness of infor-

mation in transcriptional phenotypes allows further development of methods for

investigation and refinement of genetic networks. In Chapter 7 we show how

the proposed method for decomposition of mutant transcriptional profiles can

be used to identify genes acting on parallel pathways and for inference of gene

networks.
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Mutant Aggregation
pufA- ++
yakA- −

yakA- pufA- ++

(a) (b)

Figure 2.1: a) Qualitative and b) quantitative phenotypes used for epistasis
analysis. Data for three D. discoideum deletion mutants is shown. a) The
qualitative phenotype marks the degree of observed aggregation (all possible
values are: −,±, +, ++) of mutant strains. b) The quantitative phenotype
represents the global expression of strains in a time series (each row represent
the average of a group of 250 most-similar genes, columns represent time points,
from 0 to 24 hrs, in increments of two hours). In both cases the phenotype of
pufA- mutant is similar to that of the double mutant (yakA- pufA-). Following
the inference pattern for epistasis, yakA- is found to influence pufA- (i.e., pufA-
is epistatic to yakA-).

2.3 Related bioinformatics methods for the

analysis of gene regulatory regions

Gene expression data alone does not provide enough information for the un-

equivocal identification of groups of genes that are regulated by same regulators

[Tavazoie et al., 1999]. Other types of genomic data are also needed to further

elucidate the underlying gene networks [Qiu, 2003]. In this Section, we focus

mainly on methods for discovering relations between gene expression and DNA

sequence of gene regulatory regions. We start with an overview of the biology

of gene regulation and continue with an overview of published methods for the

analysis of regulatory regions.

The DNA sequence of a gene is composed of three functionally distinct re-

gions: the regulatory (or promoter) region, RNA-coding and the terminator

region (see Figure 2.2). For some genes, the regulatory and coding regions

can intertwine, which may further complicate the analysis. Determining and

understanding the promoter structure is an important prerequisite to under-
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DNA

Transcription

initiation site

Transcription

termination site

RNA-coding sequencePromoter TerminatorRNA-coding sequencePromoter Terminator

GeneGene

Figure 2.2: Simplified gene structure includes a promoter, RNA-coding, and
terminator region.

standing gene regulation. The content of the regulatory region sequence de-

termines which transcription factors will be recruited and bound to it. There

are several possible scenarios for the start of transcription. The classic exam-

ple is that the bound transcription factors are then themselves bound by an

enzyme, the RNA polymerase. Together they open the DNA helix so that

the RNA polymerase can move down the DNA. Another possibility is that

the RNA polymerase sits idle on the DNA, waiting for a transcription fac-

tor to trigger the initiation of transcription. As the RNA polymerase trav-

els along the DNA it assembles RNA – a transcript of the DNA. When tran-

scription is completed, both the RNA transcript and RNA polymerase are re-

leased from DNA. Additional steps are then taken, depending on the type of

RNA. For example, mRNA produced in the nucleus must undergo processing

steps such as removal of introns (noncoding stretches of DNA which get tran-

scribed but not translated), and (alternative) splicing of exons together (exons

are stretches of DNA that are translated into chains of amino acids forming

a protein) [Kimball, 2006]. The type, number, combinations of co-occurring

transcription factors [Harbison et al., 2004; Yu et al., 2003; Bussemaker et al.,

2001; Hannenhalli and Levy, 2002; GuhaThakurta and Stormo, 2001], and their

timing [Lee et al., 2002] regulate the rate of gene transcription. The effect of a

transcription factor can be positive, i.e., it can facilitate the recruitment of the

RNA polymerase, or it can have a negative, inhibitory effect by preventing the

RNA polymerase from binding and starting transcription.

Enhancers are DNA sequence elements located thousands of base pairs up-

stream, downstream or even within the gene they control. Binding of “enhancer-

binding” transcription factors is known to increase the rate of transcription

of the gene by increasing the activity of the gene’s promoter [Kimball, 2006;
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Latchman, 1998]. Conversely, silencers are sequence elements to which “repressor-

binding” transcription factors can bind to repress the expression of the gene they

control. Direct binding of transcription factors in the immediate or distant reg-

ulatory region of genes is only one aspect of the complex mechanisms of gene

expression regulation adopted by cells. Because there is a lack of other whole-

genome data, most current computational studies on gene regulation focus on

inference of relations between the content and structure of the gene regulatory

region DNA sequence and gene expression measured using DNA microarrays.

Identification of gene regulatory regions and putative binding sites are the

first crucial steps in such analyses. The regulatory region differs from the cod-

ing region in nucleotide and codon frequency. A codon is defined as three

consecutive nucleotides that code for one of the twenty amino acids used for

protein synthesis. This is successfully exploited by many promoter prediction

algorithms (for an overview of such methods see Bajic et al. [2004]). Curated

and computationally determined regulatory sequences are readily available for

most model organisms, including S. cerevisiae (see www.yeastgenome.org) and

D. discoideum (see http://dictybase.org).

The next important and well-studied step is the identification of transcrip-

tion factors’s putative and known binding sites in the regulatory regions of

genes. These binding sites are short DNA sequences, comprising four to twenty

nucleotides [Wasserman and Sandelin, 2004]. Most positions in the sequence

are highly conserved (i.e., have low sequence variation) and are frequent in

the regulatory regions of co-regulated genes bound by the transcription factor.

For computational analysis a matrix representation of binding sites is normally

used. The matrix defines the frequency of the four bases (Adenine, Thymine,

Guanine, and Cytosine) at each position in a binding site. The matrix is usu-

ally obtained from an aligned set of (putative) binding sites, and as such it

represents an average sequence of the entire set of binding sites. The binding

site can be presented to the user as a single consensus line, which gives the

most frequent base at each position. Besides the four codes for bases A, T, G,

and C, other standard IUB/IUPAC codes are allowed (e.g., letter W codes for

the two nucleic acids A and T forming the weak group, see Table 2.1). For

computational analysis, this representation is not recommended because it can

lead to loss of information. Sequence logos provide a richer, more informative

graphic representation of binding sites [Schneider and Stephens, 1990] (see Fig-
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Position 0 1 2 3 4 5 6 7
A 0 0 0 0 0 0.3 0.7 0
C 0 1 1 1 0 0.2 0.3 1
G 0 0 0 0 0.2 0.2 0 0
T 1 0 0 0 0.8 0.3 0 0

Single line consensus T C C C T W A C

Table 2.1: Matrix representation and single line consensus sequence of a putative
transcription factor binding site.

Figure 2.3: Sequence logo representation of the binding site from Table 2.1.

ure 2.3). Contribution of the four bases at each position may be represented

using heights of the letters, where the total height of a stack of letters may be

proportional to the degree of sequence conservation measured in bits of infor-

mation [Schneider and Stephens, 1990].

Data on experimentally confirmed or computationally inferred putative bind-

ing sites is available in public databases such as TRANSFAC [Wingender et al.,

1996; Matys et al., 2006], EPD [Schmid et al., 2006], and SCPD [Zhu and Zhang,

1999]. When analyzing genes regulated by unknown regulators, one can find can-

didate or putative binding sites using local sequence alignment programs such as

the MEME program [Bailey and Elkan, 1994]. These programs identify short,

frequent subsequences in a given set of DNA sequences. A detailed description

and evaluation of such tools has been reported recently by Tompa et al. [2005].

In their study, Tompa et al. comment that prediction of regulatory elements

remains an extremely complex and challenging task for computational biolo-

gists. They report low absolute measures of correctness for the thirteen tools

they tested. The algorithm, implemented in the tool Weeder Web [Pavesi et al.,

2004], outperformed other tools in most tested domains and by most measures

used in the assessment. However, the authors remain indecisive on the best

tool, mainly because of problems with designing a good assessment. A big lack
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of knowledge on transcription factor binding sites makes it difficult to construct

representative data sets and to select the most appropriate statistics for evalu-

ating the correctness of predictions. They suggest using “a few complementary

tools in combination rather than relaying on a single one” [Tompa et al., 2005].

One striking fact is that the majority of tools perform much better on yeast

data than on other species [Tompa et al., 2005] (i.e., mouse, fly, and human).

Again, this could be the result of the assessment bias described by the authors.

Most of contemporary methods for finding relations between gene struc-

ture and expression adopt the “group-by-expression” approach [Chiang et al.,

2001]. They start by clustering genes based on their expression or use known

gene functional annotation to form groups of genes, and then determine cluster-

specific binding sites in each cluster (Figure 2.4a). Unsupervised methods for

k-means and hierarchical clustering of gene expression [Eisen et al., 1998], su-

pervised methods for gene function prediction, which were demonstrated to

be useful in gene function prediction, such as Näıve Bayes, Decision trees

[Curk et al., 2003], SVM [Brown et al., 2000], and rule induction for trend de-

tection [Hvidsten et al., 2003] and temporal abstraction [Sacchi et al., 2005] can

be applied to group genes. Subsequent steps of these “group-by-expression” ap-

proaches largely depend on the number and composition of initially identified

gene clusters. Slight changes in clustering initialization or in method’s param-

eters can result in possibly very different clusters. This can then consequently

lead to discovery of different cluster-specific binding sites. Most common cluster-

ing approaches split genes into disjoint groups, forcing the discovery algorithm

to use the information on each gene only when considering its corresponding

cluster. This substantially limits the analysis, since it has been shown that

genes can be regulated and respond in many different ways and perform various

functions [Latchman, 1998; Ihmels et al., 2002]. Methods that do not strictly

depend on the initial clustering of genes may have a distinct advantage in this

respect.

An alternative to above is a “group-by-sequence” approach: starting with

information about binding sites, this constructs groups of genes containing spe-

cific binding sites and continues by analyzing their expression (see Figure 2.4b).

An example of such approach is a technique based on “Genome-Mean Expres-

sion Profiles” or GMEPs proposed by Chiang et al. [2001]. For a specific pu-

tative binding site, GMEP is defined as a weighted mean expression profile of
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all genes that contain the binding site in their regulatory regions. Gene ex-

pression weights are proportional to the number of occurrences of the binding

site in a gene. Weighting was introduced by the authors under the assumption

that transcription factors might have a higher affinity to genes that contain

multiple copies of their binding sites. This binding-site specific profile is then

compared to the mean profile of all the examined genes. If the difference is not

significant, a putative binding site is considered not to contain transcriptional

information. Binding sites containing transcriptional regulatory information are

thus expected to have their GMEP significantly different from the population

mean. In spite of the simplicity, this straightforward method has been suc-

cessfully applied to rediscover already known and also experimentally not yet

confirmed single binding sites that regulate gene expression in many conditions

[Chiang et al., 2001].

The approach of Chiang et al. [2001] fails to discover patterns that include

combinations of two, three or more putative binding sites. This could be re-

garded as a major deficiency as it is biologically known that regulation of gene

expression can be highly combinatorial [Wasserman and Sandelin, 2004; Qiu,

2003; Birnbaum et al., 2001] and it requires the coordinated presence of many

bound transcription factors (e.g., see pages 426-432 in [Alberts et al., 1994]).

More advanced methods thus try to infer rules that describe the content of reg-

ulatory regions with more than one putative binding site [Beer and Tavazoie,

2004; Pilpel et al., 2001]. An early attempt in this direction was the work by

Pilpel et al. [2001] where the authors used a set of 356 known or putative bind-

ing site sequences and regulatory regions for 4483 genes in S. cerevisiae. For

each individual and all pairs of binding sites a score of coherence of gene ex-

pression observed under several different conditions is calculated. Expression

coherence score was defined as a measure of overall similarity of the expression

profiles of genes containing the binding site or pair of binding sites. To derive

this score, their method first computes the Euclidean distances between all pairs

of genes (number of pairs is P = 0.5·K ·(K−1), where K is the number of genes

that contain a given single or combination of two binding sites). The score is

then defined as p/P , where p is number of gene pairs whose Euclidean distance

is smaller than a threshold distance D. Threshold D is determined by random

sampling of distances among all pairs of 100 genes and selecting D as the lowest

value in the fifth percentile of the distribution of these distances. Next, the
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Figure 2.4: a) Group-by-expression and b) group-by-sequence approaches for
finding relations between gene structure and expression. Binding site data in
this example includes only the presence of a couple hundred binding sites in
the regulatory region of genes. DNA microarray gene expression data is a time
course of thirteen time points.

method checks for ‘synergistic’ pairs of binding sites. A pair of binding sites

is considered synergistic, if the expression coherence score of genes containing

both binding sites is significantly greater than that of genes containing either

binding site alone (see Figure 2.5). Synergistic pairs of binding sites can then
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Figure 2.5: “Synergistic” pair of binding sites. a) Expression profile of genes
with binding site S1 but not site S2 in their regulatory regions. b) Genes with
S2 but not S1. c) Genes with both sites (S1 and S2) form a more coherent group
than genes with either binding site alone. Thus, sites S1 and S2are said to be
synergistic.

be linked together to form a “synergy map” [Pilpel et al., 2001], which provides

for a global overview of transcription networks, and helps the user to discern

higher combinations of more than two binding sites.

The above approaches use exhaustive search and examine all possible com-

binations of binding sites. Because of a normally huge number of possible com-

binations, they most often concentrate on a search for pairs of binding sites.

Exploration of higher-order combinations through exhaustive search is most of-

ten not feasible due to combinatorial explosion. For example, the number of all

possible combinations of three binding sites, from a base of thousand binding

sites available for modeling, quickly grows into hundreds of millions.

The cell’s transcriptional program can also depend on absolute or relative

orientation, order [Terai and Takagi, 2004], distance between binding sites and

other landmarks in the regulatory region (i.e., the translation start ATG, tran-

scription start site TSS) [Harrison and DeLisi, 2002]. While Pilpel et al. [2001]

observed that position and orientation of binding sites within the regulatory re-

gion is also correlated with expression, no systematic approach was proposed to

identify such structural patterns. The idea was to some extent explored further

by Beer and Tavazoie [2004] where more complex patterns that included posi-

tional information were considered. Authors showed that successful prediction

of gene expression from sequence requires diverse and complex patterns that

include constraints on binding site orientation, relative position and sequence

similarity and included them within the predictive rules using operators for

conjunction, disjunction and negation. To find such patterns, they first clus-
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tered 2587 genes into 49 expression patterns measured in 255 conditions that

include various environmental stresses and cell cycle data. They then applied

a probabilistic approach (i.e., Bayesian network) to describe relationships of

probabilistic dependency between sequence features (presence and absence of

615 specific binding sites, their orientation, order and spacing between them)

and 49 expression patterns. Using five-fold cross-validation they showed that

the Bayesian network modeling approach correctly predicts expression patterns

for 73% of 2587 genes used in S. cerevisiae. Bayesian networks were constructed

iteratively. Constraints between binding sites already included in the network

were added or removed in each iteration. The process was stopped when no

modification improved the probability that the network is correct, for the given

data. The method is highly combinatorial and examines many different refine-

ments in every iteration. The authors report the running time of eight hours on

a cluster of eight 2.4 GHz processors for the relatively small case study described

above. While they have demonstrated good predictive accuracy, the approach

has some limitations and problems. First, the initial choice of 49 clusters of gene

expression was made at the beginning of the analysis, and was not repeated in

the cross-validation. The choice on 49 clusters is somehow arbitrary and for

reasons already stated could have significantly biased the inference. Second,

probabilistic models, even if shown to be good predictors, are sometimes hard

to interpret by the end user. Examples of two discovered patterns are given in

Tables 2.2. Table 2.2a was interpreted by the authors as an example of con-

junction, and Table 2.2b as disjunction of the presence of the two binding sites

S1 and S2. Notice, however, that the difference between these two patterns is

not clear. What is the threshold that distinguishes between conjunction and

disjunction? Furthermore, values in Table 2.2a could suggest that binding site

S2 does not play a major role in this case, and a simple rule could be inferred in-

stead, requiring only the presence of S1. It is then up to the end user to develop

an appropriate interpretation, that is, to convert the pattern to an operational

rule. This may be easy for patterns with only two terms, but can get rather

complicated with patterns presented in larger tables that include many terms.

Recent methods for analysis of regulatory regions include using SVM on a

large set of 26 heterogeneous data types [Holloway et al., 2006], using proba-

bilistic networks [Segal et al., 2003b,a, 2001; Friedman, 2004] to identify regu-

latory modules (i.e., sets of genes) and their condition-specific regulators, us-
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S1 S2 P
0 0 0.01
0 1 0.22
1 0 0.67
1 1 1

S1 S2 P
0 0 0.01
0 1 0.75
1 0 0.59
1 1 1

(a) (b)

Table 2.2: Example combinations of two binding sites. The sites were reported
by Beer and Tavazoie [2004]. The presence or absence of binding sites S1 and
S2 in the promoter region of a gene is indicated by 1 or 0. Column P gives
the probability, as estimated by the Bayesian network, of a specific expression
pattern (patterns not shown) if the gene has a given combination of binding sites
in its regulatory region. a) This example can be interpreted as a conjunction:
the probability for the specific expression pattern is high only if both sites “S1

AND S2” are present. b) Disjunction: the probability for a specific expression
pattern is high if any of two sites (“S1 OR S2”) are present.

ing statistical motif discovery approaches combined with analysis of sequence

conservation and motif positioning [Down et al., 2007], probabilistic clustering

of regulatory sequences [van Nimwegen et al., 2002], fuzzy k-means clustering

[Gasch and Eisen, 2002], transcription factor-centric clustering using expression

data [Zhu et al., 2002], linear and step-wise regression between motifs and gene

expression [Conlon et al., 2003].

The above description of the state of research in combining sequence and

gene expression information motivated the research described in this Thesis. To

overcome the limitations of the state-the-art approaches, we have developed a

heuristic rule-based search method that is able, within a reasonable computa-

tion time, to identify complex symbolic structural patterns of gene regulatory

regions. The proposed rule-based clustering method is guided by the informa-

tion on the similarity of gene expression and explores only the most promising

and coherent subgroups of genes with similar regulatory content.

Recent research on the properties of networks has revealed the existence of

basic building blocks of most networks [Milo et al., 2002]. Feed-forward loops,

bifurcations, chains, and other network properties, such as the network scale-

free property of node distribution [Barabasi, 2002; Barabasi and Oltvai, 2004],

can be found in a wide variety of networks, ranging from technological, so-

cial to biological networks. The associated graph theory, developed to identify

graph properties of interest [Batada et al., 2007; Bertin et al., 2007], has al-
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ready proved very useful in understanding and gaining deeper insight into the

structure and properties of complex networks in many fields of science, e.g., for

human disease see the paper by Goh et al. [2007]. The visualizations of models

inferred with rule-based clustering, which we propose in Chapter 5, provide a

starting point for such analyses.

2.4 Summary

In this Chapter we have presented two main problems addressed in this Thesis:

methods for automatic (re)construction of gene networks, which should include

solving another important subproblem of analysis of gene regulatory regions.

Since solving both problems requires searching in a highly combinatorial solution

space, heuristic approaches are needed to find suboptimal solutions.
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Chapter 3

Phenotype characterization and

preliminary experiments

In this Chapter we present some initial experiments we have performed which

motivated and guided the development of the various approaches presented in

this Thesis.

3.1 Computational phenomics

Phenotype refers to the organism’s morphological, biochemical or physiological

properties. It describes the organism’s total physical appearance, its specific

traits, or behavior that may vary among individuals. These standard charac-

terizations are relatively easy to observe, and as such widely used in classical

genetics to reason about gene function. Classical genetics has greatly depended

on observation of mutant phenotypes (e.g., “mutant grows”, “does not grow”,

“sporulates”, “cells aggregate”, etc.). For example, in functional genomics, gene

function is inferred by controlling the environment and observing the phenotype

under changed activity of the gene, e.g., the phenotype of a wild-type organ-

ism and the phenotype of a knock-out deletion mutant are compared. With

the introduction of new genome-wide techniques in biotechnology and high-

throughput experimentation, manual characterization of a classical morpholog-

ical phenotype is no longer practical, and at the same time also insufficient,

because it usually carries relatively little information about the complete state

of the organism. Present technology allows designing a highly complex and fully

automated image acquisition and analysis system to quantify specific morpho-
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logical characteristics of an organism for specific studies (e.g., to determine the

roles of genes involved in growth of the organism). In would be in principle im-

possible to design a system that would capture all the necessary morphological

and structural features needed to describe the complete state of an organism,

which is required for genome-wide scale studies [Zupan et al., 2006]. Moreover,

some changes in the state of the organism may not be reflected in morphology.

Classical phenotypes may therefore be inadequate for whole-genome studies,

because they do not encode the complete state of the organism at a sufficient

resolution that would allow the detection of differences in the organism’s state

which are induced by changes in the environment or genotype.

Below we give an overview of two types of genome-wide gene profile data

and show that they can be used in the analysis of gene function, and compare

them with standard gene expression profiles, and investigate their ability to

characterize gene function. Our initial exploration in this direction [Curk et al.,

2005b] was inspired by the investigation of Stuart et al. [2003] where they have

proposed a method to cluster genes based on the “guilty-by-association princi-

ple.” The method, called gene co-expression networks, was used to measure the

correlation between similarity in gene expression profiles (gene co-expression)

and similarity in gene function annotation. In addition to performance mea-

sures originally proposed by Stuart et al. [2003], we here propose to use receiver

operating characteristic (ROC) analysis [Provost and Fawcett, 2001] to measure

the concordance between gene profile data and functional annotation, which we

believe to be more appropriate. Our preliminary investigations described in

this section show that using particular gene characterizations (i.e., a specific

type of gene profile data) results in better predictions of specific gene func-

tions, which motivated the choice of particular gene characterization in devel-

opment of the computational approaches in this Thesis. Additionally, we show

that each type of gene profile data is more suitable for predicting separate and

functionally linked sub-graphs in the ontology of gene functional annotation

[Ashburner et al., 2000].

3.2 Types of computational phenotypes

Collection of DNA microarray data on gene expression, measured under dif-

ferent experimental conditions or time points, is a type of data normally used
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to infer gene function. This type of data is often referred to as gene expres-

sion profile. The underlying assumption, referred to as the guilty-by-association

principle, states that genes with similar expression profiles should have similar

functionality. When predicting the function of a gene, the annotation shared

by the majority of genes with similar profiles is determined and assigned to the

gene whose function is being predicted. Clustering of gene expression profiles

[Eisen et al., 1998] is the most often used method that applies to this principle.

Two other data types, data on mutant transcriptional profiles and data on

mutant sensitivity profiles, both made possible by recent technological advances,

provide alternatives for gene association analysis. For both data types, gene

function is related to the phenotype of its corresponding mutant.

The transcriptional profile (phenotype) of a mutant is defined as a collection

of DNA microarray measurements of gene expression of all genes in the mutant

strain. Changes in gene expression levels of individual genes are presumed to

reflect specific cellular states and most gene expression profiling studies try to

identify genes that respond to specific conditions or treatments and do not use

data on mutant expression. As already stated, the idea that expression of all

genes could be used as an indication of cellular state, has recently gained a

substantial attention [Bittner et al., 2000; Alizadeh et al., 2000; Hughes et al.,

2000]. It has been shown that the mutant expression profile could serve as a

surrogate for an universal phenotype [Van Driessche et al., 2005; Hughes et al.,

2000; Hughes, 2005] and as such is believed to be very informative for assigning

gene function. Whole-genome expression profiling of mutants thus holds great

promise for rapid genome function analysis. Instead of associating gene function

to its expression pattern under different conditions, as it is done when analyzing

gene expression profiles, one can consider the entire DNA microarray profile of a

mutant strain as an indicator of function of the mutated gene. The utility of this

approach has been successfully demonstrated in yeast by Hughes et al. [2000]

and in cancer cell characterization [Bittner et al., 2000; Alizadeh et al., 2000].

The reason to use whole-genome mutant phenotypes as opposed to a specific

gene expression profile also follows from the finding that (single) gene expression

and gene function may show very little correlation on a global scale. This

correlation was reported to occur in less than 10% of the cases [Winzeler et al.,

1999].

The mutant sensitivity profile is defined as a quantitative characteristic of
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the mutant strain under specific treatment (i.e., sensitivity to a specific treat-

ment). This type of mutant-based phenotype can be obtained by using uniquely

“barcoded” viable deletion mutants. The “barcoding” technique allows to dis-

tinguish and to measure the relative abundance of mutants in a pool of all

viable deletion mutants. This provides an indication of the sensitivity and fit-

ness of each mutant under a specific environmental change or treatment. A

quantitative sensitivity profile of a mutant is thus defined as a collection of such

measurements under various treatments or conditions [Brown et al., 2000].

In our preliminary experiments with these phenotypes we have used pub-

licly available microarray gene expression data sets, sensitivity profile data sets

and annotations of gene function on yeast S. cerevisiae. Data on gene ex-

pression profiles was taken from a study by Spellman et al. where they have

measured gene expression in 73 different time points of the S. cerevisiae cell-

cycle [Spellman et al., 1998]. For mutant transcriptional profiles we have used a

compendium of whole-genome gene expression DNA microarray measurements

of 300 diverse mutants and chemical treatments in S. cerevisiae, as reported by

Hughes et al. [2000]. Data on mutant sensitivity profiles were made available by

Brown et al. [2000] and includes sensitivity measurements of 4756 viable strains,

measured in 51 diverse treatments (cytotoxic or cytostatic agents).

To test the results of our predictions we have used the existing functional

annotations of S. cerevisiae genes. We considered 79 Gene Ontology (GO)

terms [Ashburner et al., 2000] which were annotated to at least 10 genes. We

also used a subset of 28 high-level GO “slim terms” that best represent the major

biological processes, functions, and cellular components found in S. cerevisiae

(data available at http://www.yeastgenome.org).

3.3 Gene co-expression networks

To quantify the degree of correlation between various characterizations of gene

profile data and functional annotation, we have used gene co-expression net-

works [Stuart et al., 2003]. Gene co-expression networks were originally pro-

posed as a straightforward computational method to cluster genes based on sim-

ilarity in their gene expression profiles which are measured across various con-

ditions (cell cycle, temperature shock, acid shock, etc.). The gene co-expression

network can be represented as a graph where nodes represent genes. Two genes
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in the network are connected if the similarity in their characterization (gene

profile) is above a certain user-defined threshold. The method uses a distance

(similarity) function to measure distance between pairs of genes. Stuart et al.

used Pearson correlation to measure similarity among gene expression profiles.

We have also used Pearson correlation to assess the similarity for the other two

phenotypes used for gene characterization.

The structure of the network largely depends on the selected similarity

threshold. By varying the threshold different networks arise: from relatively

unconnected networks, with edges relating only genes with most similar pro-

files, to highly connected networks that include edges linking genes with low

or zero similarity. Based on the assumption that genes with similar charac-

terization profiles are also functionally related, one can expect that genes with

similar function would form interconnected groups. Stuart et al. proposed two

measures to quantify this property of a network. The first measure is coverage,

which reports on the proportion of genes belonging to a selected functional class

that are also connected to at least one gene from the same class. The other mea-

sure is accuracy, which is expressed as the proportion of edges that connect two

genes from the observed class over the number of all edges connecting to genes

in that class, i.e., number of edges connecting two genes from the observed class

as well as edges connecting a gene from the observed class with a gene outside

the class. For example, a gene co-expression network of seven genes (G1-G7)

for an arbitrarily selected threshold (not given) is shown in Figure 3.1. There

are five genes annotated to the observed class (G1, G2, G5, G6 and G7, colored

in blue), but only two of them are connected to each other (G1 and G2). The

class coverage of this network is then 2/5 = 0.4. There is only one edge con-

necting two genes in observed class (edge G1-G2). There are four edges coming

from genes in the observed class (edges G1-G2, G2-G4, G5-G4, G7-G4). The

accuracy of the network is then 1/4 = 0.25.

Using an appropriate method for graph layout visualization (e.g., the pro-

gram Pajek by Batagelj and Mrvar [2003]) of gene co-expression networks can

reveal structural information such as outliers or tight gene clusters. In addition,

varying the threshold also provides a general overview of the relation between a

specific gene function and gene profile similarity. In this work we do not report

on network visualization, because we are primarily interested in the network’s

ability to group genes with same functional annotation. Therefore, we only
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build networks and use them to measure their predictive ability on a set of

selected gene functional annotations.

The main difficulty with the measure of network performance proposed by

Stuart et al. is that it does not provide for a single quantitative measure of

success, but it reports two values (i.e., on coverage and on accuracy). This

complicates the comparison of the predictive ability of different networks. In

particular, we would like to know which type of gene profile data better relates

genes in a selected functional class, and thus require a single-valued and clear

scoring method.

We therefore propose an alternative scoring to that used by Stuart et al.

[2003]. In this, we borrow from a well-known method established in statis-

tics and recently much used in the field of machine learning. The approach is

called receiver operating characteristic (ROC) analysis [Provost and Fawcett,

2001; Vuk and Curk, 2006; Fawcett, 2003] and is widely used to measure the

ability of a probabilistic classification model to discriminate among classes. In

a typical setting with two classes, one class is represented with value zero (also

called negative class), and the other class with value one (positive class). The

classification method assigns a value (score), in the interval between zero and

one, to each example. This value indicates a likelihood that the example belongs

to one class (i.e., to the positive class represented with value one). Examples

are then ordered by decreasing score from which a ROC graph is formed and

the area under the ROC curve (AUC) is calculated.

ROC curves are plotted in the “FP-rate and TP-rate” space (see Figure

3.2b for example). False positive (FP) rate is the number of examples falsely

assigned to the positive class (those examples are actually negative) divided by

the number of all negative examples. True positive (TP) rate is the number

of correctly predicted positive examples divided by the number of all positive

examples. A “sliding” threshold is used to calculate the FP-rate and TP-rate

values at each possible threshold. The threshold is initially set to the highest

score, and subsequently decreased to lower scores. At each step, predicted

examples, with score equal or higher to the threshold, are used to calculate the

FP-rate and TP-rate, and to plot a point of the ROC curve at the corresponding

coordinates.

The calculated value of area under the ROC curve (AUC) can be between

zero and one. A value of one indicates a perfect ability of the tested model
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G1

G5

G2

G3

G4 G7

G6

gene in observed class

Legend:

gene not in observed class

Figure 3.1: An example gene co-expression network. Seven genes (G1-G7) are
shown. Genes with a correlation score above a selected threshold (not shown)
are connected by an edge. Observed class coverage is 2/5 = 0.4, accuracy is
1/4 = 0.25.

to discriminate between the two classes (the ROC curve intersects the point of

zero FP-rate and perfect TP-rate of value one), a value of 0.5 indicates random

guessing – the model cannot distinguish between classes. For details on ROC

analysis see papers by Provost and Fawcett [2001]; Fawcett [2003]. AUC is a

single value representation of the model’s discriminative ability and as such

more suitable for direct comparisons of the predictive ability of different models

then the metric(s) proposed by Stuart et al. [2003].

In our work, instead of focusing on genes we focus on edges when modeling

gene co-expression networks. In this setting, an edge connecting two genes from

same class under consideration is considered to be a true positive (TP) example.

An edge connecting two genes outside the class is considered a true negative

(TN). Edges connecting one gene in class with another gene outside the class are

considered false positives (FP). Applying ROC analysis on gene co-expression

networks is then straightforward. All edges in a fully connected network are

examples. The score assigned to each edge is the calculated similarity of the

two genes connected by the edge. All edges are considered in the ROC analysis

without the need for selecting a (similarity) threshold.

3.4 Visualizing the predictive performance

and Gene Ontology relations

The predictive performance of gene co-expression networks can be visualized

with the coverage-accuracy graph proposed by Stuart et al. [2003]. The results
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(a) (b)

Figure 3.2: a) Coverage-accuracy plot and b) ROC plot of gene co-expression
networks for GO term “macromolecule biosynthesis.” Results achieved on all
three data types are shown (E – gene expression profile, P – mutant sensitivity
profile, M – mutant transcriptional phenotype).

of ROC performance analysis can be displayed in form of a performance graph

which can also be used to visually evaluate and compare classifiers.

Figure 3.2 shows an example of the two plots for the group of genes anno-

tated to the GO term “macromolecule biosynthesis.” While one could conclude

from the coverage-accuracy plot in Figure 3.2 that the gene co-expression net-

work built from mutant sensitivity profile (P) data performs best, it is unclear

which of the remaining two networks is second best. The gene co-expression

network built from mutant transcriptional phenotype data (M) may appear

to better perform than the network constructed from gene expression profile

data (E) (see Figure 3.2a). However, the ROC curve in Figure 3.2b clearly

shows that using mutant sensitivity profile data (P) results in the best gene co-

expression network, while the other two data types produce gene co-expression

networks with equally poor discriminative ability for the group of genes involved

in “macromolecule biosynthesis.”

Complete results for a selection of GO slim terms, with at least ten genes

annotated to the GO term, are given in Table 3.1. Each row in Table 3.1 shows

the area under the ROC curve (AUC) achieved by gene co-expression networks
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M AUC E AUC P AUC GO term
0.736 0.598 0.752 C mitochondrial envelope
0.631 0.670 0.805 C ribosome
0.613 0.630 0.648 F structural molecule activity
0.603 0.572 0.572 C endoplasmic reticulum
0.583 0.538 0.572 C mitochondrion
0.581 0.475 0.524 P cell wall organization and biogenesis
0.575 0.506 0.523 P DNA metabolism
0.574 0.566 0.751 P protein biosynthesis
0.554 0.523 0.526 P organelle organization and biogenesis
0.552 0.543 0.547 C endomembrane system
0.551 0.547 0.497 C membrane
0.549 0.517 0.507 F protein binding
0.542 0.599 0.514 P protein modification
0.540 0.536 0.522 P cell cycle
0.536 0.488 0.494 F DNA binding
0.533 0.497 0.513 F hydrolase activity
0.529 0.524 0.513 C cytoplasm
0.520 0.503 0.505 F transcription regulator activity
0.512 0.494 0.500 P transport
0.508 0.502 0.493 C nucleus
0.505 0.505 0.495 P transcription
0.504 0.597 0.477 P lipid metabolism
0.504 0.522 0.511 F transferase activity
0.497 0.622 0.525 F oxidoreductase activity
0.497 0.508 0.508 P morphogenesis
0.494 0.476 0.449 P signal transduction
0.487 0.610 0.475 P conjugation
0.483 0.514 0.561 P response to stress
0.476 0.492 0.601 P vesicle-mediated transport
0.475 0.494 0.470 F enzyme regulator activity

Table 3.1: Predictive performance of gene co-expression networks built using all
three types of gene profile data. Results for GO slim terms on data for mutant
transcriptional phenotypes (M), gene expression profile (E), and mutant sensi-
tivity phenotype (P) are shown. GO term prefix indicates the term’s GO aspect:
molecular function (F), biological process (P), and cell compartment (C).

for a specific GO term annotation, for each of the three computational phe-

notypes used to build a gene co-expression network. For example, the term

“mitochondrial envelope” from the cell compartment (“C”) aspect of GO can

be reasonably well predicted by a gene co-expression network built from mu-

tant transcriptional (M) or mutant sensitivity phenotype (P) with AUC value

∼ 0.74, but the same GO term can not be well predicted from gene expres-

sion profile data (E), where AUC is less than 0.6. To compare the predictive

ability of gene co-expression networks built on the three different types of data

we have made pair-wise comparisons of the predictive performance of gene co-

expression networks for each GO term. These comparisons are summarized in

Table 3.2, and can answer the question on which type of data is more suitable

for building gene co-expression networks that best predict specific GO terms.
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M - E GO term
-0.125 F oxidoreductase activity
-0.122 P conjugation
-0.092 P lipid metabolism
-0.057 P protein modification
-0.031 P response to stress
-0.019 F enzyme regulator activity
-0.019 F transferase activity
-0.017 F structural molecule activity
-0.016 P vesicle-mediated transport
-0.011 P morphogenesis
. . . . . .

0.008 P protein biosynthesis
0.016 F transcription regulator activity
0.018 P transport
0.018 P signal transduction
0.031 P organelle organization and biogenesis
0.032 F protein binding
0.036 F hydrolase activity
0.048 F DNA binding
0.069 P DNA metabolism
0.105 P cell wall organization and biogenesis

M - P GO term
-0.176 P protein biosynthesis
-0.125 P vesicle-mediated transport
-0.078 P response to stress
-0.035 F structural molecule activity
-0.028 F oxidoreductase activity
-0.011 P morphogenesis
-0.007 F transferase activity
0.005 F enzyme regulator activity
0.010 P transcription
0.012 P transport
. . . . . .

0.018 P cell cycle
0.020 F hydrolase activity
0.027 P organelle organization and biogenesis
0.027 P lipid metabolism
0.028 P protein modification
0.042 F protein binding
0.042 F DNA binding
0.045 P signal transduction
0.052 P DNA metabolism
0.056 P cell wall organization and biogenesis

P - E GO term
-0.134 P conjugation
-0.120 P lipid metabolism
-0.098 F oxidoreductase activity
-0.085 P protein modification
-0.027 P signal transduction
-0.024 F enzyme regulator activity
-0.014 P cell cycle
-0.011 F transferase activity
-0.010 F protein binding
-0.009 P transcription
. . . . . .

0.004 P organelle organization and biogenesis
0.006 F DNA binding
0.006 P transport
0.016 F hydrolase activity
0.017 P DNA metabolism
0.018 F structural molecule activity
0.047 P response to stress
0.049 P cell wall organization and biogenesis
0.108 P vesicle-mediated transport
0.185 P protein biosynthesis

Table 3.2: Pair-wise comparison of predictive performance of gene co-expression
networks from Table 3.1. Top and bottom ten differences in AUCs achieved on
various types of gene profiles (M vs. E, M vs. P, and P vs. E) are shown and
sorted by increasing difference of AUCs.

Looking at the first column (“M - E”) and first row, the difference −0.125 in

AUCs for “F oxidoreductase activity” indicates that the GO term “oxidoreduc-

tase activity” from the gene function aspect of GO can be better predicted with

a gene co-expression network that was built using the gene expression profile

data (reported AUC using E in Table 3.1 for the term is 0.622) than the network
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built from the mutant transcriptional phenotype data (reported AUC using M

in Table 3.1 for the term is 0.497).

To visualize and compare the performance of gene co-expression networks

we have used the Radial coordinate visualization (RadViz) method proposed by

Ankerst et al. [1996]. The RadViz visualization can map a set of m-dimensional

points inside a unit circle on a two-dimensional plane. Each of the m dimensions

is represented by a special point on the unit circle, called anchor. Anchors are

normally placed equidistantly on the unit circle. How a data point is projected

inside the circle is determined by its values in each dimension. An intuitive

explanation is the spring metaphor, where each data point is said to be con-

nected to all anchors by springs. The stiffness of each spring is determined by

the value of the data point in the corresponding dimension, the higher the value

the stiffer the spring is. The point is positioned where equilibrium is reached.

In our study, each GO term (functional class) represents a data point in the

RadViz plot (e.g., see Figure 3.3). The three dimensions or anchors represent

the measured AUCs of gene co-expression networks build from the three corre-

sponding types of gene profile data (i.e., ‘E’ for the gene co-expression network

built using gene profile data, ‘M’ for mutant transcriptional phenotype data,

and ‘P’ for mutant sensitivity profile data). GO terms are placed depending on

the achieved AUCs. GO terms close to the center are equally well characterized

by all three types of gene profile data. GO terms closer to an anchor are bet-

ter predicted by the data type represented by the anchor. For example, points

closer to the mutant-based transcription phenotype anchor M (e.g., the term

“signal transduction” from the GO aspect “biological process”) can be better

predicted by gene co-expression networks build using mutant transcriptional

phenotype data than by gene co-expression networks built using the other two

data types. Points in Figure 3.3 (and in all other subsequent figures) which are

closest to the same anchor are of same color (and shape). This is just to indi-

cate those GO terms that are better predicted with gene co-expression networks

built from the corresponding data (e.g., red circles are GO terms closest to the

anchor of mutant transcriptional phenotype M data, green rectangles are GO

terms closest to the gene expression profile data E, and gray triangles are GO

terms closest to mutant sensitivity profile data P).

The predictive performance of gene co-expression networks on all three data

types is shown in the RadViz visualization in Figure 3.3. Mutant transcrip-
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tional profiles were the most predictive for the GO term “signal transduction”

that contains genes coding for regulation of signaling. This finding is in agree-

ment with the fact that the function of a signaling gene (e.g., a transcription

factor) is best determined by the effect on its downstream target genes or other

messengers in the signaling cascade, which ultimately lead to a change in the

functioning of the cell. Mutant sensitivity profile was the most predictive for

GO terms “vesicle-mediated transport” and “response to stress”. These genes

are important in the response of yeast cells to the chemicals used for generating

the mutant phenotypic profile. Therefore, this case demonstrates the impor-

tance of the biological context of the experiment for the information value that

can be derived. Surprisingly, we have found that mutant transcriptional pro-

files (M), which are presumed to encode the global state of the organism, were

surprisingly less informative than expected.

We then tested whether GO terms which are close to each other on the

RadViz plot are also close in Gene Ontology. To perform this analysis, we su-

perimposed the Gene Ontology hierarchy over the RadViz plot by connecting

GO terms that are also, either directly or indirectly, connected in the Gene On-

tology graph. Note that connections in GO are directed and are always pointing

from the parent GO term node to its children (more specific) GO term nodes.

We then calculated the level of clustering of GO terms better predicted by each

type of profile by calculating the S/A ratio: number of directed connections

among GO terms better predicted by the same gene profile data type (S) over

the number of all connections pointing from those same GO terms (A). The

results for the three different annotation aspects of Gene Ontology are presented

in Figure 3.4.

Graphs in Figure 3.4 support our claim that some functional annotation

(GO terms) are better characterized with a specific type of gene profile data.

The majority of arrows are pointing away from the center of the RadViz graphs,

shown as the “root” node of Gene Ontology. This indicates that the prevalence

of a specific gene characterization approach is greater for more specific functions

(which are placed closer to anchors). GO terms, better predicted by a specific

gene profile data type, are also clustered in all three ontology (sub)graphs (Fig-

ures 3.4 a-c), one for each aspect of GO. This provides additional support for

our claim on the relation between gene-characterization approaches and their

utility for prediction of specific functional classes.
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Figure 3.3: RadViz plot of the predictive performance of gene co-expression
networks, for all three types of data. GO terms closest to an anchor are of same
color and shape. Only GO slim terms with at least ten annotated genes are
shown.

3.5 Discussion

In this Chapter we have introduced the concept of computational phenotype.

We have extended gene co-expression networks, which were initially developed

by Stuart et al. [2003] for gene expression profile data. In their work, Stuart et

al. assumed the “guilty-by-association” principle, which states that correlated

expression patterns of (evolutionary highly conserved) genes under diverse con-

ditions imply functional relation. Although using expression data that origi-

nated from mutants Hughes et al. [2000], their conclusions were based only on

gene-expression profiles. Mutant-based phenotypes were not investigated. Here

we showed how gene co-expression networks can be extended to handle the other

two, mutant-based types of gene profile data, i.e., mutant transcriptional phe-
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GO terms clustering
(S/A)

closest to anchor ratio
P (gray triangle) 0.789 (30/38)
E (green square) 0.486 (18/37)
M (red circle) 0.627 (52/83)

GO terms clustering
(S/A)

closest to anchor ratio
P (gray triangle) 0.875 (7/8)
E (green square) nan (0/0)
M (red circle) 0.738 (31/42)

(a) (b)

GO terms clustering
(S/A)

closest to anchor ratio
P (gray triangle) nan (0/0)
E (green square) nan (0/0)
M (red circle) 0.800 (8/10)

(c)

Figure 3.4: RadViz plots of GO terms from a) biological processes, b) cellular
components, and c) molecular functions aspects of Gene Ontology. Anchors are
indicated by diamond points (E – gene expression profile, P – mutant-based
sensitivity profile, M – mutant-based transcriptional phenotype). GO terms
better predicted with E, M, or P are shown as green boxes, red ellipses, and as
gray triangles, respectively. A black diamond in the center of the plot indicates
the root of GO. Directed arrows show the parent→ child relations of GO terms.
GO terms with at least ten annotated genes that are appearing in the mutant
data are shown.
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notype and mutant sensitivity profile data. We have built gene co-expression

networks using the three different computational phenotypes for the budding

yeast Saccharomyces cerevisiae.

Overall, we found no clear “winner” or most informative data type when we

compared the results of gene co-expression networks built from classic gene ex-

pression profiles and the two mutant-based profile types. We have observed that

the two mutant-based profile types (i.e., observing global expression patterns

of mutants under the same conditions, or observing the sensitivity of mutants

under different treatments) produce gene co-expression networks with better dis-

criminative ability for function prediction (see Table 3.2) than those networks

built on gene expression profiles (i.e., observing gene expression under differ-

ent conditions). One conclusion that also needs to be drawn from this analysis

is that, when studying a particular function, there may be a clear difference

between the two approaches that could be explained with existing biological

knowledge. This is a clear indication that all three sources of experimental data

should be used in order to successfully predict specific gene functions. Further

work includes investigating and developing ways to automatically learn how to

combine all three profile types for better function prediction. Further along

these lines, we have shown examples how entire subgroups of gene functional

classes can be better predicted from different types of gene profile characteriza-

tion.

The principal novelty of the work presented here is the direct comparison

of the utility of gene expression profiles and two mutant-based phenotypes for

gene function prediction using the area under ROC curves for gene co-expression

network, and the analysis of obtained scores with RadViz visualizations. Gene

expression and mutant-based transcriptional profiles were first studied together

and qualitatively compared by Hughes et al. [2000]. They were found to com-

plement each other, which is in agreement with our study. We extended this

to mutant sensitivity profiles. The utility of mutant-based phenotypes depends

on development of appropriate high-throughput technology, and with recent ad-

vances and rise in reported mutant-based studies we strongly believe that such

phenotypes can and will complement the traditional gene expression profiles in

functional genomics.
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Chapter 4

Rule-based clustering and

feature construction

In this Chapter we propose a clustering method that uses an attribute-based

representation of examples and calculates the intra-cluster similarity on a subset

of attributes, with the goal to identify distinctive clusters of examples through

logic assertion on the remaining set of attributes. The discovered model is thus

composed of a set of IF-THEN rules. To construct assertions in the conditional

part of the rule, the method incorporates an on-the-fly feature construction step

which is suitable for complex, feature and background-knowledge rich problem

domains. An important advantage of the proposed approach is its ability to

discover overlapping clusters, that is, clusters that may share a subset of exam-

ples. We also address time-complexity of the method and describe means for

quantitative evaluation of the approach.

4.1 Motivation and goal

Although the method proposed in this Chapter is general and could be applied

to other problem areas, the principal motivation came from its application in

bioinformatics and the analysis of gene regulatory sequence and expression data.

Namely, we developed the approach in order to overcome the difficulties associ-

ated with current approaches which are used for relating gene sequence to gene

expression (details on the methods are described in Section 2.2). The principal

drawback for a set of approaches that start with clustering of gene expression is

their potential sensitivity to the selection of the type of clustering method and
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the choice of parameter values, especially the number of clusters. As stated in

Section 2.2, these can greatly influence any subsequent inference of descriptions

of discovered clusters. For these reasons, rule-based clustering heavily relies on

finding patterns in gene regulatory sequences instead, and it uses information

on gene expression to guide the search in the space of all possible gene clusters.

The space of all possible clusters is determined by the user-defined descriptive

language (i.e., the language is used to encode the conditional part of a rule

which identifies a cluster).

The goal of rule-based clustering is to find clusters of similar examples for

which a common cluster-specific symbolic description can be inferred. Note

that unlike common clustering methods, like hierarchical clustering and k-means

algorithm, the proposed methods uses a distinct set of attributes to reason on

similarity of examples, and is uses another set of attributes to infer symbolic

descriptions – assertions that are common to a set of examples within the same

cluster (see Figure 4.1 for the two sets of attributes). Another distinction is that

we allow examples to be assigned into several clusters. In this sense, the method

bears similarity to the principal idea of subset discovery approaches, again with

the difference that one subset of attributes is used for cluster description and

another to reason on similarity of examples.

The output of the method is a set of example clusters, each described by a

set of one or many rules of the following form:

IF description THEN prototype.

The conditional part of a rule is a symbolic description that defines the cluster

membership (i.e., it describes all covered examples that match the symbolic

description). Prototype defines the properties of the cluster. The prototype is

computed from examples in the training set that are covered by the rule using

a user-defined prototype function or it can be simply represented with a list of

all matching examples in the training set. In the context of gene regulatory

sequence and expression data analysis, the conditional part describes the regu-

latory sequence similarity of a group of genes, and the consequence of the rule

describes their gene expression profile. Here, the goal is to identify groups of

genes with same pattern(s) of sequence elements in the regulatory region that

also have similar gene expression profiles.
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Figure 4.1: Two types of attributes needed for rule-based clustering.

Exhaustive search for rules, even with a relatively simple descriptive lan-

guage, can quickly grow into a prohibitively hard problem due to combinatorial

explosion. The main distinctive feature of the proposed rule-based clustering

method is its ability to efficiently derive rules describing complex patterns that

may include three or more features by starting from a base set of thousands of

features. This is achieved by the heuristic search, explained in more details in

the next section. The search is guided by the information on example distance

and only the most promising parts of the vast rule-space are searched. Each

next step in the cluster discovery process is selected based on example similarity

in the currently discovered groups. Further refinements of rules are performed

on only those rules describing the most promising clusters.

With overlapping clusters, which can be discovered by rule-based cluster-

ing, we are likely to find examples that jointly appear in a number of clusters.

Obviously, our approach would benefit from post-processing, as joint cluster

membership of a subset of examples may indicate several shared properties that

may be overlooked if we rely on disjoint cluster coverage. Moreover, such exam-

ples can be of special interest, because they may indicate cases that should be

studied in many contexts of other examples. In the biological context of genes,
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this might be an indication that a gene is independently regulated by two or

more regulators, or that it can respond to different conditions. In Chapter 6,

for example, we show one such example for yeast, where functional groups of

genes can be described by many cluster-specific rules.

The proposed rule-inference method was inspired by the covering CN2 al-

gorithm [Clark and Nibblet, 1989] for supervised machine learning, and the ap-

proach of clustering trees developed by Blockeel et al. [1998]. CN2 can infer

rules that relate a description of examples to the value of a special attribute

called a class. Extensions of CN2 were recently proposed that use example

weighting, with which the algorithm can identify overlapping clusters, to a cer-

tain extent. Similarly to the method developed in this Thesis, clustering trees

find clusters of similar examples, where similarity is defined by a distance func-

tion on a subset of attributes. However, clustering trees return non overlapping

clusters. The proposed rule-based clustering method combines both approaches.

It is able to identify overlapping clusters of similar examples and at the same

time infer a symbolic description of each cluster.

Similar to CN2 our method uses beam search to find the best rule. The beam

is a set of L currently best rules to be further refined (parameter of algorithm in

Figure 4.2). In the originally proposed CN2 algorithm the value of L is normally

set in the range from ten to twenty. The small beam size greatly limits the space

of rules that will ever be explored but also makes the search procedure run in

acceptable run times. When a currently best rule is found, examples covered

by the best rule are removed from further consideration. The rule inference

procedure is then restarted to search for rules that cover the remaining examples.

In the example weighting version of CN2, covered examples are not removed,

but their weights are decreased. A lower example weight makes it less likely to

be reconsidered in subsequent steps of rule search. Crucially, this prevents CN2

from reusing those same examples and inferring the same best rule over and over

again in the next iterations of rule search. In practice, it can still happen that

the same best rule is identified in two or three consecutive iterations before the

weights of covered examples decrease enough and other examples (and rules)

start to be explored by the CN2 search algorithm. The proposed rule-based

clustering method uses a larger beam than CN2 normally uses and it searches

for new rules until refinements are possible and result in significantly more

coherent (sub)clusters. No actual example coverage is considered and examples
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weights are not adjusted in these search steps, since it would prevent exploring

certain parts of the rule space.

At the same time and independently to our work a similar idea to predic-

tive clustering was proposed by Ženko [2007]. They also extended the method

of clustering (decision) trees, developed by Blockeel et al. [1998], to existing

methods for learning rules. Namely, they use “example weighting” extensions

of the CN2 covering algorithm, for which they propose an “error weighted cov-

ering” scheme – in every iteration of the covering algorithm, the weights of

examples are changed proportionally to the prediction error that a newly added

rule makes on those examples.

4.2 Heuristic rule search

The algorithm for rule-based clustering is shown in Figure 4.2. The two sets of

attributes (shown in Figure 4.1), that are given in the input example table E and

required by the algorithm, are defined indirectly by the two user-defined func-

tions fc(. . .) and d(. . .). The input function fc(. . .) encodes the user-defined,

and background-knowledge dependent, feature construction operators which are

defined on the first set of attributes (i.e., on the “cluster description attributes”

in Figure 4.1). Function genFeature(. . .) uses these operators to construct new

features that are subsequently used for rule refinement (algorithm, lines 6 and 7).

Similarity between pairs of examples is calculated with a user-defined distance

function d(. . .) on the second set of attributes (i.e., on the “profile attributes” in

Figure 4.1). Both sets of attributes guide the rule search. The descriptive lan-

guage, determined by the first set of attributes and by the feature construction

operators, determines which clusters of examples can be formed and explored,

defining the “language bias.” The search among possible cluster descriptions is

guided by the calculated pairwise example distance; the method aims to obtain

clusters of examples whose pairwise distance is as small as possible. While in all

applications described in this Thesis the two sets of attributes do not overlap,

this is not required. This is left to the user when defining the language for

cluster description and distance function.

The method requires a set of “target” examples T. This is usually a small

subset of examples that the user wants to cluster into subgroups and find rules

describing their distinctive, cluster-specific features. This can prove useful when
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the user is mainly interested in a subset of examples and wants to analyze them

in the context of all other examples. If all examples are of equal interest to the

user, then the target set T must include all examples. However, in the latter

case the user should be aware that entire subspaces of rules and examples might

be missed because of limited beam size.

Rule-based clustering uses beam search to infer rules (see algorithm in Figure

4.2). Beam B is an ordered list of inferred rules that should be considered for

further refinement. The order of rules in the beam is determined by a score

that is calculated with the function potential(. . .). The beam is limited to a

maximum size of L top-scored rules. The main loop of beam search is given

in lines 3-14 in algorithm. The loop stops when beam is empty. Initially, the

beam includes only one rule “True” (line 1) which describes all examples. This

description is subsequently refined as are any other rules that get added into

the beam.

The call of function pop() in line 4 removes the currently best rule from

beam and assigns it to variable Rb. Rule Rb is refined into many different rules

Rn (line 7) by adding different conditions on a new feature Mk. New features

are generated by calling function genFeature(. . .) in line 6 (see next section for

details on feature generation).

Each newly inferred rule Rn is tested with a call (in line 8) of function

accept(Rn, Rb, T , N , d()). The function returns true if all two criteria are

met. First, the new rule Rn must cover at least N examples from the target set

T . Second, the average pair-wise intra-cluster similarity of the newly formed

cluster described by rule Rn must be significantly greater that the intra-cluster

similarity of the cluster formed by the “parent” rule Rb. This last criterion does

not say anything about the size of the newly formed cluster (i.e., it does not

mandate the newly formed clusters to be of smaller size). Depending on the

descriptive language used, the newly formed cluster can include less or more

examples than the original cluster, as long as the second criterion is met (i.e.,

the descriptive language can be defined to allow new constraints to be added

conjunctively, disjunctively, or both).

The significance of increase in intra-cluster similarity – more precisely, the

decrease of variance of the intra-cluster pair-wise distance, calculated with func-

tion d(. . .) – is tested using the F-test statistic:

F =
SSB

nB − 1
/

SSN

nN − 1
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Algorithm RBC

Input :
E - example table
T – set of target examples
fc(. . .) - feature construction operators
d(. . .) - distance function
K – maximum size of list R of discovered rules
L – maximum size of list B (beam)
N – minimum number of target genes in cluster
P – significance level for decrease in cluster variance
D – maximum average intra-cluster distance
M – maximum average number of rules covering one example

Output :
R – ordered list of discovered K best rules

1 B ← [True]; B is an ordered list (beam) of L best rules for
further refinement

2 R← []; R is an ordered list of K best discovered rules
3 WHILE B �= [] DO
4 Rb ← B.pop()
5 refined← False
6 FOR EACH Mk IN genFeature(E, fc(), Rb)
7 Rn ← refine(Rb, Mk)
8 IF accept(Rn, Rb, T, N, P, d()) THEN
9 S ← potential(Rn, d())
10 B.add(Rn, S)
11 refined← True
12 S ← score(Rb)
13 IF not refined and S <= D THEN
14 R.add(Rb, S)
15 R← selectMostGeneral(R)
16 R← filterByCoverage(R, M)
17 return R

Figure 4.2: Rule-based clustering inference algorithm using beam search.

where SSB and SSN are sums of squared differences from the mean inside the

cluster (i.e., the intra-cluster variance) of examples covered by the parent rule

RB and examples inside the refined rule RN , respectively. Values nB and nN are

the total number of examples in each of the RB and RN clusters, respectively.
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Figure 4.3: Rule refinement is the basic step of the proposed search algorithm.
a) An example representation of explored rule-space. b) Change of intra-cluster
variance after rule refinement determines whether the refined rule can be ac-
cepted.

A pvalue is calculated from the F score, and it is used to determine whether the

increase in intra-cluster similarity is significant for a given significance level P

(parameter given by user). Figure 4.3a shows how different refinements of same

initial rule lead to the exploration of different clusters, each defined by a rule.

Figure 4.3b shows how the intra-cluster similarity of examples covered by refined

rules (cluster profiles in the bottom two nodes) must increase significantly (a

significant increase is marked with a check-mark) compared to the cluster of the

parent rule (top node). Only in such cases a refined rule can pass the test in

function accept(. . .) and be added to the beam for further refinements, otherwise

the rule is completely discarded from further consideration.

Refined rules that meet the two criteria are added into beam B (line 10)

and are considered for further refinements. The position of each newly inferred

rule Rn that is added into beam B is determined by the score S. This score

is calculated with a call in line 9 of function potential(Rn, d()). Since the goal

is to discover the most homogeneous clusters of examples, each rule in beam –

which is waiting to be further refined – is not scored by the average intra-cluster

similarity of all the examples covered by the rule, but by its potentially most

homogeneous subset of examples. We call this heuristic measure the “potential”

of a cluster, and it represents an approximation of the maximum intra-cluster

similarity that can be achieved with further refinements of a given cluster. The

score, or potential, is calculated in function potential(. . .) by taking k·N ·(k·N−
1)/2 shortest distances between examples in the cluster and calculating their

average value. Parameter N is the number of minimal examples allowed in a
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cluster, the default value of parameter k is normally set to 2. This scoring proved

to greatly improve the selection of most promising rules for further refinement

and consequently guiding rule search.

If a rule can not be further refined into any other rule that also passes

the acceptance test (flag refined in algorithm), it is then scored with function

score(. . .). Function score(Rb) returns the average intra-cluster distance of

examples covered by rule Rb. If the score S is lower than the value of parameter

D (parameter set by user), the rule is added into the final ordered list of rules

R where only K best rules are kept (parameter K given by user). Rules in

list R are ordered according to the calculated score, cluster with the lowest

intra-cluster distance is first.

The final post-processing (lines 15 and 16) of rules found by beam search

is performed by functions selectMostGeneral(. . .) and filterByCoverage(. . .).

Details are given in Section 4.4.

Note, because the algorithm starts with all examples (i.e., rule “True” covers

all examples) the discovered rules can still cover examples outside the target

set, even if the target set does not include those examples. The method can

be applied to search for examples that were initially left out of a target set but

should have been included based on their description and similarity.

Each cluster discovered by rule-based clustering can be, in principle, de-

scribed by more than one rule. Relying on the assumption that clusters for

which more cluster-specific descriptions can be found are more likely to be “true”

clusters and not just a random result, this need to be considered when using

rules to make predictions. Rules describing clusters, for which more cluster-

specific rules have been found, should have a bigger contribution to the final

prediction (weight) than those rules describing clusters for which only one or a

few rules have been found. This can be achieved by treating each discovered

rule separately. Matching rules, describing the same cluster, will have a bigger

contribution to the final prediction. When using the inferred model to predict

an example, all rules, that match the example, contribute equally to the final

prediction. The final prediction is an “average” of conclusions of all matching

rules. This “average” is formed using the same function needed to generate a

prototype example from a set of examples.
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4.3 On-the-fly feature construction

Description-rich problem domains can contain a large number of attributes or

the given operators for feature construction can generate a large number of

new features. In such cases, the total number of features to consider for rule

refinement can be too big to be generated in advance, before rule search starts.

Moreover, many such derived features are context dependent. They are defined

only on a particular set of examples, and checking them on all other examples is a

waste of computational resources. For these reasons, rule-based clustering uses

an on-the-fly feature construction approach, which is seemingly incorporated

in the search algorithm (see call of function genFeature(. . .) in line 6 of the

rule-based clustering algorithm in Figure 4.2).

Function genFeature(E, fc(), Rb) uses information on examples covered by

the “parent” rule that has to be refined. By doing so, it limits the number

of new features that will be used to refine the rule. The feature construction

operators fc() are thus invoked on only the subset (in the context) of examples

from table E which are covered by the “parent” rule.

As already stated, rule-based clustering algorithm starts with a single rule

in beam B, the conditional part of which reads “True” and the rule describes all

examples. The initial rule is refined by adding conjunctive constrains from all

single original attributes (i.e., “True AND A” is logically equivalent to “A”).

Feature construction is not “activated” in this case since it could generate a

huge number of new features and render the search extremely slow. However,

feature construction, along with the original attributes, is used to derive all

subsequent rules. The existent conditional part of the rule can be extended

by conjunctively or disjunctively adding new constraints. For example, the

conditional part “A1 = v1” of a rule describing examples with value of attribute

A1 equal to v1 can be refined into “A1 = v1 AND A2 = v2,” requiring the value

of an additional attribute A2 to be equal to v2. That same initial rule can be

refined, using a disjunctive operator into “(A1 = v1) OR A2 = v2.” Using a

feature construction operator, that same rule can be refined into “A1 = v1 AND

f(A1, A2) = v2.” The new rule in this case requires an additional constraint

on the relation between the two attributes A1 and A2, which is encoded by a

feature construction operator f(X, Y ) as provided by the user.

When a new constraint is added disjunctively the current implementation of

rule-based clustering, for practical reasons, encloses the conditional part of the
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rule to be refined into parentheses. This of course greatly limits the descriptive

language. The logical expression in the conditional part can only be a single,

linear branch, if the expression would be shown as a tree. We have opted for

this, because such prevailingly linear and degenerated trees greatly speed up and

simplify the rule refinement steps. They are also easier to check when trying to

match them to a set of examples. At the same time, allowing (some) disjunctive

operations can still result in more informative rules.

4.4 Finding a subset of most general rules

After the beam search is completed, list R contains the top K discovered best

rules. The rules are ordered by their score, with rules describing most coherent

groups on top of the list. Even if size of list is limited by the user (with parameter

K, set by user) it can still be potentially large. The two post-processing steps,

selectMostGeneral(. . .) and filterByCoverage(. . .) invoked in lines 15 and 16

of algorithm in Figure 4.2, reduce the number of rules and, consequently, clusters

returned by rule-based clustering.

Since beam search can find many descriptions for the same cluster of exam-

ples, the set of descriptions of a cluster has to be shrunk to include only the

most general descriptions of each cluster. The algorithm selectMostGeneral(R)

(not given) groups all rules covering the same cluster of examples into separate

sets. Each set S of rules is then processed by the function selectMostGener-

alInCluster(S) that is given in Figure 4.4. The function starts by arbitrarily

selecting a rule R from S (lines 2-4) and placing it in the final set of rules F .

Then, each remaining rule R in S is compared to the current set of rules in F

using an user-defined operator general(T1, T2), described in details in the next

paragraph. This is repeated until there are no rules in S (lines 5-18). If any

of the rules already included in the set F is more general than current rule R,

rule R is not added into F , as it is too specific (lines 10 and 13). Conversely,

if current rule R is more general than any rule in F , then that rule is removed

from F (line 15-17), and rule R is added into F . The final set of rules, returned

by selectMostGeneral(. . .), is obtained by merging all rules in one ordered list,

where rules are ordered by their scores.

Function general(T1, T2) performs the basic step for generalizing a set of

descriptions, i.e., it compares two descriptions (conditional parts of rules): T1
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and T2. The most general and usually also shorter description is preferred when

comparing two descriptions. This heuristic is based on the widely used minimal

description length heuristic, or Ocam’s razor. For example, between two rules

that describe the same cluster of examples, with conditional parts “A” and

“B AND A” respectively, we would like to retain the former rule that requires

only the simplest condition “A.” It can also happen that rules “A AND B”

and “B AND A” are discovered by the search procedure. In this case only

one of the two logically equivalent rules is kept. Both examples are possible

because of the nature of the search procedure, where the same final description

can be inferred by following different branches of the search space. Thus, the

user must define function general(T1, T2) to return “True” if description T1

is more general than T2. If the two descriptions have no terms in common,

general(T1, T2) the function must return “False.” Also, if the two descriptions

are logically equivalent, the function must return “True”.

The second post-processing step of rule-based clustering involves keeping a

subset of best rules that does not report more than M rules on average for

each example (parameter M is set by user) as this would overwhelm the user

when exploring the results. Function filterByCoverage(R, M) is called in line

16 of the rule-based clustering algorithm in Figure 4.2. The function starts by

assigning zero cumulative coverage to all examples and it then traverses the

ordered list of rules R. For each rule it checks the current average cumulative

coverage of examples matched by the rule. If average cumulative coverage is

less than parameter M , then the rule is selected and the examples’ cumulative

coverage is increased accordingly. This is done by adding one to cumulative

coverage of all genes described by the rule. Otherwise the rule is discarded. This

procedure selects the final list of best-ranked rules R and prevents reporting too

many rules to the user. This list is returned by rule-based clustering in line 17

of algorithm in Figure 4.2.

Note, if we restricted the example cumulative coverage during rule search

(e.g., by using example coverage weighting decay as applied by CN2) we may

prevent discovering some overlapping groups. The search would run the risk of

not considering some (shared) examples in further rule search because of their

quickly gained coverage by rules discovered in early steps of the search.
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Algorithm selectMostGeneralInCluster

Input :
S – set of rules
function general(T1, T2)

Output :
F – subset of most general rules selected from set S

1 F =
2 R← chooseRandom(S)
3 S ← S − {R}
4 F ← F ∪ {R}
5 WHILE S �= {} DO
6 R← chooseRandom(S)
7 S ← S − R
8 tooSpecific← False
9 FOR EACH E IN F
10 IF general(E, R) THEN
11 tooSpecific← True
12 break
13 IF tooSpecific THEN
14 continue
15 FOR EACH E IN F
16 IF general(R, E) THEN
17 F ← F − {E}
18 F ← F ∪ {R}
19 return F

Figure 4.4: Algorithm for selecting the subset of most general rules describing
a cluster of examples.

4.5 Space and time complexity of the

algorithm

Search is the main task performed by rule-based clustering, thus contributing

the majority of space and time complexity of the algorithm. The space com-

plexity is measured as the maximum number of nodes that have to be stored in

memory during search [Bratko, 2001]. This is determined by two parameters K

and L given by the user (see algorithm of rule-based clustering in Figure 4.2).

Parameter K determines the maximum number of rules that will be reported

53



4. Rule-based clustering and feature construction

to the user. Parameter L determines the size of the beam used during search

performed by the rule-based clustering algorithm. The model generalization

and rule selection steps performed after search (lines 15 and 16 in algorithm in

Figure 4.2) can be done in-place, and thus do not require additional space.

Time complexity of a search algorithm measures the number of nodes gen-

erated during search [Bratko, 2001]. Time complexity of rule-based clustering

algorithm is determined by the size of the beam used (parameter L), by the

significance threshold (parameter P given by user) used to test the decrease in

variance when refining rules, and by problem domain specific properties includ-

ing the number of original attributes and their values (A) in the problem domain,

average number of new features (F ) that can be constructed with operators for

feature construction on a subset of examples, number of target examples (Nt),

and also number of all examples (Nall) in the problem-domain.

Since the overall complexity of an algorithm is domain-dependent, we pro-

vide upper bounds for the critical components of rule-based clustering, similarly

as is done for the CN2 algorithm in the paper by Clark and Nibblet [1989]. Time

complexity of the basic step of rule-based clustering is lower than the time com-

plexity of the CN2 algorithm. While CN2 refines all rules in the current beam,

rule-based clustering refines only the current best rule in beam. In this respect,

rule-based clustering can be said to perform best-first search. Each rule can be

refined in number of different ways (A+F ). The difference in time complexities

of the basic step between the two algorithms is exactly the length of the beam

used by CN2. The time complexity of CN2 algorithm is L · (A + F ), while

time complexity of the basic step for rule-based clustering is A + F . However,

in practice rule-based clustering has a longer execution time, because covered

examples are not removed during rule search, but it continues until all rules in

beam are refined.

The worst case for CN2 is that the best rule found at every step always

describes a minimum number of examples. Let call this number M . The search

is reiterated Nt/M times, until all target examples are covered. Let K be the

average number of nodes explored by CN2 in each step. The total number of

nodes searched is thus K ·Nt/M .

The worst case for rule-based clustering is that each refined rule covers one

example less than the original rule. In such case, search has to be repeated

(Nt −M) times for each rule in beam, that is (Nt −M) ·L. If each rule can be
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refined K/L times, then the total number of nodes searched is (Nt −M) · L ·
K/L = (Nt −M) ·K, which is in the same time complexity class as CN2 is.

4.6 Evaluation of models inferred with

rule-based clustering

Cross-validation, leave-one-out, bootstrapping [Braga-Neto and Dougherty, 2004;

Efron, 1983], and other standard machine learning evaluation methods are

normally used to evaluate the predictive performance of a learning method

[Mitchell, 1997]. Here we describe how we have used k-fold cross-validation to

evaluate the rule-based clustering method. Initially, the data is split into k sub-

sets. Cross-validation is performed in k steps. For each step a different set of

k−1 subsets is used to learn (i.e., to build) a model. The remaining one subset,

not seen by the algorithm during learning, is then used to test and evaluate the

model. Finally, results from all k folds are considered when reporting on the

performance of the method either in terms of its classification accuracy, area

under the ROC curve (AUC) or other measures for classifier performance.

Because the model returned by rule-based clustering is a set of rules describ-

ing the discovered clusters of examples, testing such model requires testing each

rule on each test example from the given test set. Testing the model thus boils

down to the basic operation of testing a rule on a (test) example. Distance,

or the prediction error, between the rule’s conclusion and the selected test ex-

ample must be calculated first. The error is calculated depending on how the

rule’s conclusion is encoded. If the rule’s conclusion is represented by a single,

prototype example, then only one distance is calculated and considered, i.e.,

the distance between the test example and the rule’s prototype. In case the

conditional part of the rule represents a set of examples, the distance is calcu-

lated as the average distance between the test example and each example in

the rule’s conclusion. The same distance function, given by the user for model

inference, is used to calculate distance for evaluation purposes. If the tested ex-

ample matches the conditional part of the rule, the calculated prediction error

is added to the set of positive predictions. Otherwise, the calculated error is

added to the set of negative predictions.

When all K steps of cross-validation are done and all inferred rules have

been tested on all (test) examples, histograms of the positive and negative sets
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can be drawn. Ideally, one would expect average zero error in the set of positive

predictions, and average maximum error in the set of negative predictions. Such

outcome would indicate that the inferred rules perfectly predict the matching

test examples. At the same time it would also mean that all other examples,

which were not matched by inferred rules, are completely different from the ex-

amples described by the rules. Reporting the observed distribution of distances

(errors) between predicted and actual examples and its derived measures, such

the average predicted error, can be used to drawn conclusions on the predic-

tive ability of the method on a particular problem domain data set. The closer

the two distributions are to the ideal distribution, the more we can trust the

method’s ability to discover rules with predictive value.

In this evaluation schema, clusters described by more rules get a bigger

weight. There are more rules describing them and for this reason contributing

more values to the two histograms of distance between predicted and actual

example.

4.7 Summary and discussion

In this Chapter we have proposed a method for rule inference, called rule-based

clustering. The method combines the classical CN2 rule-inference search proce-

dure [Clark and Nibblet, 1989] and the method of clustering trees [Blockeel et al.,

1998], and is able to identify overlapping subgroups of similar examples. Each

identified cluster is described by a set of symbolic descriptions encoded in form

of IF-THEN rules. This approach greatly differs from the standard cluster-first

approach, where examples are first clustered based on their similarity, and then

an attempt to infer the description of each cluster is made.

Example similarity is calculated with a user-defined function on a given

subset of attributes. Another set of attributes and, optionally, operators for

feature construction, are required for the inference of symbolic descriptions.

Here, background knowledge on the problem domain, encoded in the feature

construction operators and in the selection of attributes given by the user, can

be crucial for successfully solving a specific problem.

The search done by the proposed method is performed using a large beam,

and it is guided by a heuristic which prefers to refine rules describing clusters

with higher potential to form even more coherent subclusters (and thus falls
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under informed search). The proposed rule-based clustering methods can also

incorporate an on-the-fly feature construction. Only new features, that are

possible on the current subset of examples, are used to refine the current rule.

The model generated by rule-based clustering is a set of rules. The modeling

done with rule-based clustering is both descriptive and predictive. Due to the

symbolic language used to encode the conditional part of the rule, the user can

gain new knowledge by studying the patterns found and presented with the

inferred rules. By observing the number of rules found describing each cluster

of genes, the user can decide on which discovered clusters should he focus in

subsequent steps of the analysis. We also showed how to use the standard

machine learning method of k-fold cross-validation to evaluate the predictive

ability of inferred rules.

The rule-based clustering method requires a number of parameters, i.e.,

length of the beam, significance level when testing decrease in variance after

refinement of a cluster, etc. Future work includes finding ways to minimize the

number of parameters, transforming them to make them more intuitive to the

end user, and making the method more adaptive to different problem domains,

with little user intervention by setting parameters. For example, the distance

threshold parameter D given by the user could be replaced by a parameter lim-

iting the percentage of most similar groups discovered by the method that get

reported to the user. As search progresses, the method could keep track of the

intra-distance of all groups discovered so far, and automatically set parameter

D to keep only an arbitrarily selected percentage (set by user) of all discov-

ered clusters. Another, more technical aspect of future work is to use a full

conjunctive and disjunctive language, whereas currently disjunctively terms are

handled in a limited way (see last paragraph in Section 4.3).
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Chapter 5

Interpretation through

visualization

Using proper visualization can greatly influence and augment the way one ex-

plores and studies the inferred models and underlying data. Good visualization

is crucial when a rich descriptive language is used for describing discovered pat-

terns, and where complex models are inferred from the data. This is the case

with rule-based clustering which is able to discover a large number of descrip-

tions (rules) covering overlapping clusters of examples. A good visualization

of discovered patterns and clusters of examples may allow the user to discover

high-order structure and observe other properties of inferred patterns and un-

derlying data.

To aid in the explorative data analysis [Tukey, 1977] supported by rule-

based clustering, we have developed three straightforward but nonetheless useful

types of visualization, each emphasizing a different aspect of the underlying

structure of the model. Used together, they can provide for a better insight into

the common structural features and properties of discovered rules and example

clusters.

The three proposed visualizations are rendered in the form of a graph. De-

pending on what aspect of the rule-based clustering model they visualize, we

refer to them as example, cluster-and-rule, and feature networks.
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Figure 5.1: Example network. Nodes represent examples. Two nodes are con-
nected if both are described by same rule.

5.1 Example network

Visualizing the graph of an example network is the simplest and intuitive way to

present the rule-based clusters (see Figure 5.1). All rules constituting the model

are visualized. In this representation nodes represent examples. Two nodes are

connected with an edge if the two corresponding examples are covered by the

same rule. The weight of an edge can be determined by the calculated distance

between the two examples connected by the edge. The weight of edges can also

be determined by the number of rules that support the connection (i.e., number

of rules that cover the two nodes).

Visualizing many highly overlapping groups can quickly render this visual-

ization saturated. By showing only the edges above (or below) a user selected

weight threshold, the user can visually explore both sides of the node connec-

tivity spectrum, i.e., nodes that are forming tight clusters, and nodes that are

the least connected. Both cases can provide insight for further study.

5.2 Cluster and rule networks

The next level of abstraction is a graph of example clusters (see Figure 5.2).

Here, nodes represent clusters of examples. In this visualization, two nodes

are connected with an edge if at least NF examples appear in both clusters

(examples are said to be shared by the two clusters). The parameter NF is

set by the user. The size of the node can indicate the size of the cluster. The
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Figure 5.2: Cluster (and rule) network. Nodes represent groups of examples
that belong to the same cluster (i.e., are described by same rules). Two nodes
are connected if an arbitrary number of examples are shared.

thickness of lines representing edges in the graph can be proportional to the

number of examples shared by the two clusters (nodes). This visualization is

useful for easy identification and exploration of examples that are shared by the

discovered clusters. By varying the threshold, one can observe how the initial

clustering of examples breaks into less connected subgroups. Our hypothesis is

that such graph can further reveal the structure of examples in the data, and

that examples belonging to the same subgroup, identified in this network, may

be related. This can extend the possible group membership beyond clusters

identified by a single rule. Clusters, for which many descriptions (rules) exist,

will be highly connected among themselves, since they will be sharing many

examples.

Because rule-based clustering can return many descriptions (rules) for the

same cluster of examples, it is usually more useful to visualize only a subset

of all rules representing the same cluster, e.g., by showing only top K shortest

rules describing the cluster (parameter K given by user).

5.3 Feature network

The last level of abstraction is a feature network. Here, nodes represent terms

(or features) forming the individual rules, i.e., parts of rule patterns that impose

constraints on the object description (see Figure 5.3). Two nodes are connected
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Figure 5.3: Feature network. Nodes represent parts of the conditional part of
rules. Two nodes are connected is both terms are appearing in the conditional
part of the same rule.

if they appear in conditional part of the same rule.

While Figure 5.1 and 5.2 represent the same three rules and some one can

observe some cluster overlap of examples, they do not provide any information

about the composition of the rules’s conditional parts and reasons for cluster

overlaps. Let’s say that rule “R1 = (M1 == v1)” requires the value of feature M1

to be v1, rule “R2 = (M2 == v2) and (M3 >= v3) and (M4 <= v4)” determines

the values of the three features, and rule “R3 = (f(M3, M5) == True)”

requires a function between the two features to hold true. Example coverage

of rules is shown in graphs in Figure 5.1 and Figure 5.2. Only by showing

the feature network visualization in Figure 5.3 one can explore the descriptive

details about the discovered clusters of examples. Feature network can thus

be used to identify common and also rule-specific terms or features appearing

in discovered rules, leading to the identification of potentially general and also

group-specific features.

5.4 User interface design

Explorative data analysis [Tukey, 1977] requires software tools that allow inter-

active exploration of discovered data patterns. Linking the discovered patterns

to existent knowledge, which is stored in readily available databases and web

pages, can further support the user when exploring the results and deciding

on further steps of the analysis based on the newly gained knowledge from the

discovered data patterns.

While software environments for interactive data analysis, like the machine

62



User interface design

learning and data mining suit Orange [Demsar et al., 2004a,b], with extensions

for functional genomics [Curk et al., 2005a], offer great flexibility in customiz-

ing the analysis workflow, their on-the-fly visualization approach (visualization

when the results of analysis are available) also require every step to be com-

puted relatively quickly. Computationally intensive methods that require longer

running times, as is the case for rule-based clustering method, should be run in

a non-interactive way. However, when results are ready, the user must be able

to explore them interactively.

Presenting results in the form of web pages has proven user-friendly and does

not require installation of any dedicated software tool. In particular within the

field of bioinformatics, web pages that summarize the results of analysis have

become a standard way of communicating analyses results to researchers. Web

pages are easy to generate and offer enough richness of expression to present

results in an easy-to-understand graphic form. They also allow simple integra-

tion and intuitive linking to knowledge and databases published on the internet,

which can provide additional support for reported results.

We have designed a guided, domain-independent interface to present results

of rule-based clustering that uses all three types of visualizations. The presen-

tation can be augmented by providing problem-domain specific visualizations,

making it more intuitive and informative. For example, in the analysis of gene

regulatory regions, we have used visualization of gene expression profiles and

visualizations of gene regulatory regions, which are described by the conditional

parts of rules.

The main web page, with results from a rule-based clustering analysis, starts

with the list of target examples given by the user. Examples, covered by the

inferred rules, are visualized in a parallel plot or some problem domain-specific

visualization, showing only attributes on which distance between examples was

calculated. This visualization offers an initial overview of the actual similar-

ity of covered examples. Covered target and covered non target examples are

then listed. Target examples, for which no description was inferred, are listed

separately. Whenever listing examples, their symbolic name, if available as a

meta-attribute, should be listed instead of a unique id (e.g., symbolic names

are preferred over I.D.s when listing genes). Each listed example should also be

linked to a separate page containing details about the example.

Next, the list of discovered clusters is given in a table. Each row represents
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5. Interpretation through visualization

one cluster. The number of inferred rules for the cluster, a score of the cluster

average intra-distance and its variance, and a list of covered examples are given.

Links to subsequent pages with details for each rule describing the cluster, and

links to details on covered examples are also given.

The three graphs (cluster, feature and example networks) are then displayed.

Nodes in the graphs, representing clusters, features or examples are linked to

subsequent pages with corresponding details, briefly described next. These vi-

sualizations allow the user to visually identify clusters or examples of interest

and, by following the associated links, to learn the details of each element.

The page with details on an example contains all information on the example.

The page links to discovered clusters that include the example. The page also

links to any additional supporting online information or databases.

The page with details on a discovered cluster lists all examples forming the

cluster. Examples are display in a parallel plot or other problem-domain specific

visualizations, similarly to the visualization on the main page. The page should

also include the list of inferred rules describing the cluster. Problem domain-

specific visualizations can be used to display the descriptions encoded by the

rules. Other, cluster specific information can be displayed and links to online

supporting pages and databases can be provided. For example, in the analysis

of gene regulatory regions, links to the Gene Ontology Term Finder tool can be

given which allow the user to further analyze the cluster of genes and identify

cluster-specific annotation.

The page with details on features contains information on the feature, and

links to supporting online material. The page should also list and allow the user

to visit pages with detail on all rules and clusters containing the feature.

For an example web page with all elements described above, see the collection

of analyses of gene regulatory regions, available at this web page: http://bubble.

fri.uni-lj.si/dicty/index.html. See Section 6.6 for an example where all three

visualizations are used in order to discover patterns in data.

5.5 Summary and discussion

The analysis and modeling of complex problems require proper presentation and

visualization of computationally discovered data patterns. This can greatly sup-

port the user’s data exploration, understanding, and gaining of new knowledge.
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Summary and discussion

With proper visualization, the user can quickly connect pieces of new knowl-

edge into a bigger picture. The discovered data patterns, deemed important by

the user, offer new hypotheses to test. Although the proposed visualizations are

relatively trivial, they should provide a good presentation of discovered complex

data patterns, and allow the user to identify any higher structure, beyond the

one present in individually reported clusters. In Chapter 6 we show a few such

examples.

The media used to present results also play a crucial role in explorative

data analysis. Presenting the results in form of web pages, with links to sup-

porting data, knowledge and other online tools, has proved to be user-friendly

and extremely valuable when modeling complex and description-rich problem

domains.

Given a potentially high number of discovered clusters and descriptions, it

is vital to offer an interactive and guided exploration of results. The proposed

interface and presentation of results provides the user with an initial overview

of the results, and it also allows the user to zoom in and learn all the details on

a selected subset of examples.
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Chapter 6

Experimental applications of

rule-based clustering

Although the rule-based clustering method presented in this work can be ap-

plied to many various problem domains, we here focus on its application in

bioinformatics and analysis of gene regulatory regions. The goal of the analysis

is to cluster genes into subgroups and infer a symbolic description of each clus-

ter that relates gene expression under various experimental conditions to the

structure of regulatory regions.

We performed our analyses on the data on two different model organisms:

budding yeast Saccharomyces cerevisiae and slime mold Dictyostelium discoideum.

We used cross-validation to empirically evaluate the predictive performance of

rule-based clustering on this problem domain, and estimated the statistical sig-

nificance of inferred models. Using the inference of rule-based clusters and

computational approaches for their evaluation, we can attempt to answer the

following important biological questions:

• What is the nature of gene regulation? Is it combinatorial (i.e., does

it require combinations of a small number of transcription factors) or

highly specialized (i.e., does it require a large number of highly specialized

factors)? We can try to answer this question by testing and comparing the

predictive ability of models inferred using descriptive languages of varying

complexity.

• What part of the promoter region bears the highest correlation with ex-

pression? Does the gene’s coding region include any information that can
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6. Experimental applications of rule-based clustering

be used to better predict gene expression? We show how to computation-

ally determine the regulatory region that includes the most information

on gene expression.

• Are there other mechanisms that regulate gene expression? An example

is the secondary structure of promoter regions which could be included

into modeling with rule-based clustering.

Focusing on applying rule-based clustering for the analysis of gene regulation

patterns, we start by introducing a hypothesis language for describing gene

regulation regions (which is encoded in the conditional part of a rule) and the

gene expression data used for calculating cluster similarities. The computational

analysis and evaluation of the predictive ability of inferred model are given next.

6.1 Descriptive language for structure of

gene regulatory region

First, we need to formalize a rich descriptive language that can be used to de-

scribe the structure of regulatory regions. The proposed language can be used

to describe the presence of putative binding sites, place limits on distance of a

putative binding site from transcription and translation start site (ATG) and

other landmarks, define distance and the relative and absolute orientation of a

putative binding site relative to a given reference point in the gene. All elements

in the proposed descriptive language are based either on known examples of ex-

perimentally confirmed regulatory structures or are hypothesized and described

in biological textbooks [Alberts et al., 1994; Latchman, 1998]. See Figure 6.1

for a schematic representation of descriptive elements of a regulatory region.

The assertions on the structure of gene regulatory regions are composed of

terms. Test of presence of a known or putative binding site (e.g., site S1) is

noted by a term “S1.” The test can also include the constraint on orientation

of the site. Notations “S1+” or “S1−” are used for positive (sense) or negative

(non-sense) orientation of the binding site (S1 in this example) relative to the

reading direction, respectively.

Number of occurrences of a binding site is stated as “#(S1) op N1,” where op

can be any of the standard mathematical operations: equals, less than, less or
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Genomic data

+s1

-s2

d1

d2

Figure 6.1: Elements of the descriptive language used to describe the gene
regulatory region. With the proposed language one can express constraints on
distance (d2) between two binding sites (S1 and S2), distance from ATG (d1)
and orientation of binding sites in the sense (S1+) or non-sense direction (S2-)
relative to the reading direction of the gene.

equal than, greater than, greater or equal than. The position of the binding site

S1+ relative to a landmark M can be stated as “S1+ @p1..p2(ref :M).” Values

p1 and p2 denote the distance interval, measured in nucleotides, and reference

site M can be either a binding site (e.g., S2 or S2+), start of translation (ATG),

or start of transcription (TSS).

Single terms can be combined either conjunctively or disjunctively to form

more complex descriptions of the structure of the regulatory region encoded

by the conditional part of a rule. For example, requiring the presence of two

binding sites, where the position of the first binding site is relative to ATG and

the position of the second binding site is relative to the first, would be stated

as “S1@p11..p12(ref :ATG) AND S2 @p21..p22(ref :S1).”

A disjunctive constraint on the presence of either of two binding sites is

stated as, for example “S1 OR S2.” Negation of terms is also allowed. For

example, to forbid the presence of binding site S3 in the regulatory region, one

would state “not(S3).”

6.2 Genomic data

For the analysis of budding yeast S. cerevisiae we have used publicly available

data at SGD (Saccharomyces Genome Database, see www.yeastgenome.org).

The curated collection of transcription factor binding data, available at SGD,

comes from the study by Harbison et al. [2004], where they used genome-wide

location analysis, phylogenetic analysis of conserved sequences, and prior knowl-

edge to identify sequence elements that are bound by regulators under various

conditions and that are also conserved among Saccharomyces species. In some

examples we have also used transcription factor data from a previous study done

69



6. Experimental applications of rule-based clustering

by Lee et al. [2002]. The collection of gene expression “Expression Connection”

at SGD includes some of the most known published and publicly available mi-

croarray assays performed on yeast. We show example of analyses done on

data sets on peroxisome assembly and function studied by Smith et al. [2002],

environmental stress and starvation studied by Gasch and Werner-Washburne

[2002], and cell cycle studied by Cho et al. [1998].

Genome sequence data for slime mold D. discoideum was downloaded from

the organism’s web page at http://dictybase.org [Eichinger et al., 2005]. Gene

expression data was in part obtained from publicly available and published

sources [Van Driessche et al., 2005; Van Driessche, 2004; Van Driessche et al.,

2002; Booth et al., 2005], and also directly from our collaborators at Baylor

College of Medicine in Houston, Texas. The data that we analyzed consists

of fifteen microarray measurement assays of 4081 genes in wild type and in

fourteen mutants, where one or two genes were deleted (i.e., single and double

mutants). The assays were done in a different number of biological and technical

replications. The fourteen mutants used are: acaA-, acaA- pkaC+, comA-,

comB -, comC -, pkaC -, pkaR-, pkaR- regA-, pufA-, pufA- pkaC -, pufA- pkaR-,

regA-, yakA-, yakA- pufA-, where the minus sign indicates a deletion mutant,

and the plus sign indicates genes induced to over express. We report on analyses

done for each assay separately. We also provide results from the analysis where

weighted average gene expression data from all assays was used.

6.3 Empirical evaluation of rule-based

clustering

To evaluate the predictive performance of rule-based clustering for the analysis

of gene regulatory regions, we have performed five-fold cross-validation as de-

scribed in Section 4.6. For transcription factor binding site data we have used

the data published by Harbison et al. on 102 transcription factors binding to

1749 genes [Harbison et al., 2004]. We have used gene expression data from nine-

teen microarray assays available at SGD’s expression connection (ftp://genome-

ftp.stanford.edu/pub/yeast/data download/systematic results/expression data/

expression connection data). A distance matrix of pair-wise Pearson correlation

of gene expression was calculated on microarray data from each study. The final

distance matrix, used in the evaluation of rule-based clustering, was calculated
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Empirical evaluation of rule-based clustering

as the average of distance matrixes over all studies. The evaluation was per-

formed on the set of 1749 genes with measured gene expression and which are

also known to be bound by at least one transcription factor (as given in the

data from Harbison et al.). We modeled the regulatory region spanning from

positions -600b to 0b relative to translation start site (ATG).

All genes were considered to be target genes by the rule-based clustering. All

genes were randomly split into five subsets that were used for cross-validation.

The rule-based clustering method was run five times. Each time, different four

subsets of genes were used as the learning set, on which rule-based clustering

identified clusters and inferred a model (set of rules). The remaining one subset

was used to test the model, as described in Chapter 4.6. Each inferred rule (in

the model inferred from the learning set) was then tested on all test genes.

The results of testing are summarized in two histograms. One histogram

shows the distribution of distances (errors) between predicted and actual gene

expression for the test genes that match the rules. The second histogram shows

the distribution of distances (errors) between predicted and actual gene expres-

sion when a rule does not match the test gene. The histograms were obtained

by first calculating the distance (1.0− Pearson correlation) between the gene

expression predicted by the rule and the actual expression of the tested gene

(prediction error). The calculated error value was added into the histogram of

matching or into the histogram of non-matching rules, depending whether the

tested rule matched the test gene or not. The two histograms obtained on yeast

data, accumulated from all five folds of cross-validation, are plotted in Figure

6.2 and Figure 6.3.

Ideally, the distribution of error (distance) for matching rules (Figure 6.2)

should be a single bar at distance zero. Similarly, the distribution of non-

matching rules (Figure 6.3) should peak at maximum error (near value two,

for the distance function we have used), as explained in Chapter 4.6. Calcu-

lating the average error and standard deviation can be used to describe and

summarize the predictive ability of the inferred model. In practice, as is the

case on yeast data, a normal distribution of the prediction error around a cen-

ter is observed. This is due to many facts, including the incomplete and noisy

gene expression (relative mRNA abundance) data, incomplete and noisy tran-

scription factor binding site data, which can be either measured with DNA

microarrays or computationally inferred from promoter sequence data. In the

71



6. Experimental applications of rule-based clustering

Figure 6.2: Distribution of prediction error for 206 matching test genes. Dis-
tances between gene expression predicted by a rule and actual gene expression
of tested genes are shown. Only prediction errors on test genes that match the
rule are shown. Blue vertical line indicates the average error. Red vertical line
indicates the average distance among all pairs of genes.

former case, the noise is due to the experimental setup, in the latter it is due

to the search algorithm and modeling formalism applied to model the puta-

tive transcription factor binding sites. The data on S. cerevisiae, which was

prepared in the study by Harbison et al. [2004], and used for this analysis is

far from complete. It includes data on binding sites for only 102 transcription

factors out of an estimated total 203 transcription factors, with those 102 tran-

scription factors binding to the promoter region of ∼ 1700 target genes out of

a total ∼ 6000 genes identified in the yeast genome. The observed error of the

proposed model is also due to the incompleteness of the descriptive language

used in this case. The language does not include chromosomal location of genes

(entire regions of the chromosome can be silenced), it ignores the presence and

proximity of enhancer and silencer elements, it does not consider the stability

of mRNA, and many other biologically important aspects, but for which there

is a lack of experimental data. Some of these issues are discussed in the conclu-

sion of this Chapter (see Section 6.9). The properties of the clustering method
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Empirical evaluation of rule-based clustering

Figure 6.3: Distribution of prediction error for non-matching test genes. Dis-
tances between gene expression predicted by a rule and actual gene expression
of tested genes are shown. Only prediction errors on test genes that do not
match the rule are shown. Blue vertical line indicates the average value of the
error distribution. Red vertical line indicates the average distance among all
pairs of genes.

itself, mainly the method’s ability to discover relatively small and overlapping

clusters of genes, also contribute to the problem to some extent. Rules describ-

ing overlapping clusters should not contribute much to the error distribution of

matching test genes. In such cases, when many overlapping clusters are discov-

ered and the rules describing those clusters all equally well predict unseen genes,

the error should be minimal and distribution for matching test genes skewed

towards zero. However, those same rules will greatly determine and shift the

distribution of non-matching test genes to lower values than the expected value

of two (for the distance function we have used), making the distribution appear

similar to the distribution of all pair-wise distances.

Another basic, but important metric is gene coverage, i.e., the number of

genes that are matched (predicted) by at least one rule. In this empirical eval-

uation, rule-based clustering was able to identify rules that well predicted the

expression of ∼ 210 genes (out of 1749 used, or ∼ 12%).
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6. Experimental applications of rule-based clustering

6.4 Comparison to distance distribution in a

random model

The significance of an inferred model can be assessed by comparing it to a

random model. For each inferred rule in the model, a random set of test genes

is selected. The randomly drawn set is of same size as the set of test genes

which truly matches the rule. This random set of genes from the test set (test

genes) can be said to match a random rule. The random rule still describes

the same set of genes from the learn set of genes, but predicts other (random)

test genes. We can measure the prediction error (or distance) on the random

test sets, and generate a histogram similar as the one for the truly matching

test genes. Repeating this procedure a number of times for each rule produces

an estimation of distribution of prediction error of a random model with same

characteristics as the actually inferred model (i.e., this way the coverage of rules

is preserved). The significance of the inferred model can be then determined by

comparing the error distribution of the inferred model to the distribution of a

random model. Figure 6.4 shows the distribution of prediction error on the yeast

data set we used for evaluation of the method. Comparing the distributions in

Figure 6.2 (inferred model) and Figure 6.4 (random model) clearly shows that

the model predicted with rule-based clustering is far from random. Figure 6.5

shows the distribution of pair-wise distances for all possible pairs of genes. This

is the distribution of pair-wise distance one can expect to observe in a set of

randomly drawn genes.
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Comparison to distance distribution in a random model

Figure 6.4: Distribution of prediction error of a random model. The random
model was generated to have similar characteristic to the true model from Figure
6.2. Red vertical line indicates the average distance among all pairs of genes.

Figure 6.5: Distribution of all pair-wise distances in gene expression. Red ver-
tical line indicates the average distance among all pairs of genes.
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6.5 Influence of descriptive language on the

predictive power

We have evaluated the various elements forming the descriptive language used

to model the regulatory region for prediction of gene expression. We report on

how each language element affects and contributes to the predictive ability and

gene coverage of the inferred models. Individual elements and combinations

of descriptive elements used to infer the best predictive models can shed some

light on the nature of gene expression regulation. They provide an indication

on the number of transcription factor binding sites that are required, and on

the relations that hold among the binding sites.

We have used the same transcription factor binding site data and gene ex-

pression distance matrix of Pearson correlation that we have used for the evalu-

ation of rule-based clustering, described in the previous section. We have varied

the complexity of the descriptive language, each time running five-fold cross-

validation and reporting the observed average correlation (average prediction

error) between gene expression predicted by the model and actual gene expres-

sion for matching rules. We also report the predictive gene coverage achieved

by the model, i.e., the number of genes for which gene expression could be pre-

dicted. We have tested, in various combinations, the following elements of the

descriptive language:

• test of presence of a binding site,

• orientation of a binding site,

• number of occurrences of a binding site in the promoter region,

• relative distance of a binding site relative to translation start site (ATG),

• relative distance of a binding site relative to another binding site,

• conjunction of terms,

• disjunction of terms,

• negation of terms.

By comparing the predictive ability of each language element, and the com-

binations thereof, we were able to determine which elements most contribute to
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the predictive ability and coverage of inferred models. See Table 6.1 and Figure

6.6 for results. Figure 6.6 shows that the average prediction error is around

0.7 (i.e., average Pearson correlation of 0.3) and it varies very little depending

on the descriptive language used. However, coverage – the number of predicted

genes – even though still relatively low compared to the total number of modeled

genes (see Section 6.3. for details on the incompleteness of transcription factor

binding site data), changes dramatically based on the kind of language elements

used to model. Using only elements with which presence, orientation or number

of occurrences of individual binding sites can be described results in the poor-

est prediction ability. Less than forty genes can be predicted. The distance of

binding sites from the translation start site (ATG, referred to as “ATG dist”)

is the single most informative element. By using this descriptive element of the

promoter regulatory region alone, gene expression of 200 genes can be predicted.

Distance between pairs of binding sites (site pair distance) is the second most

important element with which rules covering approximately 100 genes can be

inferred. Using information about orientation of binding sites, in combination

with other features, improves the model’s ability to predict more genes at a

slight expense in average error, for all of the cases. Also, using information on

the number of binding site occurrences improves the model in all cases. Using

all elements in combination (i.e., orient, count, pair dist. and ATG dist., see

Figure 6.6) gives the highest coverage of ∼ 250 genes. From these results, one

can conclude that distance of transcription factor binding site to ATG is, at least

in yeast, the single most informative descriptive element which should be used

when predicting gene expression from the content of the regulatory region. This

finding is in agreement with many reports on the non-uniform positional distri-

bution of transcription factors binding sites relative to ATG for many species.

For example, Down et al. [2007] used a purely computational, statistical motif

discovery approach NestedMICA and observed a non-uniform distribution of

discovered motifs (i.e., putative transcription factor binding sites) relative to

ATG in D. melanogaster. They observed ∼ 60% of motifs (70 out of 120 mo-

tifs) having a peak in the first 400b upstream of ATG. Harbison et al. [2004]

used genome-wide location analysis data, data on phylogenetically conserved

sequence and other published evidence on S. cerevisiae to augment the motif

discovery algorithm for prediction of transcription factor binding sites. They

also report on a sharply peaked distribution of binding sites around position -
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6. Experimental applications of rule-based clustering

200b relative to ATG, with the majority of the transcriptional regulator binding

sites lying between -500b and -100b relative to ATG. Other examples, just to

name a few, include the strong positional bias of E-box in D. melanogaster close

to ATG [Hulf et al., 2005], the requirement of MSE core promoter sequence el-

ements in S. cerevisiae to reside in the region -300b to -75b relative to ATG

for specific genes to be induced [Jolly et al., 2005], and motifs in the promoters

of chemosensory receptor genes in C. elegans [McCarroll et al., 2005]. Some

of these studies (e.g., the study by Jolly et al. [2005]) list examples where the

position of a motif relative to ATG is important for function, and report on ob-

servations where if same motif is positioned outside a specific promoter region

relative to ATG, then it has no or little influence on gene expression. In the

next Section 6.6 we show that most of the regulatory information is encoded by

motifs residing in the regulatory region between -300b to 0b relative to ATG.

To determine how size of the inferred rules influences the predictive ability,

we have run rule-based clustering three times, each time allowing a different

maximum size of inferred rules. Rules could be formed from only one, two

or three terms. Figure 6.6 show results obtained with the same descriptive

language, but with varying maximum rule size, are connected by a line. Inferring

longer rules results in slightly lower prediction error, but at the cost of lower

number of genes being predicted (see Table 6.1 for details). Longer rules, if

formed by conjunctively added terms, as it is in the case reported here, tend to

cover fewer genes than shorter rules. Namely, the algorithm requires that each

added term (i.e., rule refinement) results in a rule that describes a more coherent

group of genes than the group covered by the original rule (group coherence is

measured based on gene expression). Consequently, smaller groups of genes

tend to be more coherent than larger groups, which also diminish the average

prediction error when comparing the measured and predicted gene expression.

The small effect of the length of inferred rules on the model’s predictive abil-

ity is an indication that gene expression regulation is not highly combinatorial,

at least for the yeast genes that could be predicted. On average, information on

1.3 transcription factor binding sites in a promoter region is needed to predict

gene expression of the gene. Also, on average, data on 26 TF binding sites,

appearing in 30 different combinations with average length of combination 1.17

(median is 1.0), is needed to predict the expression of ∼ 230 genes. These results

suggest that regulation requires specialized transcription factors.
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Finally, either allowing terms to be disjunctively added or using negation

of terms did not improve the predictive ability of inferred models (results not

shown). The model returned by rule-based clustering implicitly encodes dis-

junction, because it is treated as a collection of disjunctively joined rules when

used for prediction. This can in part explain why explicitly allowing disjunction

for rule refinement does not improve the model further. When testing different

variations of the descriptive language that allow negation of terms, the inferred

models contained few rules formed with negated terms (on average, ∼ 2% of all

the rules forming a model). Overall, negation of terms does not greatly influence

the predictive ability of inferred model. Both two elements of the descriptive

language only make the search run longer and do not drastically improve the

performance of inferred models. Disjunctively added terms, when added to a

rule, can only increase gene coverage and thus prevent the monotonous shrinking

of discovered clusters, making the search run longer than when only conjunc-

tively added terms are allowed. Negated terms usually describe large groups

of genes (e.g., in our case, if there are hundred genes with a motif present in

their promoter region, then the negation of the motif’s presence covers all other

∼ 1600 genes) which consequently requires more computational time when those

terms are used for rule refinement.
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6. Experimental applications of rule-based clustering

6.6 Computational identification of the

most informative regulatory region

Using a similar approach as for the identification of the combination of descrip-

tive elements that form the best descriptive language, we can identify the span

(i.e., interval) of the regulatory region from which the best models can be in-

ferred in terms of prediction accuracy and gene coverage. Ideally, the interval

should be defined relatively to the transcription start site, but because of the

lack of this kind of experimentally measured data, we had to rely on using the

transcription start site (ATG) as a landmark for the regulatory region.

Subintervals in steps of 300b from -900b upstream to +900b downstream of

ATG were tested. The subinterval had to include some regulatory sequence,

i.e., it had to start at positions -900b, -600b or -300b relative to ATG. We used

the best descriptive language identified in the previous section (the subinterval

used there spanned from -600b to 0b relative to ATG). For each subinterval, the

average prediction error and gene coverage using five-fold cross-validation were

calculated. Numerical results are shown in Table 6.2 and a graphical rendering

is shown in Figure 6.7. The results show that the subinterval with the highest

product of normalized prediction correlation and gene coverage is observed in the

subinterval -900b to +600b relative to ATG. This indicates that some regulatory

from (b) to (b)
average prediction coverage

correlation coverage (normalized) correlation · coverage
(= 1.0 − error)

-900 900 0.3364 144 0.6154 0.1885
-900 600 0.2969 231 0.9872 0.2668
-900 300 0.3059 208 0.8889 0.2476
-900 0 0.3160 174 0.7436 0.2139
-900 -300 0.3086 84 0.3590 0.1009
-900 -600 0.2301 8 0.0342 0.0072
-600 900 0.2843 227 0.9701 0.2511
-600 600 0.3016 198 0.8462 0.2324
-600 300 0.2765 234 1.0000 0.2517
-600 0 0.2974 228 0.9744 0.2639
-600 -300 0.3247 81 0.3462 0.1023
-300 900 0.2664 178 0.7607 0.1845
-300 600 0.2865 166 0.7094 0.1851
-300 300 0.2850 164 0.7009 0.1819
-300 0 0.2815 171 0.7308 0.1873

Table 6.2: Average prediction correlation (1− prediction error) and gene cov-
erage for different subintervals in the regulatory region. Columns one and two
denote the span of the subinterval. The row with the most informative subin-
terval, from -900b to 600b, is marked in bold.
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Figure 6.7: a) Average correlation and b) gene coverage achieved using data from
various subintervals of the regulatory region. c) Product of the two normalized
prediction error and gene coverage measures. Axes “from” and “to” indicate
the start and end of the regulatory subinterval used, respectively.

information may be also encoded downstream from translation start, i.e., in

introns or exons of genes, which is in agreement with some experimental findings

(e.g., see Neznanov et al. [1997]). Another important observation that can be

drawn from results in Table 6.2 is that most of the regulatory information

may reside in the subinterval -300b to 0b relative to ATG. The expression

for the majority of genes (73% of the maximum number of predicted genes in

the subinterval -600b to 300b) can be comparably well predicted by observing

transcription factor binding sites in the subinterval -300b to 0b only (see last

row in Table 6.2). However, because of same reasons as stated in Section 6.3

(i.e., noise in gene expression data, noise and incompleteness of transcription

factor binding data, and a limited descriptive language which due to the lack

of experimental data, etc.), the reported results provide only a partial answer

on where regulatory information resides. Same reasons may in part explain the

observed difference (i.e., low average prediction correlation) between measured

gene expression mRNA levels and promoter activity predicted by the model.
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6.7 Analysis of Saccharomyces cerevisiae

data

In the microarray transcription profiling study by Smith et al. [2002] budding

yeast S. cerevisiae cells were induced to proliferate peroxisomes – organelles

found in most organisms and cell types that compartmentalize several oxidative

reactions – as a result of cell’s regulated response to absence of glucose or glyc-

erol and exposure to fatty acid oleate as the sole carbon source. Each gene in

the data set is described with a transcription profile that consists of six microar-

ray measurements from oleate induction time course and two measurements in

“oleate vs. glucose” and “glucose vs. glycerol” growth conditions. In total, we

used eight microarray measurements of gene expression to calculate the distance

between genes. We defined the distance function to be 1.0−Pearson correlation

in gene expression for the given gene pair.

For the target group we selected the set of 224 genes that were identified

in the study to have similar expression profiles to those of genes involved in

peroxisome biogenesis and peroxisome function. The goal of our analysis was

to further divide the target group into smaller subgroups of genes with common

elements in promoter structure and possibly identify genes that were inadver-

tently left out but should have been included in the target group based on their

expression and promoter structure [Curk et al., 2006a].

The analysis included information on 2135 putative binding sites that were

identified using a local alignment software tool MEME [Bailey and Elkan, 1994].

To obtain putative binding sites, we initially clustered genes, using top-K clus-

tering, into clusters of ten genes. The clustering was done using sequence sim-

ilarity. Motifs discovered with MEME from each cluster were then merged,

and only distinct motifs were kept (details on a similar procedure for D. dis-

coideum data are described in the next Chapter 6.8). Using the program MAST

[Bailey and Elkan, 1994] we determined the presence of the 2135 putative bind-

ing sites in promoter regions for ∼ 6700 yeast genes. This analysis has been

performed and published [Curk et al., 2006a] before we have obtained the results

on the most informative regulatory region reported in the previous section. This

is the main reason why we have used the standard one thousand bases (1Kb)

promoter regions, taken upstream from the translation start site (ATG), instead

of the region spanning -900b to 600b relative to ATG, which should yield better
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Analysis of Saccharomyces cerevisiae data

results. Nonetheless, results reported here provide a good example of usability

and the ability of the rule-based clustering method to efficiently discover inter-

esting patterns. The search identified ∼302,000 matches (i.e., occurrences) of

putative binding sites. These data was then used to infer rules with rule-based

clustering. The algorithm searched for rules describing groups with at least five

target genes (N = 5) and average group intra-correlation above 0.5 (i.e., the

maximum allowed intra-distance was set to D = 1.0 − 0.5 = 0.5). We limited

the rule search beam to one thousand best rules for further refinements (param-

eter L = 1000). Distances between binding sites were rounded to increments of

40 bases; the maximum possible distance of 2Kb (given the promoter length,

relative distances can be in range from -1Kb to +1Kb) was thus reduced to

50 (= 2000b/40b) different values. This largely reduced the number of possible

subintervals that needed to be considered when inferring rules.

The search resulted in 41 rules describing and dividing 114 target genes (out

of total 224 target genes) into 37 subgroups (see Figure 6.8). No rule could

be found for the remaining 110 target genes. Most discovered gene groups

are composed of five genes with high pairwise intra-group correlation (all are

above 0.927). Many genes are shared (overlap) among the 37 discovered groups

resulting in six major, unconnected groups visible in Figure 6.8 and Figure

6.9. Seven genes outside the target group were also identified by the method

(marked in red in Figure 6.8). For example, the smallest eight gene group, in

the top-left corner marked with “1” in Figure 6.8 includes two outside genes

(INP53 and YIL168W - also named SDL1 ). Gene ontology analysis shows

that INP53 is involved together with two target genes (ATP3 and VHS1 ) in

the biological process of phosphate metabolism. Gene SDL1 is annotated to

function together with the group’s target gene LYS14 in the biological process

amino acid metabolism and other similar parent GO terms (results not shown).

These examples confirm the method’s ability to identify functionally related

genes that were not initially included in the target group. Details about inferred

rules, describing the regulatory regions and gene expression profiles of genes

from the two groups, marked as “1” and “2” in Figure 6.8 and Figure 6.9, are

shown in Figure 6.10 and Figure 6.11.

The majority of discovered rules include conditions that are composed of

three terms, each term describing a putative binding site’s orientation and dis-

tance relative to ATG or binding sites included in the rule. An exhaustive
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1

2

1

2

Figure 6.8: Gene network inferred on the peroxisome data set. The 37 discovered
clusters form six unconnected groups of genes. In green are 114 target genes, in
red are seven outside genes. The two selected groups are marked as “1” and “2.”

search for all possible rules composed of three binding sites with defined ori-

entation (three possible values: positive, negative, no preference) and distance

(50 different values) would require checking a relatively huge number of rules:(
2135 · 3

3

)
· 503 ≈ 5.47 · 1015

In this analysis, our method checked 2.11 · 109 of the most promising rules,

which is less than 0.00004% of the entire three-part rule space. The search took

40 minutes on a Pentium 4, 3.4 GHz workstation.

In another study by Gasch and Werner-Washburne [2002] yeast cells were

subjected to diverse environmental conditions and gene expression in their re-

sponse to environmental conditions was measured. A set of 900 genes forming

the Environment Stress Response (ESR) set was chosen by the authors based

on clustering analysis of gene expression. For the target set of genes required

by rule-based clustering, we have used the set of 281 genes with increased gene
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1

2

1

2

Figure 6.9: Cluster graph of 37 clusters discovered in peroxisome data set. Same
two clusters of genes from Figure 6.8 are marked as “1” and “2.”

expression as reported by the study. We analyzed the target genes in the con-

text of the entire genome [Curk et al., 2006c]. For this analysis we have used

the transcription factor binding data from the study by Lee et al. [2002] to

describe the regulatory region of genes. We required rule-based clustering to

return clusters no smaller than four genes (parameter L = 4) with intra-cluster

correlation above 0.45 (i.e., parameter D = 1.0− 0.45 = 0.55). The beam size

was set to L = 1000. Distances between binding sites were rounded to 40 bases.

Rule-based clustering returned a set of clusters. Each cluster is described by

rules with conditional part describing two binding sites. The longest description

found includes constraints on four binding sites. Figure 6.12 shows only rules

requiring the presence of binding sites (inferred rules with other constraints

are not shown). The clusters are connected based on the transcription factor

binding data from the study by Lee et al. [2002]. Genes, coding transcription

factors, are connected by red arrows to their known target genes.

Examining the gene network in Figure 6.12 one can notice two overlapping
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? target genes

? outside genes

? target genes

? outside genes

Figure 6.10: Two inferred descriptions (one in each column) of subclusters of
the eight genes forming cluster marked “1.” Regulatory regions and gene ex-
pression profiles of the two clusters (named “group 37” and “group 34”) forming
cluster “1” in Figure 6.8 and Figure 6.9 are shown.

clusters, each described by its rule, “Swi5 and Zms1,” and “Dot6 and Mot3,”

respectively. This can be easily seen in the rule network visualization (middle

left panel, where one can also see that there is one more group of many over-

lapping clusters, corresponding to genes colored in yellow in the gene network).

The two clusters, each formed by four genes, are encircled (in the bottom right

part of the top panel in Figure 6.12). The two clusters have in common gene

YML100W (also named TSL1 ). The annotated biological process in Gene On-

tology for the three genes (YDR258C, YPL203W, YBR285W ), described by

the conditional part of rule “Swi5 and Zms1,” is “cellular protein metabolism.”

The biological process annotation of the three genes (YBR230C, YPL087W, and

YJR104C ) described by “Dot6 and Mot3” is “response to stress.” The shared

gene YML100W has both annotations (“enzyme regulator activity” and “re-

sponse to stress”). The visualization of the regulatory regions, showing the four

transcription factor binding sites (Swi5, Zms1, Dot6, and Mot3 ), is shown in the

bottom of Figure 6.12. There one can see gene YML100W having the binding

sites present in both discovered clusters. This is an example of the ability of

rule-based clustering to discover genes in functionally overlapping clusters.
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Figure 6.11: Three inferred descriptions (one in each column) of subclusters
of the nine genes forming cluster marked “2.” Regulatory regions and gene
expression profiles of the three clusters (named “group 5,” “group 11,” and
“group 16”) forming cluster “2” in Figure 6.8 and Figure 6.9 are shown.

The last example analysis of yeast data was performed on S. cerevisiae mi-

totic cell cycle data studied by Cho et al. [1998]. This example shows that all

three types of proposed visualization can be useful in the explorative analysis

of regulation of gene expression. Here we have used the TRANSFAC database

[Wingender et al., 1996; Matys et al., 2006] as a source of putative binding sites

to describe the regulatory regions of 799 genes found to be involved in the mi-

totic cell cycle by Cho et al. Motifs are referenced by their TRANSFAC I.D.

The goal of the analysis was to cluster the 799 genes into smaller subclusters and

identify genes similar to genes already annotated to be involved in the mitotic

cell cycle. Rule-based clustering was thus able to discover 360 rules covering

509 genes. Looking at the gene (example) graph in Figure 6.13 one can see that

most genes are covered by more than one rule. No apparent structure can be

seen in the gene graph. However, only by using the visualization of rules, shown

in the bottom panel, a rich and complex structure of overlapping clusters ap-

pears. Details on motifs used to describe features of two groups (group 55 and

group 75 in the rule visualization) are shown in top middle and right panels.
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Thi2 Rgm1

and

Hms1

Gcr1 and Rox1 and Arq80
Reb1 and Hir2 and Hms1

Rap1 and Fhl1 and

Hap3

Mal13

Fhl1 and Hsf1

Cha4 and Fhl1

Gcr2 and Dal81

and Ndd1

Ino2 and Gal4Gal and Hap3

Zap1 and Gal4

Ino2 and Sfp1

Swi5 and Zms1

Dot6 and Mot3

Gene network

Rule networkRule network Motif networkMotif network

•motif used in one rule only

•motif used in many rules

YDR258C

YBR285W

YPL203W

YML100W

YJR104C

YBR230C

YPL087W

Swi5 and Zms1

Dot6 and Mot3

-1000 0 (ATG)

YDR258C

YBR285W

YPL203W

YML100W

YJR104C

YBR230C

YPL087W

Swi5 and Zms1

Dot6 and Mot3

-1000 0 (ATG)

Figure 6.12: Gene, rule and motif networks inferred on environmental stress
gene expression data from Gasch and Werner-Washburne [2002]. Shown are
details on the binding sites in the regulatory region of gene YML100W which
is shared by the two clusters.
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6. Experimental applications of rule-based clustering

6.8 Analysis of Dictyostelium discoideum

data

Since no genome-wide assay of transcription factor binding is yet available for

D. discoideum, we had to rely on an ab initio method for the identification of

putative transcription factor binding sites. For this task we have used the soft-

ware tool MEME [Bailey and Elkan, 1994] for local sequence alignment. Pro-

gram MEME can identify short sequences, referred to also as motifs, which

are highly conserved and present in the regulatory region sequences of many

genes. Running MEME on the entire set of 4081 promoter regions would be

computationally too prohibitive. Since we wanted to discover motifs common

to similarly expressed genes, we have applied top-K clustering to form smaller

groups of genes on which MEME runs in reasonable time (a few minutes). Each

of 4081 genes represents the center of a potential cluster of ten genes. The clus-

ter includes nine genes with expression most similar to the central gene (next

paragraph explains how similarity is calculated). After clustering, only distinct

clusters are selected, i.e., clusters that are generated around different central

genes, but include the same set of genes, are considered only once. MEME was

then run on each cluster, with parameters set to return at most ten motifs and

search for motifs six to eighteen bases long, yielding a total of 42880 motifs.

This set of motifs was reduced by comparing motifs to each other, and keep-

ing only a subset of 14315 distinct motifs, where no two motifs are correlated

more than 0.85. Correlation of two motifs is calculated as the average Pearson

correlation of frequencies of the four bases at every position. If the two motifs

are of different lengths, all alignments where the shorter motif is completely

overlapping with the longer, are tried and the highest correlation is reported.

Gene expression data on D. discoideum from fifteen gene expression assays

of wild-type and mutants was combined into a single distance matrix, which

was used for top-K clustering and identification of putative binding sites, and

also for rule-based clustering. For each gene expression assay, all pair-wise

distances of gene expression were calculated and stored in separate distance

matrixes. The final gene distance matrix was calculated as a weighted average

of distances from the individual distance matrixes, for each gene pair. The

number of DNA microarray measurement replicas performed in an assay was

used as a weight when calculating the final weighted average distance matrix.
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Analysis of Dictyostelium discoideum data

Assays with more replicas were given a proportionally bigger weight in the final

distance matrix. For all analyses we have used the following distance function

to calculate distance between a pair of genes: 1.0−Pearson correlation of the

two expression profiles.

Because all gene expression data is used for the identification of putative

binding sites (motifs), this precludes using these data in any subsequent cross-

validation schema, for the evaluation of models obtained with rule-based clus-

tering or any other method. Namely, the motifs were found in selected sets of

genes with similar expression, and thus the motifs (already) carry information

on gene expression. The entire method, top-K clustering for selection of mo-

tifs followed by rule-based clustering, should be evaluated in a cross-validation

schema.

Here we only report the results of rule-based clustering (discovered patterns)

done on D. discoideum data. On yeast, where transcription factor binding site

data was obtained with other experimental techniques and by using other data

types than the gene expression data used in our analyses, we can apply cross-

validation and evaluate the predictive ability of rule-based clustering for gene

regulatory region analysis. Running rule-based clustering and using wild type

gene expression to calculate gene distance, on the set of 4081 genes identified 730

overlapping clusters, covering 1951 genes. The average intra-cluster correlation

is 0.65± 0.13, with six to thirty genes forming the cluster. More genes (2704)

were covered only on the “yakA- pufA-“ double mutant data. Coverage on other

mutants is as follows: 140 genes for “acaA-,” 238 genes for “acaA- pkaC+,” 390

genes for “comA-,” 390 genes for “comB -,” 598 genes for “comC -,” 128 genes

for “pkaC -,” 441 genes for “pkaR-,” 207 genes for “pkaR- regA-,” 1466 genes for

“pufA-,” 783 genes for “pufA- pkaC -,” 235 genes for “pufA- pkaR-,” 622 genes

for “regA-,” and 293 genes for “yakA-.” Number of clusters varies for each

mutants data (not shown). For details see http://bubble.fri.uni-lj.si/dictyBase.

An intermediate file in the GFF format [Durbin et al., 2000] was generated

that links web pages with results from rule-base clustering. The file is available

at http://bubble.fri.uni-lj.si/dictyBase/browser WT.txt. Uploading the file into

the genome browser at http://dictybase.org should results in a new annotation

track, called “Putative TF binding sites,” in the genome browser. For a snapshot

of the genome browser and the starting web page for gene pufA see Figure 6.14.

Every gene’s promoter element shown in the Genome Browser is linked to a
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(a)

(b)

Figure 6.14: Annotation track for Genome Browser (http://dictybase.org) and
web pages with results of rule-based clustering on D. discoideum. Wild type and
mutant gene expression data were used. a) The annotation track, titled “Puta-
tive TF binding sites,” links to web pages with results of rule-based clustering.
b) Web page with detailed results for gene pufA.
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web page with details on the inferred promoter structure, gene expression, list

of genes with similar structure and expression, and links to TRANSFAC motif

information. The user can follow links to results obtained on wild type and

mutant gene expression data, by clicking on the appropriate gene expression

panel (not shown).

When exploring genes of interest, the user can easily see if any gene is linked

to other genes described by the discovered rules. This may prove useful when

trying to determine a context of genes with similar promoter structure and gene

expression to those genes of interest.

Results from a similar genome-wide analysis of same D. discoideum mutant

data, presented in [Curk et al., 2006b], are also available at http://bubble.fri.uni-

lj.si/dictyBase. The main page links to starting pages with results on individual

mutants and wild type. The page includes all visualizations of the user interface

described in Section 4.4 (i.e., it includes cluster, feature and example networks).

6.9 Summary and discussion

Rule-based clustering was used to identify clusters of genes with similar expres-

sion and structure of the regulatory region. Evaluation of the method with

cross-validation showed that the inferred descriptions of discovered clusters, en-

coded in a set of IF-THEN rules, have good predictive value. That is, besides

providing a symbolic description, which links the structure of regulatory regions

to gene expression, the inferred rules predict well the gene expression of unseen

genes.

Using cross-validation we were also able to determine the set of features

forming the descriptive language that is most suitable for modeling and achiev-

ing good gene coverage. Distance of transcription factor binding sites from the

translation start site (ATG) proved to be the single most informative descriptive

element. Data on 1.3 transcription factor binding sites per promoter is needed

on average to predict gene expression in yeast, and inferred rules include con-

straints on average 1.17 transcription factor binding sites, with an average length

of 1.4 terms (constraints) forming a rule. These values are slightly lower than

those reported by Beer and Tavazoie [2004], where they observed that the opti-

mal number is 2.8 terms (i.e., parent nodes in a Bayesian network). The authors

report that less or more complex rules resulted in lower predictive performance.
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However, the transformation between our model and the model used by Beer et

al. is not straightforward. Our results can be interpreted as an indication that

regulation of gene expression is not highly combinatorial, but it requires rela-

tively specialized transcription factors that can also act in some combinations.

Again, caution should be taken due to the incompleteness of the transcription

factor binding site data (taken from the study by Harbison et al. [2004]). We

share the view expressed by Beer et al. that these results should be seen as

an indication on the lower limit of the degree of combinatorial regulation, and

that using other gene expression data from other experimental conditions, and

a more complete transcription factor binding site data may yield more complex

combinatorial rules.

Using a similar strategy, the most informative regulatory region for yeast

was determined computationally. The region identified for yeast spans from

-900 bases to +600 bases relative to ATG (translation start site). This result

reconfirms the already known fact that the gene coding sequence may carry

some regulatory information (e.g., see [Neznanov et al., 1997]).

Finally, we showed a few examples of analyses done with rule-based clus-

tering on S. cerevisiae and D. discoideum data. The examples on S. cerevisiae

data on peroxisome assembly and function studied by Smith et al. [2002] and

mitotic cell cycle studied by Cho et al. [1998] show how to use rule-based cluster-

ing and its associated visualizations to present the results and guide the user in

the exploration of results. Starting with a general overview of identified clusters

(Figure 6.8 and Figure 6.9) the user can then focus on specific rules describing

individual subclusters (Figure 6.10 and Figure 6.11). A good example where,

only by using all three proposed visualization, the user can gain insight into the

structure of discovered clusters can be seen in Figure 6.13. Using only the basic

gene graph visualization one would fail to see the rich structure of overlapping

clusters present in the set of discovered clusters and appertaining rules returned

by rule-based clustering.

Results from the whole-genome analysis done on D. discoideum data are

linked to the organism’s genome browser at http://dictybase.org. This allows

the user to place genes of interest in a context of other genes identified and

determined by rule-based clustering to be similar in promoter structure and

gene expression.

All analyses reported here used data on the presence of putative or exper-

96



Summary and discussion

imentally confirmed binding sites in the regulatory region of genes and gene

expression data. Other sources of genomic data, such as (predicted) promoter

secondary structure, chromosomal location of genes, presence and proximity

of enhancer and silencer elements, nucleosome organization [Segal et al., 2006],

putative or known methylation sites (CpG islands) [Katoh et al., 2006], can be

easily included in the analysis by adding descriptive elements (and appropriate

operators for feature construction) to the descriptive language used for rule-

based clustering. Further work also includes using data on known or predicted

transcription start sites instead of the translation start site (ATG) used in all

the analyses reported here. Both landmarks (transcription and translation start

sites) should be included in the descriptive language and, by using the meth-

ods for evaluation described here, the individual contributions to the model’s

predictive ability of each should be estimated.
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Chapter 7

Decomposition of gene

expression profile signatures

In this Chapter we propose a heuristic algorithm for the decomposition of gene

expression profile signatures. We give examples on two model organisms where

the proposed decomposition method was successfully used to identify parallel

pathways in gene networks. The method is implemented and available as a web

application (see http://bubble.fri.uni-lj.si/microCOMB).

7.1 Introduction and related work

A gene expression profile signature is defined as the subset of all measured genes

which best represents the cell’s response to the condition under which gene ex-

pression was measured. In our description of the algorithm for the decompo-

sition of signature profiles we will use data from microarray gene expression

differential studies, where gene expression of all genes (i.e., the transcriptional

profile) in the test sample measured under some condition (e.g., treatment,

mutant, etc.) is compared to gene expression in a reference sample (e.g., no

treatment, wild type or gene expression from a reference pool). In such set-

ting, the gene expression signature is composed of genes whose expression has

changed (i.e., increased or decreased compared to the reference expression) for

more than a user-specified threshold. The algorithm for the decomposition of

signature profiles can be also used for other types of gene profile data (compu-

tational phenotypes), such as measurements of absolute gene expression levels,

mutant sensitivity profiles, etc.
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The main motivation for the development of the proposed signature decom-

position method was to complement the analysis done with rule-based cluster-

ing. While rule-based clustering is applied to discover clusters of genes with

specific regulatory patterns in gene expression and structure of the regulatory

region, the proposed decomposition of signature profiles allows detecting more

global similarities between genes, by using the transcriptional phenotype of

corresponding mutants. Another important motivation leading to the develop-

ment of the method was to enable the researcher to easily compare and relate

measurements from his own experiment(s) to a large collection of previously

measured gene expression data from various assays (e.g., SGD’s gene expres-

sion connection data at www.yeastgenome.org includes ∼ 900 microarray mea-

surements from 20 studies). Similarly to the BLAST algorithm, developed by

Altschul et al. [1990], which proved extremely useful for rapid sequence compar-

ison and sequence database search, the proposed method for the decomposition

of gene signature was developed to offer an easy comparison and search in a

gene profile signatures database.

Another motivation that lead to the development of the proposed decom-

position method are recent reports on the “modular nature” of the cell’s ge-

nomic program [Ihmels et al., 2002; Segal et al., 2003a], and developed methods

for inference of epistatic relations from transcriptional phenotypes of mutants

[Van Driessche et al., 2005] that are then used for inference of genetic networks

We show that, when applied on a database of mutant expression data, the

decomposition method can be used to describe a mutant’s response as a combi-

nation of responses of other mutants. These inferred relations can then support

the user in reasoning about the underlying genetic network and about the con-

tributions of genes forming the transcriptional response in each component.

Related work include SVD (singular value decomposition) proposed by Alter

et al. and Carter et al. [Alter et al., 2000; Carter et al., 2006, 2007] for discov-

ering groups of genes with similar regulation and function, or similar cellular

state and biological phenotype, called eigengenes and eigenarrays, respectively.

Differently to SVD-based approaches, the proposed signature decomposition

method is more general as it does not assume any underlying superimposition

(i.e., linear combination) of contributions of genes or signature profiles (e.g., in

all our examples we use the nonlinear function “min”).
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7.2 Decomposition algorithm

The user has to provide a “query” microarray gene expression measurement for

which he wants to find a decomposition that describes the measurement as a

combination of measurements stored in a database. There are no restrictions

on the kind of condition, treatment or mutant for which the gene expression

transcriptional profile was measured and included in the database; they all can

be included in the database.

The decomposition algorithm is given in Figure 7.1. The query signature

profile consists of genes with significantly altered query expression (e.g., abso-

lute gene expression above a user-defined threshold) (see algorithm in Figure

7.1., line 1). All other query genes, whose gene expression did not change greatly

under the experiment’s conditions, are not considered by the decomposition al-

gorithm. All transcriptional profiles in the database are filtered using the same

threshold criteria, and their signature profiles are generated. Additionally, only

genes forming in the query profile are used to form the database signature pro-

files (algorithm, lines 2 and 3). Depending on the selected threshold, the number

of genes to consider can be much smaller than the entire genome (e.g., less than

thousand genes, out of seven thousand genes in the genome, for experiments

done on yeast S. cerevisiae), which makes further steps of the algorithm run

faster. To reduce the number of combinations to explore, only N database sig-

nature profiles that are most similar to the query signature profile are taken

(line 4). Among those signature profiles, all combinations of 1 to K signature

profiles (also called components) are explored (loop in line 5). Each combination

produces a “composed” signature profile Sc (loop in line 7). The composed sig-

nature Sc is then compared with the query signature Sq. The algorithm returns

an ordered list (line 12), where at the top are the compositions most similar to

the query signature. Inversely, a composition can be seen as a “decomposition”

of the query signature into a combination of components.

Two important steps of the decomposition algorithm are combining the com-

ponents into a final signature (see Figure 7.2) and testing the quality of a par-

ticular decomposition (algorithm in Figure 7.1, line 10) by comparing it to the

query signature. After combining the given components of a potential decompo-

sition of query signature (combination of components “one,” “two,” and “three”

in Figure 7.2), the resulting “composition” (fourth column in Figure 7.2) should

be as similar to the query signature (column five in Figure 7.2) as possible.

101



7. Decomposition of gene expression profile signatures

Different functions can be used to combine the components into a compo-

sition. In the description of the algorithm and in all our examples, we use the

function “min” (algorithm in Figure 7.1, line 8) since we are minimizing the

difference of gene expression between the selected component and the query sig-

nature for each gene in the query signature. Other functions such as “average,”

“weighted sum,” etc. can also be used, requiring a few changes to the algorithm.

As stated in line 8 of the algorithm in Figure 7.2, function “min” is defined as

follows: for the given query gene and the given combination of database signa-

ture components, the component with most similar expression (i.e., minimum

distance) to the query expression, must be selected. If function “average” is

used, then the expression in all components must be averaged into one value,

which forms the composition’s value.

Whichever function is used for combining components into a composition,

the composition will differ from the query signature. The difference between the

composed signature profile (Sc) and query signature (Sq) can be calculated and

used to rank and select the best decomposition among all decompositions iden-

tified during search. Because we wanted the components of the best decomposi-

tion to include as many genes as possible (ideally, all genes in the query signature

profile), and at the same time have a good correlation between the query and

composed signature, we used this score function: correlation · coverage, where

correlation is Pearson correlation between the query and composed signature

profile, and coverage is the number of genes forming the composed signature

profile. Other score functions that can be used (correlation only, Euclidean

distance only, etc.) are included in the web tool we have implemented for this

method.

Applying an exhaustive, combinatorial search for the decomposition of sig-

nature profiles is not feasible due to the large number of combinations that need

to be explored when searching for decompositions including three or more com-

ponents (K ≥ 3), and using a database of few thousand transcriptional profiles.

For this we propose a heuristic search algorithm, where at the beginning N

single components that most closely match the query signature are identified.

All combinations of order from 1 to K, among the selected N components, are

then tested with the goal to find the combination that best match the query

signature profile.
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Experimental evaluation

Algorithm for decomposition of gene signature profiles

Input :
Q – “query” gene expression transcription profile
th – threshold for determining the signature profile
K – maximum number of components of a decomposition
N – number of most similar database signature profiles that

can be used to form a decomposition
DB – database of gene expression transcriptional profiles

Output :
ordered list L of best decompositions

1 apply threshold th to select genes and form a query signature profile Sq

2 apply threshold filter on each profile in the database to form database
profile signatures

3 in database profile signatures keep only those genes that appear in Sq

4 select N database signature profiles DBtopN that are most similar to Sq

5 FOR EACH combination C of 1..K signature profiles in DBtopN DO
6 reset composed signature profile Sc

7 FOR EACH gene G in Sq DO
8 find signature profile Ci in C with most similar gene

expression to gene expression of G in Sq (i.e., Sq[G])
9 Sc[G]← Ci[G] ; compose signature profile Sc

10 calculate distance between Sc and Sq

11 add decomposition C into L and order based on calculated
distance (more similar decomposition on top of L)

12 return L

Figure 7.1: Algorithm for the decomposition of gene signature profiles.

7.3 Experimental evaluation

The decomposition method was successfully applied on several biologically in-

teresting examples. Here we report on two examples done on the two model

organisms: budding yeast S. cerevisiae and slime mold D. discoideum.

Figure 7.3 shows an example decomposition found by the algorithm applied

to D. discoideum mutant data. The method identified genes (in this example the

components represent mutants) that act in parallel and can be used to describe

the signature profile of a common downstream gene (“pkaC -”) in the genetic

network for development in D. discoideum. The genetic network for develop-
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Figure 7.2: Decomposition (composition) of gene expression signature. Three
components (component one, two, and three) are composed into one signature
(“composition”), which is a good approximation of the query signature of in-
terest. The composition operation (operator marked with ‘+’) in this example
is performed with function “min.”

ment is shown in Figure 7.4. The decomposition algorithm was instructed to

find the best decomposition of the expression from the “pkaC -” mutant, using a

relatively small database including gene expression transcriptional profiles data

on wild type and fourteen mutants. The best decomposition, shown in Figure

7.3, states that the transcriptional signature profile of mutant “pkaC -” can be

well described as a combination of subsets of genes from mutants “yakA-” (1028

genes), “acaA-” (614 genes), and the double mutant “pufA- pkaC -” (574 genes).

The two largest components, “yakA-” and “acaA-” are known to act in parallel

and are upstream of gene “pkaC -” in the genetic network reported in Figure

7.4. The third component (the double mutant “pufA- pkaC -”) is expected to

be included because the double mutant is known to be transcriptionally sim-

ilar to the “pkaC -”. This was observed in the epistasis analysis reported by

Van Driessche et al. [2005]. However, the best decomposition, identified by our

method, shows that there are other mutants (parts of their transcriptional pro-

files) that are more similar to the “pkaC -” mutant signature profile. Besides

providing a set of mutants (components) that are most similar to the query
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Experimental evaluation

pkaC- yakA- acaA- pufA-

pkaC-

yakA-
(selected)

acaA-
(selected)

pufA-

pkaC-
(selected)

Figure 7.3: Decomposition of pkaC - mutant expression profile into three compo-
nents. The expression of all genes in each component is shown. The expression
of the subset of genes, forming the component, is repeated in the columns with
caption “(selected).” Shown is the expression of 2216 genes (rows) in thirteen
time points, eight genes are averaged and shown as one row.

mutant’s signature, each set of genes can be further studied (e.g., by perform-

ing an annotation enrichment analysis) to gain more insight about individual

components and relations among components.

In this example, all gene expression profiles (query and database) include

4081 genes. The best decomposition found describes 2216 genes. In this ex-

ample, gene expression was measured in a time series of 13 time points (from

0 to 24h, every two hours). Distance among gene expression time series was

calculated with Pearson correlation.
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7. Decomposition of gene expression profile signatures
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Figure 7.4: Genetic network for development in D. discoideum. This network
was reported in the study of epistasis analysis by Van Driessche et al. [2005].
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Figure 7.5: Analysis of the HOG MAPK pathway in S. cerevisiae. a) HOG
MAPK pathway presented in Roberts et al. [2000]. b) Graph summarizing the
top ten decompositions found for mutant query signatures of Hog1, Pbs2, and
Ssk1 mutants.

A second, more extensive decomposition was performed on S. cerevisiae

data. The database included all SGD’s Gene Expression connection data (∼ 900

transcriptional profiles from 20 studies) and data from the paper by Roberts et al.

[2000] where they studied several MAPK (mitogen-activated protein kinase)

pathways, which control changes in gene expression, cytoskeletal organization,

and cell division. For this experiment we have selected the HOG MAPK path-
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Summary and discussion

way, which responds to hypertonic stress, and for which data on most mutants

of genes in the pathway was available. Using the decomposition algorithm we

identified the best decompositions for Hog1, Pbs2 and Ssk1 mutants’s expres-

sion profiles appearing in the pathway proposed by Roberts et al. [2000] and

showed in Figure 7.5a. The first ten best decomposition of each mutant query

profile were used to build a graph of decompositions (shown in Figure 7.5b).

Directed edges (arcs) connect the query profile signature with components ap-

pearing in the first ten best decompositions of the query profile. The number on

the arc is the average number of genes from the component, averaged across all

decompositions forming the arc that is contributing to the decomposition of a

query signature transcriptional profile. The arcs point from single components

to the signature profile for which decomposition was found.

The largest arc links from Hog1 to Pbs2 (see Figure 7.5b), with an average

690 genes from Hog1 being most similar in expression to Pbs2. Although not

acting in parallel, but in a cascade (see Figure 7.5a), those two genes are the

most similar, with an average of 690 genes from component Hog1 contributing

to the decomposition of Pbs2. The weight of the arc in the opposite direction is

also comparably high (540 genes from Pbs2 contributing to the decomposition

of Hog1 ). More interesting are the arcs linking to Hog1 and Pbs2. These are

all genes that appear upstream of the two genes and are acting in parallel paths

in the pathways. In the graph in Figure 7.5b, mutants Sho1 and Ssk1, are two

such cases that are connected to Pbs2.

7.4 Summary and discussion

The proposed method for the decomposition of gene expression (transcriptional)

profiles was shown to be useful to study newly acquired transcriptional data

and relate it to previous measurements of gene expression. We showed that the

proposed algorithm is able to decompose a query signature profile into compo-

nents. We also showed that such decompositions can prove useful for placing

the query transcriptional response into a biological context. Similar to epistasis

analysis, where entire mutant transcriptional phenotypes are compared to infer

epistatic relations, the proposed method for decomposition tries to identify in-

dividual parts (components) of the cell’s response to the environment, condition

or treatment, which can be explained with data on other mutants.
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7. Decomposition of gene expression profile signatures

Although designed for DNA microarray transcriptional phenotype data, the

decomposition algorithm can be used on other types of data (e.g., sensitivity

profiles). We have implemented the decomposition method as a web-based tool

(available at http://bubble.fri.uni-lj.si/microCOMB). For now, the tool includes

a database on S. cerevisiae data only.

Further work on this topic include evaluating other functions to combine

signature profiles, including “average,” “weighted sum,” and other. Devising

good heuristics, which do not search the entire space of combinations, is also

an important aspect for further work.
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Chapter 8

Conclusion and further work

In this dissertation we proposed a set of computational methods for inference

of gene networks from various data sources. For this, we addressed several

important problems in gene network inference, including function prediction

from different types of gene profile and phenotype data, methods for the analysis

of gene regulatory regions, and methods for the decomposition of gene signature

profiles.

Starting with the concept of “computational phenotype” we showed that

different types of gene profiles are better predictors of different types of func-

tional annotations. We directly compared the utility of gene expression profile

and mutant-based phenotypes (gene characterizations) for gene function pre-

diction, which we modeled with gene co-expression networks, and proposed to

use ROC analysis to measure the ability of gene co-expression networks to dis-

criminate among gene functional annotations. The results showed no single

absolute winner. Moreover, we have shown examples where entire subgroups of

gene functional classes could be better predicted from different types of char-

acterization. This supports our claim that all sources of experimental data are

needed for successful prediction of gene function. Further work includes inves-

tigating and developing ways to automatically learn how to combine different

gene characterizations for a better prediction of gene function.

The main contribution of this Thesis is the new machine learning approach,

called rule-based clustering. The rule-based clustering method combines the

classical CN2 [Clark and Nibblet, 1989] rule-inference search procedure and the

method of clustering trees developed by Blockeel et al. [1998], and is able to

identify overlapping subgroups of similar examples. Each identified cluster can
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8. Conclusion and further work

be described by a set of symbolic description(s) encoded in form of IF-THEN

rules. This approach greatly differs from the standard cluster-first approach,

where examples are first clustered based on their similarity, and then a descrip-

tion of each cluster is attempted.

Two sets of attributes are required. The first set is used to calculate ex-

ample distance with a user-defined distance function. Another set of attributes

and optionally, operators for feature construction, are required for inference of

symbolic descriptions. Here, background knowledge on the problem domain,

encoded in the feature construction operators and in the selection of attributes

given by the user, can be crucial for successfully solving a specific problem.

Search in rule-based clustering is performed using a large beam. It is guided

by a heuristic which prefers to refine rules describing clusters with higher po-

tential to form even more coherent subclusters (informed search). Rule-based

clustering can also incorporate an on-the-fly feature construction. Only new

features, that are possible on a current subset of examples, are tried.

The result of rule-based clustering is a model that lists a set of rules. The

modeling done with rule-based clustering is both descriptive and predictive.

Due to the symbolic language used to encode the conditional part of the rule,

the user can gain new knowledge by studying the patterns found and presented

with the inferred rules. By observing the number of rules found describing each

cluster of genes, the user can decide which discovered clusters should be given

more weight in subsequent steps of the analysis. We also showed how to evaluate

those same rules for their predictive ability using the standard machine learning

evaluation method of k-fold cross-validation.

Using proper visualization can augment the way one explores and studies the

inferred models and underlying data, especially when a rich descriptive language

is used for describing discovered patterns and inferring complex models. A good

visualization of discovered patterns and clusters of examples may allow the user

to discover higher-order structure or other properties of inferred patterns. For

this, we propose three visualizations: example network, cluster network and

feature network. We also propose a user interface that incorporates all three

types of visualizations and allows for explorative data analysis.

Although designed with bioinformatics problems in mind, the method can

be regarded as a general machine learning technique. The approach is able to

discover clusters – groups of data items, or genes – that are described using a
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symbolic assertion on the gene sequence (the conditional part), with genes in

the group bearing similar phenotypes (the action part of the rule). We showed

examples on S. cerevisiae and D. discoideum data where rule-based clustering

was successfully used to combine sequence and gene expression information to

find clusters of genes with similar gene expression profiles and sequence (i.e., the

structure of the regulatory region). In Chapter 6 we showed that the inferred

models have a fairly good predictive ability. We defined a descriptive language

for modeling the gene regulatory region. An evaluation of the various elements

of the proposed descriptive language showed that distance of transcription fac-

tor binding site from ATG is the single most informative descriptive element,

which should be used when predicting gene expression from the content of the

regulatory regions.

Still, further research of the most appropriate descriptive language for model-

ing regulation of gene transcription is needed. Additional elements known from

biological theory need to be included and their predictive value assessed. Ad-

ditional descriptive elements should include data on chromatin structure, CpG

islands [Katoh et al., 2006], predicted secondary structure, ncRNA, RNAi, etc.

The main challenge here remains obtaining genome-wide data of good quality.

Further work on the rule-based clustering method includes using other types

of gene characterizations (e.g., mutant sensitivity profiles) for the identification

of cluster of genes with similar regulatory structure (preliminary work, not

shown in this Thesis, indicates that other types of gene characterization could

be used to identify groups of co-regulated genes).

Rule-based clustering requires a number of parameters, i.e., length of the

beam, significance level when testing decrease in variance after refinement of

a cluster, etc. Future work includes finding ways to minimize the number of

parameters, or transforming them to make them more intuitive to the end user,

and making the method more adaptive to different problem domains, with-

out any user intervention or setting of parameters. For example, the distance

threshold parameter D given by the user could be replaced by a parameter lim-

iting the percentage of most similar groups discovered by the method that get

reported to the user. As search progresses, the method could keep track of the

intra-distance of all groups discovered so far, and automatically set parameter

D to keep only an arbitrarily selected percentage (set by user) of all discovered

clusters. Another, more technical aspect of future work, is to use a full con-
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8. Conclusion and further work

junctive and disjunctive language, eliminating current constraints of usage of

disjunctively added terms.

Given its generality, rule-based clustering could be applied to many other

problem domains, one being the inference of relations of structures of chemical

compounds – small molecules and their corresponding phenotype effects [Lamb,

2007; Lamb et al., 2006]. Similar to the application for the analysis of gene

regulatory regions, here measured phenotype (i.e., gene expression) could be

used to calculate distance between compounds, and a descriptive language for

chemical formulae and other structural information on molecules could be used

to describe clusters of similar responses to small molecules.

The proposed decomposition of gene expression profile signatures, presented

in Chapter 7, proved useful when analyzing newly measured transcriptional

data, and placing it into a biological context. The decomposition method tries

to identify parts (or components) of the cell’s response to the environment,

condition, treatment or some other perturbation. We showed two examples

on S. cerevisiae and D. discoideum data, where the approach was successfully

applied. The decomposition method was implemented as a web-based tool.

Further work on this topic include a thorough evaluation of other functions

that can be used to combine signature profiles, and devising good heuristics

that would speed-up the search for decompositions. The main motivation for

the development of the proposed method for the decomposition of signature

profiles was to complement the analysis done with rule-based clustering, and

to allow the researcher to easily compare his own measurements with other

published data. Further work includes developing algorithms that automate

the merging of relations inferred by rule-based clustering and relations found

with the decomposition of gene signature profiles.
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Dodatek A

Računski pristopi k odkrivanju

genskih mrež

Razširjeni povzetek v slovenskem jeziku

A.1 Povzetek

V pričujočem delu predlagamo nabor računskih metod za gradnjo genskih mrež

na podlagi različnih genomskih podatkov in obravnavamo pomembne probleme,

ki nastopijo pri gradnji genskih mrež. Le-ti so: napovedovanje funkcije genov na

podlagi različnih, tako imenovanih računskih fenotipov (profil izražanja genov,

transkripcijski fenotip mutiranih sevov in kvantitativni rastni fenotip mutiranih

sevov), analiza regulatornih regij genov, dekompozicija profilov izražanja genov.

Glavni prispevek pričujoče disertacije je metoda, ki hkrati obravnava ge-

netski zapis DNA in informacijo o fenotipu, ter tako poǐsče skupine genov s

podobnim fenotipom in zapisom v regulatornih regijah genov. Metoda je osno-

vana na podlagi novega pristopa k strojnemu učenju, imenovanem razvrščanje

na podlagi pravil (ang. rule-based clustering), ki ga predlagamo v disertaciji.

Pristop omogoča odkrivanje skupin primerov oziroma genov, katere člane lahko

opǐsemo na simboličnim način, zakodiranim v pogojnem delu pravila. V za-

ključku pravila sledi opis fenotipa, ki je značilen za vse gene v skupini. Čeprav

je bila metoda za razvrščanje na podlagi pravil prvotno razvita za odkrivanje

pravil uravnavanje izražanja genov, je splošno uporabna tudi za reševanje dru-

gih problemov. Metoda zahteva dva nabora atributov. Na podlagi prve skupine
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atributov se izračuna razdalje med vsemi pari primerov, medtem ko se druga

množica atributov uporablja za gradnjo simboličnih opisov odkritih skupin. Pre-

dlagani algoritem za odkrivanje pravil uporablja metodo iskanja v snopu (ang.

beam search) ter statistični test za izbor pravil in za ustavitveni pogoj iskanja.

Metoda omogoča odkrivanje prekrivajočih skupin. Za bolǰso predstavitev in

interpretacijo odkritih pravil predlagamo nabor vizualizacij odkritih skupin.

Eksperimentalno smo ovrednotili in pokazali uspešne primere uporabe me-

tode za razvrščanje na podlagi pravil za odkrivanje uravnalnih pravil izražanja

genov glive sluzavke Dictyostelium discoideum in kvasovke Saccharomyces ce-

revisiae, za kar smo uporabili podatke o izmerjenem izražanju genov z DNA

mikromrežami in podatke o zapisu DNA regulatornih regij genov. Z uporabo

metode razvrščanja na podlagi pravil smo poskusili odgovoriti tudi na nekaj

pomembneǰsih bioloških vprašanj: kateri so najbolj pomembni opisni elementi

regulatornih regij in kateri del zapisa DNA regulatorne regije nosi največ infor-

macije o uravnavanju genov.

Ovrednotili smo zmožnost napovedovanja funkcije genov na podlagi različnih

tipov podatkov o fenotipu. Rezultati kažejo, da univerzalno najbolǰsi tip po-

datkov ne obstaja, temveč je potrebno uporabiti vse razpoložljive podatke.

V disertaciji obravnavamo in predlagamo metodo za dekompozicijo profilov

izražanja genov. Za podani profil izražanja genov celotnega genoma, metoda

poǐsče komponente (podskupine genov in njihovo izražanje pod različnimi pogoji

ali za različne seve, podatki o tem so shranjeni v podatkovni bazi), ki združene

skupaj v nov profil dobro aproksimirajo od uporabnika podan profil izražanja

genov. Rezultat dekompozicije je torej mreža mutant in pogojev, ki umesti upo-

rabnikovo meritev v neki biološki kontekst ter tudi omogoča odkrivanje genskih

poti ter določanje v njih udeleženih genov.

Ključne besede

strojno učenje,

bioinformatika,

vizualizacija,

razvrščanje na podlagi pravil,

genske mreže, funkcijska genomika,

modeliranje uravnavanja izražanja genov,

dekompozicija profilov izražanja genov
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Uvod

A.2 Uvod

V disertaciji se ukvarjamo z razvojem in uporabo računskih metod za analizo

genetskih podatkov. Končni cilj predlaganih metod je izgradnja in prikaz mo-

dela v formalnem, simboličnem zapisu, to je, v obliki genske mreže. Obsežnost

in hitra rast količine in raznolikosti genetskih podatkov [Luscombe et al., 2001]

zahteva razvoj specializiranih metod za analizo genetskih podatkov, kar predsta-

vlja velik izziv in hkrati priložnost za napredek v razumevanju celičnih procesov

in posledično izbolǰsanje zdravljenja bolezni [Schlitt and Brazma, 2005, 2006].

Glavni prispevki disertacije so:

• razvoj metode za razvrščanje na podlagi pravil (ang. rule-based cluste-

ring), nova metoda strojnega učenja za razvrščanje primerov, ki omogoča

obravnavo kompleksnih in opisno bogatih problemskih domen,

• praktična implementacija metode razvrščanja na podlagi pravil, za reše-

vanje problemov na področju bioinformatike. Formalizirali in ovrednotili

smo opisni jezik za modeliranje strukture regulatorne regije genov,

• razvoj in implementacija računske metode za dekompozicijo profilov

izražanja genov,

• poskusi na področju računske fenomike. Ocenjevali smo uspešnost napo-

vedovanja funkcije genov na podlagi različnih tipov podatkov o fenotipu.

Predlagamo tudi vrsto vizualizacij za podporo odkrivanju zakonitosti v po-

datkih in tolmačenju model odkritih z metodo razvrščanja na podlagi pravil.

Vse razvite metode smo uporabili za analizo podatkov dveh modelnih orga-

nizmov, in sicer kvasovke Saccharomyces cerevisiae in glive sluzavke Dictyo-

stelium discoideum. Praktični prispevki disertacije vključujejo implementacijo

metode razvrščanja v skupine na podlagi pravil v obliki skript za programski

jezik Python, v oviru sistema za strojno učenje Orange [Demsar et al., 2004a],

obsežno analizo regulatornih regij genov glive sluzavke D. discoideum, ki je do-

segljiva na spletni strani http://bubble.fri.uni-lj.si/dictyBase, ter preko uradne

spletne strani o organizmu, na naslovu http://dictybase.org [Eichinger et al.,

2005]. Praktični prispevek je tudi implementacija metode dekompozicije profilov

izražanja v obliki spletne aplikacije, dosegljive na naslovu http://bubble.fri.uni-

lj.si/microCOMB.
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A.3 Računska fenomika

V tem poglavju smo poskusili odgovoriti na vprašanje koliko informacije o funk-

ciji genov nosijo različni tipi genomskih podatkov. Pri določanju funkcije po-

sameznega gena, se genetiki zanašajo na “klasično” opazovanje morfološkega

fenotipa. Le-ta pa je navadno nezadosten za obsežne celo-genomske študije, saj

takšen fenotip nosi relativno malo informacije o celotnem stanju organizma, kar

je pa potrebno pri sklepanju o funkciji (več) genov. Ovrednotili smo različne

tipe genomskih podatkov, ki opisujejo vpliv oziroma odziv vseh genov genoma

in za katere lahko upravičeno trdimo, da predstavljajo neki “globalni oziroma

univeralni fenotip” celice. Ker lahko tovrstni podatki opisujejo tudi do nekaj

deset tisoč genov hkrati in je njihova obravnava smiselna oziroma možna le z

računalnikom, jih imenujemo računski fenotip.

Za metodo modeliranja funkcije genov smo uporabili metodo mrež so-izraženih

genov (ang. gene co-expression networks), ki so jo razvili Stuart in sode-

lavci [Stuart et al., 2003]. Najprej se izračuna korelacijo (podobnost) profilov

izražanja genov za vse pare genov. Nato se poveže tiste pare genov, ki so nad

izbranim pragom podobnosti. Tako nastane mreža genov (glej sliko A.1). Vo-

zlǐsča genov s pripisano izbrano funkcijo se pobarva. Za tako obarvano mrežo

se izračuna dve meri uspešnosti napovedovanja funkcije na podlagi podobnosti

genov (pokritost razreda in klasifikacijo točnost mreže za izbrani razred, ang.

network coverage and accuracy). Pokritost je razmerje pobarvanih vozlǐsč, ki so

povezani z vsaj še enim pobarvanim vozlǐsčem, deljeno s številom vseh pobarva-

nih genov. Klasifikacijska točnost mreže je število povezav pobarvanih vozlǐsč,

ki povezujejo ostala pobarvana vozlǐsča, deljeno s številom vseh povezav, ki izha-

jajo iz pobarvanih vozlǐsč. Meri uspešnosti, ki ju predlagajo Stuart in sodelavci,

je težko uporabiti za primerjavo uspešnosti napovedovanja različnih funkcij ge-

nov ali primerjavo uspešnosti napovedovanja mrež so-izraženih genov zgrajenih

na različnih računskih fenotipih. Zato v disertaciji predlagamo bolj ustrezno

mero uspešnosti napovedovanja funkcije genov, ki je osnovana na analizi ROC

krivulj [Provost and Fawcett, 2001; Fawcett, 2003].

V empiričnih poskusih smo uporabili različne genomske podatke oziroma

računske fenotipe za izračun podobnosti genov (klasični profil izražanja ge-

nov izmerjen pod različnimi pogoji, transkripcijski fenotip mutantov, to je

izražanje vseh genov nekega mutanta, ter kvantitativni, rastni fenotip mutan-

tov v različnih pogojih). Za vsak tip podatkov smo zgradili mreže so-izraženih
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G3G1

G5

G2 G4 G7

G6

genu je pripisana izbrana funkcija

Legenda:

gen ne opravlja izbrane funkcije

Slika A.1: Primer mreže so-izraženih genov, ki vključuje sedem genov (G1-G7).
Povezani so le tisti pari genov, katerih korelacija v izmerjenem izražanju je
nad izbranim pragom. Pokritost razreda je 2/5 = 0.4, klasifikacijska točnost je
1/4 = 0.25.

genov ter ovrednotili napovedno zmožnost mreže za napovedovanje različnih

funkcij genov. Primerjali smo napovedne zmožnosti mrež za vsak tip podatkov

in napovedano funkcijo genov. Absolutnega zmagovalca v teh primerjavah ni.

Ugotovili smo, da so različni tipi genomskih podatkov bolj uspešni za napove-

dovanje določenih genskih funkcij. Tako smo pokazali, da je za uspešno analizo

potrebno čim več različnih tipov podatkov. Slika A.2 prikazuje rezultate pri-

merjave uspešnosti napovedovanja funkcije genov v obliki grafa RadViz. Iz slike

je moč razbrati, katere genske funkcije se da bolje napovedovati na podlagi po-

sameznega tipa podatkov. Točke bližje enemu izmed treh dimenzijskih sider

(ang. anchors) na krožnici predstavljajo funkcije, ki se da bolje napovedovati z

mrežo so-izraženih genov zgrajeno na podlagi računskega fenotipa, ki ga pred-

stavlja sidro (E za profil izražanja genov, M za transkripcijski fenotip mutant,

P za kvantitativni rastni fenotip mutant). Ocenili smo 28 različnih izbranih

funkcijskih skupin (ang. GO slim terms) iz tako imenovane ontologije genov

(ang. Gene Ontology). Uporabili smo skupine z vsaj desetimi pripisanimi geni

[Ashburner et al., 2000].

A.4 Razvrščanje v skupine na podlagi pravil

Glavni prispevek disertacije je nov pristop k strojnemu učenju, tako imenovana

metoda razvrščanja na podlagi pravil (ang. rule-based clustering). Odkrita

pravila so oblike IF simbolični opis primerov THEN profil primerov. Pristop

omogoča razvrščanje primerov oziroma genov v skupine, katerih člane lahko

opǐsemo z nekim simboličnim zapisom, ki je zakodiran v pogojnem delu pravila,
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A. Računski pristopi k odkrivanju genskih mrež

Slika A.2: Uspešnost napovedovanja funkcije genov mrež so-izraženih genov,
zgrajenih na podlagi različnih tipov podatkov (E – profil izražanja genov,
M – transkripcijski fenotip mutant, P – kvantitativni rastni fenotip mutant).
Uspešnost je merjena s površino pod krivuljo ROC. Barva točke prikazuje, ka-
teri tip podatka najbolje napoveduje funkcijo, ki jo točka predstavlja (rdeč krog
za M, zelen pravokotnik za E, siv trikotnik za P).

v zaključku pravila pa sledi opis fenotipa oziroma profila, ki je enak (oziroma

podoben) za vse gene v skupini. Metoda zahteva dva nabora atributov. Na

podlagi prve skupine atributov se izračuna razdalja med primeri. V naših ana-

lizah smo za razdaljo uporabili funkcijo Pearsonove korelacije. Drugo množico

atributov se uporabi za gradnjo simboličnih opisov odkritih skupin. Predlagani

algoritem za odkrivanje pravil uporablja metodo iskanja v snopu (ang. beam

search) omejene velikosti L, podobno algoritmu CN2 [Clark and Nibblet, 1989].

Med iskanje je lahko v snopu shranjenih največ L pravil, ki opisujejo najbolj

homogene trenutno odkrite skupine. Algoritem poskuša le-te dodatni izostriti.

Metoda uporablja statistični F-test za izbor pravil in posredno za ustavitveni
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pogoj. Začenši z enim, enostavnim pravilom ‘True’ v snopu, se nato vsako pra-

vilo v snopu izostri z dodajanjem pogojev. Z uporabo F-testa se računa stati-

stično značilnost spremembe variance med skupino pokrito s prvotnim pravilom

in skupino pokrito z izostrenim pravilom. Algoritem teži k odkrivanju vedno

bolj homogenih skupin, za kar smo se zgledovali po metodi Blockeel in sode-

lavcev [Blockeel et al., 1998], kjer pa gradijo drevesa za razvrščanje. V primeru

značilne izostritve se pravilo doda v snop. V nasprotnem primeru se pravilo

doda v končni seznam odkritih pravil, v katerem se hrani le K najbolǰsih pravil,

ki opisujejo najbolj homogene trenutno odkrite skupine. Pokriti primeri se ne

odstranijo, kar omogoča odkrivanje prekrivajočih skupin; preiskovanje se ustavi,

ko se snop izprazni. Za bolǰso predstavitev in interpretacijo odkritih pravil pre-

dlagamo nabor vizualizacij. Prav tako predlagamo predstavitev rezultatov v

obliki spletnih strani.

Metoda razvrščanja v skupine na podlagi pravil je bila prvotno razvita za

analizo genetskih zapisov DNA regulatornih regij genov in podatkov o računskem

fenotipu (n.pr., fenotipu mutanta, profilu izražanja genov, ipd.), z namenom is-

kanja skupin genov s podobnim fenotipom in strukturo regulatorne regije. Kljub

temu je metoda splošno uporabna tudi za reševanje drugih, podobnih proble-

mov.

Z uporabo standardnih pristopov strojnega učenja za ocenjevanje napovedne

zmožnosti modelov smo eksperimentalno ovrednotili modele odkrite s predla-

gano metodo razvrščanja na podlagi pravil. Navajamo primere uporabe metode

za razvrščanje na podlagi pravil za odkrivanje uravnalnih pravil izražanja genov

glive sluzavke Dictyostelium discoideum in kvasovke Saccharomyces cerevisiae,

za kar smo uporabili javno dostopne podatke o izmerjenem izražanju genov

z DNA mikromrežami in podatke o zapisu DNA regulatornih regij genov. Z

uporabo metode razvrščanja na podlagi pravil smo poskusili odgovoriti tudi na

nekaj pomembneǰsih bioloških vprašanj: kateri so najbolj pomembni opisni ele-

menti regulatornih regij in kateri del zapisa DNA regulatorne regije nosi največ

informacije o uravnavanju genov. Rezultati pokažejo, da je najbolj informativen

podatek o oddaljenosti veznih mest transkripcijskih faktorjev od mesta transla-

cije genov. Najbolj informativna regija pa se razteza -900 do +600 baz relativno

na začetek translacije gena (ATG), kar nakazuje, da je uravnalni program genov

delno določen tudi v kodirajočem področju genov.

Metodo razvrščanja na podlagi pravil smo uporabili za obsežno analizo regu-
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(a)

(b)

Slika A.3: a) Steza “Putative TF binding sites” v pregledovalniku genoma
glive sluzavke D. discoideum (ang. dictyBase Genome Browser, na naslovu
http://dictybase.org), s povezavami do b) spletnih strani s podrobnimi rezul-
tati analize z metodo razvrščanja na podlagi pravil.

latornih regij genov glive sluzavke D. discoideum. Rezultati analize so dosegljivi

širši raziskovalni skupnosti glive sluzavke na spletni strani http://bubble.fri.uni-

lj.si/dictyBase ter preko uradne spletne strani o organizmu, na naslovu http://di-

ctybase.org [Eichinger et al., 2005]. Primer strani je prikazan na Sliki A.3.
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A.5 Dekompozicija profilov izražanja

Razvita metoda dekompozicije profilov izražanja genov omogoča modeliranje in

sklepanje o genskih mrežah, ter tako nudi komplementaren pogled na rezultate

dobljene z razvrščanjem na podlagi pravil. Uporabnik poda na vhod izmer-

jeni profil izražanja genov celotnega genoma, za kar metoda poǐsče komponente

(podskupine genov in njihovo izražanje pod različnimi pogoji), ki združene sku-

paj v nov profil dobro opisujejo od uporabnika podan profil izražanja genov.

Algoritem za dekompozicijo potrebuje bazo izmerjenih profilov izražanja ge-

nov celotnega genoma (transkripcijskih profilov), izmerjene za različne mutante

ali pod različnimi pogoji. Za iskanje najbolǰse dekompozicije algoritem izčrpno

preǐsče vse kombinacije, ki vsebujejo od 1 do K komponent. Za neko kombina-

cijo se vsakemu genu določi pripadnost komponenti, v kateri je izražanje gena

najbolj podobno podanemu izražanju gena (za primer glej Sliko A.4). To velja,

če izvajamo dekompozicijo z uporabo funkcije “min,” sicer pa je možno upo-

rabiti poljubno funkcijo (vsota, utežena vsota, itd.). Ker lahko baza vključuje

tudi več tisoč transkripcijskih profilov, algoritem za dekompozicijo izbere le N

transkripcijskih profilov, ki so najbolj podobni od uporabnika podanemu profilu.

Na izbrani množici potem izvede izčrpno preiskovanje kombinacij.
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Slika A.4: Dekompozicija profilov izražanja genov. Po združitvi treh kompo-
nent (“ena,” “dve” in “tri”), dobimo kompozicijo. Le-ta naj bo podobna od
uporabnika podanemu profilu izražanja.
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Rezultat dekompozicije je seznam kombinacij profilov v podani bazi, ka-

terega je možno prikazati kot mrežo najbližjih mutantov in pogojev, iz ka-

tere lahko sklepamo o genskih poteh ter o v njih udeleženih genih. Algori-

tem za dekompozicijo je implementiran v oblik spletne aplikacije, dosegljive

na naslovu http://bubble.fri.uni-lj.si/microCOMB. Navajamo tudi dva primera

uspešne uporabe dekompozicije za odkrivanje genov, ki delujejo v paralelnih

poteh genske mreže. Na podatkih glive sluzavke D. discoideum smo uspešno

odkrili dekompozicijo izražanja mutanta gene pkaC -, izražanje genov katerega

še najbolje opisuje izražanje genov mutant yakA- in acaA-, ki nastopata v vzpo-

rednih poteh, ter dokazano ključno vplivata na aktivnost gena pkaC. Drugi

primer, za gensko mrežo MAPK gena Hog v kvasovki, prav tako kaže, da de-

kompozicija odkriva “biološki kontekst” (to je, ostale meritve iz baze, s katerimi

je možno odpisati od uporabnika podano meritev) in tako omogoča sklepanje o

genskih mrežah (za podrobnosti glej poglavje 7.3).

A.6 Zaključek in nadaljnje delo

Eksperimenti z mrežami so-izraženih genov, zgrajenimi na podlagi različnih

(računskih) fenotipov, kažejo na to, da je za uspešno napovedovanje funkcije

genov potrebno uporabiti (vse razpoložljive) različne tipe fenotipov. Nadalj-

nje delo na tem področju vključuje razvoj algoritmov, ki bodo zmožni učenja

uporabe najustrezneǰsega fenotipa za napovedovanje posameznih funkcij genov.

Glavni prispevek disertacije je nova metoda strojnega učenja za razvrščanje

v skupine na podlagi pravil. Metoda združuje preiskovanje v snopu metode CN2

[Clark and Nibblet, 1989], ter določene elemente gradnje prototipov in ocenje-

vanja homogenosti skupin metode dreves za razvrščanje [Blockeel et al., 1998].

Pokazali smo, da lahko metoda odkriva kompleksne, opisne in človeku razumljive

modele, ki jih je možno uporabiti tudi za napovedovanje novih primerov. Obe

lastnosti sta pomembni pri odkrivanju novega znanja iz podatkov. Iz navedenih

primerov je tudi razvidno, da igra vizualizacija odkritih pravil pomembno vlogo

pri razumevanju odkritih zakonitosti in pridobivanju novega znanja. Nadaljnje

delo vključuje zmanǰsevanje števila parametrov in poenostavljanje zahtevanih

parametrov algoritma. Za analizo uravnavanja izražanja genov, bi bilo zanimivo

dodati in preizkusiti še druge elemente opisnega jezika, s katerimi bi bilo moč

opisati strukturo kromatina, tako imenovane otoke CpG (ang. CpG islands),
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sekundarno strukturo mRNA, ipd. Poleg tega, bi bilo v nadaljnjem delu po-

trebno preučiti kakšna je povezava med strukturo regulatorne regije genov ter

drugih tipov računskih fenotipov (n.pr., transkripcijski profil mutantov).

Ker je metoda za razvrščanje na podlagi pravil dovolj splošna, bi jo bilo

smiselno preizkusiti tudi na drugih domenah. Zelo aktualno področje je analiza

različnih kemijskih učinkovin (zdravil). V tem primeru bi opisni jezik služil za

opisovanje kemijske strukture učinkovin, profil primerov pa izmerjeno izražanje

genov v celicah izpostavljenim učinkovini.

Predlagana dekompozicija profilov izražanja se je izkazala kot uporabna

za dodatno odkrivanje relacij med geni ter postavitev uporabnikovega ekspe-

rimenta v neki biološki kontekst že znanih meritev izražanja genov. Metodo

smo tudi implementirali kot spletno orodje. Nadaljnje delo na tem področju

vključuje ovrednotenje različnih funkcij za dekompozicijo, ter razvoj časovno

manj potratne hevristike za iskanje dobrih kombinacij komponent.
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